
A LINK-STATE BASED ON-DEMAND
ROUTING PROTOCOL SUPPORTING
REAL-TIME TRAFFIC FOR WIRELESS

MOBILE AD HOC NETWORKS

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Gökçe Görbil

August, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52925014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. İbrahim Körpeoğlu (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Defne Aktaş

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Tolga Çapın

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

A LINK-STATE BASED ON-DEMAND ROUTING
PROTOCOL SUPPORTING REAL-TIME TRAFFIC
FOR WIRELESS MOBILE AD HOC NETWORKS

Gökçe Görbil

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. İbrahim Körpeoğlu

August, 2007

Wireless ad hoc networks have gained a lot of popularity since their intro-

duction and as many wireless network interface cards provide support for ad hoc

networking, such networks have also seen real-life deployment for non-specialized

purposes. Wireless mobile ad hoc networks (MANETs) are currently the most

common type of ad hoc networks, and such networks are especially esteemed for

their mobility support and ease of deployment due to their ad hoc nature. As

most common network applications, such as the Web, FTP, email, and instant

messaging, are data-centric and do not operate under strict time constraints,

MANETs have been deployed to enable such non-real-time applications in the

past. However, with the increasing use of real-time applications over ad hoc

networks, such as teleconferencing, VoIP, and security and tracking applications

where timeliness is of importance, real-time traffic support in multi-hop wireless

mobile ad hoc networks has become an issue.

We propose an event-driven, link-state based, on-demand routing protocol to

enable real-time traffic support in such multi-hop wireless mobile ad hoc net-

works. Our protocol, which is named Elessar, is based on link-state topology

dissemination, but instead of the more common periodic link-state messaging

scheme, we employ event-driven link-state messages in Elessar, where topology

changes are the events of interest. Through such an approach, we aim to lower the

overhead of our protocol, especially for low-mobility cases, which is currently the

most commonly encountered case with ad hoc networks deployed with machines

directly interacting with humans, such as PDAs and laptops. Due to its link-state

nature, our protocol is able to support non-real-time traffic without any further

action. In order to support real-time traffic, however, we employ a direct cost

iii

iv

dissemination mechanism, which only operates on-demand when there are one or

more real-time flows in the network. We aim to provide soft quality-of-service

(QoS) guarantees to real-time flows through intelligent path selection, without

any resource reservation. We also aim to provide such QoS guarantees through-

out the lifetime of a real-time flow, even in the face of node failures and mobility,

by dynamic path adaptation during the lifetime of the flow. Elessar is able to

support real-time and non-real-time traffic concurrently, as well as various differ-

ent types of concurrent real-time traffic, such as delay- and loss-sensitive traffic.

Our protocol, therefore, does not aim to support a single type of real-time traffic,

but rather a plethora of different types of real-time traffic. Elessar is completely

distributed, dynamic and adaptive, and does not require the underlying MAC

protocol to be QoS-aware.

We analyse our design choices and the performance of our protocol through

realistic simulation experiments conducted on the OMNeT++ discrete event sim-

ulation platform, using the INET framework. We have used the IEEE 802.11b

MAC protocol during our simulations and have employed the random waypoint

mobility model to simulate mobility. Our experimental results show that Elessar

is able to efficiently provide real-time traffic support for different types of traf-

fic flows, even in the face of mobility. Our protocol operates best for small-

to-medium-sized networks where mobility rates are low-to-medium. Once the

mobility rate exceeds a certain threshold, intelligent path selection cannot cope

satisfactorily with the high dynamism of the environment and the overhead of

Elessar exceeds acceptable levels due to its event-driven link-state nature.

Keywords: Wireless ad hoc networks, routing protocol, real-time traffic support,

quality-of-service (QoS).

ÖZET

KABLOSUZ MOBİL TASARSIZ AĞLARDA GERÇEK

ZAMANLI TRAFİK DESTEĞİ VEREN BAĞ DURUMU
TABANLI İSTEĞE DAYALI YOL ATAMA

PROTOKOLÜ

Gökçe Görbil

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. İbrahim Körpeoğlu

Ağustos, 2007

Geliştirildiklerinden ve kullanıma sunulduklarından beri, kablosuz tasarsız ağlar

bayağı rağbet görmektedir ve bir çok kablosuz ağ arayüz kartı tasarsız ağlara

destek sağladığı için, bu tip ağ yapıları gerçek hayatta özel amaçlara yönelik ol-

mayan bir çok kullanım alanı bulmuştur. Şu anda gerçek hayattaki en yaygın

tasarsız ağ tipi “kablosuz mobil tasarsız ağlar (KMTA)”dır ve bu ağlar, özellikle

hareketlilik destekleri ve tasarsız doğalarından kaynaklanan konuşlandırma ko-

laylıklarından dolayı büyük itibar görmektedir. Web, dosya aktarımı, e-posta

ve hızlı mesajlaşma gibi yaygın ağ uygulamaları veri odaklı olduğundan ve sıkı

zaman kısıtlamaları altında çalışmadığından, KTMA’lar geçmişte bu tip gerçek

zamanlı olmayan uygulamaları olanaklı kılacak şekilde kullanılmıştır. Fakat,

telekonferans, IP üzerinden ses aktarımı, güvenlik ve takip uygulamaları gibi

vakitliliğin önemli olduğu uygulamaların kullanımı yaygınlaştıkça, çoklu sek-

meli KTMA’larda gerçek zamanlı trafik desteği önemli bir konu olarak ortaya

çıkmaktadır.

Çoklu sekmeli KTMA’larda gerçek zamanlı trafik desteği veren, olaya ve isteğe

dayalı, bağ durumu tabanlı bir yol atama protokolü öneriyoruz. Elessar adını

verdiğimiz protokol, bağ durumlu topoloji dağıtımına dayanmaktadır, ama daha

yaygın olan periyodik bağ durumu mesajlaşması yerine, Elessar’da, ilgilendiğimiz

olayların topoloji değişimleri olduğu olay tabanlı bağ durumu mesajları kul-

lanıyoruz. Böyle bir yaklaşımla protokolümüzün getirdiği ek yükü azaltmayı

hedefliyoruz. Protokol ek yükünü özellikle diz üstü ve avuç içi bilgisayarları

gibi insanlarla doğrudan etkileşim içerisinde bulunan araçlardan oluşan, düşük

seviyeli hareketlilik barındıran tasarsız ağlarda azaltmayı amaçlıyoruz. Bağ du-

rumu tabanlı doğasından dolayı, protokolümüz gerçek zamanlı olmayan trafiği

v

vi

herhangi bir ek işlem gerektirmeden desteklemektedir. Gerçek zamanlı trafiği

desteklemek için ise sadece ağda bir veya birden fazla gerçek zamanlı trafik

akışı olan durumlarda, talebe bağlı olarak çalışan bir doğrudan tutar dağıtım

mekanizması öneriyor ve kullanıyoruz. Kaynak rezervasyonu yapmadan, akıllı

yol seçimleri sayesinde gerçek zamanlı trafik akışlarına gevşek hizmet kalitesi

güvencesi veriyoruz. Hizmet kalitesi güvencelerini, ağ düğümlerinde oluşabilecek

aksaklıklara rağmen ve hareketlilik durumlarında bile, dinamik yol ayarlamaları

sayesinde trafik akışının ömrü boyunca verebiliyoruz. Elessar, gerçek zamanlı

olan ve olmayan trafik akışlarına eş zamanlı destek verebildiği gibi, gecikme du-

yarlı ve kayıp duyarlı trafik gibi birden fazla gerçek zamanlı trafik akış tipini de eş

zamanlı olarak destekleyebilmektedir. Yani protokolümüz sadece tek tip gerçek

zamanlı trafik akışına destek vermek yerine bir çok trafik tipini desteklemektedir.

Elessar tamamen dinamik, kendinden ayarlamalı ve dağıtımlı olup, aşağıda yer

alan katmanların hizmet kalitesi sağlandığının farkında olmasını gerektirmemek-

tedir.

OMNeT++ kesikli olay simülasyon platformu ve bu platform için geliştirilmiş

INET iskelet yapısı üzerinde gerçekleştirdiğimiz gerçekçi simülasyon deneyleriyle,

aldığımız tasarım kararlarını ve protokolümüzün performansını değerlendirdik.

Bu deneylerimizde IEEE 802.11b ortam erişim protokolünü ve hareketliliği simüle

edebilmek için rastlantısal yol noktası hareketlilik modelini kullandık. Deney

sonuçlarımız göstermektedir ki Elessar, hareketlilik durumlarında bile değişik

gerçek zamanlı trafik tiplerini etkili bir biçimde desteklemektedir. Deneyleri-

miz sonucunda görülüyor ki önerdiğimiz protokol en iyi performansını küçük

ve orta ölçekli ağlarda, düşük ve orta hareketlilik seviyeleri için göstermektedir.

Hareketlilik seviyesi belirli bir eşiği aştıktan sonra akıllı yol seçimleri ortamdaki

yüksek dinamizmle tatminkar bir şekilde baş edememekte ve Elessar’ın getirdiği

ek yük kabul edilebilir seviyeleri geçmektedir.

Anahtar sözcükler : Kablosuz tasarsız ağlar, yol atama protokolü, gerçek zamanlı

trafik desteği, hizmet kalitesi.

To my parents, Hale and Yavuz Görbil . . .

vii

Acknowledgement

First of all, I would like to express my gratitude to my supervisor, Assist. Prof.

Dr. İbrahim Körpeoğlu, for his guidance and support throughout this thesis. I

have learned a lot from him and he has been very helpful to me, both profession-

ally and socially. His friendly and pleasant personality has rendered this study

more enjoyable.

I would also like to thank Assist. Prof. Dr. Defne Aktaş and Assist. Prof.

Dr. Tolga Çapın for taking the time to read and evaluate my thesis.

I am grateful to my parents, Hale and Yavuz Görbil, for their understanding,

support, and love throughout this work. They have always believed in me and

encouraged me to achieve higher standards and have never withheld from me

their care and love. This work would not have been possible without you. I am

also thankful for my sister, Müge, for her witty comments and her joyful spirit.

She has given me mirth and has been very understanding and supportive.

I would like to thank my labmates, Alper Rifat Uluçınar, Büşra Çelikkaya,

Eyuphan Bulut, and especially Berk Berker, for their constructive comments and

friendship during this study. It has been a pleasure sharing the same workplace

with you.

I hereby thank my friends, Ata Türk and Aylin Tokuç, for their companionship

and emotional support.

I am grateful to TÜBİTAK for their financial support during this research.

This presented work has been supported under grant TÜBİTAK CARREER

104E28.

And last, but not least, I would like to thank my special friend Meltem Çelebi.

I am grateful for all the moments we shared together.

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Our Contributions . 3

1.3 Thesis Organization . 4

2 Related Work 5

2.1 Routing Protocols for Wireless Ad Hoc Networks 5

2.2 QoS Support in Wireless Ad Hoc Networks 12

3 Available Link Capacity Calculation 15

3.1 Introduction . 15

3.2 Assumptions and Rules . 17

3.3 The Algorithm . 19

3.4 Future Work on the Link Capacity Calculator 22

4 Our Proposed Protocol 24

ix

CONTENTS x

4.1 Introduction . 24

4.2 Assumptions . 25

4.3 Protocol Specification . 27

4.3.1 Neighborhood Beaconing 29

4.3.2 Topology Dissemination 32

4.3.3 Directed Cost Dissemination 44

4.3.4 Route Discovery and Packet Forwarding 56

4.3.5 Route Maintenance . 61

4.4 Summary . 67

5 Design and Implementation Details 68

5.1 Our Simulation Tool: OMNeT++ 68

5.1.1 Modules . 69

5.1.2 Components of a Simulation Model 70

5.1.3 The INET Framework for OMNeT++ 71

5.1.4 The Mobility Framework (MF) for OMNeT++ 71

5.1.5 Modules Directly Used In Our Implementation 72

5.2 Modules and Messages Used in Our Protocol 73

5.2.1 Modules . 73

5.2.2 Message Types . 81

5.3 Pseudocodes and Algorithms . 88

CONTENTS xi

5.3.1 Neighborhood Beaconing 88

5.3.2 Topology Dissemination 89

5.3.3 Route Discovery and Packet Forwarding 95

5.3.4 Route Maintenance . 115

5.3.5 Directed Cost Dissemination 122

5.3.6 Link Cost Measurement 126

6 Experimental Results 131

6.1 Experimental Results for Normal Mode 132

6.1.1 Examination of the Protocol Overhead 135

6.1.2 Protocol Performance in Normal Data Routing 155

6.2 Experimental Results for QoS Mode 166

6.2.1 Results on Protocol Overhead in QoS Operation Mode . . 168

6.2.2 Results on Protocol Performance in QoS Operation Mode . 178

7 Conclusion and Future Work 196

A Module Definitions 213

B Data Types used in Message Definitions 216

List of Figures

3.1 The hidden and exposed terminal problems. 18

3.2 Example topology with two flows. 22

4.1 Protocol mechanisms and interactions. 26

4.2 Passive beaconing. 31

4.3 Topology dissemination: neighborhood change at node 4. 36

4.4 Topology dissemination. 39

4.5 A topology change cetected by multiple nodes. 42

4.6 A sample topology with a real-time flow. 48

4.7 Information of nodes about a real-time flow. 49

4.8 Information of nodes about a real-time flow: use of additional paths. 52

4.9 Source routing and packet forwarding. 58

4.10 A path from S to D including link (x, y) 62

4.11 Example case for route maintenance. 66

5.1 Modules in OMNeT++. 70

xii

LIST OF FIGURES xiii

5.2 Wireless ad hoc network of 10 nodes in an area of (250 x 250). . . 75

5.3 Internal representation of a wireless mobile host. 78

5.4 Internal representation of the Ieee80211NicAdhoc module. 81

5.5 Example topology for max-min bandwidth path selection. 105

6.1 An example network. 137

6.2 LS overhead in bytes vs. wholeK, for different mobility rates. . . . 138

6.3 LS overhead in bytes vs. wholeK, for different mobility rates -

individual cases. 139

6.4 LS overhead in packet count vs. wholeK, for different mobility rates.140

6.5 LS overhead ratio in bytes vs. wholeK, for different mobility rates. 141

6.6 LS overhead in bytes vs. wholeK, for different network sizes -

individual cases. 142

6.7 LS overhead in packet count vs. wholeK, for different network sizes.143

6.8 LS overhead ratio in bytes vs.wholeK, for different network sizes. . 143

6.9 LS overhead in bytes vs. wholeK, for different node densities. . . . 144

6.10 LS overhead in packet count vs. wholeK, for different node densities.145

6.11 LS overhead ratio in bytes vs. wholeK, for different node densities. 146

6.12 LS overhead in bytes vs. node density, for different mobility rates. 146

6.13 LS overhead in packet count vs. node density, for different mobility

rates. 147

6.14 LS overhead ratio in bytes vs. node density, for different mobility

rates. 147

LIST OF FIGURES xiv

6.15 LS overhead ratio in packet count vs. node density, for different

mobility rates. 148

6.16 Average LS packet lengths vs. wholeK, for different mobility rates. 149

6.17 Average LS packet lengths vs. wholeK, for different network sizes. 149

6.18 Average LS packet lengths vs. wholeK, for different node densities. 150

6.19 Average LS packet lengths vs. node density, for different mobility

rates. 151

6.20 Source routing overhead ratios in bytes vs. wholeK, for different

mobility rates. 151

6.21 Source routing overhead ratios in bytes vs. node density, for dif-

ferent mobility rates. 152

6.22 Source routing overhead ratios in bytes vs. network size. 153

6.23 Source routing overhead per packet in bytes vs. network size. . . . 154

6.24 Source routing overhead per packet in bytes vs. node density. . . 154

6.25 Route finding success rates vs. wholeK, for different mobility rates. 158

6.26 Route finding success rates vs. network size. 159

6.27 Route finding success rates vs. wholeK, for different node densities. 159

6.28 Route finding success rates vs. node density, for different mobility

rates. 160

6.29 Data loss ratios in packet count vs. wholeK, for different mobility

rates. 161

6.30 Data loss ratios in packet count vs. network size. 162

LIST OF FIGURES xv

6.31 Data loss ratios in packet count vs. wholeK, for different node

densities. 162

6.32 Data loss ratios in packet count vs. node density, for different

mobility rates. 163

6.33 Data loss ratios in packet count vs. node density, with/without

route maintenance. 164

6.34 Data loss ratios in packet count vs. mobility, with/without route

maintenance. 164

6.35 Cost overhead vs. cost count, non-periodic case. 170

6.36 Cost overhead vs. cost period, periodic case. 170

6.37 Cost overhead vs. cost inform hop count. 171

6.38 Cost overhead vs. mobility rate. 172

6.39 Cost overhead vs. network size. 172

6.40 Cost overhead vs. node density. 173

6.41 Total overhead vs. cost count, non-periodic case. 174

6.42 Total overhead vs. cost period, periodic case. 174

6.43 Total overhead vs. cost inform hop count. 175

6.44 Total overhead vs. mobility rate. 175

6.45 Total overhead vs. network size. 176

6.46 Total overhead vs. node density. 176

6.47 Average end-to-end delay vs. cost count. 179

6.48 Average end-to-end delay vs. cost period. 180

LIST OF FIGURES xvi

6.49 Average end-to-end delay vs. cost inform hop count. 180

6.50 Average end-to-end delay vs. network size. 181

6.51 Average end-to-end delay vs. node density. 182

6.52 QoS satisfaction ratio vs. cost inform hop count for delay-sensitive

traffic. 183

6.53 QoS satisfaction ratio vs. node density for delay-sensitive traffic. . 183

6.54 QoS satisfaction ratios for delay-sensitive traffic for different sim-

ulation parameters. 185

6.55 Average end-to-end loss rate vs. cost count. 186

6.56 Average end-to-end loss rate vs. cost period. 187

6.57 Average end-to-end loss rate vs. cost inform hop count. 187

6.58 Average end-to-end loss rate vs. node density. 188

6.59 QoS satisfaction ratio vs. cost count. 189

6.60 QoS satisfaction ratio vs. cost period. 189

6.61 QoS satisfaction ratio vs. cost inform hop count. 190

6.62 QoS satisfaction ratio vs. node density. 190

6.63 Max-Min available bandwidth vs. cost count. 192

6.64 Max-Min available bandwidth vs. cost period. 193

6.65 Max-Min available bandwidth vs. cost inform hop count. 193

6.66 Max-Min available bandwidth vs. node density. 194

List of Algorithms

1 calculateCapacities . 21

2 Neighborhood Beaconing, Part 1 90

3 Neighborhood Beaconing, Part 2 91

4 Passive Neighborhood Beaconing 91

5 Topology Dissemination, Part 1 96

6 Topology Dissemination, Part 2 97

7 Topology Dissemination, Part 3 98

8 Dijkstra’s Shortest Paths Algorithm, with Additional Checks, Part 1101

9 Dijkstra’s Shortest Path Algorithm, with Additional Checks, Part 2102

10 Dijkstra’s Shortest Paths Algorithm, Delay-Sensitive Traffic . . . 106

11 Max-Min Available Bandwidth Path Finding Algorithm 108

12 Path Finding Algorithm with End-to-End Loss Rate Minimization 110

13 Packet Forwarding . 112

14 Route Discovery, Part 1 . 116

15 Route Discovery, Part 2 . 117

16 Route Discovery, Part 3 . 118

17 Procedure sendSpecialRTMsg(pkt) 119

18 Route Maintenance, No Route Failure Messages 121

19 Procedure findInRTFlows(pkt) . 126

20 Information of Nodes - CostInform Messages 127

21 Directed Cost Transmission . 128

22 Cost Message Processing . 129

23 Cost Timer, CostInformMsg, and SpecialRTMsg Processing 130

xvii

List of Tables

6.1 Simulation parameters for the wireless channel and physical radio. 132

6.2 Simulation parameters for data traffic in normal operation mode

experiments. 134

6.3 Miscellaneous simulation parameters for normal operation mode

experiments. 134

6.4 Mobility rates. 137

6.5 Simulation parameters for overhead experiments in normal mode

operation. 156

6.6 Simulation parameters for routing performance experiments in nor-

mal mode operation. 165

6.7 Simulation parameters for data traffic in QoS operation mode ex-

periments. 167

6.8 Miscellaneous simulation parameters for QoS operation mode ex-

periments. 168

6.9 Simulation parameters for overhead experiments in QoS mode op-

eration. 177

6.10 Simulation parameters for delay-sensitive traffic experiments in

QoS mode operation. 184

xviii

LIST OF TABLES xix

6.11 Simulation parameters for loss-sensitive traffic experiments in QoS

mode operation. 191

6.12 Simulation parameters for bandwidth-sensitive traffic experiments

in QoS mode operation . 195

Chapter 1

Introduction

1.1 Motivation

Wireless networks had been gaining popularity for quite some time now, and

wireless LANs employing IEEE 802.11 technology seem to be ubiquitous these

days. As the widespread acceptance and deployment of such one-hop wireless

networks increase, so do the popularity of wireless multi-hop networks, however

at a lower rate of penetration.

There are many wireless multi-hop network types, including mobile ad hoc

networks (MANETs) [87], sensor networks [8, 9], and mesh networks [10, 11],

to name a few. Among such multi-hop networks, MANETs are the ones that

are closest to the end user in terms of deployment and interaction. MANETs

are also technically viable these days, meaning they can easily be deployed in

real-life by people who are just end users and not researchers. Although several

other wireless multi-hop networks may promise wider areas of open research and

greater benefits to mankind once they are put to real-life use, MANETs promise

actual real-life deployment in the present under conventional roles and in the very

near future under various roles in which they are not currently used.

A wireless mobile ad hoc network (MANET) is a self-configuring network that

1

CHAPTER 1. INTRODUCTION 2

does not require any existing infrastructure to be deployed. Nodes in the network

connect to each other and form a network in an ad hoc manner, hence the name ad

hoc networks. MANETs are multi-hop networks where each node in the network

may act as a router to forward packets on behalf of other nodes. As the name

suggests, nodes in a MANET are generally mobile, meaning they can move about

during their lifetime in the network. Another source of dynamism for MANETs

is the joining and leaving of nodes to and from the network during the lifetime

of the network. One final factor which makes MANETs highly dynamic is the

changing conditions of the wireless medium due to ongoing flows in the network

and transient/permanent interferences. Nodes in a MANET are generally devices

that have sufficient energy and processing capabilities. Examples for such nodes

are PDAs, laptops, and hand-held cellular devices such as cell phones.

One current application area of MANETs is their use for real-time applications

[32, 59, 62]. Such networks may be used in several different roles when deployed

for the support of real-time traffic. They may be used to support real-time au-

dio/video applications, such as VoIP, teleconferencing, etc. They may also be

used as easily deployable personal security networks for real-time intrusion de-

tection or monitoring systems. When used as an emergency network deployed

in times of disaster, military conflict, and/or emergency medical situations, the

network may be required to support various degrees of different QoS parame-

ters in order to support delay-sensitive and/or loss-sensitive applications, where

timeliness and reliability are of high importance.

We focused our research on the real-time traffic support issue under wireless

multi-hop MANETs, trying to improve real-time traffic support in such networks.

When undertaking this research, we had in mind whether our proposed solution

will actually be feasible in real-life deployment and to what effect we will be able

to improve real-time traffic flows in MANETs.

CHAPTER 1. INTRODUCTION 3

1.2 Our Contributions

Our solution to the problem of real-time traffic support on MANETs focused on

the network layer, and we hereby propose a routing protocol named Elessar 1 that

supports real-time traffic in wireless multi-hop MANETs. Our routing protocol

is a link-state based protocol [33, 63], however instead of the more conventional

use of periodic link-state updates, we make use of event-driven updates, where

topology changes constitute events of interest. We are able to support both

real-time and non-real-time (normal) traffic concurrently in the network, where

support for real-time traffic is based on an on-demand mechanism [7, 12, 88, 89,

111] which is only initiated when one or more nodes want to send real-time data.

This mechanism which enables real-time traffic support is also deactivated when

all real-time flows in the network have ended. Therefore our routing protocol

operates reactively for real-time traffic, whereas we support normal traffic in a

proactive manner. Such normal traffic support is achieved through the event-

driven link-state mechanism.

We achieve real-time traffic support through intelligent path selection at the

source node. Our protocol does not employ any resource reservations and there-

fore provides only soft quality-of-service (QoS) guarantees to real-time flows at

the moment. However, our protocol may easily incorporate a reservation mecha-

nism that reserves resources along least-cost paths found by the route discovery

mechanism of our protocol. The protocol is able to support various different types

of real-time traffic concurrently, such as loss-sensitive and delay-sensitive traffic.

It should also be noted that our protocol is able to provide almost any type of

soft QoS, with the only requirement being that link costs available to Elessar are

meaningful representatives of the QoS type requested by a real-time flow. We

currently assume that there is an underlying mechanism providing link costs to

Elessar periodically, where such link costs may be measurements of link delay,

loss rate, available bandwidth, etc.

1The name Elessar is derived from the pronounciation of LSR, which stands for link-state
routing in short.

CHAPTER 1. INTRODUCTION 4

We employ source routing in our protocol [7, 12, 88, 89, 111]. The over-

head due to embedded routes in packet headers is justifiable since our protocol

is targeted towards small-to-medium sized wireless MANETs, having a diameter

between 5 and 10. Our protocol supports dynamism resulting from node mobility

and dynamic node joins and leaves and it is completely distributed, with no need

for centralized components. Elessar is self-adapting to the current conditions in

the network and provides QoS throughout the lifetime of a real-time flow, even

in the face of node mobility. It requires little functionality from the underlying

layers, and may enable several optimizations if relevant functions are available.

Elessar currently supports single paths only, but it may easily be adapted to sup-

port multipaths as multipath capability is inherent in the design of our protocol.

We strived to design and implement our protocol as realistically as possible.

We have implemented Elessar in OMNeT++ [98, 96, 97], a discrete-event simula-

tion environment. In our implementation, for feasibility and ease of deployment

concerns in real-life, we chose currently the most common MAC protocol, the

IEEE 802.11b MAC protocol [25, 24, 43, 64, 103], as our underlying link layer

protocol, instead of more sophisticated MAC protocols [37, 60, 106, 107, 108, 109]

which have been developed specifically to support real-time traffic in MANETs

but have failed to achieve widespread use. Such concerns were also a factor in our

choice of wireless network interface cards, where we opted for currently available

technologies instead of more promising, but currently unused technologies.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents related work

on the subject and Chapter 3 presents a simple link capacity calculator that we

have designed and implemented for use in our protocol simulations. We present

our proposed protocol in Chapter 4 along with various implementation details

provided in Chapter 5. We present experimental results obtained from our sim-

ulation testbed in Chapter 6 and we conclude and provide directions for future

work in Chapter 7.

Chapter 2

Related Work

There is extensive research on wireless ad hoc networks. In this chapter, we

mainly focus on two research fields in ad hoc networks: routing and QoS support.

2.1 Routing Protocols for Wireless Ad Hoc Net-

works

Many different routing protocols have been proposed for use in wireless ad hoc

networks. Such protocols are categorized according to different criteria, including

when and how they provide routes, whether they operate on flat or hierarchical

topologies, whether they provide single or multiple paths, and what type of rout-

ing information is exhanged [7, 12, 22, 88, 89].

According to their underlying information mechanisms, routing protocols may

be classified as link-state [33, 63, 90] and distance-vector [33, 63] protocols. In

link-state routing, routing information is exchanged in the form of link-state

packets, where each packet includes link information about the originating node’s

one-hop neighbors. Such link-state messages may be created periodically or when

a link state change occurs. When a link-state message is created, it will be flooded

into the entire network. Through this mechanism, every node in the network can

5

CHAPTER 2. RELATED WORK 6

construct and maintain a view of the global topology and locally compute routes

to all other nodes. The potential problem with link-state routing is high routing

overhead due to the globally broadcasted link-state messages.

In distance-vector routing, every node maintains a distance-vector table for

each destination in the network. Each node exchanges this table with its neigh-

bors periodically. Upon reception of such a distance-vector, a node computes new

routes and updates its distance-vector. The complete route from a source to a

destination is formed in a distributed manner by the combination of information

provided in the distance-vectors of nodes along the path from the source to the

destination. The problems with distance-vector routing are slow convergence and

possibility of routing loops.

Depending on when the route is computed, routing protocols may be classified

as proactive and on-demand (reactive) routing protocols. Proactive protocols

compute routes a priori, so when a node wants to send a packet, there is no route

acquisition latency as the route has already been computed. The disadvantage is

that nodes need to store partial or full topology information and such information

needs to be kept up-to-date, creating higher routing overhead. With on-demand

protocols, on the other hand, a route to a destination is computed only when

such a route is needed, creating a latency between the time a packet needs to

be sent and the time when such a route is found. The advantage of on-demand

protocols is lower routing overhead.

In light of such information, our protocol is a link-state protocol that is a

hybrid of reactive and proactive routing. We use proactive routes for all non-

real-time data flows and also for real-time flows until a better path is found to

support such real-time traffic. We find this better path in order to support real-

time traffic in a reactive manner. We aim to lower the route acquisition latency

to practically zero with this hybrid scheme, while still keeping routing overhead

to a minimum.

Based on when routing information is exchanged between nodes, routing pro-

tocols may be classified as periodical and event-driven update protocols. With pe-

riodical protocols, routing information is exchanged in a periodic manner, whereas

CHAPTER 2. RELATED WORK 7

with event-driven protocols, such updates are done only when certain events of

interest occur. Periodic updates simplify routing protocols and maintain network

stability, but the choice of suitable periods is an issue. Event-driven updates in-

cur low overhead when event rate is low, but have the problem of high overhead

when event rate is high. Elessar is an event-driven protocol where neighborhood

changes of nodes are events of interest, and our event rate is affected by the

mobility rate of nodes in the network.

With flat-structured routing protocols, every node in the network is at same

level and has the same routing functionality. With hierarchical protocols, nodes

in the network are dynamically organized into partitions called clusters and nodes

may have different routing responsibilites based on their role in the cluster. Flat

routing is efficient and simple for small networks but may cause problems due to

initial route acquisition latency for very large networks. Hierarchical routing is

suitable for large networks but has the additional overhead and complexity of the

maintenance of clusters. Since we are dealing with small-to-medium sized ad hoc

networks, using a flat routing structure is efficient and suited for our purposes.

Routing protocols may be classified as source routing and hop-by-hop routing

protocols depending on how they route a packet. Source routing protocols place

the entire route in the header of the packet to be routed at the source node, and

intermediate nodes forward the packet according to the route in the header. This

has the advantage that intermediate nodes do not need to maintain up-to-date

routing information. A disadvantage of source routing is the overhead caused

by the embedded routes in the packet header. With hop-by-hop routing, each

node along the path from the source to the destination decide individually to

which node to send the packet. A problem with hop-by-hop routing is that each

intermediate node needs to maintain up-to-date routing information. We employ

source routing in Elessar to ease the burden of packet processing and forwarding

at intermediate nodes and we investigate the overhead caused by embedded routes

in packet headers in simulation experiments.

One final criteria by which routing protocols may be classified is the use of

single or multiple paths between source and destination during the lifetime of the

CHAPTER 2. RELATED WORK 8

flow. Our protocol currently uses single paths between sources and destinations,

but it is capable of supporting concurrent multipath communication with little

additional effort.

There has been many proposals for routing protocols in wireless ad hoc net-

works, including DSDV [82], GSR [28], FSR [52], CGSR [30], WRP [78], AODV

[81, 83], DSR [56, 57], TORA [80], DST [86], ABR [94], SSA [39], ZRP [45], ZHLS

[55], CEDAR [93], OLSR [31], STAR [44], and HSR [52], to name a few. We now

take a closer look at some of the widely-accepted protocols related with our work.

Destination Sequenced Distance-Vector Routing (DSDV) protocol [82] is one

of the earliest protocols proposed for wireless ad hoc networks. It is proactive

in nature, and as its name implies, it employs distance-vector routing based on

the classical distributed Bellman-Ford algorithm [19, 20, 36, 58]. The authors

of DSDV have set out to design a routing method for ad hoc networks which

preserves the simplicity of RIP [34, 48, 73], yet at the same time avoids the looping

problem. To combat the routing loops problem, DSDV uses sequence numbers

on each route table entry so that nodes can distinguish stale routes from the new

ones. Since DSDV is distance-vector based, it requires periodic advertisement

and global dissemination of connectivity information and that each node in the

network maintain a table of next-hops for each possible destination (each node)

in the network.

The Temporally-Ordered Routing Algorithm (TORA) [80] is based on the con-

cept of “link reversals”, where the protocol operates in a temporally-ordered

sequence of computations, with each computation consisting of a sequence of di-

rected link reversals. TORA was designed to be employed in large and dense

mobile networks. TORA does not aim to provide optimal paths (i.e. shortest

paths) and it does not maintain a route between all (source, destination) pairs.

The authors have aimed to design a protocol where reaction to topological changes

is minimized. The protocol creates a directed acyclic graph (DAG) for each desti-

nation and maintains this DAG using link reversals. The disadvantages of TORA

are that it does not provide shortest paths between sources and destinations and

it requires temporal ordering of events, which requires either synchronized clocks,

CHAPTER 2. RELATED WORK 9

which is hard to achieve for large networks or a relative time ordering mechanism,

which is subject to errors and introduces situations where the protocol is unable

to find a route even when one exists.

Zone Routing Protocol (ZRP) [45] is a flat-structured hybrid protocol devel-

oped for MANETs. The protocol uses the concept of “zones” in a flat-structured

network, where a routing zone is established around each node according to

some number named the zone radius. Each node knows the topology of the net-

work within its routing zone only and receives updates only regarding topological

changes within its zone. This is achieved through a proactive protocol running

within the zone of each node. ZRP may make use of any proactive protocol to

establish topology information at each node. Nodes find routes to other nodes

outside their zone through a reactive mechanism, using route discovery, which is

basically a flooding of the route request to all zones in the network. The route

formed through such route discovery is not from node-to-node, but rather from

zone-to-zone, which makes it more stable in the face of topological changes. The

behavior of ZRP may be adjusted through the setting of the zone radius. For a

zone radius of 0, ZRP operates in a pure reactive manner, and for a zone radius

greater than or equal to the diameter of the network, ZRP is a pure proactive

protocol.

The Ad hoc On-Demand Distance Vector (AODV) routing protocol [81, 83] is

a popular routing protocol proposed for wireless ad hoc networks. AODV is based

on a distance-vector algorithm but instead of relying heavily upon global peri-

odic advertisements, it strives to operate on-demand. AODV is able to provide

loop-free routes even while repairing broken links through the use of destination

sequence numbers as employed in DSDV. AODV is loosely coupled with DSDV

since it was designed with the intention of improving upon the performance char-

acteristics of DSDV. AODV operates on-demand, meaning that nodes that do

not lie on active paths do not maintain any routing information and do not take

part in periodic routing table exchanges. Also, a node does not need to discover

and maintain a route to a destination until it needs to send some data, unless,

of course, either node is on some other active path. AODV uses a global broad-

cast route discovery mechanism and hop-by-hop routing. As with all on-demand

CHAPTER 2. RELATED WORK 10

protocols, AODV suffers from initial route acquisition latency.

DSR, namely Dynamic Source Routing [56, 57] is another popular routing

protocol for MANETs. It is an on-demand protocol that uses source routing.

DSR is composed of two mechanism: route discovery and route maintenance.

Route discovery is achieved through global broadcast and each route request

packet travelling in the network records in its header over which nodes it has

past. When the destination receives such a packet, it sends a route reply to the

source node containing the accumulated route in the route request header. When

the source node receives such a reply, it has obtained a route from itself to the

destination. Route maintenance is activated when an active route is broken. An

explicit informing scheme is used as the node that detects the breakage sends

a route error message back to the source. When the source node receives such

a message, it may initiate another route discovery to find another path. DSR

employs various additional features for performance purposes, such as caching

overheard routes, early replies to route requests, route request hop limits, etc.

DSR has seen widespread implementation due to its low overhead and simplicity.

As with all on-demand protocols, DSR suffers from the initial route acquisition

latency as well as route repairing latency when a route is broken. DSR also may

suffer from higher overhead due to source routing for large networks.

Source Tree Adaptive Routing (STAR) [44] is a proactive routing protocol

based on a link-state mechanism. A node in STAR sends to its neighbors its

source routing tree in either incremental or atomic updates. Source trees are

specified by stating the link parameters of each link belonging to the paths used

to reach every destination. Therefore, a node disseminates link-state updates

to its neighbors for only those links along paths used to reach destinations. A

node broadcasts a link-state message to all its neighbors when its source tree

changes. Each node computes its source tree based on information on its adjacent

links and the source trees reported by its neighbors. STAR aims to lower the

routing overhead associated with link-state protocols by allowing paths taken to

destinations to deviate from the optimal (i.e. it uses non-shortest paths). The

authors of STAR have shown through simulation experiments that STAR incurs

lower overhead than DSR, which is one of the protocols with the lowest routing

CHAPTER 2. RELATED WORK 11

overhead proposed for wireless ad hoc networks.

Optimized Link-State Routing (OLSR) [31] is another routing protocol for

MANETs that uses a link-state mechanism. It is proactive in nature and em-

ploys periodic message exchanges to maintain topology information at each node.

OLSR aims to optimize the pure link-state mechanism by lowering the size of

link-state messages and reducing the number of retransmissions in the network

in order to achieve global broadcast. In order to achieve this, instead of using

normal flooding for global broadcast, OLSR uses a technique called multipoint

relays [54, 65, 53]. The idea of multipoint relays is to minimize the flooding of

broadcast packets in the network by reducing duplicate transmissions in the same

region. Each node in the network selects a set of its neighbors, and only these

neighbors retransmit its broadcast packets. Such neighbors are called the mul-

tipoint relays of the node. The authors mention that OLSR is especially suited

for large and dense networks with many active flows since the multipoint relays

optimization and the link-state mechanism show their true values in this context.

OLSR uses hop-by-hop routing and provides shortest paths.

All of the protocols discussed so far, with the possible exception of TORA, use

a single path between source and destination. However, some of the protocols

discussed above may easily be extended to support multipaths, and we would

like to mention some of these here. Split Multipath Routing (SMR) [67] is an on-

demand routing protocol that builds maximally disjoint paths. AOMDV [74] is a

multipath extension to AODV which finds multiple loop-free link-disjoint paths.

AODVM [105] is another multipath extension to AODV which finds multiple

node-disjoint paths. MSR [99] is a multipath extension to DSR, where traffic is

distributed among multiple paths according to the measurement of the round-trip-

time of every path. MSR aims to achieve load balancing among multiple paths

by this approach. MP-DSR [68] is another multipath extension to DSR, which is

distinguished from MSR by the fact that MP-DSR is QoS-aware, attempting to

provide end-to-end reliability as the QoS metric. We discuss MP-DSR in more

detail in the next section.

CHAPTER 2. RELATED WORK 12

2.2 QoS Support in Wireless Ad Hoc Networks

QoS support is a popular topic in wireless ad hoc networks and many differ-

ent approaches have been proposed in the literature on the topic. Some works

aim to provide a QoS framework that enables the network to support QoS traf-

fic. Such frameworks may be considered in two different classes depending on

whether the framework is complete or not. Complete frameworks aim to pro-

vide a full framework, from the application layer down to the link layer, where

each layer is QoS-aware and cooperate with surrounding layers for efficient QoS

support. Incomplete frameworks concentrate on one or more specific layers, such

as the interaction between the transport layer and the network layer. We place

frameworks that provide necessary tools and facilities for QoS support in this

category.

Other works on QoS support focus on a single aspect of the problem, just

focusing on a single layer, such as the transport or the network layer. Our ap-

proach falls into this category as we mainly focus on the network layer, striving

to provide a Qos-aware routing protocol.

In this section, we first take a brief look at some of the proposed QoS frame-

works and then provide information on routing protocols aiming to support QoS

in wireless ad hoc networks.

The DiffServ [21] model is an architecture that specifies a simple, scalable

and coarse-grained mechanism for classifying and managing network traffic and

providing QoS guarantees on modern IP networks. DiffServ classifies traffic based

on their requirements and orders these classes according to their priorities. Diff-

Serv does not differentiate between individual flows but rather between classes,

treating each packet based on its class and not its flow, so it’s a class-based,

coarse-grained approach for QoS support. DiffServ only provides a framework for

traffic classification and differentiated treatment, but does not impose any rules

on parameter selection for traffic classification or on how different classes of traffic

should be treated by the network. DiffServ was not specifically designed for wire-

less ad hoc networks but it has seen fair use in MANETs due to its lightweight

CHAPTER 2. RELATED WORK 13

nature.

FQMM [102] is the first QoS model designed specifically for MANETs. It

combines the high quality QoS of IntServ [23] and the service differentiation of

DiffServ. In FQMM, traffic of the highest priority is given per-flow provisioning

while other classes are given per-class provisioning. The problem with FQMM

is that the model used for per-flow provisioning, IntServ, is not suitable for the

highly dynamic nature of MANETs, so a better model is needed for flow-based

traffic differentiation.

INSIGNIA [66] is an IP-based QoS framework for MANETs, designed to be

lightweight and highly responsive to changes in network topology, node connec-

tivity, and end-to-end conditions. Its in-band signaling mechanism, soft-state

resource management, and fast reservation make it more suitable than IntServ

for use in MANETs. Since INSIGNIA provides per-flow granularity, it may suffer

from scalability problems when the number of flows in the network is large.

HQMM [47] is a hybrid QoS model proposed for MANETs that combines

the per-flow granularity of INSIGNIA and the per-class granularity of DiffServ in

order to provide a responsive and scalable QoS model. Just as in FQMM, HQMM

provides per-flow provisioning for traffic with the highest priority while providing

per-class provisioning for other traffic. Instead of employing IntServ for per-flow

provisioning, HQMM employs INSIGNIA, while both FQMM and HQMM use

DiffServ for per-class traffic provisioning.

Of course, there are many more works on QoS support in wireless ad hoc

networks, and interested readers may wish to take a look at references [1, 2, 3,

17, 26, 41, 72, 75, 85, 91, 101, 110].

We have mentioned MP-DSR in the previous section. MP-DSR [68] is a QoS-

aware multipath extension to DSR, aiming to provide end-to-end reliability as the

QoS metric. The authors define end-to-end reliability as the probability of send-

ing data successfully within a time window. End-to-end reliability is calculated

from the reliabilities of the paths used for sending data and the reliability of a

path is calculated from the availabilities of its links. AODVM [105] was another

CHAPTER 2. RELATED WORK 14

multipath protocol mentioned previously. AODVM is a multipath extension to

AODV and it intends to provide end-to-end reliability as its QoS metric, just

as MP-DSR does. However, AODVM is proposed for heterogeneous ad hoc net-

works, where some nodes are more reliable than others. AODVM tries to find a

reliable path from a source to a destination where a reliable path is either one that

consists entirely of reliable nodes or one that consists of reliable nodes connected

by multiple node-disjoint paths.

[29] proposes an on-demand, link-state, multipath QoS routing protocol for

MANETs. The QoS requirement this protocol tries to satisfy is bandwidth, and

it aims to achieve this goal through the use multiple paths between source and

destination. The protocol runs over a CDMA-over-TDMA channel [71], reactively

collecting link-state information from source to destination in order to construct a

partial topology at the destination. The destination then chooses multiple paths

from the source to itself which collectively satisfy the bandwidth requirement

and informs the source node of these paths. Link-state information from the

source to the destination is collected through globally broadcasted route request

packets. Upon reception of multiple route request packets that have accumulated

link-state information on them, the destination has a partial topology from the

source to itself, which forms a flow network. On this topology, the destination

finds multiple paths, collectively satisfying the total bandwidth requirement and

replies back to the source with multiple route replies following the reverse of the

chosen paths. Each route reply confirms and reserves the bandwidth on the way

back to the source.

For more QoS-aware routing protocols for wireless ad hoc networks, please see

[4, 5, 6, 14, 15, 16, 18, 27, 40, 42, 46, 49, 50, 51, 61, 69, 70, 71, 77, 79, 84, 92, 104].

Chapter 3

Available Link Capacity

Calculation

In this chapter, we present an algorithm to calculate residual available link ca-

pacities (bandwidths) of wireless links in a wireless network with ongoing data

flows. Due to the broadcast effect of the wireless medium, the calculation of

residual capacities is a non-trivial task and also depends on the MAC protocol

used. Not only the capacities of links that the data flows are flowing over, but

also capacities of nearby links will be reduced. We solve this problem under the

assumptions of a single shared wireless channel and a perfect MAC protocol at

the link layer.

3.1 Introduction

Wireless networks is a particularly popular and rich area for research due to

its various application scenarios and benefits for the general public. Many re-

searchers are working on different types of wireless networks, including wireless

mesh networks, mobile ad hoc networks and sensor networks, to name a few. Each

of these network types have fundamentally different requirements and application

scenarios. However, they also share many common properties. Any researcher

15

CHAPTER 3. AVAILABLE LINK CAPACITY CALCULATION 16

who has developed a scheme or protocol for use in any layer of these networks

will invariably want to test the correctness and efficiency of his/her scheme. One

useful tool to achieve this is network simulators. Simulators allow a researcher

full control over the various parameters while testing the protocol, enable re-runs

of the protocol with the same parameters, provide automated testing schemes,

etc. They allow for a thorough testing of the protocol and shorten the testing

and debugging phase before probable actual deployment of the protocol. Simula-

tors also provide a means to observe the efficiency of the protocols under various

conditions.

As powerful as simulators may be, simulation tools may lack certain gadgets

that a researcher requires. Such gadgets may be very small and simple, but

essential to the research. In other cases, a simulation package may include such

tools and gadgets, but to spend the necessarily long time to learn such complex

simulation tools in order to achieve preliminary results may be unjustified.

Considering such issues, we set out to provide an algorithm and a small soft-

ware tool that enable the calculation of available link capacities (bandwidths) on

wireless links in the face of active nodes. To be precise, when there are ongo-

ing data flows across the wireless network, available link capacities (bandwidths)

will naturally decrease along the path(s) used by the flows. However, due to the

peculiar characteristics of the wireless medium, such as the broadcast property,

not present in wired media and the properties of the medium access scheme used,

determination of which wireless links in the network are affected by the current

flows and to what extent are the effects may not be as trivial as it seems at an

initial glance.

In this chapter, we provide a centralized algorithm for the calculation of avail-

able link capacities in a (generic) wireless network with current data flows. Our

aim is not to achieve such calculation in a real network, but rather to find the

available link capacities in a simulation setting. Therefore, using a centralized

algorithm to achieve our goals may be easily justified in this case. We have also

implemented this algorithm in two different settings, once as a software tool writ-

ten in C++, using the MS Visual Studio .NET 2003 software package, intended

CHAPTER 3. AVAILABLE LINK CAPACITY CALCULATION 17

for use in computers with Windows XP operating systems; and once as part of

our simulation in OMNeT++, running on Linux operating systems. Please refer

to Section 5.1 for a more detailed discussion on OMNeT++.

This chapter is organized as follows. In the next section, we provide our

assumptions on the network model and the wireless channel properties and the

rules we have derived based on these assumptions. In section 3, we present our

algorithm. We conclude the report and present ideas for future development in

section 4.

3.2 Assumptions and Rules

We have made several assumptions on the wireless channel properties. We present

them below.

• There is a single, wideband channel shared by all nodes in the network.

• Half-duplex channels are assumed. Therefore, a node cannot both transmit

and receive at the same time.

• A perfect medium access control (MAC) protocol is assumed. Therefore,

the hidden and exposed terminal problems are effectively solved.

• The MAC protocol incurs no extra overhead and allocates and uses the

wireless channel efficiently and fairly. Therefore, the whole bandwidth may

be used for data traffic.

The hidden and exposed terminal problems and our assumptions on how the

MAC protocol handles these problems is given below. In Figure 3.1, a very simple

network topology is presented. While node 2 is transmitting to node 3, node 4 is a

hidden node to node 2. Therefore, node 4 should not transmit for this duration.

However, node 4 should be able to receive from node 5. Similarly, while node

2 is transmitting to node 3, node 1 is an exposed node. It should be able to

CHAPTER 3. AVAILABLE LINK CAPACITY CALCULATION 18

transmit to node 0, although it will not be able to receive anything except from

the transmission of node 2 due to the broadcast nature of the transmission from

node 2 to node 3.

Figure 3.1: The hidden and exposed terminal problems.

The following rules have been identified based on the previous assumptions:

1. One-hop neighbors of the sender are not able to receive from other nodes.

Note that they may receive and use the current transmission of the sender,

even though the transmission may not be destined for themselves.

2. One-hop neighbors of the sender (except the receiver) must be able to send

to other nodes (except to the sender).

3. One-hop neighbors of the receiver (except the sender) are not able to send

to other nodes.

4. One-hop neighbors of the receiver (except the sender) must be able to re-

ceive transmissions from other nodes.

5. A transmitting node cannot receive at the same time.

6. A receiving node cannot transmit at the same time.

CHAPTER 3. AVAILABLE LINK CAPACITY CALCULATION 19

3.3 The Algorithm

Based on the rules stated in the previous section, the actions performed in order

to calculate the link capacities are as follows:

1. Decrease the capacities of all outgoing edges of the sender.

2. Decrease the capacities of all incoming edges of the sender.

3. Decrease the capacities of all previously unprocessed incoming edges of one-

hop neighbors of the sender.

4. Decrease the capacities of all previously unprocessed incoming edges of the

receiver. Note that this action is already accomplished (i.e. all the incom-

ing edges of the receiver have already been processed) by action 3 above.

Therefore, we ignore this action in our algorithm specification.

5. Decrease the capacities of all previously unprocessed outgoing edges of the

receiver.

6. Decrease the capacities of all previously unprocessed outgoing edges of one-

hop neighbors of the receiver.

These actions are performed for each hop of each flow present in the network.

Note that the sender and receiver nodes change for each hop of a flow.

We represent the wireless network as a simple directed graph G = (V,E).

Each wireless node corresponds to a node in the graph, and if node i can trans-

mit to node j, then edge (i, j) ∈ E. Note that our implementation works on

both directed and undirected graph representations, as we may transform an

undirected graph to an equivalent directed graph in a very straightforward way.

Most wireless networks will probably have bidirectional links due to identical

transceivers, meaning that if node i can reach node j, then node j may reach

node i (i.e. (i, j) ∈ E ⇔ (j, i) ∈ E). However, the characteristics of such links

may be quite different from each other. For example, the noise of link (i, j) may

CHAPTER 3. AVAILABLE LINK CAPACITY CALCULATION 20

be higher/lower than the noise of link (j, i). Therefore, even though the links are

bidirectional, they may be asymmetric.

Even though we said that most wireless networks are bidirectional, there are

certain applications of wireless networks where this property does not hold. In

such cases, the graphs representing the networks may have unidirectional links,

where the property (i, j) ∈ E ⇔ (j, i) ∈ E no longer holds.

Our implementation is able to work on all types of networks, meaning that it

supports both bidirectional and unidirectional links, both symmetric and asym-

metric links, and both directed and undirected graph representations. In the rest

of this report, we will focus on the more general case of directed graphs with

unidirectional, asymmetric links.

Each node in the graph has a unique integer ID > 0. We represent the

neighbors of each node in the adjacency list representation. The adjacency list

of a node i ∈ V is represented as Adj[i]. The current capacities of all edges

are assumed to be kept in a table. We represent the capacity of edge (i, j) as

cap(i, j). Each flow in the network is represented as a path in the graph with its

associated flow value (the amount of bandwidth used by the flow). We keep all

current flows in G in a list, called flows. Each flow’s flow value is kept in a table,

where the flow value for flow f ∈ flows is denoted by val(f). The path of a flow

f is denoted by P (f). Figure 3.2 presents two flows on an example topology. The

first flow’s source is node 2 and its destination is node 6. The flow follows the

path 2 → 3 → 4 → 6. Denoting this flow as f1, P (f1) = {(2, 3), (3, 4), (4, 6)}.

The second flow f2 follows the path 1 → 3 → 2 → 4 → 5 → 6, so P (f2) =

{(1, 3), (3, 2), (2, 4), (4, 5), (5, 6)}.

Given a set of flows as flows, with paths and values for each flow, on a simple

directed graph G = (V,E), we wish to calculate the residual link capacities

available. The calculateCapacities algorithm presents a way to achieve this

goal. The algorithm uses a set structure S to keep track of processed edges so

that an edge is not processed multiple times unnecessarily. We assume that the

capacities of links are initialized to their correct values at network initialization.

CHAPTER 3. AVAILABLE LINK CAPACITY CALCULATION 21

Algorithm 1 calculateCapacities

1: S ← ∅

2: for each flow f ∈ flows do
3: for each edge (i, j) ∈ P (f) do
4: S ← ∅

5: for each node k ∈ Adj[i] do ⊲ perform action 1
6: cap(i, k)← cap(i, k)− val(f)
7: S ← S ∪ {(i, k)}
8: end for

9: for each node v ∈ V do ⊲ perform action 2
10: if i ∈ Adj[v] then
11: cap(v, i)← cap(v, i)− val(f)
12: S ← S ∪ {(v, i)}
13: end if
14: end for

15: for each node k ∈ Adj[i] do ⊲ perform action 3
16: for each node v ∈ V do
17: if k ∈ Adj[v] and (v, k) /∈ S then
18: cap(v, k)← cap(v, k)− val(f)
19: S ← S ∪ {(v, k)}
20: end if
21: end for
22: end for

23: for each node k ∈ Adj[j] do ⊲ perform action 5
24: if (j, k) /∈ S then
25: cap(j, k)← cap(j, k)− val(f)
26: S ← S ∪ {(j, k)}
27: end if
28: end for

29: for each node k ∈ Adj[j] do ⊲ perform action 6
30: for each node l ∈ Adj[k] do
31: if (k, l) /∈ S then
32: cap(k, l)← cap(k, l)− val(f)
33: S ← S ∪ {(k, l)}
34: end if
35: end for
36: end for
37: end for
38: end for

CHAPTER 3. AVAILABLE LINK CAPACITY CALCULATION 22

Figure 3.2: Example topology with two flows.

3.4 Future Work on the Link Capacity Calcula-

tor

We have presented an algorithm for calculation of available link capacities (band-

widths) of wireless links in a wireless network with ongoing data flows between

pairs of nodes in the network. We have assumed a single wireless channel shared

by all nodes and a perfect MAC protocol with no overhead. The proposed al-

gorithm is aimed at helping researchers assign meaningful, real-life-like link ca-

pacities to edges for simulations and at aiding them find out about available link

capacities without detailed simulations. By the proposed method, researchers

would be able to gain essential knowledge of the network at an early stage in sim-

ulation, prior to developing their protocols to full extent and engaging in detailed

simulations.

In a perfect world, our assumption of a perfect MAC protocol would be easily

justified. However, we are not living in a perfect world, so our assumption is

questionable. Even so, the presented algorithm is able to provide a general idea

of the states of wireless links in a wireless network with ongoing data flows.

Among ideas for future work, the inclusion of more MAC protocols with real-life

characteristics holds the highest priority. We are currently focusing on MAC

protocols that work on a single shared channel. A second major step in the

CHAPTER 3. AVAILABLE LINK CAPACITY CALCULATION 23

development of the presented tool may be the consideration of MAC protocols

that work on multiple wireless channels. Our tool is currently console-based;

addition of a user-friendly graphical interface would probably be a less technically

challenging, albeit a most welcome contribution for users of the tool.

Chapter 4

Our Proposed Protocol

4.1 Introduction

Elessar is an on-demand link-state routing protocol designed specifically for

multi-hop wireless mobile ad hoc networks. Elessar supports both normal traffic

and real-time traffic requiring QoS in the network. Elessar does not require any

existing network infrastructure or administration and allows a completely self-

organizing and self-configuring network. All wireless nodes in the network may

not be in direct communication range of each other, so a packet from a source

node to a destination node may go over multiple hops. In order to enable such

communication, each node in the network acts as a router and relays packets on

behalf of other nodes. The network topology changes due to node mobility and

new nodes joining the network and nodes leaving the network. The topology

changes may also be due to changes in the conditions of the wireless medium,

i.e. due to interference. As the topology and such conditions change, Elessar

dynamically adapts to these changes.

Elessar supports both normal and real-time traffic in the network. For normal

traffic, the protocol operates in normal mode. For real-time traffic requiring QoS

guarantees, Elessar operates in QoS mode, performing additional activities on top

of the normal mode to enable efficient and optimal routing of real-time traffic,

24

CHAPTER 4. OUR PROPOSED PROTOCOL 25

trying to fulfill the required QoS guarantees. It should be noted that Elessar

does not employ resource reservation and it provides only soft QoS guarantees to

real-time traffic flows.

Local path finding/selection and source routing is employed in Elessar. Each

node knows the current network topology due to the link-state messages, and

a node wishing to send a packet to another node may run a local path finding

algorithm to find the path the packet must follow. This path is embedded into

the packet header, and intermediate nodes forward the packet according to this

path in the header. Since a local path finding algorithm along with source routing

is used to find the paths, packet routing is trivially loop-free. Through the use of

source routing, intermediate nodes do not need to maintain routing information

for flows that are passing over them.

Elessar consists of the following mechanisms:

• Neighborhood beaconing

• Topology dissemination

• Directed cost dissemination

• Route discovery

• Route maintenance

The interactions between these mechanisms may be found in Figure 4.1. In

4.3, we explain each mechanism in detail.

4.2 Assumptions

We assume that the diameter of an ad hoc network will often be small (e.g.

between 5 and 10). Packets may be lost or corrupted during transmission in

the ad hoc network. We assume that a node receiving a corrupted packet can

CHAPTER 4. OUR PROPOSED PROTOCOL 26

Figure 4.1: Protocol mechanisms and interactions.

detect the error. Nodes within the ad hoc network may move at any time without

notice; they may even move continuously. However, we assume that the speed

of mobility is not so high as to render smart routing impossible. The discussion

here focuses on operation of Elessar on bidirectional links in the wireless network,

leaving the discussion of operation on unidirectional links to later sections in

this chapter. We assume that nodes may enable promiscuous receive mode on

their wireless network interface card (NIC), causing the hardware to deliver every

received packet to the network protocol stack without filtering packets based on

their link-layer delivery addresses. Elessar does not require this facility, but it

may enable some optimizations if this option is available.

We assume that there are one or more mechanisms measuring link parameters

and providing these as link costs to Elessar. More specifically, we assume that

there are one or more mechanisms providing each node information about its

links. We do not currently concern ourselves with the exact schemes used in the

measurement of these link parameters. We only require that these mechanisms

provide their measurements periodically and that each of these measurements

represents the current condition of the links. Elessar will make use of these link

parameters in route selection in order to support real-time traffic. By acquiring

such parameters periodically, Elessar will be able to react to changes in network

conditions dynamically and adapt itself to these changing conditions by providing

CHAPTER 4. OUR PROPOSED PROTOCOL 27

different, more desirable routes as conditions change. Parameters of interest

include loss probabilities, delays, and available bandwidths of links. We have

mentioned that Elessar is able to support more than one type of real-time traffic.

In order to support any type of real-time traffic effectively, link costs available

to Elessar must be meaningful for the supported type of traffic. For example,

in order to support delay-sensitive traffic, Elessar must have knowledge of link

delays. Another example may be loss-sensitive traffic. For supporting such traffic,

link loss probabilities must be available to the protocol.

Each node in the network keeps a local history about its link parameters. In

this history, a node keeps the following fields for each link parameter and for each

of its links: a last update time field which keeps the local reception time of the last

update of the parameter, a current value field which keeps the latest measurement

of the parameter, and an average value field which keeps the EWMA1 of all the

measurements received so far for this parameter.

4.3 Protocol Specification

In this section, we provide details on the mechanisms of the protocol. Elessar

consists of five mechanisms that altogether allow efficient best-effort and real-

time traffic routing.

Neighborhood Beaconing This is the mechanism by which nodes learn of their

neighbors. This mechanism is active all the time and it employs periodic

beacons between neighbors. This mechanism operates the same under both

normal and QoS operation modes.

Topology Dissemination This is the mechanism by which nodes learn of the

current topology of the whole network. Topology information is exchanged

in the form of network-wide link-state messages, triggered whenever a topol-

ogy change occurs. The topology dissemination mechanism is continuously

1EWMA: Exponentially Weighted Moving Average

CHAPTER 4. OUR PROPOSED PROTOCOL 28

active. This mechanism performs the same operations under normal and

QoS modes.

Route Discovery Whenever a node S wishes to send a packet to a node D, the

route discovery mechanism is employed in order to find a source route from

S to D. Since each node has complete knowledge of the network topology,

S runs a local path finding algorithm in order to find a path to D. In case

of route caching, route discovery is performed only when S does not already

have a valid route to D in its cache. This mechanism operates differently

under normal and QoS operation modes.

Route Maintenance Route maintenance is the mechanism by which sender

node S is able to learn of a route failure during a session to destination node

D. Route maintenance is only employed when S is actively transmitting to

D. This mechanism is also responsible for actions to be performed in order

to recover from such route failures. This mechanism currently operates the

same under normal and QoS operation modes, but different schemes may

be used that differentiate the operation of the mechanism under different

operation modes.

Directed Cost Dissemination Directed cost dissemination is the mechanism

which enables a sender node S to use intelligent paths for real-time routing

to destination node D. Through directed cost dissemination, S receives

messages including current link cost information from nodes in the whole

network or a subnetwork, and due to this newly acquired knowledge of link

costs, S is able to find optimal paths under the QoS parameter(s) required

by the real-time traffic flow. Directed cost dissemination is activated only

when S is actively sending a real-time traffic flow to D. This mechanism is

only part of the QoS operation mode.

The first four mechanisms are present in both normal and QoS operation

modes of Elessar. The fifth mechanism, namely directed cost dissemination,

is only part of the QoS operation mode. With the help of directed cost dis-

semination, Elessar is able to give real-time traffic support, providing soft QoS

guarantees through intelligent path selection. Elessar is also able to dynamically

CHAPTER 4. OUR PROPOSED PROTOCOL 29

adapt to changes in the network topology and link conditions, providing soft

QoS guarantees throughout the lifetime of the real-time session by dynamic path

finding/selection.

4.3.1 Neighborhood Beaconing

Neighborhood beaconing is the mechanism by which nodes learn of their imme-

diate (one-hop) neighbors. This mechanism is active all the time and operates

the same in both normal and QoS operation modes. This mechanism employs

periodic beacons between neighbors for neighbor discovery/update. Each node

in the network periodically broadcasts a message locally. Through such periodic

message exchange, nodes learn of the condition of their neighbors.

Each node has a beacon timer. When the beacon timer of a node expires, the

node creates a beacon message with the following fields:

• Node ID This is a number/string uniquely representing the creator of the

beacon message.

• Sequence number This is a number used to identify the beacon message. It

monotonically increases each time this node sends a beacon message. This

sequence number is local to the node.

• Beacon type This field represents the type of the beacon message. The

beacon message may be of four types: join, leave, normal, reply. A new

node wishing to join the network uses the “join” beacon type. A node

wishing to leave the network uses the “leave” beacon type. A node local-

broadcasting a beacon uses the “normal” beacon type. When a node needs

to send a reply in response to a beacon, it uses the “reply” beacon type.

We will discuss the specific uses of beacon types below.

Each node has a neighbor list that includes its currently known neighbors.

Each neighbor in the list is represented by its unique node ID. Each entry in the

CHAPTER 4. OUR PROPOSED PROTOCOL 30

list also includes a timestamp field that tells when the entry expires. A node

periodically removes expired entries from its neighbor list. When a node receives

a beacon message from another node, it knows that the sender is its neighbor and

that it is currently alive. If the sender was not previously in its neighbor list, it

adds this node to its list and sets its expiration time accordingly. If the sender

is already in the list, it updates the expiration time for the entry corresponding

to that node. The pseudocode for the neighborhood beaconing mechanism is

provided in the implementation details section.

If nodes are able to enable promiscuous mode on their wireless NIC, Elessar

may use various optimizations in the neighborhood beacon exchange, reducing the

number of beacon messages. Since the wireless medium is a broadcast medium, a

unicast message is actually locally broadcasted. Therefore, when a node is sending

any packet, other nodes may overhear this message. Any node overhearing such

a packet knows that the sender of the packet is its neighbor and that it is alive,

so it may update its neighbor list accordingly. So, whenever a node sends any

type of message, it may restart its beacon timer since the currently sent message

lets its neighbors know that it is alive, performing the essential job of a beacon

message. Figure 4.2 illustrates this passive beaconing that may be enabled if

promiscuous mode is available. In this figure, node 1 is unicasting a packet to

node 2, but due to the broadcast medium property, its neighbors node 0 and

node 3 overhear this transmission and all of node 1’s neighbors, including node

2, determine that node 1 is their neighbor and that is alive. The modifications

to the neighborhood beaconing algorithm when promiscuous mode is enabled is

provided in the implementation details section.

The neighborhood beaconing mechanism also handles node joins and depar-

tures to/from the network. A new node wishing to join the network locally

broadcasts a beacon of type “join”. Any node receiving such a message replies

with a beacon of type “reply”. The reply message to a “join” beacon may include

additional information about the network that the new node needs for correct op-

eration. Through this message exchange, the new node learns of its neighbors

and the nodes in its vicinity learn of the addition of this new node to the net-

work. The reply beacon is utilized here in order to facilitate quick and correct

CHAPTER 4. OUR PROPOSED PROTOCOL 31

Figure 4.2: Passive beaconing.

integration of the new node into the network. Since its neighbors immediately

send a reply beacon, the new node learns of its neighbors without having to wait

for their individual normal beacons. In addition, the reply beacon allows the

new node to learn of various network parameters that are needed for its correct

operation as part of this network.

A node wishing to leave the network first locally broadcasts a beacon of type

“leave”. After sending out this beacon, the node may leave the network. Any

node receiving the “leave” beacon just removes the node from its neighbor list.

Note that nodes receiving a “leave” beacon do not reply to the beacon. This

situation is an example of a graceful departure from the network, where the

leaving node informs its neighbors of its departure before-hand. A node may

also leave the network ungracefully, perhaps due to node failure. Notice that a

leaving node may leave the network gracefully for some nodes and ungracefully

for others, as its “leave” beacon may not be received correctly by some nodes due

to collisions and/or errors. An ungraceful leave is accomplished by the expiration

times of entries in the neighbor list of nodes. Any entry which expires is removed

from the neighbor list.

We would like to note that if the underlying MAC layer or any other mecha-

nism provides a similar neighborhood information service, then the neighborhood

beacon mechanism described here may be deactivated. It should also be noted

that there are various improvements or variations that may be incorporated into

the neighborhood beaconing mechanism, most notably in the periodic messaging

CHAPTER 4. OUR PROPOSED PROTOCOL 32

scheme. In the most basic scenario, each node has the same period and this pe-

riod is constant (hardcoded) in the protocol. The periods may be the same for

all nodes but the period may be set by the network administrator or according to

some protocol parameter, so that for each different network, the period is differ-

ent. There are scenarios where the periods are the same for all nodes but these

periods change dynamically during the lifetime of a network. Periods may be

different for different nodes, where the periods are chosen according to the local

conditions in parts of a network. Finally, periods may be randomized, where the

period choice window may be the same for all nodes or different for each node.

We briefly mention the possibilities here and leave the discussion and evaluation

of such detailed issues as future work.

4.3.2 Topology Dissemination

Topology dissemination is the mechanism by which each and every node in the

network learns of the whole network topology, and is able to update its view

of the topology as it changes. This mechanism is essentially an event-driven

link-state mechanism, with the events being topological changes due to node

mobility, node/link failures, and node joins/departures to/from the network. The

neighborhood beaconing mechanism is responsible for neighborhood discovery.

Through neighborhood beaconing, nodes maintain their neighbor lists. Each time

a change occurs in this neighbor list (addition of a new entry and/or removal of an

old entry) due to neighborhood beaconing, a new topological change has occurred

in the neighborhood of the owner of the neighbor list. Such changes constitute

the events of interest, and the topology dissemination mechanism is triggered by

these events. The node that detects such an event initiates a network-wide global

broadcast to disseminate this information to all nodes in the network. Through

this broadcast in the form of link-state messages, every node in the network is able

to learn of the change in the current topology and update its view accordingly.

Each node in the network keeps its own global view of the network, meaning

that each node knows the whole network topology. Of course, due to transmission

errors, collisions, and the dynamic nature of the network, every node will not have

CHAPTER 4. OUR PROPOSED PROTOCOL 33

the same and correct view all the time during the lifetime of the network. Our

aim is to minimize the number of nodes with incorrect/incomplete views and the

total amount of time the discrepancy exists in their views of the network. We

wish to accomplish this goal with a basic network-wide broadcast mechanism,

reacting to changes in the topology as soon as possible and making sure that

these changes are propagated in the network as fast as possible. However, while

trying to accomplish this goal, we also pay attention to the inherent problems

with a broadcast mechanism, namely waste of resources (e.g. bandwidth, energy).

We will briefly discuss in this section how Elessar tries to tackle this problem.

We have said that each node has its own view of the network. The network

is represented as a directed graph at each node, and the main responsibility of

the topology dissemination mechanism is to keep this representation as accurate

as possible. The accuracy of this representation is quite important as the route

discovery and maintenance processes depend heavily on a node’s view of the

network. These processes eventually will accomplish the task of routing in the

network and any inefficiency in the routing process will degrade the performance

of the protocol.

The details of the topology dissemination mechanism along with various con-

siderations are provided below.

4.3.2.1 Link-State Message Content

Topology information will be exchanged in the form of link-state messages that

will be disseminated throughout the whole network by the broadcast mechanism.

There are various possibilities for the content of these messages, which are listed

below:

• Whole network information vs. neighborhood information

• Topology information only vs. topology information and link costs

• Multiple costs vs. single cost

CHAPTER 4. OUR PROPOSED PROTOCOL 34

• Incremental messages vs. whole messages

These possibilities are described in more detail in the following discussion.

4.3.2.1.1 Whole network information vs. Neighborhood information:

One option is a node originating a link-state message to include its whole view of

the (updated) network in the message. This option is obviously very inefficient,

especially for large networks. Inclusion of the whole network topology in link-

state messages will increase packet length greatly, and when we consider that

these messages are globally broadcasted, it can be seen that the overhead of

these messages will be quite high with this option. This option may be desirable

for small networks, where the overhead may be acceptable and the additional

information provided in link-state messages may serve as a more robust topology

information dissemination mechanism. As another option, a node originating a

link-state message may include only (the IDs of) its neighbors in the message.

With this option, local topology changes will be effectively disseminated in the

whole network. The overhead of this option is quite lower than the previous one,

as now an originating node includes only local information in a message. With

this option, packet length of a link-state message is independent of the network

size, but rather dependent on the degree2 of a node. It should be noted that

this is the option employed by most link-state protocols. It is also the option

employed by Elessar.

4.3.2.1.2 Inclusion of link costs in link-state messages: We have men-

tioned in the assumptions section that each node in the network is periodically

receiving information about its links from a measurement mechanism and that it

is keeping a local history of these parameters. In the event-triggered link-state

messages, nodes may include the averaged values of these link costs. The inclu-

sion of link costs come at the price of more control overhead due to the increased

packet lengths of link-state messages. When we include such link costs, we may

enable a node to perform intelligent route selection even in normal operation

2Degree of a node is defined to be the number of its neighbors in a network.

CHAPTER 4. OUR PROPOSED PROTOCOL 35

mode. If a node knows the link costs of all the links in the topology, instead of

finding the minimum-hop route, it may find the least-cost route. We should note

that the found route is selected according to the condition of the network known

to the node at the time of route selection, and since link-state messages are not

periodic, but rather event-driven where the events are topology changes, a node

does not receive continuous up-to-date information about all link costs in the net-

work. Therefore, the network view of a node at the time of route selection may

not be up-to-date in terms of link costs, so the advantages of inclusion of such

link costs in link-state messages may be debatable. Furthermore, since a node

will not receive continuous information about all link costs, it may not be able

to adjust the used routes dynamically to changing link conditions. Considering

that the job of the normal mode of Elessar is basically to transfer a packet from a

source node to a destination node efficiently, we may argue that in this operation

mode, we do not require knowledge of all link costs. Taking into account such

issues, we have decided not to include link costs in link-state messages.

4.3.2.1.3 Multiple costs vs. Single cost: If a node includes its link costs

in link-state messages, another issue that arises is which of these costs should be

included in the messages. Recall that a node is receiving periodic information

about its links. The received information may be about a single link parameter,

such as link delay, or it may be about multiple parameters, such as delay and

bandwidth. Considering that a node may be receiving information about more

than one link parameter, a question that comes to mind is which of these param-

eters should be included in link-state messages, if link costs are included. There

are various answers to this question. A node may include all link parameters as

costs or it may include a subset of these parameters as costs. If a single link cost

is desired, then an aggregate of multiple parameters may be used to represent

the condition of the links. In this case, an additional question is how to calculate

the aggregate cost. We have discussed the benefit of the inclusion of link costs

in link-state messages in the above paragraph. Based on that discussion, the

disadvantages of the inclusion of multiple costs seem to outweigh its advantages.

Therefore, we believe that if a node has information about multiple link param-

eters and if link costs are to be included in link-state messages, then instead of

CHAPTER 4. OUR PROPOSED PROTOCOL 36

the inclusion of multiple costs, a single cost should be included in these messages.

This single cost may be one of the multiple costs that is best suited for optimal

path selection in normal mode, or it may be an aggregate cost representative of

the multiple costs.

4.3.2.1.4 Incremental messages vs. Whole messages: We have men-

tioned that a link-state message may include the whole topology information as

seen by a node or the neighborhood information for that node only. No matter

what the essential content of a link-state message is, we have the option of only

sending information regarding changes that have occurred since the last link-state

message sent by that node or sending all of the information about the current

state of the node. We refer to the first option as an incremental message and

the second option as a whole message. Figure 4.3 tries to illustrate the idea more

clearly.

Figure 4.3: Topology dissemination: neighborhood change at node 4.

In Figure 4.3, part A, node 4 has four neighbors: {1, 2, 3, 5}. Assuming that

the wireless link between nodes 4 and 5 has failed (due to interference or the

mobility of node 5) at part B of the figure, the new neighbors of node 4 are

{1, 2, 3} only. Since node 4 has detected a topology change due to this link failure,

it will send out a link-state message triggered by this change. Assuming that only

neighborhood information is included in link-state messages, in the whole message

case, node 4 will send out a message including its neighborhood information, i.e.

it will send a message including the information that {1, 2, 3} are neighbors of

node 4. In the incremental message case, node 4 only needs to send information

CHAPTER 4. OUR PROPOSED PROTOCOL 37

about the change, i.e. it will send a message including only the information that

node 5 is no longer a neighbor of node 4. The data portion of the former message

may look like {1, 2, 3} and the latter message may be something like (remove, 5).

Notice that the incremental message is smaller than the whole message, therefore,

we may lower the link-state message overhead by using incremental messages. To

increase robustness of the topology dissemination mechanism with incremental

messages, every k-th link-state message of a node may be a whole message, with

k being a protocol parameter controlling the desired level of robustness. Notice

that the whole message scheme corresponds to the case where k = 1.

The incremental message scheme especially shows its true advantage when

a normal (whole) link-state message is significantly larger than an incremental

message. This is true for the case where we send the whole topology information

in a link-state message and also for the case where the average node degree in

the network is high. Since the incremental scheme where each k-th message is a

whole message is a general case of the whole message scheme, we implement this

scheme in the current version of Elessar.

4.3.2.1.5 Generic Content: Aside from the various options discussed above,

a link-state message needs to include fields for unique and correct identification

of a link-state message by intermediate nodes. In Elessar, a link-state message

includes the following fields:

• Originating node ID: This field identifies the creator of the link-state mes-

sage. The creator of the message is essentially the node which has detected

a change in its neighborhood.

• Sequence number: This is a number local to the creator of a message that

increases monotonically each time a link-state message is created by the

node. Together with the originating node ID, the sequence number uniquely

identifies a link-state message.

CHAPTER 4. OUR PROPOSED PROTOCOL 38

4.3.2.2 Basic Topology Dissemination

In this section, we describe the basic operation of the topology dissemination

mechanism. Topology information is disseminated through the whole network

in the form of link-state messages. A node creates and broadcasts a link-state

message only when it detects a change in its local neighborhood. Other nodes are

responsible for replicating and forwarding such a message so that it reaches all the

nodes in the network. It is important to note here that link-state messages are

not periodic, as in most link-state protocols, but rather event-driven in Elessar.

In a static network, no link-state messages will be generated after the network has

converged. The overhead due to link-state messages increases as the dynamics of

the network increase, most notably due to node mobility.

When a node detects a neighborhood change through the neighborhood bea-

coning mechanism, it creates a new link-state message carrying information about

this change. Various options for the content of a link-state message were discussed

above. The originating node creates the message and locally broadcasts it. Any

node that receives a link-state message first checks to see if it has seen the mes-

sage before. Notice that in order to accomplish this task, each node needs to

maintain a table that keeps track of the most recent link-state messages seen by

the node. Such a table does not need to maintain all link-state messages received,

but it may rather keep track of the last n messages received by the node, where

n is a protocol parameter.

If an intermediate node has received the link-state message before, it silently

discards it. Otherwise, it first records the change included in the link-state mes-

sage in its local view of the network, adds the message to its last seen link-state

messages table, and then locally broadcasts the message, without changing the

originating node ID or sequence number. Note that although a node may receive

a link-state message multiple times, it will only broadcast it once, for the first

time it receives the message. This basic topology dissemination mechanism is de-

picted in Figure 4.4. The pseudocode for the topology dissemination mechanism

is provided in the design and implementation details section.

CHAPTER 4. OUR PROPOSED PROTOCOL 39

Figure 4.4: Topology dissemination.

CHAPTER 4. OUR PROPOSED PROTOCOL 40

In Figure 4.4, part (i), a new node joins the network. In this example, node

6 joins the network and becomes a neighbor of node 5. Node 5 will detect this

neighborhood change through the neighborhood beaconing mechanism, and it

will create and broadcast a link-state message for this change. The first nodes

to receive the message are node 5’s immediate neighbors, nodes 2, 4, 6, seen in

Figure 4.4, part (ii). These nodes will each record the change in their local views

and locally broadcast the message themselves. Since node 6 is the joining node,

it does not forward the message. Assuming that the sending order is 4 and 2

(node 4 is the first among nodes 2 and 4 to send out the message), the topology

dissemination mechanism goes through the following steps:

1. Node 4 broadcasts the message. Its neighbors 1, 3, and 5 receive the mes-

sage. Node 5 silently discards the message since it has seen the message

before (it is the originator node). Nodes 1 and 3 will forward the message.

Let’s assume that the forwarding order is 3, 1. These actions are shown in

Figure 4.4, part (iii).

2. Node 2 broadcasts the message. Its neighbors 1 and 5 receive the message.

Both nodes silently drop the message as they have seen it before. Note that

this is the second time node 1 sees the message and it is the third time for

node 5 (counting the original message). This step is depicted in Figure 4.4,

part (iv).

3. Node 3 broadcasts the message locally and its neighbors 0, 1, 4 receive the

message. Nodes 1 and 4 silently drop the message since they have received

it before. Node 0 will forward the message. Figure 4.4, part (v) shows this

step.

4. Node 1 locally broadcasts the message; nodes 0, 2, 3, 4 receive this trans-

mission. All nodes silently discard the packet. Figure 4.4, part (vi) shows

this step.

5. In Figure 4.4, part (vii), node 0 sends the message to its neighbors as a

local broadcast. Nodes 1 and 3 receive the message and they both discard

it.

CHAPTER 4. OUR PROPOSED PROTOCOL 41

6. At the current step, there are no nodes that need to forward the link-state

message, so the dissemination comes to an end. At this step, all nodes in

the network have received the link-state message and updated their view

of the network. The final view of the network is shown in Figure 4.4, part

(viii).

In the above discussion, we have assumed that all packets are correctly re-

ceived by the nodes. Namely, packets do not suffer from corruptions or collisions.

In the face of corruptions or collisions, every node in the network may not receive

information about the change, leading to different local views of the network at

different nodes. However, since each node potentially receives the same link-

state message multiple times due to the broadcast nature, the chances that every

node will receive at least one copy correctly are increased. Although reception

of multiple copies indicates a waste of resources, these copies facilitate robust-

ness of the dissemination mechanism. Note here that the broadcasting scheme

currently used is basic flooding. Other broadcasting schemes that will provide

the same functionality with more efficiency may be used instead of the flooding

scheme. One such scheme may be multi-point relays [54, 65]. We leave the in-

depth analysis of such schemes as future work and focus on the flooding scheme

at the moment. We will discuss in the following sections how we can achieve more

efficient dissemination when we use flooding.

When a change in the topology occurs, several nodes may be affected by this

change simultaneously. An example case is provided in Figure 4.5. Although

neighborhood beaconing is periodic, because the periods of nodes are not syn-

chronized, all of the affected nodes will not learn of this change at the same time.

The first node that learns of the change through the neighborhood beaconing

mechanism is (most probably) going to be the one that will initiate the (first)

topology dissemination mechanism.

In Figure 4.5, we see a topology change due to node mobility. Here, node 6

moves out of the range of node 5 and into the range of node 4. Due to node 6’s

mobility, three nodes’ neighborhood’s change; these nodes are node 4, 5, and 6.

The previous neighbors of node 4 were {1, 2, 3, 5}, of node 5 were {2, 4, 6}, and

CHAPTER 4. OUR PROPOSED PROTOCOL 42

Figure 4.5: A topology change cetected by multiple nodes.

of node 6 was {5}. The new neighbors of node 4 are {1, 2, 3, 5, 6}, of node 5 are

{2, 4}, and of node 6 is {4}. Since three nodes are affected by this movement,

all three will be able to detect this change through the neighborhood beaconing

mechanism. However, depending on the timing of link-state message dissemi-

nation and neighborhood beaconing, we may have several different scenarios. In

order to simplify and clarify the discussion, we ignore all events related with node

6 (except its movement) at the moment. The possible scenarios that may occur

are listed below:

• Case 1: One node learns of its neighborhood change after it forwards the

other node’s link-state message. Node 5 detects the change through neigh-

borhood beaconing, but node 4 has not detected the change yet. Node 5

creates and sends a link-state message regarding the change and all its neigh-

bors receive this message, including node 4. Node 4 learns of the topology

change from this link-state message, but it currently does not know that

node 6 is its new neighbor. Node 4 continues the link-state dissemina-

tion mechanism by sending the link-state message to its neighbors by local

broadcast. Later, node 4 will detect the change in its own neighborhood

(the arrival of node 6), and it will start another link-state dissemination for

this change.

• Case 2: One node receives the other node’s link-state message after it has

already sent out its own link-state message. Node 4 and 5 both detect the

change roughly at the same time. Both nodes send out a link-state message,

so two link-state messages are created for the change, as in case 1.

CHAPTER 4. OUR PROPOSED PROTOCOL 43

• Case 3: One node receives the other’s link-state message before it has sent

out its own link-state message. Node 4 and 5 both detect the change roughly

at the same time. However, before node 4 sends out a link-state message,

it receives the link-state message originated by node 5. Now, there are

two options. Node 4 may add the information regarding its neighborhood

change to this received message and send out only one (aggregated) link-

state message. The second option is the straightforward one, where node

4 does not do any data aggregation and sends out two link-state messages,

creating a new link-state message of its own and also forwarding node 5’s

link-state message. Overhead due to link-state messages when we use ag-

gregated messages will be lower than the straightforward case, improving

efficiency of the protocol. However, aggregated messages complicate link-

state message processing. We will first implement the straightforward case,

leaving the option of aggregated messages as a protocol enhancement to be

developed later.

4.3.2.3 Topology Dissemination in (Very) High Mobility

When the dynamics of the network is high due to (very) high node mobility, the

number of link-state messages created will be high. In such a case, the event-

driven approach may result in higher overhead than the periodic approach. To

achieve better efficiency, when the link-state message creation rate exceeds a

certain threshold, the nodes with high link-state creation rates may switch to

periodic link-state dissemination. When the rate falls down again, those nodes

would revert back to event-driven link-state dissemination. Another approach

may be to let nodes with high link-state message creation rates to aggregate

several of their own link-state messages into a single link-state message and send

this out, in order to reduce the link-state message creation rate. To be more

precise, a node with high rate would not sent out every link-state message it

creates immediately, but rather would accumulate some of these messages into a

single, possibly larger message, and send out this aggregated message. This way,

only the m-th message would be sent out, but this message would also include

all of the information of messages {1, 2, . . . ,m − 1}, where m may be adjusted

CHAPTER 4. OUR PROPOSED PROTOCOL 44

according to the link-state message creation rate.

There are several issues that need to be considered in this high node mobility

case. If the periodic approach is employed, then the choice of the period of

link-state messages becomes an issue. If the aggregation approach is used, then

the choice of m is an important protocol parameter. In both approaches, the

parameter in question may be adjusted according to the rate of link-state message

creation at the nodes. However, more research and experiments are needed in

order to achieve such a task. Another issue common to both approaches is how

to set the threshold value for link-state message creation rate. The threshold

value should represent the situation where the event-driven approach fails to

be more efficient than the periodic approach, or the situation where the loss

of responsiveness to topology changes caused by the aggregation approach is

acceptable.

4.3.3 Directed Cost Dissemination

The mechanism that enables Elessar to support real-time traffic is directed cost

dissemination. This mechanism is only part of the QoS mode of Elessar. Directed

cost dissemination is activated only when there are one or more QoS-requiring

data streams in the network. The basic idea is as follows. When a node S wants

to send real-time traffic to another node D, it immediately starts sending the

data over a path that may be non-optimal, therefore decreasing the delay in

route acquisition. At the same time, S initiates the directed cost dissemination

mechanism. This mechanism informs some or all of the nodes in the network that

there is real-time traffic across the network and that these nodes should send their

link costs directly to S. When S receives these costs, it has full topology and

full/partial link cost information regarding the network. With this higher level

of knowledge about the network, S may now select one or more optimal paths to

D that satisfy the requirements of the real-time traffic as best as possible.

There are several questions that need answering to achieve better understand-

ing of this mechanism. These questions include the following:

CHAPTER 4. OUR PROPOSED PROTOCOL 45

• How are nodes in the network informed of a real-time traffic flow?

• Which nodes should be informed of the real-time traffic flow?

• After nodes are informed, how exactly do they send their costs to S?

• Do informed nodes send their costs only once or multiple times (perhaps

periodically)?

We will investigate these questions in the following sections.

4.3.3.1 Informing Nodes

Consider the case when a node S wants to send a long stream of real-time data to

another node D. The adjective “long” here is important, as if the real-time data is

too small, then the overhead of directed cost dissemination for QoS-route finding

may not be justified. It should be noted that as the directed cost dissemination

is taking place, the real-time data is being sent from S to D over one or more,

possibly non-optimal paths, and if most or all of the data is sent by the time

node S learns enough about the link costs to switch to more optimal paths, then

the effort to enable such a decision is wasted. We will determine the amount of

real-time data that will require the initiation of the directed cost dissemination

mechanism through experiments.

So, let’s consider the case where node S wants to send some real-time data to

node D, and the directed cost dissemination mechanism will be activated for this

real-time data stream. We are now faced with the questions of which intermediate

nodes will send their known costs to S and how these nodes should be informed.

The answer to the first question will be a result of the solution to the second

problem, as the mechanism by which intermediate nodes are informed will also

determine which nodes are informed and therefore which nodes send their costs to

S. We currently propose two approaches for the informing of nodes and provide

possible enhancements to these approaches.

CHAPTER 4. OUR PROPOSED PROTOCOL 46

4.3.3.1.1 Using a Sign Bit on Data Packets The first approach uses a

special sign bit included in the data packets that are sent from S to D. We have

mentioned that S starts sending the real-time data stream to D immediately,

possibly over one or more non-optimal paths. Let’s focus on the case where S uses

a single path initially. Each data packet includes a sign bit telling whether that

packet is a real-time packet or not. Each time an intermediate node is forwarding

a packet, it checks its sign bit and if it sees that this is a real-time packet, it is

informed of a real-time flow. It should be noted here that even though a data

packet is a real-time data packet, its sign bit may not be set to indicate “real-

time” due to the above discussion on the length of a real-time data stream. For a

short real-time data stream for which the directed cost dissemination mechanism

will not be initiated, the data packets have their sign bits set to “normal”. For a

long real-time data stream for which the directed cost dissemination mechanism

will be initiated, all packets have their sign bits set to “real-time”.

4.3.3.1.2 Using a Special Packet The second approach uses a special

packet to inform all nodes along its path about a real-time data stream. When

S wants to send a long real-time data stream to D, it first sends a special packet

along the possibly non-optimal path(s) that it initially uses to send the packets to

D. Focusing on the single path case, S sends the special packet along this initial

path, and all nodes along this path are informed of the real-time flow. It is much

better if the sending of the special packet is reliable, so for the delivery of this

packet, either a hop-by-hop or an end-to-end acknowledgement mechanism, along

with timeout and retransmission mechanisms would be desirable. We adopt this

approach in order to inform nodes in our protocol implementation.

Using either the first or the second approach, the nodes along the initial single

path from S to D are informed of the real-time flow. When an intermediate

node is thus informed, it sends its link costs directly to S and it also informs

its neighbors of the real-time flow and its source by a special information packet

(that is locally broadcasted unreliably), so that its neighbors may send their costs

directly to S. Each informed neighbor, in turn, sends its costs directly to S and

informs its own neighbors, and the information mechanism continues like this,

CHAPTER 4. OUR PROPOSED PROTOCOL 47

in a flooding manner. To limit the extent of the flood, a hop-limit is used on

information packets. This hop-limit is decremented by one when a node locally

broadcasts an information packet, and when it reaches zero, the flooding stops.

The initial hop-limit value may be set according to a built-in protocol mechanism

that calculates a reasonable hop-limit depending on the diameter of the current

topology, or it may be determined by the source node of the real-time data stream,

specified in the data packets from S to D, or in the special packet sent from node

S.

If promiscuous mode may be enabled on wireless nodes, then the information

of neighbors does not require a special information packet. Whenever a node

overhears the transmission of one of its neighbor’s link costs to S, it learns of

the real-time flow and its source, so the overhearing node may send its link costs

directly to S. Nodes overhearing the transmission of this node, in turn, may

do the same, essentially forming a flooding mechanism. The hop-limit imposed

above on information packets may here be imposed on the link cost messages,

achieving the same purpose.

Similar to the situation seen in the topology dissemination mechanism dis-

cussed above, nodes would have to keep track of recently seen real-time flows, so

that they do not take part in the flooding mechanism more than once. Keeping

such a track may be accomplished by simply keeping a “last-recently-seen-real-

time-flows” table at each node, discarding an entry from the table whenever it

becomes out-of-date.

The information mechanism of the nodes is explained in Figures 4.6 and 4.7.

In Figure 4.6, a sample topology along with a single real-time flow from node S to

node D is presented. The nodes on the initial data path from S to D are colored

gray. Figure 4.7 shows which nodes are informed of this real-time flow through

the information mechanism. How these nodes are informed is irrelevant here. In

part A of the figure, a hop-limit of 1 is imposed, and all non-black nodes (all

nodes labeled “node on data path” and “node sending cost”) are informed of the

real-time flow and are sending their costs to S. In part B of the figure, a hop-limit

of 2 is imposed, and again, all non-black nodes are informed and sending their

CHAPTER 4. OUR PROPOSED PROTOCOL 48

Figure 4.6: A sample topology with a real-time flow.

CHAPTER 4. OUR PROPOSED PROTOCOL 49

Figure 4.7: Information of nodes about a real-time flow.

CHAPTER 4. OUR PROPOSED PROTOCOL 50

costs to S.

4.3.3.1.3 Enhancements to Both Approaches A problem of the first ap-

proach using a sign bit is that if the real-time stream is very long, then the wasted

bandwidth due to these single bits may be significant. We need to inform the

nodes along the data path only once, so the first solution that comes to mind

is to include this sign bit on only the first packet of the real-time flow. How-

ever, packets may be subject to corruptions and losses in the network, and if

the first packet is lost, then the nodes are never informed. Therefore, we may

be tempted to send the first packet of a real-time flow reliably, as discussed for

reliable delivery in the special packet approach. However, with the introduction

of the reliable delivery of the first packet of a real-time flow, the two approaches

are almost the same, and in this situation, the use of the second approach may

be more desirable as it introduces less complexity at the intermediate nodes dur-

ing packet processing. Another solution for the wasted bandwidth problem may

be to include the sign bit in the first b percent of the packets of the real-time

flow, and send these packets as usual (i.e. unreliably). The parameter b may

be calculated by the protocol according to the actual length of the flow and the

loss rates of the channels. With this approach, even though some of the packets

including the sign bit may be lost or corrupted, there are more packets with the

same information that will be intact.

The problem with including the sign bit in only some of the packets is that

it complicates packet processing at the intermediate nodes. In light of this, we

are inclined towards the use of the second approach for the information of nodes.

However, if there are session establishment procedures (signalling) done by a

higher network layer at the start of each real-time flow, then the sign bit idea

may be used with these procedures. If these procedures are accomplished over

reliable channels, then using sign bits on signalling packets becomes much more

desirable.

CHAPTER 4. OUR PROPOSED PROTOCOL 51

4.3.3.1.4 Use of Additional Paths for the Information of Nodes Re-

gardless of whether the first or the second approach is used and whether node S

initially uses a single path or multiple paths, another enhancement that may be

applied during the information of nodes is the use of additional paths. In addition

to informing the nodes over the initial data path(s) that S uses to send to D,

one or more additional paths from S may be used in order to inform other nodes.

These paths do not have to be from S to D, but may be from S to some other

node, in order to facilitate selective gathering of link costs. The use of such addi-

tional paths is more suited to the second approach, where we use a special packet

to inform nodes. The use of additional paths also makes more sense if S initially

uses a single path. Generally, the use of two paths should be sufficient for the

sizes of networks under consideration, and since the single data path used by S

will be one of these two paths, only one additional path should be sufficient. Of

course, a question that immediately arises is how this additional path is selected.

We leave the detailed discussion of the use of additional paths for the information

of nodes as future work, providing in Figure 4.8 a sample case that illustrates the

idea more clearly.

In Figure 4.8, part A, there is a real-time flow from node S to node D, initially

going over the nodes labeled “node on data path”. The nodes on this data path

are informed of the real-time flow. There is also a second path, nodes of which are

labeled “node on 2nd path”, used to inform additional nodes. The hop-limits for

packets on both of these paths are set to be 1, and the nodes which are informed

of the real-time flow are depicted in part B of the figure. All non-black nodes in

part B of the figure are informed of the real-time flow and are sending their costs

to S.

4.3.3.2 Cost Dissemination

Once a node is informed of a real-time flow and and its source, the node must

send its link costs to the source node. Obviously, there are many ways in which

such an intermediate node can send its costs to the source. The approach used in

Elessar is to let an intermediate node send its costs to the source node directly,

CHAPTER 4. OUR PROPOSED PROTOCOL 52

Figure 4.8: Information of nodes about a real-time flow: use of additional paths.

CHAPTER 4. OUR PROPOSED PROTOCOL 53

hence the name directed cost dissemination. Since each node in the network

is receiving link-state messages as changes occur and updating its view of the

network accordingly, an intermediate node may run a local path finding algorithm

on its own view of the network in order to find a path from itself to the source

node, and it may use this direct path to send its costs. It should be noted that

the path from node to source may differ from the reverse of the route of the

information message that let the node know of the real-time flow in the first

place. In our opinion, such differences will facilitate load-balancing and prevent

certain areas of the network to be congested during cost dissemination.

4.3.3.3 Dynamics of the Cost Dissemination Mechanism

One important aspect of directed cost dissemination is the frequency with which

nodes send their costs to the source of a flow. Once a node is informed of a

real-time flow, it needs to send its link costs to the source directly, at least once.

The important question is whether such a node will send its costs more than once

and if so, under which conditions it will do so. There are four options that we

consider:

• An intermediate node sends its link costs exactly once.

• An intermediate node sends its link costs periodically, for a certain r number

of times.

• An intermediate node sends its link costs periodically, for the whole duration

of the real-time flow.

• An intermediate node sends its link costs once at the beginning, and possibly

multiple times based on a threshold-value.

We will discuss these options in detail below.

4.3.3.3.1 Exactly Once This option is quite straightforward. An interme-

diate node which is informed of a real-time flow will send its link costs exactly

CHAPTER 4. OUR PROPOSED PROTOCOL 54

once to the source node. Note that since such costs are sent unreliably, the source

node may not get the costs of all informed nodes. In such a case, we do not use

retransmissions to send the costs. The advantage of the exactly once option is its

simplicity and low overhead. The disadvantage is that the source node will need

continuous information regarding the network topology and link costs in order

to be able to react to changes dynamically, and sending the costs only once does

not achieve this requirement.

4.3.3.3.2 Periodic, with Bound With this option, an intermediate node

informed of a real-time flow will send its link costs to the source of the flow

periodically, however with a bound on the number of times it sends its costs. Two

important issues with this option are the appropriate setting of the bound and

the period of the cost messages. It may be reasonable to set the bound on the

number of messages according to the length of the real-time flow. However, if

the length of the flow is not known before-hand, then using a fixed number is the

most suitable choice. Regarding the period, if it is too small, certain parts of the

network may be congested due to the sending of many messages in a small time

window, and the amount of information gathered may not be as useful since we

would be getting samples from a small time window using a fixed number of cost

messages with a small period. On the other hand, if the period is too large, the

responsiveness of the protocol to changes (in the link costs) will be lost.

4.3.3.3.3 Periodic, without Bound This option is similar to the option

above, but without the restriction on the number of cost messages. In this option,

an intermediate node will send its link costs to the source of a real-time flow

periodically, for the whole duration of the real-time flow. The issue with the

setting of the period discussed above is also present here. One additional thing

that needs to be done with this option is the information of all cost-sending

intermediate nodes about the ending of the real-time flow. All such nodes need to

informed of the end of the real-time flow, so that they will stop sending their costs

to the source. This information step may be achieved using the same mechanism

that was employed in order to inform the nodes of the start of a real-time flow.

CHAPTER 4. OUR PROPOSED PROTOCOL 55

However, this information step may pose a problem due to node mobility. Nodes

were informed of the start of a real-time flow through the use of one or more

specific paths, and these paths may have changed due to node mobility at the

end of the real-time flow. In order to inform all nodes that were sending their

costs of the end of the flow, the source node, which is getting cost messages from

all cost sending nodes, and therefore knows which nodes to inform of the end of

the flow, may send informing messages to all such nodes directly. Another option

is to globally broadcast a message in order to reach all cost sending nodes. Of

course, if the duration of the real-time flow is known at the start of the flow,

cost sending nodes may be informed of this duration, and each individual node

may decide for itself when to stop sending its costs based on this given duration.

With an appropriate period, the periodic, without bound option allows the most

responsiveness to changes (in the link costs) as it will inform the source during

the whole duration of the real-time flow. However, it is also the option with

possibly the highest overhead.

4.3.3.3.4 Threshold-Based The final option is the threshold-based one.

This option is as follows: Intermediate nodes informed of a real-time flow will send

their costs to the source node once, when they are informed. As the real-time flow

continues, the source will get receive reports back from the destination, enabling

the source to have an idea about the condition of the path(s) from itself to the

destination. Once the source sees that the condition of the path(s) drops below a

certain threshold point, it initiates the information step of the cost dissemination

mechanism again. This way, (some of the) intermediate nodes will be informed

again and they will send their link costs to the source, enabling the source to

find possibly better path(s). As always, the intermediate nodes send their costs

to the source using direct paths. The destination node will also send the receive

reports back to the source directly. Instead of sending a receive report for each

received packet, the destination may send a receive report periodically or for ev-

ery k-th received packet. A similar discussion may be found in the “topology

dissemination in (very) high mobility” section.

We would like to note here that the topology is subject to changes during

CHAPTER 4. OUR PROPOSED PROTOCOL 56

directed cost dissemination, and the path(s) used by the source node in order to

send the real-time flow may vary during the lifetime of the flow. In the face of

such alterations, the flow will potentially go over nodes that were not on the initial

path(s) and such (new) nodes also send their costs directly to the source once

they determine that a real-time flow has started to pass over them. Therefore,

all nodes over which data packets belonging to the real-time stream pass during

its whole lifetime send their link costs to the source at least once, and possibly

multiple times depending on the scheme adopted.

4.3.4 Route Discovery and Packet Forwarding

Route discovery is the mechanism that enables a node in the network to send a

packet to another node. Due to the link-state nature of Elessar, each node has its

own complete view of the network. Link-state messages are only produced when

a topology change occurs. Therefore, if there are no collisions and packet losses,

each node knows the exact current topology. However, a node does not have

complete information on the link costs. With the current information at each

node, a node wishing to send a packet to another node may simply run a local

path finding algorithm to find one or more routes from itself to the destination

node.

The route discovery mechanism consists of two different operation modes:

normal mode and QoS mode. We will see below how a route is discovered in

each operation mode. However, before discussing operation of the mechanism in

each mode, we will first discuss the use of a route cache at each node and source

routing.

4.3.4.1 Route Cache

Each node in the network maintains a route cache. The routes stored in the route

cache of a node are routes found by the node itself through the use of a local path

finding algorithm. The route cache is used to store currently/recently used routes

CHAPTER 4. OUR PROPOSED PROTOCOL 57

by the node. Using the route cache, the sender node does not need to run the

local path finding algorithm for each packet (belonging to the same stream) that

it wishes to send to a receiver node. It just needs to find a path using a local

algorithm for the first packet of a stream, and later packets belonging to that

stream use the stored path in the route cache.

The entries in the route cache are valid as long as the topology considered

when they were discovered remains the same. When the topology changes, all

routes in the route cache are invalidated. Therefore, when a source node receives

a link-state message, it will invalidate and erase all entries in the route cache.

Another case when a route cache entry becomes invalidated is the reception of an

error message through the route maintenance mechanism from some downstream

node, if such error messages are employed. We will discuss the route maintenance

mechanism in detail later, but let’s just say here that when a downstream node

is unable to forward a packet, it may send an error message back to the source

node. When a source node receives such a message, it invalidates and erases the

broken route from the route cache. We also clear the route cache periodically.

The reason for this periodical cleansing is explained in Section 4.3.4.4.

The source node looks at the route cache for every outgoing packet. If it

finds a route to the destination of the packet in the route cache, it uses that

route3; otherwise, it runs the local path finding algorithm to find a route to the

destination. If it finds a route, it records it in the route cache; if no route is

found, this means that there is no path from the source node to the destination

node, at least for the moment.

4.3.4.2 Source Routing and Packet Forwarding

In Elessar, we employ source routing in order to route a packet from a source to

a destination. The source node runs a local path finding algorithm on its view

of the topology, and embeds the found path in the header of each packet from

3In normal operation mode, a packet destined to node D may use a previously found route
from the source to D. However, in QoS mode, a packet with QoS requirement Q, destined to
node D, may only use a path to D, satisfying Q.

CHAPTER 4. OUR PROPOSED PROTOCOL 58

itself to the destination node. The source node then forwards the packet to its

next hop along the path. Each intermediate node receiving a data packet checks

its header and finds its node ID in the route field of the header. If it is the last

node in the path (the destination node), it processes the packet and passes it up

to the higher layers. If it is an intermediate node in the path, it sends the packet

to its next hop in the route, without changing the packet header. If the node

cannot find its ID in the route, then it silently drops the packet. Note that this

final case should not happen in principle. Source routing is depicted in Figure

4.9. In the figure, node 1 creates and sends a packet destined to node 7 in the

network, and the route of the packet is {1, 3, 4, 2, 7}. The originator of the packet

creates the packet, embeds the route into its header, finds the next hop along

the path (node 3) and forwards the packet to this node. An intermediate node,

node 4 in this example, finds the next hop coming after itself in the packet’s

route (node 2), and forwards the packet to this node. When the destination node

receives the packet, it processes it and passes it up to the higher layers. Node 7

is the destination node in the example, and even if the packet does not include

an explicit destination field in its header, node 7 may determine that it is the

packet’s destination as it is the last node in the packet’s route.

Figure 4.9: Source routing and packet forwarding.

In Elessar, since each node has complete knowledge of the topology due to

the topology dissemination mechanism, we could have used hop-by-hop routing

instead of source routing. However, source routing allows packet routing to be

loop-free, even when the network is subject to rapid topology changes, and puts

CHAPTER 4. OUR PROPOSED PROTOCOL 59

minimal amount of burden on the intermediate nodes during routing. Due to

its simplicity and efficiency, we use source routing as our routing method. The

only drawback of source routing is the additional overhead due to the inclusion

of the path in each packet header. However, we have assumed that Elessar will

operate on small-to-medium sized networks, with a network diameter of 10 to 15.

Considering operation on such networks, the overhead due to source routing is

low and therefore acceptable.

4.3.4.3 Route Discovery in Normal Mode

In normal operation mode, a node wishing to send a packet to another node in

the network first checks to see if it has an up-to-date route registered for that

destination in its route cache. If the sender finds a route in the route cache,

that route is used. Otherwise, a local path finding algorithm is run on the local

network topology and the found path is registered in the route cache. If no path

is found, this means that there is no path from the sender to the receiver, at

least for the moment. In such a case, the network layer may respond with a

“destination unreachable” error message to the transport/application layer.

We currently use Dijkstra’s shortest path algorithm [36, 38] as the local path

finding algorithm. Setting the cost of each edge to 1, a sender node running this

algorithm will find a minimum-hop path from itself to a desired destination in

the network4. Note that since we have global topology knowledge, we may easily

find multiple paths from a source to a destination in the network through the

use of a local algorithm that finds multipaths between two nodes. We leave the

discussion of multipath routing as future work.

Once a path is found to the destination, either from the route cache or through

the use of the local path finding algorithm, the discovered path is embedded into

the route field of the outgoing packet and sent towards the destination using

source routing.

4Actually, using Dijkstra’s algorithm, a sender node finds minimum-hop paths from itself to
all possible destinations in the network.

CHAPTER 4. OUR PROPOSED PROTOCOL 60

4.3.4.4 Route Discovery in QoS Mode

When a source node S wants to send a real-time stream to a destination D, it

will operate in QoS mode. If the length of the stream is known beforehand, S

first checks to see if the length of the stream requires initiation of the directed

cost dissemination mechanism5. If the answer is negative, then the packets are

sent to D as in normal operation mode. However, if the stream requires directed

cost dissemination, then a different, but similar, approach is taken.

When a real-time stream requiring the initiation of the directed cost dissemi-

nation mechanism needs to be sent from S to D, S first initiates the directed cost

dissemination mechanism. For a detailed discussion on how directed cost dissemi-

nation may be initiated, please refer to the section on directed cost dissemination.

After S initiates the directed cost dissemination mechanism, it immediately starts

sending the real-time data to D. Since S currently knows only the topology, but

not the link costs, it will only be able to send the data over an initial path that

may be non-optimal. S uses a minimum-hop route from itself to D as the initial

path; this path may easily be discovered as in route discovery in normal mode.

S will start sending the real-time data over this initial path, thereby reducing

the initial delay in data transmission to effectively zero. Since S has started the

directed cost dissemination mechanism, it will receive link cost messages from

several nodes as it continues transmission along the initial path. For each cost

message received, S checks to see if it now has enough knowledge to find a more

suitable path from itself to D. Once a more suitable path is found, S switches to

that more optimal path. A “more suitable” path is determined according to the

QoS requirements of the real-time stream and the type of link costs received. We

leave detailed discussion of selection of more suitable paths to Section 5.3.3. It

should be noted here that, just as in normal operation mode, multiple paths from

S to D may be employed in QoS mode, and the discovery of such multipaths is

relevantly easy since a local multipath finding algorithm will be able to discover

such paths.

5Please see the section on directed cost dissemination for a discussion on this matter.

CHAPTER 4. OUR PROPOSED PROTOCOL 61

According to the exact operation of the directed cost dissemination mecha-

nism, S may be able to react to changes in the network and choose different paths

as time progresses. Please see the section on directed cost dissemination for a

detailed discussion on the matter.

As a source node is receiving link costs from nodes in the network, it will

record these costs on its own graph representation of the network. Of course,

once the source node stops receiving such cost messages from the nodes, the costs

recorded on the graph will become out-of-date. In order to facilitate the removal

of such stale edge costs from the graph, each edge cost is removed from the graph

periodically.

We have mentioned above that as the source node receives each cost from

nodes, it checks to see if it now has enough information in order to find a more

suitable path. However, running a local path finding algorithm each time a cost

message is received in order to see if a more suitable path is found may be costly

in terms of processing time, so instead, a different approach is taken in the actual

implementation. In order to facilitate the discovery of better paths during the

lifetime of a flow, we clear the route cache periodically. Remembering that the

source node first checks the route cache to see if it has already found a path

to a destination, clearing all routes in the route cache force the source node to

run local path finding algorithms for each destination it wants to send a packet

to, achieving the desired effect of determining if a more suitable path can now

be found. The period of route cache cleaning must be selected with care, as a

long period will cripple the responsiveness of the protocol to changes in link costs

while a short period will incur a high overhead in processing time.

4.3.5 Route Maintenance

Route maintenance is activated when an intermediate node is unable to forward

a packet using source routing towards its destination on behalf of the source

node. Due to the dynamic nature of the network, link conditions and node

neighborhoods will change during the lifetime of a stream, and such changes may

CHAPTER 4. OUR PROPOSED PROTOCOL 62

lead to route breakages. When such a breakage occurs, it is the responsibility

of the route maintenance mechanism to inform the source node of the route

failure and to work around the problem, if possible, until the source node takes

appropriate action. The route maintenance mechanism has normal and QoS

operation mode components, although in essence, it operates the same in both

operation modes.

4.3.5.1 Route Failure Detection

Let us assume that a source node S is actively transmitting to a destination node

D along some path P (S,D). Let a link (x, y) ∈ P (S,D) from some node x to

some node y along this path fail due to link failure or node mobility during this

transmission (see Figure 4.10). The question is how x can detect the failure of

link (x, y). Elessar does not employ acknowledgements (ACKs) for transmitted

packets between hops, so x cannot tell whether its transmission to y was successful

or not through an ACK-based mechanism. However, there are various other ways

with which x may learn of the fate of its transmissions to y. If the underlying

MAC protocol uses link-level ACKs, as most common IEEE 802.11x protocol

families do, then the MAC protocol may provide this information to Elessar.

Figure 4.10: A path from S to D including link (x, y)

Another way for failure detection may be the use of passive ACKs. In this

method, x listens for the transmission from y to the next hop of the packet it has

sent to y. If it overhears the transmission of the packet from y, then it knows

that y has received the packet correctly. Otherwise, the packet has failed to reach

y. Of course, there are several issues with this method. For example, y may have

other packets in its outgoing queue, so it may take a while for y to transmit

the packet it has received from x. x should wait an appropriate amount of time

so that it does not mistakenly think that a route failure has occurred. How to

set this “appropriate waiting time” is an issue that would need to be resolved.

CHAPTER 4. OUR PROPOSED PROTOCOL 63

Another issue with the passive ACK method is that it cannot detect link failures

at the last hop along the path since the destination node will not transmit the

packet. And finally, nodes must be able to enable promiscuous mode on their

wireless network interface cards in order to employ the passive ACK scheme.

Elessar is currently able to detect the failure of a link through its neighborhood

beaconing mechanism. In this way, x does not learn of the failure of the link (x, y)

through the failure of its data packets in reaching y, but rather through the failure

of its neighbor beacon messages in reaching y.

4.3.5.2 Route Maintenance in Normal Mode

In whichever way x may learn of the link failure, it has detected a change in

the topology and therefore it will need to broadcast a link-state message for this

change. Since this link-state message is globally broadcasted, it will reach S, and

since S clears its route cache with each new link-state message, it will recalculate

the path from itself to D according to this new topology. Therefore, it would seem

that we do not need any additional mechanisms in order to inform S of the route

failure, which is correct. However, by sending some additional messages, we may

convey some more information to S and possibly to the other up-stream nodes.

We also achieve earlier information of S with explicit route failure messages,

which may be important as S has an active stream flowing over the failed link.

We have two different approaches to route maintenance depending on whether

route failure messages are used or not.

4.3.5.2.1 Route Maintenance, Normal Mode, No Route Failure Mes-

sages This scheme does not use explicit route failure messages and forms the

basis for the route maintenance scheme employing route failure messages. Re-

turning back to the above discussion on the failure of link (x, y), when x learns

of the failure, it will initiate the topology dissemination mechanism, but we do

not concern ourselves with the details of that at the moment. For a detailed

discussion on this, please refer to the section on topology dissemination. More

CHAPTER 4. OUR PROPOSED PROTOCOL 64

importantly, x will start the route maintenance mechanism when it learns of the

failure. In this particular scheme, x will try to work around the problem and see

if it can find an alternate route from itself to D. x achieves this using the route

discovery mechanism (in normal mode) as discussed in the previous section. For

each data packet it receives, x will first try to send the packet according to the

original path in the packet header6. If x finds out that it cannot reach the next-

hop, it will look into its route cache to see if an alternate path exists7. If no path

exists in the route cache, it will run the local path finding algorithm to discover a

path, if one exists. If an alternate path is found, it is recorded in the route cache,

the (broken) path embedded in the packet header is replaced with the alternate

path, and the packet is forwarded along to its next-hop in this alternate path. If

x is unable to find an alternate path to the packet’s destination, then the packet

is dropped. This is all node x does in this scheme.

4.3.5.2.2 Route Maintenance, Normal Mode, Using Route Failure

Messages This scheme is an extension of the scheme that does not employ

route failure messages. All the actions performed by x in the above scheme are

also exactly done here. Furthermore, if x is unable to find an alternate route, it

sends a route failure message back to S, following the reverse path from S to x in

order to inform the upstream nodes from x of the situation8. By informing the

upstream nodes, we prevent unnecessary transmissions to x from these nodes,

as x has no way to relay these packets to D. The route failure message of x

includes the information that x has no path to D. An upstream node receiving

this route failure message stops sending packets towards x. In order to decrease

the number of dropped packets, each upstream node tries to find an alternate

path from itself to D and tries to send the current packets it has over this new

route, if one exists. However, these upstream nodes do not produce route failure

6The action of first trying to follow the path in the packet header is logical and necessary.
This way, when x receives packets following an alternate path to D, not using link (x, y), it will
be able to send the packets correctly using their own routes.

7x has knowledge of the conditions of its immediate neighbors, so if it sees that the next-hop
along the path is no longer its neighbor, it knows that it cannot send the packet to that node.

8x may send the route failure message in the reverse direction since we have assumed that
links are bidirectional. If this assumption does not hold, then in every case, a route failure
message is sent directly to S.

CHAPTER 4. OUR PROPOSED PROTOCOL 65

messages of their own. When S receives the route failure message, it will try

to find a new path through the route discovery mechanism9. Note that in order

to enable an upstream node to stop sending to x the packets belonging to the

stream following the broken path, a table should be kept in the upstream node,

which keeps the information that packets belonging to the stream should not be

forwarded to node x.

Figure 4.11 illustrates the ideas presented above more clearly. In part (i),

source node 1 is sending a data stream to destination node 8, using the route

{1, 4, 5, 8}. In part (ii), node 8 moves away from all its neighboring nodes, and

none of its neighbors can now reach it. Node 5 detects the breakage of the

route, and tries to find an alternate path to node 8, without success. When

route failure messages are used, node 5 creates and sends a route failure message

back to node 1, following the reverse of the original data path in order to inform

upstream nodes as well. In this case, upstream node 4, as well as source node 1,

are informed of the failure of the route. In part (iii) of the figure, node 8 again

moves, but this time node 3 is still connected node 8 while the other neighbors

are disconnected. Node 5 detects the breakage in the route, and tries to find an

alternate path, with success. Since node 5 has been able to find an alternate path,

it reroutes the packets along this route, following nodes 3 and 8, so the route at

node 5 effectively becomes {5, 3, 8}. Note that in this case, source node 1 will

learn of the failure of link (5, 8) through the topology dissemination mechanism

since no route failure message is produced.

4.3.5.3 Route Maintenance in QoS Mode

The operation of the route maintenance mechanism in QoS mode is almost the

same as its operation in normal mode. We again have the option of using explicit

route failure messages or not. The scheme where route failure messages are not

used is exactly like the one presented in Section 4.3.5.2.1. There is a slight

difference when explicit route failure messages are employed. With this option,

9Note that this time, we are not guaranteed that S will be able to find at least one path to
S, since the path P (x,D) no longer exists. There may be no path from S to D in the network.
However, if there is at least one path to D, we are guaranteed that S will find it.

CHAPTER 4. OUR PROPOSED PROTOCOL 66

Figure 4.11: Example case for route maintenance.

all the actions performed by x in Section 4.3.5.2.1 are performed. Furthermore,

if x has been able to find an alternate route, it sends a route failure message back

to S directly. The path x uses to send this message to S is arbitrary, found by the

route discovery mechanism. The route failure message also includes the alternate

path x has found. This idea is demonstrated in Figure 4.11, part (iv). As stated

previously, link (5, 8) has broken due to node mobility and node 5 has been able

to find an alternate path to reach node 8. If route failure messages are employed,

then node 5 creates such a message, and sends it to node 1 directly, following

an arbitrary path chosen by the route discovery mechanism at node 5. In the

example, this route is {5, 6, 1}. Upon receiving this message, S takes necessary

action. S will first try to find another route from itself to D, with the knowledge

that link (x, y) no longer exists. Since the route failure message includes the path

from x to D, S may use the previous path from itself to x along with the path

from x to D readily10. Since the packets from S to D are real-time packets, when

x finds out an alternate path to D, this path will not be optimal as x does not

10For the mathematically inclined, this may be represented by the following. We name the
initial path from S to D P (S,D). P (S,D) = P (S, x) + (x, y) + P (y,D). Letting the new path
found by x be P (x,D), S may use the path P (S, x) + P (x,D) in order to reach D.

CHAPTER 4. OUR PROPOSED PROTOCOL 67

have enough information on link costs. Therefore, we allow S to discover a path

to D using the route discovery mechanism, since S may be able to find a better

(least-cost) path through this mechanism. Note that we are never guaranteed

that S will be able to find a QoS-path to D, even when a normal path from itself

to D exists, since none of the possible paths from S to D may satisfy the QoS

requirements. However, if there is at least one QoS path from S to D in the

network, we are guaranteed that S will find it. The actions taken in the case

where x is unable to find an alternate path to D are exactly the same as the ones

presented in Section 4.3.5.2.2.

4.4 Summary

In this chapter, we have presented an overview of Elessar, an on-demand, link-

state based routing protocol supporting real-time traffic in wireless mobile ad

hoc networks. The aim of this chapter was to provide a general idea of how the

protocol works and to discover various dimensions of the design space. Several

important details of the protocol have been omitted here; these will be discussed

in the next chapter on design and implementation details. Other issues, design

choices, and parameter settings may only be justified through simulation experi-

ments, which are presented in Chapter 6.

Chapter 5

Design and Implementation

Details

We have implemented our proposed protocol on a discrete-event simulation tool

named OMNeT++. Details on OMNeT++ are provided in Section 5.1. We

present the information on main modules and messages used in the simulation in

Section 5.2. Pseudocodes and algorithms for the main components of the protocol

are provided in Section 5.3.

5.1 Our Simulation Tool: OMNeT++

We have implemented our protocol in OMNeT++ [98, 96, 97]. OMNeT++ is an

object-oriented, modular, discrete event network simulator. It is capable of sup-

porting any type of discrete event simulation, but was specifically designed with

the simulation of telecommunication networks in mind. It is especially suited

for traffic modeling of telecommunication networks, protocol modeling, model-

ing queuing networks, modeling multiprocessors and other distributed hardware

systems.

An OMNeT++ model consists of hierarchically nested modules. The depth

68

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 69

of module nesting is not limited, which allows the user to reflect the logical

structure of the actual system in the model structure. Modules communicate

through message passing, where messages can contain arbitrarily complex data

structures. Modules can send messages either directly to their destination or

along a predefined path, through gates and connections. Modules can have their

own parameters, which can be used to customize module behavior and to param-

eterize the model’s topology. Modules at the lowest level of the module hierarchy

encapsulate behavior. These modules are termed simple modules, and they are

programmed in C++ using the simulation library.

OMNeT++ simulations can feature varying user interfaces for different pur-

poses: debugging, demonstration and batch execution. Advanced user interfaces

make the inside of the model visible to the user, allow control over simulation ex-

ecution and to intervene by changing variables/objects inside the model. This is

very useful in the development/debugging phase of the simulation project. User

interfaces also facilitate demonstration of how a model works.

OMNeT++ is capable of deployment in various platforms, including Linux

and Linux-like systems, Cygwin under Windows, and MS Visual Studio under

Windows.

OMNeT++ is free for academic and non-profit use.

5.1.1 Modules

The structure of the actual system simulated is captured through the definition of

modules. In OMNeT++, there are two kinds of modules: compound, and simple.

Simple modules are modules at the lowest level of the module hierarchy, and they

encapsulate actual behavior of the system. Such simple modules are implemented

in C++, using the simulation library. Compound modules are modules consisting

of one or more simple and/or other compound modules. There is no limit in the

nesting of compound modules, which enable OMNeT++ to capture a realistic

description of the simulated system.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 70

An OMNeT++ model consists of hierarchically nested modules, which com-

municate with each other through messages. Each module is an instance of a

module type and each module may be parameterized to allow easy configuration

of the simulation model during run-time. The top level module in each simu-

lation model is the system module. The system module contains submodules,

which can also contain submodules themselves (see Figure 5.1). The depth of

module nesting is not limited; this allows the user to reflect the logical structure

of the actual system in the model structure. Model structure is described in

OMNeT++’s NED language [95].

Figure 5.1: Modules in OMNeT++.

5.1.2 Components of a Simulation Model

An OMNeT++ model consists of the following components:

• Topology and Module Descriptions: These files, written in the NED

topology description language provided by OMNeT++, provide descrip-

tions for the network topology and the modules of the system. Connections

between modules and module parameters, along with module definitions

are specified in these files which have the .ned suffix.

• Message Definitions: Modules communicate with each other through

messages. Files with the suffix .msg are message descriptions, which are

automatically converted into corresponding C++ classes. Different types

of messages may be defined, and each message type may contain various

data fields, including complex and user-defined data types.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 71

• Simple Module Sources: Simple module sources are provided in C++

files, with the extensions of .cc and .h. Note that all features provided by

C++ may be used during the implementation of simple modules, including

complex data structures, C++ library functions, object-oriented program-

ming concepts such as polymorphism, etc, as well as data structures and

functions provided by the simulation library.

5.1.3 The INET Framework for OMNeT++

The INET framework is an open-source communication networks simulation pack-

age, written for the OMNEST/OMNeT++ simulation system. The INET frame-

work contains implementations of several Internet protocols, including UDP,

TCP, IPv4, IPv6, ARP, ICMPv4, ICMPv6, OSPFv2, RIP, IEEE 802.11, Eth-

ernet, PPP and MPLS with LDP and RSVP-TE signaling and several appli-

cation models, such as TCP/UDP client/server models, various TCP/UDP/IP

traffic generators, TCP/UDP applications, and various facilities such as different

host definitions, scenario managers, static and dynamic routing support, several

queue implementations, network configurator, routing and interface tables, and

notification boards.

The INET framework also supports wireless and mobile simulations. These

features of the INET framework have been derived from another framework writ-

ten for OMNeT++, named the Mobility Framework.

5.1.4 The Mobility Framework (MF) for OMNeT++

This framework is intended to support wireless and mobile simulations within

OMNeT++. The core framework implements support for node mobility, dy-

namic connection management and a wireless channel model. Additionally the

core framework provides basic modules that can be derived in order to implement

own modules. The framework can be used for simulating fixed and mobile wire-

less networks, distributed (ad-hoc) and centralized networks, sensor networks,

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 72

multichannel wireless networks, and many other simulations that need mobility

support and/or a wireless interface.

The MF provides modules for the following groups:

• Application Layer Modules: These modules include a base class for the

application layer, a burst traffic application, polling and client applications

to test centralized scenarios, and a test class for the application layer.

• Network Layer Modules: MF includes a base class for network layer

modules and a simple flooding protocol in this group.

• Network Interfaces: There are three subgroups in this category: radios,

MAC layer modules, and physical layer modules. MAC layer modules in-

clude implementations of a CSMA-based MAC layer, IEEE 802.11b MAC,

and pure Aloha. Radio modules include implementation of a single chan-

nel radio model. Physical layer modules include decider modules which are

used in order to decide whether a frame was received correctly, and SNR

evaluation modules, which are used for signal attenuation, path loss and

interference calculations.

• Mobility Modules: This category includes implementation of various mo-

bility models, as well as base classes to enable the programmer to develop

his/her own mobility models.

5.1.5 Modules Directly Used In Our Implementation

In the implementation of our proposed protocol, we have made extensive use of

the simulation library of OMNeT++. We have also employed various modules

provided by the INET framework, parts of which are inherited from the Mobil-

ity Framework. We have used two main components of the INET framework

during the implementation of our protocol: the IEEE 802.11b MAC implementa-

tion, along with needed support modules such as a single channel radio module,

SNR evaluators and deciders, and mobility support of INET, primarily using the

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 73

random waypoint mobility model. Brief descriptions of employed modules pro-

vided by INET, as well as explanations of original modules may be found in the

following section.

5.2 Modules and Messages Used in Our Proto-

col

In this section, we provide details on our simulation model, defined through mod-

ules in OMNeT++. Message types used by Elessar are also presented here.

5.2.1 Modules

The simulation model consists of various module definitions in OMNeT++. These

modules may be compound or simple modules. Simple modules encapsulate the

behavior of the system and are implemented in C++ using the simulation class

library. Details on the inner workings and algorithms of simple modules are

presented in Section 5.3. Compound modules are modules made up of other

compound and/or simple modules.

All module definitions are written using the NED topology description lan-

guage provided by OMNeT++. In this section, we provide the definitions of our

modules, as well as brief descriptions of modules used from the INET framework.

Our model consists of the following modules:

1. AdhocNetwork An original compound module defining the actual wireless

mobile ad hoc network.

2. FlowController Original simple module used to create data flows in the

network.

3. MACTable An original simple module used to disseminate the MAC ad-

dresses of nodes.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 74

4. CentralNode An original simple module used to collect performance in-

formation on the protocol.

5. ChannelControl A simple module employed from INET, used to obtain

information on the locations and connectivity of wireless nodes.

6. MyMobileHost An original compound module defining a wireless mobile

ad hoc host in the network.

7. TrafficGen This is an original simple module used in order to create data

packets. This module basically acts as the application layer that requests

from the network layer transmission of various packets to other nodes.

8. MyRouter An original simple module that represents the network layer of

a mobile host.

9. NotificationBoard A simple module employed from INET, used in order

to be notified when a node moves.

10. BasicMobility A simple base module employed from INET, used to rep-

resent the mobility model of a mobile node.

11. RandomWPMobility A simple module employed from INET, used to

instantiate the mobility model of a wireless node to the random waypoint

mobility model.

12. Ieee80211NicAdhoc A compound module employed from INET, repre-

senting an IEEE 802.11b network interface card operating in ad hoc mode.

13. Ieee80211Radio A simple module employed from INET, representing the

radio model used in Ieee80211NicAdhoc.

14. Ieee80211Mac A simple module employed from INET, representing the

MAC layer used in Ieee80211NicAdhoc.

15. Ieee80211MgmtAdhoc A simple module employed from INET, repre-

senting the management module of Ieee80211NicAdhoc.

We provide details on these modules below.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 75

5.2.1.1 Module AdhocNetwork

The AdhocNetwork module is a compound module representing the actual wireless

mobile ad hoc network in the simulation. This is the top module in the simulation

(aside from the system module discussed in Section 5.1.1).

This module is composed of the modules ChannelControl, an array of MyMo-

bileHosts, MACTable, FlowController, and CentralNode. It has three parameters:

sizeX and sizeY , two integers representing the size of the width and height of

the playground in meters, respectively, and nodeCount, an integer representing

the number of nodes in the network. A graphical representation of a network

consisting of 10 nodes in an area of 250× 250 m2 is presented in Figure 5.2.

Figure 5.2: Wireless ad hoc network of 10 nodes in an area of (250 x 250).

5.2.1.2 Module FlowController

The FlowController is a simple module used to create and control data flows in the

network. This is a central module, with one instance in each network. It directly

communicates with the TrafficGen submodules of necessary hosts, giving them

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 76

instructions on packet creation for data flows. We currently create data flows

at random, choosing random source and destination node pairs. The number of

data flows, the data rates, the flow types (i.e. normal vs. real-time), the QoS

requirements of real-time flows, requests of cost messages for real-time flows are

all configurable.

This module has one parameter, hostCount, representing the number of nodes

in the network.

5.2.1.3 Module MACTable

This is a simple module, with a single instance in each network. It is used to

provide a centralized look-up table in order to let nodes learn of their MAC ad-

dresses. Each network interface card is automatically assigned a random MAC

address by the simulator, and the MACTable module provides a central table

where each MAC address is stored, in order to be retrieved later by each individ-

ual node. It has one parameter, size, representing the number of nodes in the

network and therefore the size of the MAC table in the module. Modules of type

MyMobileHost communicate with the MACTable module through direct method

calls.

5.2.1.4 Module CentralNode

CentralNode is a simple module, having a single instance in each network. It is

used to provide a centralized location for data acquisition, collection, and record-

ing during each simulation run. Modules of type MyMobileHost communicate

through direct method calls with this module.

5.2.1.5 Module ChannelControl

This is a simple module, with a single instance in each network. This module gets

informed about the location and movement of nodes, and determines which nodes

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 77

are within communication or interference distance. This information is then used

by the radio interfaces of nodes at transmissions. This module is provided by the

INET framework.

5.2.1.6 Module MyMobileHost

This is a compound module, consisting of the modules TrafficGen, MyRouter, Ba-

sicMobility, NotificationBoard and Ieee80211NicAdhoc. This module represents

a wireless mobile host in the network, having an IEEE 802.11b network interface

card.

It has two parameters: mobilityType, which is a string used to instantiate the

actual mobility model of the host, and hostId, an integer value representing the

unique node identification number assigned to this node. Note that hostId > 0

for all hosts in the network. Each host is given their unique ID during the network

setup phase in the description of the AdhocNetwork module. The mobility type

of each host is also assigned during network setup, through the configuration file

of the simulation. A graphical representation of this module may be found in

Figure 5.3.

5.2.1.7 Module TrafficGen

TrafficGen is a simple module developed by us, with each mobile host having

their own instance of this module. It is connected to the MyRouter module in

each host and also receives instructions regarding the creation of data packets

and flows from the FlowController module directly. It acts as the application

layer of a mobile host, creating data packets and requesting the network layer to

send them to their destinations.

This module has a single parameter, myId, representing the unique node ID

of the host the module belongs to. This parameter is set in the definition of

module MyMobileHost.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 78

Figure 5.3: Internal representation of a wireless mobile host.

5.2.1.8 Module MyRouter

This module is practically the heart and soul of our simulation, as it captures the

algorithms and actions proposed in our routing protocol. This module represents

the network layer of a mobile host, performing route discovery and packet for-

warding, as well as providing the implementation of supporting mechanisms for

the routing protocol, such as link cost measurement. Each wireless host has an

instance of this module. It is connected to the TrafficGen module, performing

routing actions on behalf of the data packets sent from the TrafficGen module,

and to the Ieee80211NicAdhoc module, which acts as the MAC layer of the host.

MyRouter requests the Ieee80211NicAdhoc module to do the actual transmission

of the data packets according to the information provided in the packet headers

and the Ieee80211NicAdhoc module delivers received data frames up to module

MyRouter for processing, mimicking the expected actions between the network

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 79

and link layers.

MyRouter is a simple module with two parameters: nodeId, representing

the unique ID of this node and wholeK. Using the incremental link-state mes-

sage scheme, every wholeK-th link-state message is a whole message. Parameter

nodeId is set in the module definition for MyMobileHost, while the wholeK pa-

rameter is set in the simulation configuration file.

5.2.1.9 Module NotificationBoard

This is a simple module employed from INET and each mobile host has an in-

stance of this module. Modules can notify each other about “events”, such as

routing table changes, interface status changes (up/down), interface configura-

tion changes, wireless handovers, changes in the state of the wireless channel,

mobile node position changes, etc, using the NotificationBoard module. We ex-

plicitly use this module to inform hosts of node position changes, but it is also

used implicitly by module Ieee80211NicAdhoc to learn of wireless channel state

changes.

NotificationBoard is accessed via direct C++ method calls and not message

exchanges. Modules subscribe to categories of changes (e.g. “routing table

change” or “radio channel became empty”). When such a change occurs, the

corresponding module will inform the NotificationBoard of the situation, and the

NotificationBoard will disseminate this information to all interested modules.

5.2.1.10 Modules BasicMobility and RandomWPMobility

Module BasicMobility is a simple module employed from INET, which does not

actually provide a mobility model, but is used as a prototype for other mobility

models. Each wireless host has an instance of this module, and each instance

is assigned the mobility model provided in simple module RandomWPMobility,

employed from INET.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 80

In the random waypoint mobility model, a node moves in line segments. For

each line segment, a random destination position (distributed uniformly over the

playground) is chosen and the node moves toward this destination with a given

speed. The node speed value is a module parameter and it may be a constant or

a distribution from where a random value is chosen for each line segment. When

the node reaches the target position, it waits for the time waitT ime, which can

also be defined as a variate or a constant as is the case with speed. After this

time the algorithm calculates a new random position, and the cycle continues.

The RandomWPMobility module has the following relevant parameters: x,

and y, which respectively represent the x and y coordinates of the starting point

of the node in the playground. These values may be set as to let the simulator

place each node randomly over the playground. Parameters speed and waitT ime

were discussed above.

5.2.1.11 Modules Ieee80211NicAdhoc, Ieee80211Radio, Ieee80211Mac,

and Ieee80211MgmtAdhoc

Module Ieee80211NicAdhoc represents an IEEE 802.11b network interface card

operating in ad hoc mode (see Figure 5.4). It is a compound module, consisting of

the simple modules Ieee80211Radio, representing the physical radio component,

Ieee80211Mac, representing the actual MAC layer, and Ieee80211MgmtAdhoc,

representing the management module operating in ad hoc mode.

Simple module Ieee80211Mac provides the implementation of the 802.11b

MAC protocol. This module is intended to be used in combination with the

Ieee80211Radio module as the physical layer. Encapsulation/decapsulation of

frames are done in module Ieee80211MgmtAdhoc. The following features are not

supported by the current INET implementation of the IEEE 802.11b MAC pro-

tocol: 1) fragmentation, 2) power management, 3) polling (PCF). Also, physical

layer algorithms such as frequency hopping and direct sequence spread spec-

trum are not modeled directly. Fields related to the above unsupported features

are omitted from management frame formats as well (for example, FH/DS/CF

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 81

Figure 5.4: Internal representation of the Ieee80211NicAdhoc module.

parameter sets, beacon/probe timestamp which is related to physical layer syn-

chronization, listen interval which is related to power management, capability

information which is related to PCF and other non-modeled features). Simple

module Ieee80211Radio provides the physical layer and is intended to be used in

conjunction with the Ieee80211Mac module.

5.2.2 Message Types

In this section, we present information regarding the message types used by

Elessar. Our protocol currently makes use of the following message types:

1. Packet The base class for all messages used by the protocol.

2. LSMsg A link-state message.

3. DataNormal A normal data packet.

4. DataRT A real-time data packet.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 82

5. SpecialRTMsg A message informing the nodes along its path of the start

of a real-time message.

6. CostInformMsg A message informing receiving nodes about a real-time

flow.

7. CostMsg A cost message, including the link costs of the sending node.

We describe each message type in the following sections.

5.2.2.1 Packet

The Packet message type is not used by itself, but forms the base class for all

messages used by the protocol. Its definition is provided below:

Packet
1 message Packet

2 {

3 fields:

4 int source;

5 int dest; // includes LOCAL_BC and GLOBAL_BC

6 int hopCount;

7 int pktType;

8 unsigned long seqNum;

9 };

Its fields are self-explanatory. The source and destination fields (represented

by node IDs) of each packet are modified during multi-hop communication by the

node forwarding the packet. We would like to note here that the hop count field

is not used by all message types. This field is modified (decremented by 1) by a

forwarding node if the packet is forwarded based on its hop count. Fields packet

type and sequence number are unmodified once they are set by the creator of the

packet.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 83

5.2.2.2 LSMsg

The LSMsg message type forms the definition of a link-state message. Its defini-

tion is provided below:

LSMsg
1 message LSMsg extends Packet

2 {

3 fields:

4 int originator;

5 int msgType; // incremental vs. whole

6 LSMsgContent content;

7 };

The content field of a link-state message is of a user-defined type

LSMsgContent. The header file for this class is provided in the appendix. Basi-

cally, the content field may contain two different types of data structures based

on whether this is an incremental or a whole link-state message. If this is a whole

message, then the content field contains the IDs of all current neighbors of the

message originator in a list. Otherwise, it contains the changes that have oc-

curred in the neighbor list of the originator since the last time that node created

a link-state message.

5.2.2.3 DataNormal

DataNormal represents a normal data message, where we use the term “normal”

to indicate that this packet does not belong to a real-time flow. The definition of

the DataNormal message type is given below:

DataNormal
1 message DataNormal extends Packet

2 {

3 fields:

4 string data; // carried data

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 84

5 Route route; // embedded route this pkt should follow

6 };

A DataNormal message has two additional fields to the fields inherited from

Packet. Field data is a string, representing the actual data being carried by the

packet, and route is the embedded route this packet should follow, used in source

routing. You may find the header file for the Route class in the appendix.

5.2.2.4 DataRT

DataRT is a real-time data packet, with the following definition:

DataRT
1 message DataRT extends Packet

2 {

3 fields:

4 string data; // carried data

5 Route route; // embedded route this pkt should follow

6

7 double duration; // estimated duration of rt flow (in sec.s)

8 int costCount; // no of cost msgs requested during rt flow

9 bool periodic; // request periodic cost msgs or not

10 double period; // in case of periodic cost msgs, period (in sec.s)

11 int costInformHopCount; // hop count for cost inform msgs

12 int pathCount; // number of paths special rt msg for

13 // this flow should be sent over

14

15 // QoSReq qosReq;

16 // The route object includes a pointer to a QoSReq object.

17 // This pointer may also be used here, so there is no need for

18 // an explicit QoSReq object here.

19 };

It has all of the fields of a DataNormal message, along with some additional

ones. duration is the estimated duration in seconds of the real-time flow this

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 85

packet belongs to. costCount is the number of cost messages requested during

the lifetime of the flow; periodic is a boolean representing whether periodic cost

messages are requested or not; period is the requested period in seconds of cost

messages if periodic cost messages are used; costInformHopCount is the hop

count imposed on CostInformMsg messages, used during information of nodes

of the real-time flow; and pathCount is the number of paths requested by the

flow source, over which one or more SpecialRTMsg messages are sent to inform

nodes of the start of a real-time flow.

5.2.2.5 SpecialRTMsg

A SpecialRTMsg represents the special packet sent over the initial path(s) of the

real-time flow in order to inform nodes along the path(s) of the start of the real-

time flow. This information of nodes is the first part of the cost dissemination

mechanism, and we achieve this information through the use of SpecialRTMsg

and CostInformMsg messages.

SpecialRTMsg
1 message SpecialRTMsg extends Packet

2 {

3 fields:

4 int rtSource; // source of rt flow

5 int rtDest; // dest of rt flow

6 Route route; // embedded route this pkt should follow

7

8 double duration; // estimated duration of rt flow (in sec.s)

9 int costCount; // no of cost msgs requested during rt flow

10 bool periodic; // request periodic cost msgs or not

11 double period; // in case of periodic cost msgs, period (in sec.s)

12 int costInformHopCount; // hop count for cost inform msgs

13

14 // QoSReq qosReq;

15 // Note: Route object includes a QoSReq ptr that can be

16 // used to identify the QoS req. of the flow this pkt

17 // represents, so another QoSReq qosReq field is not added.

18 };

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 86

The SpecialRTMsg message definition is provided above. Such a message

inherits all of the fields of Packet, includes all of the real-time specific fields

except pathCount, presented above on the discussion of message DataRT , and

also has three additional fields: rtSource, which is the source of the flow, rtDest,

the destination of the flow, and route, the route that this packet should follow,

used in source routing.

5.2.2.6 CostInformMsg

Message type CostInformMsg is used in the information of nodes of the start

of a real-time flow. Nodes along the initial path(s) are informed of the start of a

real-time flow by the special packet of type SpecialRTMsg sent over the path(s)

the flow will follow at the start. Such nodes also inform their neighbors of the

real-time flow by the use of CostInformMsg messages, which are broadcasted

limited by the hop count imposed on them.

CostInformMsg
1 message CostInformMsg extends Packet

2 {

3 fields:

4 int sendTo; // send your costs to this node

5 int type; // send this type of cost

6

7 double duration; // estimated duration of rt flow (in sec.s)

8 int costCount; // no of cost msgs requested during rt flow

9 bool periodic; // request periodic cost msgs or not

10 double period; // in case of periodic cost msgs, period (in sec.s)

11 int costInformHopCount; // hop count for cost inform msgs

12 };

A CostInformMsg includes all of the real-time flow related fields present in

message type SpecialRTMsg, as well as two fields of its own, sendTo, denoting

the source of the flow that should receive the cost messages to be sent, and type,

denoting the type of the link costs that should be included in the cost messages.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 87

5.2.2.7 CostMsg

A CostMsg message is the actual message including the link costs of the orig-

inator node, sent to the source of the real-time flow to enable intelligent path

selection at the source node.

CostMsg
1 message CostMsg extends Packet

2 {

3 fields:

4 Route route; // embedded route this pkt should follow

5

6 // if this msg includes cost for a specific type,

7 // corresponding bool is true, and vice versa

8 // note that at most two of these bools can be false

9 bool hasRTT;

10 bool hasBW;

11 bool hasLoss;

12

13 // note that at most two of these contents can be null (empty)

14 CostMsgContent costRTT;

15 CostMsgContent costBW;

16 CostMsgContent costLoss;

17 };

It has the following fields: route, representing the route this cost message

should follow, used in source routing, three boolean variables, used to denote

which type of link costs are included in the message, and three data structures

of type CostMsgContent, each potentially including the corresponding type of

link costs. Each CostMsgContent data structure includes the current and aver-

age link costs of corresponding type of the originator node’s links to its current

neighbors. Header file for class CostMsgContent is given in the appendix.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 88

5.3 Pseudocodes and Algorithms

Pseudocodes and algorithms of the proposed protocol are given here. The reason

why we are providing this material in this section, and not in Chapter 4, is for

clarity purposes, as we wanted to provide a concise specification of our protocol

in Chapter 4 and left more technical details of Elessar for discussion here.

5.3.1 Neighborhood Beaconing

We present the pseudocode for the basics of the neighborhood beaconing in this

section. The following notations are used in the presented algorithms:

B A beacon message. It has two fields: sender, representing the sender of the

message and type, representing the type of the beacon message. These fields

may be accessed by the usual dot notation (i.e. to access the sender field

of message B, we use B.sender).

nodeId The unique ID of the current node. Each node in the network is given

a numeric ID that uniquely represents the node.

nList The neighborhood list of the node. Information on current neighbors (such

as IDs, etc.) are kept in this list. We currently assume that the neighbor

list only keeps the node IDs of this node’s neighbors.

retryLimit The limit for the number of retries in joining the network. The node

will retry to join the network at most this many times.

inNetwork Whether the node has joined the network or not.

P A packet. It has at least one field: sender, representing the originator of the

packet.

msg A link-state message. Please see the topology dissemination section for

more information on this.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 89

We use a single timer for the creation and sending of beacon messages. When

this beacon timer expires, a new beacon message is created and locally broad-

casted in the network. Note that since the wireless medium is inherently a broad-

cast medium, the node only needs to send the beacon once in order to reach all

its neighbors. We also use a timer for each neighbor in the neighbor list (nList).

When the timer for a neighbor expires, it is removed from the neighbor list.

Since a node detects changes in its neighborhood through the neighborhood

beaconing mechanism, and such changes trigger the dissemination of a link-state

message, the neighborhood beaconing mechanism and the topology dissemina-

tion mechanism are closely related. More specifically, procedure createLSMsg()

is called when a change in the neigborhood of the current node is detected through

the beaconing mechanism and the created link-state message is broadcasted.

Please refer to the section on topology dissemination below for more informa-

tion on these procedures.

We would like to note here that the neighborhood mechanism presented here

is not implemented in our simulations as the simulation environment provides us

the neighborhood information.

5.3.2 Topology Dissemination

We present the pseudocode for the topology dissemination mechanism here. Since

this mechanism forms the backbone of our protocol, many other components

of the protocol rely heavily on it. One such component is the route discovery

protocol. We have mentioned that we keep a local route cache at each node. We

represent this route cache as routeCache in the algorithms below. There is a

one-way interaction between link-state messaging and this route cache in that we

need to clear the route cache when we receive a link-state message as mentioned

in the section on route discovery. We also maintain a single timer for the route

cache, and when this timer expires, we clear all routes in the route cache. As

mentioned earlier, this is done to eliminate stale routes from the route cache and

to enable the protocol to find QoS routes as it receives cost messages from nodes

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 90

Algorithm 2 Neighborhood Beaconing, Part 1

1: if ¬inNetwork then
2: create beacon B with B.sender ← nodeId and B.type← join
3: retries← 0
4: local broadcast beacon B
5: create and start beacon timer
6: end if

7: if beacon timer expired and inNetwork then
8: create beacon B with B.sender ← nodeId and B.type← normal
9: local broadcast beacon B

10: restart beacon timer
11: else if beacon timer expired and ¬inNetwork and retries < retryLimit

then
12: create beacon B with B.sender ← nodeID and B.type← join
13: retries← retries + 1
14: local broadcast beacon B
15: restart beacon timer
16: else if beacon timer expired and ¬inNetwork and retries ≥ retryLimit

then
17: delete beacon timer
18: abort joining procedure
19: end if

20: if neighbor timer expired for neighbor i then
21: nList← nList− {i}
22: msg ← createLSMsg()
23: broadcast msg
24: end if

25: if beacon B received then
26: i← B.sender
27: t← B.type

28: if i ∈ nList then
29: restart timer for neighbor i
30: else
31: nList← nList ∪ {i}
32: create and start timer for neighbor i

33: if t 6= leave then
34: msg ← createLSMsg()
35: broadcast msg
36: end if
37: end if

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 91

Algorithm 3 Neighborhood Beaconing, Part 2

38: if t = normal or t = join then
39: create reply beacon Br with Br.sender ← nodeId and Br.type← reply
40: local broadcast beacon Br

41: restart beacon timer
42: else if t = leave then
43: nList← nList− {i}
44: stop and remove timer for neighbor i
45: else if t = reply and ¬inNetwork then
46: inNetwork ← true
47: process boot-up information in B
48: end if
49: end if

50: if node wishes to leave network then
51: create beacon B with B.sender ← nodeId and B.type← leave
52: local broadcast B
53: inNetwork ← false
54: nList← ∅
55: leave the network
56: end if

Algorithm 4 Passive Neighborhood Beaconing

if packet P received then
i← P.sender

if i ∈ nList then
restart timer for neighbor i

else
nList← nList ∪ {i}
create and start timer for neighbor i
msg ← createLSMsg()
broadcast msg

end if
end if

if sending out packet P then
restart beacon timer

end if

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 92

in the network. This periodic route cache cleansing is provided in pseudocode in

the section on route discovery.

Each node keeps its own global view of the wireless network in a directed

simple graph representation. We represent this graph as G = (V,E), where V

= set of all vertices (nodes) in the graph and E = set of all edges (links) in the

graph. Each wireless node corresponds to a node in the graph, and if node i can

transmit to node j, then edge (i, j) ∈ E. Note that our implementation works

on both directed and undirected graph representations, as we may transform an

undirected graph to an equivalent directed graph in a very straightforward way.

Most wireless networks will probably have bidirectional links due to identical

transceivers, meaning that if node i can reach node j, then node j may reach

node i (i.e. (i, j) ∈ E ⇔ (j, i) ∈ E). However, the characteristics of such links

may be quite different from each other. For example, the noise of link (i, j) may

be higher/lower than the noise of link (j, i). Therefore, even though the links are

bidirectional, they may be asymmetric.

Each node in the graph has a unique integer ID > 0. We represent the

neighbors of each node in the adjacency list representation. The adjacency list

of a node v ∈ V is represented as Adj[v].

We use the following notations in the algorithms presented below:

msg A link-state message. It has at least two fields, type, representing the type

of the received message (incremental vs. whole), and sender, the originator

of the message.

LSTable The table that keeps track of the most recently seen link-state mes-

sages. Please see Section 4.3.2.2 for a detailed description of this table.

nodeId The unique ID of the current node. Each node in the network is given a

numeric ID that uniquely represents the node. Note that nodeId > 0,∀v ∈

V .

wholeK Every wholeK-th link-state message is a whole message. This is done

in order to increase robustness of the protocol. Please see Section 4.3.2.1

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 93

for more information on the incremental link-state messaging scheme.

currentK Keeps track of the count of created link-state messages. Used primar-

ily in order to decide if the new link-state message will be an incremental

or a whole message.

lastLSNeighbors This is a snapshot of the neighbor list of the current node at

the time of the creation of the last link-state message by the node. It is

used in order to create an incremental message.

nList The neighborhood list of the node. Information on current neighbors (such

as IDs, etc.) are kept in this list. We currently assume that the neighbor

list only keeps the node IDs of this node’s neighbors.

routeCache The route cache of the current node. Please refer to Section 4.3.4.1

for a detailed discussion on the use of this data structure.

Please note that we keep the LSTable in FIFO1 manner. Since the table

has a limited capacity, when we say LSTable ← LSTable ∪ {msg}, if the table

can accommodate the new message, msg is added to the table in FIFO manner,

without deleting any other message from the table. If there is no space left in

the table, then the oldest message in the table (the message at the front of the

queue) is deleted and msg is added to the end of the queue.

The current implementation of LSTable is based on a linked-list. Since the

table is kept in FIFO manner, addition to and removal from the table each take

O(1) time whereas finding an element in the table takes O(n) time through ex-

haustive search, where n is the size of the table. Please note that the current

implementation is for experimental purposes only, and if real-life deployment of

the protocol is required, then we may use a more efficient data structure in order

to implement the link-state table. The same argument applies to almost all data

structures used in the protocol, such as RTFlowsTable (mentioned in Section

5.3.3.3), routeCache, nList, lastLSNeighbors, etc.

1FIFO: first-in, first-out data structure, i.e. a queue

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 94

We have implemented the incremental message scheme along with inclusion of

neighborhood-information-only in the link-state message content. An incremental

message includes only information about changes at a node that have occurred

since the last link-state message created by that node. A whole message, on the

other hand, includes all of the neighbors of the node at the time of the creation

of the message.

An incremental link-state message msg includes the information in a field

named changeList, which is a list consisting of changes that have occurred since

the last link-state message. Each entry in changeList represents a change (re-

moval or addition) in the neighborhood of the originator and is a tuple in the

form of (<action>, <nodeId>), where <action> is one of {remove, add} and

<nodeId> is the nodeId of the neighbor that has been removed from or added

to the neighbor list at the originating node.

A whole link-state message msg includes all of the neighbors of the originator

node in a list named nList, where each entry is the nodeId of a current neighbor

in the neighbor list of the originator.

The processLSMsg(msg) procedure is called when the node receives a link-

state message msg. First, the node checks if it has seen the received message

before. If it has, it silently discards the message. Otherwise, the received link-

state message is recorded in the link-state table, the route cache is cleared, and the

graph representation of the network is updated. Furthermore, the timer for the

route cache is restarted since it has been cleared and the node locally broadcasts

the message in order to continue the global broadcast mechanism. Notice that

a node will forward a link-state message only once, and since there are a finite

number of nodes in the network, we are guaranteed that the global broadcast

will stop eventually. To be more precise, the global broadcast will take at most

d + 1 steps, where d is the diameter2 of the network, with step 1 consisting of

the originator of the message sending the message, step 2 consisting of the 1-hop

neighbors of the originator forwarding the message and so on3.

2Diameter of a network is defined as the number of hops in the shortest path between the
furthest pair of nodes.

3For the mathematically inclined, this may be expressed as Stepi = forwarding of the message

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 95

updateGraphLS(msg) is a helper procedure that is called in processLSMsg.

It first checks the type of the received link-state message, and proceeds accord-

ingly. The nodes and edges that need to be added to or removed from the graph

at the current node are determined by looking at the content of the link-state

message.

createLSMsg is called when we need to create a new link-state message. This

procedure creates either a whole or an incremental message based on the values

of currentK and wholeK. extractDiffNeighbors is a helper procedure which is

used when we need to create an incremental message and it extracts the difference

between the current neighbor list and the neighbor list sent in the last link-state

message and returns it as a list in the format of changeList.

5.3.3 Route Discovery and Packet Forwarding

It has been noted that each node has its own view of the global network and is

therefore able to run a local path finding algorithm in order to find a path from

itself to the destination node in the graph. The route discovery mechanism runs

in two modes: normal mode, and QoS mode. The route discovery mechanism of

Elessar operates in normal mode for normal data flows, and in QoS mode for real-

time data flows. Before we present the pseudocode for the packet handling and

route embedding parts of route discovery, we would like to expose the reader to the

algorithms at the heart of the mechanism: the actual local path finding algorithms

used on the graph representation, which are either modified versions of Dijkstra’s

well-known single source shortest paths algorithm [36, 38] or a derivative thereof.

5.3.3.1 Local Path Finding Algorithms

Please note that the following notation is used in the given algorithms:

G(V,E) The directed graph representation of the network at a node. V is the

by all nodes which are exactly i− 1 hops away from the originator.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 96

Algorithm 5 Topology Dissemination, Part 1

1: procedure processLSMsg(msg)
2: if msg ∈ LSTable then
3: delete msg
4: else
5: LSTable← LSTable ∪ {msg}
6: do updateGraphLS(msg)
7: routeCache← ∅
8: restart timer for route cache
9: broadcast msg

10: end if
11: end procedure

12: procedure updateGraphLS(msg)
13: if msg.sender /∈ V then
14: V ← V ∪ {msg.sender}
15: end if

16: if msg.type = incremental then
17: for all (action, id) ∈ msg.changeList do
18: if id /∈ V then
19: V ← V ∪ {id}
20: end if

21: if action = add then
22: if (msg.sender, id) /∈ E then
23: E ← E ∪ {(msg.sender, id)}
24: E ← E ∪ {(id,msg.sender)} ⊲ needed if links are

bidirectional
25: Adj[msg.sender]← Adj[msg.sender] ∪ {id}
26: Adj[id]← Adj[id] ∪ {msg.sender} ⊲ needed if links are

bidirectional
27: end if
28: else
29: if (msg.sender, id) ∈ E then
30: E ← E − {(msg.sender, id)}
31: E ← E − {(id,msg.sender)} ⊲ needed if links are

bidirectional
32: Adj[msg.sender]← Adj[msg.sender]− {id}
33: Adj[id]← Adj[id]− {msg.sender} ⊲ needed if links are

bidirectional
34: end if
35: end if
36: end for

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 97

Algorithm 6 Topology Dissemination, Part 2

37: else
38: for all i ∈ msg.nList do
39: if i /∈ V then
40: V ← V ∪ {i}
41: end if

42: if (msg.sender, i) /∈ E then
43: E ← E ∪ {(msg.sender, i)}
44: E ← E ∪ {(i,msg.sender)} ⊲ needed if links are bidirectional
45: Adj[msg.sender]← Adj[msg.sender] ∪ {id}
46: Adj[id]← Adj[id] ∪ {msg.sender} ⊲ needed if links are

bidirectional
47: end if
48: end for

49: for all j ∈ Adj[msg.sender] do ⊲ check for removed edges
50: if j /∈ msg.nList then
51: E ← E − {(msg.sender, j)}
52: E ← E − {(j,msg.sender)} ⊲ needed if links are bidirectional
53: Adj[msg.sender]← Adj[msg.sender]− {j}
54: Adj[j]← Adj[j]− {msg.sender} ⊲ needed if links are

bidirectional
55: end if
56: end for
57: end if
58: end procedure

59: procedure createLSMsg

60: create msg
61: msg.sender ← nodeId
62: msg.nList← ∅
63: msg.changeList← ∅

64: if mod(currentK,wholeK) = 0 then
65: msg.type← whole
66: lastLSNeighbors← ∅

67: for all i ∈ nList do
68: msg.nList← msg.nList ∪ {i}
69: lastLSNeighbors← lastLSNeighbors ∪ {i}
70: end for
71: else
72: msg.type← incremental
73: msg.changeList← extractDiffNeighbors()
74: lastLSNeighbors← ∅

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 98

Algorithm 7 Topology Dissemination, Part 3

75: for all k ∈ nList do
76: lastLSNeighbors← lastLSNeighbors ∪ {k}
77: end for
78: end if

79: currentK ← currentK + 1
80: return msg
81: end procedure

82: procedure extractDiffNeighbors

83: cList← ∅

84: for all v ∈ nList do
85: if v /∈ lastLSNeighbors then
86: cList← cList ∪ {(add, v)}
87: end if
88: end for

89: for all y ∈ lastLSNeighbors do
90: if y /∈ nList then
91: cList← cList ∪ {(remove, y)}
92: end if
93: end for

94: return cList
95: end procedure

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 99

set of vertices (nodes) and E is the set of edges (links).

Adj[i] The adjacency list of node i ∈ V . This list represents the nodes that node

i has a link to.

rtt(i,j) The current delay on edge (i, j). Note that an edge (i, j) means that

node i has a link to node j in the graph. We have 0 < rtt(i, j),∀(i, j) ∈ E.

rttAvg(i,j) The average delay on edge (i, j). Note that this average is an

EWMA4, which is calculated as rttAvg(i, j) = α × rtt(i, j) + (1 − α) ×

rttAvg(i, j).

loss(i,j) The current loss rate on edge (i, j). Note that 0 ≤ loss(i, j) ≤

1,∀(i, j) ∈ E.

lossAvg(i,j) The average loss rate on edge (i, j). Note that this is an EWMA

and calculated as lossAvg(i, j) = β × loss(i, j) + (1− β)× lossAvg(i, j).

bw(i,j) The current available bandwidth on edge (i, j). Note that 0 ≤ bw(i, j) ≤

cap(i, j),∀(i, j) ∈ E, where cap(i, j) is the maximum capacity of edge (i, j).

bwAvg(i,j) The average available bandwidth on edge (i, j). Note that this is an

EWMA and calculated as bwAvg(i, j) = ω×bw(i, j)+(1−ω)×bwAvg(i, j).

c(i,j) The cost of edge (i, j). This is primarily used in normal path calculation,

so c(i, j) = λ : λ ∈ {0, 1},∀(i, j) ∈ E.

d(v) Current distance estimate from the source to node v. Used in Dijkstra’s

algorithm.

pred(v) The predecessor of node v along the path from source to itself. Used in

Dijkstra’s algorithm.

MAXBW A very large value for available bandwidths, used in a role sim-

ilar to ∞, but producing meaningful results on operations like ∞ −

someFiniteV alue. MAXBW is chosen so that (MAXBW − bw(i, j)) ≥

0,∀(i, j) ∈ E.

4EWMA: exponentially weighted moving average

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 100

Q The minimum priority queue used in Dijkstra’s algorithm. extractMin(Q)

removes and returns the minimum element in the queue. The comparison

between elements in Q is based on the current distance estimates of nodes

(d(v)).

R A route. The route is represented as a list of node ids. addToRouteFront(R, i)5

adds node with id = i to the front of route R. addToRouteEnd(R, i)6 adds

node i to the end of route R. getRouteFront(R)7 returns the node at the

front of the route R.

5.3.3.1.1 Local Path Finding Algorithms in Normal Mode Dijkstra’s

single source shortest paths algorithm is employed in this mode in order to find

a path to the destination. Since link costs are not used in this operation mode,

the path found is a minimum-hop path8. Due to the mobility of nodes and the

dynamic nature of the ad hoc network, the graph representation of the network

may not be connected or it may not be up-to-date, so we need to add some

checks to the classic Dijkstra algorithm in order to ensure correct operation of

the procedure. This slightly modified algorithm is presented in algorithms 8, 9.

5.3.3.1.2 Local Path Finding Algorithms in QoS Mode Whenever a

node wants to send a real-time flow, it starts the directed cost dissemination and

the route discovery mechanism operates in QoS mode, trying to find paths that

fulfill the requirements of the real-time flow. Such intelligent and efficient path

selection is enabled through the directed cost dissemination mechanism, which

only operates in QoS mode. In order to find efficient paths that meet the QoS

requirements, a source node sending real-time data runs a local path finding

algorithm on its own view of the network. These local path finding algorithms

are either modified versions of Dijkstra’s shortest paths algorithm or a derivative

of it, and we present them here.

5Example: With R = {3, 9, 2}, after calling addToRouteFront(R, 4), R = {4, 3, 9, 2}.
6Example: With R = {4, 3, 9, 2}, after calling addToRouteEnd(R, 1), R = {4, 3, 9, 2, 1}.
7Example: With R = {3, 9, 2}, getRouteFront(R) returns 3.
8Each existing edge has a cost of 1.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 101

Algorithm 8 Dijkstra’s Shortest Paths Algorithm, with Additional Checks, Part
1

1: procedure initializeSS(source)
2: for all v ∈ V do
3: d(v)←∞
4: pred(v)← −1
5: end for

6: d(source)← 0
7: end procedure

8: procedure relax(i,j)
9: if i > 0 and j > 0 then ⊲ check for valid ids

10: if d(j) > d(i) + c(i, j) then
11: d(j)← d(i) + c(i, j)
12: pred(j)← i
13: end if
14: end if
15: end procedure

16: procedure DijkstraSSP(source)
17: if source /∈ V then
18: return
19: end if

20: do initializeSS(source)

21: Q← ∅
22: for all v ∈ V do ⊲ prepare min-PQ
23: Q← Q ∪ {v}
24: end for

25: while Q 6= ∅ do
26: i← extractMin(Q)
27: for all j ∈ Adj[i] do
28: do relax(i, j)
29: end for
30: end while
31: end procedure

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 102

Algorithm 9 Dijkstra’s Shortest Path Algorithm, with Additional Checks, Part
2

32: procedure getDijkstraSSP(source, dest)
33: R← ∅

34: if source /∈ V or dest /∈ V then
35: return R
36: end if

37: do DijkstraSSP (source)

38: if pred(dest) = −1 then ⊲ unable to reach dest from source
39: return R
40: end if

41: do addToRouteEnd(R, dest)
42: pr ← pred(dest)

43: while pr 6= −1 do
44: do addToRouteFront(R, pr)
45: pr ← pred(pr)
46: end while

47: if getRouteFront(R) 6= source then
48: R← ∅
49: return R
50: end if

51: return R
52: end procedure

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 103

There are 6 versions of our QoS path finding algorithms:

1. Delay-sensitive path finding, using current delay values of links

2. Delay-sensitive path finding, using average delay values of links

3. Bandwidth-sensitive path finding, using current available bandwidth values

4. Bandwidth-sensitive path finding, using average available bandwidth values

5. Loss-sensitive path finding, using current loss rates of links

6. Loss-sensitive path finding, using average loss rates of links

We present the three main versions (the ones based on current values of links)

of our QoS path finding algorithms as the ones based on average values are almost

the same as the current-value-based algorithms. We use the following notation

in addition to the ones used above:

R A route. This is now a compound structure, having the following fields: route,

cost, and type.

R.route A field of R, representing the route as the list of node ids, as defined

previously.

R.type A field of R, representing the type of the route. Type can be one

of Normal, RTT , BW , and Loss, representing normal, delay-sensitive,

bandwidth-sensitive, and loss-sensitive traffic, respectively.

R.cost A field of R, representing the cost of the route. This field represents

the value of the hop count, end-to-end delay, end-to-end loss rate, or the

minimum available bandwidth of a route9 of type Normal, RTT , Loss, or

BW , respectively.

9The notion of the minimum available bandwidth of a route is defined in the section on
bandwidth-sensitive path finding.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 104

Before continuing, we would like to note that

rtt(i, j) = rttAvg(i, j) =∞,

bw(i, j) = bwAvg(i, j) =∞,

loss(i, j) = lossAvg(i, j) =∞,∀(i, j) ∈ E

initially. Furthermore, as stated in sections 4.3.4.4 and 5.3.5, whenever an

edge cost on the graph becomes stale, it is cleared and set back to ∞.

5.3.3.1.2.1 Delay-Sensitive Path Finding Algorithms For delay-

sensitive traffic, we try to minimize the end-to-end delay along a path. Let

rtt(i, j) denote the last measurement of delay on edge (i, j) ∈ E, and a path

P from source node v1 to destination node vk be denoted by its edges as

P (v1, vk) = {(v1, v2), (v2, v3), . . . , (vk−1, vk)}
10. The end-to-end delay along a path

is calculated by the summation of all delays along the links belonging to the path:

Delay(P) = rtt(v1, v2) + rtt(v2, v3) + . . . + rtt(vk−1, vk) =
∑

∀(i,j)∈P

rtt(i, j) (5.1)

We are then trying to find the path from a given source node u to a desti-

nation node v with the least end-to-end delay. We may state our problem as a

minimization problem as follows,

P ′ = argminP (u,v)Delay(P (u, v)), (5.2)

where P ′ is the path from u to v in the current graph that has the least

end-to-end delay.

10Please note here that we list the edges along the path in order to denote the path. This
notation is interchangeable with the notation we previously used to represent routes. For
example, if route = {3, 9, 2}, then the corresponding path notation for the same route is
path = {(3, 9), (9, 2)}.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 105

We use Dijkstra’s shortest paths algorithm in order to find the least-cost path

in terms of current latencies. The algorithm consists of the procedures initialize-

SS(source), DijkstraSSPRTT (source), getDijkstraSSPRTT (source, dest),

and relaxRTT (i, j). Procedure initializeSS(source) was provided above.

Procedure DijkstraSSPRTT (source) is the same as procedure Dijkstra-

SSP (source), with calls to procedure relax replaced with ones to relaxRTT .

Procedures getDijkstraSSPRTT (source, dest) and relaxRTT (i, j) are provided

in Algorithm 10.

The local path finding algorithm used to find a least-cost path in terms of

average latencies is almost the same as the one using current latencies. We just

have to replace any occurrence of the term rtt(i, j) in relaxRTT (i, j) with the

term rttAvg(i, j).

5.3.3.1.2.2 Bandwidth-Sensitive Path Finding Algorithms In order

to support bandwidth-sensitive traffic, we try to maximize the minimum available

bandwidth along edges of different paths. To illustrate the idea, please refer to

Figure 5.5.

Figure 5.5: Example topology for max-min bandwidth path selection.

In Figure 5.5, a sample topology with current available link bandwidths is

presented. With source = 1 and dest = 8, we have three paths from 1 to 8 on

the graph:

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 106

Algorithm 10 Dijkstra’s Shortest Paths Algorithm, Delay-Sensitive Traffic

1: procedure relaxRTT(i,j)
2: if i > 0 and j > 0 then ⊲ check for valid ids
3: if d(j) > d(i) + rtt(i, j) then
4: d(j)← d(i) + rtt(i, j)
5: pred(j)← i
6: end if
7: end if
8: end procedure

9: procedure getDijkstraSSPRTT(source, dest)
10: R.route← ∅
11: R.type← RTT
12: R.cost← 0

13: if source /∈ V or dest /∈ V then
14: return R
15: end if

16: do DijkstraSSPRTT (source)

17: if pred(dest) = −1 then ⊲ unable to reach dest from source
18: return R
19: else
20: R.cost← d[dest]
21: end if

22: do addToRouteEnd(R.route, dest)
23: pr ← pred(dest)

24: while pr 6= −1 do
25: do addToRouteFront(R.route, pr)
26: pr ← pred(pr)
27: end while

28: if getRouteFront(R.route) 6= source then
29: R.route← ∅
30: R.cost← 0
31: return R
32: end if

33: return R
34: end procedure

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 107

P1 = {(1, 2), (2, 3), (3, 8)}, minLink(P1) = (2, 3), minBW (P1) = 3,

P2 = {(1, 4), (4, 5), (5, 8)}, minLink(P2) = (5, 8), minBW (P2) = 2,

P3 = {(1, 6), (6, 7), (7, 8)}, minLink(P3) = (7, 8), minBW (P3) = 4,

where Pi, i ∈ {1, 2, 3} denotes the i-th path and provides its edges,

minLink(Pi) denotes the link with the minimum available bandwidth along all

edges of path Pi, and minBW (Pi) gives the value of the minimum available band-

width along all edges of path Pi. Since we want to choose the path among all

available paths that has the maximum value as minBW (Pi), we will choose path

P3 in this example, as minBW (P3) > minBW (P1) > minBW (P2).

Let bw(i, j) denote the last measurement of available bandwidth on edge

(i, j) ∈ E, and path P be defined as before. The minimum available bandwidth

along edges of a path P (v1, vk) = {(v1, v2), (v2, v3), . . . , (vk−1, vk)} is calculated

as:

MinBW (P) = min[bw(v1, v2), bw(v2, v3), . . . , bw(vk−1, vk)] (5.3)

The problem of maximizing the minimum available bandwidths of different

paths from source u to destination v may be given as:

P ′ = argmaxP (u,v)MinBW (P (u, v)), (5.4)

where P ′ is the path from u to v in the current graph that has the maximum

of minimum available bandwidths on its edges.

We use a greedy algorithm which is loosely based on Dijkstra’s short-

est paths algorithm in order to find the maxmin-bandwidth path in terms

of current available bandwidths. The algorithm consists of the proce-

dures initializeSSBW (source), relaxBW (i, j), pathBW (source), and get-

PathBW (source, dest). The pathBW (source) procedure is the same as

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 108

DijkstraSSP (source), with the call to initializeSS(source) replaced with the

one to initializeSSBW (source) and the calls to relax(i, j) replaced with ones

to relaxBW (i, j). The getPathBW (source, dest) procedure is the same as

getDijkstraSSPRTT (source, dest) with the call to DijkstraSSPRTT (source)

replaced with the one to pathBW (source) and the line R.type← RTT replaced

with R.type← BW . The other procedures may be found in Algorithm 11.

Algorithm 11 Max-Min Available Bandwidth Path Finding Algorithm

1: procedure initializeSSBW(source)
2: for all v ∈ V do
3: d(v)←∞
4: pred(v)← −1
5: end for

6: d(source)← 0
7: end procedure

8: procedure relaxBW(i,j)
9: if i > 0 and j > 0 then ⊲ check for valid ids

10: if d(i) 6=∞ and bw(i, j) 6=∞ then
11: if d(i) > MAXBW − bw(i, j) then
12: usedDist← d(i)
13: else
14: usedDist←MAXBW − bw(i, j)
15: end if

16: if d(j) > usedDist then
17: d(j)← usedDist
18: pred(j)← i
19: end if
20: end if
21: end if
22: end procedure

The local path finding algorithm used to find a maxmin-bandwidth path in

terms of average available bandwidths is almost the same as the one using current

available bandwidths. We just have to replace any occurrence of the term bw(i, j)

in relaxBW (i, j) with the term bwAvg(i, j).

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 109

5.3.3.1.2.3 Loss-Sensitive Path Finding Algorithms For loss-

sensitive traffic, we try to minimize the total loss rate along a path. Let

loss(i, j) denote the current loss rate of edge (i, j) ∈ E. Please note that

0 ≤ loss(i, j) ≤ 1,∀(i, j) ∈ E. The availability of link (i, j) is then

Av(i, j) = 1− loss(i, j), (5.5)

where the availability of link (i, j) is used here in synonym with the prob-

ability of a packet of fixed length being able to be transmitted over link (i, j)

successfully (i.e. without being lost). We calculate the loss rate of a path

P (v1, vk) = {(v1, v2), (v2, v3), . . . , (vk−1, vk)} as

Loss(P) = 1− (Av(v1, v2)×Av(v2, v3)× . . .×Av(vk−1, vk)) = 1−
∏

∀(i,j)∈P

Av(i, j).

(5.6)

Notice that during the calculation of the loss rate of a path, we assume that

individual loss rates of edges along the path are independent of each other. We

may formulate our path selection problem from source u to destination v as

P ′ = argminP (u,v)Loss(P (u, v)), (5.7)

where P ′ is the path from u to v with the least loss rate in the current graph.

We use a modified version of Dijkstra’s shortest paths algorithm in order to

find the least-cost path from a source to a destination in terms of current loss

rates. The algorithm consists of the following procedures: initializeSS(source),

relaxLoss(i, j), pathLoss(source), and getPathLoss(source, dest). The proce-

dure initializeSS(source) was provided before in Algorithm 8. The procedure

pathLoss(source) is the same as procedure DijkstraSSP (source), with the calls

to procedure relax(i, j) replaced with the ones to relaxLoss(i, j). Procedure get-

PathLoss(source, dest) is the same as getDijkstraSSPRTT (source, dest), with

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 110

the call to DijkstraSSPRTT (source) replaced with the call to pathLoss(source)

and the line R.type ← RTT replaced with R.type ← Loss. The procedure

relaxLoss(i, j) is given in Algorithm 12.

Algorithm 12 Path Finding Algorithm with End-to-End Loss Rate Minimiza-
tion

1: procedure relaxLoss(i,j)
2: if i > 0 and j > 0 then ⊲ check for valid ids
3: if d(i) 6=∞ and loss(i, j) 6=∞ then
4: if d(j) > 1− ((1− d(i))× (1− loss(i, j))) then
5: d(j)← 1− ((1− d(i))× (1− loss(i, j)))
6: pred(j)← i
7: end if
8: end if
9: end if

10: end procedure

The local path finding algorithm used to find a least-cost path in terms of

average loss rates is almost the same as the algorithm using current loss rates.

We just have to replace any occurrence of the term loss(i, j) in relaxLoss(i, j)

with the term lossAvg(i, j).

5.3.3.2 Packet Forwarding

We have discussed the route discovery mechanism in detail in the previous chap-

ter. We provide in this section pseudocodes for procedures that handle packet

forwarding. The following notation is used in the given pseudocodes:

pkt A packet. Each packet has at least the following fields, which may be ac-

cessed using the dot notation: source, dest, R, type.

pkt.source The creator of packet pkt.

pkt.dest The destination node of packet pkt.

pkt.R The route structure embedded in the header of packet pkt. We have the

following procedure that works on routes: getNextNode(R.route, id), which

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 111

gives the id of the next node following node with nodeId id in the route. For

example, if R.route = {3, 4, 7, 1, 9}, then getNextNode(R.route, 4) returns

7, getNextNode(R.route, 2) returns −1, since node 2 is not in the route,

and getNextNode(R.route, 9) returns −1 as node 9 is the last node in the

route.

pkt.type The packet type. Note that this may have one of the following val-

ues: {DataNormal,DataRT, LSMsg, SpecialRTMsg, CostInformMsg,-

CostMsg,Beacon,RouteFailureMsg,RouteFailureReverseMsg}. Please

refer to Section 5.2.2 for more information on these packet types.

nodeId The unique identification number of the current node.

nList The neighbor list of current node.

We present three procedures here. Procedure receivePkt(pkt) is called

when the current node receives a packet that uses source routing11.

forwardPktWithRM(pkt) and forwardPktWithoutRM(pkt) are helper pro-

cedures that are used in receivePkt(pkt), which try to forward the given packet

to its next hop on the route given in its header. Among the two variants, while

the former procedure starts the route maintenance mechanism when it is un-

able to forward the packet to its next hop, the latter simply discards (drops)

the packet. Route maintenance is initiated for packets of types DataNormal,

DataRT , SpecialRTMsg, and CostMsg. Please note that there is no “real”

unicasting in wireless networks as the wireless medium is inherently a broadcast

medium, so when we say unicast in the pseudocode, we mean that the current

node actually broadcasts the packet locally, but only the intended next hop node

processes the message.

The procedure processPkt(pkt) is a generic procedure, variants of which are

specified in their related sections. The real thing with processPkt(pkt) is that

the packet pkt has reached its destination, and the destination node now needs to

11Packets of types DataNormal, DataRT , SpecialRTMsg, CostMsg, RouteFailureMsg,
and RouteFailureReverseMsg use source routing.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 112

process the packet locally (i.e. perform necessary actions). Since this local pro-

cessing is dependent on the received packet’s type, each variant of the procedure

processPkt(pkt) is provided in its related section (e.g. processLSMsg(msg) pre-

viously specified in Algorithm 5) and we omit here the details of the dispatching

of the received packet to these processPkt(pkt) variants based on its packet type.

The pseudocode for the procedure routeMaintenance(pkt) is provided in Section

5.3.4.

Algorithm 13 Packet Forwarding

1: procedure receivePkt(pkt)
2: if pkt.dest 6= nodeId then ⊲ pkt has not reached its dest
3: if pkt.type = DataRT or pkt.type = DataNormal or pkt.type =

SpecialRTMsg or pkt.type = CostMsg then
4: do forwardPktWithRM(pkt)
5: else
6: do forwardPktWithoutRM(pkt)
7: end if
8: else
9: do processPkt(pkt) ⊲ pkt has reached its destination

10: end if
11: end procedure

12: procedure forwardPktWithRM(pkt)
13: next← getNextNode(pkt.R.route, nodeId)
14: if next /∈ nList then ⊲ next node in route not found in neighbor list
15: do routeMaintenance(pkt)
16: else
17: unicast pkt to next
18: end if
19: end procedure

20: procedure forwardPktWithoutRM(pkt)
21: next← getNextNode(pkt.R.route, nodeId)
22: if next /∈ nList then ⊲ next node in route not found in neighbor list
23: drop pkt
24: else
25: unicast pkt to next
26: end if
27: end procedure

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 113

5.3.3.3 Route Discovery

In this section, pseudocodes for route discovery using local path finding algorithms

and the route cache are provided. Route discovery has two different modes,

operating in normal mode for normal data traffic and in QoS mode for real-time

traffic requiring QoS constraints. We use here the following notation in addition

to the ones presented in Section 5.3.3.2.

pkt.qosType A field of a packet, representing the type of the real-time flow.

This field may take one of the values of {RTT,BW,Loss}, representing

delay-sensitive, bandwidth-sensitive, and loss-sensitive traffic respectively.

pkt.qosReq A field of a packet, representing the QoS requirement of the real-

time flow. This field represents the value for the maximum tolerable end-to-

end delay or loss rate for delay-sensitive or loss-sensitive traffic, respectively,

and the value for the minimum tolerable available bandwidth for bandwidth-

sensitive traffic.

lastNode(route) Procedure that returns the last node on the route (the

destination of the path). For example, if route = {5, 6, 4, 2, 9}, then

lastNode(route) would return 9.

routeCache The route cache of the current node. Please refer to Section 4.3.4.1

for a detailed explanation on the use of the route cache.

rtMsg A special packet that informs the nodes along the initial path from

the source of a real-time flow to its destination about the real-time flow.

Please see Section 4.3.3.1 for more information on this special packet. This

packet has the following fields: source, dest, type, R, duration, costCount,

periodic, period, and costInformHopCount.

rtMsg.source The source of the real-time flow.

rtMsg.dest The destination of the real-time flow.

rtMsg.type The type of this message, which is always SpecialRTMsg.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 114

rtMsg.R The route that this message should follow (used in source routing).

rtMsg.duration The estimated duration of the real-time flow.

rtMsg.costCount The number of cost messages requested by the source during

the real-time flow.

rtMsg.periodic Whether the source has requested periodic cost messages or

not.

rtMsg.period If the source has requested periodic cost messages, the period of

these cost messages.

rtMsg.costInformHopCount The hop count imposed on costInform mes-

sages12.

We utilize single paths in the current implementation of Elessar, meaning that

multipaths are not used at the moment. We have implemented the infrastructure

needed to find and employ such multipaths, but our present emphasis is on the

investigation of our protocol under the single paths case. Therefore, data streams

and special flow information packets are sent over single paths. Please note that

when we say single paths in this discussion, we mean the use of a single path for

a (specific) packet at any given time point, so we use single paths in the spatial

dimension. However, due to the dynamic nature of the underlying network and

our protocol’s ability to adapt to such changes and employ different paths as the

topology alters, the path(s) that packets belonging to the same data stream are

sent over may be different, so it may be said that we are actually using multipaths

in the temporal dimension.

Route discovery has the following procedures: receivePktFromUpper-

Layer(pkt), which is called when the routing layer receives a packet to be

sent into the network from the upper layer (i.e. the application or trans-

port layer); findNormalRoute(pkt), which finds a normal route (path) from

the current node to the destination of the given packet; findRTRoute(pkt),

which finds a QoS route from the current node to the destination of the given

12See Section 5.2.2 for information on the costInform message type.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 115

packet (the found route supports the QoS type present in parameter pkt); and

inCache(pkt), which finds and returns the route to destination pkt.dest with

type pkt.qosType in the route cache. Procedure sendSpecialRTMsg(pkt) cre-

ates and sends a special packet in order to inform the nodes on the normal

path from the current node to the destination of the packet13. Procedure

createSpecialRTMsg(pkt) is a helper procedure which creates and returns a

special packet according to the information provided in parameter pkt. Proce-

dure assignSpecialRTFields(rtMsg, pkt) is a stub procedure, which fills in the

remaining fields of packet rtMsg that have not been yet assigned. These fields

are specific to each real-time flow and determined by the application creating

the real-time data packets. Procedures forwardPktWithRM(pkt), startCost-

Information(pkt), and findInRTFlows(pkt) are presented in algorithms 13, 20,

and 19, respectively.

We would like to note that we do not check the lengths of real-time flows in

our implementation to see if the directed cost dissemination mechanism should be

enabled for them, as stated in Section 4.3.3.1, as all our real-time flows are long

enough to grant operation in QoS mode. We investigate the problem of how long

a stream must be in order to start the cost dissemination mechanism in Chapter

6.

5.3.4 Route Maintenance

In this section, pseudocodes for the route maintenance mechanism of Elessar are

presented. It has been discussed in Section 4.3.5 that the route maintenance

mechanism has two different operation modes depending on the traffic type for

which route maintenance is done. Furthermore, different schemes for route main-

tenance are available based on whether route failure messages are employed or

not. In our current implementation, we do not make use of route failure messages

for two reasons. The first reason is that with the current simulations, we did not

13One thing to note here is that although we mentioned in Section 4.3.3.1 that such a special
packet must be sent reliably, in our current implementation, we are sending this special packet
unreliably.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 116

Algorithm 14 Route Discovery, Part 1

1: if route cache timer expired then
2: routeCache← ∅
3: restart route cache timer
4: end if

5: procedure receivePktFromUpperLayer(pkt)
6: if pkt.type = DataNormal then
7: success← findNormalRoute(pkt)
8: if success then
9: do forwardPktWithRM(pkt)

10: else
11: drop pkt
12: end if
13: else if pkt.type = DataRT then
14: success← findRTRoute(pkt)
15: if ¬success then
16: success← findNormalRoute(pkt)
17: end if

18: if success then
19: if ¬findInRTFlows(pkt) then
20: do sendSpecialRTMsg(pkt)
21: end if

22: do startCostInformation(pkt)
23: do forwardPktWithRM(pkt)
24: else
25: drop pkt
26: end if
27: end if
28: end procedure

29: procedure findNormalRoute(pkt)
30: R← inCache(pkt) ⊲ try to find route in cache

31: if R.route = ∅ then ⊲ run the local path finding algorithm
32: R.route← getDijkstraSSP (nodeId, pkt.dest)
33: R.type← Normal
34: R.cost← −1 ⊲ value not used in normal routes
35: end if

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 117

Algorithm 15 Route Discovery, Part 2

36: if R.route = ∅ then ⊲ no route from current node to dest
37: pkt.R← R
38: return false
39: else
40: if R /∈ routeCache then ⊲ add route to route cache
41: routeCache← routeCache ∪ {R}
42: end if

43: pkt.R← R
44: return true
45: end if
46: end procedure

47: procedure findRTRoute(pkt)
48: R← inCache(pkt) ⊲ try to find route in cache

49: if R.route = ∅ then ⊲ run local path finding algorithm
50: if pkt.qosType = RTT then
51: R← getDijkstraSSPRTT (nodeId, pkt.dest)
52: else if pkt.qosType = BW then
53: R← getPathBW (nodeId, pkt.dest)
54: else if pkt.qosType = Loss then
55: R← getPathLoss(nodeId, pkt.dest)
56: end if
57: end if

⊲ check if found route satisfies QoS req.
58: if pkt.qosType = RTT or pkt.qosType = Loss then
59: if R.route 6= ∅ and pkt.qosReq < R.cost then
60: R.route← ∅
61: end if
62: else if pkt.qosType = BW then
63: if R.route 6= ∅ and pkt.qosReq > R.cost then
64: R.route← ∅
65: end if
66: end if

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 118

Algorithm 16 Route Discovery, Part 3

67: if R.route = ∅ then ⊲ no (satisfactory) route from current node to dest
68: pkt.R← R
69: return false
70: else
71: if R /∈ routeCache then ⊲ add route to route cache
72: routeCache← routeCache ∪ {R}
73: end if

74: pkt.R← R
75: return true
76: end if
77: end procedure

78: procedure inCache(pkt)
79: for all r ∈ routeCache do
80: if pkt.type = DataNormal and lastNode(r.route) = pkt.dest and

r.type = Normal then
81: return r
82: else if pkt.type = DataRT and lastNode(r.route) = pkt.dest and

r.type = pkt.qosType then
83: return r
84: end if
85: end for

86: return ∅
87: end procedure

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 119

Algorithm 17 Procedure sendSpecialRTMsg(pkt)

1: procedure sendSpecialRTMsg(pkt)
2: tempR← pkt.R ⊲ needed since findNormalRoute(pkt) may modify

pkt.R
3: success← findNormalRoute(pkt)

4: if success then
5: rtMsg ← createSpecialRTMsg(pkt)
6: do forwardPktWithRM(rtMsg)
7: end if

8: pkt.R← tempR ⊲ restore original route on pkt
9: end procedure

10: procedure createSpecialRTMsg(pkt)
11: rtMsg.source← pkt.source
12: rtMsg.dest← pkt.dest
13: rtMsg.type← SpecialRTMsg
14: rtMsg.R← pkt.R
15: do assignSpecialRTFields(rtMsg, pkt)
16: return rtMsg
17: end procedure

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 120

observe many benefits of route failure messages. The idea behind the use of route

failure messages is early information of the source node of the route breakage and

decreasing the number of dropped packets at intermediate nodes. Since our im-

plementation does not have an explicit neighborhood beaconing mechanism, each

node is informed of changes in its neighborhood instantaneously, and therefore the

topology dissemination mechanism is able to inform the source node of the route

breakage in a timely manner. We have also observed that the overhead incurred

by route failure messages do not justify the decrease in the number of dropped

packets. We believe this to be a result of the timely informing of the source node

by the topology dissemination mechanism, as then the source node finds a new

path to the destination and the number of packets dropped at intermediate nodes

is negligible.

The second reason why we do not employ route failure messages is its com-

plexity. With the inclusion of route failure messages, route discovery and packet

handling procedures needed significant changes and we currently think that the

benefits of route failure messages do not justify the complexity incurred, at least

in our current simulation setup. Therefore, in this section, we provide pseu-

docodes for the route maintenance mechanism which does not make use of route

failure messages.

The notation used in the following pseudocodes are provided below:

pkt A packet. It has at least the following field: R, representing the route

embedded in the packet header.

R A compound structure representing a route. It has the following fields: cost,

type, and route.

R.route A field of R, representing the route as a list of node ids, as defined

previously.

Route maintenance consists of the following procedures: routeMaintenance(pkt),

which is the main procedure, and checkRouteForLoops(route), which is a helper

procedure that checks whether the given route includes loops. Procedures

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 121

findNormalRoute(pkt) and forwardPktWithRM(pkt) were presented in algo-

rithms 13 and 14, respectively.

Algorithm 18 Route Maintenance, No Route Failure Messages

1: procedure routeMaintenance(pkt)
2: success← findNormalRoute(pkt)

3: if ¬success then
4: drop pkt
5: else
6: hasLoop← checkRouteForLoops(pkt.R.route)
7: if hasLoop then
8: drop pkt
9: else

10: do forwardPktWithRM(pkt)
11: end if
12: end if
13: end procedure

14: procedure checkRouteForLoops(route)
15: for all i ∈ route do
16: count← 0

17: for all j ∈ route do
18: if i = j then
19: count← count + 1
20: end if

21: if count ≥ 2 then
22: return true
23: end if
24: end for
25: end for

26: return false
27: end procedure

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 122

5.3.5 Directed Cost Dissemination

Directed cost dissemination is the mechanism that enables Elessar to support real-

time traffic. Through the reception of link costs, Elessar is able to find least-cost

paths, providing soft QoS guarantees without any resource reservation. Directed

cost dissemination is only part of the QoS operation mode, and activated only

when there is at least one real-time flow in the network. Each activation of the

directed cost mechanism is flow-oriented and costs are sent to the source directly,

making use of local path finding algorithms. This section presents pseudocodes

for the directed cost dissemination mechanism of Elessar.

We have presented various schemes for cost dissemination in Section 4.3.3.3.

Among the schemes presented there, Elessar currently supports options 1, 2,

and 3, namely schemes labeled exactly once, periodic, with bound, and periodic,

without bound. The implementation of the threshold-based cost dissemination

scheme is left as future work. Note that the exactly once scheme corresponds to

the periodic, with bound scheme, with bound set to 1.

We would like to note that each data generator knows the duration of the

generated flow, and due to this knowledge, the information of nodes sending

their costs of the end of the flow can be accomplished based on flow durations. It

is also important to note here that link costs received by the source are recorded

on the local graph at the source node. Edge costs that have gone stale are cleaned

from the graph.

As mentioned in Section 4.3.3.1, we need to keep a “real-time flows table” at

each node participating in the cost dissemination mechanism in order to prevent

a node to take part in the limited flooding mechanism more than once. Please

note that we keep this table in FIFO14 manner. Since the table has a limited

capacity, when we say RTFlowsTable← RTFlowsTable∪{(s, d, t)}, if the table

can accommodate the new item, it is added to the table in FIFO manner, without

deleting any other entry from the table. If there is no space left in the table, then

the oldest entry in the table (the entry at the front of the queue) is deleted and

14FIFO: first-in, first-out data structure, i.e. a queue

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 123

the new item is added to the end of the queue. Particulars on this table, along

with other notation used in the following algorithms are provided below:

RTFlowsTable This is the real-time flows table that is used to keep information

regarding the last recently seen real-time flows by the current node. Each

entry in this table has the following form: (< source >,< dest >,< type >

), where source, dest, and type are the source, destination, and type of the

flow, respectively. type can be one of {RTT,BW,Loss}.

msg A cost information message, informing nodes that they should send their

costs to the source node given in the message. Please see Section 5.2.2

for information on the CostInformMsg message type. A cost information

message has the following fields:

msg.sendTo The node that costs should be sent to.

msg.qosType The type of link costs that should be sent. This can be one of

RTT, BW, Loss.

msg.type The type of this message, which is always CostInformMsg.

msg.duration The estimated duration of the real-time flow.

msg.costCount The number of cost messages requested by the source during

the real-time flow.

msg.periodic Whether the source has requested periodic cost messages or not.

msg.period If the source has requested periodic cost messages, the period of

these cost messages.

msg.hopCount The hop count imposed on CostInformMsg messages.

pkt A packet. A packet has at least the following fields: source, dest, type,

qosType, R, duration, costCount, periodic, period.

pkt.source The source of the packet.

pkt.dest The destination of the packet.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 124

pkt.type The type of the packet.

pkt.R The route that this packet should follow (used in source routing). Note

that R is defined in Section 5.3.3.1.2.

pkt.duration The estimated duration of the real-time flow.

pkt.costCount The number of cost messages requested by the source during

the real-time flow.

pkt.periodic Whether the source has requested periodic cost messages or not.

pkt.period The period of the requested cost messages.

nodeId The unique ID of the current node. Each node in the network is given a

numeric ID that uniquely represents the node. Note that nodeId > 0,∀v ∈

V .

Edge Costs on Graph We represent edge costs on the local graph as rtt(i, j),

rttAvg(i, j), bw(i, j), bwAvg(i, j), loss(i, j), lossAvg(i, j), ∀(i, j) ∈ E.

Please refer to Section 5.3.3.1 for more information on edge costs.

rtMsg A message of type SpecialRTMsg. Please see Section 5.3.3.3 for more

information on the special real-time message.

costTimer A cost timer. This is a timer that expires every costT imer.period

seconds. It is used in order to inform the current node that it should now

send its link costs to the node given in the timer message.

costTimer.sendTo The id of the node that link costs must be sent to.

costTimer.qosType The type of link costs that should be sent. This can be

one of RTT, BW, Loss.

costTimer.costCount The remaining number of cost messages to be sent.

costTimer.period The period of the timer. The timer expires every

costT imer.period seconds.

costMsg A cost message, including the link costs of the current node.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 125

costMsg.source The source of the cost message.

costMsg.dest The destination of the cost message.

costMsg.type The type of the cost message, which is always CostMsg.

costMsg.R The route that this cost message should follow.

costMsg.qosType The type of link costs included in the cost message. This

can be one of RTT, BW, Loss.

costMsg.costList This is a list containing the link costs sent by the originator

of the cost message. Each entry in this costList has the form (<from>,

<to>, <cost>, <costAvg>), where <from> is the starting node (head) of

the edge, <to> is the ending node (tail) of the edge, <cost> is the current

link cost from node <from> to node <to>, and <costAvg> is the average

link cost of the same edge.

RTTCosts A list that keeps the delays of links from the current neighbor to its

neighbors. Each entry is in the format for costMsg.costList.

BWCosts A list that keeps the available bandwidths of links from the current

neighbor to its neighbors. Each entry is in the format for costMsg.costList.

LossCosts A list that keeps the loss rates of links from the current neighbor to

its neighbors. Each entry is in the format for costMsg.costList.

We have the following procedures for the directed cost dissemination

mechanism. Procedure findInRTFlows(pkt) returns true if the flow that

the given packet belongs to is found in RTFlowsTable; it returns false

otherwise. Procedure startCostInformation(pkt) initiates the cost infor-

mation mechanism for the flow the given packet belongs to. Procedure

startCostTransmission(pkt) starts the cost transmission mechanism for the flow

the given packet belongs to. Please refer to Section 4.3.3.1 for a detailed discus-

sion on the information of nodes during directed cost dissemination. Procedure

assignCostInformFields(msg, pkt) is a stub procedure, which fills in the re-

maining fields of message msg that have not been yet assigned. These fields

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 126

are specific to each real-time flow and determined by the application creating

the real-time data packets. createCostInformMsg(pkt) creates and returns a

message of type CostInformMsg for the flow that the given packet belongs

to. Procedure scheduleCostT imerAndSendCost(timer) restarts the given cost

timer and creates and sends the link costs of the current node to the node

specified in the given cost timer. createCostMsg(timer) creates and returns

a cost message including the link costs of the current node with type given in

the cost timer. Procedure costT imerExpired is called when a cost timer ex-

pires. Procedures processCostInformMsg(msg), processCostMsg(costMsg),

and processSpecialRTMsg(rtMsg) are called when the node receives a packet

of type CostInformMsg, CostMsg, and SpecialRTMsg, respectively. Proce-

dures findNormalRoute(pkt) and forwardPktWithRM(pkt) are provided in

algorithms 14 and 13, respectively.

Algorithm 19 Procedure findInRTFlows(pkt)

1: procedure findInRTFlows(pkt)
2: s← pkt.source
3: d← pkt.dest
4: t← pkt.qosType

5: if (s, d, t) ∈ RTFlowsTable then
6: return true
7: else
8: return false
9: end if

10: end procedure

5.3.6 Link Cost Measurement

We have assumed in Chapter 4 that there is an underlying mechanism that pro-

vides link costs to our protocol periodically. In the implementation of our simu-

lations, we had to implement this mechanism ourselves as the simulator was not

able to give us such information automatically. This section provides information

on the implementation of the link cost measurement mechanism.

We have used a simple beaconing mechanism in order to measure link costs

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 127

Algorithm 20 Information of Nodes - CostInform Messages

1: procedure startCostInformation(pkt)
2: found← findInRTFlows(pkt)

3: if ¬found then
4: msg ← createCostInformMsg(pkt)
5: broadcast msg
6: do startCostTransmission(pkt)
7: end if
8: end procedure

9: procedure createCostInformMsg(pkt)
10: msg.sendTo← pkt.source
11: msg.qosType← pkt.qosType
12: msg.type← CostInformMsg
13: do assignCostInformFields(msg, pkt)
14: return msg
15: end procedure

between nodes. A node periodically broadcasts beacon messages locally, and all

nodes receiving such a beacon message reply with a beacon reply message. The

beacon creator measures the round trip time (RTT) of the beacon and beacon

reply messages, and assuming symmetrical links, divides this time by 2 to get the

one-way link delay. Loss rates are measured by the use of sequence numbers on

beacons and nodes that do not receive a reply to their beacons in a predetermined

amount of time consider either the beacon or the beacon reply lost, adding to

the loss rate of the link. Beacon replies that are received out-of-order do not

contribute to the loss rate. Available bandwidth measurement is as follows. Rep-

resenting the current available bandwidth of a link (i, j) as B(i,j), the length of

a packet p as len(p) and the one-way delay as delay(p), we calculate the current

available bandwidth at link (i, j) as

B(i,j) =
len(p)

delay(p)
. (5.8)

Of course, this provides a rough estimate of the available bandwidth at the

link but it is currently sufficient for our purposes.

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 128

Algorithm 21 Directed Cost Transmission

1: procedure startCostTransmission(pkt)
2: found← findInRTFlows(pkt)

3: if ¬found then
4: tempEl← {(pkt.source, pkt.dest, pkt.qosType)}
5: RTFlowsTable← RTFlowsTable ∪ tempEl

6: if nodeId 6= pkt.source then ⊲ beware of source node starting cost
transmission to self!

7: if pkt.periodic then ⊲ scheme: periodic, without bound
8: costT imer.sendTo← pkt.source
9: costT imer.qosType← pkt.qosType

10: costT imer.costCount← (pkt.duration/pkt.period) + 1
11: costT imer.period← pkt.period
12: do scheduleCostT imerAndSendCost(costT imer)
13: else ⊲ scheme: periodic, with bound
14: costT imer.sendTo← pkt.source
15: costT imer.qosType← pkt.qosType
16: costT imer.costCount← pkt.costCount
17: costT imer.period← (pkt.duration/pkt.costCount)
18: do scheduleCostT imerAndSendCost(costT imer)
19: end if
20: end if
21: end if
22: end procedure

23: procedure scheduleCostTimerAndSendCost(timer)
24: if timer.sendTo 6= nodeId and timer.costCount > 0 then
25: costMsg ← createCostMsg(timer)
26: success← findNormalRoute(costMsg)

27: if success then
28: do forwardPktWithRM(costMsg)
29: end if

30: timer.costCount← timer.costCount− 1
31: restart timer
32: else
33: delete timer
34: end if
35: end procedure

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 129

Algorithm 22 Cost Message Processing

1: procedure createCostMsg(timer)
2: costMsg.source← nodeId
3: costMsg.dest← timer.sendTo
4: costMsg.type← CostMsg
5: R.type← normal
6: R.cost← −1 ⊲ cost not used for normal route
7: R.route← ∅
8: costMsg.R← R
9: costMsg.qosType← timer.qosType

10: if costMsg.qosType = RTT then
11: for all c ∈ RTTCosts do
12: costMsg.costList← costMsg.costList ∪ {c}
13: end for
14: else if costMsg.qosType = BW then
15: for all c ∈ BWCosts do
16: costMsg.costList← costMsg.costList ∪ {c}
17: end for
18: else if costMsg.qosType = Loss then
19: for all c ∈ LossCosts do
20: costMsg.costList← costMsg.costList ∪ {c}
21: end for
22: end if
23: return costMsg
24: end procedure

25: procedure processCostMsg(costMsg)
26: if costMsg.dest = nodeId then ⊲ pkt reached its destination
27: for all c ∈ costMsg.costList do
28: if costMsg.qosType = RTT then
29: rtt(c.from, c.to)← c.cost
30: rttAvg(c.from, c.to)← c.costAvg
31: else if costMsg.qosType = BW then
32: bw(c.from, c.to)← c.cost
33: bwAvg(c.from, c.to)← c.costAvg
34: else if costMsg.qosType = Loss then
35: loss(c.from, c.to)← c.cost
36: lossAvg(c.from, c.to)← c.costAvg
37: end if
38: end for
39: delete costMsg
40: else
41: do forwardPktWithRM(costMsg)
42: end if
43: end procedure

CHAPTER 5. DESIGN AND IMPLEMENTATION DETAILS 130

Algorithm 23 Cost Timer, CostInformMsg, and SpecialRTMsg Processing

1: procedure processSpecialRTMsg(rtMsg)
2: do startCostInformation(rtMsg)

3: if rtMsg.dest = nodeId then
4: delete rtMsg ⊲ pkt reached its destination
5: else
6: do forwardPktWithRM(rtMsg)
7: end if
8: end procedure

9: procedure costTimerExpired(timer)
10: do scheduleCostT imerAndSendCost(timer)
11: end procedure

12: procedure processCostInformMsg(msg)
13: found← findInRTFlows(msg)

14: if found then
15: delete msg
16: else
17: msg.hopCount← msg.hopCount− 1
18: do startCostTransmission(msg)

19: if msg.hopCount > 0 then
20: broadcast msg
21: else
22: delete msg
23: end if
24: end if
25: end procedure

Chapter 6

Experimental Results

We have done extensive simulation experiments with our protocol on the discrete

event simulation system OMNeT++. We have also made use of the INET frame-

work written to support realistic network simulations on OMNeT++. We have

especially made use of the mobility support of INET, using the random waypoint

mobility model, and of the IEEE 802.11b MAC protocol implementation, along

with compatible radio technologies. For more information on OMNeT++ and

the INET framework, please refer to Section 5.1.

Experiments on Elessar were conducted in order to analyse the design choices

we have made in the development of the protocol, to gain more information

on suitable parameter choices, to measure the performance of our protocol under

various conditions, and of course, to verify the correctness of our implementation.

We have divided our experimental analysis into two sections in this chapter, with

the first section focusing on the operation of the protocol in normal mode and

the second section focusing more on its QoS mode of operation.

We especially look into the topology dissemination, route discovery and route

maintenance mechanisms of Elessar in Section 6.1, whereas we analyse the cost

dissemination mechanism, along with route discovery and maintenance in QoS

mode in Section 6.2. Before presenting our results, however, we would like to pro-

vide information on some simulation parameters in Table 6.1. Table 6.1 presents

131

CHAPTER 6. EXPERIMENTAL RESULTS 132

simulation parameters related with the IEEE 802.11b physical radio and MAC

layer, and the wireless channel characteristics of the simulation.

Parameter Name Value
Signal Attenuation Threshold -70 dBm

Path Loss Coefficient 2.5
Thermal Noise -110 dBm

Carrier Freqency 2.4 GHz
Number of Channels 1

WLAN Frame Capacity 10
MAC Address Appointment “Auto”

MAC Queue Size 14
MAC Bitrate 11 Mbps

MAC RTS Threshold Bytes 500
MAC Retry Limit 7

MAC Min. Con. Win. Size for Unicast 7
MAC Min. Cont. Win. Size for Broadcast 31

Radio Transmit Power 20 mW
Radio SNR Threshold -40 dBm

Radio Sensitivity -85 dBm

Table 6.1: Simulation parameters for the wireless channel and physical radio.

With the given physical radio properties and the wireless channel character-

istics, the transmission range of a node is approximately 50 m.

6.1 Experimental Results for Normal Mode

In this section, we present simulation results mainly focused on the operation of

Elessar in normal mode. We investigate the topology dissemination mechanism

along with the route discovery and maintenance mechanisms in normal mode.

Since we are dealing with normal operation mode in this section, generated traffic

are non-real-time data.

Our experiments were conducted as follows. We create an ad hoc network

consisting of a number of nodes deployed on a playground of variable size. We

provide the exact numbers of such simulation parameters in each experiment’s re-

lated parameters table. We start the experiment and the simulation first creates

CHAPTER 6. EXPERIMENTAL RESULTS 133

and sets up necessary objects, modules and data structures. After all objects,

data structures and modules are initialized, mobile nodes in the network com-

municate with the MACTable module directly in order to learn of their assigned

MAC addresses and with the ChannelControl module to learn of their starting

locations in the palyground. After this bootup phase, the simulation starts in the

sense that nodes start to move and our protocol starts to operate. During the

initial 60 seconds of the simulation, only the topology dissemination mechanism

is active and no data flows are created by any node. This is done to allow the

network to settle and to prevent any initial transient conditions from affecting

our analysis during data transmission.

After the initial 60 seconds, the FlowController module starts to operate and

chooses random nodes in the graph as data sources and destinations, and directs

the TrafficGen modules of source nodes to create normal data flows to the given

destinations. Each flow in the network is created randomly, meaning that the data

rates and flow durations of each flow is potentially different and we take extra

care not to have more than one flow from a specific source node to a specific

destination node at the same time; e.g. there is at most one flow from node u to

v in the network at any given time. Please note that this is NOT to say that

there is at most one flow in the entire network at any given time or that nodes u

and v may not carry or forward data of other flows. To illustrate, when we have

a flow from node u to v, we may have cases where we have a flow from v to u

and/or another flow from u to some other node w and/or another flow from v to

some other node x and/or a flow from some node y to some node z passing over

nodes u and/or v etc.

The number of flows in the entire network may be variable and the flow

number for each experiment in this section, along with information on data rates

and durations of flows are provided in Table 6.2.

We fix the number of flows to 15 for each experiment in this section. Each

data packet has a payload length chosen uniformly in the integer range [40,600]

bytes. Note that the actual length of the packet is higher than the payload due

to protocol headers. The number of packets and the data rate of each flow is

CHAPTER 6. EXPERIMENTAL RESULTS 134

Parameter Name Value
Number of Flows 15

Packet Payload Length [40,600] bytes
Packet Creation Period [5,50] ms

Packet Creation Rate [20,200] packets/sec
Flow Length [400,4000] packets

Flow Duration [2,200] sec

Table 6.2: Simulation parameters for data traffic in normal operation mode ex-
periments.

set once at the creation of the flow and does not change during the lifetime of

the flow. The number of packets in a flow is chosen uniformly over the integer

range [400,4000]. Each of our data flows has a constant packet creation rate,

where the packet creation period is chosen uniformly over the real range [5,50]

ms. Depending on the packet creation period, the packet creation rate of a flow

changes between 20 and 200 packets/sec. According to the packet creation rate

and the number of packets in the flow, the overall duration of a flow changes

between 2 and 200 seconds.

We use the random waypoint mobility model to simulate the mobility of nodes.

Parameters on node speeds and waiting times between location changes are pro-

vided in each experiment’s related parameters table.

For each experiment in this section, we have used the table sizes and timer

periods1 provided in Table 6.3.

Parameter Name Value
Route Cache Timer Period 60 sec

LSTable Size 15

Table 6.3: Miscellaneous simulation parameters for normal operation mode ex-
periments.

We run each experiment for a total duration of 11 simulated minutes, where

we have data flows in the network for the last 10 minutes and allow the network

to settle in the first minute.

1The route cache at a node is cleared periodically according to the route cache timer. This
is actually done for QoS purposes, but we include the information on the timer here due to its
relevance.

CHAPTER 6. EXPERIMENTAL RESULTS 135

We examine experimental results regarding the protocol overhead in normal

operation mode in Section 6.1.1 whereas we look into the performance of our

protocol in terms of routing success in Section 6.1.2.

6.1.1 Examination of the Protocol Overhead

In this section, we provide results on the overhead induced by Elessar. We specif-

ically examine the overhead of the link-state topology dissemination mechanism

and the overhead caused by source routing. Both of these types of overhead are

also incurred in exactly the same format and amount by Elessar in QoS operation

mode, therefore we investigate these types of overhead only in this section. We

will investigate other types of protocol overhead specific to QoS operation mode

in Section 6.2.

The link-state overhead of Elessar is independent of the amount of data traffic

in the network, so the more there is data traffic, the less is the ratio of link-

state overhead to data traffic. In light of this observation, we can say that our

protocol can support high traffic intensities as its primary source of overhead is

independent of the volume of data carried in the network.

The topology overhead of our protocol is highly dependent on the mobility

rates of nodes in the network since we employ an event-driven link-state mech-

anism, where changes in node neighborhoods are the events of interest. As the

mobility rates of nodes increase, we incur higher overhead due to the increase in

the number of events in the system. The link-state overhead is also dependent on

the size of the network due to its global broadcast property. When we say “size

of the network”, we mean a couple of metrics, including network diameter, node

count, average node degree and node density.

The diameter of a network is defined as the length in terms of hop count of

the longest path among all shortest paths between all node pairs in the network.

The diameter of the network in Figure 6.1 is 4, which may be dtermined by the

path {(5, 6), (6, 7), (7, 8), (8, 9)} between nodes 5 and 9, which is of length 4. Note

CHAPTER 6. EXPERIMENTAL RESULTS 136

that even though we have a longer path {(5, 6), (6, 2), (2, 1), (1, 4), (4, 8), (8, 9)} of

length 6 between these two nodes, we do not consider this path in the determina-

tion of the network diameter as it is not one of the shortest paths between these

two nodes. The node count of a network is simply the number of nodes in the

network, so the node count of the network in Figure 6.1 is 13.

The degree of a node i is defined as the number of its neighbors in an undi-

rected graph or as the sum of its in-degree and out-degree in a directed graph,

where the in-degree of a node i is the number of incoming edges to i and the

out-degree of i is the number of outgoing edges from i. For example, the degree

of node 7 in Figure 6.1 is 4. The average node degree in the network is the average

of all node degrees in the network. For the mathematically inclined, this may be

denoted as

ADG =

∑
u∈V degree(u)

|V |
, (6.1)

where a graph G is as defined before in terms of the set of its nodes V and

the set of its edges E as G(V,E), ADG is the average node degree of G, and

degree(u) is the degree of node u ∈ V .

We define the node density of a network as the number of nodes that fall

within an area of fixed size. Denoting the node count of a network N as CN and

the deployment area of the network as AN , node density is given by NDN = CN

AN

.

If the network given in Figure 6.1 spans an area of 260 m2, then the node density

of the network is 13/260 = 0.05 nodes/m2.

Changes in the values of these various definitions of “network size” may affect

the link-state overhead of our protocol in different ways. We examine the effects

of such metrics below.

Figures 6.2 and 6.3 presents the total link-state (LS) overhead in terms of bytes

vs. wholeK, while mobility rate changes. By total LS overhead, we mean all of

the LS messages created and forwarded by all nodes in the network. wholeK

is the parameter used in the incremental LS messaging scheme, introduced in

CHAPTER 6. EXPERIMENTAL RESULTS 137

Figure 6.1: An example network.

Section 4.3.2.1. In this scheme, every wholeK-th LS message is a whole mes-

sage, where the other LS messages are incremental messages. Table 6.4 gives the

corresponding values for each mobility rate2.

Mobility Rate Node Speed Waiting Time
Mobility Rate 1 [1,2] m/sec [5,10] sec
Mobility Rate 2 [2,4] m/sec [5,10] sec
Mobility Rate 3 [5,10] m/sec [0,5] sec
Mobility Rate 4 [10,20] m/sec [0,0] sec

Table 6.4: Mobility rates.

We see from these figures that as wholeK increases, the total LS overhead

in bytes decreases as predicted, since each incremental LS message is generally

smaller in size than a whole LS message. We especially see a great decrease in

LS overhead between the values of 1 and 2 of wholeK. wholeK = 1 corresponds

to the non-incremental LS scheme, whereas with wholeK > 1, we use the incre-

mental LS scheme. We do not observe any significant improvements in the LS

overhead above values of 4 and 8 for wholeK.

2According to the random waypoint mobility model, each time a node changes state from
stationary to mobile, it selects a speed uniformly from the given real number range. Please note
that the given ranges correspond to the following ranges in km/h (kph): [1, 2] m/s = [3.6, 7.2]
kph; [2, 4] m/s = [7.2, 14.4] kph; [5, 10] m/s = [18, 36] kph; [10, 20] m/s = [36, 72] kph. Each
time a node finishes moving along its linear segment, it uniformly chooses a waiting time during
which it is stationary from the given real number range.

CHAPTER 6. EXPERIMENTAL RESULTS 138

Figure 6.2: LS overhead in bytes vs. wholeK, for different mobility rates.

We can also realize by looking at these figures that as the mobility rate in-

creases, the overall LS overhead increases as predicted. As mentioned before, this

is due to our event-based LS mechanism.

Figure 6.4 presents total LS overhead in terms of packet count vs. wholeK,

as mobility changes. We can see from this figure that the choice wholeK has no

effect on the LS overhead in terms of packet count, as the incremental LS scheme

only decreases the size of LS packets, but not the number of packets created. As

before, the LS overhead increases significantly as the mobility rate increases.

Figure 6.5 presents the ratio of the total LS overhead in bytes to the total

successfully received data packets in bytes vs. wholeK, while mobility changes.

From this graph we observe that for the lowest mobility rate of 1, we have an LS

overhead of approximately 0.3%; for mobility rate 2, 0.5% overhead; for mobility

rate 3, 1.5% overhead, and for the highest mobility rate of 4, 3.8% overhead. We

are generally expecting mobile nodes in conventional ad hoc networks to have

mobility rates lower than or similar to rates 1 and 2, so our protocol incurs a very

low overhead for such real-life mobility rates3. Even with high mobility rates, the

3Considering that the average walking, jogging, running, and cycling speeds of a human are

C
H

A
P

T
E

R
6
.

E
X

P
E

R
IM

E
N

T
A

L
R

E
S
U

L
T

S
139

Figure 6.3: LS overhead in bytes vs. wholeK, for different mobility rates - individual cases.

CHAPTER 6. EXPERIMENTAL RESULTS 140

Figure 6.4: LS overhead in packet count vs. wholeK, for different mobility rates.

overhead of Elessar is acceptable. The effect of the incremental scheme cannot

be observed in this graph due to the low overhead ratio, with the exception of

the obvious improvement between values of 1 and 2 of wholeK for mobility rate

4. We can observe such an improvement at mobility rate 4 since it incurs the

highest overhead ratio among all mobility rates presented in the graph.

Figure 6.6 presents the results for LS overhead in bytes vs. wholeK, with

changing network sizes. In the rest of the discussions in this section, whenever

we say “changing network sizes”, we mean that we increase the number of nodes

in the network and the diameter of the network while keeping the node density

and the average node degree the same. From the presented graph, we see that

the LS overhead in bytes decreases as wholeK increases, as expected, and that

the LS overhead increases with increasing network sizes. We can observe roughly

a 10 times increase in total LS overhead in terms of bytes when we change the

node count from 10 to 25, corresponding to a 2.5 times increase in node count.

Figure 6.7 presents the same results for LS overhead in packet count. The

around 5, 10, 18, and 30 km/h, respectively, we believe that we are justified in our assumption
of mobility rates closer to rates of 1 and 2 in real-life.

CHAPTER 6. EXPERIMENTAL RESULTS 141

Figure 6.5: LS overhead ratio in bytes vs. wholeK, for different mobility rates.

LS overhead in terms of packet count shows a very similar behavior as the LS

overhead in bytes. We can see that when we increase the node count by 2.5 times,

the LS overhead increases roughly 10 times, from an average value of 12, 000 to

120, 000 packets, as also observed for the LS overhead in bytes case in Figure 6.6.

Parameter wholeK does not affect the number of LS packets created and only

affects the sizes of LS packets and this phenomenon is also observed in Figure

6.7, as average LS overhead in packet count does not change as wholeK changes.

Figure 6.8 presents the ratio of the LS overhead in bytes to the total received

data size in bytes vs. wholeK, as node count changes. We can see from the figure

that when node count = 10, our LS overhead is around 1% and when node count

= 25, our LS overhead is around 8%, which corresponds to an 8 times increase

in LS overhead ratio for an increase of 2.5 times in network size. As wholeK

increases, we observe a decrease in the LS overhead ratio since the total amount

of LS packet size decreases with increasing wholeK. We do not observe such a

behavior for node count = 10 in the graph due to the scale of the y-axis. Of

course, the decrease in LS overhead ratio shows diminishing-returns, and we do

not see significant gains for values of wholeK > 8.

C
H

A
P

T
E

R
6
.

E
X

P
E

R
IM

E
N

T
A

L
R

E
S
U

L
T

S
142

Figure 6.6: LS overhead in bytes vs. wholeK, for different network sizes - individual cases.

CHAPTER 6. EXPERIMENTAL RESULTS 143

Figure 6.7: LS overhead in packet count vs. wholeK, for different network sizes.

Figure 6.8: LS overhead ratio in bytes vs.wholeK, for different network sizes.

CHAPTER 6. EXPERIMENTAL RESULTS 144

We provide results of total LS overhead in bytes vs. wholeK, as the node

density changes4 5 in Figure 6.9. We can see from the graph that as wholeK

increases, we see a decrease in total LS overhead in bytes, as expected. This

decrease is especially significant for higher values of node densities. We again

observe that for values of wholeK > 8, the decrease in LS overhead diminishes.

As the node density increases, LS overhead also increases, due to the increase in

the node count and the average node degree in the network.

Figure 6.9: LS overhead in bytes vs. wholeK, for different node densities.

We can see similar results in terms of packet count in Figure 6.10. As the

node density increases, LS overhead in terms of packet count also increases. We

observe that parameter wholeK does not affect the number of LS packets, as

expected.

Figure 6.11 shows total LS overhead ratio in bytes vs. wholeK, as node

density changes. We can see from the graph that as node density increases, LS

overhead ratio also increases due to the increase in total LS overhead. Increasing

wholeK decreases the LS overhead ratio since it lowers total LS overhead in bytes.

4Please note that node counts of 5, 10, 15, and 20 correspond to node densities of 0.0005,
0.0010, 0.0015, and 0.0020 nodes/m2, respectively.

5As we increase the node density of the network, we also increase the average node degree
in the network.

CHAPTER 6. EXPERIMENTAL RESULTS 145

Figure 6.10: LS overhead in packet count vs. wholeK, for different node densities.

A value between 8 and 16 seems to be a good choice for wholeK as for values

of wholeK > 16, the decrease in the overhead ratio is not very significant. Even

for the highest node density with node count = 20, the average overhead ratio is

around 5%, and the overhead decreases to values of almost 0% as node density

decreases.

Figures 6.12, 6.13, 6.14, and 6.15 present results on total LS overhead in

bytes, total LS overhead in packet count, LS ratio in bytes, and LS ratio in

packet count, respectively, vs. node densities, for differing mobility rates. The

behavior observed in each graph is almost the same, as we see that LS overhead

increases as node density and/or mobility rate increase, as expected. The LS

overhead ratio in bytes is ≤ 4% for almost all cases, with the exception of node

count = 20 and mobility rate of 4, which corresponds to the highest node density

and mobility rate in the presented graph. A similar scenario is present when we

look at LS overhead ratio in packet count, where we observe ratios ≤ 80% of LS

packets to data packets for almost all cases, with the exception of the combination

of the highest node density and the highest mobility rate.

We present in figures 6.16, 6.17, 6.18, and 6.19 the average LS packet sizes

CHAPTER 6. EXPERIMENTAL RESULTS 146

Figure 6.11: LS overhead ratio in bytes vs. wholeK, for different node densities.

Figure 6.12: LS overhead in bytes vs. node density, for different mobility rates.

CHAPTER 6. EXPERIMENTAL RESULTS 147

Figure 6.13: LS overhead in packet count vs. node density, for different mobility
rates.

Figure 6.14: LS overhead ratio in bytes vs. node density, for different mobility
rates.

CHAPTER 6. EXPERIMENTAL RESULTS 148

Figure 6.15: LS overhead ratio in packet count vs. node density, for different
mobility rates.

in bytes. In Figure 6.16, we see that the average LS packet length in bytes is

independent of the mobility rate since the sizes of individual LS packets do not

change as mobility rate changes, but rather the number of LS packets created and

forwarded in the network changes as mobility rate changes. In the same figure,

we observe the effect of wholeK on the average LS packet size, where increasing

wholeK decreases the average LS packet length as expected. As we had observed

before, we again see that we have a diminishing-returns and values of wholeK

between 8 and 16 seem to be the most suitable in terms of average LS packet

lengths.

Figure 6.17 presents the average LS packet length vs. wholeK, for differing

network sizes. We have a higher average packet length for larger networks, since

the number of nodes and therefore the information included in LS packets increase

with increasing network size. The effect of wholeK on average LS packet length

is as before.

We can see the effect of node density on average LS packet length in Figure

6.18. We see in this graph that average packet length increases as node density

CHAPTER 6. EXPERIMENTAL RESULTS 149

Figure 6.16: Average LS packet lengths vs. wholeK, for different mobility rates.

Figure 6.17: Average LS packet lengths vs. wholeK, for different network sizes.

CHAPTER 6. EXPERIMENTAL RESULTS 150

increases. Remembering that increasing node density means increasing average

node degree, it is expected for average LS packet length to increase as node

density increases since the number of neighbors of a node and respectively the

amount of information carried in an LS packet increases. The effect of wholeK

on average LS packet length is as before.

Figure 6.18: Average LS packet lengths vs. wholeK, for different node densities.

Figure 6.19 shows average LS packet length vs. node density, for different

mobility rates. We observe that average LS packet length is independent of

mobility rate, as was stated before, and that average LS packet length increases

with increasing node density.

We present results on the overhead of our protocol due to source routing (the

inclusion of routes in packet headers) in figures 6.20, 6.21, 6.22, 6.23, and 6.24.

From Figure 6.20, we see that the overhead ratio6 due to source routing is

independent of both the mobility rate and wholeK. We seem to have high vari-

ance in this graph, but this is due to the scale of the y-axis and if we look at the

6Letting RG and RF denote the total amount of space in bytes occupied by source routes
in data headers of all generated and forwarded data packets, respectively, and DG and DF

denote the total sizes (including headers) of all generated and forwarded data packets in bytes,
respectively, we calculate the overhead ratio due to source routing as RG+RF

DG+DF
.

CHAPTER 6. EXPERIMENTAL RESULTS 151

Figure 6.19: Average LS packet lengths vs. node density, for different mobility
rates.

Figure 6.20: Source routing overhead ratios in bytes vs. wholeK, for different
mobility rates.

CHAPTER 6. EXPERIMENTAL RESULTS 152

actual values, we can see that the highest and the lowest values for source routing

overhead are 1.45% and 1.31%, respectively.

Figure 6.21: Source routing overhead ratios in bytes vs. node density, for different
mobility rates.

We observe a similar case when we plot the route overhead vs. node density,

for changing mobility rates. The source routing overhead seems to be independent

of the mobility rate and the node density, which is as expected, since changing

the mobility rate does not change the length of the routes and changing the

node density does not change the diameter of the network, which is the major

factor influencing the average route length. Figure 6.21 also seems to present a

lot of variance, but this is again due to the scale of the y-axis, and we can see

from the graph that the highest and lowest overhead ratios are 1.42% and 1.29%,

respectively.

We can see from Figure 6.22 that as the network size increases, source routing

overhead increases from around 1.4% to 2.0%, since when we increase the network

size, we also increase the network diamater, and therefore the average route length

between any two nodes in the network.

Figure 6.23 shows the source routing overhead in bytes per data packet for

CHAPTER 6. EXPERIMENTAL RESULTS 153

Figure 6.22: Source routing overhead ratios in bytes vs. network size.

different values of network size. As expected, the average amount of space occu-

pied by a source route in the data header increases with increasing network size,

since when we increase the network size, we also increase the network diameter,

resulting in longer routes.

Figure 6.24 shows the source routing overhead in bytes per data packet for

different values of node density and we see from the graph that there are slight

increases in route overhead per packet for increasing node densities. As the node

density increases in the network, the number of available paths between any two

nodes in the network increases. Since we have enabled route maintenance in these

experiments, with increasing numbers of available paths between any two nodes,

intermediate nodes have a greater chance in finding alternate but possibly longer

paths to the destinations in cases of route breakages, and these longer paths are

used until the source node is informed of the situation and finds a better/shorter

path. Due to the greater use of these non-optimal (longer) paths in cases of route

breakages, the average amount of space occupied by a source route in a data

packet increases with increasing node density, however slight the increase may

be.

After going over these results, we can see that the overhead caused by the

CHAPTER 6. EXPERIMENTAL RESULTS 154

Figure 6.23: Source routing overhead per packet in bytes vs. network size.

Figure 6.24: Source routing overhead per packet in bytes vs. node density.

CHAPTER 6. EXPERIMENTAL RESULTS 155

topology dissemination mechanism is acceptable for small-to-medium sized net-

works and for larger networks with a high number of data flows in the network.

Protocol overhead due to source routing seems to be quite low and therefore

acceptable for all network sizes. In light of these results, we may say that our

protocol is best suited, in terms of protocol overhead, for small-to-medium sized

networks having low-to-high data traffic densities, and for larger networks having

medium-to-high data traffic densities. Elessar is able to support considerably

high mobility rates, easily supporting node speeds of up to 10 m/s, where nodes

are constantly in motion, without incurring excessive overhead. We observe that

our incremental message scheme for topology dissemination is able to lower LS

overhead significantly, and desirable wholeK values are generally between 8 and

16.

The simulation parameters used in obtaining the results presented in this

section are given in Table 6.5. Please note that the playground size parameter

denotes the height and width of the network deployment area in meters.

In the following section, we examine the performance of Elessar in routing

normal data.

6.1.2 Protocol Performance in Normal Data Routing

We present results on the performance of our protocol in routing normal data. We

specifically look at the data loss ratios and the route find success rates for normal

data flows. Whenever an intermediate node is unable to forward a data packet

to its next hop, it drops the packet7, constituting a data packet loss. We also

include dropped data packets at source nodes due to unreachable destinations

(the destination node and the source node are in disconnected sections of the

network) in the lost data packets counter, and we calculate the data loss ratio

as the number of lost data packets to the number of all generated and forwarded

data packets. Aside from trying to send a data flow to a disconnected destination,

7If route maintenance is enabled, the intermediate node will first try to find an alternate
path to the destination of the packet, and if it is unable to find such a path, it will then drop
the packet.

C
H

A
P

T
E

R
6
.

E
X

P
E

R
IM

E
N

T
A

L
R

E
S
U

L
T

S
156

Figure Number
Parameter Name

wholeK Playground Size Node Count Mobility Rate

Figures 6.2, 6.3, 6.4, 6.5, 6.16 varies 100× 100 10 varies
Figures 6.9, 6.10, 6.11, 6.18 varies 100× 100 varies Rate 2

Figures 6.6, 6.7, 6.8, 6.17 varies varies varies Rate 2
Figures 6.12, 6.13, 6.14, 6.15, 6.19 8 100× 100 varies varies

Figure 6.20 varies 100× 100 10 varies
Figure 6.21 8 100× 100 varies varies
Figure 6.22 16 varies varies Rate 2
Figure 6.23 16 varies varies Rate 2
Figure 6.24 32 100× 100 varies Rate 2

Table 6.5: Simulation parameters for overhead experiments in normal mode operation.

CHAPTER 6. EXPERIMENTAL RESULTS 157

data losses will be caused by bit errors, collisions, and node mobility. The MAC

layer is responsible for handling packets with bit errors and corrupted packets

due to collisions, so we ignore such packets in our lost data calculations to focus

more on the performance of our protocol in the face of topology changes.

When a node needs to find a route for a packet, it first looks into its route

cache, and if it cannot find a suitable route in the route cache, it then initiates

the local path finding algorithm in order to find a route. We calculate route

find success rate as the number of successful route lookups (including both route

cache lookups and runs of the local path finding algorithm) to the total number

of route lookups. Note that when a node tries to find a route to a destination

when the two nodes are in disconnected sections of the network, this will cause

an unsuccessful route lookup. Aside from such disconnections, unsuccessful route

lookups will be caused by inconsistencies between the actual network and the

local graph representation of the network at the nodes. Such inconsistencies may

be caused due to bit errors in LS packets and/or corrupted LS packets due to

collisions.

Figure 6.25 presents the route find success rate vs. wholeK, for changing

mobility rates. We observe that the mobility rate does not have a strong effect

on the route find success rate, whereas increasing parameter wholeK decreases

the route find success rate, from around 98% success rate for wholeK = 1, down

to rates of 84% for wholeK = 32. Remembering that inconsistencies in local

graph representations of the network at nodes is one strong factor responsible

for unsuccessful route lookups, the latter result is as expected. As we increase

the distance between whole LS messages by increasing wholeK, we decrease the

robustness of the protocol, since the inconsistency caused by a lost incremental

LS message will be resolved by a whole LS message, and as the distance between

whole messages increases, the inconsistency in the local graph will persist longer,

causing more unsuccessful route lookups. We can conjure from the presented

graph that parameter wholeK has a much stronger effect on route find success

rates than the mobility rate of nodes, and choosing a value between 1 and 4 for

wholeK seems to be a reasonable choice.

CHAPTER 6. EXPERIMENTAL RESULTS 158

Figure 6.25: Route finding success rates vs. wholeK, for different mobility rates.

We can see the effect of network size on route find success rate in Figure 6.26.

The minimum route find success rate of our protocol is around 90% at a network

size of 10 nodes and the success rate increases with increasing network sizes. As

the network size increases, the number of paths between any two nodes in the

network increases, and even when a route breaks between such two nodes, our

protocol is able to find an alternate path in a greater percentage of such cases,

increasing the route find success rate to a value of around 97% when the network

size is 50 nodes.

Route find success rate vs. wholeK, for changing node densities is given in

Figure 6.27. We can see that there is a general tendency for the route find success

rate to fall with increasing wholeK, and this is due to the decreased robustness

of the protocol to lost LS packets in the incremental messaging scheme, with

increasing wholeK. We also observe that as the node density increases, the route

find success rate increases, due to the availability of more paths between any

two nodes in a more densely-deployed network that has more nodes. The low

route find success rates for the node count = 5 case is due to the high number of

disconnected components in the network.

CHAPTER 6. EXPERIMENTAL RESULTS 159

Figure 6.26: Route finding success rates vs. network size.

Figure 6.27: Route finding success rates vs. wholeK, for different node densities.

CHAPTER 6. EXPERIMENTAL RESULTS 160

Figure 6.28 gives results on the route find success rate vs. node density, for

changing mobility rates. We observe that the mobility rate has a negligible effect

on route find success rate compared to the node density, and we see that there

is a direct relationship between node density and route find success rate, due to

reasons mentioned before. We again observe low route find success rates for the

node count = 5 case, due to the high number of disconnected components in the

scarcely-deployed network.

Figure 6.28: Route finding success rates vs. node density, for different mobility
rates.

From these results on route find success rates, it can be conjured that values

between 1 and 4 seem to be reasonable choices for wholeK. The rest of the

presented graphs in this section provide results on data loss ratios.

Figure 6.29 presents results on data loss ratio vs. wholeK, for different mo-

bility rates. We observe that the mobility rate has a negligible effect on data loss

ratios compared to wholeK. A direct relationship between data loss ratio and

wholeK may be observed in this graph, where data loss ratios are as low as 2%

for wholeK = 1 and go up to 14% for wholeK = 32. This observed behavior

is due to the decreased robustness of the protocol and the increased number of

CHAPTER 6. EXPERIMENTAL RESULTS 161

nodes with discrepancies in their local network views with increasing wholeK, as

mentioned before.

Figure 6.29: Data loss ratios in packet count vs. wholeK, for different mobility
rates.

Figure 6.30 shows data loss ratios for different network sizes. It can be seen

from the graph that the data loss ratio decreases with increasing network size.

This is due to the increased number of paths between any two nodes in the

network with increased network size.

Figure 6.31 gives data loss ratios vs. wholeK, for changing node densities.

As oberved before, with increasing wholeK, data loss ratio increases. We also

observe an inverse relationship between data loss ratio and node density, which

is due to the increased number of paths between any two nodes in the network

with increasing node density and node count. The high data loss ratios observed

when node count = 5 is due to the high number of disconnected components in

the graph in this case.

We can see from Figure 6.32 that mobility rate has a negligible effect on

data loss ratio compared to node density, and we observe an inverse relationship

between data loss ratio and node density, as before.

CHAPTER 6. EXPERIMENTAL RESULTS 162

Figure 6.30: Data loss ratios in packet count vs. network size.

Figure 6.31: Data loss ratios in packet count vs. wholeK, for different node
densities.

CHAPTER 6. EXPERIMENTAL RESULTS 163

Figure 6.32: Data loss ratios in packet count vs. node density, for different
mobility rates.

Figures 6.33 and 6.34 show results on the performance of the route main-

tenance mechanism of Elessar. We observe from these graphs that our route

maintenance mechanism is able to improve data loss ratios by 1% to 3%.

After looking at the performance of Elessar in normal data routing, we see that

our protocol is especially suited for densely-deployed, medium-sized networks in

terms of routing performance. We generally observe data loss ratios lower than 8%

for connected networks (node count ≥ 10) with intelligent selection of wholeK.

Values between 1 and 4 for wholeK seem to provide the best routing performance.

We had found earlier that values between 8 and 16 for wholeK were the most

appropriate choices for protocol overhead. In light of this information, it seems

that setting wholeK to a value between 4 and 8 would provide a nice compromise

between protocol overhead and routing performance. If routing performance is of

more importance, we should have 2 ≤ wholeK ≤ 4; on the other hand, if protocol

overhead is of importance, we may have 6 ≤ wholeK ≤ 12.

Simulation parameters used in obtaining the results presented in this section

are given in Table 6.6.

CHAPTER 6. EXPERIMENTAL RESULTS 164

Figure 6.33: Data loss ratios in packet count vs. node density, with/without
route maintenance.

Figure 6.34: Data loss ratios in packet count vs. mobility, with/without route
maintenance.

C
H

A
P

T
E

R
6
.

E
X

P
E

R
IM

E
N

T
A

L
R

E
S
U

L
T

S
165

Figure Number
Parameter Name

wholeK Playground Size Node Count Mobility Rate

Figures 6.25, 6.29 varies 100× 100 10 varies
Figures 6.27, 6.31 varies 100× 100 varies Rate 2
Figures 6.28, 6.32 8 100× 100 varies varies
Figures 6.26, 6.30 16 100× 100 varies Rate 2

Figure 6.33 4 100× 100 varies Rate 2
Figure 6.34 4 100× 100 10 varies

Table 6.6: Simulation parameters for routing performance experiments in normal mode operation.

CHAPTER 6. EXPERIMENTAL RESULTS 166

In this section, we have presented results on the main sources of our protocol

overhead, namely the topology dissemination mechanism and source routing. We

also looked at the performance of Elessar in normal data routing for different sce-

narios. The results provided in this section were generic and largely independent

of the types of data flows. We present in the next section experimental results

specific to the QoS operation mode of Elessar, looking into how well our protocol

is able to support real-time traffic.

6.2 Experimental Results for QoS Mode

In this section, we present simulation results regarding operation of Elessar in

QoS mode in the presence of real-time flows. We present results on the overhead

of our protocol due to the cost dissemination mechanism, along with total induced

overhead. We also look at the performance of the proposed protocol in supporting

real-time flows. Elessar is currently has built-in support for delay-sensitive, loss-

sensitive, and bandwidth-sensitive traffic. We present results on each type of

traffic support separately.

The cost overhead of our protocol is independent of the supported traffic type,

therefore we only present total overhead and cost mechanism related overhead

results for the delay-sensitive traffic case. Elessar is able to support different

types of real-time and normal traffic concurrently, but we focus on real-time

flows only in this investigation, without mixing real-time and normal data flows.

We also do not have different types of real-time traffic running concurrently in

the network in these experiments, in order to correctly analyse the performance

of our protocol for specific real-time flow types and for the sake of clarity.

Simulation parameters regarding the wireless channel, network interface card,

and the IEEE 802.11 MAC layer were presented in Table 6.1. We use those same

parameters in the experiments discussed in this section.

Each QoS experiment was conducted in the same manner of normal data ex-

periments. For each experiment, we create an ad hoc network of fixed size, where

CHAPTER 6. EXPERIMENTAL RESULTS 167

nodes do not join or leave during the lifetime of the network. Of course, nodes in a

network are mobile and move according to the random waypoint mobility model.

Note that the network size may be different for each experiment. All nodes in

the network are deployed on a fixed size area, called the “playground”, and nodes

cannot move outside the playground. The dimensions of the playground for each

experiment are provided in their related parameter table.

After setting up the ad hoc network, the simulator creates the necessary ob-

jects, communication channels, tables, timers and messages. After all such objects

and modules are created and set-up, our simulation begins and the simulation

time begins to advance. We do not create any data messages in the first 60 sec-

onds of the simulation in order to allow the network to settle. After this initial

60 seconds, the FlowController module assigns real-time flows to source nodes

and any necessary actions required for the successful delivery of data packets to

their destinations are taken by the protocol. We would like to note here that the

topology dissemination and link cost measurement mechanisms are active during

the whole duration of the simulation, including the initial 60 seconds.

Table 6.7 provides information on the traffic parameters used in the QoS

experiments.

Parameter Name Value
Number of Flows 25

Packet Payload Length [40,600] bytes
Packet Creation Period [5,50] ms

Packet Creation Rate [20,200] packets/sec
Flow Length [1000,4000] packets

Flow Duration [5,200] sec

Table 6.7: Simulation parameters for data traffic in QoS operation mode experi-
ments.

The meaning and usage of these parameters are as given in Section 6.1. We

use the random waypoint mobility model to simulate the mobility of nodes. Node

speeds and waiting times corresponding to the mobility rates used in the experi-

ments are as given in Table 6.4.

For each experiment in this section, we have used the table sizes and timer

CHAPTER 6. EXPERIMENTAL RESULTS 168

periods provided in Table 6.8.

Parameter Name Value
Route Cache Timer Period 5 sec

Edge Cost Timer Period 45 sec
wholeK 4

LSTable Size 15
RTFlowsTable Size 20

Table 6.8: Miscellaneous simulation parameters for QoS operation mode experi-
ments.

We clear the route cache at a node periodically according to the “route cache

timer”. This is done to allow the local path finding algorithm to be activated

regularly in order to find potentially better paths than the ones currently used

by the node. The “edge cost timer” is used to clear stale edge costs from the

local graph representations of nodes. Parameter wholeK controls the incremental

message scheme used in topology dissemination. LSTable is the table that keeps

track of the last recently seen link-state messages, used to prevent a node from

participating more than once in a network-wide broadcast. RTFlowsTable is

essentially used for the same purpose, preventing a node from participating more

than once in a limited cost information broadcast.

We run each experiment for a total duration of 11 minutes, where the first

initial minute is used to improve the accuracy of our results.

Results on protocol overhead of Elessar in QoS operation mode are presented

in Section 6.2.1 and results on real-time support performance are given in Section

6.2.2.

6.2.1 Results on Protocol Overhead in QoS Operation

Mode

In this section, we provide experimental results on the overhead of our protocol,

both due to the cost dissemination mechanism and due to the topology dissemi-

nation mechanism.

CHAPTER 6. EXPERIMENTAL RESULTS 169

The overhead of the cost dissemination mechanism is dependent on various

mechanism parameters. Depending on whether the periodic or non-periodic cost

sending scheme is used, parameters affecting cost overhead are different. The

primary parameter affecting cost overhead in the periodic scheme is the period

of the cost messages. The number of cost messages (cost count) is the equivalent

parameter for the non-periodic case. The cost overhead of our protocol is also

dependent on the number of nodes sending their costs, which is largely determined

by the hop count imposed on the cost information messages (CostInform hop

count). We now look into the effect of these protocol parameters on protocol

overhead.

Figure 6.35 presents the cost overhead ratio in bytes8 vs. cost count for the

non-periodic case. We can see from the figure that as exptected, when the cost

count increases, cost overhead increases. We also observe that our cost overhead

is very low, accounting for 0.25% overhead even in the highest case.

Figure 6.36 presents results on cost overhead as cost period changes in the pe-

riodic cost scheme. The figure portrays that lower periods incur higher overhead

due to the larger number of created cost messages. Even so, we see that the cost

overhead is as low as 0.13% even for the lowest cost period case.

As the hop count imposed on messages of type CostInformMsg increases, we

generally expect the cost overhead to increase due to higher number of nodes

informed of the real-time flow and sending their costs. This behavior may be ob-

served in Figure 6.37. We again observe very low cost overheads, where overheads

change between values of 0.06% and 0.08%.

8We calculate the cost overhead ratio as follows. Let genSpecialRT , fwdSpecialRT ,
genCost, fwdCost, genCostInform, fwdCostInform denote the number of bytes of total
generated and forwarded packets of type SpecialRT , CostMsg, and CostInformMsg, re-
spectively, and let genDataRT , fwdDataRT , genDataNormal, fwdDataNormal denote the
total number of bytes of generated and forwarded packets of type DataRT and DataNormal.
The cost overhead ratio in bytes is then equal to (genSpecialRT + fwdSpecialRT +
genCost + fwdCost + genCostInform + fwdCostInform)/(genDataRT + fwdDataRT +
genDataNormal + fwdDataNormal).

CHAPTER 6. EXPERIMENTAL RESULTS 170

Figure 6.35: Cost overhead vs. cost count, non-periodic case.

Figure 6.36: Cost overhead vs. cost period, periodic case.

CHAPTER 6. EXPERIMENTAL RESULTS 171

Figure 6.37: Cost overhead vs. cost inform hop count.

In Figure 6.38, we observe that as the mobility rate increases, the cost over-

head increases. When a previously used route breaks and a new route is estab-

lished between the source and the destination, the new nodes that now relay

real-time packets also send their costs to the source to allow more optimal path

selection at the source. As the mobility rate in the network increases, route

breakages increase, and due to this cost sending behavior of “new” nodes on the

new paths, our cost overhead increases. However, we can see from the figure that

our cost overhead is still at a low of 0.075% even for the highest mobility rate.

Figures 6.39 and 6.40 show the behavior of our protocol’s cost overhead with

increasing network size and node density, respectively. We can see from these

figures that as the network size and the node density increase, our cost overhead

increases due to the increased number of nodes in the network, and in parallel,

the increased number of cost sending nodes.

Figure 6.41 shows results on the total overhead vs. cost count, for the non-

periodic case. It can be inferred from the figure that as the cost count increases,

the ratio of the cost overhead to the total overhead increases significantly. How-

ever, we observe that the topology dissemination overhead forms the greatest

portion of our total protocol overhead. This phenomenon may also be observed

CHAPTER 6. EXPERIMENTAL RESULTS 172

Figure 6.38: Cost overhead vs. mobility rate.

Figure 6.39: Cost overhead vs. network size.

CHAPTER 6. EXPERIMENTAL RESULTS 173

Figure 6.40: Cost overhead vs. node density.

in figures 6.42, 6.43, 6.44, 6.45, and 6.46. For the figures regarding changes in the

cost dissemination parameters, we see that the total overhead is at most 0.8%. Of

course, as we increase the mobility rate, network size or the node density in the

network, our total overhead increases to values of 4% or more, as such parameters

influence the overhead of the link-state mechanism more directly.

Table 6.9 provides the simulation parameters used for the experiments pre-

sented in this section.

From the experimental results presented above, we observe that our protocol

overhead due to the cost dissemination mechanism does not form a significant

portion of the total overhead of our protocol and that the overhead due to the

link-state dissemination mechanism dominates the overhead of Elessar in almost

all cases.

CHAPTER 6. EXPERIMENTAL RESULTS 174

Figure 6.41: Total overhead vs. cost count, non-periodic case.

Figure 6.42: Total overhead vs. cost period, periodic case.

CHAPTER 6. EXPERIMENTAL RESULTS 175

Figure 6.43: Total overhead vs. cost inform hop count.

Figure 6.44: Total overhead vs. mobility rate.

CHAPTER 6. EXPERIMENTAL RESULTS 176

Figure 6.45: Total overhead vs. network size.

Figure 6.46: Total overhead vs. node density.

C
H

A
P

T
E

R
6
.

E
X

P
E

R
IM

E
N

T
A

L
R

E
S
U

L
T

S
177

Figure Number
Parameter Name

Node Count Playground Size Mobility Rate Hop Count Cost Period Cost Count

Figures 6.35 and 6.41 15 115× 115 Rate 2 2 not used varies
Figures 6.36 and 6.42 15 115× 115 Rate 2 2 varies not used
Figures 6.37 and 6.43 15 115× 115 Rate 2 varies not used 25
Figures 6.38 and 6.44 15 115× 115 varies 2 not used 25
Figures 6.39 and 6.45 varies varies Rate 2 2 not used 25
Figures 6.40 and 6.46 varies 115× 115 Rate 2 2 not used 25

Table 6.9: Simulation parameters for overhead experiments in QoS mode operation.

CHAPTER 6. EXPERIMENTAL RESULTS 178

6.2.2 Results on Protocol Performance in QoS Operation

Mode

In this section, we present results on the performance of Elessar for real-time

support for different traffic types. Sections 6.2.2.1, 6.2.2.2, and 6.2.2.3 present

results for delay-sensitive, loss-sensitive, and bandwidth-sensitive traffic, respec-

tively. We would like to note here that we try to minimize the end-to-end delay

for delay-sensitive traffic, to minimize the end-to-end loss rate (or equivalently

the end-to-end path availability) for loss-sensitive traffic, and to maximize the

end-to-end minimum available bandwidth for bandwidth-sensitive traffic.

6.2.2.1 Results on Protocol Performance in QoS Mode: Delay-

Sensitive Traffic

Figure 6.47 shows how the number of cost messages sent during the lifetime of a

flow affects protocol performance in the non-periodic cost scheme. We see that

as the cost count increases, the average end-to-end packet delay9 decreases, since

the source nodes are able to find more optimal paths with increased frequency,

with increasing cost count. We also observe that with QoS routing, the average

end-to-end packet delay is always lower than without QoS routing, where we

lower the average delay from around 180 ms to values between 95 ms and 165

ms. We can thus observe that our QoS routing scheme is successful in lowering

the average end-to-end packet delay compared with the non-QoS case.

Figure 6.48 presents average end-to-end packet latency vs. cost period, for

the periodic cost dissemination case. We would expect an inverse relationship

between cost period and average latency, since with higher cost periods, sources

will get a lesser number of cost messages, with longer delays in between, and this

will lower the accuracy with which sources are able to find optimal paths. We

can see that our expectation is met in Figure 6.48. We can also see from the

figure that average end-to-end latency with QoS routing is lower than average

end-to-end latency without QoS routing, where our QoS routing scheme is able

9We calculate the end-to-end delay of data packets only.

CHAPTER 6. EXPERIMENTAL RESULTS 179

Figure 6.47: Average end-to-end delay vs. cost count.

to lower the latency from a value of around 180 ms to values between 90 ms and

140 ms.

As the hop count imposed on cost information messages is increased, a greater

number of nodes in the network are informed of a real-time flow, and the source

nodes receive cost messages from a larger percentage of the network. With in-

creasing percentage of the network a source node has information on, it is po-

tentially able to make smarter decisions during path finding, resulting in more

optimal paths. We can observe the effect of changing the hop count on average

end-to-end packet latency in Figure 6.49, where we see the expected behavior.

We can also see that with QoS routing, average end-to-end packet delays are in

between 100 ms and 150 ms, whereas average delays without QoS routing are

around 180 ms.

Figure 6.50 shows the effect of increasing network size on the performance of

our protocol, and we see that with increasing network size, average end-to-end

packet delay decreases, both with and without QoS routing. This is due to the

availability of more paths between any two nodes in a larger network, and with a

larger amount of paths to choose from, our protocol is able to find more optimal

CHAPTER 6. EXPERIMENTAL RESULTS 180

Figure 6.48: Average end-to-end delay vs. cost period.

Figure 6.49: Average end-to-end delay vs. cost inform hop count.

CHAPTER 6. EXPERIMENTAL RESULTS 181

paths. We also employ route maintenance in our protocol, so when a route breaks,

with a greater number paths between nodes, there is a higher probability that

an intermediate node will be able to find an alternate path. We again observe

that our QoS routing scheme incurs lower end-to-end delays than our non-QoS

routing scheme.

Figure 6.50: Average end-to-end delay vs. network size.

We observe a direct relationship between node density and average end-to-

end latency, as with increasing node density, interference between nodes increase,

also increasing link latencies. This effect is observed with both QoS and non-

QoS routing schemes, where the QoS routing scheme performs better than the

non-QoS routing scheme. These results may be observed in Figure 6.51.

Figures 6.52, 6.53 and 6.54 present results on the ratio of packets with QoS

requirements satisfied10 for different QoS requirements. In Figure 6.52, we observe

that as the cost inform hop count increases, the number of packets with QoS

requirements satisfied increases, since average end-to-end latency decreases with

increasing hop count. We also observe that as we relax the end-to-end latency

10We calculate the ratio of packets with QoS satisfied as the number of received packets with
requirements satisfied to the number of all received packets.

CHAPTER 6. EXPERIMENTAL RESULTS 182

Figure 6.51: Average end-to-end delay vs. node density.

requirement on packets, a greater percentage of packets meet their requirements,

a natural result. We can see from the figure that our QoS satisfaction ratio is

between 76% and 91%.

Figure 6.53 presents results on QoS satisfaction ratio vs. node density and we

can see from the figure that there is an inverse relationship between the two. With

increasing node density, average end-to-end delay increases, therefore the number

of packets that meet their requirements decrease. We observe that our QoS

satisfaction ratio changes between 76% and 97% for different QoS requirements.

Figure 6.54 presents QoS satisfaction ratios for different simulation parame-

ters. You may find the parameters used in all of the figures in this section in

Table 6.10.

We can see from Figure 6.54 that our QoS satisfaction ratios vary between

81% and 94%, which are quite high values, showing that our protocol is able to

support delay-sensitive traffic satisfactorily.

CHAPTER 6. EXPERIMENTAL RESULTS 183

Figure 6.52: QoS satisfaction ratio vs. cost inform hop count for delay-sensitive
traffic.

Figure 6.53: QoS satisfaction ratio vs. node density for delay-sensitive traffic.

C
H

A
P

T
E

R
6
.

E
X

P
E

R
IM

E
N

T
A

L
R

E
S
U

L
T

S
184

Figure Number
Parameter Name

Node Count Playground Size Mobility Rate Hop Count Cost Period Cost Count

Figure 6.47 15 115× 115 Rate 2 2 not used varies
Figure 6.48 15 115× 115 Rate 2 2 varies not used

Figures 6.49 and 6.52 15 115× 115 Rate 2 varies not used 25
Figure 6.50 varies varies Rate 2 2 not used 25

Figures 6.51 and 6.53 varies 115× 115 Rate 2 2 not used 25
Figure 6.54, Exp. 1 15 115× 115 Rate 2 2 not used 50
Figure 6.54, Exp. 2 15 115× 115 Rate 3 2 not used 25
Figure 6.54, Exp. 3 50 225× 225 Rate 2 2 not used 25
Figure 6.54, Exp. 4 15 115× 115 Rate 2 2 1 sec. not used

Table 6.10: Simulation parameters for delay-sensitive traffic experiments in QoS mode operation.

CHAPTER 6. EXPERIMENTAL RESULTS 185

Figure 6.54: QoS satisfaction ratios for delay-sensitive traffic for different simu-
lation parameters.

6.2.2.2 Results on Protocol Performance in QoS Mode: Loss-Sensitive

Traffic

Figure 6.55 shows end-to-end packet loss rate vs. cost count, for the non-periodic

cost dissemination scheme. We see from the figure that as cost count increases,

average end-to-end loss rate decreases. One thing to note in this figure is that we

have lower end-to-end packet loss rates with QoS routing for all cases, except the

case where cost count = 10. We understand from these results that our protocol

is not able to lower end-to-end loss rates with a small number of cost messages,

but it rather requires the cost count to be > 15 for effective support of loss-

sensitive traffic. We also observe that end-to-end loss rates are between 23% and

28% with QoS routing and around 26.5% without QoS routing. At first glance,

these numbers may seem high, but this is because we are using the accumulated

end-to-end loss rates of links that packets have traversed and not the averaged

loss rates along these links. Please refer to Section 5.3.3.1.2 for more information

on how our protocol calculates end-to-end loss rates.

CHAPTER 6. EXPERIMENTAL RESULTS 186

Figure 6.55: Average end-to-end loss rate vs. cost count.

Figure 6.56 presents results on packet loss rates for changing cost periods

when the periodic cost dissemination scheme is employed. We would expect an

inverse relationship between the cost period and loss rate, and we can observe this

behavior in the presented graph. One interesting thing to note here is that our

QoS routing scheme provides paths with lower end-to-end loss rates for almost all

periods, with the exception of period = 4 sec. We can conjure from this fact that

like the case of cost count in the non-periodic cost scheme, our protocol requires

a certain period with the periodic scheme in order to be effective in supporting

loss-sensitive traffic. This period seems to be around 3 sec. in the presented

graph.

We can see the effect of the hop count imposed on cost information messages

on loss rates in Figure 6.57. We observe that as the hop count increases, loss rate

decreases, as would be expected. We also observe that our QoS routing scheme

has lowered the end-to-end loss rates from around 26.8% to values between 26.2%

and 25.4%, compared with the non-QoS routing scheme.

Figure 6.58 draws end-to-end loss rate vs. node density. From the figure,

we see that as the node density increases, the loss rate increases, both with and

CHAPTER 6. EXPERIMENTAL RESULTS 187

Figure 6.56: Average end-to-end loss rate vs. cost period.

Figure 6.57: Average end-to-end loss rate vs. cost inform hop count.

CHAPTER 6. EXPERIMENTAL RESULTS 188

without QoS routing. The reason for this is that with increasing node density,

interference between nodes and collisions during transmissions increase, causing

more packets to be lost. Our QoS routing scheme improves end-to-end loss rates

by 1% in general, when compared with the non-QoS scheme.

Figure 6.58: Average end-to-end loss rate vs. node density.

Figures 6.59, 6.60, 6.61, and 6.62 present QoS satisfaction ratios for loss-

sensitive data flows, for various loss rate requirements. We see that our QoS

satisfaction ratios are high, ranging between 65% and 93%. When we look at the

loss rate requirements, we see that all requirements are lower, and therefore more

strict, than the average end-to-end loss rates observed with QoS routing. Even

when this is the case, we observe high QoS satisfaction ratios. We can infer from

this fact that there is high deviation in our loss rate samples, where we have a

high number of samples with low-to-medium loss rates, and a small number of

samples with very high loss rates.

These figures on QoS satisfaction ratios present behaviors that are parallel to

the observed behaviors in average end-to-end loss rate graphs.

Table 6.11 presents the simulation parameters used in QoS experiments for

loss-sensitive traffic.

CHAPTER 6. EXPERIMENTAL RESULTS 189

Figure 6.59: QoS satisfaction ratio vs. cost count.

Figure 6.60: QoS satisfaction ratio vs. cost period.

CHAPTER 6. EXPERIMENTAL RESULTS 190

Figure 6.61: QoS satisfaction ratio vs. cost inform hop count.

Figure 6.62: QoS satisfaction ratio vs. node density.

C
H

A
P

T
E

R
6
.

E
X

P
E

R
IM

E
N

T
A

L
R

E
S
U

L
T

S
191

Figure Number
Parameter Name

Node Count Playground Size Mobility Rate Hop Count Cost Period Cost Count

Figure 6.55 and 6.59 15 115× 115 Rate 2 2 not used varies
Figure 6.56 and 6.60 15 115× 115 Rate 2 2 varies not used

Figures 6.57 and 6.61 15 115× 115 Rate 2 varies not used 25
Figures 6.58 and 6.62 varies 115× 115 Rate 2 2 not used 25

Table 6.11: Simulation parameters for loss-sensitive traffic experiments in QoS mode operation.

CHAPTER 6. EXPERIMENTAL RESULTS 192

6.2.2.3 Results on Protocol Performance in QoS Mode: Bandwidth-

Sensitive Traffic

Figure 6.63 presents max-min available bandwidth vs. cost count, for the non-

periodic cost scheme. From the figure, we can see that as cost count increases,

maxmin bandwidth also increases. Our QoS routing scheme finds paths with

larger available bandwidth values for almost all cases, except the case count =

10. As was observed for loss-sensitive traffic, it seems that a low number of cost

messages does not allow the route discovery mechanism to find better paths in

the bandwidth-sensitive traffic case.

Figure 6.63: Max-Min available bandwidth vs. cost count.

Figure 6.64 plots max-min available bandwidth against cost period, for the

periodic cost scheme. As the cost period increases, max-min available bandwidth

decreases. We again observe that with a high cost period, Elessar is not able to

support bandwidth-sensitive traffic satisfactorily.

Figures 6.65 and 6.66 show how max-min available bandwidth changes with

changing cost inform hop count and node density, respectively.

CHAPTER 6. EXPERIMENTAL RESULTS 193

Figure 6.64: Max-Min available bandwidth vs. cost period.

Figure 6.65: Max-Min available bandwidth vs. cost inform hop count.

CHAPTER 6. EXPERIMENTAL RESULTS 194

Figure 6.66: Max-Min available bandwidth vs. node density.

Table 6.12 presents the simulation parameters used in QoS experiments for

bandwidth-sensitive traffic.

C
H

A
P

T
E

R
6
.

E
X

P
E

R
IM

E
N

T
A

L
R

E
S
U

L
T

S
195

Figure Number
Parameter Name

Node Count Playground Size Mobility Rate Hop Count Cost Period Cost Count

Figure 6.63 15 115× 115 Rate 2 2 not used varies
Figure 6.64 15 115× 115 Rate 2 2 varies not used

Figures 6.65 15 115× 115 Rate 2 varies not used 25
Figures 6.66 varies 115× 115 Rate 2 2 not used 25

Table 6.12: Simulation parameters for bandwidth-sensitive traffic experiments in QoS mode operation

Chapter 7

Conclusion and Future Work

In this thesis, we have presented Elessar, a link-state based on-demand routing

protocol supporting real-time traffic in wireless mobile ad hoc networks. Instead

of the more conventional periodic message dissemination, our protocol employs

event-driven link-state updates, where topology changes (mostly due to node

mobility) are the events of interest. We use an incremental message scheme

during topology dissemination, where each k-th link-state message is a whole

message, and other messages include incremental information regarding changes

that have occurred since the last link-state message. Through the use of such

link-state messages, which are globally broadcasted, each node in the network

can construct its own view of the network and therefore run local algorithms on

the local graph representation.

Elessar is able to support various different types of real-time traffic, along

with normal data traffic. Such different types of traffic may exist concurrently in

the network. We currently support bandwidth-, delay-, and loss-sensitive traffic

types explicitly, while our protocol has the potential to accommodate other types

of real-time traffic with ease. Of course, the ability of the protocol to support

such types of traffic depend on the underlying link cost measurement mechanism.

Support for real-time traffic is based on an on-demand mechanism, which is

initiated only when there are one or more real-time flows in the network. In

196

CHAPTER 7. CONCLUSION AND FUTURE WORK 197

light of this, we may say that Elessar operates reactively for real-time traffic and

proactively for normal data traffic. We achieve real-time traffic support thorugh

intelligent path selection at the source node, without using any resource reser-

vations. We therefore provide only soft QoS guarantees. However, our protocol

may easily incorporate a reservation mechanism that reserves resources along

least-cost paths found by the route discovery mechanism of our protocol.

Our protocol is targeted towards small-to-medium sized wireless MANETs,

having a diameter between 5 and 10. Our protocol supports dynamism result-

ing from node mobility and dynamic node joins and leaves and it is completely

distributed, with no need for centralized components. Elessar is self-adapting to

the current conditions in the network and provides QoS throughout the lifetime

of a real-time flow, even in the face of node mobility.

From experimental results, we have observed that the protocol overhead of

our protocol is very low for low mobility rates and acceptable for high mobility

rates. The main overhead of Elessar is due to the link-state based topology

dissemination mechanism, with the cost dissemination mechanism taking second

place as a source of overhead. Since our link-state mechanism is event-driven, the

mobility rate has a significant effect on our protocol overhead. The network size

in terms of network diameter and average node degree also play an important role

in affecting the protocol overhead due to the topology dissemination mechanism.

We have been able to decrease the protocol overhead in terms of bytes by the

incremental message scheme. However, several optimizations may be employed

in order to decrease link-state overhead even lower. One such optimization may

be the use of multi-point relays for global broadcasting, instead of the straight-

forward, and potentially costly, flooding method currently employed by Elessar.

Another scheme that may lower the link-state overhead is the hybrid use of peri-

odic and event-driven approaches to update dissemination. When the event rate

(i.e. the mobility rate) is high, periodic link-state messages may be used instead

of event-driven messages. Of course, there are various issues with the use of this

hybrid scheme, such as how to decide when to switch between the two approaches,

how to set the period, etc. One final optimization may be the use of aggregated

CHAPTER 7. CONCLUSION AND FUTURE WORK 198

link-state messages, where a node creating and/or forwarding a link-state mes-

sage waits a certain amount of time, and aggregates other link-state messages

received during that time into a single message. All of these approaches seem

viable and more work is definitely needed to see which ones are more effective for

lowering link-state overhead. We leave the investigation of such optimizations as

future work.

Our protocol operates with single-paths at the moment, but it may easily

be adapted to work with multiple paths. We envision two different cases for

the use of multipaths; during the information of nodes of a real-time flow, and

during actual data transmission. Instead of using a single path to inform nodes

of the start of a real-time flow, multiple paths may be used to inform nodes and

therefore to receive link costs from such informed nodes. These multiple paths

do not all need to be from the source to the destination, but may as well be from

the source to some other node in the network. Through the use of such intelligent

selection of multipaths during node informing, the source node may received more

complete information on link costs without incurring excessive overhead, and with

this higher level of information, it may be able to find better paths for real-time

traffic flows.

The second case for the use of multipaths is during actual data transmission,

where more than one path between source and destination is employed. Use of

multipaths during data transmission may be done for load balancing issues, in

order to increase the reliability of the transmission, or to support bandwidth-

sensitive applications better, through a higher aggregate bandwidth of multiple

paths. The use of multipaths in such scenarios seems to be very attractive, but

care must be taken in the choice of the paths. Since wireless ad hoc networks

operate in a broadcast medium, paths must be chosen so that transmissions and

receptions of nodes do not interfere with each other. Due to each node’s global

knowledge of the network through Elessar’s topology dissemination mechanism,

such intelligent multipath selection may be performed with ease in our protocol

by the use of local multipath algorithms. Our next step in the development of this

protocol will be to look at multipath scenarios, to develop intelligent multipath

selection algorithms, and to integrate such algorithms into our protocol.

CHAPTER 7. CONCLUSION AND FUTURE WORK 199

During the discovery and selection of optimal paths for real-time flows under

certain constraints, we currently find the best available path in the network and

then check the flow’s QoS requirement to see if the found path is satisfactory.

Another approach may be to take into account the requirement of the flow during

the path finding and selection phase. This second approach may be able to

satisfy requirements of more flows in the presence of real-time flows with very

heterogeneous constraints. To illustrate the idea more clearly, consider this case:

there are two new flows in the network, F1 and F2, with requirements of 50 and

300, respectively. What these requirements represent is irrelevant at the moment.

Let’s assume that F2 issues a route request before F1, and our protocol finds a

path of cost 25, which is the best path from source to destination at the moment,

satisfying the requirement of F2 since 25 < 300. Continuing the example, F2

also issues a route request, and our protocol is now able to find a path of cost

60, which is again the best path from source to destination at the moment, but

now, the requirement of F1 is not satisfied. However, if we take into account the

requirements of flows during route finding, then we may make a more intelligent

path assignment, where we assign the path with cost 60 to F2 and the path with

cost 25 to F1, satisfying the requirements of both flows, even though the route

request order is not changed. Of course, in order to accomplish such intelligent

route finding, different algorithms have to be adopted as our local path finding

algorithms in QoS mode, and we leave the discussion and investigation of such

algorithms as future work.

Bibliography

[1] Tarek Abdelzaher, John Stankovic, Sang Son, Brian Blum, Tian He, An-

thony Wood, and Chanyang Lu. A communication architecture and pro-

gramming abstractions for real-time embedded sensor networks. In Work-

shop on Data Distribution for Real-Time Systems (in conjunction with

ICDCS 2003), May 2003.

[2] F. Sidi Abed, M. Gueroui, and J.P. Claude. Providing QoS in ad hoc net-

works with behaviours nodes algorithm (BNA). In Proceedings of Computer,

Science, and Technology, May 2003.

[3] K. Akkaya, M. Younis, and M. Youssef. Efficient aggregation of delay-

constrained data in wireless sensor networks. In Proceedings of Internet

Compatible QoS in Ad Hoc Wireless Networks, 2005.

[4] Kemal Akkaya and Mohamed Younis. An energy-aware QoS routing proto-

col for wireless sensor networks. In Proceedings of the IEEE Workshop on

Mobile and Wireless Networks (MWN 2003), May 2003.

[5] Kemal Akkaya and Mohamed Younis. Energy-aware routing of time-

constrained traffic in wireless sensor networks. International Journal of

Communication Systems, Special Issue on Service Differentiation and QoS

in Ad Hoc Networks, 17(6):663–687, 2004.

[6] Kemal Akkaya and Mohamed Younis. Energy-aware and QoS routing in

wireless sensor networks. Springer Cluster Computing Journal, 8:179–188,

2005.

200

BIBLIOGRAPHY 201

[7] Kemal Akkaya and Mohamed Younis. A survey on routing protocols for

wireless sensor networks. Elsevier Ad Hoc Network Journal, 3(3):325–349,

2005.

[8] Ian F. Akyildiz, WellJan Su, Yogesh Sankarasubramaniam, and Erdal

Cayirci. A survey on sensor networks. IEEE Communications Magazine,

40(8):102–114, August 2002.

[9] Ian F. Akyildiz, WellJan Su, Yogesh Sankarasubramaniam, and Erdal

Cayirci. Wireless sensor networks: A survey. Computer Networks (Elsevier)

Journal, 38(4):393–422, March 2002.

[10] Ian F. Akyildiz and Xudong Wang. A survey on wireless mesh networks.

IEEE Communications Magazine, 43(9):S23–S30, September 2005.

[11] Ian F. Akyildiz, Xudong Wang, and Weilin Wang. Wireless mesh networks:

A survey. Computer Networks (Elsevier) Journal, 47:445–487, March 2005.

[12] J. N. Al-Karaki and A.E. Kamal. Routing techniques in wireless sensor

networks: A survey. IEEE Wireless Communications, 11(6):6–28, 2004.

[13] David G. Andersen, Alex C. Snoeren, and Hari Balakrishnan. Best-path vs.

multi-path overlay routing. In Internet Measurement Conference, October

2003.

[14] Hakim Badis and Khaldoun Al Agha. A distributed algorithm for multiple-

metric link state QoS routing problem. In International Workshop On

Mobile and Wireless Communications Networks, October 2003.

[15] Hakim Badis and Khaldoun Al Agha. QOLSR multi-path routing for mo-

bile ad hoc networks based on multiple metrics. In Vehicular Technology

Conference, May 2004.

[16] Hakim Badis and Khaldoun Al Agha. QOLSR, QoS routing for ad hoc wire-

less networks using OLSR. European Transactions on Telecommunications,

15(4), 2005.

BIBLIOGRAPHY 202

[17] Hakim Badis, Anelise Munaretto, Khaldoun Al Agha, and Guy Pujolle.

QoS for ad hoc networking based on multiple-metric: Bandwidth and de-

lay. In International Workshop On Mobile and Wireless Communications

Networks, October 2003.

[18] Hakim Badis, Anelise Munaretto, Khaldoun Al Agha, and Guy Pujolle.

Optimal path selection on a link state QoS routing. In Vehicular Technology

Conference, May 2004.

[19] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics,

16(1):87–90, 1958.

[20] Dimitri P. Bertsekas and Robert G. Gallager. Distributed asynchronous

Bellman-Ford algorithm. In Data Networks, chapter 5.2.4, pages 325–333.

Prentice Hall, Englewood Cliffs, 1987.

[21] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An

Architecture for Differentiated Services (RFC 2475). IETF, December 1998.

[22] Azzedine Boukerche and Mirela Sechi M. Annoni Notare. Routing in mobile

and wireless ad hoc networks. Journal of Parallel and Distributed Comput-

ing, 63(2):107–109, February 2003.

[23] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet

Architecture: an Overview (RFC 1633). IETF, June 1994.

[24] brian P. Crow, Indra Widjaja, Jeong Geun Kim, and Prescott T. Sakai.

IEEE 802.11 wireless local area networks. IEEE Communications Magazine,

35(9):116–126, September 1997.

[25] Raffaele Bruno, Marco Conti, and Enrico Gregori. WLAN technologies for

mobile ad hoc networks. In Proceedings of the 34th Hawaii International

Conference on System Sciences, January 2001.

[26] Dazhi Chen and Pramod K. Varshney. QoS support in wireless sensor

networks: A survey. In Proceedings of the 2004 International Conference

on Wireless Networks (ICWN 2004), June 2004.

BIBLIOGRAPHY 203

[27] S. Chen and K. Nahrstedt. Distributed quality-of-service routing in ad hoc

networks. IEEE Journal on Selected Areas in Communications, 17(8):1488–

1505, August 1999.

[28] Tsu-Wei Chen and Mario Gerla. Global state routing: A new routing

scheme for ad hoc wireless networks. In IEEE International Conference on

Communications, pages 171–175, June 1998.

[29] Yuh-Shyan Chen, Yu-Chee Tseng, Jang-Ping Sheu, and Po-Hsuen Kuo.

On-demand, link-state, multi-path QoS routing in a wireless mobile ad-hoc

network. Computer Communications, 27(1):27–40, 2004.

[30] Ching-Chuan Chiang, Hsiao-Kuang Wu, Winston Liu, and Mario Gerla.

Routing in clustered multihop, mobile wireless networks with fading chan-

nel. In IEEE Singapore International Conference on Networks, SICON’97,

pages 197–211, April 1997.

[31] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, A. Qayyum, and L. Vi-

ennot. Optimized link state routing protocol for ad hoc networks. In Pro-

ceedings of IEEE INMIC 2001, pages 62–68, December 2001.

[32] Douglas E. Comer. Internetworking with TCP/IP Vol. 1 - Principles, Pro-

tocols, and Architectures, chapter 29, pages 539–551. Prentice Hall, 4 edi-

tion, 2000.

[33] Douglas E. Comer. Internetworking with TCP/IP Vol. 1 - Principles, Pro-

tocols, and Architectures, chapter 14, pages 253–167. Prentice Hall, 4 edi-

tion, 2000.

[34] Douglas E. Comer. Internetworking with TCP/IP Vol. 1 - Principles, Pro-

tocols, and Architectures, chapter 16, pages 293–315. Prentice Hall, 4 edi-

tion, 2000.

[35] Douglas E. Comer. Internetworking with TCP/IP Vol. 1 - Principles, Pro-

tocols, and Architectures, chapter 8, pages 115–121. Prentice Hall, 4 edition,

2000.

BIBLIOGRAPHY 204

[36] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, chapter 24, pages 580–619. MIT Press

and McGraw-Hill, 2 edition, 2001.

[37] Sylwia Van den Heuvel-Romaszko and Chris Blondia. A survey of MAC

protocols for ad hoc networks and IEEE 802.11. In Proceedings of 4th

National Conference MISSI ’04, pages 23–33, 2004.

[38] Edsger Wybe Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1:269–271, 1959.

[39] Rohit Dube, Cyinthia D. Rais, Kuang-Yeh Wang, and Satish K. Tripathi.

Signal stability based adaptive routing (SSA) for ad hoc mobile networks.

IEEE Personal Communications, 4(1):36–45, February 1997.

[40] E.S. Elmallah, H. S. Hassanein, and H. M. AboElFotoh. Supporting QoS

routing in mobile ad hoc networks using probabilistic locality and load bal-

ancing. In Global Telecommunications Conference, volume 5, pages 2901–

2906, 2001.

[41] Afshin Fallahi, Ekram Hossain, and Attahiru S. Alfa. QoS and energy trade

off in distributed enegy-limited mesh/relay networks: A queuing analy-

sis. IEEE Transactions on Parallel and Distributed Systems, 17(6):576–592,

June 2006.

[42] Karoly Farkas, Dirk Budke, Oliver Wellnitz, Bernhard Plattner, and Lars

Wolf. QoS extensions to mobile ad hoc routing supporting real-time appli-

cations. In Proceedings of the 4th ACS/IEEE International Conference on

Computer Systems and Applications (AICCSA ’06), pages 54–61, March

2006.

[43] Erina Ferro and Francesco Potorti. Bluetooth and Wi-Fi wireless protocols:

A survey and a comparison. IEEE Wireless Communications, 12(1):12–26,

February 2005.

[44] J. J. Garcia-Luna-Aceves and Marcelo Spohn. Source-tree routing in wire-

less networks. In Proceedings of the Seventh Annual International Confer-

ence on Network Protocols, page 273, 1999.

BIBLIOGRAPHY 205

[45] Zygmunt J. Haas and Marc R. Pearlman. The performance of a new routing

protocol for the reconfigurable wireless networks. In IEEE International

Conference on Communications, pages 156–160, June 1998.

[46] Tian He, John A. Stankovic, Chenyang Lu, and Tarek Abdelzaher. SPEED:

A stateless protocol for real-time communication in sensor networks. In

Proceedings of the 23rd International Conference on Distributed Computing

Systems, pages 46–55, May 2003.

[47] Yan He and Hussein Abdel-Wahab. HQMM: A hybrid QoS model for mobile

ad-hoc networks. In Proceedings of the 11th IEEE Symposium on Computers

and Communications (ISCC’06), pages 194–200, 2006.

[48] C. Hedrick. Routing Information Protocol (RFC 1058). IETF, June 1988.

[49] Y.-K. Ho and R.-S. Liu. On demand QoS-based routing protocol for ad hoc

mobile wireless networks. In Proceedings of the 5th IEEE Symposium on

Computers and Communications (ISCC), pages 560–565, 2000.

[50] Chia-Hao Hsu, Yu-Liang Kuo, E.H.-K. Wu, and Gen-Huey Chen. QoS

routing in mobile ad hoc networks based on the enhanced distributed co-

ordination function. In Vehicular Technology Conference, volume 4, pages

2663–2667, September 2004.

[51] Chenn-Jung Huang, Wei Lai, Yi-Ta Chuang, and Sheng-Yu Hsiao. A dy-

namic alternate path QoS enabled routing scheme in mobile ad hoc net-

works. International Journal of Wireless Information Networks, 14(1):1–16,

March 2007.

[52] Atsushi Iwata, Ching-Chuan Chiang, Guangyu Pei, Mario Gerla, and Tsu-

Wei Chen. Scalable routing strategies for ad hoc wireless networks. IEEE

Journal on Selected Areas in Communications, 17(8):1369–1379, August

1999.

[53] P. Jacquet, A. Laouiti, P. Minet, and L. Viennot. Performance analysis

of OLSR multipoint relay flooding in two ad hoc wireless network models.

Technical Report 4260, INRIA, 2001.

BIBLIOGRAPHY 206

[54] Philippe Jacquet, Anis Laouiti, Pascale Minet, and Laurent Viennot. Per-

formance of multipoint relaying in ad hoc mobile routing protocols. In

NETWORKING 2002, pages 387–398, April 2002.

[55] Mario Joa-Ng and I-Tai Lu. A peer-to-peer zone-based two-level link state

routing for mobile ad hoc networks. IEEE Journal on Selected Areas in

Communications, 17(8):1415–1425, August 1999.

[56] David B. Johnson. Routing in ad hoc networks of mobile hosts. In Pro-

ceedings of the Workshop on Mobile Computing Systems and Applications,

pages 158–163, December 1994.

[57] David B. Johnson, David A. Maltz, and Josh Broch. DSR: The dynamic

source routing protocol for multihop wireless ad hoc networks. In Charles E.

Perkins, editor, Ad Hoc Networking, chapter 5, pages 139–172. Addison-

Wesley, 2001.

[58] Lestor R. Ford Jr. and D. R. Fulkerson. Flows in Networks. Princeton

University Press, 1962.

[59] Thanasis Karapantelakis and Giorgos Iacovidis. Experimenting with real

time applications in an IEEE 802.11b ad hoc network. In Proceedings of the

The IEEE Conference on Local Computer Networks, pages 554–559, 2005.

[60] S. Kumar, V. S. Raghavan, and J. Deng. Medium access control protocols

for ad-hoc wireless networks: A survey. Elsevier Ad Hoc Networks Journal,

4(3):326–258, May 2006.

[61] Sathiyamurthy Kuppuswamy, N. Sreenath, and S. Amith. A distance vector

routing protocol for real-time traffic in ad hoc networks. In 2nd Interna-

tional Conference on Technology, Knowledge, and Society, page December,

2005.

[62] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down

Approach Featuring the Internet, chapter 7, pages 565–643. Pearson Edu-

cation, Inc., 3 edition, 2005.

BIBLIOGRAPHY 207

[63] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down

Approach Featuring the Internet, chapter 4, pages 351–370. Pearson Edu-

cation, Inc., 3 edition, 2005.

[64] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down

Approach Featuring the Internet, chapter 6, pages 503–529. Pearson Edu-

cation, Inc., 3 edition, 2005.

[65] A. Laouiti, A. Qayyum, and L. Viennot. Multipoint relaying: An efficient

technique for flooding in mobile wireless networks. In 35th Annual Hawaii

International Conference on Systems Sciences (HICSS ’02), 2002.

[66] Seoung-Bum Lee, Gahng-Seop Ahn, Xiaowei Zhang, and Andrew T. Camp-

bell. INSIGNIA: An IP-based quality of service framework for mobile ad hoc

networks. Journal of Parallel and Distributed Computing, 60(4):374–406,

April 2000.

[67] Sung-Ju Lee and Mario Gerla. Split multipath routing with maximally

disjoint paths in ad hoc networks. In IEEE International Conference on

Communications, pages 3201–3205, June 2001.

[68] R. Leung, J. Liu, E. Poon, A. Chan, and B. Li. MP-DSR: A QoS-aware

multi-path dynamic source routing protocol for wireless ad-hoc networks.

In Proceedings of the 26th Annual IEEE Conference on Local Computer

Networks (LCN 2001), pages 132–141, 2001.

[69] W.-H. Liao, Y.-C. Tseng, J.-P. Sheu, and S.-L. Wang. A multi-path QoS

routing protocol in a wireless mobile ad hoc network. In Proceedings of

IEEE ICN ’01: International Conference on Networking, Part II, pages

158–167, July 2001.

[70] C.-R. Lin. On-demand QoS routing in multihop mobile networks. In Pro-

ceedings of IEEE INFOCOM 2001, pages 1735–1744, April 2001.

[71] C.-R. Lin and J.-S. Liu. QoS routing in ad hoc wireless networks. IEEE

Journal on Selected Areas in Communications, 17(8):1426–1438, August

1999.

BIBLIOGRAPHY 208

[72] Chenyang Lu, Brian Blum, Tarek Abdelzaher, John Stankovic, and Tian

He. RAP: A real-time communication architecture for large-scale wireless

sensor networks. In Real-Time Technology and Applications Symposium,

September 2002.

[73] G. Malkin. RIP Version 2 (RFC 2453). IETF, November 1998.

[74] Mahesh K. Marina and Samir R. Das. On-demand multipath distance

vector routing in ad hoc networks. In IEEE International Conference on

Network Protocols, pages 14–23, 2001.

[75] Prasant Mohapatra, Jian Li, and Chao Gui. QoS in mobile ad hoc networks.

IEEE Wireless Communications, 10(3):44–52, June 2003.

[76] Stephen Mueller, Rose P. Tsang, and Dipak Ghosal. Multipath routing in

mobile ad hoc networks: Issues and challenges. In IEEE International Sym-

posium on Modeling, Analysis, and Simulation of Computer and Telecom-

munication Systems - Tutorials ’03, pages 209–234, 2003.

[77] Anelise Munaretto, Hakim Badis, Khaldoun Al Agha, and Guy Pujolle.

A link-state QoS routing protocol for ad hoc networks. In International

Workshop On Mobile and Wireless Communications Networks, September

2002.

[78] Shree Murthy and J. J. Garcia-Luna-Aceves. An efficient routing protocol

for wireless networks. ACM Mobile Networks Applications Journal, Special

Issue on Routing in Mobile Communications, 1(2):183–197, November 1996.

[79] Dang-Quan Nguyen and Pascale Minet. QoS support and OLSR routing in

a mobile ad hoc network. In 5th International Conference on Networking

and the International Conference on Systems (ICN / ICONS / MCL 2006),

page 74, April 2006.

[80] Vincent D. Park and M. Scott Corson. A highly adaptive distributed routing

algorithm for mobile wireless networks. In Proceedings of the IEEE Con-

ference on Computer Communications, INFOCOM’97, pages 1405–1413,

April 1997.

BIBLIOGRAPHY 209

[81] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir Das. Ad Hoc

On Demand Distance Vector (AODV) Routing (RFC 3561). IETF.

[82] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-

sequenced distance-vector routing (DSDV) for mobile computers. In Pro-

ceedings of the ACM SIGCOMM ’94 Conference on Communications Ar-

chitectures, Protocols and Applications, pages 234–244, August 1994.

[83] Charles E. Perkins and Elizabeth M. Royer. Ad hoc on-demand distance

vector routing. In Proceedings of the 2nd IEEE Workshop on Mobile Com-

puting Systems and Applications, pages 90–100, February 1999.

[84] Charles E. Perkins, Elizabeth M. Royer, and Samir Das. Quality of Service

for Ad hoc On-Demand Distance Vector Routing, July 2000. IETF Internet

Draft, draft-ietf-manet-aodvqos-00.txt. Work in progresss.

[85] Dmitri D. Perkins and Herman D. Hughes. A survey on quality-of-service

support for mobile ad hoc networks. Wireless Communications and Mobile

Computing, 2(5):503–513, September 2002.

[86] J. Raju and J. J. Garcia-Luna-Aceves. Efficient on-demand routing using

source-tracing in wireless networks. In IEEE Globecom, 2000.

[87] Ram Ramanathan and Jason Redi. A brief overview of ad hoc networks:

Challenges and directions. IEEE Communications Magazine, 10(5):20–22,

May 2002.

[88] S. Ramanathan and Martha Steenstrup. A survey of routing techniques

for mobile communications networks. Baltzer/ACM Mobile Networks and

Applications, 1(2):89–104, 1996.

[89] Elizabeth M. Royer and Chai-Keong Toh. A review of current routing proto-

cols for ad hoc mobile wireless networks. IEEE Personal Communications,

6(2):46–55, April 1999.

[90] Cesar Santivanez, Ram Ramanathan, and Ioannis Stavrakakis. Making

link-state routing scale for ad hoc networks. In Proceedings of the ACM

BIBLIOGRAPHY 210

International Symposium on Mobile Ad Hoc Networking and Computing

(ACM MOBIHOC ’01), pages 22–32, October 2001.

[91] Nityananda Sarma and Sukumar Nandi. Enhancing QoS support in mo-

bile ad hoc networks. In Khaled Elleithy, Tarek Sobh, Ausif Mahmood,

Magued Iskander, and Mohammad Karim, editors, Advances in Computer,

Information, and Systems Sciences, and Engineering: Proceedings of IETA

2005, TeNe 2005, EIAE 2005, pages 268–274. Springer Netherlands, 2006.

[92] Yan-Tai Shu, Guang-Hong Wang, Lei Wang, and Oliver W. W. Yang. Pro-

visioning QoS guarantee by multipath routing and reservation in ad hoc

networks. Journal of Computer Science and Technology, 19(2):128–137,

March 2004.

[93] Raghupathy Sivakumar, Prasun Sinha, and Vaduvur Bharghavan. CEDAR:

A core-extraction distributed ad hoc routing algorithm. IEEE Journal on

Selected Areas in Communications, 17(8):1454–1465, August 1999.

[94] Chai-Keong Toh. Associativity based routing for ad hoc mobile networks.

Wireless Personal Communications Journal, Special Issue on Mobile Net-

working and Computing Systems, 4(2):130–139, March 1997.

[95] Andras Varga. Parametrized topologies for simulation programs. In Pro-

ceedings of the Western Multiconference on Simulation (WMC ’98) and

Communication Networks and Distributed Systems (CNDS ’98), January

1998.

[96] Andras Varga. The OMNeT++ discrete event simulation system. In Pro-

ceedings of the European Simulation Multiconference (ESM 2001), June

2001.

[97] Andras Varga. OMNeT++. IEEE Network Interactive, 16(4), July 2002.

In the column Software Tools for Networking.

[98] Andras Varga. OMNet++ Community Site, 2007.

URL:<http://www.omnetpp.org/> (accessed 27 Jul 2007).

BIBLIOGRAPHY 211

[99] Lei Wang, Yantai Shu, Miao Dong, Lianfang Zhang, and Oliver W. W.

Yang. Adaptive multipath source routing in ad hoc networks. In IEEE

International Conference on Communications, pages 867–871, June 2001.

[100] Kui Wu and Janelle J. Harms. Performance study of a multipath rout-

ing method for wireless mobile ad hoc networks. In 9th IEEE Interna-

tional Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, pages 99–107, 2001.

[101] Hannan Xiao, Kee Chaing Chua, and Khoon Guan Winston Seah. Quality

of service models for ad hoc wireless networks. In Mohammad Ilyas and

Richard C. Dorf, editors, The Handbook of Ad Hoc Wireless Networks, pages

467–482. CRC Press, Inc., 2003.

[102] Hannan Xiao, Khoon Guan Winston Seah, Anthony Lo, and Kee Chaing

Chua. A flexible quality of service model for mobile ad-hoc networks. Ve-

hicular Technology Conference Proceedings, 1:445–449, May 2000.

[103] Shugong Xu and Tarek Saadawi. Does the IEEE 802.11 MAC protocol

work well in multihop wireless ad hoc networks? IEEE Communications

Magazine, 39(6):130–137, June 2001.

[104] Qi Xue and Aura Ganz. Ad hoc QoS on-demand routing (AQOR) in mobile

ad hoc networks. Journal of Parallel and Distributed Computing, 63(2):154–

165, 2003.

[105] Zhenqiang Ye, Srikanth V. Krishnamurthy, and Satish K. Tripathi. A

framework for reliable routing in mobile ad hoc networks. In IEEE INFO-

COM 2003 - The Conference on Computer Communications, pages 270–

280, March 2003.

[106] Chi-Hsiang Yeh. TSD-CDMA: A QoS MAC protocol for 4G integrated mo-

bile wireless systems. In The IEEE Symposium on Computers and Com-

munications (ISCC ’03), pages 930–935, 2003.

[107] Chi-Hsiang Yeh and Tiantong You. A QoS MAC protocol for differentiated

service in mobile ad hoc networks. In Proceesings of the 32nd International

Conference on Parallel Processing (ICPP ’03), pages 349–, 2003.

BIBLIOGRAPHY 212

[108] Tiantong You, Hossam S. Hassanein, and Chi-Hsiang Yeh. Controllable fair

QoS-based MAC protocols for ad hoc wireless networks. In Proceedings of

the 33rd International Conference on Parallel Processing (ICPP ’04), pages

21–28, 2004.

[109] Tiantong You, Chi-Hsiang Yeh, and Hossam Hassanein. DRCE: A high

throughput QoS mac protocol for wireless ad hoc networks. In Proceed-

ings of the 10th IEEE Symposium on Computers and Communications

(ISCC’05), pages 671–676, 2005.

[110] M. Younis, K. Akkaya, M. Eltowiessy, and A. Wadaa. On handling QoS

traffic in wireless sensor networks. In Proceedings of the International Con-

ference HAWAII International Conference on System Sciences (HICSS-37),

January 2004.

[111] Xukai Zou, Byrac Ramamurthy, and Spyros Magliveras. Routing techniques

in wireless ad hoc networks - classification and comparison. In Proceedings of

the 6th World Multiconference on Systemics, Cybernetics, and Informatics,

pages 352–357, July 2001.

Appendix A

Module Definitions

You may find NED definitions of the three most important modules in our sim-

ulation model here.

Module AdhocNetwork
1 import

2 "MyMobileHost",

3 "MACTable",

4 "ChannelControl",

5 "FlowController",

6 "CentralNode";

7

8 module AdhocNetwork

9 parameters:

10 sizeX : numeric,

11 sizeY : numeric,

12 nodeCount : numeric;

13

14 submodules:

15 channelcontrol : ChannelControl;

16 parameters:

17 playgroundSizeX = sizeX,

18 playgroundSizeY = sizeY;

19 display:

20 "p=60,50;i=block/transport";

21

22 hosts : MyMobileHost[nodeCount];

23 parameters:

24 hostId = index + 1;

25

26 macTable : MACTable;

213

APPENDIX A. MODULE DEFINITIONS 214

27 parameters:

28 size = nodeCount;

29 display:

30 "p=140,50;i=block/table2";

31

32 flowController : FlowController;

33 parameters:

34 hostCount = nodeCount;

35 display:

36 "p=220,50;i=block/dispatch";

37

38 centralNode : CentralNode;

39 display:

40 "p=300,50;i=block/join";

41

42 connections nocheck:

43 endmodule

44

45 network adhocnetwork : AdhocNetwork

46 endnetwork

Module MyMobileHost
1 // import the necessary .ned files

2 import

3 "NotificationBoard",

4 "BasicMobility",

5 "Ieee80211NicAdhoc",

6 "MyRouter",

7 "TrafficGen";

8

9 module MyMobileHost

10 parameters:

11 mobilityType : string,

12 hostId : numeric const;

13 gates:

14 in: radioIn, trafficIn;

15 submodules:

16 notificationBoard: NotificationBoard;

17 display: "i=block/control";

18 mobility: mobilityType like BasicMobility;

19 display: "i=block/wheelbarrow";

20 wlan: Ieee80211NicAdhoc;

21 display: "i=device/card";

22 router: MyRouter;

23 parameters:

24 nodeId = hostId;

25 display: "i=abstract/router2";

26 trafficGen: TrafficGen;

27 parameters:

28 myId = hostId;

APPENDIX A. MODULE DEFINITIONS 215

29 display: "i=block/source";

30 connections nocheck:

31 trafficGen.outGate --> router.fromUpper;

32 router.toLower --> wlan.uppergateIn;

33 router.fromLower <-- wlan.uppergateOut;

34 radioIn --> wlan.radioIn;

35 trafficIn --> trafficGen.inGate;

36 endmodule

Module MyRouter
1 simple MyRouter

2 parameters:

3 wholeK : numeric const,

4 nodeId : numeric const;

5 gates:

6 in: fromUpper, fromLower;

7 out: toLower;

8 endsimple

Appendix B

Data Types used in Message

Definitions

Several header files for data types used in message definitions are provided here.

LSMsgContent.h
1 // File: LSMsgContent.h

2

3 // Header file for LSMsgContent class

4

5 // Copyright (C) Gokce Gorbil, 2007

6 // Bilkent University, Computer Engineering Dept.

7

8 #pragma once

9

10 #ifndef LSMSGCONTENT_H_

11 #define LSMSGCONTENT_H_

12

13 #include "IncrementalMsg.h"

14 #include <vector>

15

16 using std::vector;

17

18 class LSMsgContent

19 {

20 public:

21 // data members

22 static const int INCREMENTAL = 4;

23 static const int WHOLE = 5;

24

216

APPENDIX B. DATA TYPES USED IN MESSAGE DEFINITIONS 217

25 // contructors etc

26 LSMsgContent();

27 LSMsgContent(const int s, const int t);

28 LSMsgContent(const LSMsgContent &);

29 virtual ~LSMsgContent();

30

31 // methods

32 int getSource() const;

33 int getType() const;

34 long getBitLength() const;

35 vector<int>* getNeighborsPtr() const;

36 vector<IncrementalMsg>* getMsgsPtr() const;

37

38 void setSource(const int s);

39 void setType(const int t);

40 void addToNeighbors(const int n);

41 void addToMsgs(IncrementalMsg &msg);

42

43 // overloaded operators

44 const LSMsgContent &operator= (const LSMsgContent &);

45 bool operator== (const LSMsgContent &) const; // using source and type

46 bool operator!= (const LSMsgContent &) const; // using source and type

47

48 private:

49 int source;

50 int type;

51 vector<int> *neighborsPtr;

52 vector<IncrementalMsg> *msgsPtr;

53 };

54

55 #endif /*LSMSGCONTENT_H_*/

IncrementalMsg.h
1 // File: IncrementalMsg.h

2

3 // Header file for IncrementalMsg class

4

5 // Copyright (C) Gokce Gorbil, 2007

6 // Bilkent University, Computer Engineering Dept.

7

8 #pragma once

9

10 #ifndef INCREMENTALMSG_H_

11 #define INCREMENTALMSG_H_

12

13 class IncrementalMsg

14 {

15 public:

16 // data members

17 const static int ADD = 454;

APPENDIX B. DATA TYPES USED IN MESSAGE DEFINITIONS 218

18 const static int REMOVE = 455;

19

20 // constructors etc

21 IncrementalMsg();

22 IncrementalMsg(int a, int s, int d);

23 IncrementalMsg(const IncrementalMsg &);

24 virtual ~IncrementalMsg();

25

26 // methods

27 int getAction() const;

28 int getSource() const;

29 int getDest() const;

30

31 void setAction(const int a);

32 void setSource(const int s);

33 void setDest(const int d);

34

35 // overloaded operators

36 const IncrementalMsg &operator= (const IncrementalMsg &);

37 bool operator== (const IncrementalMsg &) const; // using all fields

38 bool operator!= (const IncrementalMsg &) const; // using all fields

39

40 private:

41 int action;

42 int source;

43 int dest;

44 };

45

46 #endif /*INCREMENTALMSG_H_*/

Route.h
1 // File: Route.h

2

3 // Header file for Route class

4

5 // Copyright (C) Gokce Gorbil, 2007

6 // Bilkent University, Computer Engineering Dept.

7

8 #pragma once

9

10 #ifndef ROUTE_H_

11 #define ROUTE_H_

12

13 #include <vector>

14

15 class QoSReq; // forward class declaration

16

17 using std::vector;

18

19 class Route

APPENDIX B. DATA TYPES USED IN MESSAGE DEFINITIONS 219

20 {

21 public:

22 // constructors etc

23 Route();

24 Route(const int t);

25 Route(const int t, const QoSReq &r);

26 Route(const Route &);

27 virtual ~Route();

28

29 // methods

30 int getSource() const;

31 int getDest() const;

32 int getType() const;

33 int getLength() const;

34 long getBitLength() const;

35 int getNextNode(const int id) const;

36 QoSReq* getQoSReq() const;

37 vector<int>* getPath() const;

38

39 void setType(const int t);

40 void setQoSReq(QoSReq &r);

41 void addToPathEnd(const int id);

42 void addToPathFront(const int id);

43 void clearPath();

44

45 void reversePath(Route &) const;

46 bool reversePath(Route &route, const int id) const;

47 void getSubPath(const int startNode, const int endNode, Route &subPath) const;

48 void append(const Route &route);

49 bool checkForLoop() const;

50 int findNodePlace(const int id) const;

51 bool hasSubPath(const int fromNode, const int toNode) const;

52

53 // overloaded operators

54 const Route &operator= (const Route &);

55 bool operator== (const Route &) const; // using source, dest, and type

56 bool operator!= (const Route &) const; // using source, dest, and type

57

58 private:

59 int type;

60 QoSReq *qosReqPtr;

61 vector<int> *pathPtr;

62 };

63

64 #endif /*ROUTE_H_*/

QoSReq.h
1 // File: QoSReq.h

2

3 // Header file for QoSReq class

APPENDIX B. DATA TYPES USED IN MESSAGE DEFINITIONS 220

4

5 // Copyright (C) Gokce Gorbil, 2007

6 // Bilkent University, Computer Engineering Dept.

7

8 #pragma once

9

10 #ifndef QOSREQ_H_

11 #define QOSREQ_H_

12

13 class QoSReq

14 {

15 public:

16 // data members

17 static const int NORMAL = 1983;

18 static const int RTT = 1984;

19 static const int LOSS = 1985;

20 static const int BW = 1986;

21 static const int RTT_AVG = 1987;

22 static const int LOSS_AVG = 1988;

23 static const int BW_AVG = 1989;

24

25 static const float MIN_LOSS_RATE = 0.0; // probability

26 static const float MAX_LOSS_RATE = 1.0; // probability

27 static const float MIN_RTT = 0.0; // in ms

28 static const float MAX_RTT = 60000.0; // in ms

29 static const float MIN_BW = 0.0; // in bits/ses

30 static const float MAX_BW = 110000000.0; // in bits/sec

31

32 // constructors etc

33 QoSReq();

34 QoSReq(const int t);

35 QoSReq(const int t, const float l, const float u);

36 QoSReq(const int t, const float limit);

37 QoSReq(const QoSReq &);

38 virtual ~QoSReq();

39

40 // methods

41 float getLowerLimit() const;

42 float getUpperLimit() const;

43 int getType() const;

44

45 void setLowerLimit(const float f);

46 void setUpperLimit(const float f);

47 void setType(int t);

48

49 // overloaded operators

50 const QoSReq& operator= (const QoSReq &c);

51 bool operator== (const QoSReq &c) const; // using all fields

52 bool operator!= (const QoSReq &c) const; // using all fields

53

APPENDIX B. DATA TYPES USED IN MESSAGE DEFINITIONS 221

54 bool operator< (const QoSReq &c) const; // using lowerLimit

55 bool operator<= (const QoSReq &c) const; // using lowerLimit

56 bool operator> (const QoSReq &c) const; // using lowerLimit

57 bool operator>= (const QoSReq &c) const; // using lowerLimit

58

59 private:

60 float lowerLimit;

61 float upperLimit;

62 int type;

63 };

64

65 #endif /*QOSREQ_H_*/

CostMsgContent.h
1 // File: CostMsgContent.h

2

3 // Header file for CostMsgContent class

4

5 // Copyright (C) Gokce Gorbil, 2007

6 // Bilkent University, Computer Engineering Dept.

7

8 #pragma once

9

10 #ifndef COSTMSGCONTENT_H_

11 #define COSTMSGCONTENT_H_

12

13 #include <vector>

14 #include "LinkCost.h"

15

16 using std::vector;

17

18 class CostMsgContent

19 {

20 public:

21 // constructors etc

22 CostMsgContent();

23 CostMsgContent(const int s);

24 CostMsgContent(const CostMsgContent &);

25 virtual ~CostMsgContent();

26

27 // methods

28 int getSource() const;

29 long getBitLength() const;

30 vector<LinkCost>* getCostsPtr() const;

31

32 void setSource(const int id);

33 void addToCosts(const LinkCost &);

34

35 // overloaded operators

36 const CostMsgContent &operator= (const CostMsgContent &);

APPENDIX B. DATA TYPES USED IN MESSAGE DEFINITIONS 222

37 bool operator== (const CostMsgContent &) const; // using source

38 bool operator!= (const CostMsgContent &) const; // using source

39

40 private:

41 int source;

42 vector<LinkCost> *costsPtr;

43 };

44

45 #endif /*COSTMSGCONTENT_H_*/

LinkCost.h
1 // File: LinkCost.h

2

3 // Header file for LinkCost class

4

5 // Copyright (C) Gokce Gorbil, 2007

6 // Bilkent University, Computer Engineering Dept.

7

8 #pragma once

9

10 #ifndef LINKCOST_H_

11 #define LINKCOST_H_

12

13 class LinkCost

14 {

15 public:

16 // constructors etc

17 LinkCost(); // default constructor

18 LinkCost(const LinkCost &c); // copy constructor

19 LinkCost(const int type, const int dest, const float alpha);

20 virtual ~LinkCost();

21

22 // methods

23 int getType() const;

24 int getDest() const;

25 float getCurrentVal() const;

26 float getAvgVal() const;

27 float getFactorAlpha() const;

28 double getLastUpdateTime() const;

29

30 void setType(const int t);

31 void setDest(const int d);

32 void setCurrentVal(const float v);

33 void setFactorAlpha(const float f);

34 void setLastUpdateTime(const double t);

35

36 // overloaded operators

37 const LinkCost &operator= (const LinkCost &);

38 bool operator== (const LinkCost &) const; // according to dest and type

39 bool operator!= (const LinkCost &) const; // according to dest and type

APPENDIX B. DATA TYPES USED IN MESSAGE DEFINITIONS 223

40

41 bool operator< (const LinkCost &) const; // according to avgVal

42 bool operator> (const LinkCost &) const; // according to avgVal

43 bool operator<= (const LinkCost &) const; // according to avgVal

44 bool operator>= (const LinkCost &) const; // according to avgVal

45

46 private:

47 // data members

48 int type;

49 int dest;

50 float currentVal;

51 float avgVal;

52 float factorAlpha;

53 double lastUpdateTime;

54

55 // methods

56 void calculateAvgVal();

57 };

58

59 #endif /*LINKCOST_H_*/

