137 research outputs found

    Investigation and development of a tangible technology framework for highly complex and abstract concepts

    Get PDF
    The ubiquitous integration of computer-supported learning tools within the educational domain has led educators to continuously seek effective technological platforms for teaching and learning. Overcoming the inherent limitations of traditional educational approaches, interactive and tangible computing platforms have consequently garnered increased interest in the pursuit of embedding active learning pedagogies within curricula. However, whilst Tangible User Interface (TUI) systems have been successfully developed to edutain children in various research contexts, TUI architectures have seen limited deployment towards more advanced educational pursuits. Thus, in contrast to current domain research, this study investigates the effectiveness and suitability of adopting TUI systems for enhancing the learning experience of abstract and complex computational science and technology-based concepts within higher educational institutions (HEI)s. Based on the proposal of a contextually apt TUI architecture, the research describes the design and development of eight distinct TUI frameworks embodying innovate interactive paradigms through tabletop peripherals, graphical design factors, and active tangible manipulatives. These computationally coupled design elements are evaluated through summative and formative experimental methodologies for their ability to aid in the effective teaching and learning of diverse threshold concepts experienced in computational science. In addition, through the design and adoption of a technology acceptance model for educational technology (TAM4Edu), the suitability of TUI frameworks in HEI education is empirically evaluated across a myriad of determinants for modelling students’ behavioural intention. In light of the statistically significant results obtained in both academic knowledge gain (ÎŒ = 25.8%) and student satisfaction (ÎŒ = 12.7%), the study outlines the affordances provided through TUI design for various constituents of active learning theories and modalities. Thus, based on an empirical and pedagogical analyses, a set of design guidelines is defined within this research to direct the effective development of TUI design elements for teaching and learning abstract threshold concepts in HEI adaptations

    Jeeves : a blocks-based approach to end-user development of experience sampling apps

    Get PDF
    Professional programmers are signiïŹcantly outnumbered by end-users of software, and cannot possibly predict the diverse and dynamic needs of user groups in advance. This thesis is concerned with the provision of an end-user development (EUD) approach, allowing end-users to independently create and modify their own software. EUD activities are particularly applicable to the work practices of psychology researchers and clinicians, who are increasingly dependent on software for assessment of participants and patients, but must also depend on developers to realise their requirements. This thesis targets these professionals, with an EUD solution to creating assessment software. The Experience Sampling Method (ESM) is one such means of assessment that takes place in participants’ everyday lives. Through regular completion of subjective self-reports, participants provide rich detail of their ongoing physical and emotional well-being. However, lack of engagement with such studies remains a prevalent issue. This thesis investigates features for maximising engagement with experience sampling smartphone apps. Such apps are becoming accepted as standard practice for remote assessment, but researchers are stiïŹ‚ed by the complexity and cost of implementation. Moreover, existing EUD tools are insufïŹcient for development of ESM apps that include engaging features. This thesis presents the development of Jeeves, an EUD tool with a blocks-based programming paradigm that empowers non-programmers to rapidly develop tailored, context-sensitive ESM apps. The adoption of Jeeves is contingent on a number of factors, including its ease-of-use, real-world utility, and organisational conditions. Failure to incorporate the necessary functionality pertaining to these factors into Jeeves will lead to abandonment. This thesis is concerned with establishing the usability, utility, and external factors necessary for adoption of Jeeves. Further, Jeeves is evaluated with respect to these factors through a series of rigorous studies from a range of application domains."This work was supported by a University of St Andrews 600th Anniversary PhD Scholarship (School of Computer Science)." -- Fundin

    Proceedings of the Second International Workshop on Physicality, Physicality 2007

    Get PDF

    Introducing Computational Thinking in K-12 Education: Historical, Epistemological, Pedagogical, Cognitive, and Affective Aspects

    Get PDF
    Introduction of scientific and cultural aspects of Computer Science (CS) (called "Computational Thinking" - CT) in K-12 education is fundamental. We focus on three crucial areas. 1. Historical, philosophical, and pedagogical aspects. What are the big ideas of CS we must teach? What are the historical and pedagogical contexts in which CT emerged, and why are relevant? What is the relationship between learning theories (e.g., constructivism) and teaching approaches (e.g., plugged and unplugged)? 2. Cognitive aspects. What is the sentiment of generalist teachers not trained to teach CS? What misconceptions do they hold about concepts like CT and "coding"? 3. Affective and motivational aspects. What is the impact of personal beliefs about intelligence (mindset) and about CS ability? What the role of teaching approaches? This research has been conducted both through historical and philosophical argumentation, and through quantitative and qualitative studies (both on nationwide samples and small significant ones), in particular through the lens of (often exaggerated) claims about transfer from CS to other skills. Four important claims are substantiated. 1. CS should be introduced in K-12 as a tool to understand and act in our digital world, and to use the power of computation for meaningful learning. CT is the conceptual sediment of that learning. We designed a curriculum proposal in this direction. 2. The expressions CT (useful to distantiate from digital literacy) and "coding" can cause misconceptions among teachers, who focus mainly on transfer to general thinking skills. Both disciplinary and pedagogical teacher training is hence needed. 3. Some plugged and unplugged teaching tools have intrinsic constructivist characteristics that can facilitate CS learning, as shown with proposed activities. 4. Growth mindset is not automatically fostered by CS, while not studying CS can foster fixed beliefs. Growth mindset can be fostered by creative computing, leveraging on its constructivist aspects

    Workshop, Long and Short Paper, and Poster Proceedings from the Fourth Immersive Learning Research Network Conference (iLRN 2018 Montana), 2018.

    Get PDF
    ILRN 2018 - ConferĂȘncia internacional realizada em Montana de 24-29 de june de 2018.Workshop, short paper, and long paper proceedingsinfo:eu-repo/semantics/publishedVersio

    A study of novice programmer performance and programming pedagogy.

    Get PDF
    Identifying and mitigating the difficulties experienced by novice programmers is an active area of research that has embraced a number of research areas. The aim of this research was to perform a holistic study into the causes of poor performance in novice programmers and to develop teaching approaches to mitigate them. A grounded action methodology was adopted to enable the primary concepts of programming cognitive psychology and their relationships to be established, in a systematic and formal manner. To further investigate novice programmer behaviour, two sub-studies were conducted into programming performance and ability. The first sub-study was a novel application of the FP-Tree algorithm to determine if novice programmers demonstrated predictable patterns of behaviour. This was the first study to data mine programming behavioural characteristics rather than the learner’s background information such as age and gender. Using the algorithm, patterns of behaviour were generated and associated with the students’ ability. No patterns of behaviour were identified and it was not possible to predict student results using this method. This suggests that novice programmers demonstrate no set patterns of programming behaviour that can be used determine their ability, although problem solving was found to be an important characteristic. Therefore, there was no evidence that performance could be improved by adopting pedagogies to promote simple changes in programming behaviour beyond the provision of specific problem solving instruction. A second sub-study was conducted using Raven’s Matrices which determined that cognitive psychology, specifically working memory, played an important role in novice programmer ability. The implication was that programming pedagogies must take into consideration the cognitive psychology of programming and the cognitive load imposed on learners. Abstracted Construct Instruction was developed based on these findings and forms a new pedagogy for teaching programming that promotes the recall of abstract patterns while reducing the cognitive demands associated with developing code. Cognitive load is determined by the student’s ability to ignore irrelevant surface features of the written problem and to cross-reference between the problem domain and their mental program model. The former is dealt with by producing tersely written exercises to eliminate distractors, while for the latter the teaching of problem solving should be delayed until the student’s program model is formed. While this does delay the development of problem solving skills, the problem solving abilities of students taught using this pedagogy were found to be comparable with students taught using a more traditional approach. Furthermore, monitoring students’ understanding of these patterns enabled micromanagement of the learning process, and hence explanations were provided for novice behaviour such as difficulties using arrays, inert knowledge and “code thrashing”. For teaching more complex problem solving, scaffolding of practice was investigated through a program framework that could be developed in stages by the students. However, personalising the level of scaffolding required was complicated and found to be difficult to achieve in practice. In both cases, these new teaching approaches evolved as part of a grounded theory study and a clear progression of teaching practice was demonstrated with appropriate evaluation at each stage in accordance with action researc

    Source Code Interaction on Touchscreens

    Get PDF
    Direct interaction with touchscreens has become a primary way of using a device. This work seeks to devise interaction methods for editing textual source code on touch-enabled devices. With the advent of the “Post-PC Era”, touch-centric interaction has received considerable attention in both research and development. However, various limitations have impeded widespread adoption of programming environments on modern platforms. Previous attempts have mainly been successful by simplifying or constraining conventional programming but have only insufficiently supported source code written in mainstream programming languages. This work includes the design, development, and evaluation of techniques for editing, selecting, and creating source code on touchscreens. The results contribute to text editing and entry methods by taking the syntax and structure of programming languages into account while exploiting the advantages of gesture-driven control. Furthermore, this work presents the design and software architecture of a mobile development environment incorporating touch-enabled modules for typical software development tasks

    University of Wollongong Undergraduate Handbook 2011

    Get PDF

    University of Wollongong Undergraduate Handbook 2008

    Get PDF
    • 

    corecore