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ABSTRACT

SPREADING DYNAMICS IN COMPLEX NETWORKS
WITH APPLICATIONS IN VEHICULAR AD HOC NETWORKS

by Pavlos Basaras
Doctor of Philosophy in Electrical & Computer Engineering
Department of Electrical & Computer Engineering, University of Thessaly, Greece
Assistant Prof. Dimitrios Katsaros, Chairperson

W ith the unprecedented growth during the past decade of different types of social and
enterprise networks, alongside naturally occurring networks in human communities,
society is on the verge of becoming “fully networked.” Recent advances in information

and communications technologies, coupled with the ability to create and store a vast amount of
data on various aspects of human behavior, have made it possible to analyze complex networks.
Studies range from purely graph-theoretic aspects (size and strength of communities, robust-
ness to attacks, growth models, node connectivity, and so on), to more social-theoretic aspects
(for example, homophily and rumor spreading). This research has given rise to computational
social science [153] a new field that leverages the ability to collect and analyze data to reveal
hidden patterns in individual and group activities. Insights into complex networks’ structural
and topological properties have informed work in numerous areas including search engine tech-
nology [171] the development of ad hoc network protocols [138] and detecting and containing
disease outbreaks [136]. Security researchers have likewise used complex network analysis
to study terrorist networks [186] virus propagation over computer networks, and resistance
to cyberattacks. Such analyses typically apply graph theory and involve centrality measures,
shortest-path algorithms, degree distributions, and so on.

In this thesis we study complex networks from the perspective of network science and graph
theory. We employ tools, algorithms and methodologies from the vast literature of network science
to deepen our understanding on network topology and network structure, and emphasize on
dynamical processes that unfold over complex systems, such as the spreading dynamics. We
employ a wide range of popular tools to realize our research interests, and evaluate our proposed
techniques, centralities, algorithms, etc., across all the development phases of our work in both
real and generated networks. We start by studying the topological characteristics of the network
nodes and how topology affects the potential of each node to efficiently spread information
in the network. These super spreaders (influential nodes) where traditionally identified by
means of their connectivity (degree), i.e., nodes that accumulate more connections are more
influential nodes. Additionally the k-shell (or k-core) decomposition of a network exploited several
shortcoming of the degree centrality and proved superior in ranking nodes with respect to
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their true spreading potential. Nonetheless the k-core requires global knowledge of the network
topology and thus is unsuitable for real time applications and dynamically changing networks.
Our work introduced a centrality metric, namely Power Community Index (PCI), that based solely
on local knowledge of a network’s connections, outperformed the state-of-the-art competitors in a
wealth of real complex networks by better identifying influential spreaders.

As a next step we recognized the deployment of the widely established h-index tool as a
centrality metric, and introduced it’s generalization in the domain of multilayer interconnected
networks. Our work proposed a family of centrality metrics based on the h-index methodology of
single networks. We take advantage of the multiple type of connections of a multilayer node, to
efficiently detect such node entities that are strategically positioned in the multilayer network,
e.g., accumulate a large number of connections from many (all) layers. All proposed methodologies
are based on local knowledge of the network topology and are thus ideal for gigantic networks
(e.g., Facebook, Twitter, LinkedIn) and real time applications. We evaluated the performance
of our techniques for identifying influential spreaders in multilayer networks, that is, nodes
that can rapidly spread information to as many layers as possible and as many nodes within
each layer, respectively. We employed a wide range of competitors and their generalization in
multilayer networks, e.g., PageRank, Betweenness, k-core etc. We found that the proposed method
outperformed all competitors by providing a more accurate ranking for the spreading power of
network nodes in real and semi-synthetic multilayer complex networks.

Next, we grasp the probabilistic nature of several networks in real life where connections
are opportunistic. We thus focus on probabilistic complex networks where node connections are
associated with weight values that may correspond to the mutual time spend by users of online
social platforms or cost/gain of transition from one node to another, etc. We proposed a centrality
metric that is based on limited length paths emanating from a node of interest (the focal node)
and combine the weight values that correspond to those weighted interaction paths. We are
thus interested in detecting probabilistic influential spreaders, that is, nodes that can efficiently
disseminate information in weighted/probabilistic complex networks. We evaluated the proposed
technique in a real network of student interactions, and several real complex networks where we
assign the probabilistic link by following different probability distributions.

Following, we study spreading processes in the vehicular network. We focus on reducing
redundant re-transmission in a network of vehicles, by selecting appropriate relay nodes, i.e.,
nodes that on behalf of the sender will further re-broadcast a message. We employ and appropri-
ately modify a centrality metric from complex network theory and evaluate its performance with
the optimized link state protocol (OLSR). The evaluation was conducted in a grid road network
topology with a wealth of parameters regarding the communication range, vehicle velocity, accel-
eration etc. The proposed method outperformed its competitor by informing a significantly larger
fraction of the vehicle nodes.

In the second part of this thesis, we follow a reverse policy and concentrate our efforts in
blocking the outspread of undesired data (memes, rumors, viruses, etc.) in complex networks.
We emphasize on the dynamic nature of spreading processes and try to address our objective
while we follow the “virus” as it progresses through node communications. Most of the so far
proposed techniques focus on static strategies (e.g., prior vaccination), however we believe that
the problem is dynamic in nature and must be addressed appropriately. We proposed an algorithm
that utilizes well studied heuristics from the literature of graphs−based on shortest paths−which
was found to be quite effective in blocking the outspread of the diffusion. The evaluation over a
wide range of real complex network and various simulation parameters, instructs that networks
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can be effectively protected by addressing the problem dynamically.
Next, we study malware propagation in vehicular networks. We propose a distributed solution

for hindering the outspread of a virus by triggering a negating spreading process to counter the
outspread of the malicious propagation. Inspired from complex network theory mechanisms we
introduce two competing spreading process in the vehicular environment, where we try to shield
vehicle nodes from malware propagated through vehicle communications. We utilize the dynamic
nature of the vehicular network with aim to “outrun” the malicious diffusion by circulating among
the vehicle nodes a list of infected (and potentially infected) vehicles and instruct healthy nodes to
shut such communication paths. The evaluation was conducted via simulation in a real city map
(Erlangen of Germany) extracted from openstreetmap. The simulation environment is composed
of various intersection, building interfering with the communication and a wide range of vehicle
and malware specific parameters. Our results illustrate that the proposed method can efficiently
hinder the outspread of a virus until an appropriate patch arrives in the network, e.g., though
cellular communication.

Following on our work in vehicular ad hoc networks we investigate on how routing protocols
are affected by false data injected into the vehicular ecosystem by infected (with malware) vehi-
cles. We employ several attack plans with aim to completely cancel out the benefits derived from
vehicular communications. Particularly we inject fake measurements regarding CO2 emissions
and travel duration of specific road segments with aim to redirect vehicles to specific routes
and create traffic congestion. Subsequently we employed a defense methodology that relies on
vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and infrastructure-to-infrastructure (I2I)
communications, that based on majority rules, successfully filters out fake data running through
the systems communication phases, that is, restore the performance of our routing protocol to
near normal operation.

The literature of social sciences is unimaginably rich and offers a wide range of findings from
several disciplines. For our next part in this dissertation we focused on the friendship paradox,
i.e., your friends have more friends than you do, and on how to utilize it (if possible) in complex
networks. The paradox intuition is introduced because it contradicts people’s common belief that
they have more friends (on average) than their friends do. In real complex networks the notion of
friendship is interpreted as connectivity, and it has been shown in the literature that it holds
for the immediate connections (degree) of the network nodes. First we prove that the paradox
holds not only for the degree centrality but also for a wide range of other centrality metrics as
well (PageRank, Betweenness, Closeness, k-core, h-index, etc.). Additionally we provide solid
proof that the paradox holds also for probabilistic characteristics such as the spreading power of
the network nodes, that is, your immediate connections are more influential spreaders than you.
Finally we examine the paradox paradigm for extended neighborhoods, i.e., two and three hop
distant neighbors, and find that it strongly holds for the two hop neighbors as well. We evaluate
our finding in the concept of sampling methods by selecting a random set of initial spreaders and
evaluate their spreading (and blocking) potential when compared to that of their near neighbors
(one, two and three hop vicinity). Our results on different real complex networks illustrate that
the paradox intuition can straightforwardly be deployed to better identify super spreaders.

Finally, we take a glimpse of the Big Data ecosystem. The vast proliferation of networked
devices has given rise to the era of data and colossal sized networks (in the number of nodes
and connections) are emerging from continuous interactions of networked populations. The
ever increasing magnitude of such network structures, the social networks, pose significant
challenges to the industry and research communities. Hadoop has been widely deployed for
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Big Data analysis, and the advent of solid state disks (SSDs) and their deployment in the
Hadoop environment has been considered. In our work we empirical study the performance
of solid state drives and hard disk drives for social network analysis, particularly in three
directions; finding mutual friends among connected individuals; counting emergent triangle
connection patterns; and finally calculating connected network components. These network/node
characteristics have immediate effect on the spreading dynamics. Our work showed that the
development of ”application profilers” that will try to predict the applications’ read/write pattern
(random/sequential) and then incorporation of them into the Hadoop architecture will help reap
the performance benefits of any current or new storage media.
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ΠΕΡΙΛΗΨΗ

Διάχυση Πληροφορίας σε Σύμπλεκτα Δίκτυα με Εφαρμογές σε Δίκτυα Οχημάτων

από Παύλο Μπασαρά

Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Πανεπιστήμιο Θεσσαλίας, Ελλάδα

Επίκουρος Καθηγητής Δημήτριος Κατσαρός, Πρόεδρος Επιτροπής

Μ
ε την άνευ προηγουμένου ανάπτυξη κατά την τελευταία δεκαετία διαφόρων τύπων κοινω-

νικών και επιχειρηματικών δικτύων, παράλληλα με τα φυσικά δίκτυα στις ανθρώπινες κοι-

νότητες, η σύγχρονη κοινωνία βρίσκεται στα πρόθυρα της «πλήρης δικτύωσης». Οι συνεχόμενες

εξελίξεις στις τεχνολογίες των πληροφοριών και των επικοινωνιών, σε συνδυασμό με τη δυνατότη-

τα δημιουργίας και αποθήκευσης τεράστιου όγκου δεδομένων σχετικά με διάφορες πτυχές της αν-

θρώπινης (ηλεκτρονικής) συμπεριφοράς, κατέστησαν δυνατή την ανάλυση πολύπλοκων/πολυμερών

δικτύων. Οι μελέτες κυμαίνονται από μεθοδολογίες βασισμένες στη θεωρία γράφων (μέγεθος και

δύναμη των κοινοτήτων, ευρωστία σε επιθέσεις, μοντέλα ανάπτυξης δικτύων, συνδεσιμότητα κόμ-

βου κ.ο.κ.), σε πιο κοινωνικο-θεωρητικές πτυχές (για παράδειγμα, ομοφυλία και διάδοση πληρο-

φοριών). Αυτή η έρευνα έχει οδηγήσει στην υπολογιστική κοινωνική επιστήμη, ένα νέο τομέα που

αξιοποιεί την ικανότητα συλλογής και ανάλυσης δεδομένων για την αποκάλυψη κρυφών μοτίβων

σε μεμονωμένες και ομαδικές δραστηριότητες «συνδεδεμένων πληθυσμών». Τα αποτελέσματα της

έρευνας αυτής στα ανερχόμενα πολύπλοκα δίκτυα βρίσκουν εφαρμογές σε πολλούς τομείς, συμπε-

ριλαμβανομένου των τεχνολογιών μηχανών αναζήτησης [171] την ανάπτυξη ad hoc πρωτοκόλλων

δικτύου [138] καθώς και την ανίχνευση και αναστολή της εξάπλωσης κακόβουλου υλικού [136]. Πα-

ράλληλα η έρευνα στα πολυμερή δίκτυα βρίσκει εφαρμογές και στα πλαίσια της ασφάλειας δικτύων,

στα τρομοκρατικά δίκτυα [186] καθώς και στην διάδοση ιών. Παρόμοιες αναλύσεις συνήθως εφαρ-

μόζουν τη θεωρία των γραφημάτων χρησιμοποιώντας μέτρα κεντρικότητας (centrality measures),

αλγόριθμους συντομότερης διαδρομής (shortest paths), κατανομή και διασπορά της συνδεσιμότητας

των κόμβων δικτύου (degree distribution), και ούτω καθεξής.

Στην παρούσα διατριβή μελετάμε τα σύνθετα/πολυμερή δίκτυα από την οπτική γωνία της επι-

στήμης των δικτύων (network science) και της θεωρίας των γραφημάτων (graph theory). Χρησι-

μοποιούμε εργαλεία, αλγορίθμους και μεθοδολογίες από την εκτεταμένη βιβλιογραφία της θεωρίας

γραφημάτων, για να εμβαθύνουμε την γνώση μας στις ιδιότητες και τα διαφορετικά χαρακτηριστι-
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κά των δικτύων (π.χ., την τοπολογία), δίνοντας έμφαση σε δυναμικές διεργασίες που λαμβάνουν

χώρα στο εκάστοτε δίκτυο, όπως για παράδειγμα τη δυναμική διάδοση της πληροφορίας. Χρησιμο-

ποιούμε μια σειρά από διαφορετικά εργαλεία (τα πιο ευρέως διαδεδομένα) για την πραγματοποίηση

της έρευνας μας και την αξιολόγηση των προτεινόμενων τεχνικών, μηχανισμών και αλγορίθμων,

ακολουθώντας ένα κοινό πλαίσιο μελέτης σε όλες τις φάσεις της έρευνας μας σε πραγματικά και

τεχνητά δίκτυα.

Ξεκινάμε μελετώντας τα τοπολογικά χαρακτηριστικά των κόμβων δικτύου και το πως επηρε-

άζουν την ικανότητα του εκάστοτε κόμβου για την αποτελεσματική διάδοση πληροφοριών (δια-

φήμιση προϊόντων, ειδήσεων, κακόβουλου υλικού, κτλ.) πάνω από το δίκτυο. Κόμβοι που μπορούν

να επηρεάσουν ένα μεγάλο πλήθος άλλων κόμβων (συγκρίσιμο με την τάξη μεγέθους του δικτύου)

ονομάζονται κόμβοι σημαίνουσας επιρροής (influential spreaders) στο δίκτυο. ΄Ενα μεγάλο μέρος

της ερευνητικής κοινότητας εστιάζει στον σχεδιασμό τεχνικών και αλγορίθμων για την «εξόρυξη»

σημαντικών κόμβων στα σύγχρονα δίκτυα. Κόμβοι σημαίνουσας επιρροής αναγνωρίζονται σε σχε-

τικές μελέτες με βάση τη συνδεσιμότητα ενός κόμβου (βαθμός κόμβου - degree), δηλ. οι κόμβοι που

συγκεντρώνουν περισσότερες συνδέσεις θεωρούνται πιο σημαντικοί. Η μέθοδος κ-πυρήνα (k-core

decomposition) είναι ακόμη ένα μέτρο κεντρικότητας που χρησιμοποιείται ευρέως για την ανεύρεση

σημαντικών κόμβων στα σύγχρονα δίκτυα. Σχετικά αποτελέσματα αποδεικνύουν ότι η μέθοδος

αυτή είναι πιο αποτελεσματική για την ανεύρεση κόμβων σημαίνουσας επιρροής σε σύγκριση με τη

συνδεσιμότητα (degree) ενός κόμβου. ΄Ομως η μέθοδος κ-πυρήνα απαιτεί σφαιρική/ολική γνώση

της τοπολογίας του κάθε δικτύου, γεγονός που καθιστά την τεχνική ακατάλληλη για εφαρμογές

σε πραγματικό χρόνο ή για δυναμικά μεταβαλλόμενα δίκτυα. Η έρευνα μας σε αυτόν τον τομέα

εισήγαγε ένα νέο μέτρο κετνρικότητας, συγκεκριμένα το Power Community Index (PCI), που βα-

σίζεται αποκλειστικά σε τοπικά τοπολογικά χαρακτηριστικά (τοπική συνδεσιμότητα) του εκάστοτε

κόμβου. Με βάση τις προαναφερθείσες ανταγωνιστικές τεχνικές, η μέθοδος PCI αποδείχθηκε ως

η πιο αποτελεσματική μέθοδος για την εξόρυξη κόμβων σημαίνουσας επιρροής σε μια πληθώρα

πραγματικών δίκτυων και διαφορετικών παραμέτρων για τη διάδοση της πληροφορίας.

Ως επόμενο βήμα εστιάζουμε στο μέτρο κεντρικότητας h-index (ευρέως διαδεδομένο μέτρο

στα μεμονωμένα δίκτυα) και εισάγουμε τη γενικευμένη μορφή του στα πλαίσια των δικτύων με

πολλαπλές συνδέσεις (multilayer networks). Η δουλειά μας ανέπτυξε μια σειρά από μέτρα κε-

ντρικότητας, που στον πυρήνα της χρησιμοποιεί την μεθοδολογία h-index. Εκμεταλλευόμαστε τον

πολλαπλό τύπο συνδέσεων ενός κόμβου πολλαπλών επιπέδων (multilayer node), για την αποτε-

λεσματική ανίχνευση κόμβων που κατέχουν «στρατηγική» θέση στο δίκτυο, π.χ. συγκεντρώνουν

μεγάλο αριθμό συνδέσεων από πολλά (όλα) επίπεδα. Οι προτεινόμενες μεθοδολογίες βασίζονται

στην τοπική γνώση της τοπολογίας (συνδέσεων) του δικτύου και είναι επομένως ιδανικές για

γιγαντιαία δίκτυα (π.χ. Facebook, Twitter, LinkedIn) και εφαρμογές σε πραγματικό χρόνο. Η α-

ξιολόγηση των προτεινόμενων τεχνικών πραγματοποιήθηκε στα πλαίσια της ανεύρερης κόμβων

σημαίνουσας επιρροής σε δίκτυα πολλαπλών συνδέσεων, δλδ. στην εξόρυξη κόμβων που μπορούν

να διαδώσουν αποδοτικά πληροφορία σε όσο το δυνατόν περισσότερα επίπεδα καθώς και σε όσο
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το δυνατόν περισσότερους κόμβους σε κάθε επίπεδο ξεχωριστά. Χρησιμοποιούμε διάφορες αντα-

γωνιστικές μεθόδους που κατανοούν τα διαφορετικά χαρακτηριστικά των κόμβων με ξεχωριστό

τρόπο όπως, π.χ., PageRank, Betweenness, k-core κλπ. Τα αποτελέσματα της έρευνάς μας (σε

πραγματικά και συνθετικά πολυεπίπεδα δίκτυα) αναδεικνύουν την προτεινόμενη μεθοδολογία ως

την πιο κατάλληλη τεχνική για τον πιο ακριβή διαχωρισμό/κατανομή των πολυεπίπεδων κόμβων με

βάση την ικανότητα τους στην διάδοση πληροφορίας σε αυτό τον τύπο δικτύου.

Στη συνέχεια μελετούμε πολυμερή δίκτυα με πιθανολογικές συνδέσεις. Πιο συγκεκριμένα, ε-

στιάζουμε σε πιθανοτικά δίκτυα όπου οι συνδέσεις κόμβων σχετίζονται με κάποια τιμή που α-

ντιστοιχεί στο βάρος ακμής (σύνδεσης) και αντικατοπτρίζει για παράδειγμα τον αμοιβαίο/κοινό

χρόνο που κόμβοι/χρήστες κοινωνικών δικτύων δαπανούν στα μέσα κοινωνικής δικτύωσης ή το

κόστος/κέρδος μετάβασης από έναν κόμβο σε άλλο, και ούτω καθεξής. Σε αυτό τον τύπο δι-

κτύου προτείνουμε ένα νέο μέτρο κεντρικότητας που βασίζεται σε μονοπάτια κόμβων περιορισμένου

μήκους (με αρχή τον εκάστοτε κόμβο) συνδυάζοντας κατάλληλα τα βάρη ακμών που αντιστοιχούν

στις συνδέσεις των μονοπατιών που προκύπτουν. Σε αυτό το κομμάτι της διατριβής εστιάζουμε

στην ανεύρεση κόμβων σημαίνουσας επιρροής σε πιθανολογικά δίκτυα. Τα αποτελέσματα της έρευ-

νας μας δείχνουν ότι το προτεινόμενο μέτρο κεντρικότητας, σε ένα σύνολο πραγματικών δικτύων

με τεχνητά βάρη (διαφορετικών κατανομών) ανιχνεύει πιο αποτελεσματικά κόμβους σημαίνουσας

επιρροής σε δίκτυα με πιθανολογικές συνδέσεις.

Στη συνέχεια της διατριβής, μελετάμε διαδικασίες διάχυσης πληροφορίας σε δίκτυα οχημάτων.

Επικεντρωνόμαστε στο πρόβλημα της μείωσης της πλεονάζουσας αναμετάδοσης μηνυμάτων σε ένα

δίκτυο οχημάτων, επιλέγοντας (με την χρήση μέτρων κεντρικότητας) στρατηγικά κατάλληλους

κόμβους/οχήματα που θα έχουν το ρόλο του αναμεταδότη (relay vehicle nodes), δηλ. κόμβους οι

οποίοι αναλαμβάνουν την εκ νέου μετάδοση μηνυμάτων/πληροφορίας. Στόχος της έρευνας αποτελεί

η διάδοση μηνυμάτων σε όσο το δυνατόν περισσότερα οχήματα στο οδικό δίκτυο. Χρησιμοποιούμε

και κατάλληλα τροποποιούμε ένα μέτρο κεντρικότητας (συγκεκριμένα το control centrality) από

τη θεωρία γράφων για την επιλογή κατάλληλων relay οχημάτων και αξιολογούμε την απόδοσή

του σε σύγκριση με το βελτιστοποιημένο πρωτόκολλο OLSR. Η αξιολόγηση πραγματοποιήθηκε σε

περιβάλλον προσομοίωσης χρησιμοποιώντας διαφορετικές παραμέτρους σχετικά με την εμβέλεια

επικοινωνίας, την ταχύτητα και επιτάχυνση των οχημάτων, την τοπολογία του οδικού δικτύου,

κ.α. Τα αποτελέσματα της έρευνας μας υποδεικνύουν ότι η προτεινόμενη τεχνική υπερτερεί ένα-

ντι της μεθόδου OLSR πετυχαίνοντας καλύτερη μετάδοση στο δίκτυο οχημάτων ενημερώνοντας

μεγαλύτερο τμήμα (περισσότερα οχήματα) του δικτύου.

Στο δεύτερο μέρος της παρούσας διατριβής ακολουθούμε μια αντίστροφη πολιτική, επικε-

ντρώνοντας την έρευνα μας σε σχετικές τεχνικές και αλγορίθμους από την θεωρία γράφων, έχοντας

ως επίκεντρο μελέτης την παρεμπόδιση της διάχυσης πληροφορίας (κακόβουλες φήμες, ιούς, κτλ.)

σε σύγχρονα/πολυμερή δίκτυα. Δίνουμε έμφαση στη δυναμική φύση της διαδικασίας μετάδοσης

ακολουθώντας την διάδοση, π.χ. ενός ιού σε ένα δίκτυο επαφών email, καθώς ο ιός «προχωράει»

μέσω των συνδεδεμένων επαφών. Οι περισσότερες μελέτες εστιάζουν σε στατικές στρατηγικές,
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ωστόσο πιστεύουμε ότι το πρόβλημα είναι δυναμικό/μεταβαλλόμενο και πρέπει να αντιμετωπιστεί

κατάλληλα. Προτείνουμε μια μεθοδολογία που βασίζεται στην δυναμική ανεύρεση συντομότερων

μονοπατιών σε κομμάτια δικτύου που χρήζουν άμεσης προσοχής, ακολουθώντας την μετάδοση

βήμα προς βήμα. Η προτεινόμενη τεχνική ταξινομεί δυναμικά τις εκάστοτε ακμές/συνδέσεις και

αφαιρεί (βάση περιορισμών) ένα μέρος αυτών, με στόχο την μείωση των πιθανών μονοπατιών προς

«υγιείς» κόμβους. Η αξιολόγηση της προτεινόμενης τεχνικής περιλαμβάνει μια μεγάλη ποικιλία

πραγματικών δικτύων και ανταγωνιστικών μεθόδων και αναδεικνύει την υπεροχή της, στην δυνα-

μική παρεμπόδιση της διάδοσης κακόβουλου υλικού.

Στη συνέχεια, εξετάζουμε τη διάδοση ιών στα δίκτυα αυτοκινήτων. Συγκεκριμένα αναγνωρίζου-

με την ανερχόμενη ανάγκη για την προστασία των σύγχρονων/μελλοντικών οχημάτων από ιούς και

προτείνουμε μια κατανεμημένη προσέγγιση για την παρεμπόδιση της εξάπλωσης κακόβουλου λογι-

σμικού μέσω των δυναμικών/ευκαιριακών συνδέσεων που προκύπτουν σε αυτό τον τύπο δικτύου.

Η έρευνα μας έχει τις ρίζες της σε μηχανισμούς της θεωρίας γράφων όπου δύο ανταγωνιστικές

διαδικασίες διάχυσης πληροφορίας−εξάπλωση του ιού & προτεινόμενη μέθοδος−ανταγωνίζονται
πάνω από το δίκτυο για τον ίδιο πόρο, δηλαδή τους κόμβους/οχήματα. Η μέθοδος μας χρησι-

μοποιεί προς όφελος της την δυναμική φύση του δικτύου οχημάτων με σκοπό να ξεπεράσει την

κακόβουλη διάχυση λογισμικού ενημερώνοντας τα «υγιή» οχήματα για την ύπαρξη των μέχρι στιγ-

μής αναγνωρισμένων μολυσμένων (καθώς και πιθανός μολυσμένων) οχημάτων και αντίστοιχα το

κλείσιμο της επικοινωνίας με τα εν λόγω οχήματα. Η αξιολόγηση της προτεινόμενης μεθοδολογίας

πραγματοποιήθηκε σε περιβάλλον προσομοίωσης σε μια πραγματική τοπολογία δρόμου από την

πόλη Ερλάνγκεν της Γερμανίας που αποτελείται από διάφορες διασταυρώσεις, δρόμους με διαφορε-

τικές προτεραιότητες και εμπόδια (π.χ. κτίρια) που παρεμβαίνουν στην επικοινωνία των οχημάτων.

Τα αποτελέσματα της έρευνας μας δείχνουν ότι η προτεινόμενη μέθοδος μπορεί αποτελεσματικά να

μειώσει την εξάπλωση του κακόβουλου λογισμικού στο δίκτυο έως ότου ένα κατάλληλο «φάρμακο»

διανεμηθεί στα οχήματα π.χ. μέσω κυψελοειδούς επικοινωνίας.

Σε συνέχεια της έρευνας μας στα ad hoc δίκτυα οχημάτων εστιάζουμε στην επίδραση της ψευ-

δούς πληροφορίας σε πρωτόκολλα αναδρομολόγησης. Υποθέτουμε την ύπαρξη μολυσμένων (με

κακόβουλο λογισμικό) οχημάτων που εισάγουν στο σύστημα ψευδή πληροφορία για την κυκλοφο-

ριακή κατάσταση στην τοπολογία δρόμου που μελετούμε, και εξετάζουμε το πως αυτό επηρεάζει τις

αποφάσεις αναδρομολόγησης στο πρωτόκολλο. Αρχικά χρησιμοποιούμε διάφορα σχέδια επίθεσης με

σκοπό να καταργήσουμε εντελώς τα οφέλη που παρέχουν οι επικοινωνίες οχημάτων. Συγκεκριμένα

εισάγουμε ψευδείς μετρήσεις στο σύστημα ακολουθώντας διαφορετικές μεθοδολογίες, σχετικά με

τις εκπομπές διοξειδίου του άνθρακα καθώς και την διάρκεια διάσχισης συγκεκριμένων τμημάτων

δρόμου. Απώτερος σκοπός μας είναι η αναδρομολόγηση των οχημάτων σε συγκεκριμένα σημεία της

τοπολογίας δρόμου και η δημιουργία κυκλοφοριακής συμφόρησης. Στην συνέχεια προτείνουμε ένα

μηχανισμό άμυνας ο οποίος βασίζεται στην επικοινωνία οχήματος με οχήμα, οχήματος-υποδομής

και επικοινωνίες υποδομής με υποδομή, χρησιμοποιώντας κατάλληλους κανόνες για τον εντοπισμό

των ψευδών δεδομένων που έχουν εισαχθεί στο σύστημα από μολυσμένα οχήματα. Η προτεινόμενη
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μεθοδολογία αποδείχθηκε ικανή στον να «αντιληφθεί» τα ψευδή δεδομένα και στην επαναφορά του

του πρωτοκόλλου δρομολόγησης σε σχεδόν κανονική λειτουργία.

Η βιβλιογραφία των κοινωνικών επιστημών προσφέρει ένα εκτενές φάσμα ευρημάτων που

βρίσκει ανταπόκριση σε διάφορους επιστημονικούς κλάδους. Στο επόμενο μέρος της παρούσας

διατριβής εστιάζουμε στο παράδοξο της φιλίας (friendship paradox): οι φίλοι σου έχουν (κατά

μέσο όρο) περισσότερους φίλους από εσένα, και στο πως αυτό το κοινωνικό φαινόμενο μπορεί να

χρησιμοποιηθεί στα πολύπλοκα δίκτυα. Η έννοια του «παράδοξου» έγκειται στο γεγονός ότι αντι-

φάσκει την κοινή πεποίθηση των ανθρώπων ότι έχουν περισσότερους φίλους από τους φίλους τους.

Στα σύγχρονα δίκτυα η έννοια της «φιλίας» ερμηνεύεται ως συνδεσιμότητα-επικοινωνία (ακμή), και

έχει αποδειχθεί ότι το παράδοξο ισχύει στα πολυμερή δίκτυα για το βαθμό συνδεσιμότητας (de-

gree) των κόμβων. Σε συνέχεια της έρευνας αυτής αποδεικνύουμε ότι το «παράδοξο» ισχύει ακόμη

για μια σειρά από μέτρα κεντρικότητας που δεν σχετίζονται άμεσα με το βαθμό συνδεσιμότητας

των κόμβων όπως για παράδειγμα η μέθοδος PageRank, Betweenness, Closeness, k-core, h-index

κ.α. Επιπλέον αποδεικνύουμε ότι το παράδοξο ισχύει ακόμη και σε πιθανολογικά χαρακτηριστικά

όπως η δύναμη επιρροής (power of influence) των κόμβων στο δίκτυο, με άλλα λόγια, οι άμεσες

συνδέσεις σου είναι κόμβοι μεγαλύτερης σημαίνουσας επιρροής από εσένα. Τέλος, εξετάζουμε το

παράδοξο όχι μόνο σε σχέση με τις άμεσες συνδέσεις του εκάστοτε κόμβου αλλά επιπρόσθετα και

για πιο μακρινούς γείτονες (2-3 hop) και επιβεβαιώνουμε την ισχύ του παράδοξου και σε αυτές τις

περιπτώσεις. Τα αποτελέσματα της έρευνάς μας μπορούν να χρησιμοποιηθούν άμεσα σε μεθόδους

τυχαίας δειγματοληψίας σημαντικών κόμβων σε γιγαντιαία δίκτυα καθώς και στην σημαντική βελ-

τίωση αλγορίθμων για την ανεύρεση κόμβων σημαίνουσας επιρροής σε σύγχρονα δίκτυα.

Τέλος εστιάζουμε στην επιστήμη των Big Data. Ο συνεχόμενος πολλαπλασιασμός των συ-

σκευών με δυνατότητες επικοινωνίας στην καθημερινή μας ζωή οδήγησε στην σύγχρονη εποχή

των δεδομένων και των δικτύων γιγαντιαίων διαστάσεων (στον αριθμό των κόμβων και των συν-

δέσεων). Συνεπώς η βιομηχανία και οι ερευνητικές κοινότητες βρίσκονται συνεχώς αντιμέτωποι

με νέες προκλήσεις. Το περιβάλλον Hadoop έχει αναπτυχθεί ευρέως για την ανάλυση των Big

Data και η χρήση των αποθηκευτικών «δίσκων στερεάς κατάστασης» (solid state discs) είναι

πολλά υποσχόμενη για εφαρμογή στο κατανεμημένο σύστημα αρχείων του Hadoop. Στην έρευνα

μας εξετάζουμε την απόδοση των μονάδων στερεάς κατάστασης σε σύγκριση με παραδοσιακούς

σκληρούς δίσκους για την ανάλυση σύγχρονων κοινωνικών δικτύων. Συγκεκριμένα εστιάζουμε

σε τρεις κατευθύνσεις: (α) στην ανεύρεση κοινών φίλων μεταξύ συνδεδεμένων χρηστών, (β) στην

καταμέτρηση συνδεσμολογιών τριγώνου καθώς και (γ) στον υπολογισμό των συνδεδεμένων μερών

(connected components) των δικτύων. Τα παραπάνω χαρακτηριστικά συνδέονται άμεσα με την α-

ποδοτική διάδοση της πληροφορίας στα σύγχρονα κοινωνικά δίκτυα. Η έρευνα μας αναδεικνύει την

ανάγκη για δημιουργία προφίλ εφαρμογών, που θα προσπαθήσει να προβλέψει το πρότυπο ανάγνω-

σης/εγγραφής της εκάστοτε εφαρμογής (τυχαία/διαδοχικά), και θα βοηθήσει τη αρχιτεκτονική

Hadoop στον να αποκομίσει τα πλεονεκτήματα απόδοσης οποιουδήποτε τρέχοντος ή νέου μέσου

αποθήκευσης.
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INTRODUCTION

1.1 Motivation

The scientific study of complex networks, i.e., social networks, biological networks, computer

networks, technological networks etc., combines ideas, tools and methodologies from a

wide range of different research areas that includes computer science, mathematics, social

sciences, biology, physics and more [144]. It is an interdisciplinary area of science that sheds

light to networked environments by cross-sharing knowledge and conclusions. The work of the

current thesis presents an extensive study in such networked environments that includes single

networks [77], multilayer networks [61] and networks of vehicles [154]. All these systems will

be thoroughly explained throughout this document from the perspective of network science. A

substantial portion of this dissertation leverages tools from graph theory and epidemiology to

study dynamical processes taking place over various real and simulated networks such as the

spread of information, the outspread of malicious data and the identification of network nodes

that play a crucial role in such processes.

Specifically the present thesis poses and answers−among others−several questions and

challenges: how can we detect nodes-people-vehicles that can spread information rapidly within

a network; Can we detect such potent entities based solely on local knowledge of the network

topology; and thus effectively deal with rapidly changing networks or incomplete knowledge of a

network’s connections; Are those measures both effective, i.e., easily applied, and efficient; How

such local approaches fare against metrics that consider the entire network topology; Can these

measures be redefined to address those questions in more complex structures such as the multilayer

networks; and if so how do they fare; How can the friendship paradox be utilized as a sampling

methodology to detect a group of nodes for maximizing the outspread of information in modern

3
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social networks with minimum computational cost; Alternatively how can we distinguish nodes

capable of stopping or hindering the outspread of undesired data within such networks; Prior to

answering the aforementioned issues we must first take a glimpse in several separate components

that constitute the guiding force of this research, i.e., the networks and network types, employed

tools from graph theory and the spreading models.

Networks
A single network, in its most generic form, is composed of a set of nodes (vertices) connected

physically or logically in pairs by a set of links (edges). Edges can be undirected or directed−in

the sense that a node points to another and the node may be or may not be pointed back−and

may be associated with a weight, that could represent the cost of transmission between nodes or

the amount of data flowing between them, etc. With this definition an outstanding amount of

real life examples emerge; the Internet, Social networks (Facebook, Twitter, etc.), Transportation

networks, Power Grids, Citation networks, Collaboration networks, Neural networks, Biological

networks and so on. Hence it is self explanatory why the research communities from diverse

disciplines dedicated so much effort in the study of such connected structures, i.e., the nodes,

the edges and the pattern of those connections. Evidently, if we are able to gather the necessary

data for the representation of a networked structure, inherent questions arise: how can we use

those data; what conclusions can be made for the system the network represents; and how can

we exploit any emergent network properties related to the practical issues that concern our

particular system?

Figure 1.1: Multiplex network of European airlines.

Single networks however are an oversimplification of more complex systems known as

multilayer interconnected networks [61]. In these structures−unlike single networks−nodes may

be connected with multiple type of connections−each edge type corresponding to a different
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layer−or may be associated with nodes that belong to entirely different networks (different layers)

and thus form what is known as networks of networks. For example the airlines transportation

network is a multilayer network (Figure 1.1) where any two cities (nodes) may be connected

with multiple airline agencies (different type of connections). In this case a network layer is

represented by the edges (airline schedules) of a single ariline agency (e.g., British airways), and

all such layers form the multilayer network. Another example is that of social networks where

a user-node may have accounts in different social platforms (layers) such as Twitter, Facebook,

LinkedIn, etc., and thus be connected to all these networks. The common characteristic of the

aforementioned examples is that the nodes are counterparts of themselves in the different layers,

i.e., the same city or the same user respectively. These networks where nodes are “clones” in the

different layers are also known by another name, that is, multiplex networks [73]. The family

of multilayer networks encompasses a variety of different layered structured networks some of

which are presented in this thesis. These complicated systems are known to the research society

for decades but the massive generalization of the large body of knowledge from graph theory to

multilayer networks is a recent phenomenon.

Figure 1.2: A network of vehicles and road side units.

Finally, thanks to the advances in wireless technologies and the automotive industry, vehicu-

lar ad-hoc networks (VANETs) have become a promising research field. Simply put, it is a group

of vehicles equipped with wireless interfaces, able to communicate with each other and nearby

stationary equipment usually referred to as road side units (RSUs) as depicted in Figure 1.2.

The introduction in the automotive market of vehicles with wireless communication capabilities
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that will allow a vehicle to communicate with other vehicles in vicinity (vehicle-to-vehicle com-

munication, V2V) will bring a revolution in sectors such as vehicle/driver safety [57], Internet

access and entertainment [134]. V2V systems are particularly appealing for the vision of the

“always connected car", because a fully functional V2V system would connect drivers traveling

near each other, allowing a vehicle to accumulate information about what other vehicles are doing

even if the driver can not see them. The prospects of this technology is truly tremendous, from

practically eliminating human casualties, to reducing traffic congestion, or setting up vehicular

computing clouds to exploit the aggregate computing and storage capability of roaming cars.

NHTSA estimates that this technology can prevent up to 592,000 crashes and save 1,083 lives

per year1. The Crash Avoidance Metrics Partnership (CAMP) is already working on creating

common standards and a common technology for automakers to use so as they release fully

functionall vehicles with V2V capability in the next years. The vehicular environment poses

significant challenges to the research community mostly due to the dynamic mobility of vehicles

and potential obstacles−such as buildings−interfering with the communication. Nonetheless, the

vehicular network has attracted huge research attention due to the numerous benefits brought to

the society by the cumulative knowledge build by such a network.

Many aspects of those networked structures are worthy to study. For instance the pattern

of connections between computer nodes in the Internet depict the routes that data take while

traversing the network, whereas connections in social networks illustrate how networked pop-

ulations learn from the opinions of their peers, gather news, as well as phenomena such as

the spread of a disease. Nowadays modern networks have grown enormously large−hundreds

of thousands or even millions of nodes, vertices, actors−and the vast scientific background of

network science has developed an arsenal of measures, metrics and techniques that can help us

study and understand what our network data portray and their properties. The present thesis

has contributed to this body of knowledge by defining and evaluating new measures for single

networks as well as their redefinition for multilayer and vehicular systems.

Centrality Measures
An example of an important and useful class of network measures that has also been part of

the core of this dissertation is that of measures of centrality. Centrality quantifies the importance

of nodes or edges in a networked system and there is a wide range of such measures that

captures different aspects−different interpretations of importance−of a node (or edge). The most

straightforward but very useful metric is the degree centrality which quantifies the number

of incident edges upon a node. Although simple, it has found its use in many applications. Of

particular importance are the hub nodes−nodes with unusually high degree−that play a crucial

role in the functioning of the network, e.g., robustness, when network nodes fail or malfunction,

1http://www.nhtsa.gov/About+NHTSA/Press+Releases/2014/NHTSA-issues-advanced-notice-of-proposed-
rulemaking-on-V2V-communications
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or for the efficient diffusion of information within the network. The geodesic distance for a

pair of nodes−the minimum number of edges in-between two vertices−is also a very popular

measure. Evidently measuring the shortest distances between pairs of vertices is of paramount

importance and has given birth to various measures such as betweenness and closeness centrality.

Betweenness centrality [93] captures the number of shortest paths that traverse a certain

node or in other words, how much a particular vertex falls between others, whereas closeness

centrality [195] quantifies the mean shortest distance from a node to all other nodes. Both

approaches have been used in applications−among others−regarding the spread of information

in social networks. For instance nodes with large closeness index might have better access to

information from other nodes or exert more direct influence towards them, whereas nodes of high

betweenness may have considerable control over the information passing between others.

PageRank [171] is another widely used centrality measure named by the Google web search

corporation and used as a core part for ranking the web-pages of the World Wide Web. Briefly

an important web page is one “pointed” by many important pages which by virtue will have a

large PageRank index. In the literature it has found fertile ground for use in many applications

such as detecting the most important scientific papers in citation networks and has been a

benchmark approach for the devise of other metrics such as TwitterRank for detecting important-

influential Twitter user-accounts. The k-core decomposition [139] of a network is yet another very

popular algorithm that categorizes nodes in cores (shells). In short, it is a pruning mechanism

that removes nodes from the network that are not at least k connected, meaning that all

nodes in the kth shell have at least k degree. It has been widely used for the identification of

influential spreaders in complex networks, has given rise to many other techniques addressing

its disadvantages [18], [105], [122] and has been one of the major competing algorithms for a set

of proposed centrality measures presented in this dissertation.

The µ-Power Community Index (µ-PCI) [77] has been a subject of intensive study in the

present thesis and is a centrality measure that characterizes a node for the density in connections

of both itself and its µ-hop neighbors. In the upcoming chapters the reader will become more

familiar with µ-PCI, its applications in complex networks [150] and its spreading dynamics. It

is an effective−low computation cost−and efficient method for detecting potent nodes in large

complex networked systems that can spread data (information, advertisements, rumors, etc.) to a

large subset of network nodes. The research community has devoted much effort in redefining

centrality measures to fit the domain of multilayer networks: the multiplex PageRank [87],

versatile PageRank [29], multiplex Betweenness [29] and the k-core percolation [48]. Part of

this dissertation also studies the behavior of those redefined metrics, proposes a family of

novel approaches based on µ-PCI for multilayer networks and evaluates their performance for

accelerating spreading processes in both real and generated networked systems.

The centrality measures presented so far is only the tip of the iceberg of an almost unlimited

literature of such metrics and their utilization. The interested reader is referred to [73][29][38]
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and references therein. Among their many applications in real systems, their role in dynamical

processes such as the spreading dynamics has attracted excessive attention from the research

community. Their role as information spreaders (or inhibitors) is at the core of this dissertation

where nodes with large centrality index (e.g., hub nodes) may act as cascade initiators-originators

to accelerate (decelerate) the propagation of information in real complex networks.

Spreading Dynamics
Understanding the spreading dynamics in complex networks to either boost the spreading

of information or stop the outspread of undesired “things” is a core part of study for this disser-

tation. In the literature, spreading phenomena are correlated with the outspread of infectious

diseases from epidemiology and at its core lie the epidemic models. Epidemic modeling is thus

an interdisciplinary research area that has developed a wide variety of approaches ranging

from simple explanatory models to very elaborate stochastic methods and rigorous results [106].

Here, the epidemic modeling metaphor has been introduced to describe a wide array of different

phenomena in real networks such as the spread of information, cultural norms, rumors, social

behavior, malware etc., all such phenomena modeled as a contagion process whose mathematical

description relies on classic epidemic models.

Figure 1.3: Transition probabilities between the different states of various spreading models.

The current thesis is focused in only a few models (the most widely used ones), namely the

Susceptible-Infectious-Recovered (SIR) and the Susceptible-Infectious-Susceptible (SIS) models,

that have also been the core for the development of other newer spreading models. The former

includes three distinct states; the infectious state (I) where a node tries to infect (influence) some

(or all) of its direct neighbors, the susceptible state (S) where a node can be infected (influenced)
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by an I node and the recovered or immune state (R) where nodes cannot be infected (influenced).

For SIS however there are no recovered nodes and hence a node can be either infected or suscep-

tible. In both models the transition between the different states is associated with some given

probability often related to network properties such as the largest eigenvalue of the network’s

adjacency matrix [106]. SIR (like mumps) instructs permanent immunization to the network

nodes and measures how far a virus (meme) will “travel” in a network, i.e., how many nodes

will become influenced, whereas SIS (like flu) quantifies its ability to “preserve” itself within a

network, i.e., whether a meme will manage to keep “interested” a substantial portion of network

nodes or it will eventually loose interest and die out. Other popular models are the SIRS model

where nodes are not permanently immune and hence become susceptible after a period of time or

the Susceptible-Exposed-Infectious-Recovered (SEIR) model where a node after infection remains

in the exposed (pre-infected) state before entering the I state to start its contagious behavior. Fig-

ure 1.3 depicts the transition states of the spreading models. For more details please refer to [106].

Hence, given a network of contacts−whom-links-to-whom−and a set of initially incentivised

(infected) nodes acting as originators of a diffusion process, will a contagious product/meme/virus

spread and become epidemic, i.e., affect a large subset of network nodes, or will it die-out quickly;

What will change if nodes have partial, temporary or permanent immunity; Which are those

topological characteristics that a network node should have to cause an epidemic spreading; Can

centrality metrics be our guide for detecting such influential nodes; These generic questions bind

together several aspects of research conducted in this thesis and will be discussed in detail in the

upcoming chapters.

1.2 Synopsis

In this thesis, we take a trip in network science and graph theory to better understand the

behavior of the systems networks represent. We focus on the structure of networks, and study

dynamical processes taking place on networked environments that bear unique characteristics,

that is, probabilistic, single, multilayer and vehicular networks. A wide range of tools from graph

theory is employed and accompanies the different phases of this dissertation. In Part II we study

how to effectively and efficiently select influential nodes in networked systems, and evaluate

a series of proposed methodologies in real complex networks, for their ability to accelerate the

spreading process. Part III deals with the opposite problem where our objective is to hinder

the outspread of undesired data in complex systems. In Part IV, based on conclusions drawn

from social sciences we propose a strategy for sampling network nodes from networks of colossal

volumes of data (e.g. Twitter, Facebook, LinkedIn, etc.) for the design of better influential node

detection algorithms. Finally in Part V we compare the performance of solid state and hard disk

drives for social network analysis in the Hadoop ecosystem.
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Overall the present thesis has contributed to the body of knowledge in network science in

several domains. Among the various chapters that will be introduced, we make a quick note of

our most significant contributions:

• we proposed a centrality metric for detecting efficient spreaders in complex networks, based

solely on local knowledge of the network topology, and thus suitable for rapidly changing

networks, large scale networks, temporal networks and real time applications. The proposed

metric was evaluated in diverse real network typologies and was rendered superior in

identifying more efficient spreaders compared to the state-of-the-art methodologies. Related

publication [77].

• we generalized the well established h-index [23] algorithm in the domain of multilayer and

multiplex networks. Specifically, a family of centrality metrics have been introduced, with

the h-index methodology imprinted within the core of the proposed methods, each bearing

its own limitation and advantages in the multilayer structure. The proposed techniques,

were evaluated for the identification of influential spreaders, i.e., nodes that can spread

information to as many layers as possible and as many nodes as possible within each layer,

in a wealth of real and synthetic multilayer networks. Related publication [10].

• inspired by the intuition brought by the friendship paradox−your friends have more friends

that you do−we have generalized and empirically shown that the concept of neighbor

superiority [89] also applies for a wide range of centrality metrics, that is, your friends are

more central than you. Furthermore we provide solid proof over a wide range of simulation

results in real complex networks, that the paradox sense, also applies for probabilistic

characteristics such as the ability of nodes to spread information over a network, i.e., your

friends can spread information more efficiently than you. The findings of this study can

straightforwardly be applied for mining efficient spreaders in gigantic real networks and in

designing better influential node detection algorithms. Related work [S1].

Chapters Overview
In Chapter 2 we propose a centrality metric−an amalgam of node degree and betweenness−that

based solely on local knowledge of the network topology, can efficiently rank nodes with respect to

their spreading capability. Its local computation cost, renders the proposed technique appropriate

for real time application and dynamically/rapidly changing networks. The evaluation conducted

in real complex networks, illustrates the superiority of the proposed technique for identifying

more accurately influential spreaders, compared to the state-of-the-art solutions.

Chapter 3 embraces the probabilistic nature of several real world networks where connec-

tions are not static but rather dynamic. The probabilistic characteristic implies that any two

connected nodes share a common “time span” where information can flow between them, e.g.,
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in online social networks, and hence any such link is active only on that duration. Given a real

network, the probabilistic attribute is tuned per network link by following a Zipfian distribution,

providing us the capability to generate various network links, ranging from very weak ties to

very strong ones. Here we introduce a methodology which measures the number and strength

of limited length paths (e.g., 2, 3 and 4 hops) that emanate from each node, and synthesize a

measure of probabilistic importance. The corresponding framework illustrates the dynamicity

of the proposed technique to handle the variability of probabilistic edges and effectively detect

influential spreaders in probabilistic complex networks.

Chapter 4 analyzes information diffusion processes in multilayer interconnected networks

and proposes a family of centrality measures able to rank a multilayer (or multiplex) node, with

respect to its spreading capability in these systems, i.e., its ability to spread information to as

many layers as possible and to as many nodes as possible in each layer. The proposed technique

is a generalization of the well known h-index [23] centrality to multilayer networks and each pro-

posed method poses it’s unique advantages and limitations. The evaluation conducted illustrates

the ability of the proposed methods to detect efficient spreaders in multilayer environments by

outperforming a wide range of competing techniques in real and semi-synthetic networks.

Chapter 5 focuses on the vehicular environment where we search for efficient relay vehicles

that can maximize the outspread of information in a network of vehicles. Each vehicle-node

collects information for its surrounding vehicles with the exchange of regular heartbeat messages.

For each vehicle in range (each neighbor) a vehicle holds information regarding its direction,

its speed, the quality of link between them as well as its neighbor list. A centrality metric that

utilizes the heartbeats information is proposed to create limited length walks (similar to Chapter

3) that emanate from each vehicle and define its importance in the network. The simulation

results in diverse vehicular conditions show that the proposed algorithm can efficiently diffuse

information in a network of vehicles.

Chapter 6 addresses the outspread of malicious information (e.g., a meme, virus, etc.) in

networked populations with aim to hinder its propagation over the network. We shift the problem

to the level of edges, whose removal can mitigate the diffusion of malicious data to the largest

possible extent. We follow the spreading process as it progresses in time, and create limited

length subgraphs, emanating from each newly infected node. In the resultant subgraphs, the

dynamicity of each edge is measured by quantifying the number of shortest paths that traverse

each particular edge within each subgraph. The proposed methodology provides the overall

ranking for those edges that lead to susceptible nodes and are potential candidates for removal

in each spreading step. Our evaluation showed that the proposed mechanism outperforms a set

of competitors in a wealth of real world networks, by more effectively hindering the malicious

propagation, i.e., by protecting more network nodes.

Chapter 7 investigates the propagation of software viruses over a vehicular network. We

propose a distributed solution to block the outspread of the virus within a network of vehicles,
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by initiating a negating spreading process−triggered by a centralized unit and spread across

the network by vehicles−that informs vehicle-nodes for the presence of infected ones. Each

vehicle holds a list of all−so far identified−infected sources as well as a list of potentially infected

vehicles, which are circulated between opportunistic neighbors encountered in the vehicular

environment and block communications between them. The simulations conducted employs a

realistic environment from the city of Erlangen in Germany, with a rich road topology of regular

intersections, and buildings that interfere with the communication. The results illustrate that

the proposed mechanism can efficiently mitigate the outspread of a virus in a vehicular network.

Chapter 8 discusses the performance of vehicular applications in the presence of false data.

Specifically the proposed work is a combination of V2V, V2I, and I2I communications for rerouting

vehicle nodes based on their desired destination, CO2 emissions and potentially congested road

segments along the way. We employ several scenarios, where we inject false data in the proposed

system regarding the road conditions that these malicious vehicles experience, and propose a

defense mechanism based on the cumulative knowledge built from the collaborative vehicles, to

filter out such spurious data. The extensive simulations conducted over various road conditions

and different methods of injecting false data, shows that the proposed mechanism can distinguish

spurious data and restore the performance of the system to its normal behavior.

The research in Chapter 9 employs the friendship paradox (your friends have more friends

than you) into the domain of centrality measures and power of influence. In this study we

empirically show that the paradox intuition applies also for a wide range of centrality metrics,

i.e., your immediate connections have higher centrality than you, as well as in the influence

domain, i.e., your friends are more influential than you. The findings of this investigation can

straightforwardly be used for designing better influential nodes detection algorithms, e.g., by

refraining from selecting as initial spreading nodes those who are neighbors or for estimating the

spreading capability of nodes using their friends’ capability. Our evaluation over a wide range

of real networks supports our claim for employing the paradox intuition (centrality/influence

paradox) for accelerating/decelerating the spreading process.

Chapter 10 performs an empirical evaluation on the performance of solid state drives (SSDs)

against the performance of hard disc drives (HDDs) in the Hadoop environment for the analysis

of social networks. Specifically, the Hadoop platform is used for the processing of big data to

run computationally intensive analytics such as finding mutual friends, counting triangles and

calculating connected components in colossal volumes of network data (e.g., Facebook, Youtube).

The conclusions drawn from our evaluation indicate that blindly adding SSDs to Hadoop is not

an appropriate solution, but rather build components for assessing the type of processing pattern

of the application and then direct the data to the appropriate storage medium.
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Spreading Dynamics in Complex,
Multilayer and Vehicular Networks
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2
ACCELERATING SPREADING PROCESSES IN SINGLE COMPLEX

NETWORKS

Detecting Influential Spreaders in Complex, Dynamic Networks

2.1 Introduction

In this chapter we focus on the problem of influential spreaders—nodes in complex networks

that can spread a message rapidly among other nodes. Early detection of such entities can help

security technologists prevent extended damage to networks against malware or, in the case of

terrorist networks, identify the most important malefactors. To identify influential spreaders,

researchers traditionally have relied on the k-shell index [139], a degree- based measure of

a node’s “coreness.” However, the significant computational overhead of this index makes it

inappropriate for analyzing dynamic networks. We propose an alternative measure, the µ-power

community index, that is an amalgam of coreness and betweenness centrality; µ-PCI is calculated

in a completely localized manner and thus suitable for any kind of network irrespective of its

size or dynamicity [138]. An experimental evaluation of the two values, along with a baseline

measure based solely on node degree, demonstrates µ-PCI’s superiority in detecting influential

spreaders.

Related publication [J3]: Pavlos Basaras, Dimitrios Katsaros, Leandros Tassiulas. Detecting Influential Spreaders
in Complex, Dynamic Networks, IEEE Computer magazine, vol. 46, no. 4, pp. 26-31, April, 2013.
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2.1.1 Motivation

Consider an example in which an attacker installs a virus on a host mobile device, with the

intention of exploiting the host’s connections to spread the malware, and ultimately infect as

many other devices as possible. Assume that all devices comprise a single network with common

administration. Upon detecting the malware, the administrator immediately takes action to limit

its propagation. Possible measures include installing more effective antivirus software to selected

devices, shutting these devices down, or disconnecting them from the rest of the network.

Two well-known cases of malware that exploit mobile devices’ network connections are the

Cabir and Commwarrior-A worms. The former spreads through Bluetooth connections to other

Bluetooth-enabled devices that it can find. The latter was the first worm to propagate via the

Multimedia Messaging Service; it searches through a user’s local address book for phone numbers

and sends MMS messages containing infected files to other users.

Obviously, if the infected devices in our scenario are influential spreaders, they will impact a

large part of the network. This leads to several questions: How fast will the virus spread? Is the

infection rate different in different network topologies? Does the percentage of infected nodes in

the network depend on the node(s) where the infection originated? Do multiple infection starting

points produce a substantially broader infection area? If so, what does this depend on? Which

nodes should the administrator disconnect to stop the propagation?

Researchers who have investigated such questions found that not all nodes in a complex

network have the same potential to propagate a message efficiently [111], [139]. Explanations

for this behavior range from a network’s topological characteristics at global scale—for example,

power-law degree connectivity—to individual nodes’ connectivity patterns.

2.2 Identifying Influential Spreaders

Most studies of influential spreaders have focused on their linkage with other nodes. The problem

has not been described formally but is similar to two others: detecting a network’s central nodes

and selecting the set of nodes that maximize the spread of infection.

Identifying the central nodes in a complex network usually relies on graph-theoretic concepts

of betweenness centrality. Such measures are generally based on a node’s degree or on its geodesic

distance to other nodes [194]. The former category includes degree centrality, spectral centrality,

and coreness, whereas the latter includes closeness, shortest-path, and bridging centrality. Degree-

based centrality measures consider a node prominent if its connections make it visible to the

network’s other nodes. Intuitively, a node is prominent if it is adjacent to many other prominent

nodes. The latter family of centrality measures exploits the shortest path between nodes.

The spread maximization problem has been proved to be NP-hard in threshold networks [183],

and researchers have proposed several greedy algorithms to solve it—for example, there are

simple and efficient algorithms that adopt the voter model.
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Recent studies of social networks have considered other node features besides connectivity

such as age, gender, and marital status [107]. Another feature is trustworthiness, which can

affect a decision to follow a link to malware. Examples of malware that exploited trust to spread

across a social network include the Skype and Koobface worms.

2.3 Balancing Betweenness and Coreness

Maksim Kitsak and his colleagues found that the degree of a node is not a good indicator of its

ability to spread a message to a sufficiently large part of the network [139]. Furthermore their

work showed that measures based on betweenness centrality are distorted by the degree-1 node,

which increases the centrality index of the sole node connected to them. Our own research found

that exploiting betweenness centrality has several disadvantages for disseminating messages

in wireless ad hoc networks [138]. Relying on a degree-1 node results in overestimating the

spreading capabilities of a node connected to it. Moreover, based on a detailed investigation

of the spreading capabilities of high-degree nodes in various complex networks, we found that

high-degree nodes are indeed often good spreaders.

Kitsak’s team argued that the node’s position in a k-shell decomposition (see Appendix A.2) of

the network’s graph is a better way of quantifying influential spreaders, and went on to verify

this hypothesis in the context of disease propagation [139]. However, subsequent research proved

that a node’s spreading capabilities in the context of rumor spreading do not depend on its

k-core index [109]. The “K-Shell Decomposition” of a network has two other major shortcomings.

First, it has significant computational overhead, rendering it unsuitable for dynamic networks.

Second, it is impossible to guarantee a monotonic relationship between the k-shell index and a

node’s spreading capability, which causes major problems when there are not enough resources

to expend on node vaccination.

We have developed a method that quantifies spreading capabilities in a completely localized

manner, making it suitable for any kind of network irrespective of size or dynamicity [138]. This

metric, µ-PCI, balances the principles of betweenness centrality—it considers nodes that lie on

many communicating paths between pairs of nodes—and the transitive network density implied

by the coreness measure. The metric is computed as follows: the µ-PCI of a node v is equal to k,

such that there are up to µ × k nodes in the µ-hop neighborhood of v with degree greater than or

equal to k, and the rest of the nodes in that neighborhood have a degree less than or equal to k. The

goal is to detect nodes located in dense areas of the network and thus likely influential spreaders.

2.4 Performance Evaluation

To evaluate our technique’s accuracy, we compared it to the k-shell decomposition and a base-

line measure based solely on the node degree, over several complex networks. Here, we present the

most significant findings from two well-known networks, CA-CondMat and CA-AstroPh—collaboration
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networks from the e-print arXiv, covering condensed matter physics and astrophysics, respec-

tively—from the Stanford Network Analysis Platform [65]. Table 2.1 summarizes the networks’

main characteristics.

Table 2.1: Complex Network Attributes

Network Type No. of Nodes No. of Links Infection Probability (%)
CA-CondMat Sparse 23133 186936 8
CA-Astroph Dense 18772 396160 4

We used the Susceptible-Infected-Recovered (see Appendix A.1) model (SIR) to investigate

the spreading process. For the spreading probability, namely λ, we employ relatively small values

to highlight the importance of influential spreaders. Our performance evaluation considered

infections originating with both a single spreader and multiple spreaders.

Sinlge Original Spreader

All nodes are initially at the susceptible (S) state, except for one node which is in the infected

(I) state. The infected node tries to infect its susceptible neighbors with probability of success

λ, and immediately after enters the recovered (R) state. All nodes in state I try to infect their

susceptible neighbors, and the process repeats until there is no node in the I state.

Multiple Original Spreader

The number of initially infected nodes ranges from 0.5 to 4 percent of the network’s total

size. µ-PCI and node degree methods share a similar selection procedure. The malicious set of

spreaders is empty in the first phase. We introduce the spreader with the highest value of each

method to its respective set, and then select the spreader with the next highest value, which is not

directly connected to the previous set. The process repeats until the initial infection percentage

of the network is satisfied. For the k-shell decomposition, all spreaders in each shell are treated

evenly, hence, we start by selecting a random node among the nodes residing in the highest

k-shell. We then randomly select the next spreader from the remaining nodes of the core shell,

that are not directly connected to the previous set, and continue this process iteratively. If the

initial infection percentage cannot be met from the core shell, we repeat the process on the shell

immediately below it, and so on.

For µ-PCI, we present only results for µ = 1. We obtained analogous results for µ = 2,

but the method’s performance deteriorates substantially for µ > 2. We use km, ks, and k to

represent the 1-PCI, k-shell index, and node degree values, respectively. Similar to Kitsak and

his colleagues [139], we used the average size of the network’s infected area as a performance

measure. To quantify inf (s), the influence of a single spreader s, we computed the average size of

the network infected with the (km, k) pair values. We averaged the extent of the infected network

over all spreaders as follows:
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Figure 2.1: Spreading capability of nodes in the ca-CondMat network with a single original
spreader according to (a) 1-PCI and (b) k-shell index. There are nodes with high k-shell indices,
some of which infect a large portion of the network, as well as nodes with the same k-shell index
(16) that infect a significantly smaller part of the network. On the other hand, only nodes with
very small 1-PCI exhibit such behavior.

(2.1) INFkm,k =
∑ inf (s)

Nkm,k

where Pkm,k is the set of all Nkm,k spreaders with the same (km, k). We repeated the same

process for k-shell decomposition.

To obtain statistically unbiased results, we repeated the computation 1,000 times for each

vertex of a graph for the single- and multiple-origin scenarios. We found that 1-PCI exhibits steady

and reliable behavior, overcoming the disadvantages of high- degree spreaders and of k-shell

decomposition. Choosing high 1-PCI nodes maximizes spreading influence, whereas selecting the

high-degree nodes or a random node from the core shell either results in poor spreading or does

not maximize influence.

2.4.1 Single original spreader

Our first experiment examined the three methods’ ability to select the most influential spreaders

for a single-origin process.

Figure 2.1 shows all nodes’ spreading capability in the CA-CondMat network according to

their 1-PCIs and k-shell indices. The 1-PCI method results in a more monotonic distribution than

k-shell decomposition, providing a clearer ranking of spreading capabilities. It converges to an

approximately straight line, where maximum influence lies, more steeply than the k-shell method

in all studied cases. Choosing a spreader with, say, 1-PCI > 23, will yield the maximum influence,

whereas choosing one from the core or from the high shells might not be optimal, because in some

cases nodes within the same shell have different spreading capabilities.

Figure 2.2 shows the spreading capability of all nodes in the CA-AstroPh network according

to their 1-PCIs and k-shell indices, versus the respective node’s degree. In particular, the plots
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Figure 2.2: Spreading capability of nodes in the CA-AstroPh network with a single original
spreader according to (a) 1-PCI and (b) k-shell index versus node degree. The k-shell index fails
to fulfill monotonicity in many cases, and 1-PCI has a better correlation with node degree.

depict the average size of the infected population INFkm,k for all spreaders with (1-PCI,degree)

pair values. The k-shell index clearly fails to fulfill monotonicity in many cases. Also, 1-PCI has a

better correlation with node degree.

This experiment confirmed the conclusion of Kitsak’s team that measures such as node degree

cannot accurately predict a network’s most influential spreaders [139]. For a fixed degree equal

to k, there is a wide spectrum of INFkm,k values, making the degree measure an ineffective

solution, especially in cases where the objective is to select a very small number of spreaders.

This occurs because a high-degree node might be located in a sparse neighborhood. The k-shell

index depends less on node degree when moving to higher shells, but the best spreaders are often

scattered across numerous shells, thus violating monotonicity. For instance in Figure 2.2(right) we

observe that nodes with a k-shell index equal to 48−which is particularly high−have spreading

capability similar to that of nodes with a k-shell value less than 30. For a fixed 1-PCI, the

infection percentage is approximately the same and independent of node degree, making high

1-PCI nodes the best choice in single-origin spreading processes. The 1-PCI measure groups

spreaders according to their spreading capabilities: lower 1-PCI values correspond to poor

spreaders, whereas high values indicate the most influential ones. As a node’s 1-PCI increases,

its spreading influence also appears to increase. Consider, for example, the results obtained

from the CA-AstroPh network shown in Figure 2.2(right). Moving to higher shells—starting at,

say ks > 34—spreading influence seems to constantly increase. However, this increase stops

at ks = 48, where the infection decreases drastically. The 1-PCI analysis does not elicit such

behavior, especially when close to maximum influence. As 1-PCI values increase, influence also

continuously increases until maximum infection is reached.

We computed the number of influential spreaders that can achieve the maximum infection

(with 1 percent deviation) for the two networks described here along with the soc-Slashdoc0811

network. As Table 2.2 shows, network size and topology impact the number of influential spread-
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Table 2.2: Number of influential spreaders that can maximize infection in three networks.

Network Size
(nodes)

Densisty
(edges)

Infected area
(%)

No. of influential
spreaders

soc-Slashdoc0811 77360 905468 16.5 1788
CA-CondMat 23133 186936 1.9 127
CA-Astroph 18772 396160 26.5 477
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Figure 2.3: Spreading capability of nodes in the ca-AstroPh network with multiple original
spreaders according to node degree, 1-PCI, and k-shell index. The k-shell index is the least
effective measure. Node degree is the most effective measure, closely followed by 1-PCI, but
the discrepancy between these values quickly diminishes as the number of multiple original
spreaders grows.

ers. We observed no increasing or decreasing relation between the number of influential spreaders

and network size—the key factor is the pattern of node connections.

2.4.2 Multiple original spreader

Our second experiment examined the three methods’ ability to select the most influential spread-

ers for a multiple-origin process. To maximize the infected area, the original spreaders were not

linked. If the selected spreaders were connected, the infected region would be smaller due to the

overlap of neighboring spreaders’ “influence regions” [139].

Figure 2.3 shows all nodes’ spreading capability in the CA-AstroPh network according to their

degree, 1- PCI, and k-shell index. The x-axis indicates the percentage of initially infected nodes,

with λ at 2 percent. The results were similar for other networks.

Although high 1-PCI nodes are the most influential spreaders in a single-origin process, all

three measures are comparable in this case. The k-shell index is the least effective measure.

Node degree is the most effective, closely followed by 1-PCI, but the discrepancy between these

values quickly diminishes as the number of multiple original spreaders grows.
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2.5 Conclusion

Discovering the most influential spreaders is the key to immunizing complex, dynamic networks

against cyberattacks and thereby limiting infection. Overall, µ-PCI, which can be considered a

hybrid of node degree and k-shell index, is more effective at identifying influential spreaders and

has less computational overhead than either of these traditional measures. Further work could

include the use of control-theoretic techniques to improve results.
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ACCELERATING SPREADING PROCESSES IN PROBABILISTIC

COMPLEX NETWORKS

Influential Spreaders in Complex Networks with Probabilistic Links

3.1 Introduction

In this chapter we propose a centrality measure that can detect influential spreaders in complex

networks with probabilistic connections, that is, network connections are associated with a weight

value, that corresponds to the common time span connected users spend on their social platforms.

Particularly, consider the most popular social networks (SNs), e.g., Facebook or Twitter, where

users gain access to the Internet and their social activities through diverse wireless devices

(smart-phones, laptops, etc.) and become embedded to the Internet infrastructure swiftly, in

different time spans of their everyday lives, to interact, exchange opinions and ideas or simply

act like tuners for advertisements. Facebook self-reported statistics note that smart-phone users

check online 14 times a day, while an average user spends daily 40 minutes on the site. Now

meditate on the vast amount of data traversing through such networks and how this magnitude

of information has evolved through time. As reported in [148], in 2007 we had an average of 5000

tweets per day whereas in 2013 we were at 500 million tweets on a daily basis [94], representing

Related publication [B1]: Dimitrios Katsaros, Pavlos Basaras. Detecting Influential Nodes in Complex Networks
with Range Probabilistic Control Centrality, chapter in Coordination Control of Distributed Systems (Jan H.
van Schuppen and Tiziano Villa), Lecture Notes in Control and Information Sciences, vol. 456, Springer-Verlag,
pp. 265-272, 2015.

Related publication [B2]: P. Basaras, D. Katsaros. Identifying Influential Spreaders in Complex Networks with
Probabilistic Links, In (Tansel Ozyer, ed.) Social Network and Surveillance for Society, chapter in book,
Springer, accepted, September, 2017.
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a six orders of magnitude increase. From the above considerations one could argue on what share

of these vast data is actually being ‘seen’ by its corresponding audience, i.e., friends, followers or

broadly speaking from the connected society, and on how this is further affected by the different

time spans that individuals spend on their social activities.

It is evident that users cannot follow such immense traffic of data, but what of time limited

messages or alerts? As an example let’s reminisce the Twitter Faster Than Earthquakes event.

In 2011 of August 23rd, it took 30 seconds for an earthquake to travel from Washington DC to

New York, but tweets were fast enough to reach the New York city quicker than half a minute. To

account for many such cases, for example of natural disasters, Twitter has launched the Twitter

Alerts: Critical information when you need it most program in September 2013, for its users to

receive reliable information during these times. In this study we emphasize on such Real Time

Data, RTDs, that need to be ‘made known’ to the largest possible portion of a social network at a

short time interval (i.e., within a few minutes or hours) and on the fact that this particular info

will serve no further purpose in larger time spans (e.g., days or weeks). Consider an enterprise

announcing a discount of a certain ‘hot product’ but only for a limited stock or a limited time offer,

aiming to attract large masses of consumers. A preeminent question arises; which users should

an administrator select as spreading initiators to increase as much as possible the number of

potential buyers?

Although we presented the problem in terms of activities over technological social networks,

the issue of the effect of concurrent ‘activity’ is present in other types of complex networks as

well, such as human contact networks and their relationship to infectious disease transmission.

Theoretically, in such networks a short interaction between a susceptible and an infectious person

could lead to a comparable amount of ingested infectious material as that of a long interaction,

assuming that the short interaction is more intensive than the long one. However, prolonged

contacts tend to be more intensive than short contacts [155].

3.1.1 Motivation and contributions

The issue of identifying influential spreaders in complex networks is a well studied topic that

received increased attention in recent years [58], [77], [139]. However for this particular frame-

work of data that we are addressing in the present study, the different patterns in the concurrent

activities of ‘connected’ users will constitute the most essential ingredient for detecting the Real

Time Influential Spreaders, RTISs, rather than simply focusing in a static image of a social

network and traditional approaches. At this point we should note that both RTDs and RTISs are

connotations to characterize data with relative short lifetimes and influential spreaders for such

cases respectively.

Empirical observations [90], [113], [174] note that users in SNs are not active around the

clock, and they show a complex behavior and distribution over the time they spend on their social

activities. A probabilistic framework that follows such complex behavior could portray the possi-
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bility of a link-connection to exist, i.e., when connected users are active, and the dissemination

process is on progress. A relative approach is that reported in [90] where the authors illustrate a

probabilistic model that accounts for a node-user to be active or not (and thus his connections to

be present or not) at the time for example of a disease outbreak or broadly speaking a diffusion

process. It is thus an important feature that we need to consider in order to quantify the strength

of the corresponding propagation.

Similarly to [90] we model the existence or absence of connections−rather than users−by

annotating weights on links that correspond to the mutual time that connected users spent on

their separate social activities. Intuitively if we could locate those nodes that are the starting

points for paths of users which share at a great degree common time in their online social activities,

it could provide valuable insights to better approximate the spreading capability of users, and

thus more efficiently ‘control’ the spreading process of RTDs. By conducting simulations and

experiments in different Social Networks, we will see how the proposed identification technique,

namely ranged Probabilistic Communication Area (rPCA) effectively combined the activity

schedules of connected users, identified the most influential spreaders and outperformed the

competing techniques in various scenarios.

The present article discusses the issue of detecting influential nodes in complex networks

with probabilistic links and makes the following contributions:

• Investigates the issue of detecting real-time influential spreaders by considering the mutual

time connected users spend on their online social activities.
• Proposes an adjustable centrality measure, the range Probabilistic Communication Area

(rPCA) that accounts for such characteristic
• Thoroughly evaluates this centrality measure under diverse competitive techniques in

different real networks.

The rest of this article is organized as follows: an overview of related works for the identifi-

cation of influentials is presented in Section 3.2. Section 3.3 describes the proposed algorithm.

In section 3.4 we detail our experimental environment, competing techniques and evaluation

criteria. In 3.5 we evaluate the performance of the competitors and finally in 3.6 the conclusions.

3.2 Related Work

The literature on the problems of maximizing the spread of influence and of identifying influential

spreaders in complex networks is quite rich during the last decade. In this section we only mention

but a few among many important studies. We should also categorize networks depending on the

pattern of their connectivity, i.e., directed or undirected networks in order to discuss the direction

of the propagation and finally emphasize on directed networks. The first problem was posed

in [184] and later investigated further providing more efficient algorithms, e.g., in [96], [165], [183].

Newer approaches to the design of centralities include concepts such as κ-path centrality [93]
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and distributed algorithms for identifying influentials based on random walks [112]. Other

graph-theoretic methods include the k-shell decomposition of a network [139], where the authors

discuss that a node’s location is an important characteristic for the influence potential of that

node. Other approaches based on several shortcomings of k-shell are presented in [58], [97], [105],

whereas local techniques that combine effectiveness and efficiency are proposed in [77], [110].

Considering a directed social network, a user i is called a follower of j if there is a directed

link from i to j (i→ j), that is, i can receive information from j. Thus for these network cases the

diffusion takes place through the incoming connections of a node-user. To detect the most influen-

tial spreaders in directed social networks, researchers often employ PageRank [191] centrality,

where a node i is considered as influential if it is pointed by many other and important nodes.

A variation of PageRank, namely LeaderRank [126], introduced a ground node to the initial

network connected to all other nodes through a bidirectional link. LeaderRank outperformed

the original algorithm by detecting more efficient spreaders. Finally weightedLeaderRank

was presented in [66]. For this approach the authors allow nodes with different in-degrees to

get different scores from the ground node. This last variation outperformed its predecessors by

identifying more influential spreaders. TwitterRank [149], also a variation of PageRank, was

developed for identifying influential spreaders in Twitter. The fundamental difference of the

two algorithms is that TwitterRank develops a topic-sensitive random walk, i.e., the transition

probability between users in Twitter is topic-dependent. In a way this generates a topic-sensitive

network structure, however considering topic specific information in beyond the scope of the

current study.

As we mentioned earlier users gain access to their networked environment through diverse

wireless devices for arbitrary lengths of time. Such interactions can be projected as temporal

networks. Quite often temporal networks are separated in two categories based on time sequences

and time intervals for the interactions between connected individuals in communication networks.

In our study, we are searching for connected nodes which have common online activity, i.e., they

do not necessarily exchange messages at arbitrary times, but rather they are both active in

regular times. This can be considered as another simplification of temporal networks were we

discuss the probability of existence of interacting paths based on such observations. For more

details on temporal networks readers are referred to [54] and references therein.

3.3 Proposed Technique

In this section we present the proposed technique, the range Probabilistic Communication Area

(rPCA).
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3.3.1 Complex Networks with Probabilistic Links

A complex network G(V ,E,w) is a directed graph where V is the set of vertices (nodes), and E is

the set of pairs of vertices (edges). Every edge is described by a weight w ∈ [0,1] and a direction.

Each vertex involves in- and out-neighbors. As usual, the number of head endpoints adjacent

to a user-node is called its inDegree (kin), and the number of tail endpoints defines the node’s

outDegree (kout). The weight values associated with every edge define a network structure which

describes the probability for any two connected nodes to be both active, for example during a

diffusion process. As we will see later in our experimentation the mining and efficient use of such

information will prove a valuable asset for the spreading of RTDs.

3.3.2 r-Hop User Communication Paths (UCPs)

A user communication path (UCP) on a directed complex network, is a directed path consisting

of n individuals and n-1 connections among them, such as no user appears more than once, e.g.,

a → b → e → j in Figure 3.1. For simplicity the example network is a Directed Acyclic Graph

(DAG). To complete our definition we also need to define the range for such interacting paths,

as the number of connections that form it or the hop distance from the initial node, e.g., a to j.

For our technique the communication paths emanating from each individual node will define its

significance in the network. The weight values on the connections will be used to investigate on

the quality of paths through which a user i “sees" the rest of the network in range or in other

words to search for users which share common time in their social activities. An ideal UCP could

be the a → x → z path, however, this implies that all these nodes are always connected.

Figure 3.1: rPCA identifies nodes which possess the characteristic that from these nodes emanate
“strong" paths. For 2 hops distance: 2PCA(a)= 17.283 and 2PCA(b)= 1.1 assuming that both i
and j have 2 outgoing neighbors and x, z are hypothetic nodes, i.e., not included.

Finally the strength of those interacting paths needs to be measured with respect to their

probabilistic connectivity. To this end, we apply the following formula to measure the strength of
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an r-hop interacting path (SUCPr):

(3.1) SUCPr =
r−1∑
j=1

w j ·w j+1

where r defines the range of a particular UCP and w j is the weight value at j hop distance from

the originator, i.e., the weight of the corresponding connection. Intuitively if we could rank nodes

on the basis of their UCPs, we could potential set the right paths for the spreading of real time

data.

Up to this point we presented our proposal for quantifying the strength of a UCP. However

how to efficiently combine the weight values associated with the corresponding connections in a

communication path and define its significance, is still an open issue. Another formula could be to

simply acquire the product of its weights, however such consideration will provide no distinction

for paths with relatively equal weight probabilities. For example in Figure 3.1, for the interacting

path a → b → e → i we would obtain a value of 0.063. The same value however would be attained

if we sorted the weights in any possible way, e.g., by reversing the probabilities of b → e and

e → i or by placing the weakest interaction first and thus decrease the probability of existence

for the path. Another policy could be to assign a measure of importance for a specific weight

depending on its hop distance from the originator, i.e., weights closer to the initial node in a UCP

are perceived as more vital. However, except for the fact that a tunable parameter would have to

be added, the significance of an interacting path like a → d → f → j which starts with a relatively

weak weight and henceforth is composed of a strongly connected users, would be belittled with

such consideration.

3.3.3 Range Probabilistic Communication Area (rPCA)

Following on these requirements, we built our proposal for defining centrality measures over

graphs with probabilistic edges for range-limited neighborhoods. The rPCA value of a node i

within a specified range r, is computed as the sum of SUCPr ’s emanating from i as follows:

(3.2) rPCA(i)=
N∗∑
j=1

SUCPr( j)

where N∗ depicts all different paths emanating from i. Note that nodes quite often share

similar vicinities, i.e., they may have a large number of common friends, and thus a certain path

may be traversed by more than one ways, e.g., a → b → e → i and a → c → e → i. For paths of

interaction with hop distance greater than 2, the appearance of cycles, e.g., i → j → k → j is a

frequent phenomenon, especially when studying social networks. However considering “cycles

of interaction" and thus returning to previous paths (or revisited node regions) is very likely to

degrade an algorithms performance and thus these occasions are omitted by definition from our

algorithm.
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The proposed centrality measure can be defined for both, the entire network (∗PCA) and

for neighborhoods around each node. It is within our scope to maintain locality in order to

provide an effective and efficient algorithm that can be applied in large scale networks and real

time applications, and thus the range of UCPs is limited at relatively low values, i.e., 2 and 3.

Generally we could search to any number of hops, however we understand that increasing the

range of UCPs beyond the 90-percentile-diameter (cf. Section 3.4.2) will provide little additional

information to our approach, since only about 10% of the network nodes remain.

Although we have presented our method considering that information will flow through the

out-neighbors of a network node, the implementation of UCPs is straightforward by following the

in-links as well, if data flows through the in-connections.

3.4 Performance evaluation

For our evaluation we had to select appropriate competing methods, use networks with probabilis-

tic edges, and also propagation models. In this section we describe our simulation environment.

3.4.1 Competing Techniques

A diverse list of competitors are selected regarding geodesics, the position of a node in the

network and approaches based on random walks. A plethora of studies so far use the degree

centrality of a node as a baseline method for comparison. Likewise in our experimentation we

apply the weighted version of the approach. The weighted degree centrality (wDeg) of a node i or

equivalently the strength of i, is defined as the sum of the weights of the connections incident on

i:

(3.3) wDeg(i)=∑
j

w ji

where j depicts the neighbors of i, i.e., those nodes that i can exert influence, and w ji stands for

their associated weights.

The farness of a node i is defined as the sum of its shortest distances (dw
ji)−with respect to the

weighted links−to all other nodes of a network. The inverse of farness is noted as the closeness

centrality of i. For its weighted implementation (wClo), the weights will describe how close or

how far connected individuals are to each other as given by the formula:

(3.4) wClo(i)=
N∑

j=1
j 6=i

1
dw

ji

for all N nodes of a network. In our framework wClo aggregates the weights on a shortest path,

and thus likewise our approach combines the weight values to provide an alternative technique

that measures the strength and probability of existence for those paths.
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Shortest path betweenness centrality describes the number of shortest paths for all node pairs

(s, t), that use node i as an intermediate. Previous studies [58], [110], [139] found its performance

insufficient to measure the spreading power of a node. Here we evaluate its performance in a

relatively different environment of weighted interactions and find similar conclusions (wBet):

(3.5) wBet(i)= ∑
s 6=i 6=t

σw
st(i)
σw

st

where σst is total number of shortest paths from s to t and σst(i) depicts the number of those

paths that pass through i.

A weighted version of PageRank is also evaluated. The weights are proportional to the

probabilities that a random walker will select a particular edge when choosing an outgoing

connection from the current node [177]. Therefore, edges with larger weights are assumed to be

traversed more often and thus are more important:

(3.6) wPRi(t+1)= (1−d)+d ·
N∑

j=1

w ji∑N
l=1 w jl

wPR j(t)

where w ji is the probability of visiting node i from j, when j is an in-neighbor of i, otherwise

w ji = 0. The damping factor d accounts for random jumps and N stands for the total number of

nodes in the network.

Finally we employ the weighted-LeaderRank (wLR) centrality. wLR outperformed PageRank

and LeaderRank in several cases [66]. It was proven more tolerant to noisy data, e.g., for scenarios

of incomplete knowledge of the network topology. It is variant of LeaderRank, which introduces a

“ground” node to the network connected to all nodes:

(3.7) wLRi(t+1)=
N+1∑
j=1

w ji∑N+1
l=1 w jl

wLR j(t)

where w ji is equal to 1 if there is a directed link from j to i and 0 otherwise. If the destination node

is the ground node (g) then w jg = kαin, where α is a parameter set to 1 in our experimentation.

For the directed and weighted implementation of the majority of our competitors−excluding

wLR and wDeg−we use the “igraph” R package 1. igraph considers the weights assigned to each

link as costs, i.e., the largest the value the weaker the path. However in our experimentation

weights indicate the strength of a link, and thus we invert the original weight values for wBet

and wClo. A very popular method for the identification of influentials is the k-shell decomposi-

tion [139] and its weighted versions, e.g., [83]. However to the best of our knowledge there is

no formal definition of the algorithm for directed and weighted networks. Could we have used

measures such as µ−pci ? To such methods which are based on link counting and coreness,

it is not clear how to quantize a “fractional degree" to its integer counterpart. Besides, such a

conversion would loose significant part of the information carried by the probabilistic link.

1http://igraph.org/r/
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3.4. PERFORMANCE EVALUATION

3.4.2 Simulation Settings

3.4.2.1 Datasets

Nowadays there is a wealth of real datasets which concern complex networks, however, it is hard to

find networks with probabilistic links. Thus, in this article we follow a dual methodology: we work

with a real complex network to prove the applicability of our method in a real setting, and four

real (initially unweighted) complex networks, in which we annotate their links with probabilities

drawn from various distributions. Our simulation setup enables to test the performance of the

competing algorithms for scalability, effectiveness and efficiency, across a wide range of networks

and link weights.

The real probabilistic network is a contact network measured by the SocioPatterns collabora-

tion2 using wearable proximity sensors in a primary school, and covers two days of school activity.

The sensors detect the face-to-face proximity relations (contacts) of 242 children [53]. The weight

of a link is the aggregated contact duration of a pair of children. We normalize the links into

the [0,1] interval by dividing each weight with the maximum weight found in the network. The

experimental results which concern this real network are presented in subsection 3.5.3.

The procedure for annotating the network links with weights is described in the following lines.

We obtained our experimentation networks from the Stanford Network Analysis Platform [65].

For our evaluation purposes the experimented networks were selected based on their connectivity,

i.e., three networks with relatively equal number of nodes and decreasing in the number of

their respective connections, and finally a significantly smaller network. Specifically, we used the

ego-Twitter network crawled from public sources, where followers receive information from their

followees; Soc-Epinions1 a who-trust-whom social network of a general consumer review site,

where users choose whether or not to trust reviews on products; soc-Slashdot0922 a technology-

related news website, which allows users to tag each other as friends or foes; and finally Wiki-Vote,

where nodes represent Wikipedia users and a directed edge from node i to node j, represents

that user i voted on user j. The base attributes of the aforesaid networks are listed in Table 3.1.

The 90-effective-percentile-diameter (90-EPD) denotes the number of edges needed on average to

reach 90% of all other nodes.

Network Nodes (V) Links (E) diameter 90-EPD E/V Type
ego-Twitter 81,306 1,768,149 7 4,5 21.74 Social

soc-Slashdot0922 82,168 948,464 11 4,7 11.54 Social
soc-Epinions1 75,879 508,837 14 5 6.7 Social

wiki-Vote 7,115 103,689 7 3,8 14.57 Social

Table 3.1: Networks base attributes.

2http://www.sociopatterns.org
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3.4.2.2 Generation of probabilistic links

For our simulation, the probabilities for the edge weights are assigned based on the Zipfian

distribution for a range of skew values s ∈ [0.1,0.9]. The Zipfian distribution depicts the frequency

of occurrence for example of a word randomly chosen from a text, or the population rank of a

city randomly chosen from a country. In our framework it will depict the frequency of strong

interactions. As s increases we increase in the skewness for the distribution of weights, that

is, the strong weights will become more rare. In this study we assume that any two connected

nodes would share some common time of networked social activity, but also that there are no

identical schedules, i.e., w ∈ [0.1,1). The resultant weight values will stand for the mutual time

spent by nodes on their online social activities, i.e., will depict the probability of an edge to be

present or not at the time of the diffusion process. Links with values close to 1 are mostly active

in our inspection time, whereas values near 0.1 are considered mainly inactive. According to

these probabilities, we take 10 ‘snapshots’ of the input graph resulting in 10 abstract network

images. Similar to [66] to obtain statistically unbiased results, we repeated the computation 100

times for each vertex in each network image, i.e., averages over 1000 spreading processes.

3.4.3 Propagation Model and Influence

As far as the diffusion model is concerned we employ the widely used susceptible-infectious-

removed (SIR) model (refer to Appendix A.1). SIR is commonly used for studying the spreading of

epidemics in complex networks, where the infected nodes will either get immunity or die [106].

We assume that an interested user propagates “data” only once, i.e., users will not repeatedly

send the same information to their respective vicinities. In this study we model the penetration of

RTDs in a networked environment, with fixed transmissibility (infection rate) λ for all node pairs.

The diffusion process unfolds as follows: in the initial phase all nodes are in the S state except

one node in I. An infected node is given a single chance to infect it’s susceptible neighbors and

succeeds with probability λ. Immediately after and without loss of generality [66] the node enters

the R state. The process continues until there are no nodes in the infected state. Similar to [58]

given a directed network, the influence of a node i (IFi), is defined as the number of recovered

nodes at the end of the spreading process, when i was the initially infected node. To obtained

unbiased results each spreading process is repeated over 1000 times.

3.4.4 Evaluation Criteria

3.4.4.1 Kendall’s Correlation (τ)

To evaluate the ranking abilities of each competing method with respect the the actual spreading

potential of each node we use the the Kendall’s Tau ‘b’ (see also Appendix A.3) rank correlation

coefficient (τ) [196]. It is a statistic used to measure the association between two measured

quantities, e.g., (2PCA, IF). When τ= 1, we have a perfect correlation, indicating that when node
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i is ranked before j by some method, i.e., with greater 2PCA, then its spreading capability is also

higher. For τ= 0, the measured entities are considered neutral whereas τ=−1 implies opposite

correlation. Generally the closer we get to 1, the better the correlation of the evaluated approach.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  2  3  4  5  6  7  8  9  10

R
an

ke
d 

Pe
rc

en
t (

p 
us

er
s)

Transmissibility (%)

ego-Twitter
soc-Epinions1

soc-Slashdot0922
Wiki-Vote

Figure 3.2: Ranked percent with respect to the total number of nodes of each network case for all
evaluated λ values, i.e., nodes with IF > 0.

3.4.4.2 Fraction of ranked nodes - False Index

As depicted in Figure 3.2 for the lower spreading rates there is a large number of nodes with

zero influence, e.g., over 70% for the soc-Slashdot0922 network when λ= 2. Applying Kendall’s

correlation to such unfiltered values will provide harsh results. In our simulation we take a closer

look for each λ value to provide a more complete assessment and thus the ranked sample used for

the ranking process will be composed of user-nodes with IF > 0, namely p users. To complete the

evaluation of the results and conclude on which technique better identifies the influence power of

nodes, we also need to provide an assessment for the rest of the 1− p non-ranked users. The False

Index depicted in Figures 3.3 to 3.6 (right) fills this void. To obtain the False Index we calculate

for each node in 1− p the number of nodes in p whose index is lower from that particular node.

In other words we measure the average number of nodes which although did not succeed in

propagating, they were ranked with higher index by some users in p, e.g., with greater 2PCA.

Reasonably a small False Index indicates better results.

3.5 Results

3.5.1 Impact of infection probability

In this section we evaluate the efficiency of each competing method in ranking nodes according

to their actual spreading potential in four real social networks. For the distribution of links
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in Figures 3.2 to 3.7, s is set at 0.7. We observe that the most abrupt changes in the curves of

correlation for all methods occur at the lower λ values for almost all networks. This is partly

because the largest leaps in the percent of the ranked p users occur within the fist few increments

of the spreading rate. As illustrated in Figure 3.2, the p nodes constitute about 15% of the

network nodes in Twitter when λ= 2, and about 58% for λ= 3. The changes in τ however are not

only due to the increasing number of the p users used in the ranking process. As the spreading

rate increases, the influence of nodes from previous λ values also changes and the same may

happen to the ranking between those nodes in subsequent spreading rates.
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Figure 3.3: In almost all different spreading rates for the ego-Twitter network, the proposed
technique significantly outperforms its competitors.
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Figure 3.4: For the soc-Slashdot0922 network we observe that our approach coincides with the
rest of the competing algorithms only for the higher spreading rates.

Considering the results in Figure 3.3(left), 2-3PCA for λ= 2, significantly outperforms the rest

of the competing techniques. Similar observations can be made for the soc-Slashdot0922 network,

i.e., the largest differences in τ are found at the lower spreading rates. For Figures 3.5(left)

and 3.6(left) however the above observation does not hold. For these cases we observe a more
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3.5. RESULTS

sedate behavior of the curves as we increase in λ. In Figure 3.4, we observe that wDeg and wClo

coincide with our approach when λ is about 9%. It should be emphasized that for very large values

of λ, the τ values of correlation for the competitors are bound to crossover and oscillate. This

is due to the fact that in such occasions an epidemic will occur regardless of the characteristics

of the originator. For the higher spreading rates the true influential nodes are very likely to

get infected at some point as the diffusion progresses, and thus result in an epidemic outbreak

even though the originator is not truly an influential. Besides by using large λ values the role of

individual nodes in the diffusion process will no longer bare significance [58], [97], [105], [139].

When considering the different ranges of our approach we can see that for the low spreading

rates there is an oscillation for the most accurate ranking between the two methods. However

as we increase in λ for all network cases 2PCA always obtained higher τ values, that is, local

information of a node’s surroundings (communication paths) is more favorable as we increase in

the spreading rate.
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Figure 3.5: As the spreading rate increases, our two-fold approach maintains its superior perfor-
mance as compared to the rest of the competing techniques.

For an overview on the False Index, 2-3PCA is found at the lower percentages. wClo illus-

trates similar behavior, however, the rest of the competing techniques illustrate significantly

higher values. Note that the False Index does not provide any information about how accurate

the ranking for the p nodes is, but rather acts as a further criterion for each respective technique.

Ideally we would obtain a zero False Index indicating that all nodes in the 1− p set have lower

centrality than those in p. Generally a low False Index coupled with a high τ, will promote the

most efficient algorithm for the addressed issue. Clearly the proposed technique supports the

desired outcome. Only at the higher spreading rates in Figures 3.3(left) and 3.4(left) 2-3PCA

illustrates higher False Index.

Focusing separately on each competitor, wDeg is used as a baseline method to illustrate how

complete locality serves in quantifying the spreading power of a node. When considering it’s

False Index we can see that wDeg is rated among the three worst performing methods in all
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Figure 3.6: For the final network case, an oscillation for the most accurate ranking is observed
at the lower spreading rates. Nonetheless, the proposed technique is found within the higher τ
values.

evaluated networks. This observation indicates that simply considering the total strength of a

node’s local connections is not a good indicator to quantify it’s spreading influence. For example

a high wDeg value may be accumulated by many but otherwise weak interactions, which in

our framework is interpreted as regularly absent connections. To our perception such occasions

will result in insignificant influence results, and may also be the reason for its high False Index.

Furthermore wDeg does not ‘carry’ any information about the position of the node in a network.

Therefore although a node might me connected to it’s immediate vicinity with strong links, if it is

positioned in the periphery of a network [139], reasonably we expect that its influence will be

rather diminished.

Another interesting point seen through our simulation is the performance of wLR. Reminisce

that for this particular method no information about the activity schedules is used, and thus

we expected a relatively low correlation in our framework of weighted interactions. Although

in terms of correlation with influence wLR is outperformed by the proposed technique, when

compared to the remaining algorithms we found competitive performance results as illustrated

in Figures 3.4(left) or 3.5(left). Generally its performance can be considered relatively similar to

wDeg’s, however we can conclude that wLR is more efficient, if we consider the False Index of

the competitors.

In contrast to wLR, wPR accommodates information from the weighted interactions in the

sense that links with higher weights are traversed more often. Both techniques where found to

follow approximately the same trend in all evaluated networks as the spreading rate increases,

i.e., their illustrated curves either both ascend or descend. However our experimentation showed

that wLR obtained both, higher correlation with influence and a significantly lower False Index.

Nodes with no outgoing links, the sink nodes, which are indeed present in the evaluated networks,

are not well handled by wPR, since they decrease the wPR overall [51]. To our understanding

such inefficacy overestimates the spreading power of a node and may be the reason for wPR’s
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low correlation. Generally, through such methods nodes pointed by many other and important

nodes are elected as strong influencers, nonetheless, as also noted in [189], [191], quite often the

kin of a node is not sufficient to characterize its influence capacity.

Next we investigate on wBet and find that this particular method has the worst performance

in all evaluated networks, while other studies [58], [110], [139] also note its inability to capture a

node’s influence capability. It’s lower efficiency can be explained if we consider that through wBet,

node-users who are unique intermediates for some other nodes (or mediators leading to different

communities) are elected as important entities. However in such cases their capability for

influence and propagation may well be overestimated if these nodes lead to regions with sparsely

connected nodes or small sized communities. In our framework, the problem of identifying

influential spreaders is further enhanced by considering the time distribution of nodes social

activities. Hence, wBet will be at a further disadvantage if those links correspond to nodes

with highly uncommon time spans. Finally the large False Index for wBet further confirms that

influence cannot be measured solely through the shortest paths that pass through a node.

wClo utilizes the weighted interactions in the sense that nodes connected through weak

links are considered to be relatively far to each other. When compared to 2-3PCA, the competitor

is significantly outperformed in the majority of the illustrated results. We attribute its lower

performance to the following: first, although the effective diameter for all network cases is

relatively small, e.g., between 4.5 and 5, there are still more than 8000 nodes for Twitter and

Slashdot0922 networks, and more than 7500 for soc-Epinions within a diameter of 7,11 and

14 hops respectively. However, considering long interacting paths would include a mixed set of

connections, i.e., a relatively long path may be composed of both strong and weak links. To this

end we expect that techniques that utilize global information of a network’s connections to define

the significance of a node in the network, will furnish varying results. Figures 3.3 to 3.6 confirm

our statement. Lastly unlike our approach, wClo considers a single communication path to all

other nodes from the focal node, and in particular the shortest (strongest) paths to those nodes.

Nonetheless, rather than a single strong path, it may be more favorable to take into account a

number of interacting paths that reach a single user-node, i.e., multiple paths, in our framework

of complex networks with probabilistic links.

In Figures 3.4 and 3.6 we observe that wClo coincides with our approach significantly and

thus we advance to thoroughly understand the relation of the two methods in Figure 3.7. The

spreading rate is set at 10% for both networks where the competitors are closer. The heat values

depict the influenced area (IF), i.e., the number of influenced nodes in percent, for paired values

of 2PCA and wClo. For nodes of the same paired values the average IF is used. Note that

each axis is normalized to its largest corresponding index. Moreover the outer plots are ranged

up to a certain value (e.g. of 2PCA) which is then resumed in the embedded charts for clarity.

From these figures we can further argue that 2PCA is the better indicator for the spreading

influence of nodes in complex networks with probabilistic links. From the embedded charts we
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Figure 3.7: wClo was found to coincide with the proposed technique in a few configurations. The
presented heat plots, illustrate that influence is closer related with 2PCA. On the contrary, for
wClo, we observe that the medium values depict an amplitude of influence values.

can understand that the highest index values for both methods indeed correspond to the most

influential spreaders. Nonetheless, as illustrated in Figure 3.7(left) between 0.7 to 0.8 of wClo,

there is a wide variety of influence results, particularly between 4 and 14%, in contrast to 2PCA

which illustrates a more accurate ranking. We found similar conclusions when comparing wClo

to 3PCA.

Overall, for rPCA, paths limited in the near neighborhood of the focal node, i.e., two hop

UCPs, are usually sufficient to characterize its role in a spreading process. In our framework,

the probabilistic property affects the diffusion dynamics and we thus urge for a technique that

effectively handles the different probabilities for connected nodes. Our ranged approach was

found quite effective and efficient by better identifying influential spreaders in various networks.

3.5.2 Impact of Zipfian skewness

In this set of experiments we investigate on the skewness of the Zipfian distribution. Due to

similar results we present only those for the ego-Twitter network in Figure 3.8. The spreading rate

is set at 2%. The percentage of nodes that succeeded in propagating (p users), is illustrated with

the colored cycles mapped to the corresponding heat values in the palette. As a first observation

we note that as we increase in s for the distribution of links, the number of users that are able to

propagate in their respective vicinities decreases. This phenomenon is anticipated as we distance

our experiments from uniform distribution and gradually force the weights towards the lower

possible values. In our framework such configuration results into frequently absent connections

resembling a realistic social environment, where we cannot expect node-users to have largely

common time spans for their social activities.

As shown in Figure 3.8 most of the competing techniques illustrate similar behavior in both

evaluation criteria, i.e., decreasing and increasing trend for the False Index and τ respectively.
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Figure 3.8: Ranging in skewness for the distribution of links. The spreading rate is set at 2%.

For the lower s values we observe only small increases in τ. However as we further increase in

s, the changes in τ become more evident. This is due to the fact that for the larger skews, the

now fewer strong links and interacting paths become more clear for the competitors. This remark

is most visible when s > 0.7 where we observe the most significant changes for all methods.

wLR however, shows minor changes in τ, an observation somehow coherent with [66] where the

authors explain the robustness of the technique in “noisy” networks, i.e., missing links.

When we have a fairly good distribution for the weights (low skewness), we observe that

3PCA obtains the highest correlation followed by 2PCA, whereas the rest of the competing

techniques obtain significantly lower values in τ. This observation indicates that when we have

many strong interactions, i.e., nodes with highly common activities, accumulating information

from relatively long UCPs indeed results in better correlation. In an opposite scenario where node-

users have significantly different schedules (large skewness), the strong weights become more

rare. Using long paths composed of weak interactions will degrade our algorithms performance

which explains the steep fall of 3PCA for the higher s values. Conversely thinking we can

understand the illustrated behavior of 2PCA which uses short ranged communication paths and

takes the edge on our ranged approach in the aforesaid cases. The significant difference in the

False Index values between the competitors and 2-3PCA further strengthens the superiority of

our method. For instance 2-3PCA’s “misjudgment” near 0.9 becomes almost zero, whereas in

most of the evaluated scenarios (different skews) it is found below 5%. Finally we conclude that

in a framework with probabilistic links that portray the property of active nodes as dercribed in

our work, considering multiple paths and moreover multiple alternative paths (unlike wClo) is a

first step for devising an appropriate method for the identification of real time influential nodes.

3.5.3 Evaluation with a real complex network

After the detailed performance evaluation of the methods across a range of network sizes and link

weight distributions, we use a real weighted complex network in order to confirm the practicallity

of the problem examined and also to further support the superiority of the proposed method.
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Recall from subsection 3.4.2.1 that this is a contact network measured by the SocioPatterns col-

laboration3 in a primary school. The sensors detect the face-to-face proximity relations (contacts)

of 242 children [53]. The resulting network has 242 nodes and 4024 links, after removing the

nodes terms as “Teachers" and their interactions, because the network offer no possibility to

differentiate between different teachers. Figure 3.9 depicts the number of interactions per pair of

children. According to the methodology of data colletion (sensor beaconing) each contact lasts

for 20 seconds. Thus, this figure shows in an equivalent way the aggregated contact duration

of a pair of children, which is the link weight in our case. Evidently, this distribution follows a

power-law, where the majority of the pairs of children have less than 10 contacts.
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Figure 3.9: Distributions of the link weight (i.e., aggregated contact duration) of the real weighted
network.

The evaluation of the competing algorithms is presented in Figure 3.10. The first comment

concerns the transmissibility rates in order to achieve high enough infection. The generic comment

is that the infrequent student interactions require higher transmissibility rates for successful

transitions. Specifically, for the lower λ value, only about 2% of the network is infected, e.g. from

an emerging flu originating from the most influential student, whereas when λ= 60, the infected

students rise up to 30%.

Regarding the performance of methods, we observe that the best strategy – consistent with

our previous resulsts – is 2PCA, whereas wBet is the worse strategy. The position of the second

best performing stratedy is now occupied by 3PCA, wDeg and WPR (subject to some variation).

The interesting thing is that wClo which was steadily the third winner in our earlier finding,

now it is fifth. Based on the rankings we obtained for this real network and the conclusions

by Figure 3.9 and Figure 3.8, we can say that the link weight distribution of this network is

highly skewed for which networks we already have seen that the performance of 3PCA and

wClo degrade singificantly. Finally, complementary to the False Index illustrated for the artificial

networks, we observe (right plot Figure 3.10) no different qualitative results, i.e., the proposed

3http://www.sociopatterns.org/2015/01/a-high-resolution-social-network-measured-in-a-primary-school/

40

Institutional Repository - Library & Information Centre - University of Thessaly
06/06/2020 00:05:55 EEST - 137.108.70.13



3.6. CONCLUSIONS

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 30  35  40  45  50  55  60

K
en

da
ll’

s 
T

au
 C

or
re

la
tio

n(
τ)

Transmissibility (%)

Primary school contact network

2PCA
3PCA

Wdeg
wBet

wClo
WPR

WLR

 0

 5

 10

 15

 20

 25

 30  35  40  45  50  55  60

Fa
ls

e 
In

de
x 

(%
)

Transmissibility (%)

Student Interactions

2PCA
3PCA

wDeg
wBet

wClo
wPR

wLR

Figure 3.10: Evaluation of competing algorithms over the real weighted network.

technique is found at the lower false values, which further strengthens the superiority of 2-3PCA

for the addressed issue.

3.6 Conclusions

The evolution of social networks to date indicate that the amount of information flowing though

user interactions is only going to increase. In this article we argued on what portion of information

remains ‘unseen’ from interested users due the continuous flow of data in such networks. With

this consideration we focus on ‘pieces’ of information with limited lifespans, i.e., for data who are

interesting to some users but only for a limited time (RTDs). In order to push information into a

network and spread RTDs to the largest possible extent we need to account for users which share

at a great degree common time in their social activities. With this demand social networks must

be remodeled to probabilistic structures. In this study, we used probabilistic links to simulate

the probability of connected users with common social activity, and proposed a centrality metric,

namely rPCA, which accounts for probabilistic communication paths around the focal node.

The proposed technique, was evaluated under different spreading rates and distribution for the

weight probabilities, and proved superior from its competitors in ranking nodes according to their

true spreading potential. Finally, to our understanding, how each method uses-filters the lower

weight values is a determinant factor to its performance, since users with low common time-spans

will contribute little to each others influence. Moreover in order for RTDs to be substantially

propagated we need not only consider the strength of each individual link separately but rather

as combined attributes within the interacting paths. For our future direction we intend to apply

different approaches for quantifying the strength of the UCPs and further improve our formula

for the identification of influential spreaders.
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ACCELERATING SPREADING PROCESSES IN MULTILAYER

COMPLEX NETWORKS

Detecting influential spreaders in complex multilayer networks

4.1 Introduction

This chapters focuses in the identification of influential spreaders in complex multilayer networks.

So far, the literature on this topic−and the study of complex networks in general−has focused

on single-layer networks, where the entities (nodes) and their “communication" channels (links)

are assumed to belong to the same network. However, the last few years, we are witnessing a

phenomenal initiative in the analysis of new kinds of complex networks, where the interacting

entities are assumed to belong to more than one network, called layers. These networks are

termed multiplex [79], multisliced [141], multilevel [102], interdependent [132] or more general,

multilayer networks [49], [61]. Online social networks, financial systems, transportation networks

are such networks to name a few; more detailed examples can be found in [49], [61]. Research in

the realm of multilayer networks investigates topics such as centralities [38], communities [12],

growth models [46] and so on. Similarly, the study of spreading processes in multilayer networks

has started to attract significant interest, however the field is still developing its basic princi-

ples [45]. On the other hand, the literature on developing algorithms for identifying influential

spreaders in multilayer networks is yet very narrowed. However, the spreading of information,

Related publication [J1]: Pavlos Basaras, Giorgos Iosifidis, Dimitrios Katsaros, Leandros Tassiulas. Identifying
Influential Spreaders in Complex Multilayer Networks: A centrality perspective, IEEE Transactions on Network
Science and Engineering, accepted, October, 2017.
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rumors, advertisements, or broadly speaking anything that can be ‘shared’ through networked

populations is rarely isolated into a single network; for instance, information propagation over so-

cial networks is taking place in a fashion such that a user decides to share a ‘chunk of information’

through his/her account, in both Facebook and Twitter.

The identification of influential spreaders in single-layer networks, after the seminal work [139],

has concentrated around the idea of ‘network decomposition’ using concepts such as the k-shell,

the k-truss [122], the onion decomposition [18], and so on. All these techniques are iterative

and therefore slow; they require knowledge of global network connectivity, in order to locate

nodes which are highly connected, hoping that they are also good spreaders. However, all these

methods are inapplicable in multilayer networks, because they result in a vector of values for

each node [48], i.e., the value of k-shell, or of the k-truss of the node in each layer. Thus, the

ranking of nodes using these vectors is not straightforward, unless we define a set of weights

for the set of layers and compute a score out of these weights. Apparently, the introduction of

artificial weights and computations over them is arbitrary and thus not desirable. An alternative

is to address the problem as a “rank aggregation" problem [64], [187], and fuse the ranking lists

produced by each value; still, the selection of the fusion algorithm will raise questions about its

appropriateness and fairness. On the other hand, the use of centrality measures, such as the

shortest-path betweenness centrality, presents the same drawbacks as their counterparts for

single-layer networks as analyzed in [77], whereas the use of a PageRank centrality measure

adopted for multilayer networks as in [87], has the drawback that its computation requires

an artificial ordering among the layers of the complex multilayer network, therefore making

this solution to depart from reality. On the other hand, the elegant and mathematically sound

generalization of PageRank reported in [29] simply suffers from the computational complexity of

the original PageRank, i.e., it is network-wide and iterative, thus time-consuming.

A different line of research on the topic of single-layer influential spreaders detection was

described in [77], where the concept of Power Community Index (PCI) (cf. Definition 1) — and

also in [77], [150] — was proposed to detect highly effective spreaders. The proposed method is

localized, requiring only local (i.e., two hop) neighborhood information, is fast and proved superior

to k-shell. The connectivity of the nodes identified as highly influential spreaders with the aid of

PCI is in accordance with the findings of the study [41], which proved analytically that the most

effective influential spreaders are those who “...are relatively low-degree nodes surrounded by

hierarchical coronas of hubs." In principle, the generalization of the ideas of PCI for multilayer

networks would be appropriate, because it would be based on local information of the topology,

thus minimizing the computation cost and eliminating the need for having complete knowledge

of the entire network state, hence being a good candidate even for real-time applications over

massive multilayer complex networks.

This chapter investigates the problem of identifying influential spreaders over complex multi-

layer networks, by introducing a family of centrality-like measures tailored for local computation
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only, and able to locate nodes in dense areas of the multilayer network with many intra- and

inter-layer links facilitating the rapid evolution of a diffusion process. The chapter makes the

following contributions:

• It thoroughly investigates the topic of identifying influential spreaders in multilayer net-

works by maintaining and exploiting the multilayer structure, i.e., without blending and/or

weighting – and thus eliminating – the layers as done by [17] (such an approach has already

been proven inadequate and inefficient [29]).

• It proposes a family of localized measures that effectively and efficiently address the prob-

lem of influentials identification by incorporating multilayer characteristics (existence and

density of intra- and inter-layer connections). The proposed methods can be straightfor-

wardly adapted to any type of multilayer network.

• It evaluates the proposed techniques in a wealth of real and semi-synthetic multilayer

networks using as competitors all the major high-performing measures, i.e., PageRank,

Betweenness, Degree, k-core and their multilayer variations.

• It concludes that one of the proposed methods, namely mlPCI is (almost) always the best-

performing method irrespectively of the size and characteristics of the investigated complex

networks, whereas the traditional ones such as PageRank and Betweenness centrality fail

to achieve competitive performance.

The remainder of this paper is organized as follows. In section 4.2 we provide formal definitions

and notations for multilayer networks. Section 4.3 describes and exemplifies the proposed

methods, whereas Section 4.4 outlines the experimentation settings, datasets, competitors and

performance measures. In Section 4.5 results are demonstrated, and finally Section 4.6 concludes

the article.

4.2 Preliminaries

We are interested in two types of networks, (i) generic multilayer networks, and (ii) multiplex

networks. We adopt a graph-theoretic notation and terminology, similar to the one presented

in [49]. On the other hand, tensors comprise a similarly powerful, and more compact way to

represent multilayer networks; they have been used extensively for the representation of such

networks, and for the calculation of centralities and communities in them, e.g., [82], [142].

However, since the measures we introduce in Section 4.3 make use only of local (around each

node) information and they can be very easily described with graph-theoretic terms, we prefer to

use the graph-theoretic representation. The rest of the section reviews the notation (Table 4.1) of

multilayer networks and the spreading model.
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Notation Description
G i A monoplex network i
Vi The set of nodes of the monoplex network i
E i The set of edges of the monoplex network i
P A multilayer network
L The set of layers of the multilayer network
G A set of monoplex networks: G i, i ∈ (1, N)
E A set of edges between different monoplexes
λii Spreading rate at layer i
λi j Spreading rate from layer i to j
kin, kout in-degree, out-degree

Table 4.1: Notation for multilayer networks.

4.2.1 Monoplex, multiplex and multilayer networks

A Single or Monoplex network is represented as a graph G i(Vi,E i), where Vi is the set of nodes and

E i is the set of edges which connect those nodes. Edges can be directed or undirected, weighted or

unweighted. A multilayer network can be described as a combination of graphs, G1, G2, ..., G|L|,
and a set of interconnections between nodes in separate graphs. Edges connecting nodes of a single

graph are featured as intra-edges, whereas edges connecting nodes of different graphs are notated

as inter-edges. Formally, we describe a multilayer network as P (G ,E ), where G ={G i; i = 1,2, .., |L|}
is a set of graphs, i.e., the layers of P , and E = {E i j ⊆Vi ×Vj; i, j ∈ {1,2, ..., |L|}, i 6= j} is the set of

inter-edges between nodes of different layers, i.e., different graphs. Figure 4.1 depicts a four layer

multilayer complex network.

Multiplex networks are a special case of multilayer networks, where nodes are clones (coun-

terparts) of themselves in each layer, i.e., V1 = V2 = ... = VN = V . For multiplex networks the

only inter-connections allowed are between a node and its counterparts in the remaining layers.

Formally, E i j ={(v,v); v ∈V } for all i, j ∈ {1,2, ..., N} with i 6= j.

4.2.2 Diffusion in multilayer networks

Similar to other studies e.g., [25] we use the Susceptible-Infectious-Recovered (SIR) model,

which models the penetration of a virus information, product, rumor, etc., in a networked

environment (see Apendix A.1). A susceptible (S) node may be a user that is interested in

certain information/product. Infectious (I) individuals are those who are already influenced, and

try to “convince” their susceptible neighbors to follow the same action. Finally, recovered (R)

nodes are those nodes who, e.g., have bought the product and can no longer be affected. The

diffusion process ends when there are no nodes left in the I state. Hence, influence is measured

by the number of nodes in the R state at the end of a diffusion process.

In multilayer networks the propagation is expected to diffuse over the different layers at
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Figure 4.1: A multilayer network consisting of four layers L1, L2, L3 and L4. Nodes with the
same ID in different layers depict clones of the same node.

different speeds, i.e., different λ per layer [49], [61]. However the different spreading rates within

the various layers is not the only rate that we need to study. Spreading among different layers

should also be taken into consideration. Thus, we experience intra-infection probabilities, i.e.,

infection rate in a single layer i (λii), and inter-infection probabilities, i.e., infection rate from

a node in layer i to its inter-connection in layer j (λi j). In multiplex networks nodes are clones

in the different layers, hence for this special case λi j = 1. In our model, and without loss of

generality [58], [77], [139] we assume that an infected source has a single chance to infect its

susceptible neighbors, and immediately after it falls to the R state. This is the worst-case scenario

to benchmark a method, since the longer a source node is infected the more probable to infect its

neighbors. If we allow for (very) long infection periods, then the diffusion process will expand

to very large parts of the network (or even to the whole network), irrespectively of the seeding

method, the infection probability, the network topology, etc.

Therefore, the question to be answered is which are those nodes, who if initially acti-

vated/incentivised, can trigger a cascade of new adoptions and maximize the spread.

4.3 Proposed methods to identify highly influential spreaders

Understanding influence in multilayer structures is significantly different from that of monoplex

networks; agents (nodes) are subject to different environments which quite naturally have

different rules, i.e., ways (paths) to spread information, different spreading rates, etc. Such

characteristics introduce new challenges in the domain of influence ranking, and hence new

techniques that incorporate those aspects are necessary. In [77] we introduced the µ-Power
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Community Index (µ-PCI) of a node, that combines the degree of the focal node with the degree

of its direct neighbors. The intuition inferred from the understanding that a node in a dense

neighborhood, in principle, can affect a large number of other nodes, i.e., exert strong influence.

The proposed technique in addition to its local computation cost, successfully identified influential

spreaders. Later in [41], it was proved that such connectivity results in the ‘best’ influential

spreaders.

In our current work, we raise and answer the following question: can we devise a locally-

computed measure, that will characterize a node’s vicinity, for their density in both, intra and

inter connections? We believe that identifying nodes with strong connectivity in many layers,

will reveal potent entities linked to different connected environments, thus able to exert strong

influence over the multilayer network. To put our interest into the test, we devise a number of

measures that follow our main idea, and evaluate them in a number of real and semi-synthetic

multilayer networks.

4.3.1 The family of multilayer PCI measures

For the sake of article’s self-completeness, we start with the definition of the original measure,

i.e., (µ-PCI), and then give its multilayer generalizations.

Definition 1 (Power Community Index, µ-PCI [150]). The µ-PCI index of a node v is the maxi-

mum number k, such that there are at least k neighbors of this node with degree larger than or

equal to k in the µ-hop neighborhood of v.

By setting µ= 1, we get a restricted version of the algorithm, namely PCI. PCI coincides

with the well-known h-index [175], and therefore µ-PCI generalizes the h-index for single layer

networks. PCI is actually a centrality measure, and it was originally used for the purposes

of cooperative caching in wireless ad hoc networks. Later in [77] it has been applied to the

identification of influential spreaders; similarly, the h-index has been described as a centrality

measure [78], [152] and used in the context of influentials [13], [23].

Next, we provide the generalization of PCI (and thus of the h-index) to multilayer networks.

Definition 2 (Minimal-layers PCI, mlPCIn). The mlPCIn index of a node v is the maximum

number k, such that there are at least k direct neighbors of v with the number of links towards at

least n layers greater than or equal to k.

From Figure 4.1 with node D as an example: mlPCI1(D)= mlPCI2(D)= mlPCI3(D)= 3 and

mlPCI4(D)= 0. To combine the distinct n values of mlPCIn into a single dimension, we propose

a simple aggregation. In particular, for a node v we define mlPCI(v) as follows:

(4.1) mlPCI(v)=∑
n

mlPCIn(v).
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mlPCI by definition bares no strict limitation with regard to either limited, or large number

of layers. The indicator will handle cases where nodes are well connected to all layers, to a few

or even just one layer accordingly, which indicates the dynamics of Definition 2. According to

mlPCI index, nodes well connected in many layers, i.e., nodes assigned high index scores in the

range of the n values, will be better “rewarded" from nodes that are well connected, but, in fewer

layers. With this understanding we believe that mlPCI will be a good indicator for the spreading

potential of nodes.

Simple aggregation can be considered as a baseline method to combine the different values of

mlPCIn. However, since larger n implies connection to more layers, a scaling factor could be used

with respect to n in order to handle the vector elements differently. Nonetheless, to devise an

appropriate method for handling those values is no trivial task. Several factors need to be taken

into consideration and further combined with respect to potentially different characteristics

introduced by the different layers, e.g., number of nodes, connectivity, global clustering coefficient,

etc. Such characteristics can introduce a different view to mlPCIn and provide a different

ranking for the network nodes. In this article we focus on the simple aggregation introduced in

Equation 4.1, i.e., agnostic to layer characteristics.

Next, we present a set of special cases of Definition 2.

• Layer-agnostic PCI (laPCI).

By ignoring layer information (i.e., ignoring n) in Definition 2, we get a special case of

mlPCIn which we call Layer-agnostic PCI, laPCI. In Figure 4.1, and considering node D

as our focal node, the neighbors that contribute to its laPCI index are nodes K , B, F and T

with a total of 6, 9, 12 and 16 links respectively in the different layers. Thus we have four

neighbors each of which has at least as many links to the different layers, i.e., laPCI(D)= 4.

laPCI gives credit to a node whose neighbors have many connections in different layer(s),

however, it makes no distinction on how those connections are distributed over those layers.

This implies that a node may accumulate a large laPCI value by being well connected

in a few layers, and at the same time sparsely connected (or even disconnected) to the

remaining ones.

• All-layers PCI (alPCI).

We obtain another special case of mlPCIn by setting n in Definition 2 equal to the number

of layers; we call this special case as the All-layers PCI, alPCI. This approach demands

that the neighbors of the focal node have at least k neighbors in all layers. Considering

node P of Figure 4.1, the neighbors that contribute to its alPCI are nodes G and I each

of which has at least two links in all layers, thus alPCI(P) = 2. alPCI will detect nodes

strongly connected to all layers of the multilayer network that we believe is key ingredient

for highlighting the most efficient intra- and inter-layer spreaders. However, this measure

will be very restrictive for nodes that lack interconnectivity towards all layers. This may
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be a problem for multilayer networks composed of many layers, where it would be quite

difficult to detect many nodes with particularly high alPCI index.

• Layer-symmetric PCI (lsPCI).

Finally, by setting n = k = ‘number of layers’ in Definition 2 we get the so-called Layer-

symmetric PCI, lsPCI. This measure is a combination of three aspects: (a) the inter- and

intra-degree of the focal node, (b) the inter and intra-connections of its inter- and intra-

neighbors, and (c) the layers; all these are nicely “condensed” into a single value. lsPCI

alleviates the strictness of alPCI: “to all layers” no longer applies, and can be quite effective

when dealing with a large number of layers. For limited number of layers we expect lsPCI

to act complementary to other methods, since nodes will be ranked from a limited range of

values. In Figure 4.1, for node D it applies that lsPCI(D)= 3, since nodes B, F and T have

at least three links in three layers.

Although we have presented our definitions for undirected networks, their implementation

to directed ones is straightforward, i.e., by matching the k attribute to the out-degree of each

respective node.

In the next section, we conduct an experimental evaluation of the proposed family of mea-

sures providing detailed information about the competitors, the datasets, and the performance

measures.

4.4 Evaluation settings

4.4.1 Competitors for multiplex networks

Additive PageRank for multiplex networks (addPR).

PageRank [171] has been used several times for the identification of influential spreaders [70].

In [87] the original PageRank algorithm is extended for multiplex networks requiring though a

“predefined” ordering of the layers. We examine here the so-called additive Multiplex PageRank,

in which the effect of layer i on layer j is exerted by ‘adding’ some value to the centrality the

nodes have in layer j in proportion to the centrality they have in layer i. Since the authors

do not provide layer ordering methodology, we order layers in decreasing order of their largest

eigenvalue. Our choice is driven with respect to the fact that a larger eigenvalue implies faster

information dissemination.

Versatility PageRank (verPR) and Versatility Betweenness Centrality (verBC).

A fundamentally different flavor in extending PageRank for multiplex networks has been de-

scribed in [29], which, using a tensorial notation, provides a generalization of the original

PageRank for multiplex networks, called the Versatility PageRank. Counting the number of

shortest paths that pass through a node (i.e., Betweenness centrality) has been widely used as a

competing technique for ranking the influence potential of nodes. In [29] the authors generalize
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this concept for multiplex networks, describing the Versatility Betweenness. Both techniques are

implemented as competitors.

Multiplex k-core percolation methods (Core and sumCore).

We include the k-core percolation for multiplex structures [30], [48] in the competitors lists

(Core). However, in the evaluation we found only limited values for Core. This is due to the

fact that Core will follow the coreness of a node’s least connected edge type, regardless of how

well connected a node may be in the remaining layers. Thus, we also include a variation of Core

according to which we calculate the shells for each layer separately and then add those values;

we name this version as the sumCore index.

Degree centrality for multiplex networks (aggDeg).

We employ a straightforward interpretation of degree centrality for multiplex networks, i.e., the

aggregation of the intra neighbors of the focal node in all layers; we call it aggDeg.

4.4.2 Competitors for multilayer networks

The work presented in [50] proposes a generalization of the k-core algorithm that incorporates

λii and λi j within the definition of the technique. However, this is not a characteristic that any

method should “know” a priori, and hence, we exclude this method from our list. Also, due to

the unique characteristic of multiplex networks, i.e., nodes are clones in the different layers, the

Additive PageRank (addPR), presented in the previous section, cannot be applied here. Though,

we tested the Versatility PageRank and Versatility Betweenness proposed in [29], and Core

from [30]. Moreover, in order to provide a complete analysis, we apply the ‘traditional’ methods,

i.e., PageRank, Betweenness centrality, Degree centrality, and k-core by projecting the multilayer

network in its aggregated form, implementing in essence the proposals in [17].

4.4.3 Summary of competitors

Table 4.2 summarizes the competitors implemented in this article. Each method’s name is

comprised by two parts; the latter part discloses the method, e.g., PR stands for ‘PageRank’, BC

stands for ‘Betweenness Centrality’, Core for ‘k-core’, ‘Deg’ for ‘Degree’, whereas the former part

describes the ‘flavor’ of the method, e.g., ‘vers’ stands for ‘versatility’, ‘add’ stands for ‘additive’,

‘agg’ stands for ‘aggregated’ (i.e., in the aggregated network), ‘sum’ stands for ‘summation’ (i.e.,

summation of values resulting from the calculation of a measure in the different layers).

4.4.4 Datasets

For the evaluation of the competing methods we used several real and synthetic datasets to

compare the algorithms in diverse networked environments.
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Multiplex networks Multilayer networks

aggDeg ≡ aggDeg
addPR [87] aggPR [171]
verPR [29] verPR [29]
verBC [29] verBC [195]

sumCore [this article] aggCore [139]
Core [30] Core [30]

Table 4.2: A summary of competing methods evaluated.

4.4.4.1 Real datasets

Table 4.3 depicts the basic attributes of the experimented multiplex networks. For more details,

readers are referred to: http://deim.urv.cat/∼manlio.dedomenico/data.php. We extracted part of

the original networks in such a way that all nodes have counterparts in all layers.

Networks N E L Type Nature
Sacchpomb 875 18214 3 Directed Biological
Drosophila 1364 7267 2 Directed Biological
Sacchcere 3096 185849 5 Directed Biological
Homo 3859 77483 3 Directed Biological
NYClimateMarch 4150 45334 3 Directed Twitter
MoscowAthletics 4370 33411 3 Directed Twitter

Table 4.3: Multiplex networks.

4.4.4.2 Semi-synthetic datasets

For synthesizing artificial networks we follow a similar approach with the authors of [50].

Specifically, we consider real monoplex networks from [65], e.g., several Internet peer-to-peer

networks, and synthesize their interconnectivity. Table 4.4 illustrates the real networks used

as the different layers of the synthesized multilayer networks. EgV corresponds to the largest

eigenvalue of each respective network. We generated two types of multilayer networks: (i) a

multilayer network composed of layers with similar size, i.e., Similar Layers Network (SLN) and

(ii) a multilayer network formed of different-sized layers, i.e., Different Layers Network (DLN).

The multilayer network of the first type is composed of the networks/layers (3)–(6) (4 similar-

sized layers), whereas the second multilayer network is composed of the networks/layers (1)–(3)

(i.e., 3 different layers). For the latter case the different networks differ in the number nodes,

edges and network type. We present plots about the out-degree distribution of these networks in

the ‘Network properties’ section of the Appendix B.1.
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No. Network Nodes Edges Type EgV
1. wiki-Vote 7,115 103,689 social 45.1
2. cit-HepTh 27,770 352,807 citation 10.8
3. p2p-Gnutella04 10,876 39,994 p2p 4.4
4. p2p-Gnutella05 8,846 31,839 p2p 4.3
5. p2p-Gnutella06 8,717 31,525 p2p 4.7
6. p2p-Gnutella08 6,301 20,777 p2p 5.1

Table 4.4: Layers of semi-synthetic networks.

4.4.4.3 Generating Interconnections

Since we make use of real networks to represent the layers of the semi-synthetic multilayer

structure, we have to decide how to generate the interconnections among layers. We developed a

synthetic multilayer network generator which satisfies the following three needs:

• It can define how many interlinks, i.e., inter-neighbors, a node may have.

• It can define how those links are distributed over the layers.

• It can define how links are distributed in each specific layer.

We apply the Zipfian distribution in our interconnectivity generator. The desired skewness is

managed by the parameter s ∈ (0,1). The generator uses one Zipfian distribution per parameter

of interest:

• sdegree ∈ (0,1) in order to generate the frequency of appearance of highly interconnected

nodes.

• slayer ∈ (0,1) in order to choose how frequently a specific layer is selected.

• snode ∈ (0,1) in order to choose how frequently a specific node is selected in a specific layer.

Finally, we need to decide the range of values for the different distributions. For slayer and

snode the selection is straightforward since all layers and all nodes within a layer must be

available options. Note that the different layers are allowed to have different preferences, i.e.,

skewness towards different network-layers. Following the review of [61] we understand that

inter-connections are rarer than the intra-connections. In our simulations, we limit the inter-

degree of nodes within (0, d · log2
∑

i Vi) for all i = 1,2, ..N layers where d = 1,2,3 or 4. Hereafter

we apply the notation SLNd(sdegree, slayer, snode) in order to refer to the generated networks.

More algorithmic details and a brief validation of the generator can be found in the Appendix of

this paper.
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4.4.5 How to evaluate the performance

In our experimentation, in order to evaluate the ranking ability of each competitor, we calculated

the correlation of the competitors with respect to the spreading power (SP) of each node (i.e.,

the number of nodes influenced), when initiating the SIR process from this node as the single

origin of the diffusion process. The correlation is measured through Kendall’s Tau (τ) “b” (see

Appendix A.3) rank correlation coefficient [196]; the τ value between two equi-sized ranked lists

is computed as follows:

(4.2) τ= nc −nd

n(n−1)/2
,

where nc is the number of concordant pairs, nd is the number of discordant pairs, and the

denominator is the total number of pairs of n items in the lists. Some more details are provided in

the Appendix. In order to obtain unbiased results, for each node, the average SP is used over 500

SIR processes.

We found that the average is a proper representative for the following reason: we evaluated

the ranking ability of the competitors with respect to the standard deviation of the distribution

around the average spreading power of each node. In more detail, all competitors were ranked

with respect to: (i) the average spreading power (SP), (ii) the average spreading power minus the

standard deviation (SP − std), and (iii) the average spreading power plus the standard deviation

(SP + std), when λii is the epidemic probability. Hence for each competitor we obtained three

values of τ. We found out that these values differ from each other beyond their third decimal

point, as shown in Table 4.5, where each cell’s value is the ratio between the correlation (τ) of

a competitor, e.g., Deg, and the technique which scored the largest τ (i.e., mlPCI), when using

the respective values of SP for two networks, namely Homo and Sacchpomb. Similar results

were observed in the remaining networks, and thus, we draw the correlation of each competitor

against the average spreading power.

Homo Sacchpomb
avg-std avg avg+std avg-std avg avg+std

aggDeg 0.9839 0.9859 0.9879 0.9899 0.9869 0.9887
sumCore 0.9162 0.9142 0.9112 0.9781 0.9804 0.9806

verBC 0.7020 0.7013 0.7011 0.8020 0.7972 0.8015
addPR 0.8494 0.8457 0.8421 0.8590 0.8649 0.8602
verPR 0.8495 0.8560 0.8529 0.9498 0.9501 0.9530
Core 0.7713 0.7725 0.7717 0.4363 0.4394 0.4340

Table 4.5: Stability of ranking with respect to the average spreading power. The values represent
the ratio between the correlation (τ) of a competitor, and the best performing method (i.e.,
mlPCI).
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4.4.6 Setting parameters

Table 4.6 illustrates an overview of the experimented parameters, range and default values. In

our evaluation in multiplex networks we illustrate how the different spreading rates per layer

(λii) affect the competing methods. Specifically, we compute the epidemic probability λc [118] for

each layer, and experiment around this value. For example in Figure 4.2(a), zero in the x-axis sets

λii of all layers at their respective epidemic thresholds, while −0.2 sets the spreading rate per

layer at 20% bellow that value etc. Similar notations are used for the semi-synthetic networks,

where we also investigate on the impact of the inter spreading rate (λi j) and on the density of the

generated interconnections (d). To decide the spreading rate between the different layers, we

calculate the epidemic threshold of the aggregated network and likewise experiment around this

value. We choose to use the same λi j among all layers in order to give the same “weight” to all

interconnections. When evaluating the impact of one parameter, the remaining parameters are

set to their default values.

4.5 Results

4.5.1 Ranking influence in real networks

In this section we investigate on the performance of the competing techniques in multiplex

networks. For our first and most evident observation we elect mlPCI as the most promising

technique for the identification of influential spreaders. As illustrated in Figure 4.2, mlPCI has

the strongest correlation with influence in almost all evaluated scenarios, that is, the largest τ.

By combining the connectivity that neighboring nodes posses in the different layers as mlPCI

suggests, from just one, to all layers of the multiplex network, we show that the proposed

algorithm can take advantage of multiplexity more efficiently than the competing techniques.

In plots (d-f) of Figure 4.2, aggDeg performs similarly to mlPCI, whereas their in-between

performance deviates in (a), (b), and (c). Its worst performance is illustrated in Figure 4.2(b)

where the competitor’s correlation with influence falls to the fifth place. aggDeg “sees” the

network in its aggregated form, i.e., as a monoplex network, and hence disregards a wealth

of knowledge regarding the different layers. For instance a node which accumulated most of

its aggDeg value from a single layer, is not distinguished from a node of the same index but

Network Type Rate Range Default
Multiplex λii−λc

λc
-0.2 to 0.6 0

Multilayer

λii−λc
λc

-0.2 to 0.2 0
λi j−λc
λc

-0.3 to 0.3 0
d 1 to 4 2

Table 4.6: Experimentation parameters.
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Figure 4.2: Rankings capabilities (Kendall’s Tau b) of all competing techniques in real multiplex
networks with respect to λii. It can be observed that all competing algorithms exhibit similar
trends, i.e., either increasing or decreasing trend as the intra-spreading probability changes.
mlPCI illustrates the largest correlation with influence in almost all networks. While mlPCI
shows a relatively stable behavior, i.e., it is (almost) always at the top of the ranking chain, the
remaining algorithms do not posses that property as their rank changes in the different networks,
e.g., aggDeg is 2nd in Homo and 6th in MoscowAthletics2013.

equally connected to all layers. Nonetheless, these nodes will have different spreading potential.

Moreover, although a node with many connections can be an influential one, it is also a misleading

characteristic if the node is positioned in the periphery of the network. This claim has been
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proven for monoplex networks [139], and it was expected to apply in multiplex structures as well.
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Figure 4.3: Distribution of alPCI values for all networks. It can be observed that for most
networks the majority of nodes has relatively low alPCI values, whereas the largest indexes are
appointed to only a few nodes.

Focusing on alPCI we observe varying results, i.e., medium performance, as in Figure 4.2(a)

or Figure 4.2(b), or low correlation with influence as illustrated in Figure 4.2(c) or Figure 4.2(e). At

this point we should reminisce that alPCI is a very strict definition which demands connectivity

to all layers. Although in terms of spreading capability such characteristic would prove invaluable,

in our simulations we found relatively low values for alPCI. Figure 4.3 illustrates the distribution

of alPCI values in the evaluated networks. It can be observed that when we are bound to a poor

distribution, i.e., when nodes are not strongly connected to all layers as in Drosophila network

(Figure 4.2(c)), we obtain the worst case performance for alPCI. Contrary, when nodes are better

connected to all layers, the correlation of alPCI with influence increases, e.g., as in the Sacchcere

network (Figure 4.2(f)). Of particular importance are Drosophila and Sacchpomb networks where

we observe a large portion of network nodes with zero alPCI index. These are the cases where

several nodes act only as receivers (not spreading) in a layer, i.e., zero out-degree. Such instances

can be related to lurking behaviors in social networks where nodes only “hear” but never spread

information [75]. However, alPCI requires spreaders to all layers, hence, by definition these

nodes will be “overlooked”. Although the above cases contribute negatively in the evaluation of

the proposed mechanism, our results show that finding nodes strongly connected to (as) many

layers (as possible) is a key factor for the identification of influential spreaders. For lsPCI we

also observed variation to its performance. This is due to the relatively low number of layers

evaluated (2,3 or 5), and thus limited range of indexes obtained for ranking the multilayer nodes.

Moving to the evaluation of sumCore, we observe that the competitor is ranked second in

(a) and (b) of Figure 4.2, whereas in Figure 4.2(e) it competes with aggDeg for the second place.

However, in the remaining networks the competitor performs differently. From Figure 4.4 it
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can be observed that the largest sumCore values for the Twitter networks are about 10, that

is, a large number of nodes distinguished for their influence capabilities from a mere of ten

different values (ties are solved via largest aggDeg). Although this is a shortcoming shared

also by alPCI, from Figure 4.4 it can be concluded that as we obtain a better distribution for

the sumCore values, that is when nodes are ranked more from their sumCore index than their

aggDeg, the competitor’s performance drops, as it is ranked fourth or lower in our simulations

e.g., Figure 4.2(d) or Figure 4.2(f). However, this is an opposite behavior from what we observed

for alPCI, thus, sumCore cannot be considered a strong indicator for the spreading potential

of a node. Furthermore, a relatively poor performance can be observed for Core, which can be

explained by the fact that the competitor follows the coreness of a node’s least connected edge type,

regardless of how well connected this node might be in the remaining layers. This characteristic

has a negative impact in performance of the technique.
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Figure 4.4: Distribution of sumCore values for all networks. According to the illustrated distribu-
tions, we observe two groups: (Drosophila, MoscowAthletics2013, NYClimateMarch) and (Homo,
Sacchpomb, Sacchcere).

verPR shows an interesting performance. In Figure 4.2(d,e,f) the technique illustrates a

very competitive behavior, i.e., is ranked as 3rd or 4th best method in the ranking chain of

the competitors; however, in Figures 4.2(a,b) its performance drops. This observation can be

attributed to the change in the distribution of in-out neighbors; when these quantities are

positively correlated (see Figure B.3 in the Appendix), then verPR exhibits very good performance.

When compared to the addPR, verPR’s performance is either similar or significantly higher, e.g.,

Figure 4.2(d) and Figure 4.2(f) respectively. This observation concludes that verPR can identify

more effective spreaders than addPR.

By definition addPR instructs an ordering of layers where a node gains more centrality in a

layer if it is important in previous ones, regardless of the node’s ability to attract important nodes

in the current layer. Although such attribute can be beneficial for a node when it lacks centrality
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in a layer, but, is well connected in others, it is also a very restrictive characteristic that requires

an optimal selection for the sequence of layers, i.e., the order that layers are being processed,

overall, should be beneficial to all nodes of a network. Nonetheless, the decision for such ordering

is no trivial task especially as the size (in nodes) and the number of layers increases. But apart

from this shortcoming, its relative low performance is explained by the nature of the original

PageRank when used for influential detection, which assumes that content spreads randomly in

the network that is not valid [70].

verBC inherits the weaknesses of the original betweenness algorithm. As an example, con-

sider a node which is unique for reaching a portion of network nodes in a certain area. Clearly,

that node will be part of many shortest paths, hence, it will accumulate a large verBC score.

However, if spreading in this area is unfavorable, e.g., nodes are sparsely connected, or the

target area reached by this unique node is relatively small, the spreading power of that node

will not justify its high verBC score in the ranking process. On the other hand nodes that do not

reside in any shortest path will acquire a zero index of verBC. Nonetheless such nodes may be

(directly) connected to hubs, and thus “indirectly” affect a significant number of network nodes. It

is straightforward that in such occasions the performance of the competitor will be negatively

affected.

Evidently, the competing algorithms will not be equally influenced from network character-

istics, i.e., methods that require global knowledge of the network topology are more depended

to network topology than local approaches. For instance, by definition, verPR, addPR and

verBC will be significantly more influenced than the rest of the competing techniques from the

distribution of in-out degree (it is illustrated in Figure B.3 in the Appendix), especially when a

large number of nodes with low values in either kin or kout are present. To our understanding

such characteristics also contribute to their overall significantly lower performance. This is yet

another reason for selecting methods that require only local knowledge of the network topology.

Examining the curves of the illustrated results, we observe similar trends for the competing

methods, i.e., either increasing or decreasing within a specific range of λii values. The observed

abrupt changes in τ, as illustrated for example in Figure 4.2(f) for the Sacchcere network from 0.3

to 0.4, or in Figure 4.2(d), is due to a significant amount of newly influenced nodes with respect

to those from the previous λii value. In contrast to monoplex networks where spreading is of

single dimension, in multiplex networks a node can become influenced because it’s counterpart

was “reached” in another layer. In other words, although there is an influence rate λii per layer,

the actual spreading rate can be significantly higher when accounting for multiplexity.

Our evaluation so far strengthens our belief for finding influential spreaders in multilayer

networks, by imprinting within the proposed measures the density of inter- and intra-connections

in the immediate vicinity of the focal node. mlPCI, combines those k neighbors connected in just

one layer, those k neighbors residing in two layers and so on up to those k neighbors connected
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to all layers. It alleviates the shortcoming introduced by alPCI and at the same time can be as

restrictive as an application requires by setting our focus to at least as many layers as necessary.

In addition to its local computation complexity, mlPCI illustrated the largest correlation with

influence in almost all evaluated networks for all respective spreading rates, and is thus our

primary selection.

4.5.2 Ranking influence in semi-synthetic networks

4.5.2.1 Interconnections and influenced nodes

We start our evaluation by noting the different “rules” that apply for these type of networks with

respect to the multiplex structures. First, there are no counterpart nodes, i.e., nodes are different

entities, which means that there exists a spreading probability in order to reach nodes in other

layers, i.e., λi j. Furthermore, successfully propagating over an inter-link, only affects one node at

one specific layer and not all layers of the multilayer network as in the previous evaluation. The

above considerations indicate that we are bound to a significantly different environment, hence,

we expect to encounter different results.

Firstly, we examine the effect of the generated interconnections in the diffusion process. We

should note that although our generator gives a particular trend on how interconnections are

distributed over the layers, the topological characteristics of an inter-neighbor will also play

a vital role in the diffusion process. Specifically, an interconnection to a node which resides

within a well connected neighborhood will favor the spreading process, whereas the opposite

will occur if interlinks are "wasted" over nodes with poor inter/intra connectivity. Figure 4.5

illustrates the cascade size per layer in several networks, i.e., the influence exerted by any

initially infected node falls within the illustrated range. It can be observed that the way in which

interconnections are distributed over the layers plays a major part in the SIR dynamics; as

anticipated for SLN2(0.3,0.3,0.3) and DLN2(0.3,0.3,0.3) networks, the cascade size is significantly

higher. This is due to the fact that there is no excessive skewness for the inter-degree assigned

to the participating nodes (sdegree), nor towards which layer those interconnections are guided

(slayer), or to the selection of nodes within the target layer (snode). Such configuration will provide

a favorable environment for the spreading process, and thus influence a larger portion of network

nodes. The opposite scenario is illustrated for SLN2(0.8,0.8,0.8) and DLN2(0.8,0.8,0.8). Similarly,

having similar distribution for the inter-degree of nodes, e.g., by setting sdegree at 0.3 (or 0.8),

and vary in the remaining parameters, shows that increased skewness has negative effect on the

percentage of influenced nodes.

4.5.2.2 Impact of inter connections and intra diffusion probability

Figure 4.6 illustrates the performance of the competitors in the semi-synthesized networks

when evaluating the impact of λii. In coherence with our conclusions in real networks, we elect
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Figure 4.5: Maximum cascade size per layer subject to the distribution of interconnections. It
can be observed that when all parameters are set to 0.3 the cascade size is maximum, while the
opposite occurs, when all parameters are set to 0.8.

mlPCI as the most promising technique for measuring influence in multilayer networks. It can

be observed that mlPCI is at the higher values of τ for almost all spreading rates, however, the

ordering for the remaining techniques has changed. Specifically, laPCI can be considered as

the second best method, performing almost as good as mlPCI in Figures 4.6(a), 4.6(g) or 4.6(h),

and as the next best solution in the remaining networks. laPCI implies k neighbors towards

any layers, however, these nodes may reside in many, or, in just one layer. For occasions where

the latter holds, and nodes are assigned a large laPCI index, there is strong possibility that an

epidemic will arise in the multilayer network, since within these k neighbors, nodes connected to

different layers are likely to exist. The same logic applies to nodes with a large aggDeg index

as for example in the Wiki-Vote network (details in Figure B.4 in the Appendix). The difference

between the two measures that discriminates the performance of laPCI, is that those k neighbors

that form the node’s index, is the result of “filtering” that is applied in the focal node’s vicinity,

that discriminate a highly connected node within a strongly connected neighborhood, from nodes

residing in sparser vicinities. This inherent characteristic governs all proposed methods, which

in our view enables the proposed techniques to detect more efficient spreaders.

Of particular importance is the performance of verPR in the SLN networks. Apart from

the fact that it has increased correlation with influence with respect to its performance in

the DLN networks, Figure 4.6(b) illustrates an interesting result, i.e., verPR outperforms

mlPCI when λii is larger than the epidemic probability. To explain this behavior we need

to consider the distribution of the inter-connections. By setting snode at 0.8, we “send” many

interconnections to a certain portion of network nodes within the corresponding layer, that is, in

terms of verPR, specific nodes are inter-pointed by many others. These nodes will accumulate a

large verPR index due to their interconnections, thus rendered as efficient cross-layer spreaders

detected by verPR. It is due to this intrinsic characteristic of the competitor that we observe its

efficient ranking in these specific networks. In Figure 4.6(d), where interconnections are more

61

Institutional Repository - Library & Information Centre - University of Thessaly
06/06/2020 00:05:55 EEST - 137.108.70.13



CHAPTER 4. ACCELERATING SPREADING PROCESSES IN MULTILAYER COMPLEX
NETWORKS

constrained with sdegree set at 0.8, verPR does not outperform the proposed methods, however, as

λii increases the distance in their performance decreases. In the DLN networks the performance

of verPR is far inferior to all methods with the exception of verBC. This gap in performance

from the demonstrated results in Figures 4.6(a) to 4.6(d), can be explained by comparing the

kout distribution of inter and intra links in each respective network type, i.e., in the latter, there

is significant difference in magnitude between the inter and intra neighbors. Evidently from

Figures B.2 and B.4 (see the Appendix), the impact of interconnections in the DLN examples will

be considerably smoother, which explains the behavior of the competitor.

In all the experiments concerning multilayer networks, Core seems (almost) uncorrelated

to the spreading power of nodes (i.e., almost zero τ). This behavior is explained directly by the

definition of the algorithm; nodes would get a Core value different than one, only if they have

connections to all layers. This happens only for very few cases in our generated networks, and

thus practically all nodes get the same Core value. This results in the phenomenon that we

observe. By examining the performance of aggCore we observe varying results, i.e., below the

5th place in the ranking chain of the competitors, e.g., 6th in Figure 4.6(e) and 10th in 4.6(c).

Nonetheless we cannot expect aggCore to be a challenging competitor since it projects all layers

in a single dimension and thus neglects the layered structure of the network.

For verBC it is straightforward that the shortcomings discussed in the previous section also

apply in the current framework. Generally, when there are fewer paths to the different layers

(sdegree = 0.8), the limited shortest paths work in favor of the competitor that shows a relative

increase in performance, e.g., comparing Figures 4.6(a) and 4.6(c). However, if either snode or

slayer is set to 0.8 we observe decrease in τ as illustrated from Figure 4.6(a) to 4.6(b). It can

be concluded that we cannot accurately distinguish the spreading power of nodes by counting

the number of shortest paths that pass through them. As described in [29], the performance of

aggPR (aggBC) coincides with that of verPR (verBC).

Setting slayer at 0.8, denotes a possible preference developed between the layers, that is,

most interconnections are “guided” from a layer to a specific other(s), while the remaining

layers acquire limited inter-links from that particular layer. As illustrated from the results,

this parameter has a soft impact to all competitors with the exception of alPCI. Particularly

in Figures 4.6(b) and 4.6(d), due to this setting, alPCI failed to provide an acceptable ranking,

since a significant portion of network nodes were assigned zero alPCI, or in other words nodes

were not inter-linked to all layers. In the DLN networks, although less nodes where assigned

a zero value, still, the obtained indexes where significantly low and overlapping. For example

in DLN2(0.8,0.8,0.8), most alPCI values were below 6. In these scenarios we can understand

the reasons for its questionable performance, however, alPCI can still operate in one more

way, i.e., as an additive rank rather than a solo ranking method. This aspect can be related to

Figures 4.6(f) and 4.6(h) where a limited range of alPCI values (ties are solved via the largest

aggDeg) rank a large number of network nodes, or in other words, nodes are ranked more from
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their aggDeg index than from their alPCI. Such combination, results in distinguishing highly

connected nodes that have interlinks to all layers, from those that do not posses that property.

lsPCI operates similarly to alPCI since its indexes are limited by the number of layers. Thus,

the results illustrated in Figure 4.6 is the outcome of ranking nodes according to lsPCI, while

breaking ties via the largest aggDeg index. Nonetheless we expect that for multilayer networks

composed of more layers, lsPCI ’s efficiency will be distinguished further.

Typically, as λii increases above the epidemic probability, the identification of influential

spreaders becomes more difficult for any algorithm to detect. This is due to the fact that for large

λii values, that is, as λii deviates significantly from the epidemic probability, an epidemic occurs

regardless of the characteristics of the initially infected node [106]. Even if the initially infected

node is not an influential one, at broad spreading rates there is high possibility that an influential

will be “reached” as the spreading progresses, and thus result in epidemic propagation. Hence

true conclusion can only be drawn near the epidemic probability.

It is straightforward to understand that the way interconnections are distributed over the

different layers, and to the nodes within those layers, plays a vital role in the diffusion dynamics,

and thus, in the performance of the competitors. Hence, for any algorithm in order to be charac-

terized as an efficient technique for the detection of those powerful spreaders, intra and inter

connections must be incorporated and combined in the most efficient of ways in order to predict

the probability of an epidemic outbreak. Robustness to either limited or increased number of

inter-links is also a necessity. Furthermore, it can be concluded that traditional approaches that

project the multilayer network to a single dimension cannot predict the actual spreading power

of nodes in these complex structures.

4.5.2.3 Impact of inter connections and inter diffusion probability

In Figure 4.7, we investigate on how the competitors behave in the increase of the inter-layer

spreading probability. To this end we choose to have a favorable distribution regarding the

inter-degree of nodes, i.e., sdegree = 0.3. First, the ranking obtained from the previous section

has remained relatively unchanged. This observation strengthens the evaluation of mlPCI

which illustrates a robust behavior to the different spreading rates used in our simulations.

Examining the trends of the illustrated curves, it can be observed that all competing methods

become more effective as λi j increases. Focusing on Figures 4.7(a) to 4.7(c), we observe that as λi j

increases above the epidemic probability, the distance in performance of aggDeg with mlPCI

and laPCI starts to decrease, and coincides at 0.3. However, similarly to our previous discussion,

true influential spreaders can only emerge near the epidemic threshold, where we observe that

mlPCI has the largest τ compared to the remaining techniques.

In Figures 4.7(d) to 4.7(f), the performance of mlPCI is distinct even when λi j is above the

epidemic probability. The basic difference between these networks and those in Figures 4.7(a)
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to 4.7(c) lies in the distribution of inter-intra kout (Figures B.2 and B.4 in the Appendix). Specif-

ically, in the DLN networks, nodes are much more intra-connected in their focal layer than

inter-connected to different layers while for the SLN networks, intra and inter connections are

more comparable. Hence, for the DLN networks, the inter-connections will have a smoother

impact on the spreading dynamics.

Our evaluation so far illustrates that the interplay between the different layers affects the

competing algorithms differently. For instance snode at 0.8 affects the performance of verPR

positively —also illustrated in the previous section— as depicted for example in Figures 4.7(b)

and 4.7(c). verBC’s performance decreases when either slayer or snode is set to 0.8, and in fact it

is lower, when both parameters are set at 0.8. This observation is most evident in Figures 4.7(a)

and 4.7(c).

Similarly to Figure 4.6(b), due to slayer = 0.8, alPCI is unable to rank nodes in the SLN2(0.3,

0.8, 0.8) network (Figure 4.7(c)). This is due to the fact that nodes are not interconnected towards

all layers. Nonetheless, from Figures 4.7(d) to 4.7(f), we can observe that even when alPCI ranks

nodes with a limited number of different indexes, by breaking ties via the largest aggDeg policy,

we obtain a significant improvement in τ.

The above considerations are vital ingredients for building a successful recipe that will detect

influential nodes in multilayer networks. It is our belief that all these characteristics must be

imprinted within a technique in hopes of understanding and predicting the spreading power

of nodes. mlPCI inherently filters a node’s near vicinity, i.e., those “k” neighbors at least “k”

connected from just one to all layers of the multilayer network, which as shown in the majority of

the illustrated results, separates it from the rest of the competing algorithms.

4.5.2.4 Impact of increasing interconnections (d)

Our final section illustrates the performance of the competitors as we increase in the density

of interconnections (see Figures 4.8 and 4.9). Reminisce that all spreading rates are set to the

epidemic probability, however, as d increases, the epidemic probability of the aggregated network

decreases, i.e., λi j decreases. This observation is evident in the SLN networks even at the initial

values of d. For instance when sdegree is set to 0.3, the largest eigenvalue is about 10, 15, 21

and 27 for d = 1,2,3 and 4 respectively. Evidently, the increase of the largest eigenvalue, and

thus the decrease of the epidemic probability, is confoundedly significant. For sdegree = 0.8, we

observe a smaller increase, e.g., 8.5 for d = 2, however such behavior is anticipated due to the

distribution of inter-connections. In [118] the authors state that the epidemic probability of the

aggregated network is smaller than that of the individual layers. This observation is coherent

with our study in the SLN networks (Table 4.4), however, for the DLN case, where the multilayer

network is composed of layers with different number of nodes, edges, degree distribution etc., we

found that for d ≤ 2 the epidemic probability followed the eigenvalue of Wiki-Vote (about 45), that
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is, the layer with the largest eigenvalue. Even when we increased d up to 4, we did not observe a

significant increase, e.g., 47 and 49 for d = 3 and 4 respectively. This is due to the large difference

in the distribution of kout of the inter and intra neighbors.

In particular, examining Figures 4.8 and 4.9, we observe similar results with our previous

discussions. Evidently, the algorithms perform differently in the SLN networks with regard

to their performance in the DLN scenarios. The former depicts a decreasing correlation with

influence as d increases, with the exception of verPR, whereas the latter shows a more complex

behavior. At this point we should note that in the SLN networks, the increase of d employs a

growing number of interconnections that surpass that of the intra-links for d > 2. In terms of

alPCI, this attribute is not advantageous, since nodes will be indexed for their k neighbors to

all layers, thus their rank is bounded to the limits of their intra-connections. On the contrary in

the DLN networks which are not governed by such rule, alPCI has increased correlation with

influence, performing similar to mlPCI when d ≥ 3, i.e., when nodes have more connections to

all layers.

4.6 Conclusion

Multilayer complex networks have recently been the focus of intense study in the realm of

network science. Real instances of them include transportation networks, online social networks,

power networks and so on. Diffusion processes, such as spreading processes, cascading failures,

cooperative behavior are significant fields of study. Among them, the identification of influential

spreaders is a significant task due to its application in immunization strategies, advertising and

so on.

This article investigated the problem of identifying influential spreaders over multilayer

complex networks, since we are currently ‘embedded’ in multiple networks concurrently, e.g.,

in the case of online networks, we have an account at Facebook, Linkedin, Twitter, etc. and we

spread our ideas/product-preferences using all of them. The article explained the lack of proposals

so far for carrying out this task, and explained the inadequacy of the corresponding techniques

proposed for the same problem in the case of single-layer complex networks because they do not

take into account the existence of multiple layers and/or generate solutions that do not allow the

straightforward ranking of nodes for selecting the most influentials.

Then, it proposed a family of measures for describing the strategic position of a node within

a multilayer network. These measures condense into a single number the connectivity of the

node with respect to nodes belonging to the same layer as well as to the rest of the layers. The

calculation of these measures requires only information of the connectivity of the surrounding

nodes, and not iterative computations with knowledge of the network-wide topology thus making

it scalable, and quickly computable. Moreover, this feature makes them suitable both for online

(e.g., response to evolving infections) as well as offline mining tasks (e.g., selection of best
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‘promoters’), due to the huge size of underlying networks.

The experimental evaluation of the proposed methods carried out against all major com-

petitors proposed so far for either single-layer or multilayer networks, i.e., degree, betweenness

centrality, PageRank and k-core for single and multilayer/multiplex networks. The complex

networks used for the evaluation spanned a wide variety of network structure and size, and a

network generator was also developed and used so as to test a wide range of topology charac-

teristics. The final outcome of the evaluation marked mlPCI as the best performing measure

for almost each and every dataset used. Its success can be attributed on building on the short-

comings and embedding the benefits of the members of its family proposed in this article; it

achieved to summarize the connectivity around a node in a concise and quite accurate way, even

though it refrains from examining the whole network topology with time-consuming iterative

decomposition procedures.
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Figure 4.6: Rankings capabilities (Kendall’s Tau b) of all competing techniques in real networks
with synthesized interconnections with respect to uncorrelated with influence in these networks,
because it assigns to almost all network nodes the same index value.
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Figure 4.7: Rankings capabilities (Kendall’s Tau b) of all competing techniques in real networks
with synthesized interconnections with respect to λi j. mlPCI remains at the top of the ranking
chain. verPR’s performance is better in the SLN networks where interconnections are more dense
(when compared to the intra-connections) with respect to the DLN networks, and particularly is
at its best when snode or slayer is 0.8. It can be observed that measuring the influence capabilities
of a node by counting the number of geodesics that pass through that node (aggBC, verBC) does
not yield competitive results.
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assigning to a specific set of nodes many interconnections, works in favor of verPR which exhibits
an exceptional performance in this case.
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Figure 4.9: Increasing in the number of interconnections in the DLN networks. As intercon-
nections increase alPCI yields better results, i.e., from 4th when d = 1 to 1st when d = 4. It’s
performance is different from the SLN networks because for the DLN networks, the distribution
of inter-kout is still significantly lower (even for d = 4) from that of intra-kout (compare Figures B.1
and B.2 with Figure B.4 in the Appendix) which does not hold for the SLN networks.
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5
ACCELERATING SPREADING PROCESSES IN VEHICULAR

NETWORKS

A Social-based Approach for Message Dissemination in Vehicular Ad Hoc
Networks

5.1 Introduction

In this chapter we focus on the selection of relay vehicles−based on tools from graph theory−capable

of accelerating the spreading of messages within the vehicular network. One-to-all vehicle com-

munications finds fertile ground in numerous applications in our everyday lives. Consider cases

where a driver near a parking lot broadcasts a message regarding limited free spots. Nearby

interested drivers may decide to visit this location whereas further away vehicles are less likely

to do so. Generally vehicles informed of unfavorable road conditions, for example of blocked roads,

traffic jams or accidents, will take prompt action to alternate their route in order to avoid those

locations and thus save time and fuel. To this direction the efficient dissemination of messages,

that is, the spreading of messages to the largest possible extent within the vehicular network, is

of paramount importance.

The main goal of broadcasting in a vehicular network involves the diffusion of messages

among the vehicle-nodes, while keeping the number of redundant re-transmissions minimum.

Related publication [C5]: Alexandra Stagkopoulou, Pavlos Basaras, Dimitrios Katsaros. A Social-based Approach
for Message Dissemination in Vehicular Ad Hoc Networks, Proceedings of the 6th International Conference on
Ad Hoc Networks, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering (LNICST), vol. 140, Springer, pp. 27-38, Rhodes island, Greece, August 18-19, 2014.
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This domain has rich literature. Centralized broadcasting, where each node is aware of the entire

network topology [182] implies vast communication cost for dynamic networks such as VANETs.

Geocasting [80] is another broadcasting approach for the spreading of messages, notification,

etc., to wireless nodes located in a specific geographic region. Other studies include the use of

connected dominating sets (CDS) [119] to extract a ‘backbone’ image of a network. Nonetheless,

the VANET is a unique network composed of highly mobile nodes with intermittent connections,

and thus maintaining an accurate backbone structure is a costly strategy. More sophisticated

approaches include those studied in [121] where the vehicular network is divided in groups of

neighbors called clusters. For each cluster a leading vehicle, the cluster head (CH), is elected

and assigned with specific functionalities, e.g., rebroadcasting. When a vehicle has a message

to send, it communicates with his CH, which is then responsible to rebroadcast the message to

neighboring CH’s and so on, until the entire network is informed.

Simply rebroadcasting (flooding) all messages that a vehicle receives may cause the broadcast

storm problem [190]. Other flooding based approaches include probabilistic models where vehicles

decide whether or not to rebroadcast a message based on some probability p. However this setup

may lead to scenarios with either too few or too many transmissions. The authors in [81]

review such methods for large scale routing protocols. Among other studies, VDEB [147] and

BPAB [128] are also considered as message forwarding policies in ad hoc networks, however

their implementation in the VANET is still incomplete. The optimized link state routing protocol

OLSR [188] is a proactive methodology and is widely used in mobile and vehicular networks.

OLSR employs a specific set of neighboring nodes, called multipoint relays (MPRs), to re-transmit

the required messages instead of pure flooding.

In this article we employ social inspired techniques for selecting relay vehicles. Finding

appropriate relay nodes in a vehicular network can be cast into the domain of complex networks

and the identification of influential spreaders, that is, nodes that can spread information to a large

subset of network nodes [139], [77]. These ‘super spreaders‘ are used to accelerate the spreading

process and likewise in the vehicular environment can play the role of a relay. Here, we leverage

metrics from complex network theory and particularly propose a novel methodology, namely

Probabilistic Control Centrality (pCoCe), for selecting efficient relay vehicles. As a competing

method we utilize the MPR selection mechanism of OLSR. Our simulations indicate that there

are many scenarios where the minimum selected set of relays as identified by OLSR, cannot

reach a sufficiently large fraction of the network.

5.2 Control Centrality

In [116] the authors introduce the concept of Control Centrality with aim to identify nodes with

the ability to ‘control’ (drive to a specific state) a directed network, based on an initial input and

a ‘control goal’. To further elaborate we must first note some definitions. A stem on a directed
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graph, is a directed path consisting of n nodes and n−1 edges where nodes appear only once,

e.g., i → j → k → l → m. A cycle is noted as a stem ending on the initial node: i → j → k → i.

A stem-cycle disjoint subgraph, is a subgraph of the directed network where stems and cycles

have no nodes in common. Figure 5.1 illustrates one such scenario for a vehicle A. Generally,

the control centrality of a node is defined as the largest number of edges among all possible

stem-cycle disjoint subgraphs emanating from the node, e.g., 6 for vehicle A of Figure 5.1.

Figure 5.1: Illustration of a stem-cycle disjoint subgraph.

The purpose of this article is to utilize influential vehicle-nodes as multipoint relays. The

intuition lies on the idea that those selected relays will rebroadcast a message on behalf of the

initial sender and potential inform a large fraction of the vehicular nodes.

5.2.1 From Control Centrality to pCoCe

Initially, we must define incoming and outgoing neighbors in a network of vehicles. Since all

connection links among vehicles are considered bidirectional, we use the relative direction

between them to classify them as either in or out neighbors. Generally vehicle A is an out

neighbor of vehicle S, when A is moving either in front of S with the same direction or moves

away from S towards different directions. Figure 5.2 illustrates the out-neighbors of vehicle S.

Now we can define stems and cycles in VANETs. However, the utilization of cycle paths to

enhance a vehicle’s importance in a vehicular network is very likely to overestimate its ability

in message propagation. To this end, the proposed centrality metric will account only for stems

created from vehicle paths. The original algorithm employed stems and cycles that encompass

the entire range of a network. However the VANET topology constantly changes (neighboring

vehicles increase or decrease their distance, in-neighbors become out and vise versa, etc.) and

thus we cannot utilize the method in full range. In this study we confined our work within

range of two and three hops (2pCoCe, 3pCoCe) from the initial vehicle. Note that pCoCe uses
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Figure 5.2: The out-neighbors of vehicle S are illustrated.

all stems within our specified range and there are occasions were different stems have common

edges. These stems will all contribute in the final pCoCe value for a vehicle-node and define its

importance in the vehicular network.

The last part of pCoCe accounts for the strength of connections between vehicles (stem power)

and incorporates this attribute in the formed stems. Depending on the quality of the connection

for each out-neighbor we assign a weight value between 0 to 1 depicting the strength of connection

between the two vehicles. Weights close to 1 depict a perfect communication link whereas values

close to 0 depict an almost absent connection, e.g., due to obstacles that interfere with the

communication or due to a large distance between the corresponding vehicles. A representative

example is illustrated in Figure 5.3.

Figure 5.3: Link quality between vehicle nodes.
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Finally, the strength of a stem will be computed as follows:

(5.1) Sp = S ·PW

where S depicts the length of a stem in edges and PW is the product of the weights that form

it. Further investigation for the strength of connections and its incorporation in Sp is a very

interesting task, but it’s beyond the scope of this study. Lastly, the pCoCe index for a vehicle that

will characterize its importance within the network is as follows:

(5.2) pCoCe(x)=∑
i

Sp(i)

where i denotes the different stems emanating from vehicle x.

In order to accumulate the necessary information for calculating the pCoCe index, vehicles

periodically exchange information regarding their relatively close neighbors (and the link quality

between them), i.e., their immediate neighbors (2pCoCe) and their next hop neighbors (3pCoCe).

This communication ensures that vehicles can build the corresponding paths that will define

their significance in the network.

5.3 Relay selection

5.3.1 Selecting relays through pCoCe

pCoCe’s algorithm for selecting relays is straightforward. Every vehicle sorts its immediate out-

going neighbors in descending order of their pCoCe values, and the neighbor with the maximum

value is selected first. In the sequence the next neighbor is examined. If additional two hop

neighbors are reached through this new node, the vehicle is included in the relay set. The process

is repeated until the entire two hop neighborhood can be reached from the relay nodes.

5.3.2 Selecting relays through OLSR

The same framework for in and out neighbors is also employed for the selection of relays in

OLSR. For this technique, vehicles which provide unique access to specific two hop neighbors, i.e.,

there is no alternative path towards those neighbors, are selected first. Next, the vehicle that

communicates with the largest fraction of the remaining two hop neighborhood is selected and so

on until all two hop neighbors are reached.

5.4 Performance Evaluation

For out evaluation purposes we employ the vehicular network simulator VEINS [129], which is

composed of the traffic simulator SUMO and the network simulator OMNET++.
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5.4.1 Simulation design

Grid Network. We evaluated the performance of pCoCe in a grid network topology (3X3). Each

road segment supports two direction flows and every 2km reside intersections with traffic lights.

The competitors where evaluated under different scenarios regarding the range of communication,

the velocity of vehicles and the density of traffic within the road network. Particularly we

experimented with (maximum) vehicle velocities of 14, 20 and 28m/s and range of communication

at 250 and 500m. For the density in traffic we introduce a vehicle every 1, 5, 10 and 15 seconds,

ranging from very dense to very sparse traffic conditions. The average number of vehicles to

the corresponding frequencies is 950, 250, 170 and 120 cars respectively. Vehicles enter the

simulation environment from several different road segments.

Communication between vehicles. All vehicles exchange beacon messages every 1 second

and become aware of their surrounding cars. A neighbor is deleted from a vehicle’s neighboring

list if two successive beacon messages are missed. This ensures that each vehicle has a clear and

very recent image of its neighboring cars. Additionally all vehicles exchange their neighboring

lists, and thus each node is aware of its one hop neighbors and their neighbors and so no, to build

2pCoCe and 3pCoCe respectively.

Spreading process. The evaluation of the competitors is performed upon notification events,

i.e., when a diffusion process starts. A notification event is generated from a random vehicle at a

random position on the road network (the same vehicle for both approaches) with only one such

event existing at a time. The results are averaged over 20 different events for each competing

method.

To evaluate the performance of the competing techniques we compute the fraction of the

vehicular network (coverage ratio) that received the message-event under different simulation

scenarios.

5.5 Results

5.5.1 Experimenting on vehicle density, 2pCoCe

Figure 5.4 evaluates the relay selection methodology of each technique for spreading the message-

event at different velocities: 14, 20 and 28m/s respectively. The x-axis depicts the density of

vehicles in the simulation whereas the y-axis shows the fraction of the informed vehicular network

per method. The communication range is set at 500m.

In the majority of the illustrated results the proposed methodology significantly outperforms

the competitor. The fraction of the vehicle nodes “reached” through 2pCoCe are in many scenarios

near 80% whereas (on average ) OLSR’s coverage ratio is below 50%. This is due to the fact

that the spreading process as instructed through the relays selected by OLSR “dies out” faster

than 2pCoCe’s. In the grid network topology the maximum allowed velocity for vehicles does not
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Figure 5.4: OLSR Vs 2pCoCe at different velocities for sparse and dense scenarios.

illustrate a particular trend for the competitors. This phenomenon can be explained by the fact

that depending on the scenario, high (or low) speed can have a positive (or negative) effect on

the spreading process. For example increased speed can compensate for potentially disconnected

parts of a network, while at the same time abrupt changes in velocity can significantly change

the immediate vicinity of the vehicle nodes, that is, unexpectedly loose relay spreading paths,

and thus limit the outspread of a message.

5.5.2 Differences in the selected relays

In Figure 5.5 we normalize the size of the network that received the message with the number

of relay nodes selected by each competing method (y-axis). As already noted, OLSR makes

a conservative choice for his MPRs. Therefore, a frequent observed phenomenon is that the

spreading “dies” after a few hops (due to false relay set selection) and thus the fraction of the

informed vehicle nodes is significantly lower. Since the spreading for 2pCoCe continues in further

broadcasting circles, more vehicles are selected in subsequent steps as relays.

As far as the average number of selected relays per vehicle is concerned, OLSR selects the

minimum set of relays. However as shown through our experimentation, in the VANET ecosystem,

OLSR results into very poor spreading compared to our approach. For the dense scenarios with
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Figure 5.5: Normalizing the coverage ratio of each method with respect to the average number of
selected relays.

vehicles entering the simulation every 1 or 5 seconds, 2pCoCe’s relay set is greater than OLSR’s

by one or two vehicles whereas for the cases of 10 and 15 seconds we have either equal sets or

our set is greater by one. By equal or greater sets we are merely referring to the number of relays

selected by each method. Indeed there are occasions were the competitors select similar sets of

vehicles, however on average different relays are chosen. Reviewing the differences in coverage

rates for both methods in Figure 5.4, one or two additional relays is a good trade-off when a

significantly larger part of the network is reached.

5.5.3 Increasing the range of pCoCe to 3 hops distance

In this set of experiments we evaluate the performance of pCoCe when increasing the distance

of interest from 2 to 3 hops. The results are illustrated in Figure 5.6. When vehicles enter the

simulation every 1 seconds, regardless of their velocity, 3pCoCe influences a larger fraction of the

vehicular network. For 28m/s, the performance of both methods illustrate a decreasing trend as

the network becomes more sparse, i.e., when vehicles enter every 15 seconds. Nonetheless, the

vehicular network informed by 3pCoCe is about 63% for the worst case of its performance and up

to approximately 73% at best. For this particular case OLSR’s performance rises up to about 56%.

When the maximum allowed speed is 14m/s, the performance of 2-3pCoCe seems less affected by

the density of vehicles in the road network. Overall, the performance of the competitors is highly

dependent on the environs that each relay vehicle faces when the spreading process is active.

The proposed method was able to set the right paths for the spreading of messages and inform a

significant fraction of the vehicular network, e.g., up to 80%, in many scenarios.

5.5.4 Reducing the range of communication to 250m

Considering only out neighboring nodes for deciding a vehicle’s importance (centrality) in a

network, can be characterized as a rather unsafe approach. As noted in section 5.2.1 among the
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Figure 5.6: Comparing pCoCe’s performance with 2 and 3 hops distance.

out going neighbors of a vehicle reside nodes that move away from the sender. Thus these are

the vehicles which are most likely to ‘exit’ the communication range of a sender sooner than

other neighbors. Although this phenomenon is highly dependent on their respective velocity and

also road topology, reducing the communication range will have a more profound effect for the

selection of the relays. In Figure 5.7 we illustrate the obtained results with vehicle frequency set

at 1 seconds and communication range at 250m. Overall, the proposed mechanism outperforms

the competitor by informing a larger subset of vehicle nodes. However, at 28m/s all methods

fail to efficiently spread the message. Analogous results were obtained for 5 seconds frequency

whereas for sparser scenarios the performance of all methods was found near 10%. The proposed

methodology utilizes vehicle paths of 2 or 3 hops distance for the respective vehicle. These paths

are composed of outgoing neighbors and thus further expand the unsafety of out neighbors

in additional hops. Therefore, vehicle paths in 2 hop distance should be employed when the

communications range is relatively limited, i.e., 2pCoCe.
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Figure 5.7: Communication range at 250m for frequency of vehicles every 1 seconds.
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5.6 Conclusion

In this paper we presented a novel approach for the selection of relay vehicles based on metrics

from complex network theory and the identification of influential spreaders. We proposed a

novel broadcasting protocol that performs extensively well when dealing with a large number

of potential relay choices. Our competitor failed to provide both an adequate coverage rate and

reliability as illustrated under diverse simulation parameters. As future work, incorporating

the quality of links in the ‘stem power’ will provide valuable insights in broadcasting a message

under harsh communication environments and different road topologies.
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Part III

Blocking the Outspread of Undesired
Data in Complex and Vehicular

Networks
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6
BLOCKING THE OUTSPREAD OF UNDESIRED DATA IN COMPLEX

NETWORKS

Dynamically Blocking Contagions in Complex Networks by Cutting Vital
Connections

6.1 Introduction

Controlling epidemic outbreaks [169], i.e., the diffusion of “troublesome” contents over the social

medium, has received increased attention over the last decade. Most of the so far proposed studies

focus on immunization techniques that remove node-users from a network to block the outspread

of undesired propagations [88][84][85]. It has been shown that removing the bridge-nodes (nodes

connected to different communities) or nodes connected to many other nodes (hubs), can quite

often be an effective solution. However with such methods the immunized entities are completely

isolated from the rest of the networked society, while at the same time a network’s integrity may

be significantly affected. Such drawbacks prompted the research community towards edge-based

immunization methodologies for controlling epidemic outbreaks [120][95][156] since the removal

of edges is considered as a more realistic approach. For instance removing connections between

users, e.g., friendships in Facebook, is a more feasible countermeasure than removing individuals

from the entire Facebook society.

Related publication [C4]: Pavlos Basaras, Dimitrios Katsaros, Leandros Tassiulas. Dynamically Blocking Conta-
gions in Complex Networks by Cutting Vital Connections, Proceedings of the IEEE International Conference
on Communications (IEEE ICC), pp. 1170-1175, London, UK, June 8-12, 2015.
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Figure 6.1: Generalized framework for blocking epidemic outbreaks in Complex Networks. This
article focuses on dynamic strategies and edge removing mechanisms to hinder the spread of
misinformation.

A similar problem to our case study is the issue of identifying a minimal subset of nodes or

link connections between them, whose removal will minimize the number of potential infected

nodes. Researchers often apply greedy algorithms to address the issue or propose approximations

on the basis of greedy strategies [159][86]. While the aforementioned studies focus in deleting

network components (e.g., nodes or edges) to protect a networked environment, other studies

apply different policies, e.g., by utilizing protectors who will disseminate good information to

counter a malicious propagation in progress [99].

Removing nodes can be considered as a particular case of edge-based techniques, where the

deletion of all connections from a node results in its abscission from the rest of the network.

As a next step we group previous works, in terms of how they “protect” a network from a

malicious diffusion, i.e., static or dynamic control strategies. A static control approach vaccinates

network components prior to the outbreak, by selectively removing a limited β number of nodes

or connections, based for instance on different centrality measures or path counting approaches.

Although we obtained a number of good strategies for priorly dealing with an epidemic, what

more can be achieved by dynamically facing the contagion?

In this article we focus on controlling epidemics by dynamically choosing which connections

to remove as we closely follow the contagion within the diffusion steps. At each discrete step

a number of β connections may be removed from the network as countermeasures from the

authorities. For example consider an event much like KoobFace [146] and a specialized personnel

with the knowledge of the currently infected accounts. Instead of taking drastic measures to

remove all the connections from the infected users and block the outspread of the virus, the

staff could focus on specific interactions among all immediate endangered accounts to hinder or

stop the malware from propagating without completely disrupting the networked environment.

However we cannot expect for the virus to stay idle while the personnel operates, and thus we

assume that we have a limited number of actions (time) before it further propagates.

By mining the knowledge out of a network’s current state, i.e., origin of infection and suscepti-

ble surroundings, a more profound and efficient selection among all possible and proximal edges

may be adopted, which intuitively will better hinder the contagion. To the best of our knowledge

little work is done in confronting an epidemic dynamically. In [72] the authors proposed a dy-

namic approach for fighting epidemics, but they focused on strategies for healing already infected
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nodes under the susceptible-infectious-susceptible (SIS) model. Here we follow the contagion

as it evolves and propagates through node interactions and propose an algorithm that detects

critical connections based on their diffusion capabilities, namely Critical Edge Detector (CED).

These edges will constitute our targets for immunization in our effort to save the largest possible

fraction of a complex network when bounded by a limited number of actions-deletions per step.

So far the general framework for blocking contagions is shown in Figure 6.1. Our analysis lies in

the lower flow of the diagram.

The chapter sections are organized as follows: in Section 6.2 we provide a formal description of

the addressed issue. Next in 6.3 we detail our proposal. Section 6.4 briefly describes the competing

techniques and the evaluation criteria as well as the performance of the competing heuristics.

Finally in 6.5 the conclusions.

6.2 Problem Formulation

Let G(V ,E, ce) denote an undirected complex network of V nodes connected through E links,

where each edge is associated with a positive cost ce for deletion. The dynamic version of the

problem confronts us with the following situation: at each discrete time step t, we have a number

of immediate vulnerable nodes which we will try to protect, recovered nodes who were infected in

past steps and can no longer be affected by the malicious propagation, and finally the infected

ones who will now try to infect their susceptible neighbors. To simulate the diffusion process of

undesired data over G, we utilize the susceptible-infectious-recovered model (SIR) which unfolds

in discrete steps. Nodes who are infected during the dissemination process are considered as the

lost fraction of nodes. Given a budget β of available deletions per step−equal cost for the removal

of any edge−we search for those connection whose deletion will result in the least number of lost

nodes at the end of the malicious propagation. As a next and final constraint we consider that the

authorities exhaust all their available resources at each time step, i.e., resources cannot be saved

for later use.

6.3 Critical Edge Detector (CED)

For our method we focus on the infected nodes of each step to create the Infected-Source-Networks

(ISNs), emanating from each individual ‘tainted node’ x at time step t. The ISNs are created

from the susceptible nodes within the n-hop neighborhood of each infected source x (including x)

and the link-connections between them, denoted as ISNn
x . Our work is limited in short distances

from the originators in order to fight the contagion near the source of the problem, and inhibit its

transition as much as possible. An illustrative example is given in Figure 6.2. Initially we assume

that the infection came from nodes n1 and n2 at time t-1 who successfully infected nodes a and

m. The 3-hop infected source networks emanating from the current infected nodes at time t,

ISN3
a and ISN3

m, are shown with green and red dashed lines respectively. Note that the infected

85

Institutional Repository - Library & Information Centre - University of Thessaly
06/06/2020 00:05:55 EEST - 137.108.70.13



CHAPTER 6. BLOCKING THE OUTSPREAD OF UNDESIRED DATA IN COMPLEX
NETWORKS

sources n1 and n2 from the previous step (t-1) are excluded from our selection in all subsequent

steps, since they can no longer contribute in the propagation.

Figure 6.2: In the current time step (t) the infected nodes are assumed to be ‘a’ and ‘m’ whereas
n1 and n2 are the infected sources of the immediate previous step (t-1) which are now immunized
(removed). The dashed lines correspond to the three hop abstract network images, as seen from
the perspective of the current infected sources.

To quantify the importance of an edge (i, j) in an ISNn
x , we calculate the number of shortest

paths (using Dijkstra’s algorithm) emanating from the infected source x to all other nodes in the

current ISNn
x that (i, j) appears, with respect to the total number of those paths as follows:

(6.1) ISNn
x (i, j)t =

spn
i j(t)

spn
t

spn
i j(t) is the number of shortest paths that the edge (i, j) appears at t step emanating from x,

and spn
t stands for the total number of those paths.

The concept of Single Source Shortest Path is a widely used methodology in network science,

well suited for the facet we are addressing in the present study, as we dynamically deal with

a contagion directly at its source. At this point we should note that by grounding the source

of the infection, i.e., pinpointing the malicious sources, we understand the direction of the

propagation. Our proposed technique uses the course-evolution of the diffusion (towards the

susceptible environs) to its advantage, and locate those links which will hinder the malicious act

to the largest possible extent. However, not all ISNs are of equal size, that is, in the number

of susceptible nodes or connections. In fact this is a varying parameter that must be taken into

consideration, since edges located in relatively sparse ISNs, may well be overestimated for their

spreading potential. Thus we need to include a notion of density for the end-point node. Since we

noted the course of a virus, the end-point node is a potential direction, e.g., in Figure 6.2, k is the

ending node of m-k. The density for the end-point-node j is measured by the formula:

(6.2) d j = s j −P j +
∑
r

(sr −Pr −Mr j)

where s j is the number of susceptible neighbors of j, P j corresponds to the fraction of nodes

out of s j with at least one infected neighbor, r depicts the susceptible neighbors of j and Mr j
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denotes the common neighbors between r and j. If j leads to a dense region of susceptible

neighbors, the importance of the connection will be boosted accordingly, whereas for a sparse

vicinity d j will be lower. Finally the final rank for each edge as accumulated by CED is given by

the formula:

(6.3) CED(i, j)= ISNn
x (i, j) ·d j

Hereafter we assume that the ISNs are obtained from the 2-hop neighborhood of the originator,

i.e., ISN2
x .

6.4 Performance Evaluation

6.4.1 Datasets

A summary for the base attributes of the evaluated networks is listed in Table 6.1. α stands for

the epidemic threshold of transmissibility calculated for each respective network [133], and k-core

illustrates the largest shells−the core of a network−as identified by the k-shell decomposition

algorithm [139]. Various networks were selected for evaluating the performance of the competitors

in diverse networked environments; Hamsterster: a social network, Pretty Good Privacy (PGP):

secure information interchange network, Oregon-2: an autonomous system graph from May 26

2001, and finally the email contact network, Enron. For more details on the evaluated networks

please refer to http://konect.uni-koblenz.de/ and [65].

Table 6.1: Network Base Attributes

Network No. of Nodes No. of Links k-core α(%) Type
Hamsterster 2,426 16,631 24 2.5 Social

PGP 10,681 24,316 31 5.5 Contact
Oregon-2 11,461 32,730 31 5.5 AS

Enron 36,692 367,662 43 1.5 Email

6.4.2 Simulation Design

6.4.2.1 Initiating the Cascade

The origin of the infection, i.e., the initially infected nodes, is an important feature that affects the

diffusion dynamics. For instance, if the originators are within a sparsely connected neighborhood,

even with a limited number of available deletion per step, the diffusion is very likely to be

inhibited. Similar performance will be achieved, if the origin of the infection is placed in the

periphery of a network as identified by the k-core algorithm. Such configurations are trivial for

our experimentation. On the contrary, if the originators are nodes in denser regions of a network,

successfully inhibiting the outspread of undesired data will be more challenging.
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To this end, in a similar approach to [95], we initiate the infection from the top-10 most con-

nected nodes (hubs) within the highest k-cores of each network. It is safe to assume that initiating

the infection from hub-core nodes is no trivial task−maybe the worst case scenario−since the

core represents well connected node-users who are “buried” deep within the network structure.

6.4.2.2 Propagation Model

For the diffusion model as noted in [106], the SIS (like flu) suggests no immunity for the

interacting nodes, whereas the SIR offers permanent immunization (like mumps). Here we

study the penetration of a virus in a networked environment and focus on SIR which unfolds in

discrete steps (see Appendix A.1). Briefly, in the initial phase all nodes are in the susceptible state

except the initially selected nodes in I. Generally, an infected node at time step t has a single

chance to infect its susceptible neighbors and succeeds with probability λ. Immediately after the

node enters the R state at t+1 and can no longer be infected in subsequent steps. The process

ends when there is no newly infected node, i.e., all nodes are either susceptible or recovered.

6.4.2.3 Removing Connections

In this study we follow the diffusion dynamically, i.e., as it unfolds through node interactions,

and thus the links that constitute all possible options for removal at each time step are those in

direct contact with the infected sources. As far as the constraint for removing edges per step is

concerned, we take 1% of the total connections of each network and name this fraction of edges

as thres. The x-axis in each plot represents the percent out of thres cut in each diffusion step,

namely β number of edges. We limit our experiments to small β values per step to evaluate the

competitors ability in detecting the most efficient interactions for blocking a malicious diffusion.

6.4.2.4 How to evaluate the performance

In order to obtain unbiased results, for each method we repeated over 1000 diffusion processes.

The error-bars in each plot represent the confidence for the interval of the mean, i.e., the

true average value is bounded within the specified range. The probability of diffusion among

interactions (λ), is chosen based on the epidemic threshold α of each respective network. However

in Hamstester due to its lower connectivity we had to use a relatively higher value to obtain

significant results.

The impact of each method is measured based on the fraction of the network affected by the

false rumor-virus at the end of the SIR process, i.e., number of nodes in R state (lost nodes). The

evaluation is carried out in two distinct SIR processes. The first, measures the fraction of lost

nodes when no protection algorithm is applied while the second applies the competing techniques

respectively.
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6.4.3 Competing Methods

The presentation of the addressed issue in this work is original and thus the selection of ap-

propriate competing techniques is crucial. Here we list our selection in the competing methods

and also exclude those that cannot be applied. (i) Highly connected nodes are noted by many

studies as influential spreaders and thus in [156] the strength of a connection is measured by

the product of the degrees of its incident nodes (aDegree). Note that for this approach only

susceptible neighbors frame the degree of a node since these are the nodes we will be trying to

protect. For the current competitor the edges are selected in decreasing order of aDegree until β

is reached at each time step.

In [95] the authors apply a different approach by strategically selecting which edges to remove,

with aim to decrease the probability of a rising cascade. In a similar approach−although under

a stochastic and different diffusion model−we apply a strategic deletion of edges to secure the

largest number of immediate and endangered individuals.

The first strategy measures the number of infected neighbors each susceptible node has, i.e.,

it measures how vulnerable a node is to infection in the upcoming step. Nodes with the least

number of infected neighbors are firstly treated and so on until the available budget for this step

is exhausted. In order to avoid consuming a significant amount of resources to save a single node,

for nodes with more than one infected neighbor we remove one connection at a time. If one edge

is removed from all vulnerable nodes and there are still available resources we re-initiate the

procedure until β is consumed. Note that nodes with only one infected neighbor are completely

protected in this round. We name this strategy alpha where we try to decrease the probability of

a cascade throughout the diffusion steps.

(iii) The second strategy, namely beta, ranks all susceptible nodes in direct contact with

one or more infected sources in decreasing order of their susceptible degree, i.e., number of still

unaffected neighbors. With this strategy we try to reduce the number of interaction that lead

to highly connected individuals in each step. Note that when the budget β for deleting edges is

sufficient to remove the same amount of connections from all immediate susceptible nodes (rare

occasion), it applies that al pha ≡ beta.

(iv) Finally a random selection of edges (random) is used as a baseline to create a lower bound

of performance. Here a uniform selection among all possible links is applied.

6.4.4 Results

6.4.4.1 Increasing in the number of deletions per step

As a first step to our evaluation we illustrate the results from Figures 6.3 to 6.6. The y-axis

represents the fraction of saved nodes, i.e., the percent of node-entities that each respective

method managed to secure, with respect to the unblocked outcome of the propagation. It can be
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Figure 6.3: The strength of the propagation is 6%. The initially infected set is connected to the
immediate vicinity with 548 connections whereas the lost fraction of nodes for the unblocked
diffusion is about 280 nodes. As we increase in the x-axis CED’s better performance becomes
more evident.

seen that the proposed identification technique performs extensively well in most of the observed

cases. Our results indicate that cutting of edges within certain limited regions of a network (the

ISNs) that reside in many shortest paths, is the most effective solution for blocking or hindering

the infection dynamically.

To better analyze the performance of the competitors, let us consider the evaluated networks

with respect to the connectivity of their initially infected core. The selection of the initial infected

seed set out of the most connected nodes within the core shell of PGP and Hamstester, form

a weakly connected set with average degree of 54.8 and 41.1 respectively. It is reasonable to

assume for such cases, that by blocking the diffusion directly at its source, a relatively good

performance would be achieved by all methods. The results illustrated in Figures 6.3 and 6.4

Figure 6.4: The strength of the propagation is 4%. The initially infected set is connected to the
immediate vicinity with 410 connections whereas the lost fraction of nodes for the unblocked
diffusion is about 360 nodes. For this weakly connected network all methods illustrate a good
performance.
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Figure 6.5: The strength of the propagation is 6%. The initially infected set is connected to the
immediate vicinity with 3400 connections whereas the lost fraction of nodes for the unblocked
diffusion is about 1270 nodes. Only the proposed technique manages to hinder the propagation
sufficiently in the later steps of β.

Figure 6.6: The strength of the propagation is 2%. The initially infected set is connected to the
immediate vicinity with 11285 connections whereas the lost fraction of nodes for the unblocked
diffusion is about 2080 nodes. Again the network is better protected by CED.

confirm this hypothesis. For the PGP network, CED’s better performance becomes more evident

as we increase in β, whereas in Figure 6.4, aDegree performs equally well with CED.

For the Enron and Oregon-2 networks in Figures 6.5 and 6.6, we analyze a more ambitious

case, i.e., the average connectivity of the initially infected nodes is 340 and 1128.5 respectively.

In these scenarios we expect a more challenging behavior. As illustrated, the fraction of saved

individuals is significantly less from the previous network cases. For the lower values of β: 5,10

and 15% it appears that none of the evaluated techniques is able to block the contamination

significantly, i.e., the saved individuals are less than 5% in Oregon-2. Only CED manages to

save up to about 14% from the fraction of lost nodes when β=25%, while the rest of the evaluated

techniques illustrate similar behavior near 6%.

Similar results are also reported for the Enron network. The virulence of the propagation is
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set at 2%. For both al pha and beta, we observe little improvement in the saved individuals as we

increase in β, while CED, as usual, outperforms all competing techniques. To our interpretation,

although both strategies performed relatively well for the rest of the experimented networks, it

seems that trying to reduce the probability of a cascade by decreasing the overall connectivity

that lead to infected sources or targeting those links that lead to the most susceptible nodes, is

not efficient when applied in the core of a well connected network as in this particular case.

Overall we attribute CED’s better performance to the following remarks. First, although there

are occasions where the contagion cannot be completely stopped in the early steps (due to the

infection being rooted deep within a well connected network), by removing the edges as identified

by our approach we force the malicious propagation towards longer interacting paths. Thereby

more resources can be used in the next steps to inhibit its transition and stop its outspread to

more distant regions of a network. Second, by measuring the density of the surroundings of the

end-point node, we alleviate traditional drawbacks of shortest path algorithms, since our method

will discount the significance of otherwise important links which lead to sparsely connected parts

of a network.

6.4.4.2 Increasing in the virulence of the malicious propagation

For our final evaluation in Figures 6.7 and 6.8, we investigate on the performance of the competing

techniques, as we increase in the strength of the malicious propagation, i.e., increase in λ. As

usual, λ is selected near the epidemic threshold of each respective network [77][139]. We focus

on the results of PGP and Oregon-2, that is, one network of each category with respect to the

average connectivity of their initially infected set from the core. Similar qualitative conclusion

were obtained from the remaining networks as well. β is set to its largest value, i.e., 25%.

Figure 6.7: The y-axis represents the fraction of saved nodes with regard to the lost nodes of the
unblocked diffusion (814, 1048, 1270, 1488, 1714) respectively. Our approach seems to be affected
by the increase of λ significantly later than its competitors.

In order to measure the influence capability of nodes in complex networks, a problem formally

known as detecting influential spreaders in complex network structures [77][58], the virulence
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Figure 6.8: The y-axis represents the fraction of saved nodes with regard to the lost nodes of
the unblocked diffusion (113, 190, 280, 385, 511) respectively. CED illustrates better results by
securing a significantly larger part of the network’s interacting nodes for all λ values.

of the diffusion should be kept in relatively low values. This is due to the fact that for larger

infection values, an epidemic occurs regardless of the characteristics of the node elected as the

origin of the infection. In this study, where we initiate the infection from multiple sources from

the most connected nodes of the core of each respective network, we expect that blocking the

malicious propagation as λ increases will become a very challenging task.

The results in Figure 6.8 indicate that when the network is sparsely connected, the infection

can still be significantly mitigated, even when the virulence of the diffusion increases above the

epidemic probability. For the lower λ values aDegree and CED illustrate similar performance,

however as we increase in λ the proposed technique significantly outperforms all competing

methods. aDegree is affected by the increase of λ around 6% and henceforth its performance

starts to decent, whereas reducing the probability of the cascade with both al pha and beta

strategies, seems to have an increasing performance that surpasses aDegree when above the

epidemic threshold. Nonetheless further increasing in λ will only decrease the fraction of saved

nodes that each respective method manages to secure.

By following the performance of the competitors in Oregon-2 we observe a different outcome.

For this scenario all methods illustrate a decreasing performance as λ increases. However the

competitors fail to protect an adequate fraction of the network nodes even bellow the epidemic

threshold. Only the proposed technique bears more resistance to the virulence of the propagation

and is able to save a significantly larger number of endangered nodes. To our understand-

ing when λ increases beyond a certain threshold−different for each network depending on its

connectivity−the diffusion cannot be significantly hindered. This is due to the fact that even

by deleting a large number of immediate connections, i.e., increase in β, and thus significantly

diminish the available paths from infected nodes to susceptible individuals, when we are bound

to the higher values of λ the virus is very likely to survive even within the now few remaining

interaction.
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6.5 Conclusion

In this study we take a first step in confronting the diffusion of malicious contents over networked

populations dynamically, while we follow the virus as it progresses through node communications.

Most of the so far proposed techniques focus on static strategies, however we believe that the

problem is dynamic in nature and must be addressed appropriately. We proposed an algorithm

that utilizes well studied heuristics from the literature of graphs, which was found to be quite

effective in blocking the outspread of the diffusion. We used a number of representative competi-

tive methods and strategies−what we believe baseline approaches for the dynamic facet of the

addressed problem−to evaluate the impact of our method. Our technique was found to be more

efficient by securing the largest fraction of individuals almost in all observed scenarios. Finally

we conclude that when increasing the strength of the prorogation above the epidemic threshold,

successfully hindering the propagation can be a very challenging task in a well connected network.

Nonetheless CED illustated a more resistant behavior in the increase of the virulence of the

propagation.
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BLOCKING THE OUTSPREAD OF UNDESIRED DATA IN VEHICULAR

NETWORKS

Blocking Epidemic Propagation in Vehicular Networks

7.1 Introduction

In this chapter we further discuss on the vehicular network and potential emerging threats

shading the vision of the always connected car. Up to this point we have elaborated on the

tremendous benefits brought to our everyday lives from the prospect of communicating vehicles.

Nevertheless, having the cars connected over an ad hoc network does not come free of dangers;

a compromisation of the car’s security/defense system can give control to third parties over it.

This is a feature that any ‘computerized’ car can suffer. Carjacking [43] events gradually appear

in the news [1] and technical magazines [34]. While these incidents are currently limited, the

availability in the near future of millions of vehicles with V2V capability raises the danger of

‘epidemic’ outbreaks over VANETs, where malicious software will infect large number of cars

invalidating the benefits of V2V technology and even causing human casualties.

The study of epidemics has a long history in medicine and related areas [192], and has recenty

seen a tremendous flourishing in the computer science realm [42] due to the great expansion of

wired/wireless networks and portable devices and also due to the widespread use of online social

networks (e.g., Facebook).

Related publication [C2]: Pavlos Basaras, Ioannis-Prodromos Belikaidis, Leandros Maglaras, Dimitrios Katsaros.
Blocking Epidemics Propagation in Vehicular Networks, Proceedings of the 12th IEEE/IFIP Annual Conference
on Wireless On-demand Network Systems and Services (WONS), pp. 65-72, Cortina d’Ampezzo, Italy, January
20-22, 2016.
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Among the issues pertaining to epidemics in computer networks, the topic of blocking the

expansion of an epidemic has received significant attention reflecting the importance of protecting

the unhindered operation of networks. However, the study of epidemic outbreak control so far

has focused on: a) centralized methodologies where a network controller can make decisions

over the network topology, b) on static or semi-static networks with no or very limited node

mobility, and c) on the feasibility of the node or link removal operation which can take a node

out of the network [27]. As far as existing VANET research on this topic is concerned, this has

almost exclusively focused on modeling of the worm spreading process under various traffic

conditions [101], [135], [173] and a scheme for patching the infected vehicles using cellular

network’s connectivity [101].

7.1.1 Motivation and contributions

Unfortunately, the aforementioned assumptions made by the existing works on epidemic control

have little or no applicability at all in the VANET environment. A VANET is a highly distributed

environment with opportunistic communication among vehicles, and clearly a fixed/centralized

element (e.g., road-side unit) can not easily – due to cost and installation constraints – play the

role of a detector and/or disinfector; even if a cellular network is provided for delivering patches,

the density of infected vehicles in a region may prove to be a challenging environment for the base

station to detect the malicious software and/or remove it. Moreover, the volatility of the network

topology due to high vehicle mobility creates opportunities for effective blocking of the expansion

(in case the infected vehicles are within an isolated component of a partitioned network) or make

the blocking of it an extremely difficult task (in case that many infected vehicles are quickly

moving across all ‘parts’ of the network). Finally, it is not clear how could an infected vehicle

be “thrown out" of the network, as it is done in static computer networks where part or all

of the communication links of the infected computer are cut down or as it is done in human

populations, where an infected individual may be quarantined; in VANETs, an infected vehicle

may/can continue to transmit even if it is infected, continuing to spread the infection.

This article adopts a different perspective in the study of epidemics in the VANET envi-

ronment by separating the task of infection blocking from the task of disinfection. The latter

is highly dependent on the kind of software that creates the infection, on the particular type

of vehicle that needs to be disinfected, and on the existence, coverage and capacity of wireless

networks in the area of infection spreading; for instance the infected vehicle may need to be

taken to a specialized car service point to be disinfected. On the contrary, the former task can be

performed in-situ in a distributed fashion with the cooperation of other vehicles and minimal use

of fixed infrastructure, and most importantly, techniques developed in the discipline of network

science can be used for limiting the spreading of the epidemics. The present article proposes a

cooperative technique which is the first one in the literature that utilizes V2V communications to

“black-list" some (or potentially) infectious vehicles, and thus refrain other vehicles from accepting
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for processing packets transmitted by these vehicles. This technique can be seen as a node/link

removal algorithm for blocking contagions appropriate for vehicular environments.

The present article makes the following contributions:

• It introduces the problem of blocking contagions in vehicular environments under the new

perspective of separating the epidemic’s blocking from the curing process.

• It introduces an epidemic blocking technique which is (almost) fully distributed making

minimal use of fixed infrastructure to combat the expansion of the malicious software.

• It evaluates the proposed technique via simulations using established simulators to study

its efficiency across a range of values of the most significant independent parameters that

impact the performance of the method.

7.2 Related work

The present work is of relevance mainly to the topic of malware epidemics in VANETs and

in complex networks in general, less related to the topic of security threats in VANETs, and

remotely related to the defense methods for reliable vehicular communications. Worms can easily

propagate through a network without any human intervention, and in recent years they have

emerged as one of the most prominent threats to the security of computer networks [39], [178].

Effects of worm epidemics on VANETs have been recently studied in [101], [135], [180] and the

common conclusion is that they pose a high level of danger; a worm attack on a VANET may

interfere with critical applications such as engine control [140] and safety warning systems [43],

hence resulting in serious congestion on the road networks and large-scale accidents.

There is an extensive body of literature on combating infections’ expansion in complex

networks based on node-removal methods [35], [88], based on link-removal methods [27], [95],

[159]. Nevertheless, these works are not directly applicable in vehicular environemnts for the

reasons explained in subsection 7.1.1 or because the proposed countermeasures [84], [163] do not

fit a VANET.

In the area of security threats for VANETs, there are numerous kinds of attacks that may

affect the reliable communication among the entities of a VANET such as Denial-of-Service (DoS)

attack, fabrication attack, alteration attack, replay attack, message suppression attack, sybil

attack [185]. Except from different kinds of attacks in terms of the used mechanism, there exist

also other categories. For instance, a selfish driver could try to take advantage of the received

information for personal benefit, while on the other hand a malicious attacker [164] aims to harm

the users or the network with no profound personal gain.

A substantial amount of research on defense mechanisms has focused on intrusion detec-

tion systems for early detection of malicious nodes [37], [143], [160]. Regarding which, both

specification-based [160] and anomaly-based treatments [143] have been investigated. Moreover,
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an attempt to deflect attacks using honeypots has been described in [162]. Finally, new techniques

for filtering out tweaked data have been recently developed [28].

7.3 Virus Propagation

The spreading process in complex networks is a widely studied topic that finds applications in

varying disciplines [91]. Of particular importance is the problem of information propagation over

complex networks, e.g., how information ”travels” over networked populations such as Facebook.

A well established and widely used model describing such processes is the Susceptible-Infectious-

Recovered (SIR) model (see Appendix A.1). SIR is employed for simulating the propagation of

a virus in the vehicular network. Particularly, a vehicle that can be affected by a virus will be

a susceptible (S) vehicle. Infectious (I) vehicles will try to infected their current neighborhood,

whereas recovered (R) ones, are either vehicles that cannot get infected (cf. 7.5.4.5) or those that

have received a ”cure”, i.e., a patch that removes the virus and immunizes the vehicle in further

contacts [101]. Unlike static networks, VANETs are characterized by a constantly changing

topology due to transmission range limitations, obstacles or limited by geographic proximity

and road topology. A vehicle becomes aware of its current neighboring vehicles through frequent

exchange of beacon (heartbeat) messages and thus, the target set of an infectious source changes

over time; from sparse to dense neighborhoods and vice versa which evidently affects the diffusion

dynamics.

In wireless networks nodes can communicate in a one-to-one fashion, i.e., unicast, one-to-some,

i.e., multicast or one-to-all, i.e., broadcast communication. In a similar way we assume that a

potential threat will follow one of the above mentioned methodologies to propagate to the next

target(s). In our framework we focus on broadcast propagation. Finally one last characteristic

that needs to be taken into consideration is the number of contacts, i.e., transmissions between I

and S vehicles, necessary for the virus to propagate. This final attribute will stand as a virus

specific parameter regarding the strength of the virus, e.g., the length of the worm code or the

way it is hidden within the exchanged messages. Hereafter we will refer to this attribute as the

infection delay (τ) [101].

7.4 Proposed Mechanism

7.4.1 Specialized Hardware (SH)

In this work we separate the functions of disinfecting from detecting infectious vehicles, and

focus on the later. Our approach requires a specialized hardware, namely SH, which will play

the role of the detector and identify infected vehicles within its scanning range. We envision

the SHs as stationary scanners and coordinators between the communicating vehicles rather

than entrusting cars with that functionality. This is due to the fact that exploited security flaws
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that are severe enough to require physical interference to get rid of the infection, in occasions

much like [2], can be more efficiently handled in a stationary SH. Thus, we conceive the SHs

as highly secure devices initially deployed in a similar manner to Road Side Units (RSUs), that

communicate and scan vehicles over the wireless medium.

In a wireless network when you have to keep the transmission power within acceptable limits,

the overall efficiency of the network can be improved by either reducing the transmission rate

or reducing the transmission range [170]. Based on this basic rule of thumb, and since the SHs

must exchange high volumes of data with the vehicles that are under inspection, the transmission

range of the SHs is kept low in order to be able to achieve high throughput. Only that way we

can reassure that the vehicle can be fully scanned and correctly identified in terms of infection

during its contact time with the SH.

7.4.2 Isolating Infectious Vehicles

Based on the fact that we can only detect malicious nodes as long as they are in the vicinity

of an SH, it is not straightforward that the whole vehicular network can be protected. In the

current work we assume that the SHs are only capable of identifying infected vehicles, but

they are by no means capable of revoking the license of cars to participate in communication

protocols [167]. Moreover, we expect that potential viruses attempting to spread over the network

will be newfangled, i.e., there are no ”predefined medicines” and thus a questionable amount of

time may pass until an appropriate patch is ready for dispatching. Nonetheless, even if vehicles

have some sort of access to a cellular service (e.g. 4G communication) enabling them to download

and install a patch in sort time, there may be occasions where physical access to the car is

necessary in order to carry out the hack, e.g., the Tesla case [2].

Our primary concern is to effectively mitigate the spreading of a virus in a vehicular network,

until an appropriate patch arrives or “physical” treatment is administered. Although we may not

be able to heal a vehicle, we are capable of informing the rest of the vehicular network for its

presence. Thus, SHs are also responsible for broadcasting the list of the so far identified infected

vehicle ids, i.e., a Black List (BL). Hence, each healthy vehicle that ”hears” the BL is instructed

to shut all communication with those vehicles.

So far several considerations emerge. First, a vehicle that has not yet been in contact with an

SH has no knowledge of the infected ids, and thus still stands unprotected against an (already

identified) infected neighbor. Moreover, in each vehicle different versions of the BL may exist,

depending on their last contact with an SH and the potentially newly identified infected vehicles

in that interval. Thus the problem of outdated BLs arises. To this end vehicles are instructed to

exchange their versions of the BL list, compare their own version with that of their neighbors,

and hence cumulatively increase the awareness of their own and their near vicinity for the

infected sources. This extension has a twofold benefit; first, isolated areas, i.e., areas relatively

far from any SH, may yet be protected if an informed vehicle traverses the area. Since we will be
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able to deploy a limited number of SHs (due to infrastructure costs), vehicles must fill such ”void

spaces” by circulating the list. Second, the BL version of each vehicle is no longer based on the

timestamp of its last contact with an SH, but is swiftly updated to the BL of the neighboring node

with the most recent timestamp. Thus the possibility of significantly outdated BLs is minimized.

Figure 7.1 is a simple illustration, where an infected vehicle A enters the range of the SH and

infection is detected. Upon detection the SH broadcasts the list of all infected vehicles−currently

only vehicle A−which is heard from vehicle B and so on.

Figure 7.1: Vehicle B is informed of A’s infection by the SH. B will further broadcast (and
exchange) its version of the BL with all other vehicles found in its trajectory.

Up to this point we detect and inform the vehicular network for the presence of infected

vehicles, or in other words we remove nodes from the vehicular network. In correspondence,

blocking epidemics in complex networks is a broadly addressed problem, where−among other

techniques−researchers remove important nodes based on centrality measures, e.g., the degree

centrality, to block the outspread of undesired propagations. It was found that removing the most

connected nodes, the hub nodes, is a low cost and quite effective method. We cannot find complete

equivalence in the different frameworks due to the very nature of V ANETs, we can however

exploit several points.

In [27] we proposed a method for blocking epidemics dynamically, i.e., during (and not prior

to) the outbreak. Similarly, upon detecting an infectious vehicle, the BL is updated and circulates

within the network. So far through the proposed mechanism we diminish further damage that

infected vehicles would exert in the system, if left undisturbed. Unfortunately we cannot estimate

the time of infection of the identified vehicle, i.e., was the vehicle infected just a while ago or long

before? In either case there is strong possibility that nearby vehicles (yet not scanned) are also

infected. Hence maybe we can further protect the network by being cautious against the infected

node’s vicinity. To this end we maintain a second list, namely Potentially Infected Vehicles (PIV ),

where we include either all or a f raction of an infected vehicle’s current neighbors. Hereafter,

we will refer to vehicles in BL as β, and respectively as π to those in the PIV list.
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Similarly to the BL, PIV will be broadcasted from both vehicles and SHs. The difference

between the two lists, is that vehicle ids in PIV are only temporarily banned from the system

until those vehicles are scanned. Hence, once a π vehicle enters the range of an SH we have

two possible outcomes. If the vehicle is found ”clean”, it is simply removed from PIV and its

communication is restored. However if infection is detected, the vehicle is converted to β type

(moved to BL) and all of its neighbors become π vehicles.

When the entire one hop neighborhood of a β is added in PIV the procedure is straightforward.

However when only a fraction of those nodes is included, certain decision rules must be chosen

that meet two basic criteria; fairness and efficiency. First, as we discussed earlier, removing highly

connected nodes can be quite efficient in blocking the outspread of undesired propagations, or in

other words those nodes can be very effective spreaders. Hence, choosing neighbors in decreasing

order of their degree until the ”cut”, i.e., the desired fraction of neighborhood is attained and

included in PIV , is our first intuition. Second, vehicles who had been in contact with a β car for a

longer period, have a higher probability to be infected than more recent neighbors, especially for

cases of large values of τ. Hence nodes are included in PIV in decreasing order of their contact

duration, i.e., the oldest neighbor is included first and so forth.

A more sophisticated approach accounting for infected vehicles which meddle with the defense

mechanism, i.e., meddle with either the BL or PIV or both, by broadcasting empty lists or meddle

with the ids within, is beyond the purpose of the current study and is left for future work. In this

article, we try to protect the vehicular network from a potential virus spreading though vehicle

nodes, by initiating another spreading process to counter its effect. This facet is formally known

as competing memes propagation on networks [103], where the meme, i.e., the virus or the list,

which reaches/influences more nodes wins. Our intuitions lies in the belief that if we can inform

a large number of nodes−through SH and vehicle (re)broadcasts−for infected and potentially

infected nodes, we can significantly mitigate the spread of a worm-virus.

7.5 Experimental Design

7.5.1 Simulators

For the evaluation of our model, we use the simulator VEINS [129], which is composed of two

well established and widely used simulators; OMNET++ an event-based network simulator and

SUMO, a road traffic simulator.

7.5.2 Map

Integrated within VEINS, is the map of a city in Germany, namely Erlangen, which we used for

our simulation. Figure 7.2 illustrates our experimented road topology. It is a rich road network

environment of many intersections and different paths leading to various destinations. Note that

the red boxes are buildings, i.e., obstacles interfering with the communication of vehicles. The
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Figure 7.2: Part of the Erlangen city. SHs are positioned near the center of the map. The
illustrated scanning region is indicative, to highlight the relatively short range of the specialized
hardware devices.

locations of the SHs are also illustrated, however the optimal positioning for a set of n such

computing devises is an open issue of many parameters. Setting aside budget constraints, i.e.,

number of available SH placements, we name just a few variables that we believe should be

taken into consideration for an effective placement:

• the popularity of the road segments near an SH, i.e., frequently traversed road segments,

namely density driven placement

• the number of routes passing through an area controlled by an SH, e.g., shortest paths,

namely topology driven placement

• or social attributes such as city attractions, i.e., social driven placement

Nonetheless, investigating all such parameters individually (or in a combined scheme), is

beyond the scope of the current study. In the current framework, we apply a simple allocation for

the positions of the SHs by simply focusing in the center of the experimentation environment

as illustrated in Figure 7.2. Note that buildings will interfere in both the transmission range of

vehicles and the scanning process of the SHs.
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7.5.3 Initially Infected Vehicles

As illustrated in [101], a single vehicle is enough to contaminate the entire network. Following

the same policy, we initiate the malware propagation from a single spreader. However, our

experimentation showed that initiating the infection from different positions yields different

results. This is due to the fact that the different vehicles will experience different conditions,

i.e., different number of neighboring vehicles, different speeds and directions between them,

etc. Furthermore the relative position of the initial spreader and the relative position of the

SHs also plays a crucial role for the spreading dynamics of the virus. For instance, if the initial

spreader falls within the range of an SH in short time after it starts its malicious behavior, the

spreading process is very likely to stop very quickly, especially for the larger values of τ. In our

experimentation we avoid such cases.

With the above consideration we experimented with a wealth of different positions for the

initially infected vehicle as illustrated with the different points in Figure 7.2, e.g., A, X , etc. The

infection starts after running the simulation for 100 seconds whereas the total simulation time is

500 seconds. For each point the results were averaged over 20 distinct runs.

7.5.4 Vehicle Settings

7.5.4.1 Communication

We assume that all cars are capable of communicating with DSRC; according to [131] an

acceptable communication range for vehicle applications is about 300m and this is used in our

simulation. This range that can be achieved by low transmission power is enough for the correct

dissemination of a message in a neighborhood while it improves spatial reuse in heavy traffic. In

rural environments, in scenarios with low data rate (3Mbps) authors in [131] showed that Packet

Delivery Ratio (PDR) of 60% can be achieved for such medium distances.

7.5.4.2 Routes & Density

For selecting the trajectories that vehicles will follow in our simulation, we applied the predefined

tools within the road traffic simulator SUMO to obtain a diverse range of routes. Specifically

a total of 30 different routes were produced. The density of the vehicle nodes is measured in

per hour basis. Specifically we experimented with values of 1000 to 2500 with a step of 500, to

imprint light and heavy traffic simulations, i.e., a sparse or dense vehicular network.

7.5.4.3 Velocity

For the speed of vehicles and with regard to an uban environment’s restrictions, we draw a

uniform distribution between 8-14m/s for each car that enters the simulation. Hence each

respective vehicle has its own desired speed, which coupled with the different density values,

generates a highly dynamic environment.
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7.5.4.4 Neighborhood

The neighbor list for each vehicle is maintained by the periodic exchange of beacon messages.

A typical beacon includes information about a vehicle’s id, its position and speed. In our experi-

mentation beacons are broadcasted every one second. To account for cases where messages are

temporarily lost, e.g. due to building-obstacles, and not due to a car getting out of range, a vehicle

removes a neighbor if it missed two consecutive beacon messages.

7.5.4.5 Virus Strength

Lastly, it is reasonable to assume that a virus may not be able to ”penetrate the defenses” of all

vehicles it encounters [101]. This may be due to manufacturing aspects, antivirus flaws, etc. Thus,

the virus is characterized by a final parameter, namely the Virus Strength (VS) indicating the

number of vehicles in the simulation that are vulnerable to it. Hence, vehicles that cannot get

infected, are set in the R state of the SIR spreading model, i.e., immune vehicles.

7.6 Results

Summarized in Table 7.1 are the parameters used in our simulation. Unless stated otherwise

default values are used. Evidently when SHs have a broader scanning range, more vehicles are

identified through the specialized hardware. In order to highlight the fact that the proposed

method is efficient due to the dissemination of the lists (BL, PIV ) among vehicles we keep the

scanning range of the SHs to 30m for the entire simulation. Moreover, unlike static networks

where the number of deletions is limited [27] [120], in a VANET nodes can be deleted in a

broadcast fashion. Hence we choose to cut either all or half the neighborhood of an infected

source as explained in subsection 7.4.2. Overall, the illustrated results are a fraction of the

experimentation we conducted. In the current article we illustrate the most characteristic ones,

nonetheless the qualitative conclusions are the same.

Table 7.1: Simulation Parameters

Parameters Range Default
Infection Delay (τ) 1 - 6 4
Vehicle Speed (m/s) 8 - 14 Uniform

Vehicle Density (per Hour) 1000 - 2500 1500
SH Scan Range (m) 30 30

Cut (%) 50 - 100 100
Vehicle Transmission Range (m) 300 300

Virus Strength (%) 25 - 100 100
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7.6.1 Impact of Vehicle Density & Different Initial Spreader

This section evaluates the performance of the proposed technique as we increase in density, i.e.,

the number of vehicles. The results are illustrated in Figures 7.3 (by infection point) and 7.4 (by

averages). When the diffusion process is in progress, higher density is interpreted in increased

number of paths for propagating. This characteristic will pose significant challenges for any

defense mechanism assigned to block the outspread of the infection. However, in our framework,

these conditions will enhance the spreading of the virus negating elements as well, i.e., the BL

and PIV lists.
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Figure 7.3: Percentage of the infected network from the different initial spreading points.

Figure 7.3 indicates that the road/traffic conditions that the infected vehicle experiences

when the malicious propagation initiates plays a crucial role in the spreading dynamics; different

number of one hop neighbors ranging from only a few to dozens; neighbors who co-travel for

a long period or only for a few seconds; different speeds and directions between them etc. It

is worth noting that the road topology (Figure 7.2) used in our simulation has a wealth of

obstacles (buildings) which interfere with the communication of vehicles. Moreover there are

several locations which favor the spreading process more than others. For example, Area 1 mostly

allows spreading in a vertical or horizontal fashion. In Area 2 horizontal transmissions are often

blocked. On the other hand in Area 3 or around the area of SH1, transmissions occur in all

possible directions (horizontal, vertical, diagonal, etc.) due to the existence of large open areas,

i.e., sparser buildings locations, providing a more favorable environ for the virus to propagate

faster with respect to the other areas. Hence, it can be concluded that these network parameters,

play significant role in the spreading of the virus and the diffusion dynamics of our defense

mechanism.

Figure 7.4 shows that for sparse scenarios the infection is non-epidemic when we include 100%

of an infected vehicle’s vicinity in our PIV , i.e., the infected fraction is near 10%. Reminisce that

the infection delay is four transmissions (τ= 4). As more vehicles are introduced in the simulation,

e.g., 1500-2000V/h, a larger fraction of vehicle nodes become infected, about 24%. However, as
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Figure 7.4: Average infected network size.

the evaluated scenarios become even more dense (2500V/h), more vehicles are included in the

PIV list and thus the available paths for the worm-virus to spread, decrease. On the other hand

vehicle paths for exchanging BL and PIV lists are only increasing and thus the efficiency of the

proposed technique is enhanced.

7.6.2 Impact of Infection Delay (τ)

Next we investigate on the impact of the infection delay (τ). Evidently the increase in the number

of necessary transmissions needed for the virus to propagate has positive impact on the proposed

defense method. In other words, the longer it takes for the virus to travel from vehicle-to-vehicle,

the more time we gain to circulate both, the PIV and BL lists within the vehicular network.

Moreover the existence of obstacles will further delay the propagation of the virus, whereas

the proposed technique will be less influenced since a single transmission is needed to inform

susceptible vehicles.

As illustrated in Figure 7.5, when τ= 1, i.e., when the infection is instantaneous between

vehicles, the lost fraction of the vehicular network is near 80% as the proposed mechanism cannot

“outrun” the malicious propagation. In such extreme scenarios any similar defense mechanism

would prove inadequate to block the outspread of the virus. For τ= 2 the diffusion of the virus is

significantly mitigated through the proposed technique, whereas for τ= 6 the infection is limited

to only 10% of the vehicular network.

7.6.3 Impact of Virus Strength

In Figure 7.6 the x-axis represents the fraction of the network nodes susceptible to infection. The

results illustrate that when the number of vehicles that are vulnerable to infection decrease, the

virus propagation becomes more difficult. This is due to the fact that from the perspective of the

virus, the network becomes more sparse and potentially disconnected. On the other hand, this
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Figure 7.5: Impact of the tranmissibilty of the virus.

feature only affects positively the proposed method, since these ”firewall” nodes will hinder only

the spread of the virus while the circulation of PIV and BL is left undisturbed.

As the spreading paths−for the virus−are gradually diminishing, the virus ”speed” is mostly

based on the respective vehicle’s velocity and the topological characteristics of the road network

for overcoming potential disconnected vehicle paths. Under these circumstances, the ability of

the virus to become epidemic is questionable. On the other hand, even when 100% of the network

is vulnerable to infection, about 23% of the VANET is infected, which highlights the efficiency of

the proposed mechanism.
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Figure 7.6: Vulnerability of vehicles to infection.

7.6.4 Impact of Different Cut Methods

In this section we evaluate the performance of the proposed method by employing a more elastic

methodology for the neighboring vehicles of a newly identified infected source. Particularly, as

described in section 7.4.2, we place nodes in PIV based on their connectivity (degree), i.e., the

most connected nodes first, or their contact duration, i.e., oldest co-travelers first. Figure 7.7
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illustrates the results when including 50% of each vehicle’s neighbors in PIV. The x-axis depicts

the different approaches.

Evidently, temporarily blocking nodes based on their connectivity yields better results. This

is due to the very nature of the VANET; the existence of upcoming congested intersections, road

segments of different priorities, traffic lights etc., resulting in a dynamic traffic environment

where vehicles slow down or line up for arbitrary lengths of time. Thus, in such cases choosing

nodes with respect to contact duration will be less efficient. On the other hand, by selecting

(influential) vehicles in decreasing order of connectivity, i.e., locally more connected/central nodes,

the proposed mechanism is found more efficient in blocking the outspread of the virus.

Among the various vehicles included in PIV, vehicles that are not truly infected are also

present. Particularly, for the degree method (and default system parameters) we recorded that

among 153 vehicles (on average) included in PIV, 30 vehicles were not truly infected. Although

this is not a negligible portion of vehicle nodes, our results indicate that a more sophisticated

cut method can reduce those “false positives” even more. Overall, moving vehicles in PIV means

cutting communication paths for vehicles that may not be infected, which can result in additional

delay on applications running on VANETs. Nonetheless this is only a temporal (but necessary)

effect of the proposed technique, for efficiently blocking the outspread of the virus.
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Figure 7.7: Cutting different neighbors from infected nodes.

7.7 Conclusion

This article proposed a distributed solution for hindering the outspread of a virus in vehicular

networks by initiating a negating spreading process to counter the outspread of the malicious

propagation. Inspired from complex network theory mechanisms, we introduce two competing

spreading process in the vehicular environment where we try to shield vehicle nodes from a worm-

virus, propagated through vehicle communications. Our simulation showed that the proposed

mechanism significantly hindered the outspread of the virus even when the entire network was

susceptible to infection. An interesting future direction resides in devising more sophisticated
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approaches for selecting quarantined neighbors, and furthermore “flexible” worms capable of

adapting in countermeasures induced by defense mechanisms.
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PROTECTING A VEHICULAR NETWORK FROM INFECTED NODES

A Robust Eco-Routing Protocol Against Malicious Data in Vehicular
Networks

8.1 Introduction

In this chapters we further discuss on the VANET ecosystem and routing protocols in urban

environments. Of particular importance are environmental-friendly mechanisms, including the

reduction of CO2 emissions and mileage [3] [74], since vehicles not powered by fossil fuels

will not be replaced soon, e.g., by fully electrical vehicles. The evolution of vehicles to mobile

connected entities with On-Board-Units (OBUs) and Internet access [127] exposes otherwise

legitimate vehicles to potential threats, i.e., infected with malware. Reports [4], [5] indicate that

the infection of vehicles is now, indeed, a realistic scenario and the involvement of such in VANET

protocols can result in catastrophic events. Examples range from injecting false data to disrupt

the vehicular environment, e.g., with false data related to traffic congestion, traffic accidents

and road conditions [32], to inhibiting communication, e.g, by jamming [44], or to more extreme

phenomena such as endangering human lives by taking control of a vehicle [151].

In [98] we proposed a routing protocol, the eco routing of vehicles (ErouVe) mechanism, which

utilizes vehicle-to-infrastructure (V2I), infrastructure-to-infrastructure (I2I) and infrastructure-

to-vehicle (I2V) communications to provide routing instructions to vehicles, for a greener trip

Related publication [C3]: Pavlos Basaras, Leandros Maglaras, Dimitrios Katsaros, Helge Janicke. A Robust
Eco-Routing Protocol Against Malicious Data in Vehicular Networks, Proceedings of the 8th IFIP Wireless and
Mobile Networking Conference (WMNC), pp. 184-191, Munich, Germany, October 5-7, 2015.
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towards their destination, i.e., optimizing travel duration and CO2 emissions. However, the

original ErouVe algorithm, offers no protection against bogus information originating from

infected vehicles and identifying potential vulnerabilities in a connected car’s communication

system, is a key factor for shielding it against rational attacks. As online attacks have become

potentially more hazardous and aggressive in recent years, the development of real time defense

mechanisms has been stepped up.

To this end, in the current work we focus on providing an effective defense system against

potential spurious data “running” through the system’s communication phases, which are aimed

at disrupting ErouVe’s routing decisions. Our simulation results show that the proposed defense

mechanism successfully identified outliers and restored ErouVe to near original instructions, i.e.,

as if no bogus data was present. An important information element in VANET communications

is the position of adjacent nodes since most applications rely on them. Functions, such as the

geographic routing on the network layer or the V2X applications, require genuine, accurate

and reliable location data regarding neighbors. As a result, we propose to verify the consistency

and plausibility of location-related data of adjacent nodes that are broadcasted frequently as

Cooperative Awareness Messages (CAMs) or geo-networking beacons.

8.2 Related Work

Inter Vehicle Communications (IVC) support applications that are related to safety [168], traffic

management [67] and infotainment, with most of these applications requiring frequent data

exchange among vehicles. In addition to reassuring that packets are delivered on time, which

is crucial for safety applications, mechanisms that ensure accuracy and consistency of the

data are required. In order to provide a secure environment for vehicular communications

we need to consider information security requirements, such as confidentiality, integrity and

authentication. There are numerous kinds of attack that may threaten confidentiality, availability

and authenticity of data [37].

Many routing protocols try to establish paths among entities that could provide fast and

reliable communication. During the creation of these routes vehicles exchange information about

their position, velocity, direction etc., and a mechanism is used to select those nodes that are

optimal for each protocol. In a black hole attack, a malicious node exploits this mechanism

by advertising itself, e.g., as a shortest path vehicle, to attract significant data traffic [108].

The attacker can choose to drop the packets or manipulate the data, for example by sending

them to the wrong recipient. As a result, the source and the destination nodes become unable

to communicate with each other. Denial of Service (DOS) and Distributed DOS attacks can

affect the availability of the data, since the attacker can jam the medium, thereby disrupting

the communication among the nodes. The authors in [44] showed that RF jamming poses a

serious threat to safety in VANETs, for according to their experimental study, jammers can
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severely disrupt communication up to 465m despite very short communication distances between

legitimate devices. During a Sybil attack [130], a malicious vehicle may pretend to be multiple

vehicles and then use these multiple IDs to distribute false information. The deleterious effects

of such attacks can cascade through the network and cause problems in the proper dissemination

of information. Timing and node impersonation are two other example of attacks affecting the

correct delivery of the information that can be easily launched in a vehicular environment.

A first step towards devising an appropriate defense system is the ability to detect infected

vehicles. As noted in [33], misbehavior detection in VANETs can be divided into Node-centric

or Data-centric mechanisms, with the first inspecting the behavior of a vehicle node, but not

the data it sends. For example, if the rate at which a node sends packets exceeds a normal

(predefined-historical) one, it is characterized as a misbehaving vehicle [37]. Other mechanisms

in the same category include some form of reputation management, which inspects the past and

present behavior of a node to derive the probability of future misbehaviour, as implemented

in [115].

Filtering out false data is another technique widely used in wireless sensor networks and

VANETs [158]. Our proposed scheme is based on a form of reputation and filtering, since vehicles

constantly exchange their current information, which they use in order to create and maintain

a list of their neighbors. In our defense mechanism, all the data collected from the vehicles are

gathered and validated by the RSUs 1. This way, information that is sent from infected vehicles

is discarded and hence, their credibility is considered to be zero.

The second discrimination concentrates on the disseminated data in order to detect misbe-

having vehicles, a scheme which is also used in our proposed defense system. Specifically, the

disseminated data are evaluated for plausibility and/or consistency. For example in our evaluation

scenario, plausibility will ensue if a vehicle reports a travel time of a few seconds while traveling

a relatively long path. Consistency will be applied if a vehicle sends high (or low) statistics for

a road segment, e.g. CO2 emissions depending on the attack’s goal, which although plausible,

significantly deviate from similar reports of other nearby vehicles.

8.3 Preliminary Work, ErouV e

The original ErouV e algorithm was presented in [98]. The protocol identified traffic congestion

phenomena in specific road segments, by taking into consideration the travel duration and CO2

emitted by vehicles. In the sequence we describe the algorithm’s specifications and functionality

along with the new mechanism for routing instructions.

1http://www.bmvi.de/SharedDocs/EN/Anlagen/VerkehrUndMobilitaet/Strasse/
cooperative-its-corridor.pdf?__blob=publicationFile
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Figure 8.1: CO2 emissions reduction system based on DSRC communications

8.3.1 System Description

We employ a network system G = (V ,L), where V depicts a set of nodes (intersections - RSU

placements) and L are the road segments connecting those intersections. The set of road segments

adjacent to an RSU is denoted as S(n), ∀n ∈V . RSUs with common adjacent road segments are

considered as neighbors that we denoted as N(n), ∀n ∈V . Note that two neighboring RSUs may be

connected through more than one route. Vehicles send data regarding a traversed road segment

l ∈ L, to the corresponding RSU (Figure 8.1), including travel duration and CO2 emissions.

Following, neighboring RSUs exchange the respective information acquired from several vehicles

and calculate average values for all adjacent road segments (∀l ∈ S(n)). These values will project

the vehicular environment for vehicles willing to traverse specific road segments. In order to have

updated information for each road segment, a time window is introduced, namely time interval

(TIN), from which a specific eco-route for each vehicle will be identified. Note that ErouVe runs

on level 2 of automation2 to advise upcoming vehicles; "Combined function automation".

8.3.2 System Initialization

In the initialization phase we build the network topology, that is, all RSUs become aware of their

neighbors and their in between distance with respect to the road segments that connect those

RSUs. Note that no time or CO2 cost is initially calculated for the road segments. Table 8.1 briefly

describes the initial information stored by each RSU. As illustrated, column 2 holds the neighbors

of each RSU, column 3 has the road segment(s) through which neighboring RSUs are connected

and finally, column 4 illustrates the distance for each road segment. Briefly, a vehicle k from R1

can reach R2 through segments la and lb in distances Da and Db, respectively.

2http://www.nhtsa.gov/staticfiles/rulemaking/pdf/Automated_Vehicles_Policy.pdf
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Table 8.1: Example of Connections Table for 3 RSUs

RSU_Id Neighbors Road Segments Distance

R1 R2, R3
R2: la, lb
R3: lc

R2: la(Da), lb(Db)
R3: lc(Dc)

R2 R1, R4
R1: la
R4: ld

R1: la(Da)
R4: ld(Dd)

R3 R1, R5
R1: lb
R5: le

R1: lb(Db)
R5: le(De)

8.3.3 Communication Phases

This section briefly explains the different communication phases of the original algorithm.

8.3.3.1 Road Segment Measurements (I2V)

For any vehicle k, which just completed its course on road segment l the corresponding RSU

impels vehicle k to:

• calculate the travel duration (TTlk) and CO2 emissions (Clk) on road segment l

• send to the RSU the respective values of TTlk and Clk

8.3.3.2 Communication of RSUs (I2I)

The communication between neighboring RSUs follows by sending the respective values of travel

time and CO2 emissions through beacon messages, for all vehicles that traversed the specified

road segments. Each RSU averages those values to project the traffic conditions for each road

segment, and select an appropriate route for each vehicle separately.

8.3.3.3 Route Request-Reply (V2I)-(I2V)

Each vehicle k that enters the control range (intersection area) of an RSU sends a route request

message (Rq) to the corresponding RSU, which in turn, after solving the optimization problem

(cf. next subsection) based on data obtained through I2I, sends routing instructions to the

corresponding vehicle via an Ra message (route answer).

8.3.4 New Decision System for Route Selection

In the original ErouVe mechanism, as presented in [98], weights are assigned for each road

segment adjacent to an RSU. The weight values are a combination of travel duration, CO2

emissions and the additional travel distance towards a vehicle’s destination. Finally, the route

with the minimum weight is communicated through the Ra messages. By following a slightly

different approach we developed a multiple decision mechanism, depicted in Figure 8.2. The

new mechanism, rather than adding the different values of the three features used, i.e., travel
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duration, CO2 emissions and distance, it logically combines the outcomes of three decision rules,

each representing one of them respectively.

Figure 8.2: New decision mechanism

In the new ErouVe mechanism, the RSU, after receiving a route request message from an

approaching vehicle k, compares the respective road segments based on the current mean time,

mean CO2 and the added distance that each routing decision brings about. The outcomes of each

decision are combined using weighted majority voting and different weights can be used in order

to focus on one of the different optimization parts, e.g., time, distance or CO2 emissions. In the

default system settings, all optimization parts have the same significance. For example when

comparing two potential routes, e.g., k and l, if D1 and D2 for k are greater than D1 and D2

respectively of l, l is selected as the next road segment.

8.4 ErouVe Vulnerabilities

ErouV e utilizes V2I, I2I and I2V communications, in order to decide on which is the most eco-

friendly route for any vehicle to follow. However, the technique’s performance so far, assumes that

vehicles will send only real data to the corresponding RSU. If we devise a scenario where tweaked

information exists among the received data, the algorithm’s formula can mislead vehicles to not

only false eco-friendly routes, but also, create traffic congestion and significantly deteriorate the

system’s performance, i.e., increase travel time and CO2 emissions.

In this study, we classify tweaked information into two basic categories depending on how an

infected vehicle may attempt to manipulate data:

• Send tweaked data to favor a route (FAV)

• Send tweaked data to fend from a route (FEN)

116

Institutional Repository - Library & Information Centre - University of Thessaly
06/06/2020 00:05:55 EEST - 137.108.70.13



8.5. ATTACK PLANS

FAV can be regarded as an attack that creates a false image for a specific road segment by

sending relatively small statistics, i.e., short travel duration or minimum CO2 emissions. For

these scenarios, vehicles would be instructed to follow the attacked route, however, if the road

capacity cannot satisfy the increasing number of vehicles, traffic congestion phenomena would

emerge. FEN also alters the real conditions regarding the road segment under consideration but

follows a reverse policy from FAV, i.e., by sending incremented statistics to the RSU, respectively.

Hence, FEN, will direct vehicles towards different paths that could result in ambiguous traffic

conditions.

Nonetheless, modified data regarding the accumulated CO2 emissions or travel duration per

road segment, is not the only vulnerability of the original ErouVe algorithm. Recall that once a

vehicle exits the road segment under consideration, it sends a report to the corresponding RSU

about the “condition” of the road segment it has traversed. However, so far RSUs have had no

knowledge of which route the corresponding vehicle actually followed, apart to what was stated by

the sending vehicle itself, and thus, cannot distinguish to which route the received data belongs.

Consequently, an infected vehicle can denote that these values correspond to a different route

(regardless of whether these values are altered or not) and hence, meddle with the system’s next

decisions. With the above considerations, the original algorithm stands unprotected (vulnerable)

to such false information and thus, our primary objective lies in devising a defense system to

counter data originating from such malicious vehicles.

8.5 Attack Plans

8.5.1 Attack Objectives

To built on our defense system, we discuss several attack plans and their impact on ErouVe.

The original ErouVe algorithm was implemented in order to balance the traffic flow between all

possible available routes with a common destination. The proposed technique was compared to

a scenario where the shortest route, followed by all vehicles, was unable to satisfy the traffic

flow, thereby creating congestion in the path. By experimenting in high density traffic conditions,

we found that ErouVe’s routing instructions successfully managed the traffic flow between

the corresponding available paths and as a consequence, significantly enhanced the system’s

performance, i.e., up to 30% improvement in travel duration. As a result, our attack plan

focuses on sending “appropriated” (tweaked) data to recreate a scenario where all vehicles follow

the shortest path and create congestion, although under the ErouVe paradigm. Intuitively, a

combination of attacks, i.e., vehicles sending favorable statistics regarding the shortest road

segment, i.e., FAV, and complementary unfavorable ones for the other route(s), i.e., FEN, will

affect the systems routing decisions. By reversing the attack plan on the road segments, i.e.,

FAV for the longer routes and FEN for the shortest path, we obtain a different impact on the

protocol’s routing decisions. In this scenario, vehicles will unnecessarily be rerouted to longer
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routes, resulting in increased travel duration and CO2 emissions for each individual vehicle and

concurrently, the system.

The aforementioned attack plans have contradictory objectives. In this study, we focus on the

recreation of congestion for the shortest route by exploiting the vulnerabilities of the original

protocol, i.e., Fake Route (FR) and Fake Data (FD).

8.5.2 How To Attack

First, recall that ErouVe uses data collected from vehicle measurements, accumulated within

the most recent time window of s seconds (TIN), that is, bogus information has a maximum

lifetime of TIN in ErouVe. Moreover, our experimentation showed that data from a single infected

vehicle can have zero effect in the original ErouVe protocol, i.e., does not sufficiently change the

weight values assigned to road segments and thus their overall ranking, although this is highly

dependent on the extent to which the data are altered from their original values. However, if an

attacker tries to use significantly deviated values to affect the formula/protocol, the received data

from other (healthy) vehicles in a relatively short time, would render the identification of such

bogus vehicles an easy task.

Since a single bogus vehicle may not make a difference to the protocol’s routing decisions,

grouped attacks are necessary, i.e., a number of infected cars that report their experience to

an RSU for a target road segment in a relatively short time. However, bogus information has

a lifetime of TIN in ErouVe, thus these reports must be defined with respect to TIN. As a

final observation, on the occasion where a successful attack occurs, the system can still recover

quickly if the weighted order of road segments is not changed much and a sufficient number of

healthy vehicle reports follow. Consequently, catastrophic results, i.e., creating traffic congestion

or unnecessarily rerouting a large number of vehicles to longer routes, can still be avoided, even

with no sophisticated protection against false information.

To summarize, vehicles must not only meddle with the data to a degree that will not be

undone with a few upcoming healthy vehicles, but also, to such an extent that it will not make

the RSU suspicious, i.e., it cannot send extremely deviated values from the actual measurements.

Finally, timed attacks are essential with respect to TIN as a single vehicle might not make a

difference in the overall ranking of the road segments.

8.6 Proposed Defense System: Enhanced ErouVe

The goal of our defense system is to filter out false data, so as to return the functionality of

ErouVe to near identical routing decisions, i.e., to an attack free scenario. Hence, data received by

an RSU will be “judged” for both plausibility and consistency [33].
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8.6.1 Fake Route Countermeasures

In order to counter the fake route problem we utilize the yet unused communication phase, i.e.,

Vehicle-to-Vehicle (V2V) communication in our model. To this end, vehicles traveling for instance

on a specific road segment l, broadcast beacon messages regarding the vehicle’s ID and that of

their current road segment, e.g. l. Upon exiting the road segment under consideration, a vehicle k

now sends information regarding not only TTlk and Clk, but also, the vehicle IDs that co-traveled

with vehicle k on road segment l.

By instructing vehicles to gather information about their vicinity in their current road

segment, bogus vehicles cannot state a different route than the actual one they followed. This is

due to the fact that the current mechanism allows an RSU to have an accurate image for which

vehicle followed which route based on the majority of votes. To bypass the system’s new defense,

a large number of infected vehicles need to be grouped appropriately, i.e., of magnitude greater

than the currently healthy vehicles in the corresponding road segment. Nonetheless, in such a

scenario, where the majority of vehicles are infected, all defense mechanisms are bound to fail.

In our experimentation, we assume that beacons exchanged between vehicles cannot be “heard”

in different road segments. This can be justified if we consider that the distance between the

road segments could be greater than the standard DSRC communication range or because of the

existence of obstacles, e.g., buildings in an urban scenario that interfere with the communication.

8.6.2 Fake Data Countermeasures

After properly matching data to the corresponding routes, we have to deal with vehicles that

fake their accumulated statistics of travel duration and CO2 emissions. First, we assume that

statistics from healthy vehicles in short time, e.g., of a few seconds, cannot deviate significantly.

It is a reasonable assumption if we consider that nearby vehicles will experience similar traffic

conditions. Now, we need to clarify the validity of each newly received vehicle report. To this end,

we define a new time window of about a third of TIN, to hold the reports for a set of vehicles in

a very recent image of the road segment under consideration, namely Validation Set Window

(VSW). The Euclidean Distance between the report under “judgment” and those in VSW will

decide the validity of the new data:

(8.1) D(x)=
√√√√ N∑

i=1
(x− yi)2

where x stands for CO2 emissions (or travel duration) of the new vehicle and yi for the corre-

sponding N values in VSW. D(x) is compared to a threshold (THd) that determines its validity.

However, a distant report is not necessarily a fake one, i.e., it may correspond to a true change in

the traffic conditions of a road segment from dense to light traffic (congested to uncongested) and

vice versa. Consequently, once a distant vehicle is identified, we do not take prompt action to drop

its data, but rather save them in a separate set, namely, Potentially Bogus Set (PBS) in order to

119

Institutional Repository - Library & Information Centre - University of Thessaly
06/06/2020 00:05:55 EEST - 137.108.70.13



CHAPTER 8. PROTECTING A VEHICULAR NETWORK FROM INFECTED NODES

account for the abovementioned case. If D(x)< Thd then x ∈ VSW, otherwise x ∈ PBS. Parameter

THd determines the sensitivity of the defense mechanism when categorizing new data as normal

or fake, cf. subsection 8.7.4. We expect that if the report corresponds to a realistic traffic change,

a number of similar ones are to follow. If the upcoming values are consistent with those in VSW,

then the values in PBS are dropped and labeled as truly bogus data. Alternatively, if the size of

PBS grows beyond that of VSW, we acknowledge a traffic shift and thus, integrate values of PBS

to VSW. Figure 8.3 illustrates the proposed mechanism. Data are consistent (VSW) when below

the threshold and otherwise inconsistent (PBS).

Figure 8.3: Fake Data Countermeasures

Finally, we should note that as explained in Section 8.3, a vehicle sends an Rq message in

order to receive instructions. This places the following constraint: vehicles cannot easily lie about

their travel duration. This is due to the fact that the RSU is aware of the time interval between

the reception of an Rq message, and the time it receives the statistics from the corresponding

vehicle. Nonetheless, more sophisticated plans can be deployed to fake travel duration, but are

beyond of the purposes of the current study. Henceforth and without loss of generality we assume

that only CO2 emissions are altered.

8.7 Simulation Settings

8.7.1 Simulator

For the evaluation of our model, we use the simulator VEINS [129], which is composed of two

well known simulators: OMNET++ an event-based network simulator and SUMO, a road traffic

simulator. To calculate CO2 emissions for each individual vehicle we apply the EMIT model

integrated in VEINS. It is a statistical model for instantaneous emissions and fuel consumption

based on the speed and acceleration of light-duty vehicles.
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8.7.2 Evaluation Scenario

Similarly to our previous work [98], we built a map about 2km long (Figure 8.4) with a single

direction and two available paths. The upper and longer path is about 275m long, whereas the

lower and shorter path is about 190m. Both road segments have the same capacity in lanes.

These paths merge at junction 2, where the upper part can occupy 2 lanes of the next 3 lane

road segment, whereas the lower part can occupy only 1. This setting is used to demonstrate a

typical urban scenario, where part of a road can be temporarily closed due to maintenance or due

to an accident. Another potential scenario includes crossroads with different priorities, where

vehicles in the road segment with less priority line up and give room to traffic flows on roads with

higher priority. Such considerations coupled with medium traffic can make a road segment that

seems attractive, i.e., shorter path towards destination, unable to satisfy the traffic demand and

consequently, result in major traffic congestion.

Figure 8.4: Simulation Map

8.7.3 Communication Settings

• Communication Range: this is the communication range that can be achieved between

vehicles according to the setup of the system. In our experimentation it is set to 300m.

• Handshake Range: at this range about (100m) an approaching vehicle is aware of the

presence of an RSU and an upcoming intersection. This is facilitated through frequent

beacon messages generated by an RSU. At this point, vehicles store the position of the

corresponding RSU.

• Control Range: the final communication range of our system depicts the distance at which

vehicles receive routing instructions (Ra message) from an RSU. In our simulation we set

this range to a medium value, in order, if necessary, to give time to vehicles to perform

rerouting, e.g., 50m.
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Table 8.2: Simulation Parameters

Parameters Range Default
Attack Type FR, FD FD
Group Size 1-5 3

Attack Interval (s) 6,10,14 10
FR Short Route opt-2*opt original
FR Long Route opt-2*opt original
FD Short Route opt-2*opt opt
FD Long Route opt-2*opt 2*opt

Infected Vehicles (%) 10 - 30 20
THd (%) 10 - 50 10

Vehicle Speed (Km/h) 40 - 90 40
Number of Vehicles 50 - 150 150

TIN (s) 30 - 120 30

8.7.4 Parameters

In Sections 8.4 and 8.5, we elaborated on the vulnerabilities of the original ErouVe algorithm and

devised attack scenarios to address those points. Table 8.2 summarizes the attack plans and their

configuration: vehicle velocity, number of vehicles and TIN values as used in our experimentation.

Group size depicts the number of consecutive vehicles that report false data, i.e., one to five

vehicles, and attack interval is the interval between such groups, e.g., every six seconds. The

attack intervals are chosen with respect to TIN, that is, at least two attacks groups must occur

within one TIN. opt indicates how infected vehicles fake their original values in order to deceive

the system. It is calculated for each road segment with respect to the road length and vehicle

velocity, i.e, assuming vehicles travel in an uncongested road segment with the maximum allowed

speed. For the FR attack, vehicles do not fake their reports, but rather, state that the accumulated

statistics correspond only to the long route. For FD, bogus vehicles traversing the short route

will say that they have experienced favorable road conditions, i.e. opt, whereas for the long route

vehicles will state that there is significant congestion. Both attack protocols favor the short route

in hopes of creating traffic congestion. Extensive experimentation was conducted in relation to

the simulation parameters and in the next section, we present the most characteristic results.

Unless stated otherwise, default values are used.

8.8 Performance Evaluation

8.8.1 ErouVe VS Shortest Path VS FR attacks

In Figure 8.5, the CO2 emissions (ml) and travel duration (sec) of each vehicle are demonstrated.

ErouVe in an unprotected mode performs similar to the original shortest path scenario, since due

to the fake route attack it sends most of the vehicles to follow the lower road segment (shortest
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path). The increased traffic leads to road congestion that has an immediate effect on both travel

duration and CO2 emissions. That is, the mean increase in time and CO2 compared to that in

the attack free scenario is 31% and 20%, respectively. Such an increase can be further explained

considering that ErouVe sends 25% of the vehicles to follow the longer route, whereas in the FR

scenario only about 8% of the vehicles take the longer path. Such observations justify the need

for countermeasures and as it will be illustrated, the proposed defense mechanism makes ErouVe

robust to such attacks.
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Figure 8.5: FR successfully deceives the original algorithm into sending vehicles to the short route
and thus creating congestion. Travel duration and CO2 emissions are significantly increased by
31% and 20% respectively.

8.8.2 Impact of Attack Group Size

Figure 8.6 illustrates how the number of consecutive vehicle attacks (attack group size) affects

the system’s average performance. The attack interval is set at 10 seconds. The Y-axis represents

the deviation from an attack free scenario, i.e., depicts the performance drop. For one vehicle

per 10 seconds we observe a minor deviation, for example, lower than 5% in CO2 emissions. As

the attack group increases and thus more fake data are running the system, the unprotected

ErouVe mechanism is further deceived, e.g., more than 25% increase in travel duration for five

vehicles per attack group. It is worth noting that one attacker per 10 seconds depicts 8.6% of 150

vehicles, while for a group of five vehicles, the bogus community rises up to 30%. Although this

observation indicates a strong point for ErouVe because it takes a large number of vehicles to

drop its performance about 25%, it also highlights the necessity for a defense mechanism capable

of spotting spurious data to “cure” the system.

8.8.3 Impact of Attack Interval

In Figure 8.7, we investigate on the frequency of the attacks with the attack group size set

to three vehicles. Note that zero in the x-axis represents the scenario with no fake data. As
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Figure 8.6: As the number of FD attacks running in system increases, ErouVe’s performance
drops. About 30% of vehicles out of the total simulation were bogus (attack group size set to 5) for
a 25% decrement in travel duration.

illustrated, more frequent attacks have greater impact on the performance of ErouVe, e.g., about

24% increase in travel duration when attacks happen every six seconds, whereas there is 15%

performance drop when the interval is 14 seconds. Note that for the interval of 14 seconds, only

two attack groups “fit” in TIN, which explains the lower impact in the protocol’s performance, i.e.

false reports are not sufficient to change significantly the overall ranking of the road segments. As

the simulation time flows, the impact of earlier fake data expires and consequently if no new such

data arrive in short term, the system is very likely to recover to near normal routing decisions.
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Figure 8.7: In order to significantly affect the routing decisions of ErouVe, fake data need to
arrive in a timely manner, so as to continuously have false data in the system. Otherwise ErouVe
may quickly recover to original routing instructions.
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8.8.4 Impact of Defense System VS FD attacks

Finally, we present the performance of the proposed defense system against FD attacks. Recall

that our goal is to have a performance similar to that of a scenario where no fake data are

running through the system phases, and thus, illustrate the robustness of our defense mechanism.

Figure 8.8 illustrates the obtained results. Evidently, the proposed method remarkably follows

the performance of the original ErouVe algorithm. This is due to the fact that fake data are

successfully omitted from the system, that is, ErouVe’s routing instructions are only guided

through the real traffic condition. The fraction of vehicles sent to the longer route is 27% for the

defended ErouVe and about 18% when the defense mechanism in not active (vulnerable).

The deviation observed between the defended and original algorithm can be explained by the

following reasons: first, since false data arrive in groups, i.e., three consecutive vehicles, when

labeled fake and thus omitted from the system, ErouVe is left with no new received reports for an

interval between the last received bogus data and the most recent true report. Second, a similar

delay is induced in the protocol when data appears to be bogus, but it really is not, representing

a traffic shift, between the time the report is labeled as BPS and later integrated in VSW. Such

considerations induce a delay in the routing decisions and consequently, a deviation from the

original ErouVe, but nevertheless are essential in order to filter out malicious vehicles.
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Figure 8.8: The proposed defense system returns the protocol to near identical routing decisions
by successfully filtering out the outliers and thus the overall system’s performance is preserved.

8.9 Conclusion

In this paper we investigate on how an eco-routing mechanism (ErouVe) that is based on DSRC

communications, is affected from fake information disseminated from infected vehicles in an

urban environment. We devised a set of attack plans with aim to guide vehicles to a “desired”

route, and recreate traffic congestion. Subsequently we employed a defense methodology that

relies on V2V, V2I, and I2I communication, that successfully filters out fake data running through
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the systems communication phases, that is, restore the performance of ErouVe to near normal

operation. In the future, different attack scenarios are going to be investigated and more complex

defense mechanisms developed.
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ON NEIGHBORING NODES’ RELATIVE POWER OF INFLUENCE

This Chapter focuses on understanding the connection between the influence power (and

centrality) of relatively close neighboring nodes, by utilizing a social driven property. As we

noted in earlier Chapters, the concept of identifying influential spreaders in complex networks

has received increased attention in the past decade. A common characteristic for many of these

network statistics deployed, is that the influential nodes they detect tend to be neighboring

nodes. For instance, in highly assortative networks, high-degree nodes (i.e., hubs) are usually

neighbors. Similarly, nodes belonging to the same k-shell are quite often neighboring nodes [36].

This characteristic has the consequence that the selection of such nodes as influentials might

be redundant since the network parts that they can infect are highly overlapping. Also, the

computation of many of these techniques or the selection of non-neighboring ‘seeds’ requires

knowledge of the whole network topology; however more often than not we don’t have the whole

picture available, but only local information. Therefore, the need to compare the influence power

of neighboring nodes arises; in other words, we need to answer a question of the kind whether

the (direct or close) neighbors of a node are more influential than the node itself.

The answer to this question can straightforwardly be used for designing better influential

nodes detection algorithms, or for estimating the spreading capability of nodes using their friends’

capability; however, the question has an intellectual value by itself also, due to its relation

to the well-known friendship paradox [193]. The phenomenon comprises an observation that,

statistically, most people have fewer friends than their friends have. The last years, there have

been some research efforts that investigated the friendship paradox relatively to some node

‘quality’ feature, e.g., with respect to prominence in science [52], popularity in Twitter [24], [89],

Submitted work [S1]: Pavlos Basaras, Giorgos Iosifidis, Dimitrios Katsaros, Leandros Tassiulas.On neighboring
nodes’ relative power of influence, Submitted for journal publication, October 2017.
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happines [16], and so on. These studies of the so-called generalized friendship paradox [31],

[52], [56] relate node features to inter-nodes links, and therefore relate nodal characteristics to

network topology. However, the node characteristics that were investigated in [52] were all related

eventually to the number (i.e., node degree) and type of coauthors. In scientific collaboration

network and due to the way research is conducted, we (almost always) encounter the pattern

that junior researchers, i.e., MSc/PhD/post doctoral students are cooperating (due to graduation,

employment reasons) and thus coauthoring with more experienced researchers, namely junior

and/or senior faculty, senior industrial personnel, and so on. These experienced researchers have

(usually) more coauthors, more citations, more publications than their junior researchers; in

other words, they are ‘hubs’ in the coauthorship network. Combining this with the fact that junior

researcher population is larger than the seniors’ population, we easily deduce why studying the

‘paradox’ in this way is not radically different than studying it in its plain form [193]. Similar

arguments hold for the other aforementioned works related to the generalized friendship paradox.

Therefore, that studies can not provide a clear picture about whether such generalized paradox

holds in general.

In light of above discussion, our investigation has as its ultimate goal to settle the following

question: Are my (close) friends more influential than me? By casting our investigation in the

context of the generalized friendship paradox, we need to make clear the peculiarities of our

study which make it interesting, and different than the study of other generalized friendship

paradoxes. Firstly, the influence propagation is a probabilistic phenomenon and goes far beyond

simple arithmetics (counting the number of my friends versus the number of my friends’ friends,

counting the number of my citations versus my co-authors’ citations, counting the number of my

re-tweeted tweets versus the number of my followers/followees’ re-tweeted tweets, and so on). It

depends on the spreading model and on its parameters, and while the tranditional friendship

paradoxes refer to static centrality measures, our study involves a dynamic process. Secondly, the

analysis of this ‘paradox’ might need no examination of all the nodes of a complex network, but

only of those prominent nodes whose identification depends on the measure used, e.g., centrality,

k-shell. Thirdly, many of these (generalized) paradoxes are explained by the fact that too many

nodes are linked to a few hub nodes (or are co-authors of a few star-scientists in the case of

scientific collaborations); in our study though, such explanation might not hold because it has

already being proven in [139] that there is no strong positive correlation between node degree

and influence capability, i.e., higher degree nodes are not necessarily better spreaders.

9.1 The influence power of my close neighbors

The vast majority of literature on influential node selection assumes that the whole complex

network is available beforehand, and therefore it can be processed to infer the topological

properties of each node, and then to compute network quantities such as centralities, cores and
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so on. Then, armed with a ranking of the nodes according to such a measure, the top-most such

nodes can be selected as seeds to initiate a diffusion process. However, this methodology is only a

part of a larger investigation effort, which has been overlooked so far. A thorough investigation of

the topic should enlighten us on the following issues:

• Given a specific spreading model, characterize the spreading power of each node relative

to the spreading power of its close neighbors. The investigation should go beyond the

examination of 1-hop neighbors, and further examine its 2-hop, and 3-hop, and even more

distant neighborhood if the finding call for such an investigation. The understanding of this

issue is crucial for sampling purposes [136], [181]. It is also significant when the network is

acquired in a streaming fashion, and we do not have the luxury of time to wait for its full

topology or when the (main memory) storage capacity is inadequate.

• Given a specific ranking measure to sort the nodes (e.g., PageRank, k-shell, PCI, degree),

characterize the relation of each node’s value (for that measure) to that measure’s value of its

close neighbors. Again, this is significant for large scale networks where we cannot calculate

this measure of all nodes (either it is computationally challenging, or it is time consuming,

or it we do not have the necessary information at our disposal) and we need to use it in

order to drive the selection of top-most influential nodes as required by methodologies found

in the literature so far.

Even though there is no evidence in the literature, for instance, that each blogger believes

that his/her posts are more influential [123] that the posts of his/her peers, we will take the

liberty to introduce the term influential spreaders paradox to describe the phenomenon that,

statistically, the spreading power of a node is inferior to that of its close neighbors. Similarly,

we will introduce the term centrality paradox to describe the phenomenon that, statistically, the

centrality value of a node is lower than that of its neighbors. The friendship paradox [193] is

afterall a degree-centrality paradox. We will study these paradoxes both at individual node and

at network level [193] (for their exact definitions see the section ‘Materials and Methods’). We will

say that the centrality (spreading) paradox will hold for an individual node if the node has lower

centrality value (reps. spreading ability) than the average centrality (resp. spreading ability) of

its (close) neighbors. On the other hand, we will say that the centrality (resp. spreading) paradox

holds for a network if the average centrality (resp. spreading ability) of nodes is smaller than the

average centrality (resp. spreading ability) of their (close) neighbors.

We admit that it is not possible to examine neither the applicability of the centrality paradox

for each one of the hundreds of centrality measures that have been proposed so far nor the

applicability of the spreaders paradox for each one of the tens of spreading models that have

appeared in the literature. We will do it only for the two, most prevalent spreading models,

namely SIR and SIS (see Appendix A.1), and for the most widely used centrality measures

(see Appendix A.2), namely, degree (DEG), betweenness (BC), closeness (CC), PageRank (PR),
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k-shell (CORE), a variation of it namely, onion spectrum (ONION), and an hybrid named Power

Commuity Index (PCI) [77].

In summary, the contribution of this work can be summarized as follows:

• we investigate numerically, using typical network models and also actual instances of

various networks, if the friendship paradox appears in various centrality measures, and

then, we extend the idea to 2-hop and 3-hop neighborhoods and again investigate how the

paradox effects evolves. Thus, we answer the following question: “Are your close neighbors

more central than you are?"

• we focus on the paradox effect for the metric of influence, in various networks, and under

various influence spreading mechanisms. Thus we answer the following question: “Are your

close neighbors more influential than you are?"

• we develop a sampling method for the selection of influentials and for the blocking of

contagions.

9.2 Results

Table 9.2 in section ‘Data description’ of ‘Materials and Methods’ describes the real networks

used in our study; we used one communication network (Email-Enron), five co-authorship net-

works (CA-Astroph, CA-CondMat, CA-HepPh, CA-HepTh, CA-GrQc), three social networks

(Brightkite, Facebook, Hamsterster), and one interaction network (PGP). For those networks

composed of many connected components only the largest component is considered. We have

also generated random networks using the R Project for Statistical Computing [11]; an Erdos-

Renyi [15] network where the probability p for drawing an edge between two arbitrary nodes is

set at 0.004, and a graph that follows the Watts-Strogatz small world [15] model with rewiring

probability r at 0.4. The results illustrated for the artificial graphs are averaged over ten inde-

pendent networks. In Table 9.2, 〈k〉 depicts the average network degree, D corresponds to the

network diameter with the 90-percentile effective diameter appearing in brackets, and finally

A illustrates the degree assortativity. For more details, readers are referred to [8], [65]. We will

focus on the extensively studied Enron email network, and provide the results for the remaining

networks in the ‘Supplementary Material’ of this article.

As usual, we model each network as a graph G = (V ,E), where V is the set of nodes, and E

is the set of links among nodes; the cardinality of |V | = n is the number of network nodes. We

will denote the set of α-hop neighbors (α = 1,2,3) of node i as Nα(i), and this set will include

all network nodes that are within exactly α hops distance from node i, and with |Nα(i)| we will

denote the cardinality of this set. We will define the spreading power of a node i, SP(i), as the

number of network nodes that they get infected when the infection starts from node i (see also

section ‘Spreading models’). We will first investigate the centrality paradox at both the network
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and the individual level followed by our results regarding the spreading paradox, and finally

close our work with applications based on the article’s findings.

9.2.1 The centrality paradox

Despite the thorough work done by the seminal studies reported in [193] and [52], their common

feature is that they have both examined node ‘features’ that eventually reduce to merely counting

links incident to a node. Departing from their perspective, we examine here several centralities

some of which are known not to be strongly correlated to node degree, and secondly, we investigate

whether the paradox holds for more distant neighborhoods of a node rather than just for its direct

neighbors.

9.2.1.1 Centrality paradox at network level

We will start by examining whether the paradox holds at the network level which is a ‘macroscopic’

observation, and also by confirming a trivial result, i.e., if there are no ‘hub’ nodes which are

responsible for creating the variance in the average of the measured quantity [193], then the

paradox can not hold. Figure 9.1 illustrates whether the paradox holds at the network level for

two classes of networks. The first class includes two networks that are knowed to exhibit power-

law degree distribution, namely the real Email-Enron network (the first plot) and the artificially

generated network following the Barabasi-Albert preferential-attachment generation model

(second plot). The second class includes two networks with Poisson-like degree distributions,

namely a pure Erdos-Renyi network (third plot), and a network which follows the Watts-Strogatz

small-world model (fourth plot). The y-axis depicts the distance (in ratio) between the average

centrality 〈v〉 of a node and the average centrality of neighbors 〈vnn〉.
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Figure 9.1: Centrality paradox at network level. The x-axis shows the evaluated centralities
measures while the y-axis illustrates the distance in ratio 1− 〈v〉

〈vnn〉 for all neighborhoods (N1, N2
and N3). The paradox holds for networks with power-law degree distribution due to the existence
of hub nodes, but not for networks with Poisson-like degree distribution. The strength of the
paradox weakens only for the N3 neighborhood, whereas for the N1 and N2 neighborhoods is very
strong and in a way competitive way among them. The observation that the paradox apprears
stronger in N2 for the simulated Barabasi-Albert network is not unrealistic since it is observed
in the CA-CondMat network.

The generic (expected) observation is that for power law networks the paradox is valid across
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neighbohoods. In particular, it is strong for N1 and N2, and it significantly weakens for N3.

This weakening trend for N3 is characteristic in the majority of the evaluated networks (see

Supplementary Figure C.1). In many of the cases, the probability of the paradox holding in N1

is no more than 10% higher than the respective probability in N2, and there is even the case of

CA-CondMat network (Figure C.1) where the situation is reversed; this provides a significant

first evidence that the paradox is not an oddity of the N1 neighborhood only. When examining

the validity of the paradox across centralities, we see that the paradox holds for all of them, with

the exception of closeness centrality. The power-law distribution of the centrality values e.g.,

DEG [15], BC [172], PR [166] provides a rational explanation for this observation. The paradox

holds with high probability even for CORE which has not an established power-law behavior.

Closeness centrality is a departure from this rule and this is explained by the nature of this

centrality measure; a really large number of nodes is located near the ‘center’ of any network

when it is relatively densely connected, and this destroys the power-law behavior.

On the other hand, for networks with Poisson-like degree distribution the calculated probabil-

ity value is always below 0.1, i.e., the paradox (as expected) does not hold and the main reason is

the absense of hub nodes.

In summary, the centrality paradox at network level holds strong across centralities, and

across N1 and N2 neighborhoods. We now proceed to study it at the individual (or node) level.

9.2.1.2 Centrality paradox at individual node level

Rcall that the centrality paradox holds for a node at the individual level if the node’s centrality

value is smaller than the average centrality value of its neighbors. We will use the symbol hκ
γ(s,v)

to define the centrality paradox holding probability that a node with Nγ (γ= 1,2,3) neighborhood’s

size equal to s and κ (κ= DEG, PCI, CORE,...) centrality’s value equal to v satisfies Equation 9.1.

For instance, hPCI
3 (150,15) represents the centrality paradox holding probability for a node whose

PCI value is equal to 15 and its N3 neighborhood contains 150 nodes. If some of the factors in

this probability symbol e.g., centrality measure are left undefined, then we will use the _ symbol

in their position, i.e., h_
N1

(_,v). Figure 9.7 plots this probability for the Email-Enron network,

for most of the centrality measures and N1, N2, N3 neighborhoods. The rest of the plots are

included in the series of Figures C.2 to C.10. So, each plot depicts the centrality paradox holding

probablity for pairs of node neighborhood’s size and centrality value. The color is analogous to

that probability ranging from black (not holding) to yellow (holding).

The leftmost plot in each line of plots inf Figure 9.7 and in Figures C.2–C.10 examines the

paradox’s truth for the node’s direct neighbors, and are analogous to the plots of [52, Figure 1].

It has been established [52], [193] that the paradox holds strong for degree centrality (DEG),

especially for the lower degree nodes. We confirm that findings, and generalize them in the

following way: for a fixed neighborhood size, the centrality paradox holding probability decreases

with increasing centrality value, for any centrality measure, and for all close neighborhoods.
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However, we there are three interesting observations in our study that were not documented

in previous works. The first one is as follows. Earlier works established that the paradox holding

probability takes all values from 1 to 0 for many different sizes of the N1 neighborhood, and

becomes 0 only for the largest N1 neighborhood. Here, we establish that for some centralities,

namely PR, BC and CC this behavior is ‘binary’, i.e., the centrality paradox either holds or not,

no matter what the size of the neighborhood is. For the rest of the centralities, namely DEG,

PCI, CORE, ONION this binary behavior is observed only when the size of the N1 neighborhood

becomes quite large. For instance, PCI and CORE illustrate a paradox holding probability of

about 0.5 at the relatively low values of N1.

The second and more striking observation is that this binary behavior is more evident in N2

and even more evidently in N3. This phenomenon can be (partially) explained by the following:

|N3| > |N2| > |N1| for the majority of the network nodes. In other words nodes will be “compared”

with more neighbors for their centrality index (with respect to N1), which increases the probability

of finding highly central nodes (e.g., hubs) and thus expose neighbor superiority. In other words,

it is like having a uniform sampling process and a focal node with high centrality value, and

asking what is the likelihood that this sampling process will select a N1 (N2,N3) neighbor of the

focal node with higher centrality.

Finally, a third departure from study [52] which showed that the node with minimum

centrality value min is most likely to have neighbors with higher centrality values and thus

leading to hDEG
N1

(_,min)= 1 is confirmed in our experiments (the bottom-most points in every plot

are yellow colored), with the exception of CORE, where the centrality paradox holding probability

may vary from 0.5 to 1.0 because of this centrality’ definition and the network assortativity.

9.2.1.3 Summary on the centrality paradox

As a summary of the investigation of the centrality paradox we can establish the following strong

results: a) at network level, the paradox holds strong in both N1 and N2 neighborhoods for

(almost) all centrality measures for all power-law networks, whereas it does not hold for networks

with Poisson-like degree distribution; b) at individual node level, for a fixed neighborhood size,

the centrality paradox weakens with increasing centrality value, for any centrality measure, and

for all close neighborhoods; c) at individual node level, the centrality paradox either holds strong

(i.e., its probability is equal to 1) or it does not hold at all (i.e., its probability is equal to 0) for

neighborhoods others than N1, and this binary behavior is evident even for N1 for PR and BC

centralities; the roots of these observations at individual level are the power-law distribution of

the centrality values and the network assortativity.

9.2.2 The spreading paradox

In the previous section we established centrality paradox along with several new facts related

to it; this paradox might not seem that paradox after all considering that a ‘deterministacally’
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computed quantity of a node is on the average lower than that of its close neighbors, given

the power-law degree distribution and the assortativity of the network. However, influence

propagation comprises a completely different situation because it involves a probabilistic diffusion

process.

We will study the paradox at network level first, and then at the individual node level for

the two prevalent diffusion models, namely SIR and SIS. In both SIR and SIS, the spreading

rate λ of the difussion process is set near the epidemic threshold of each network (see Table 9.2)

as it is broadly used for the identification of influential spreaders (e.g., see [139]). In SIS, the

probability γ for returning from the infected (I) state to the susceptible (S) state is set to 1 which

represents the worst case scenario for the SIS spreading model, and it is also not in favor of the

spreading paradox’s validity confirmation, i.e., the presented results comprise a ‘lower bound’ of

the paradox’s validity.
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Figure 9.2: Evaluation of the influential spreading paradox at network level for the SIS and
SIR spreading models in the Email-Enron network. The spreading paradox holding probablity
is pretty high for the SIS model closely followed by SIR for the majority of the networks. The
slightly lower paradox holding probablity for SIR is attributed to the existence of the R-state
in that difussion model. Exceptions where the paradox does not hold are some very sparsely
connected networks. The paradox holding probability is high in both N1 and N2 neighborhoods,
which is a result observed for the centrality paradox as well.

9.2.2.1 Spreading paradox at network level

Figure 9.2 illustrates the network level spreading paradox for SIR and SIS. The y-axis depicts

the distance (in ratio) between the spreading power of a node and the average spreading power of

its neighbors. At first glance it might seem that the spreading paradox holds but not strongly at

network level. However this is not the case for the following reasons. In most network cases, the

paradox holding probability exceeds 60% in N1. The cases where this probability is below 20%

for both SIR and SIS are for the networks CA-CondMat and CA-HepTh which are very sparse

networks. Otherwise, the paradox holds strong and in fact it apprears quite strong in N1 and N2,

just like the centrality paradox; in other words, the friends and the friends’ friends of a node are
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on the average better spreaders than the node itself. The paradox weakens considerablly in most

cases and even takes negative values when considering N3 neighborhoods. When contrasting

the spreading paradox holding probability in SIR and SIS, we observe that this probability is

in general higher in the latter case, because SIR encompasses the R-state that reduces the size

of the infected population. The real gap is even broader in favor of SIS, recalling that the SIS

results represent a ‘lower bound’.

9.2.2.2 Spreading paradox at individual node level

If taking averages (or even medians) of the spreading efficacy of nodes in probabilistic diffusion

processes across the whole network (i.e., at network level) might result in smoothing out some

particular behavior, the examination of this behavior in a local level (at individual node level) will

remove any doubts. So, in Figure 9.3 we illustrate for the Email-Enron network the spreading

paradox at individual node level. The colored palette illustrates the paradox holding probability

for pairs of neighborhood’s size (x-axis) and spreading power (y-axis) for all three neighbors,

namely N1, N2 and N3. The top row of plots is about the SIS model, and the bottom row about

the SIR model.

The generic pattern that we observe is the following: for a fixed neighborhood size, the paradox

holding probability decreases abrupty from the ’holding state’ to the ’non-holding state’. This is

true across N1, N2, N3 and spreading models SIR and SIS. For the SIR, it is evident that this

abrupt change happens when the spreading power exceeds a threshold value which is practically

independent of the neighborhood size. This behavious is observed for the SIS model and the N2

and N3 neighborhood, but for the N1 the threshold depends on the neighborhood size.
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Figure 9.3: Evaluation of the influential spreading paradox at individual node level for the SIS
and SIR spreading models in the Email-Enron network.
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9.2.2.3 Summary on the spreading paradox

As a summary of the investigation of the spreading paradox we can establish the following strong

results: a) at network level, the paradox holds strong in both N1 and N2 neighborhoods, and it is

stronger under the SIS spreading model; b) at individual node level, the paradox holds strong as

long as the spreading power does not exceed a specific threshold, and this behaviour is valid for

both SIR and SIS models.

9.3 Applications

We aim to evaluate the importance of our findings within the concept of spreading dynamics. We

will follow the paradox intuition for accelerating a spreading process or hindering the outspread

of misinformation in networked populations. First we will explain the mining mechanism for

selecting the cascade initiators/blockers and then focus in the respective use-cases.

9.3.1 Mining Cascade Initiators/Blockers

In order to mine highly central nodes we follow a similar policy to [52]. Specifically, an initially

random set of nodes is selected. Meaningful conclusion can be drawn only when the size of the

selected set, namely RND, is relatively small, hence we experimented with 10 and 20 nodes. Here

we present our findings for 20 seed nodes. Furthermore, only nodes with DEG ≥ 5 are enlisted. For

each member in RND a biased sampling is performed towards one of its Nα neighbors (α= 1,2,3)

i.e., the neighbor with the respective highest centrality. Hence we obtain three seeds for each

centrality, one composed of the N1 neighbors of RND, a second from N2 and a third one from the

N3 neighborhood. For example DEG-N1 replaces each node in RND with the highest DEG node

in N1 respectively. A random approach that selects random nodes from N1, N2 and N3 is also

employed for a baseline comparison.

9.3.2 Accelerating the Spreading Process

Initially RND will be evaluated for its spreading capabilities, i.e., power of influence, and then

replaced and compared with the influence potential of its relatively close neighbors (N1, N2 and

N3). Specifically the SIR process will deploy as cascade initiators − the set of nodes initially in

state I − the nodes of RND. The spreading power (SP) for the cascade initiators will be defined

by the number of nodes in the R state at the end of the SIR process. Similarly for SIS, SP

will be measured as the number of nodes in I state when SIS reaches the steady (equilibrium)

phase. Likewise, the set of nodes from DEG-N1, PCI-N1, etc., will be used as cascade initiators

and measured for their spreading potential. We establish our work on the basis of the paradox

example, with aim to identify the set of nodes − or rather the set of neighbors − that accelerate

the spreading process more efficiently.
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In order to obtain unbiased results, SP is averaged over 1000 iteration for all selected seed

sets in both spreading models. To ensure that the illustrated results are not the product of a

specific random seed, the final results are obtained (averaged) over 20 different RNDs.

9.3.3 Blocking the Outspread of Misinformation

Additionally, we propose a baseline approach for mitigating the outspread of misinformation

within an online social platform, e.g., Facebook, Twitter or LinkedIn. Specifically we envision

a notification system that informs users for malicious ”data” traversing the network much like

the weather alert system of Facebook that informs users for potential harsh weather conditions

at their registered location. Hence similar to a weather notification, e.g., ”Good morning Pavlos,

stay dry today in Volos. Rain is forecast” we visualize the following ”Good morning Pavlos, be

careful on post X, your friends have marked it as potentially fraud”. Similar approaches have

been deployed at the network of LinkedIn for recommendation systems based on a node’s ego-

network [100]. The proposed mechanism for Blocking the Outspread of Misinformation in sociAl

Networks (BOMAN) will deploy a set of nodes as ”guards” to counter potentially malicious data

traversing the network. The message will appear for a user-node, if within his ego-network a

guard exists. Guard nodes will be deployed as instructed by the set of nodes in e.g., PCI-N2,

PR-N2, etc. Hence in a similar fashion we search for the set of neighbors that can more efficiently

block the outspread of ”undesired” data. We believe that BOMAN will discourage node-users in

believing a post when such notifications appear. We model this ”disbelief”, as a decrement in λ

when a guard node exists in a node’s immediate neighbors. In order to evaluate the efficiency

of the proposed mechanism, a random set of ”ill intentioned” nodes (of equal cardinality to the

set of guardians) will be selected to initiate the ”deceitful” spreading process. Thus, an initially

randomly selected set of guardian nodes will be evaluated for it’s blocking capabilities, and then

replaced and compared with that of its close neighbors.

Likewise, to obtain unbiased results we utilize 20 random sets of ”ill intentioned” nodes, and

for each such set 20 RND sets of guardians. Finally, each spreading process is repeated for 1000

iterations to obtain the final SP.

9.3.3.1 Spreading Evaluation

Figures 9.4 and 9.5 depict the impact of selecting ”central” neighbors within N1, N2 or N3 of

RND with respect to the spreading models for the Email-Enron and Brightkite networks. The

y-axis depicts the spreading power (SP) for the selected seed sets whereas the x-axis shows the

respective steps of propagation for SIR and SIS. Reminisce that the two spreading models stop

at different conditions; SIR stops when there are no nodes left in the infectious state, whereas

SIS finishes when a relatively fixed number of nodes remains infected. For our first observation

related to the spreading models, it is straightforward that the cardinality of the set of nodes that

remain infected in the equilibrium phase of SIS, will be lower when compared to the cardinality
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of the recovered nodes in SIR (see Supplementary Figures C.12 and C.19). Regarding the biased

sampling performed towards the highest indexed nodes based on a centrality measure for SIR,

e.g., PCI in either N1, N2 or N3, we observe a significant increase in the number of influenced

nodes with respect to RND or the random selection from any neighborhood. This observation

can be explained by the paradox example, which as illustrated in Table 9.1 holds for majority of

the network nodes, for all centralities and all evaluated networks. For instance the centrality

paradox for CORE or PR, holds for more that 90% of the network nodes in Email-Enron or

Brightkite. Hence, there exists strong possibility that by selecting a close neighbor of RND, a

node possessing “richer” topological characteristics will emerge and thus potentially trigger a

stronger spreading process, i.e., influence a larger subset of the network nodes. Nonetheless there

are cases as illustrated in Figure 9.4 for the Email-Enron network, where for example RND-N1

or N2 coincide with DEG-N1 near the end of the propagation. For the SIR model we attribute

these occasions to network topology. This phenomenon is more evident for the SIS spreading

model (Figure 9.5 bottom row), where the performance of the RND methodologies and especially

of RND-N1 and RND-N2 is significantly enhanced, that is, the spreading power of RND-N1 or

RND-N2 is closer (or coincides) to that of DEG, PCI or CORE with respect to the illustrated

results for the SIR propagation at the later SIS steps. This observation holds for all evaluated

networks (see Supplementary Figures C.19 to C.25). It can be explained by the nature of the SIS

model −the exchange of node states from susceptible to infected and vice versa per spreading

step− and the fact that the selected nodes are relatively close neighbors. The cascade initiators

at the consensus will reach the same neighboring nodes that will preserve the “infection” in the

network and hence sustain a relatively fixed number of nodes in I state as the spreading steps

unfold.

Next, we will discuss the impact of selecting cascade initiators of the same centrality, but

at different hop distance from RND. The most significant differences can be found at the early

spreading steps for both SIR and SIS. Specifically it can be observed that for DEG, selecting N3

neighboring nodes yields for almost all networks the largest SP, closely followed by DEG-N2 with

the exception of CA-GrQc network where N2 takes the lead (see Supplementary Figure C.12). For

instance, when focusing on lets say the 4th spreading step of SIR we observe either a relatively

small increase in N3 with respect to N1, e.g., less than 10% as in Hamsterster network or a vast

increase in the number of influenced nodes as illustrated for the Brightkite or the CA-Astroph

networks of about 40%. Similar conclusion can be drawn for the SIS spreading model, where

likewise focusing on the 4th SIS step in Figure 9.5 (left column), we observe an increment in

SP for DEG-N3 when compared to N1 of about 15% for Email-Enron and about 45% for the

Brightkite network. A similar performance where N3 and N2 cascade initiators compete for the

first place and N1 for the third at the early propagation steps, is illustrated for BC, CC and PR

in the majority of the evaluated networks. CORE and ONION have similar performance, i.e.,

the obtained ranking between CORE-N1, CORE-N2 and CORE-N3 for all evaluated networks
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Figure 9.4: Influence maximization under the SIR spreading model for the Email-Enron and
Brightkite networks for the DEG, PCI and CORE centralities.

is similar to the that of ONION (see Supplementary Figures C.14 and C.15). In other words

when CORE-N2 influences more network nodes than CORE-N1 or CORE-N3, the same applies

for ONION respectively. PCI slightly deviates from the above observation. Focusing on RND,

although ”randomness” will play it’s role in the observed results and the spreading potential of

the respective initiators, it can be concluded that RND-N1 outperforms RND in all evaluated

networks for the SIR spreading model. On the other hand RND-N2’s performance varies with

respect to N1; coincides in CA-HepTh or Hamsterster networks, outperforms the competitor

in CA-AstroPh and CA-CondMat, or has lower SP in Email-Enron or Facebook networks (see

Supplementary Figure C.12). Finally, the performance of random initiators from N3 is closer to

RND, i.e., overall RND-N3 influences a smaller portion of network nodes than RND-N1 or N2.

The illustrated results so far suggest that performing a biased selection among the neighbor-

ing nodes of an initially random selected set accelerates the spreading process. Our choice for

the best policy in selecting important −by means of centrality− close neighbors would be DEG

or PCI which depend on local knowledge of the network topology and thus combine efficiency

and low computation cost. Among the neighboring sets, i.e., N1, N2 or N3, we propose the N2

set of nodes which showed similar performance to that of N3 (but with less computation cost),
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Figure 9.5: Influence maximization under the SIS spreading model for the Email-Enron and
Brightkite networks for the DEG, PCI and CORE centralities.

and was found superior to the N1 set of nodes. Overall, the paradox example favors the early

propagation steps in terms of spreading power, since within a node’s close proximity lie more

connected nodes (DEG), nodes that reside in more dense neighborhoods (PCI), etc., that is, nodes

that posses richer topological characteristics.

9.3.3.2 Blocking Evaluation

Figure 9.6 illustrates the results of BOMAN for the Email-Enron and Brightkite networks.

The fraction of nodes influenced when no protection (NP) policy is active is illustrated for each

network. The y-axis depicts the fraction of influenced nodes (SP) when BOMAN is active (with

a corresponding guardian set) with respect to the unprotected outcome of the propagation. The

dashed line in each plot shows the efficiency of BOMAN when RND is the set of guardian nodes.

Finally, the ”disbelief” factor will decrease λ by 0.2 when a guardian node exists within a node’s

ego-network. For our first observation, it can be concluded that the RND methodologies are the

least effective strategies for protecting the network nodes. Focusing on the centrality metrics

it can be observed that DEG-N1 illustrated it’s best performance in the Facebook network (see
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Supplementary Figure C.11) where it performs equally to DEG-N2, whereas in the remaining

networks DEG-N2 protected a larger subset of network nodes (see Figures 9.6, C.11). Similarly

to DEG, (PCI, BC, CC, PR)-N2 outperform their respective N1 guardians in the majority of the

illustrated results. This observation however, is less evident for CORE and ONION. Similar

conclusions can be drawn when comparing the set of blockers from N3 with that of N1, i.e., in the

majority of the illustrated results the outspread of misinformation is more efficiently hindered

with N3 guardians. When comparing the blocking capabilities between N3 and N2 guardians,

DEG-N3 is more efficient than DEG-N2 in the majority of the evaluated networks. Although

this observation holds also for PCI-N3, CC-N3, BC-N3 or PR-N3 respectively in several networks,

e.g., for CA-CondMat or PGP (Figure C.11), the competitors showed also cases of very close

performance or cases where, e.g., PCI-N2 is a more effective blocking set than PCI-N3 as shown

in Figure 9.6.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

RND
DEG

PCI
CORE

ONION

CC BC PR

NP: 7%

1 
- 

(S
P

 / 
N

P
)

Email-Enron − λ=0.02, Disbelief=0.2

N1
N2
N3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

RND
DEG

PCI
CORE

ONION

CC BC PR

NP: 4%

1 
- 

(S
P

 / 
N

P
)

Brightkite − λ=0.02, Disbelief=0.2

N1
N2
N3

Figure 9.6: Blocking the outspread of misinformation for the Email-Enron and Brightkite net-
works under the SIR propagation model for all centralities.

Overall, in consensus with our conclusions from the previous section, we strongly suggest

guardian nodes based on local knowledge of the network topology that combine efficiency and

minimum computational cost. Although in terms of spreading potential selecting random nodes

from N1 or N2 showed significant increase in SP with respect to RND, in terms of blocking

capabilities, we find minimum or no improvement. BOMAN showed that it can be an effective

mechanism to mitigate the outspread of ”undesired” data in networked populations by utilizing

the paradox example, and hence mining more central nodes −more efficient blockers− within

close proximity of an initially random selected set of nodes.

9.4 Discussion

Understanding dynamical processes in complex networks such as spreading processes to either

accelerate propagation or hinder the outspread of undesired “things”, is of paramount importance

that finds fertile ground in a plethora of applications. By considering different topological node

characteristics (by means of centrality), we empirically found that the friendship “paradox” holds
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for a set of very popular centrality measures, not necessarily correlated to node degree, while it

also holds for centrality measures that are not local, but recursive. Additionally, we show that

neighbor superiority holds not only for the direct (one hop) neighbors of a node, but also for more

distant (but close) neighbors. In other words we say: your close friends have more friends than you

(DEG), your close friends reside in more dense neighborhoods than you (PCI), your close friends

are closer to the network core than you (CORE), your close friends are part of more shortest paths

than you (BC), your close friends are closer to the remaining nodes than you (CC), your close

friends are pointed by more and more important nodes than you (PR).

Table 9.1: Fraction of nodes that the paradox holds at the individual level.
CA-Astroph CA-CondMat CA-GrQc CA-HepPh CA-HepTh PGP Hamsterster Facebook Brightkite Email-Enron

DEG 89.7 - 90.3 - 80.7 87.7 - 90.6 - 90.1 83.4 - 81.6 - 84.2 90 - 90.5 - 86.3 83.8 - 84.9 - 86.4 85.4 - 84.8 - 87.7 90.3 - 86.3 - 71.8 87.5 - 62.9 - 69.2 95 - 96.3 - 91.5 97.4 - 94.9 - 87.4
PCI 86.7 - 86.9 - 77.9 81.8 - 86.2 - 87.3 70.2 - 78.6 - 82.5 85.7 - 89.6 - 85.8 75.3 - 81.6 - 84.7 69.4 - 81.2 - 84.7 83.6 - 82 - 66.5 78.2 - 59.2 - 64.5 89.8 - 94.5 - 89.8 93.4 - 92.5 - 85.5
CORE 81.3 - 82.6 - 75.4 73 - 78.3 - 81.4 61.1 - 72.4 - 81.1 83.8 - 89 - 85.9 64.6 - 72.7 - 77.7 60.2 - 74.5 - 80.9 75.4 - 75.1 - 62.9 70.6 - 56.4 - 64 85.8 - 91.6 - 87.9 90.1 - 90.5 - 84.4
ONION83.8 - 83.4 - 77 79.2 - 79.3 - 81.5 71.7 - 71.9 - 75.2 84.3 - 84.8 - 81.1 75.2 - 76.8 - 80.1 77.3 - 77.4 - 80.8 80.2 - 77.8 - 63.2 70 - 56.6 - 59.7 91.3 - 92.4 - 88.3 94 - 89.6 - 83.1
CC 82.4 - 87.1 - 76.5 80.5 - 88.2 - 86.8 78.9 - 83.7 - 85.3 82.2 - 89.2 - 82.5 77.3 - 84.7 - 86.4 80 - 87.4 - 87.7 82.8 - 83.3 - 63.2 91.5 - 85.5 - 72.7 88.5 - 93.8 - 87.4 93.4 - 90.9 - 78.8
BC 91.5 - 92.1 - 85.1 91.2 - 94.7 - 93.1 87.3 - 90.7 - 90.4 90.3 - 91.9 - 87.9 87.8 - 91 - 90.8 89.2 - 93.6 - 94.7 92.7 - 89.9 - 79.5 99.2 - 98.2 - 96.2 96.3 - 98.3 - 93.8 98.6 - 97.7 - 92.5
PR 87.2 - 88.8 - 80.1 86.3 - 88.5 - 88.2 82.6 - 80.4 - 83.3 86.2 - 87.5 - 82.7 82.6 - 83.4 - 84.9 84.9 - 83 - 85.8 89.9 - 86 - 72.5 89.6 - 59.9 - 70.1 93.9 - 96 - 91.1 97.4 - 94.9 - 87.6
- - - - - - - - - - -
SIR 70 - 76.4 - 76.5 67 - 75.4 - 77.8 62.5 - 72.6 - 85.5 66.9 - 81.6 - 86 63.9 - 74.4 - 77.3 68.2 - 76 - 85.8 87.7 - 85.6 - 70.2 69.9 - 70.3 - 67.7 70.6 - 86.9 - 88 76.6 - 83.7 - 83.8
SIS 84.6 - 88.6 - 80.5 65.2 - 74.2 - 76.5 35.8 - 55.5 - 73.7 76.4 - 89.6 - 87.7 64.8 - 74.3 - 77.2 53.2 - 68.9 - 80.1 87.5 - 85.4 - 69.8 73.5 - 62.1 - 70.5 61.9 - 84.4 - 86.9 93.2 - 92.6 - 85.7

Furthermore by differentiating our study from methodologies based on counting links incident

upon the network nodes, we introduced the influential spreaders paradox by considering the

spreading power of nodes (SP), i.e., influence, under the well established SIR and SIS spreading

models. We thus embrace the probabilistic nature of the spreading paths embedded by the

propagation models, and empirically show that indeed: your close friends are more influential

than you. This conclusion applies strongly when SP quantifies the ability of the network nodes

to infiltrate the networked environment, i.e., the SIR spreading model. For SIS, the subset of

nodes that remain influenced throughout the spreading steps was found relatively steady and

independent from the centrality measure (or neighborhood) used for selecting nodes from RND.

Complete (or accurate) knowledge of network topology on large-scale networks can be a very

challenging and demanding task due to possible privacy constraints, in dynamically changing

networks, when networks are processed in a streaming fashion, or for applications that need

to meet time constraints, etc. Hence, mining more “central” nodes based on local information

becomes increasingly important. We has show the effectiveness

Given the fact that the paradox holds for all evaluated centrality measures we empirically

show that indeed selecting nodes within the near neighborhood of a randomly selected set reveals

more central nodes. In terms of influence,

9.5 Materials and Methods

9.5.1 Data description

Ten real complex networks are studied in the paper. The network datasets are publicly available

by the Stanford University [65] and by the University of Koblenz-Landau [8]. For those networks
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comprised of multiple connected components only the largest component is considered.

Table 9.2: Characteristics of examined complex networks. Apart from the number of nodes and
edges, the table also depicts the epidemic threshold (ε), the average degree (k), and the type of
the network.

Network Nodes Edges ε (%) λ 〈k〉 D (90%) A Type
CA-Astroph 17903 196972 1.5 0.02 22 14 (5) 0.201 Co-Authorship
CA-CondMat 21363 91286 4.4 0.05 8.5 14 (6.5) 0.127 Co-Authorship
Ca-HepPh 11204 117619 1 0.02 21 13 (5.8) 0.629 Co-Authorship
Ca-HepTh 8638 24806 7.7 0.08 5.7 17 (7.4) 0.239 Co-Authorship
Email-Enron 33696 180811 1 0.02 10.7 11 (4.8) -0.116 Email
Brightkite 56739 212944 1.5 0.02 7.5 18 (5.7) 0.009 Social
Facebook 4039 88234 1 0.02 43.6 8 (4.7) 0.063 Social
Hamsterster 2000 16097 2.2 0.03 16 10 (4.8) 0.022 Social
PGP 10680 24316 5.3 0.06 4.5 24 (10) 0.238 Interaction
CA-GrQc 4158 13422 5.5 0.06 6.4 17 (7.6) 0.639 Co-Authorship

9.5.2 Individual and network level property

Suppose that the value of a measured feature (e.g., some centrality measure, or influential power)

of a node i in a network with n nodes is vi, and that the set of its neighbors (being either 1-hop

neighbors thus a = 1, or 2-hop neighbors thus a = 2, or 3-hop neighbors thus a = 3) is denoted

as Na(i). We would say that the paradox holds at the individual level of node i if the following

condition holds true:

(9.1) vi < 1
|Na(i)|

∑
∀ j∈Na(i)

v j.

On the other hand, we would say that the paradox holds at the network level if the following

condition holds true:

(9.2) 〈v〉 = 1
n

∑
∀i

vi < 〈v〉nn =

∑
∀i

|Na(i)|×vi∑
∀i

|Na(i)|
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Figure 9.7: Evaluation of the centrality paradox at the individual level for the Enron network.
Each line of plots corresponds to one centrality measure, namely DEG, PCI, CORE, PR and BC
(the rest are given in the Supplement). Each column of plots corresponds to one neighborhood,
namely the leftmost column is for 1-hop neighbors, the middle column of plots is about 2-hop
neighbors, and the rightmost column of plots is about 3-hop neighbors. The x-axis in each plot
depicts the size (in number of nodes) of the respective neighborhood, and the y-axis depicts
centrality values. The heat values in the palette depict the centrality paradox holding probability.
We observe that for a fixed neighborhood size, the centrality paradox holding probability decreases
with increasing centrality value, for any centrality measure, and for all close neighborhoods. For
some centralities, namely PR and BC this behavior is strictly ‘binary’, i.e., the centrality paradox
either holds or not, no matter what the size of the neighborhood is. This binary behavior for all
centralities is prevalent in N2 and even more prevalent in N3.
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HADOOP MAPREDUCE PERFORMANCE ON SSDS

Hadoop MapReduce performance on SSDs for analyzing social networks

10.1 Introduction

In this final chapter we investigate on the performance gain introduced in the Hadoop environ-

ment by utilizing solid state discs (SSDs) for analyzing computational intensive properties of

social network, e.g., discovery of communities, spreading paths and connected components, etc.

Modern social networks are comprised by millions of nodes and even billions of edges; therefore

any algorithm for their analysis that relies on a single machine (centralized) - exploiting solely

the machine’s main memory and/or its disk - is eventually doomed to fail due to lack of resources.

Thus, the digitization of the aforementioned relationships produces a vast amount of collected

data, i.e., big data [55] requiring extreme processing power that only distributed computing

can offer. However, developing a distributed solution is a challenging task because it must deal

sometimes with sequential processes. Some analysis algorithms based on distributed solutions

that can run only on a small cluster of machines are still insufficient, since modern OSNs are

maintained by Internet giants such as Google, LinkedIn and Facebook who own huge datacenters

Related publication [J2]: Marios Bakratsas, Pavlos Basaras, Dimitrios Katsaros, Leandros Tassiulas. Hadoop
MapReduce performance on SSDs for analyzing social networks, Big Data Research (Elsevier), accepted, June,
2017.

Related publication [C1]: Marios Bakratsas, Pavlos Basaras, Dimitrios Katsaros, Leandros Tassiulas. Hadoop
MapReduce performance on SSDs: The case of complex network analysis tasks, Proceedings of the 2nd Neural
Network Society International Conference on BigData (INNS BigData), chapter in Advances in Big Data,
series in Advances in Intelligent Systems and Computing, vol. 529, pp. 111-119, Thessaloniki, Greece, October 23-25,
2016.
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and operate clusters of several thousand machines. These clusters are usually programmed by

data-parallel frameworks of the MapReduce type [179], a big data analytics platform.

The Hadoop [47] middleware was designed to solve problems where the “same, repeated

processing” had to be applied to peta-scale volumes of data. Hadoop’s initial design was based on

magnetic disk’s characteristics, enforcing sequential read and write operations introducing its

own distributed file system (HDFS - Hadoop Distributed File System) with blocks of large size.

Recently with the advent of faster Solid State Drives (SSDs) research is emerging to test and

possibly to exploit the potential of the new technologically advanced drive [14], [59], [60], [68].

The lack of seek overhead gives them a significant advantage with respect to Hard Disk Drives

(HDDs) for workloads whose processing requires random access instead of sequential access.

Even though the cost-per-capacity of SSDs is still high, their adoption could be widespread if

their performance was solidly proved to be superior to that of HDDs. The world of databases

has long time ago started [161] to assess the benefits of using SSDs in various points of the

database architecture, but the Hadoop world has only recently [60], [68], [92], [104] started a

similar investigation.

Providing a clear answer to the question of whether SSDs significantly outperform or offer

increased performance in same cases compared to HDDs in the Hadoop environment is not

straightforward, because the results of a system-analysis-based investigation are affected by

the network speed and topology, by the cluster (size, architecture,...), and by the nature of the

benchmarks used (MapReduce algorithms, input data). The efforts done so far to provide light to

this question suffer either because the experimentation was executed on a virtualized cluster [92],

or because their setup was affected by the underlying network [68], or because their benchmark

algorithms and data were mostly read-oriented [60], [68], thus biasing the results in such a way

that no clear answer and universally holding conclusions could be drawn.

This article attempts to start the investigation from a new basis and to provide a clear

answer to the following basic question: Ignoring any network biases and storage media cost

considerations, do SSDs provide improved performance over HDDs for real workloads that are not

dominated by either reads or writes? In this context, our article makes the following contributions:

• It uses a different set of MapReduce jobs, i.e., complex network analysis tasks, which have

radically different characteristics from the earlier used benchmarks.

• It isolates “external” dependencies, i.e., network, cost considerations.

• It shows that there exists at least one case where HDDs can deliver superior performance

to SSDs, which has not been documented in any earlier study.

• It provides solid evidence that the MapReduce job’s read/write behavior will eventually

provide the answer of whether SSDs are preferable over HDDs, which is consistent with

the conclusions reported in [117] where random writes in SSDs are the “killing” application

pattern for SSDs (with respect to reads and sequential writes).
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10.2. RELATED WORK

The rest of the article is organized as follows: In section 10.2 we present the related work, and

in section 10.3 we briefly describe Hadoop’s structure. In section 10.4, we provide information

about the three algorithms that will be evaluated in the storage media. Section 10.5 contains the

evaluation results, and finally, section 10.6 concludes the article.

This paper is based on an earlier look on this topic [9]. In particular, the main augmentation

parts in the current paper are the following ones: section 10.2 has been expanded significantly

including more related works; section 10.3 which gives a brief overview of Hadoop architecture;

the whole section 10.4 which presents in details the examined algorithms is practically new

material (only Table 10.1 appears in the conference version of the article); section 10.5.3.1 which

evaluates the competing disks against an industry standard is new material; and finally, perfor-

mance results presented in Figure 10.7 and Figure 10.8 along with the associated explanations

are also new material.

10.2 Related work

Introducing and investigating the usage of SSDs in Hadoop clusters has been a hot issue of

discussion very recently. The most relevant work to ours is included in the following articles [60],

[68], [71], [92], [104]. The first effort [92] to study the impact of SSDs on Hadoop was on a

virtualized cluster (multiple Hadoop nodes on a single physical machine) and showed up to

three times improved performance of SSDs versus HDDs. However, it remains unclear whether

the conclusions still hold in non-virtualized environments. The work in [68] compared Hadoop

performance on SSDs and HDDs on hardware with non-uniform bandwidth and cost using

the Terasort benchmark. The major finding is that SSDs can accelerate the shuffle phase of

MapReduce. However, this work is confined by the very limited type of application/workload used

to make the investigation and the intervention of data transfers across the network. Cloudera’s

employees in [60], using a set of same-rack-mounted machines (not reporting how many of them),

focus on measuring the relative performance of SSDs and HDDs for equal-bandwidth storage

media. The MapReduce jobs they used are either read-heavy (Teravalidate, Teraread, WordCount)

or network-heavy (Teragen, HDFS data write), and the Terasort which is read/write/shuffle

“neutral”. Thus, neither the processing pattern is mixed nor the network effects are neutral. Their

findings showed SSD has higher performance compared to HDD, but the benefits vary depending

on the MapReduce job involved, which is exactly where the present study aims at.

The analysis performed in [71] using Intel’s HiBench benchmark [125], [137] concluded

that “...the performance of SSD and HDD is nearly the same”, which contradicts all previously

mentioned works. A study of both pure (only with HDDs or only with SSDs) and hybrid systems

(combined SSDs and HDDs) is reported in [104] using a five node cluster and the HiBench

benchmark. Differently from the present work, in that work, the authors investigated the impact

of HDFS’s block size, memory buffers, and input data volume on execution time showing that
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when the input data set size and/or the block size increases, then the performance gap between

a pure SSD system with a pure HDD system widens in favor of the SSD system. Moreover, for

hybrid systems, the work showed that more SSDs result in better performance. These conclusions

are again expected since voluminous data imply increased network usage among nodes.

Earlier work [114], [145] studied the impact of interconnection on Hadoop performance

in SSDs identifying bandwidth as a potential bottleneck. The increase of bandwidth by using

high-performance interconnects benefits HDFS performance on both disk types, but especially

SSDs. Both conclusions are expected since a lot of data transfer takes place among nodes in

map-shuffle-reduce operations. Less related to our study, [26] proposes a performance model

using queuing network to simulate the execution time of MapReduce and thus come up with a

cost-performance model for SSDs and HDDs in Hadoop, and [19], [40] explore how to optimize a

Hadoop MapReduce framework with SSDs in terms of performance, and/or cost/energy.

Finally, some works propose extensions to Hadoop with SSDs. For instance, [59] proposes

extensions to enable clusters of reconfigurable active SSDs to process streaming data from SSDs

using FPGAs. VENU [63] is a proposal for an extension to Hadoop that will use SSDs as a cache

for the slower HDDs not for all data, but only for those that are expected to benefit from the

use of SSDs. This work still leaves open the question about how to tell which applications are

going to benefit from the performance characteristics of SSDs. Remotely related to our work is

the discussion about the introduction of SSDs in database systems, e.g., [161].

10.3 Hadoop structure

Hadoop is an open source framework, written in the Java programming language which allows

for processing large data sets in a parallel/distributed computing environment. HDFS and

MapReduce (MR) are the two core components of Apache Hadoop.

HDFS is Hadoop’s distributed file system that provides high-throughput access to data, high-

availability and fault tolerance. Data are saved as large blocks (default size 128MB) making it

suitable for applications that have huge data sets. It creates replicas of each block and distributes

them among the nodes of the cluster.

MapReduce is a software framework that allows to write applications and execute them upon

a cluster comprised by a few machines to several thousand commodity machines. It takes care of

all cluster maintenance tasks and job scheduling operations and allows the programmer to focus

on programming the logic of the application. Submitting a MapReduce job to the master node,

results in splitting the input “file” to several chunks (block sized) that are processed by Map and

Reduce tasks at parallel. Due to block replication of HDFS, tasks are scheduled to run on nodes

where the required chunks of data already exist, minimizing unnecessary transfer of these data.

The key functions to be implemented are Map and Reduce. The MapReduce framework oper-

ates on (key,value) pairs. Each Map task processes an input split (block) generating intermediate
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data of (key,value) format. Then, they are sorted and partitioned by key, so later at Reduce phase,

pairs of the same key will be aggregated to the same reducer for further processing. The flow of

data is depicted in Figure 10.1. Here lays Hadoop’s main advantage. Partitions from different

nodes with the same key are transferred (shuffle phase) to a single node and then merged (sort

phase) and get ready to be fed to the reduce task. The output of Reduce tasks is of format (key,

value) as well.

Figure 10.1: Overview of Map/Reduce and Hadoop (from [47]).

10.4 Investigated algorithms

Complex network analysis comprises a large set of diverse tasks (algorithms for finding commu-

nities, centralities, network growth models, resilience to attacks, epidemics, etc) that cannot be

enumerated here, and whose particular form depends on the field of study (technology, biology,

sociometry, medicine) and also on the particular application that the “human miner” is interested

in. Apparently, not all these tasks accept distributed solutions (at least, efficient ones) in the form

of MapReduce algorithms, but there is already a significant body of works that developed MapRe-

duce algorithms for solving problems such as triangle enumeration [62], k-shell computation [69],

k-means clustering [157], neural networks [76], etc.

Therefore, among all these problems and their associated MapReduce solutions, we had to

select some of them based on a) their usefulness in complex network analysis tasks, b) in their

suitability to the MapReduce programming paradigm, c) the availability of their implementa-

tions (free/open code) for purposes of reproducibility of measurements, and d) complexity in

terms of multiple rounds of map-reduce operations. Based on these criteria, we selected three

problems/algorithms for running our experimentations. The first algorithm deals with a very

simple problem which is at the same time a fundamental operation in Facebook , that of find-

ing mutual friends. The second algorithm deals with a network-wide path-based analysis for
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finding connected components which finds applications in reachability queries, techniques for

testing network robustness and resilience to attacks, epidemics, etc. The third algorithm is about

counting triangles which is a fundamental operation for higher level tasks such as calculating

the clustering coefficient, or executing community finding algorithms based on clique percolation

concepts [176]. We wanted to have problems that deal with both the local and global structure of

the network. Table 10.1 summarizes the “identity” of the examined tasks.

Primitive Type of analysis Extent
Mutual Neighbor-based Local network (neighborhood) properties
friends Recommendation queries
Connected Path-based Large-scale network properties,
components Reachability queries, Resilience queries
Triangle Mixed (extended Large-scale network properties,
counting neighborhood & paths) Clustering/communities finding queries

Table 10.1: Characterization of problems/algorithms examined.

We need to emphasize that it is not the purpose of this article to develop a benchmark suite

of algorithms and input data for MapReduce, even though we clearly recognize this need and

call for the development of a really generic and representative benchmark; current efforts in this

topic (like the Hibench [125], [137]) are in a rather infantile age and their tasks (wordCount, k-

means clustering, Bayesian classification, PageRank, etc) are mostly appropriate for information

retrieval or basic, traditional data mining tasks. So, our benchmark includes representative

(in the notion described above) MapReduce jobs to cover common IO patterns expected to be

seen in complex network analysis. We deferred a more advanced method for measuring the

performance for multi-job workload such as the one described in [124], because the standalone,

one-job-at-the-time method allows for the examination of interaction between MapReduce and

storage media without the interventions of job scheduling and task placement algorithms.

We aim at showing that the conclusions about the relative performance of SSDs versus

HDDs are strongly depended on the features of the algorithms examined, which has largely been

neglected in earlier relative studies [60], [68], [92], and based on these features we draw some

conclusions on the relative benefits of SSDs. For purposes of the article’s self-completeness, we

present in the following three sections the selected algorithms and a brief explanation of their

operation.

10.4.1 Mutual friends

A common feature of various social networks is providing information of the existence of mutual

friends once visiting some other user’s profile page. A simple algorithm was implemented for the

calculation of mutual friends. The necessary condition is that this pair of users are already friends

(connected) with each other. Pseudocode for the MapReduce algorithm is given in Figure 10.2.

154

Institutional Repository - Library & Information Centre - University of Thessaly
06/06/2020 00:05:55 EEST - 137.108.70.13



10.4. INVESTIGATED ALGORITHMS

%1st MR job - CalculateAdjacencyList:
ON MAP DO:
for each KV pair do:

K<-source_node
V<-destination_node
context.write (K,V)
context.write (V,K)

ON REDUCE DO:
for each K[V] pair do:

ego_user<-get(k)
for each v in V

add v to nodes_list
sort the nodes_list
for each node_id in nodes_list

append node_id to friendlist
context.write (ego_user,friendlist)

%2nd MR job - Creating triples:
ON MAP DO:
for each KV pair do:

K<-ego_user
V<-friendlist
for each friend in friendlist

for each other_friend in friendlist
if ego_user<friend then

context.write (ego_user-friend:other_friend , NULL)
else

context.write (friend-ego_user:other_friend , NULL)
ON REDUCE DO:
for each KV pair do:

if |V|==2 then
context.write (triple,NULL)

%3rd MR job
ON MAP DO:
for each KV pair do:

pair_and_mutual=K.split(":")
pair=pair_and_mutual(0)
mutual=pair_and_mutual(1)
context.write (pair,mutual)

ON REDUCE DO:
for each KV pair do:

pair<-get(K)
for each v in V

v<-mutual
mutuals_list.add(mutual)

context.write (pair,mutuals_list)

Figure 10.2: MapReduce pseudo-code for finding mutual friends.

The basic idea behind the algorithm is for every user (i.e., node) and his friend-list (i.e.,

adjacency list) to create all possible triples consisting of:

• The owner of the friend-list,

• A user of the friend-list who will make a pair with the owner, and

• Another user of the friend-list who will be the candidate mutual friend.

The same work is performed for each and every user and his friend-list. Eventually, if two

exact triples are spotted, then the candidate is classified as a mutual friend for the specified pair.

For the implementation three MR jobs are required:

1. Calculation of the adjacency list (friend-list). The input file is a graph containing all

the ties among the nodes. Each node is a number unique for each user. All used social
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network datasets, were un-weighted, undirected graphs. Each line consists of a source node

and destination node. Duplicate relationships aren’t present in the original files. On the

contrary, such supplementary information is necessary for the creation of adjacency lists,

thus created by the Map function. Reduce function produces lines of every node and its

adjacency list.

2. Creation of all available triples according to the basic concept that was mentioned previously.

The Mapper output creates all available triples as key. Value is set to NULL. At Reducer,

for a specific Key aggregating two NULL values, confirms the existence of a mutual friend.

3. Creation of the lists of mutual friends. At the Mapper, from each triple the pair is extracted

as Key and their mutual as Value. The Reducer completes the creation of mutual friends

list for every pair.

10.4.2 Connected components

Another very useful and primitive process of complex network analysis is the detection of

connected components i.e., clusters of nodes where every node of the cluster can be eventually be

accessed by any other node of the cluster following a path of arbitrary number of hops. This task

finds applications in reachability analysis, in epidemics, i.e., once isolated users or groups are

found, the spread of a contagion can be stopped, etc.

For this task, the implementation by Thomas Jungblut [6] of an iterative algorithm based on

message passing technique is used (see Figure 10.3).

At the first iteration, the algorithm maps every first element as key and its adjacency list in

vertex form as a pointsTo tree. Also, it maps each edge of the tree in vertex form. At reduce, the

algorithm marks all vertexes having a pointsTo tree as activated. It sets the smallest element

of this list (comparing to the key as well), as vertex’s minimal. Then, it writes key and vertex

in context. At next iterations, map writes each key and vertex as it is. Also for every activated

vertex, it loops through the pointsTo tree and writes a message (vertex with empty tree) with

the (for this vertex) minimal vertex to every edge of the tree. At reduce, it merges messages

with the related vertex and if a new minimum is found then activates the vertex. The updated

counter gets incremented. Otherwise deactivates the vertex. Iterations continue till no vertex

gets updated.

10.4.3 Counting triangles

Counting the number of triangles in a graph is a fundamental problem with various applications

especially in social network analysis. For example, the clustering coefficient is frequently quoted

as an important index for measuring the concentration of clusters in graphs respectively its

tendency to decompose into communities.
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%1st MR job
ON MAP DO:
for each line (adjacency list)

realkey<-first edge of adjacency list
vertex<-all other edges sorted, plus minimal
context.write (realkey, vertex)

for all edges in vertex
context.write (edge, new empty vertex with edge as minimal)

ON REDUCE DO:
for each KV pair do:

if V is not message then
realVertex<-edges of V
activate realVertex
increment UPDATED counter
context.write(key,realVertex)

%2nd MR job
ON MAP DO:
for each KV pair do:

context.write (K,V)
if V is activated then

for all edges in V
if edge != minimal of V

newVertex<-null edges
newVertex<-minimal of V
context.write (edge, newVertex)

ON REDUCE DO:
for each K[V] pair do:

for every v in V
if v is not message then

realVertex<-v
else

track newMinimal among messages v in V
if realVertex.minimal > newMinimal then

update realVertex with the lower newMinimal
activate the realVertex
increment UPDATED counter

else
deactivate the realVertex

context.write(key, realVertex)

Figure 10.3: MapReduce pseudo-code for finding connected components.

We used the implementation by Walkauskas [7] (pseudo-code in Figure 10.4) which includes

three MapReduce jobs:

• A triangle exists when a vertex has two adjacent vertexes that are also adjacent to each

other. The first job constructs all of the triads in the graph. A triad is formed by a pair of

edges sharing a vertex, called its apex. Original edges are written, as well. The above are

written as keys with the value of 1 or 0 respectively to distinguish triads from original

edges.

• The second MapReduce job maps previous input line, and the Reducer aggregates the triads

with the edges for a specific triple. In order for a triangle to exist, there should be at least

one candidate triad and the edge connecting the apex. The reducer eventually writes sum

to context as “0, sum”.

• The third MapReduce job aggregates the number of triangles that was found from previous

job for all chunks.
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%1st MR job - TriadConstruction:
ON MAP DO:
for each KV pair do:

if K < V write to context

ON REDUCE DO:
for each K[V] pair do:

for each v in V
save v in Array
context.write (Kv, "zero")

sort the Array
for each v of sorted Array

for each v' following v in the Array
context.write (vv', "one")

%2nd MR job - TriadConstruction:
ON MAP DO:
for each KV pair do:

K<-source_node
V<-destination_node
context.write (K,V)

ON REDUCE DO:
for each K[V] pair do:

sum all v values in V
compare the sum to the #v in V
if not equal

increase #triangles found by sum
context.write(zero, count)

%3rd MR job - AggregateTriangles:
ON MAP DO:
for each KV pair do:

K<-source_node
V<-destination_node
context.write (K,V)

ON REDUCE DO:
for each K[V] pair (only one pair with "zero" key) do:

sum all v in V
context.write (sum, null)

Figure 10.4: MapReduce pseudo-code for triangle counting.

We see that all three algorithms are executed in two or more pairs of ‘maps’ and ‘reduces’

which is a desired complexity for our measurements in terms of read and write operations.

10.5 Experimental environment and results

In this section we describe the system’s setup and then we provide the obtained results for each

one of the three algorithms presented earlier.

10.5.1 System setup

A commodity computer (Table 10.2) was used for the experiments. Three storage media were used

(Table II) with capacities similar to that used in [68]. On each of the three drives (one HDD and

two SSDs) a separate and identical installation of the required software (Table 10.3) was used.

We emphasize at this point that since we need to factor out the network effects, we used single

machine installations. Three different incremental setting setups were used: a) with default

settings, allowing 6 parallel maps, b) with modified containers allowing 3 parallel maps, and c)
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with custom settings (Table 10.4). In all these setups, speculative execution was disabled and no

early shuffling was permitted. We admit the a shortcoming of our study is the fact that we do not

have a clear view of the types of storage devices used in the datacenters of the Internet giants

(Google, Facebook), but still we are confident that the relative performance of the devices used

will support our arguments. Power saving options and boosting technologies like Turbo-boost and

IEST were disabled through BIOS to minimize unexpected fluctuations among executions.

CPU Intel i5 4670 3.4Ghz (non HT)
RAM 8gb 1600mhz DDR3 (1333mhz with disabled XMP)
Disk 1 (HDD) Western Digital Blue WD10EZEX 1TB
Disk 2 (SSD1) Samsung 840 EVO 120GB
Disk 3 (SSD2) Crucial MX100 512GB

Table 10.2: Computer specifications.

OS Ubuntu 14.04 LTS 64bit
Java SDK Oracle Java 1.8.0_25 (8u25)
Hadoop version Hadoop 2.5.2 (pre-built 32-bit i386-Linux native Hadoop library)
Monitoring tools Collectl V3.6.9-1

Table 10.3: Installed software.

mapreduce.reduce.shuffle.parallel.copies 5 – 50
mapreduce.task.io.sort.factor 10 – 100
mapreduce.map.sort.spill.percent 0.80 – 0.90
io.file.buffer.size 4KB – 64KB

Table 10.4: Custom settings.

10.5.2 Input data and performance measures

For the evaluation of the two disk types a sample of real data was required. Recall that earlier

efforts e.g., [68] used dummy data files that were read and some primitive statistics were written

out. Social networks is a representative sub-genre of complex networks. Thus up to ten real social

network graphs were used (Table 10.5). They were retrieved from https://snap.stanford.edu/ and

http://konect.uni-koblenz.de/. The number of nodes and edges vary from a few thousands to a few

millions. Thus, we used networks that vary up to two orders of magnitude in their size (number

of nodes and/or edges).

The evaluation will take place along two dimensions. The first one is similar to that in [68]

using TestDFSIO and the second one is the complex network analysis-oriented that is the focus

of this article. We have performed up to five experiments for each of the “Mutual Friends” and
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Social network # nodes # edges
1 Brightkite location based online social network 58,228 214,078
2 Gowalla location based online social network 196,591 950,327
3 Amazon product co-purchasing network 334,863 925,872
4 DBLP collaboration network 317,080 1,049,866
5 YouTube online social network 1,134,890 2,987,624
6 YouTube (ver. 2) online social network 3,223,589 9,375,374
7 Flickr 1,715,255 15,550,782
8 LiveJournal online social network 3,997,962 34,681,189
9 LiveJournal (ver. 2) online social network 5,204,176 49,174,620
10 Orkut online social network 3,072,441 117,185,083

Table 10.5: Social networks used for evaluation.

“Counting Triangles” algorithms and up to ten experiments for the “Connected Components”,

one for each dataset shown at Table 10.5. The latter algorithm acquired less disk space during

execution allowing us to evaluate it with larger datasets. The two SSDs were of different size

disallowing the execution of some datasets. The most important measures we captured were the

Map and Reduce execution times, as also Sort (merge) and Shuffle phase All measured times

are in seconds, unless otherwise stated. The aforementioned measures would indicate practical

performance differentiations between the two disk types. One common side effect is “cache hits”

from previous executions that was also experienced in [68]. In order to give each experiment

an equal environment to eliminate any possible interaction effects from previous executions,

Hadoop was halted and page cache was flushed, after each experiment. Before each test HDFS

was re-formatted.

10.5.3 Results

10.5.3.1 TestDFSIO

We begin with the HDFS throughput measurement. Test Distributed File System (TestDFSIO) is

an industry-standard benchmark which distributes map tasks that read/write complete dummy

files on nodes; each map task reads the complete file and writes some statistics. Reduce tasks

simply gather these statistics for output.

The write throughput performance is presented in Figure 10.5. We observe that for writing

sequential files, with the increase of filesize, SSD1’s performance is decreasing, falling behind

the HDD. Contrariwise, the SSD2 appears much faster with stable throughput. The 120GB Evo,

features a second level TurboWrite Cache (TWC). This 3GB block of high speed SLC memory

allows the EVO to write data (nominally) at 370 MB/s, nearly double its normal rate. However,

when the TWC is full or can not be used effectively, write speeds drop by around 50%, and this is

the pattern that we observe in the plot.

The sequential read performance of the competitors is presented in Figure 10.6. As expected,
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Figure 10.5: Comparing TestDFSIO write throughput for 3 disks.

both SSDs’s sequential read throughput is outstanding. Moreover, both SSDs attain a read

performance close to that given by their specifications, namely 540MB/s for SSD1 and 550MB/s

for SSD2, and it is practically stable and independent on file size. On the other hand, the magnetic

disk again demonstrates stable performance, although noticeably slower than that of the SSDs.
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Figure 10.6: Comparing TestDFSIO read throughput for 3 disks.

10.5.3.2 Results on finding mutual friends

The complexity of this algorithm is exponential due to the mapper of the 2nd MapReduce job

(“creating triple” - as described at section 10.4.1) where for each user and his friend-list every

possible triple is formed (double “for” used). Thus, the 2nd MapReduce job is the most resource-

intensive of the three jobs, rendering it a good inspection point for our measures (see Table 10.6),

whereas the 1st and 3rd MapReduce jobs were fast-executed and almost identical for all disks.

For Amazon, Brightkite and DBLP, the three disks performed almost equally. Remarkably, in
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comparison with both SSD drives, the magnetic disk gives competitive (and slightly better)

execution times for reduce phase for bigger datasets, whereas HDD performs lower for map phase.

The SSD2 displays superior performance at shuffling.

Avg Map Avg Shuffle Avg Merge Avg Reduce
HDD SSD1SSD2 HDDSSD1SSD2 HDDSSD1SSD2 HDDSSD1SSD2

Brightkite 52 52 52 1 1 1 0 0 0 11 10 10
Amazon 36 35 35 2 1 1 0 0 0 8 7 8
Gowalla 1780 1752 1593 120 103 42 0 0 0 178 195 194
DBLP 90 89 89 5 2 3 0 0 0 16 17 17
YouTube 11197 - 9708 812 - 258 0 - 0 916 - 984

Table 10.6: Average times for each phase for 2nd job (creating triples) of “mutual friends” algo-
rithm.

10.5.3.3 Results on counting triangles

Here, the SSDs outperform the HDD for all the datasets that were tested. At “forming the triads”

job, HDD appeared competitive behavior at map and reduce phases (Table 10.7). The “counting

the triangles” job demonstrated greater variations in execution times. With small datasets the

performance differentiations between the two disk types are small (Table 10.8). But with larger

ones (like YouTube dataset), SSDs capabilities become evident for shuffle and merge (sort) phases.

Avg Map Avg Shuffle Avg Merge Avg Reduce
HDD SSD2 HDD SSD2 HDD SSD2 HDD SSD2

Gowalla 2 2 1 1 0 0 142 140
YouTube 6 6 1 1 0 0 706 694
Flickr 13 13 1 1 0 0 5053 5125

Table 10.7: Average times for each phase for 1st job (forming triads) of “counting triangles”
algorithm.

Avg Map Avg Shuffle Avg Merge Avg Reduce
HDDSSD1SSD2 HDDSSD1SSD2 HDDSSD1SSD2 HDDSSD1SSD2

Brightkite 18 18 18 1 1 1 0 0 0 4 4 3
Amazon 9 9 9 1 1 1 0 0 0 2 2 2
Gowalla 38 39 38 52 62 21 79 86 70 106 106 110
DBLP 14 14 14 1 1 1 0 0 0 7 5 5
YouTube 42 - 41 655 - 141 820 - 668 689 - 551

Table 10.8: Average times for each phase for 2nd job (counting triangles) of “counting triangles”
algorithm.
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For the 1st MR job (creating triads), map, shuffle and merge phases finished quite fast and

with almost zero differentiations among disks. Reduce phase lasted significantly longer with both

disks performing equally (Table 10.6). With containers settings, the biggest dataset of Flickr gets

significant improvement for both disk types (Table 10.9). No further improvement achieved with

custom settings.

Avg Map Avg Shuffle Avg Merge Avg Reduce
HDD SSD2 HDD SSD2 HDD SSD2 HDD SSD2

Gowalla 2 2 1 1 0 0 141 138
YouTube 6 6 1 1 1 1 697 707
Flickr 13 13 1 1 6 6 4163 4140

Table 10.9: Average times for each phase for 1st job (create triads) of “counting triangles” algo-
rithm, with changed container’s settings.

To optimize performance, increasing the following settings provided best results for the

magnetic disk, compared to “containers” settings:

a) The number of streams to merge at once while sorting files.

We see (Table 10.10 and Table 10.11) that it minimizes merge time for both disk types, but

it improves the shuffling time of the HDD only. Even though both disks are able to reap

benefits from this settings, HDD gains the most.

[HDD] just containers and varying io.sort.factor
Elapsed Avg MapAvg ShuffleAvg MergeAvg Reduce

io.sort.factor:10 52mins, 43sec 25 565 596 720
io.sort.factor:100 40mins, 26sec 25 471 14 667

Table 10.10: Performance difference for YouTube dataset at “Counting Triangles”, increasing sort
factor, for HDD.

[SSD2] just containers and varying io.sort.factor
Elapsed Avg MapAvg ShuffleAvg MergeAvg Reduce

io.sort.factor:10 41mins, 08sec 25 359 339 535
io.sort.factor:100 35mins, 15sec 25 371 16 497

Table 10.11: Performance difference for YouTube dataset at “Counting Triangles”, increasing sort
factor, for SSD2.

b) The buffer size for I/O (read/write) operations.

Examining the impact of this change (Table 10.12 and Table 10.13), we observe that only the

HDD is able to exploit efficiently, whereas its impact on SSD2 is mixed and insignificant.
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[HDD] just containers and io.file.buffer.size
Elapsed Avg MapAvg ShuffleAvg MergeAvg Reduce

io.file.buffer.size: 4KB 52mins, 43sec 25 565 596 720
io.file.buffer.size: 128KB 46mins, 44sec 25 445 470 619

Table 10.12: Performance difference for YouTube dataset at “Counting Triangles”, increasing file
buffer size, for HDD.

[SSD2] just containers and io.file.buffer.size
Elapsed Avg MapAvg ShuffleAvg MergeAvg Reduce

io.file.buffer.size: 4KB 41mins, 8sec 25 359 339 538
io.file.buffer.size: 128KB 41mins, 9sec 24 361 331 554

Table 10.13: Performance difference for YouTube dataset at “Counting Triangles”, increasing file
buffer size, for SSD2.

To have a generic idea of the impact of “customs” and the “containers” settings, we present

in Tables 10.14 and 10.15, the relative performance of HDD and SSD2 for a large network,

namely YouTube, which shows that HDD is a better beneficiary.

“Customs” difference to “Containers”
Avg Map Avg Shuffle Avg Merge Avg Reduce

HDD 4.00% -28.85% -97.65% -11.39%
SSD2 0.00% -2.23% -95.28% -10.41%

Table 10.14: Percentage difference between “customs” and “containers” settings for YouTube
dataset, at “Counting Triangles” algorithm.

“Customs” difference to “Containers”
Avg Map Avg Shuffle Avg Merge Avg Reduce

HDD -26.14% -16.59% - -9.72%
SSD2 -18.83% 0.78% - 4.36%

Table 10.15: Percentage difference between “customs” and “containers” settings for YouTube
dataset, at “Mutual Friends” algorithm.

10.5.3.4 Results on calculating connected components

Comparing SSD1 to HDD and SSD2, the Connected Components algorithm (Table 10.16) seems

to slightly favor the SSD1 for small datasets (first five ones), at reduce phase which is surprising

and somewhat hard to explain, because SSD1 has theoretically inferior performance to SSD2.
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Avg Map Avg Shuffle Avg Merge Avg Reduce
HDDSSD1SSD2 HDDSSD1SSD2 HDDSSD1SSD2 HDDSSD1SSD2

Brightkite 14 14 14 11 11 11 0 0 0 0 0 0
Amazon 104 106 103 34 34 34 0 0 0 74 61 62
Gowalla 27 26 26 10 10 10 0 0 0 14 14 16
DBLP 54 54 54 15 15 15 0 0 0 35 34 33
YouTube 126 124 123 14 14 14 0 0 0 101 96 98
YouTube 2 247 243 244 28 24 24 0 0 0 428 424 408
Flickr 170 168 167 30 19 20 0 0 0 309 314 304
LiveJourna l 353 380 322 104 143 45 1 0 0 665 682 651
LiveJournal 2 417 - 347 137 - 57 0 - 0 930 - 912
Orkut 456 - 324 552 - 154 295 - 231 1448 - 1204

Table 10.16: Sum of average times for each phase for the iterative jobs of “Connected Components”.

However, we argue that the function of SSD1’s TWC is quite successful. The generic pattern is

that map, shuffle and reduce times are close for both disk types for these small datasets, contrary

to what the current studies suggest.

When the size of data increases, e.g., for the datasets of Flickr and LiveJournal the magnetic

disk takes the lead at reduce phase over SSD1, which is mostly characterized as “write” procedure

for the Hadoop framework. SSD1 performs quite slowly at shuffle phase for the LiveJournal

dataset, which again is attributed to the TWC delivering inferior performance. The SSD2 gener-

ally delivers great performance especially at map and shuffle phase, noticeably as the datasets’

size increase. For the reduce phase, HDD falls behind SSD2, but not with a great margin.

To a have a better understanding of the reasons behind the above performance behavior

between HDD and SSD2, we examined the details of CPU and disk utilization during the

execution of the 1st iteration of the connected components algorithm on the largest of our

networks, namely Orkut. Hadoop’s default settings allowed the execution of up to 6 maps

simultaneously. Thus the execution of Orkut dataset (input file of 14 blocks at HDFS) was

executed in three waves of maps. The map phase is CPU intensive, hitting 100% utilization. High

disk throughput is required as well, with the disk constituting system’s bottleneck causing high

CPU wait times, especially for HDD (Figure 10.7Left), where during map phase CPU utilization

falls between map waves. Consequently using SSD2 provides better CPU utilization. Excessive

disk usage appears at shuffle phase demonstrating each disk’s capabilities (Figure 10.7Right–

10.8). At reduce phase, SSD2 performs slightly better.

The experiments established that default Hadoop settings are not optimized for hard disks,

and that the technology of SSDs might have dramatic impact upon their (expected) performance.

Most significantly, we provided solid evidence that hard disks can be competitive to solid state

disks for some I/O patterns, at least for the application field that we have investigated.
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Figure 10.7: (Left) CPU utilization for Connected Components with Orkut, using HDD, 1st
iteration isolated. (Right) Disk usage for Connected Components algorithm with Orkut, using
HDD, 1st iteration isolated.

10.6 Conclusions

Hadoop platform is used for the processing of big data, especially to run analytics that is

computationally intensive, such as social network analysis. Some tasks can be solved with a
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Figure 10.8: (Left) CPU utilization for Connected Components with Orkut, using SSD2, 1st
iteration isolated. (Right) Disk usage for Connected Components algorithm with Orkut, using
SSD2, 1st iteration isolated.

single or more consecutive and distinct jobs whereas others require iterative ones. Due to the

SSD’s provided substantial benefits over traditional hard disk drives, Hadoop administrators

have started considering the addition or even replacement of the existing HDDs with SSDs. Yet,

Hadoop’s internal design - especially HDFS - doesn’t appear to fully harness the potential of solid
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state drives.

In this empirical study, we compared the performance of solid state drives and hard disk

drives for social network analysis. Three casual complex network analysis algorithms were used

leaving space for the implementation and testing of many others, for even larger data sets.

A potential upgrade should be considered based on the tested applications’ performance. In

our tests SSDs didn’t come out as the undisputed winner. There were noticed great performance

fluctuations between the two SSDs. The second SSD performed significantly better. Otherwise, in

many cases SSD1 and the magnetic disk came into a draw. Although SSD1 was slightly faster in

many tests, in some cases the magnetic disk outperformed the SSD1. Even compared to the faster

SSD2, the magnetic disk provided competitive or faster times for reduce phase, especially with the

“mutual friends” algorithm.

Customizing Hadoop settings proves crucial. Magnetic disk’s shuffle times can be significantly

reduced. SSD’s performance doesn’t present further improvement. Nevertheless, HDD can’t catch

up with SSD’s superior performance at shuffling. With tweaking merge-sort can be performed in

less steps minimizing merge’s phase times for both disk types, slightly favoring magnetic disk

that would perform slower otherwise. For map phase both disk types can get similar performance

improvement.

Overall, having no clear storage media winner, the paper suggests that the development of

“application profilers” e.g., [20]–[22] that will try to predict the applications’ read/write pattern

(random/sequential) and then incorporation of them into the Hadoop architecture will help reap

the performance benefits of any current or new storage media.
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CONCLUSIONS & FUTURE WORK

In this thesis we studied dynamical processes over complex networks, and focused on the spread-

ing dynamics. We employed tools from graph theory and network science with aim to study

network topology an uncover those node characteristics that play crucial role in spreading pro-

cesses. We include a wide range of different network structures, i.e., single complex networks,

probabilistic complex networks, multilayer complex networks and also vehicular ad hoc networks.

Across all the development phases of our work, a common research approach has been followed.

Particularly, all the proposed mechanisms where evaluated in widely adopted simulation environ-

ments in order to be consistent with the research community, be reproducible and thus provide

solid proof of our findings.

Our work so far proved that the true spreading potential of network nodes cannot be “pre-

dicted” by merely measuring the number of connections (degree) incident upon the focal node. The

reason behind this finding lies in the understanding that hub nodes positioned in the periphery

of a network can not exert strong influence over a sufficiently large subset of the network nodes.

On the other hand the k-shell decomposition of a network assigns a large number of nodes in the

same shell, that is, the same (influence) importance. However our results illustrate that nodes

positioned in the same shell quite often have significantly different spreading power. Although

several new metrics based on k-shell where introduced in the literature addressing several

shortcomings of the original algorithm, k-shell is based on global knowledge of the network

topology and is thus unsuitable when faced with gigantic networks (millions of nodes and even

more edges), incomplete knowledge of network topology and real time applications, etc. Our work

introduced a hybrid method of node degree and k-core, that based solely on local knowledge of the

network topology outperformed these state-of-the-art approaches by providing a more accurate

ranking for the spreading potential of complex nodes.
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Subsequently we focus on the multilayer network, i.e., networked systems where nodes may

communicate through multiple type of connections. We generalize the well established h-index

centrality in the domain of multiplex and interconnected networks by introducing a number

of novel approaches that define the importance of a multilayer node. Likewise, the proposed

methodology is based on local knowledge of network (and layer) connectivity, that is, at most

two hop neighbor related information. We recognize and prove that a node able to exert strong

influence over the multilayer network, must be well connected to as many layers as possible

and interpret this attribute in the proposed schema for identifying influential spreaders in

these complex systems. We employ a wide range of competing algorithms−and their respective

generalizations to the multilayer domain−that are based on random walks, shortest paths,

measures of connectivity, the k-shell etc., and prove via detailed simulations the superiority of

the proposed technique in a wide range of real and generated multilayer networks.

Part of this dissertation focuses in the friendship paradox, that is neighbor superiority among

the network nodes, and to its interpretation in the domain of complex systems. By casting our

investigation in the context of the generalized friendship paradox we consider different topological

node characteristics (by means of centrality), and empirically show that the paradox−at both

network and node level−holds for an array of very popular centrality metrics not necessarily

correlated to node degree. We further prove that the paradox intuition also applies to probabilistic

measures such as the spreading power of a node, that is measured based on the most popular

spreading models, i.e., the susceptible-infectious-recovered (SIR) and the susceptible-infectious-

susceptible (SIS), for a range of diffusion probabilities near a network’s epidemic threshold. The

findings of this investigation can straightforwardly be used for designing better influential nodes

detection algorithms, e.g., by refraining from selecting as initial spreading nodes those who are

neighbors or for estimating the spreading capability of nodes using their friends’ capability.

Focusing on the vehicular network we also studied diffusion processes over such immensely

mobile and dynamic systems. We employ metrics from graph theory to accelerate the spreading

process in the VANET. We highlight the importance of this unique network and its applications

in the vehicular ecosystem, and furthermore investigate on the impact of infected (with mar-

ware/virus) vehicles in VANET protocols. We propose novel distributed methods for hindering the

outspread of a virus based on network science methodologies, by triggering a negating spread-

ing process to counter the effects of a malicious propagation. We separate the task of infection

blocking from the task of disinfection; the latter is highly dependent on the kind of software

that creates the infection whereas the former task can be performed in-situ in a distributed

fashion with the cooperation of other vehicles and minimal use of fixed infrastructure. This

study can be likened to node/link removal algorithms for blocking “contagions” in static complex

networks. Our simulation results over a range of different scenarios and realistic parameters,

indicate that the outspread of the virus can be significantly hindered, until an appropriate “cure”
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is distributed over cellular communications or physical treatment is administered. We further

investigate on infected vehicles and the impact of their generated fake data in routing protocols.

We employ various attack scenarios to deceive the system’s decisions with aim to create traffic

congestion in selected road segments. We urge for immediate attention in the infected VANET

and its catastrophic results. We deploy a defense mechanism that is based in V2V, V2I and I2I

communication to filter out spurious data running through the decision phases of our protocol.

Our simulation results show that the proposed defense system successfully identified outliers

and restored the protocol’s performance to near normal behavior, i.e., as if no fake data were

present.

Finally, we empirically study the potential benefits of utilizing SSDs (compared to HDDs)

in the Hadoop ecosystem and answer the following question; ignoring any network biases and

storage media cost considerations, do SSDs provide improved performance over HDDs for real

workloads that are not dominated by either reads or writes? We employ our framework in social

network analysis and particularly study three different problems directly related to spreading

processes in social networks. The first algorithm deals with a very simple problem which is at

the same time a fundamental operation in Facebook, Twitter, LinkedIn, etc., that of finding

mutual friends. The second algorithm deals with a network-wide path-based analysis for finding

connected components which finds applications in reachability queries, techniques for testing

network robustness and resilience to attacks, epidemics, etc. The third algorithm is about count-

ing triangles which is a fundamental operation for higher level tasks such as calculating the

clustering coefficient, or executing community finding algorithms based on clique percolation

concepts. Our work suggests that the development of “application profilers” that will try to predict

the applications’ read/write pattern into the Hadoop architecture will help reap the performance

benefits of any current or new storage media

The advances in network technology predispose the increased complexity of our networked

systems; nodes are able to communicate through multiple type of connections and thus facilitating

communication through diverse networked environments, growth in colossal sized structures

with millions of nodes and even more connections that require advanced handling and analysis,

opportunistic connections of numerous wireless devices that play a fundamental role in dynamical

processes, etc. All these considerations instruct that future networks hold a vast domain of yet

undiscovered tasks and traditional network theory needs to appropriately adapt and evolve

in order to embrace the newly and yet undiscovered needs of future networks. To this end the

analysis of multilayer networks and dynamical processes on these structures will be a core

part of our future directions. Understanding the peculiarities of each networked system and

further combine those attributes in this multi-structure poses significant challenges. Among the

different open problems to be solved, we highlight the following: (i) the need of setting up other

metric concepts that could possibly affect relevant parameters of the systems and applications,

171

Institutional Repository - Library & Information Centre - University of Thessaly
06/06/2020 00:05:55 EEST - 137.108.70.13



CHAPTER 11. CONCLUSIONS & FUTURE WORK

such as the betweenness, community detection, etc., or broadly speaking the generalization

of network science tools (such as centrality metrics) widely established in single networks to

multilayer structures, with aim to to better understand the topology of these unique networks;

(ii) gathering a better knowledge and understanding on the mathematical relationships that

bind each respective layer separately−as a single network−and each layer component (e.g.,

each node or edge), and how those mathematical connections are measured and correlated on

the whole multilayer structure; (iii) the study of diffusion processes to better understand and

formally develop mathematical models that accurately project information propagation in these

complicated systems and how diffusion processes on separate layers affect and develop multilayer

diffusion; (iv) and finally the implementation of network generators based on observation of

real multilayer structures (such as intra and inter layer degree distribution) to accelerate and

foster new research challenges towards this domain. These consideration are only the start

line of otherwise endless research directions towards understanding our ever evolving network

structures and their applications in our everyday lives.
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A.1 Spreading models

There is a lot of research interest in studying dynamic processes on large graphs, (a) blogs and

propagations, (b) information cascades and (c) marketing and product penetration. These dynamic

processes are all closely related to virus propagation, with many directly based on epidemiological

models. A wide range of spreading models that simulate the spreading dynamics over complex

networks is introduced in the literature. In this section we provide the details of the most widely

spreading models adopted by the research community and employed throughout this dissertation.

For more details please refer to [106].

A.1.1 Susceptible-Infectious-Recovered (SIR)

From the perspective of SIR, the population (the network nodes) is subdivided into three groups,

the susceptible (ignorant) group where nodes are ignorant of the emergence for example of a

virus, meme, rumor, etc., and are potential adopters; the infectious group composed from a set

of nodes that are initially incentivized (infected) to spread a product (virus); and finally the

recovered group (stiflers) that consists of nodes that are no longer interested in the corresponding

propagation (or vaccinated against the particular virus). In the epidemic spreading, each time

an infected node contacts with a susceptible node, there is a chance that the susceptible node

gets infected. Based on this fact, independent interaction models assume that each interaction

results in contagion with independent probability. Particularly, whenever a susceptible person

j is exposed to an infected node i, j becomes infected with probability pi j. We assume that the

spreading probability for all node pairs is the same, i.e., pi j ≡β. On the other hand an infected
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node enters the recovered state with probability µ (Figure 1.3). Specifically, the distinct node

states are:

• the susceptible (S) state, where nodes can be infected (influenced) if they are connected to

an infected node.

• the infectious (I) state, where nodes try to infect (influence) their susceptible neighbors and

succeed with probability β.

• the recovered (R) state, where nodes cannot be infected (influenced).

SIR immunizes nodes (R state) and thus measures the penetration for example of a virus (or

rumor, product, meme, etc.) in a networked environment. It is widely employed in this thesis

to quantify the spreading power of a node, i.e., its influence over the remaining network nodes.

Initially a specific node (or a set of nodes), the node of interest (focal node) is infected, while the

remaining nodes are in state S. SIR unfolds in discrete steps. In each step all infected nodes try

to infect their susceptible neighbors and succeed with probability β. Immediately after, without

loss of generality, the infected node with enter the R state, i.e., µ= 1. The spreading steps unfold

in subsequent rounds until there is no node in state I. Thus, the influence exerted by the initially

infected node is quantified by the number of nodes in the R state at the end of SIR.

A.1.2 Susceptible-Infectious-Susceptible (SIS)

SIS is very similar to SIR. SIS offers no immunization for the network nodes, i.e., the recovered

state is excluded. SIS assumes that agents (the nodes) can only exist in the two remaining

discrete states: susceptible or healthy (S) and infected (I). At each time step an agent tries

to infect its susceptible neighbors and (likewise in SIR) succeeds with probability β, whereas

infected nodes are “cured” by rate γ, i.e., return to the susceptible state (Figure 1.3). Therefore,

agents can run stochastically through the cycle, susceptible−infected−susceptible. SIS measures

the capability of a virus/meme/product to preserve itself with the network, i.e., become epidemic

and constantly keep infected (interested) a large subset of network nodes, or fail, and die out

quickly. In a similar fashion, in the initial step a node (or a set of nodes) is set in state I. In the

sequence the transitions between the node states are unfolding with respect to the predefined

probabilities. SIS terminates when a relatively fixed number of nodes remains in state I as the

spreading steps unfold (also known as equilibrium phase) or the diffusion dies out and all nodes

reside in state S. Thus, the influence exerted by the initially infected node is quantified by the

number of nodes in the I state at the end of SIS.
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A.2 Centrality Metrics

A wide range of centrality metrics have been employed throughout this dissertation and served

as competitors and as sources of inspiration for our work. These metrics range from geodesics

and random walks to measures that quantify the coreness and connectivity of the network nodes

and so on. It has been shown in the literature that the topological characteristics of a node play a

crucial role in the spreading dynamics and the influence exerted over the network. Hence the

research community is focused in many such methods that encompass different attributes of the

agent-nodes. For coherency we briefly present only but a fraction of these centrality metrics that

are widely used in related processes and the core of this dissertation. We present each metric for

unweighted networks, however their implementation to weighted structures is straightforward.

[Degree] Degree is a simple centrality measure that counts how many neighbors a node

has, i.e., immediate (one hop) connections. If the network is directed, we have two versions of

the measure: in-degree is the number of in-coming links, or the number of predecessor nodes;

out-degree is the number of out-going links, or the number of successor nodes.

[PageRank] PageRank is an algorithm used by Google Search to rank websites in their

search engine results. PageRank was named after Larry Page, one of the founders of Google.

PageRank is a way of measuring the importance of website pages; in sort an important page

(node) is one that is point by many other and important nodes. For a node x:

(A.1) PageRank(x)= 1−δ

N
+δ

∑
j

a jx
PageRank( j)

L( j)

where α jx is 1 if j links to x and 0 otherwise, L( j)=∑
x a jx s the number of neighbors of node j

(or number of outbound links in a directed graph) and δ is the damping factor.

[Betweenness] Betweenness centrality quantifies the number of times a node acts as a

bridge along the shortest path between two other nodes. It was introduced as a measure for

quantifying the control of a human on the communication between other humans in a social

network. For a node x:

(A.2) betweenness(x)= ∑
s 6=x 6=t∈V

σst(x)
σst

where σst is total number of shortest paths from node s to node t and σst(x) is the number of

those paths that pass through x.

[Closeness] In a connected graph, the normalized closeness centrality (or closeness) of a

node is the average length of the shortest path between the node and all other nodes in the graph.

Thus the more central a node is, the closer it is to all other nodes. Closeness was defined by

Bavelas (1950) as the reciprocal of the farness. For a node x:

(A.3) closeness(x)= 1∑
y d(y, x)
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where d(y, x) is the shortest distance between nodes x and y.

[k-core] K-shell (or k-core) decomposition of a network graph(Figure A.1) is performed

iteratively. The first step involves removing all degree-1 nodes, along with their link, and indexing

these as k = 1, i.e., nodes in the first shell (1-shell) also known as peripheral nodes. In the

resulting graph (the subgraph of the original network after the first step of removal), all nodes

with remaining degree 1 are also considered to have k = 1 and are again pruned. The process is

repeated until there are no remaining nodes of degree 1. In the sequence and in a similar fashion,

degree-2 nodes are removed and indexed as 2-shell nodes. Generally all nodes with i or fewer

connections are iteratively removed; these nodes are indexed i-shell nodes.

Figure A.1: Example of the k-shell decomposition method.

A.3 Performance Evaluation

Kendall’s τ

We use the Kendall’s tau rank correlation coefficient τ to demonstrate how a specific ranking is

correlated to the ranking induced by the spreading ability the nodes. The Kendall’s tau coefficient

considers the list produced by sorting the nodes according to their spreading power, and the list

produced by sorting the nodes according to the value of function Y , where Yi are the node’s i

score assigned by a specific centrality measure, e.g., PageRank, PCI, etc. Note that both lists are

of the same size i.e., n. Then, the τ value can be computed as follows:

(A.4) τ= nc −nd

n(n−1)/2

where nc is the number of concordant pairs, and nd is the number of discordant pairs. The

denominator is the total number of pairs of n items in the lists. For each pair of items in the list,

we determine if the relative rankings between the two lists match. For pair of nodes (i, j), if node
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i is ranked above (or below) node j in both lists SP and Y , then the pair is called concordant.

Otherwise, it is called discordant. Clearly, −1≤ τ≤ 1. If τ= 1, then the two rankings are in perfect

agreement; if τ=−1, then one ranking is the complete reverse of the other.
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B.1 Multilayer network generator

Multilayer network generator
Our synthetic multilayer network generator can define:

• How many interlinks, i.e., inter-neighbors, a node may have.

• How those links are distributed over the layers.

• How links are distributed in each specific layer.

In other words we are able to synthesize the distribution in the number of the interconnec-

tions per node, i.e., the inter-degree of nodes, how those links are distributed to the different

layers, and finally their distribution in a specific layer. Controlling all such parameters for the

interconnections, allow for the creation of a diverse multilayer environment of interconnected

entities with varying characteristics. For instance, it may be of interest to have a uniform dis-

tribution for the inter-degree of the nodes, or, to apply some power law distribution in order to

have several layer-hub-nodes, i.e., a few nodes with many links to the different layers, while

the remaining nodes have limited interconnectivity. Similarly it may be of interest to have a

uniform distribution of those links to the different layers, or, to have layers that accumulate the

majority of those interconnections, i.e., hub-layers. Finally we can apply the same policy to nodes

within a layer, i.e., a few nodes gather most of the interconnections, while the rest have narrow

interconnectivity.

We apply the Zipfian distribution in our interconnectivity generator. The Zipfian’s law depicts

the frequency of occurrence over a range of values, e.g., the frequency (or rarity) of high inter-

degree nodes. The desired skewness (or uniformity) is managed by the parameter s ∈ (0,1).
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Increasing in s implies increase in skewness, which in our example is interpreted as rarer high

inter-degrees, whereas values closer to zero imply closing to uniform distribution. Hence, in our

framework we apply three distinct Zipfian laws, one per parameter of interest:

• sdegree ∈ (0,1) in order to generate the frequency of appearance of highly interconnected

nodes.

• slayer ∈ (0,1) in order to choose how frequently a specific layer is selected.

• snode ∈ (0,1) in order to choose how frequently a specific node is selected in a specific layer.

Then, we can decide the range of values for the different distributions. For slayer and snode

the selection is straightforward since all layers and all nodes within a layer must be available

options. Note that the different layers are allowed to have different preferences, i.e., skewness

towards different network-layers. For example nodes in layer A may be skewed towards layer B,

nodes in layer C may prefer nodes within layer D, etc. Following the review of [61] we understand

that inter-connections are rarer than the intra-connections. In our simulations we limit the

inter-degree of nodes within (0, d · log2
∑

i Vi) for all i = 1,2,..N layers where d = 1, 2, 3 or 4. In our

experiments, we applied the notation SLNd(sdegree, slayer, snode) in order to refer to the different

generated networks. Figures B.1 and B.2 exemplify the distribution for the out inter-degree of

SLN2(0.3, 0.3, 0.3), SLN2(0.8, 0.3, 0.3), DLN2(0.3, 0.3, 0.3) and DLN2(0.8, 0.3, 0.3) with d = 2.

We observe that when sdegree = 0.8 the majority of nodes is at the lower values of inter-degree,

whereas when sdegree = 0.3, as expected, we obtain a broader distribution.
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Figure B.1: Out inter-degree distribution for the SLN networks when d = 2.

Network properties
Figure B.3 illustrates the in-out degree of the real multiplex networks. Figure B.4 illustrates

the out-degree (kout) distribution of the different multilayer networks mentioned in section 4.4.4.2.
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Figure B.2: Out inter-degree distribution for the DLN networks when d = 2.

All the Gnutella networks have similar kout distribution, and thus we show here only p2p-

Gnutella04’s out-degree distribution.
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POWER OF INFLUENCE"

C.0.1 Detailed experiments on the centrality paradox at the network level
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Figure C.1: Paradox evaluation at the network level for all centralities, all neighborhoods and all
networks. The y-axis illustrates the ratio 〈cneigh〉/〈c〉 normalized to all neighborhoods (N1, N2

and N3). Negative values indicate that the network level paradox does not hold. It can be observed
that moving from N1 to N2 favors the paradox, i.e., 〈cneigh〉/〈c〉 increases (i.e., strengthens the
paradox) in most of the illustrated networks. Extending the evaluated neighborhood one more
hop (to N3) illustrates a decreasing trend (weakens).
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C.0.2 Detailed experiments on the centrality paradox at the individual level
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Figure C.2: Individual level centrality paradox for the Brightkite network in N1, N2 and N3.

186

Institutional Repository - Library & Information Centre - University of Thessaly
06/06/2020 00:05:55 EEST - 137.108.70.13



100

101

102

103

100 101 102 103

D
E

G

h(
N

1,
D

E
G

)

N1

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100

101

102

103

100 101 102 103 104

D
E

G

h(
N

2,
D

E
G

)

N2

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100

101

102

103

100 101 102 103 104

D
E

G

h(
N

3,
D

E
G

)

N3

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100

101

102

103

100 101 102 103

P
C

I

h(
N

1,
P

C
I)

N1

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100

101

102

103

100 101 102 103 104

P
C

I

h(
N

2,
P

C
I)

N2

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100

101

102

103

100 101 102 103 104

P
C

I

h(
N

3,
P

C
I)

N3

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100

101

102

100 101 102 103

C
O

R
E

h(
N

1,
C

O
R

E
)

N1

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100

101

102

100 101 102 103 104

C
O

R
E

h(
N

2,
C

O
R

E
)

N2

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100

101

102

100 101 102 103 104

C
O

R
E

h(
N

3,
C

O
R

E
)

N3

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100

101

102

103

100 101 102 103

O
N

IO
N

h(
N

1,
O

N
IO

N
)

N1

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100

101

102

103

100 101 102 103 104

O
N

IO
N

h(
N

2,
O

N
IO

N
)

N2

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100

101

102

103

100 101 102 103 104

O
N

IO
N

h(
N

3,
O

N
IO

N
)

N3

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-6

10-5

10-4

10-3

100 101 102 103

P
R

h(
N

1,
P

R
)

N1

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-6

10-5

10-4

10-3

100 101 102 103 104

P
R

h(
N

2,
P

R
)

N2

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-6

10-5

10-4

10-3

100 101 102 103 104

P
R

h(
N

3,
P

R
)

N3

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 101 102 103

B
C

h(
N

1,
B

C
)

N1

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 101 102 103 104

B
C

h(
N

2,
B

C
)

N2

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 101 102 103 104

B
C

h(
N

2,
B

C
)

N2

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-1

100

100 101 102 103

C
C

h(
N

1,
C

C
)

N1

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-1

100

100 101 102 103 104

C
C

h(
N

2,
C

C
)

N2

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-1

100

100 101 102 103 104

C
C

h(
N

3,
C

C
)

N3

CA-AstroPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Figure C.3: Individual level centrality paradox for the CA-Astroph network in N1, N2 and N3.
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Figure C.4: Individual level centrality paradox for the CA-CondMat network in N1, N2 and N3
neighborhoods.
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Figure C.5: Individual level centrality paradox for the CA-GrQc network in N1, N2 and N3
neighborhoods.
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Figure C.6: Individual level centrality paradox for the CA-HepPh network in N1, N2 and N3
neighborhoods.
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Figure C.7: Individual level centrality paradox for the CA-HepTh network in N1, N2 and N3
neighborhoods.
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APPENDIX C. SUPPLEMENTARY FOR “ON NEIGHBORING NODES’ RELATIVE POWER OF
INFLUENCE"
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Figure C.8: Individual level centrality paradox for the Facebook network in N1, N2 and N3
neighborhoods.
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Figure C.9: Individual level centrality paradox for the Hamsterster network in N1, N2 and N3
neighborhoods.
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Figure C.10: Individual level centrality paradox for the PGP network in N1, N2 and N3 neighbor-
hoods.
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C.0.3 Detailed experiments for the blocking application under the SIR
model
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Figure C.11: Blocking the outspread of misinformation under the SIR spreading model for all
networks. NP denotes the fraction of influenced nodes when there are no active blockers.
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C.0.4 Detailed experiments regarding the spreading application for the SIR
model
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Figure C.12: Influence maximization for all networks under the SIR spreading model with cascade
initiators biased towards the highest DEG nodes from N1, N2 and N3 of RND.
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Figure C.13: Influence maximization for all networks under the SIR spreading model with cascade
initiators biased towards the highest PCI nodes from N1, N2 and N3 of RND.
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Figure C.14: Influence maximization for all networks under the SIR spreading model with cascade
initiators biased towards the highest CORE nodes from N1, N2 and N3 of RND.
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Figure C.15: Influence maximization for all networks under the SIR spreading model with cascade
initiators biased towards the highest ONION nodes from N1, N2 and N3 of RND.
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Figure C.16: Influence maximization for all networks under the SIR spreading model with cascade
initiators biased towards the highest CC nodes from N1, N2 and N3 of RND.
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Figure C.17: Influence maximization for all networks under the SIR spreading model with cascade
initiators biased towards the highest BC nodes from N1, N2 and N3 of RND.
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Figure C.18: Influence maximization for all networks under the SIR spreading model with cascade
initiators biased towards the highest PR nodes from N1, N2 and N3 of RND.

C.0.5 Detailed experiments for the spreading application of the SIS model
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Figure C.19: Influence maximization for all networks under the SIS spreading model with cascade
initiators biased towards the highest DEG nodes from N1, N2 and N3 of RND.
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Figure C.20: Influence maximization for all networks under the SIS spreading model with cascade
initiators biased towards the highest PCI nodes from N1, N2 and N3 of RND.
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Figure C.21: Influence maximization for all networks under the SIS spreading model with cascade
initiators biased towards the highest CORE nodes from N1, N2 and N3 of RND.
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Figure C.22: Influence maximization for all networks under the SIS spreading model with cascade
initiators biased towards the highest ONION nodes from N1, N2 and N3 of RND.
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Figure C.23: Influence maximization for all networks under the SIS spreading model with cascade
initiators biased towards the highest CC nodes from N1, N2 and N3 of RND.
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Figure C.24: Influence maximization for all networks under the SIS spreading model with cascade
initiators biased towards the highest BC nodes from N1, N2 and N3 of RND.
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Figure C.25: Influence maximization for all networks under the SIS spreading model with cascade
initiators biased towards the highest PR nodes from N1, N2 and N3 of RND.
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C.0.6 Detailed experiments on the spreading paradox at the individual level:
SIR spreading model
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Figure C.26: Evaluation of the spreading paradox at the individual level for the SIR spreading
model for the following networks: Brightkite, CA-AstroPh, CA-CondMat, CA-GrQc, CA-HepPh.
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Figure C.27: Evaluation of the spreading paradox at the individual level for the SIR spreading
model for the following networks: CA-HepTh, Facebook, Hamsterster, PGP.

C.0.7 Detailed experiments on the spreading paradox at the individual level:
SIS spreading model
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Figure C.28: Evaluation of the spreading paradox at the individual level for the SIS spreading
model for the following networks: Brightkite, CA-AstroPh, CA-CondMat, CA-GrQc, CA-HepPh.
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Figure C.29: Evaluation of the spreading paradox at the individual level for the SIS spreading for
the following networks: CA-HepTh, Facebook, Hamsterster, PGP.
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