4 research outputs found

    Applying named data networking in mobile ad hoc networks

    Get PDF
    This thesis presents the Name-based Mobile Ad-hoc Network (nMANET) approach to content distribution that ensure and enables responsible research on applying named data networking protocol in mobile ad-hoc networks. The test framework of the nMANET approach allows reproducibility of experiments and validation of expected results based on analysis of experimental data. The area of application for nMANETs is the distribution of humanitarian information in emergency scenarios. Named-Data Networking (NDN) and ad-hoc mobile communication allow exchange of emergency information in situations where central services such as cellular towers and electric systems are disrupted. The implemented prototype enables researchers to reproduce experiments on content distribution that consider constraints on mobile resources, such as the remaining power of mobile devices and available network bandwidth. The nMANET framework validates a set of experiments by measuring network traffic and energy consumption from both real mobile devices and those in a simulated environment. Additionally, this thesis presents results from experiments in which the nMANET forwarding strategies and traditional wireless services, such as hotpost, are analysed and compared. This experimental data represents the evidence that supports and validates the methodology presented in this thesis. The design and implementation of an nMANET prototype, the Java NDN Forwarder Daemon (JNFD) is presented as a testing framework, which follows the principles of continuous integration, continuous testing and continuous deployment. This testing framework is used to validate JNFD and IP-based technologies, such as HTTP in a MANET using the OLSR routing protocol, as well as traditional wireless infrastructure mode wireless. The set of experiments executed, in a small network of Android smart-phones connected in ad-hoc mode and in a virtual ad-hoc network simulator show the advantages of reproducibility using nMANET features. JNFD is open source, all experiments are scripted, they are repeatable and scalable. Additionally, JNFD utilises real GPS traces to simulate mobility of nodes during experiments. This thesis provides experimental evidence to show that nMANET allows reproducibility and validation of a wide range of future experiments applying NDN on MANETs

    A link-state based on-demand routing protocol supporting real-time traffic for wireless mobile ad hoc networks

    Get PDF
    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2007.Thesis (Master's) -- Bilkent University, 2007.Includes bibliographical references leaves 200-212.Wireless ad hoc networks have gained a lot of popularity since their introduction and as many wireless network interface cards provide support for ad hoc networking, such networks have also seen real-life deployment for non-specialized purposes. Wireless mobile ad hoc networks (MANETs) are currently the most common type of ad hoc networks, and such networks are especially esteemed for their mobility support and ease of deployment due to their ad hoc nature. As most common network applications, such as the Web, FTP, email, and instant messaging, are data-centric and do not operate under strict time constraints, MANETs have been deployed to enable such non-real-time applications in the past. However, with the increasing use of real-time applications over ad hoc networks, such as teleconferencing, VoIP, and security and tracking applications where timeliness is of importance, real-time traffic support in multi-hop wireless mobile ad hoc networks has become an issue. We propose an event-driven, link-state based, on-demand routing protocol to enable real-time traffic support in such multi-hop wireless mobile ad hoc networks. Our protocol, which is named Elessar, is based on link-state topology dissemination, but instead of the more common periodic link-state messaging scheme, we employ event-driven link-state messages in Elessar, where topology changes are the events of interest. Through such an approach, we aim to lower the overhead of our protocol, especially for low-mobility cases, which is currently the most commonly encountered case with ad hoc networks deployed with machines directly interacting with humans, such as PDAs and laptops. Due to its link-state nature, our protocol is able to support non-real-time traffic without any further action. In order to support real-time traffic, however, we employ a direct cost dissemination mechanism, which only operates on-demand when there are one or more real-time flows in the network. We aim to provide soft quality-of-service (QoS) guarantees to real-time flows through intelligent path selection, without any resource reservation. We also aim to provide such QoS guarantees throughout the lifetime of a real-time flow, even in the face of node failures and mobility, by dynamic path adaptation during the lifetime of the flow. Elessar is able to support real-time and non-real-time traffic concurrently, as well as various different types of concurrent real-time traffic, such as delay- and loss-sensitive traffic. Our protocol, therefore, does not aim to support a single type of real-time traffic, but rather a plethora of different types of real-time traffic. Elessar is completely distributed, dynamic and adaptive, and does not require the underlying MAC protocol to be QoS-aware. We analyse our design choices and the performance of our protocol through realistic simulation experiments conducted on the OMNeT++ discrete event simulation platform, using the INET framework. We have used the IEEE 802.11b MAC protocol during our simulations and have employed the random waypoint mobility model to simulate mobility. Our experimental results show that Elessar is able to efficiently provide real-time traffic support for different types of traf- fic flows, even in the face of mobility. Our protocol operates best for smallto-medium-sized networks where mobility rates are low-to-medium. Once the mobility rate exceeds a certain threshold, intelligent path selection cannot cope satisfactorily with the high dynamism of the environment and the overhead of Elessar exceeds acceptable levels due to its event-driven link-state nature.Görbil, GökçeM.S

    Data Storage and Dissemination in Pervasive Edge Computing Environments

    Get PDF
    Nowadays, smart mobile devices generate huge amounts of data in all sorts of gatherings. Much of that data has localized and ephemeral interest, but can be of great use if shared among co-located devices. However, mobile devices often experience poor connectivity, leading to availability issues if application storage and logic are fully delegated to a remote cloud infrastructure. In turn, the edge computing paradigm pushes computations and storage beyond the data center, closer to end-user devices where data is generated and consumed. Hence, enabling the execution of certain components of edge-enabled systems directly and cooperatively on edge devices. This thesis focuses on the design and evaluation of resilient and efficient data storage and dissemination solutions for pervasive edge computing environments, operating with or without access to the network infrastructure. In line with this dichotomy, our goal can be divided into two specific scenarios. The first one is related to the absence of network infrastructure and the provision of a transient data storage and dissemination system for networks of co-located mobile devices. The second one relates with the existence of network infrastructure access and the corresponding edge computing capabilities. First, the thesis presents time-aware reactive storage (TARS), a reactive data storage and dissemination model with intrinsic time-awareness, that exploits synergies between the storage substrate and the publish/subscribe paradigm, and allows queries within a specific time scope. Next, it describes in more detail: i) Thyme, a data storage and dis- semination system for wireless edge environments, implementing TARS; ii) Parsley, a flexible and resilient group-based distributed hash table with preemptive peer relocation and a dynamic data sharding mechanism; and iii) Thyme GardenBed, a framework for data storage and dissemination across multi-region edge networks, that makes use of both device-to-device and edge interactions. The developed solutions present low overheads, while providing adequate response times for interactive usage and low energy consumption, proving to be practical in a variety of situations. They also display good load balancing and fault tolerance properties.Resumo Hoje em dia, os dispositivos móveis inteligentes geram grandes quantidades de dados em todos os tipos de aglomerações de pessoas. Muitos desses dados têm interesse loca- lizado e efêmero, mas podem ser de grande utilidade se partilhados entre dispositivos co-localizados. No entanto, os dispositivos móveis muitas vezes experienciam fraca co- nectividade, levando a problemas de disponibilidade se o armazenamento e a lógica das aplicações forem totalmente delegados numa infraestrutura remota na nuvem. Por sua vez, o paradigma de computação na periferia da rede leva as computações e o armazena- mento para além dos centros de dados, para mais perto dos dispositivos dos utilizadores finais onde os dados são gerados e consumidos. Assim, permitindo a execução de certos componentes de sistemas direta e cooperativamente em dispositivos na periferia da rede. Esta tese foca-se no desenho e avaliação de soluções resilientes e eficientes para arma- zenamento e disseminação de dados em ambientes pervasivos de computação na periferia da rede, operando com ou sem acesso à infraestrutura de rede. Em linha com esta dico- tomia, o nosso objetivo pode ser dividido em dois cenários específicos. O primeiro está relacionado com a ausência de infraestrutura de rede e o fornecimento de um sistema efêmero de armazenamento e disseminação de dados para redes de dispositivos móveis co-localizados. O segundo diz respeito à existência de acesso à infraestrutura de rede e aos recursos de computação na periferia da rede correspondentes. Primeiramente, a tese apresenta armazenamento reativo ciente do tempo (ARCT), um modelo reativo de armazenamento e disseminação de dados com percepção intrínseca do tempo, que explora sinergias entre o substrato de armazenamento e o paradigma pu- blicação/subscrição, e permite consultas num escopo de tempo específico. De seguida, descreve em mais detalhe: i) Thyme, um sistema de armazenamento e disseminação de dados para ambientes sem fios na periferia da rede, que implementa ARCT; ii) Pars- ley, uma tabela de dispersão distribuída flexível e resiliente baseada em grupos, com realocação preventiva de nós e um mecanismo de particionamento dinâmico de dados; e iii) Thyme GardenBed, um sistema para armazenamento e disseminação de dados em redes multi-regionais na periferia da rede, que faz uso de interações entre dispositivos e com a periferia da rede. As soluções desenvolvidas apresentam baixos custos, proporcionando tempos de res- posta adequados para uso interativo e baixo consumo de energia, demonstrando serem práticas nas mais diversas situações. Estas soluções também exibem boas propriedades de balanceamento de carga e tolerância a faltas
    corecore