
Source Code Interaction

on Touchscreens

Inaugural-Dissertation zur Erlangung der Doktorwürde

der Fakultät für Sprach-, Literatur- und Kulturwissenschaften

der Universität Regensburg

vorgelegt von

Felix Raab

München

2014

Regensburg 2014

Erstgutachter Prof. Dr. phil. Christian Wolff

Universität Regensburg

Zweitgutachter Prof. Dr. rer. nat. Florian Echtler

Bauhaus-Universität Weimar

Dedicated to my family.

Dedicated to Doris, who has joined me on this journey.

Don’t generalize; generalizations are generally wrong.

(Butler W. Lampson)

Abstract

Direct interaction with touchscreens has become a primary way of using a device.

This work seeks to devise interaction methods for editing textual source code on

touch-enabled devices. With the advent of the “Post-PC Era”, touch-centric interaction

has received considerable attention in both research and development. However,

various limitations have impeded widespread adoption of programming environments

on modern platforms. Previous attempts have mainly been successful by simplifying

or constraining conventional programming but have only insufficiently supported

source code written in mainstream programming languages. This work includes

the design, development, and evaluation of techniques for editing, selecting, and

creating source code on touchscreens. The results contribute to text editing and entry

methods by taking the syntax and structure of programming languages into account

while exploiting the advantages of gesture-driven control. Furthermore, this work

presents the design and software architecture of a mobile development environment

incorporating touch-enabled modules for typical software development tasks.

vii

Zusammenfassung

Die direkte Interaktion auf Touchscreens hat sich zu einer wesentlichen Form der Be-

dienung von Geräten entwickelt. Die vorliegende Dissertation beschäftigt sich mit der

Entwicklung von Interaktionsmethoden zur Bearbeitung von textbasiertem Quellcode

auf Geräten mit Touchscreen. Seit der “Post-PC-Ära” spielt Touchscreenbedienung eine

wachsende Rolle in Forschung und Entwicklung. Diverse Limitierungen erschweren

jedoch die Ausführung und Bedienung von Programmierumgebungen auf modernen

Plattformen. Bisherige Arbeiten erzielen vor allem durch die Vereinfachung oder Ein-

schränkung konventioneller Programmierung Erfolge, unterstützen Quellcode von

Mainstream-Programmiersprachen allerdings nur unzureichend. Diese Arbeit umfasst

die Konzeption, Entwicklung und Auswertung von Methoden zur Bearbeitung, Auswahl

und Erzeugung von Quellcode auf Touchscreens. Die Ergebnisse ergänzen Texteingabe-

und Bearbeitungsmethoden dahingehend, dass die Syntax und Struktur von Quellcode

berücksichtigt wird und gleichzeitig die Vorteile gesten-gesteuerter Bedienung ausge-

nutzt werden. Darüber hinaus stellt die Arbeit die Konzeption und Software-Architektur

einer mobilen Entwicklungsumgebung mit Touch-Bedienung vor.

ix

Acknowledgements

First, I would like to thank Prof. Dr. Christian Wolff for his supervision of my work and

for his professional advice. I am particularly thankful that he approved my topic since

I could not imagine having completed the present work without an intrinsic interest in

this research area. Also, I am thankful that he allowed me to teach University courses

covering the areas of programming and user interaction.

Second, I would like to thank Prof. Dr. Florian Echtler for his supervision. I am pleased

about having met him during his time as Visiting Professor at the University. Thanks

for your comments and support with publications.

Third, I would like to thank Dr. Markus Heckner for having enabled me to conduct

research in his Android programming courses. Thanks to Markus Fuchs for his help

in carrying out these studies and for various discussions during the many long train

journeys to Regensburg. Also, thanks to all former University colleagues for having

contributed to a pleasant work environment.

Finally, I would like to thank all participants that took part in my user studies. Your

feedback has been valuable, and the results generated by you interacting with my

prototypes are a central part of this work.

xi

Contents

Abstract vii

Zusammenfassung ix

Acknowledgements xi

List of Figures xxii

List of Tables xxiii

Note on Writing Style xxv

1 Introduction 1

1.1 Problem Statement . 1

1.1.1 Challenges . 2

1.1.2 Prior Approaches . 2

1.1.3 Research Objectives . 4

1.2 Research Approach . 5

1.3 Publications . 6

1.4 Structure . 7

1.5 HCI Terms . 9

I Background and Prior Work 11

2 Background 13

2.1 Source Code, Programming, and Usability 13

2.1.1 Programming Paradigms and Languages 14

2.1.2 Cognitive Aspects of Programming 16

xiii

Contents

2.1.3 Forms of Representation . 17

2.2 Integrated Development Environments . 21

2.2.1 IDE Components . 21

2.2.2 Usability and Usefulness of IDEs . 23

2.2.3 Text Editors and IDEs . 23

2.3 Types of IDEs . 24

2.3.1 The first IDE . 25

2.3.2 Textual Environments . 25

2.3.3 Modern Desktop Environments . 26

2.3.4 Visual Programming Environments 28

2.3.5 Hybrid Environments . 29

2.3.6 Recent Developments . 31

2.4 Programming on Touchscreens . 32

3 Related Work 35

3.1 Touch and Pen Development Environments 36

3.2 Text Editing . 40

3.2.1 Text Editing in Desktop Environments 41

3.2.2 Text Entry on Touchscreens . 42

3.2.3 Text Editing Gestures . 43

3.3 Editor User Interfaces and Interaction . 45

3.3.1 Novel Editor Interfaces . 45

3.3.2 Intelligent Code Editing . 46

3.3.3 Code Navigation and Search . 49

3.4 Commands, Menus, and Gestures . 51

3.5 Multi-modal Development Tools . 55

II Source Code Interaction 59

4 Editing Source Code 61

4.1 Introduction . 61

4.1.1 Code Editing Operations . 62

4.1.2 Code Editing Triggers . 64

4.2 Refactoring . 66

4.2.1 Refactoring Tools . 69

4.2.2 Gesture-driven Tools . 72

xiv

Contents

4.3 User Study . 73

4.3.1 Editor Operations . 74

4.3.2 Participants . 76

4.3.3 Test Setup . 76

4.3.4 Procedure . 79

4.3.5 Results . 80

4.3.6 Observations . 86

4.3.7 Discussion . 87

4.3.8 Design Recommendations . 89

4.3.9 Conclusion . 91

5 Selecting Source Code 93

5.1 Introduction . 93

5.1.1 Terminology and Selection Mechanics 94

5.1.2 Modeless vs. Modal Selection . 95

5.1.3 Selection in Desktop IDEs . 95

5.1.4 Selection on Mobile Platforms . 97

5.2 User Study . 100

5.2.1 Participants . 100

5.2.2 Test Setup . 100

5.2.3 Procedure . 101

5.2.4 Analysis . 103

5.2.5 Results . 106

5.2.6 Discussion . 111

5.3 Interaction Methods . 112

5.3.1 Syntax-aware Selection . 112

5.3.2 Selection Gestures and Widgets . 117

5.4 Conclusion . 120

6 Creating Source Code 123

6.1 Challenges . 123

6.1.1 Fat Fingers . 124

6.1.2 Touch Model . 124

6.1.3 Language Model . 125

6.1.4 Text vs. Source Code . 125

6.2 Code Creation in Desktop IDEs . 126

xv

Contents

6.2.1 Smart Typing . 127

6.2.2 Code Completion . 127

6.2.3 Code Hints . 128

6.2.4 Code Templates . 129

6.2.5 Code Generation . 130

6.3 Towards a Code Entry Keyboard . 130

6.3.1 General Design Approach . 130

6.3.2 Keyboard Layout and Size . 132

6.3.3 Gestures and Marking Buttons . 136

6.3.4 Code Templates . 137

6.3.5 Code Completion . 139

6.3.6 Underlying Models . 140

6.4 User Study . 141

6.4.1 Participants . 141

6.4.2 Test Setup . 142

6.4.3 Tasks and Procedure . 142

6.4.4 Results . 144

6.4.5 Discussion . 153

6.5 Improvements and Simulations . 156

6.5.1 Key Layout . 156

6.5.2 Touch Model . 158

6.5.3 Language Model . 160

6.5.4 Widgets . 167

6.5.5 A Revised Model . 167

6.6 Conclusion . 168

III Design and Implementation 171

7 A Touch-enabled IDE 173

7.1 Device Class and Platform . 173

7.2 Approach to Interaction Design . 174

7.2.1 Integration of Gestures . 175

7.2.2 Conflict Resolution . 176

7.2.3 Widget-based Techniques and Menus 178

7.2.4 General Guidelines . 180

7.3 IDE Components . 180

xvi

Contents

7.3.1 File Browsing . 180

7.3.2 Working Sets, File Sets, and Layouts 181

7.3.3 Navigation . 186

7.3.4 Code Entry and Editing . 189

7.3.5 Error Highlighting and Code Review 193

7.4 Conclusion . 196

8 Software Architecture 199

8.1 Introduction . 199

8.1.1 Language Support . 200

8.1.2 Presentation . 201

8.1.3 Code Analysis . 202

8.1.4 Other Modules and Summary . 205

8.2 Reference Architectures and Existing Tools 205

8.2.1 The Eclipse Project . 205

8.2.2 Syntactic Analysis and Editor Components 209

8.2.3 Semantic and Static Analysis . 211

8.3 Concrete Architecture . 212

8.3.1 Target Platform and Environment 212

8.3.2 Modules and Events . 212

8.3.3 Services and Core Objects . 215

8.3.4 Adapters and Bridges . 217

8.3.5 Model-View-Controller and Commands 218

8.3.6 UI Components and Gestures . 219

8.3.7 Concurrency and Code Analysis . 221

8.3.8 Discussion . 222

8.4 Conclusion . 223

IV Conclusions 225

9 Conclusions 227

9.1 Summary and Contributions . 227

9.1.1 Motivation . 227

9.1.2 Part I: Background and Prior Work 228

9.1.3 Part II: Source Code Interaction . 228

9.1.4 Part III: Design and Implementation 229

xvii

Contents

9.2 Future Directions . 230

9.2.1 Opportunities for Further Work . 230

9.2.2 Related Projects . 232

9.3 The Future of Programming Environments 234

Bibliography 237

Appendices 257

Appendix A Study on Editing Source Code 259

Appendix B Study on Selecting Source Code 265

Appendix C Study on Creating Source Code 275

xviii

List of Figures

2.1 Languages, paradigms, environments, and representations 20

2.2 Emacs and Vim . 26

2.3 The Smalltalk-80 IDE and Eclipse . 27

2.4 GRaIL and Scratch . 28

2.5 Barista and IPython . 30

2.6 Scope and approach of this work: Touchable source code 33

3.1 Linear, radial, and grid-based menus . 53

3.2 A gaze-enhanced IDE: EyeDE . 57

4.1 Types of code editing operations . 63

4.2 Dimensions of code editing operations . 64

4.3 Examples of refactoring menus . 66

4.4 Refactoring and AST transformation . 68

4.5 Eclipse refactoring errors for Change Method Signature 70

4.6 Eclipse refactoring errors for Extract Constant 70

4.7 RefactorPad: The experimenter’s system . 77

4.8 RefactorPad: The participant’s system . 78

4.9 RefactorPad: Overview of the test setup . 78

4.10 RefactorPad: Post-task questionnaire . 81

4.11 RefactorPad: Visualized agreement of gestures 82

4.12 RefactorPad: Visualized agreement for Undo/Redo 83

4.13 RefactorPad: Gesture agreement scores . 84

4.14 RefactorPad: Goodness–SMEQ–Agreement 85

4.15 RefactorPad: Goodness–SMEQ–Agreement 86

4.16 RefactorPad: Final gesture set . 90

xix

List of Figures

5.1 Selection range, anchor, and head . 94

5.2 Text selection on iOS . 98

5.3 Text selection on Android . 99

5.4 Custom application for replaying selection events 104

5.5 Overview of the custom system for analyzing selections 105

5.6 Relative frequencies of selected AST node types 108

5.7 Selections matching at AST node boundaries 109

5.8 Average number of selected lines for AST node types 110

5.9 Initiating a syntax-aware selection . 113

5.10 Touch locations and AST selection boundaries 114

5.11 Node visiting and skipping . 115

5.12 Changing the selection range . 116

5.13 Selection spans . 118

5.14 Selection panning . 119

5.15 Selection rails . 120

6.1 Challenges of touch-based code creation . 126

6.2 Smart typing . 127

6.3 Code completion . 128

6.4 Code hints . 129

6.5 Code templates . 129

6.6 Code generation . 130

6.7 The iOS default keyboard . 131

6.8 The code entry keyboard (CEK) . 133

6.9 Resizing and docking in the CEK . 133

6.10 Keys for special characters in the CEK . 135

6.11 CEK keys with marking menus . 136

6.12 Marking menus for code templates . 138

6.13 Supportive widget for code template navigation 138

6.14 Supportive widget for code completion . 139

6.15 CEK study: Demo task . 143

6.16 CEK study: Average keyboard frame and key size 147

6.17 CEK study: Average key deviation . 148

6.18 CEK study: Key Deviation–Zoom Factor . 148

6.19 CEK study: Menu selections over time . 149

6.20 A revised key layout for the CEK . 157

xx

List of Figures

6.21 CEK simulation: Applying the Bayesian Touch Criterion 159

6.22 A refined key interaction model for the CEK 160

6.23 Model for code completions in the CEK . 165

6.24 A revised model for code entry . 168

7.1 Properties for gesture-driven interaction . 175

7.2 Examples of competing gestures in the editor viewport 176

7.3 Touch IDE: Optimized marking menus . 179

7.4 Touch IDE: File browsing . 181

7.5 Touch IDE: Working sets . 183

7.6 Touch IDE: Editor layouts . 184

7.7 Touch IDE: File sets . 185

7.8 Touch IDE: File navigation gestures . 187

7.9 Touch IDE: Interpolated scrolling and outline 189

7.10 Touch IDE: Cursor and context menu . 190

7.11 Touch IDE: Selection handles and selection rails 191

7.12 Touch IDE: Selection context menu . 191

7.13 Touch IDE: Zoomed editor layout and configured editor panes 193

7.14 Touch IDE: Error highlighting . 194

7.15 Touch IDE: Code review . 195

8.1 Components of an NUI code editing module 204

8.2 Service architecture in Eclipse Orion . 208

8.3 Abstraction layer for a code editing subsystem 210

8.4 Exemplary IDE modules and submodules 213

8.5 Loose coupling and events . 214

8.6 Asynchronous interaction of controllers and services 215

8.7 Examples of services and core objects . 216

8.8 Adapters and bridges for two-way communication 217

8.9 MVC and commands . 219

8.10 Custom gesture recognizers and conflict resolution 220

8.11 Concurrency and code analysis operations 222

9.1 Collaborative code reviews on a tabletops 232

9.2 Tangible exploration of code smells and refactorings 233

A.1 Pre-study questionnaire . 261

xxi

List of Figures

A.2 Task descriptions . 262

A.3 Post-study questionnaire . 263

B.1 Handout in winter term 2012/13 . 267

B.2 Tasks in winter term 2012/13 . 270

B.3 Handout in summer term 2013 . 272

B.4 Tasks in summer term 2012/13 . 274

C.1 Pre-study questionnaire . 277

C.2 Code entry task . 278

C.3 Extended version of the code entry task . 280

xxii

List of Tables

4.1 RefactorPad: Editor operations used in the study 75

5.1 Keyboard-driven cursor movement and selection commands 96

5.2 Mouse-driven selection commands . 97

5.3 iOS selection gestures . 99

5.4 Android selection gestures . 99

5.5 Frequencies of triggered Eclipse commands 107

5.6 Selection directions . 111

6.1 CEK study: Selection deviations for individual keys 149

6.2 CEK study: Selection frequencies for keys 150

6.3 CEK study: Relative frequencies for non-letter keys 151

6.4 CEK study: Frequencies and usage of code templates 152

6.5 CEK simulation: Code completion with predictions 166

xxiii

Note on Writing Style

Before writing up my thesis, I consulted a book from Helen Sword [Swo12] for

guidance on academic writing style. Sword’s arguments (Chapter 4, “Voice and Echo”)

have encouraged me to reduce “passive or agentless constructions” in favor of writing

in the first person. Although personal pronouns may not sound as objective at times,

I hope this style more clearly communicates some of my thoughts and “readers can

easily identify ‘who’s kicking whom’ ” (discussed by Richard Lanham in “Revising

Prose”, as cited in [Swo12]). While this work still frequently employs the passive voice

for technical descriptions or descriptions of procedures, I have primarily applied the

personal form in introductory sections, discussions, and conclusions.

xxv

Chapter 1

Introduction

In this chapter, I introduce the problem statement and the objectives of my work.

Furthermore, I describe the research approach, outline the structure of this thesis, list

related publications, and define basic terms.

1.1 Problem Statement

This work seeks to devise interaction techniques for editing textual source code on

touch-enabled devices. Since devices with touchscreens have become ubiquitous,

gestures and multi-touch interaction have received considerable attention in both re-

search and development. Major software manufacturers have recently concentrated on

mobile strategies and on improving their productivity tools for devices such as tablets.

However, the field of programming and software engineering has only cautiously taken

advantage of the interactive capabilities provided by modern hardware and software.

The foundations of user interfaces for IDEs (Integrated Development Environments)

and code editors have been built more than 40 years ago and seen only little change.

In contrast, touch-enabled devices have rapidly been adopted by the masses and with

their introduction, user interface paradigms have shifted from traditional desktop user

interfaces, operated via mouse and keyboard, towards so-called natural user interfaces,

operated via a touchscreen. Currently, no appropriate interaction techniques exist

that allow programmers to efficiently edit textual source code–written in mainstream

programming languages–on a touchscreen. My work aims at addressing this gap

1

Chapter 1. Introduction

through the design and evaluation of touch-centric methods for editing, selecting, and

creating source code.

1.1.1 Challenges

The reasons for the slow adoption of touch-based interaction in the field of pro-

gramming could be attributed to issues associated with the required hardware and

software. Programming in mainstream languages typically implies efficient operation

of a physical keyboard and executing keyboard shortcuts. Contrasting the familiarity

and the tactile feedback of hardware keyboards, virtual keyboards of touchscreens

have notoriously been slow and inaccurate. Moreover, popular touch-enabled de-

vices such as smartphones and tablets restrict the available screen space and, despite

continuous improvements, have not reached the computational power of desktop

systems. These hardware limitations create challenges for rendering the complex

user interfaces of development environments usable. In addition, software-related

factors might have added to the slow adoption. Developers find themselves confronted

by an over-abundance of features competing for their attention. IDEs, often grown

over decades, generate substantial effort for porting these extensive feature sets to

touch-enabled devices. The fundamental differences in hardware and user interaction

might result in having to create entirely new tools that are tailored to the interaction

models introduced by the “Post-PC Era”.

1.1.2 Prior Approaches

Prior research yielded projects that have enabled programming on touchscreens,

but they have largely bypassed the issues of textual code input and editing. So far,

researchers have primarily applied the following four strategies:

Visual Programming

Visual Programming (VP) replaces textual structures with graphical elements that

programmers manipulate to specify program logic. While potentially well-suited

for touchscreens, VP has not gained widespread adoption for classic software

development scenarios and has mainly been utilized in specialized domains (e.g.,

audio-visual systems, mathematical environments, or programming for children).

Frequently mentioned reasons for the limited success of VP are deficiencies in

scaling to larger programs or problems with interoperability.

2

1.1. Problem Statement

Syntax-directed Editing

Syntax-directed editing (also called structure editing) enforces certain constraints

during editing in order to prevent errors and maintain the document structure.

Similar to VP, syntax-directed editing may–precisely because of its restrictive

nature–be well-suited for touch interaction but has not gained wide acceptance.

Frequent criticism includes usability issues, caused by its various editing limita-

tions, and the resulting inefficiencies. Although newer attempts could partially

solve some of these issues, structure editing is still less flexible than free-form

text editing.

Alternative Programming Languages

Prior work either resorted to alternate programming paradigms or created

entirely new languages specifically for the purpose of improving the interaction

on touch-based platforms. Particularly on space-constrained devices, languages

with compact syntax offer advantages compared with widespread imperative

and object-oriented programming languages. However, this approach either

requires programmers to learn a new programming language or limits flexibility

by enforcing artificial conventions.

Touchification

The term “touchification” [BHLD14] refers to running existing applications on

touch-enabled hardware with little to no changes in their user interfaces. Touches

on the screen are mapped to mouse coordinates that drive the interface elements.

Since touches are more inaccurate than mouse pointers, individual elements

may need to be enlarged or rearranged. Although this solution enables high

reuse, IDEs require complementary techniques and workarounds to compensate

for interaction issues that are rooted in the underlying WIMP paradigm.

It should be noted that existing work may not strictly fall into one of the categories but

instead employ several strategies (e.g., alternative programming languages with struc-

tured and graphical components). However, none of the approaches enable flexible

programming in mainstream programming languages while taking advantage of explic-

itly designed natural user interfaces. The efforts of this work are thus directed towards

finding techniques that improve the interaction with source code on touchscreens

without simplifying, restricting, or changing conventional programming.

3

Chapter 1. Introduction

1.1.3 Research Objectives

The primary research objective of this work is enhancing the textual editing capabilities

of touch-enabled devices to be compatible with source code. The goal is not to reinvent

code editing but instead to enable efficient interaction by taking the syntax and

structure of source code into account. Since the text editing methods of conventional

touch-based platforms are inappropriate for source code, this work aims at proposing

interaction methods that compensate inefficiencies of typical text input and editing

mechanisms. Usage scenarios include the ability to perform small-scale maintenance

tasks on mobile devices such as tablets. The expected advantages and consequences of

this approach are:

• The approach is largely language-agnostic and supports programming in main-

stream languages.

• Users can reuse their existing skills for working with textual content.

• Developers can reuse the large infrastructure around textual representation of

source code.

• The presented techniques are applicable today and do not assume any special

requirements regarding hardware or device sensors.

• The techniques exploit the advantages of direct manipulation and multi-touch

interaction; that is, instead of indirectly interacting via an attached device, users

directly point at objects on the screen and perform gestures.

These general goals are divided into the following subgoals:

1. Understand how programmers edit and transform source code through gesture-

driven interaction. The expected outcome are user-elicited gestures that serve as

design guidelines or inspire novel interaction techniques.

2. Evaluate the mechanics of how programmers select code. The expected outcome

are interaction techniques that increase the efficiency of selecting structural

regions of source code.

3. Develop and evaluate methods that let programmers create new source code.

The expected outcome are text entry methods that improve and simplify entering

program syntax.

4

1.2. Research Approach

4. Design and implement the aforementioned subgoals, as well as supporting IDE

modules. The expected outcomes are the design and software architecture for a

coherent touch-enabled IDE.

1.2 Research Approach

Devising source code interaction methods for touchscreens requires an understanding

of code editing in desktop environments, as well as the potentials and limitations

of touch-based platforms. Consequently, this work considers previous work lying

at the intersecting research areas of Human-Computer Interaction (HCI) and Soft-

ware Engineering (SE). According to the ACM classification scheme1, the relevant

top-level categories are labeled “Human-centered computing” and “Software and its

engineering”, with the latter including software tooling. Myers [MK09] has stressed

the increasing importance of software development tools incorporating findings from

the area of HCI:

“Many of the early work on software development tools was not useful (or

at least not used) by professional developers, but in early 2000’s, software

engineering researchers started to take a more human-centered approach

to the design and evaluation of these tools. [...] The common themes

among these and similar examples is that studies of software development

inform design, and evaluations of designs inform further study.”

Although software development tools often include extensive feature sets, the evalua-

tions of this work only cover the core phases of code entry and editing. Complementary

tasks such as navigating code bases are separately addressed but have not been empiri-

cally evaluated within the scope of this work.

Evaluations and Limitations

The evaluations are carried out by means of user studies; that is, participants interact

with a prototype and generate quantitative and qualitative data. The prototypes of the

included studies consist of prepared code editing environments, both desktop- and

touch-based. Quantitative data includes interaction events logged into a database

for statistical analysis. Qualitative data is gathered through questionnaires where

1http://dl.acm.org/ccs_flat.cfm

5

http://dl.acm.org/ccs_flat.cfm

Chapter 1. Introduction

participants indicate attributes relating to the user experience. Both sources are

exploited to judge the suitability of an existing interaction technique or to propose

new techniques based on the study results. I have employed both strategies in this

work.

The first and last study (editing and creating code, respectively) were conducted in

laboratory settings, while the second study (selecting code) was conducted in a realistic

development scenario. The controlled nature of two of the studies affects the external

validity and thus limits the generality of the results. However, the relative complex

demands of the domain regarding prototypes and test setups have ruled out alternate

evaluation forms. The participants of all studies have exclusively consisted of students

with programming experience. On the one hand, studies with professionals might

have generated results that more realistically reflect the behavior of programmers. On

the other hand, professionals have vastly differing expertise, skill levels, and opinions

concerning programming languages and development environments. In contrast,

the individual differences among students may be smaller and hence result in more

homogeneous user groups for the studies.

As far as the appropriate sample size is concerned, comparable studies in the field

of HCI have often been based on the results of ten to twenty participants for within-

subjects designs. The time and cost required for moderated testing usually prohibit

larger sample sizes. The second study of this work could take advantage of a larger

sample size (78 participants) since it was unmoderated and captured data through

installed logging facilities. Overall, the results of this work should not be overgeneral-

ized but rather be seen as means that have contributed to informed decisions about

devised interaction methods.

1.3 Publications

This section contains a chronologically ordered list of publications, either directly

arising from this work or from projects that are related to the topic. In each chapter, I

will explicitly point out any content that is reused or not originally my own.

• Hartmut Glücker, Felix Raab, Florian Echtler, and Christian Wolff. EyeDE: Gaze-

enhanced software development environments. In Proceedings of the Extended

Abstracts of the 32Nd Annual ACM Conference on Human Factors in Computing

Systems, CHI EA ’14, pages 1555–1560, New York, NY, USA, 2014. ACM

6

1.4. Structure

• Markus Fuchs, Markus Heckner, Felix Raab, and Wolff Christian. Monitoring

students’ mobile app coding behavior: Data analysis based on IDE and browser

interaction logs. In Proceedings of the 5th IEEE Global Engineering Education

Conference, Educon ’14. IEEE, 2014

• Felix Raab, Christian Wolff, and Florian Echtler. RefactorPad: Editing source

code on touchscreens. In Proceedings of the 5th ACM SIGCHI Symposium on

Engineering Interactive Computing Systems, EICS ’13, pages 223–228, New York,

NY, USA, 2013. ACM

• Felix Raab. CodeSmellExplorer: Tangible exploration of code smells and refactor-

ings. In 2012 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), pages 261–262, Sept 2012

• Felix Raab, Markus Fuchs, and Christian Wolff. CodingDojo: Interactive slides

with real-time feedback. In Harald Reiterer and Oliver Deussen, editors, Mensch

& Computer 2012 – Workshopband: interaktiv informiert – allgegenwärtig und

allumfassend!?, pages 525–528, München, 2012. Oldenbourg Verlag

• Felix Raab. Interaktionsdesign menschzentrierter Refactoring-Tools. Information,

Wissenschaft & Praxis, 63(5):329–334, 2012

• Felix Raab. Collaborative code reviews on interactive surfaces. In Proceedings of

the 29th Annual European Conference on Cognitive Ergonomics, ECCE ’11, pages

263–264, New York, NY, USA, 2011. ACM

1.4 Structure

The rest of this work is divided into four main parts, organized as follows:

Part I: Background and Prior Work

Chapter 2: Introduces the context and background for subsequent chapters. The

chapter covers fundamentals concerning source code and its forms of represen-

tation, and the relationship between programming and the concept of usability.

Also, it describes typical components of software development environments and

available tooling.

7

Chapter 1. Introduction

Chapter 3: Summarizes related research on touch-based development environ-

ments and interaction methods for code editors, including work from the field of

text entry and editing, and gesture-driven execution of commands.

Part II: Source Code Interaction

Chapter 4: Introduces the types and details of typical code editing operations,

including behavior-preserving structural transformations. Following that, the

chapter reports the details and findings of a user study on code editing gestures

and discusses implications for the design and implementation of gesture-driven

code editors.

Chapter 5: Explains the mechanics of code selection by examining desktop and

mobile editors. The chapter then reports the findings of a user study that has

revealed selection patterns in a realistic software development situation. The

final part includes the design of touch-enabled selection techniques.

Chapter 6: Introduces the challenges of touch-centric code input and presents the

model and the design approach of a custom keyboard for code entry. Following

that, the chapter reports the results of a user study centered around entering

code with this custom keyboard. The final section presents a revised version of

the keyboard and simulations of an enhanced model for code entry.

Part III: Design and Implementation

Chapter 7: Presents the design of a coherent system integrating the studied

interaction techniques for touch-centric code editing and their supporting IDE

modules. The chapter introduces concrete IDE modules and explains the ratio-

nale behind all design decisions.

Chapter 8: Discusses technical aspects and software architecture. The chapter

details principles and patterns used for implementation and describes the con-

crete architecture of selected sub-systems, their communication mechanisms,

and technical constraints.

Part IV: Conclusions

Chapter 9: Summarizes the essence of previous chapters and highlights the

research contributions. The second part of this chapter attempts to identify

opportunities for future research directions and introduces related projects that

have emerged from this work.

8

1.5. HCI Terms

1.5 HCI Terms

This section briefly defines basic terms from the field of Human-Computer Interaction

that are repeatedly used throughout this work. Terms related to source code editing

and tooling are separately introduced in each of the respective chapters.

Direct Manipulation

Originally introduced by Shneiderman [Shn83] to describe an interaction style

that lets users manipulate visual object representations on a desktop system.

Users point at objects to trigger actions and receive instant feedback. Alternate

interaction styles are command language or menu selection.

Natural User Interface (NUI)

Having been referred to as “marketing name” [Nor10], the term may today

loosely describe the interface and interaction style of touch-enabled platforms:

Users instantly interact through touch interaction and gestures, as opposed to

operating a keyboard and mouse. Ideally, an NUI reduces the learning cost and

guides the user in transitioning from novice to expert [Wig10].

Windows Icons Menus Pointer (WIMP)

Could be regarded as opposing interaction style to NUIs (see above); that is,

conventional desktop systems with graphical user interfaces that are operated

via keyboard and mouse. Most actions are triggered by pointing to objects or

executing menu commands.

User Experience (UX)

The concept of “user experience” is commonly understood to describe the entire

experience of how users perceive a product. This experience may include aspects

such as the usefulness of the product, its usability (see Chapter 2), or the

provoked emotions. ISO 9241-210 defines UX as “a person’s perceptions and

responses that result from the use or anticipated use of a product, system or

service”2.

2http://en.wikipedia.org/wiki/User_experience

9

http://en.wikipedia.org/wiki/User_experience

Part I

Background and Prior Work

11

Chapter 2

Background

In this chapter, I introduce the context and background for subsequent chapters. The

first part addresses fundamentals concerning source code and its forms of represen-

tation, programming languages, and the relationship between programming and the

concept of usability. The second part describes the typical components of software

development environments, highlights the different types of available tools, and intro-

duces the challenges of enabling programming on devices with touchscreens.

2.1 Source Code, Programming, and Usability

The Oxford Dictionary of English defines source code as “a text listing of commands

to be compiled or assembled into an executable computer program.” Members of the

conference SCAM (Source Code Analysis and Manipulation) have agreed upon the

following definition of source code [Har10]:

“For the purpose of clarity ‘source code’ is taken to mean any fully exe-

cutable description of a software system. It is therefore so construed as to

include machine code, very high level languages and executable graphical

representations of systems.”

While the Oxford definition explicitly states that source code consists of text, the

SCAM definition does not explicitly mention text but instead emphasizes the aspect of

execution. Source code is usually created as result of programming. Steele [Ste98],

13

Chapter 2. Background

designer of multiple programming languages, has defined the verb “to program” as

follows:

“To program is to make up a list of things to do and choices to make, to be

done by a computer. Such a list is called a program.”

Programming has also been defined as “the act of assembling a set of symbols repre-

senting computational actions” [KP05] or “the process of transforming a mental plan

of desired actions for a computer into a representation that can be understood by the

computer” [MK09]. The authors of source code are usually called programmers or,

more generally, software developers. Programmers create source code in order to create

programs for end users, although often external programs become the actual users

before humans operate the final programs. Consequently, programmers are themselves

users who use source code to solve their tasks. In any environment where users need

to solve tasks, the concept of usability is accepted to be important. The ISO 9241

definition of usability reads:

“The effectiveness, efficiency and satisfaction with which specified users

achieve specified goals in particular environments.”

Therefore, programmers (“specified users”) should be effective, efficient and satisfied

with creating source code or programs (“specified goals”). The term “particular

environments” could be interpreted as referring to source code itself as the environment

or–since source code is usually not created using pen and paper–to the tools used to

create source code. I will discuss both interpretations (language-level and tool-level)

in the following sections.

2.1.1 Programming Paradigms and Languages

When source code is viewed as the environment for the programmer, the actual

environment is not source code itself (or the instructions for the machine to execute)

but the programming language and its rules. Today, a large number of programming

languages exist and each language serves different purposes. When writing code, the

programmer has to adhere to rules defined by the programming language. Moreover,

programming paradigms are, by nature of their definition, fundamentally different.

As a consequence, the programmer’s choice to use one or more languages for solving

his task directly affects how effective, efficient, and satisfied specified goals can be

solved.

14

2.1. Source Code, Programming, and Usability

Although the question of which language design or programming paradigm is most

efficient for particular tasks is not the primary concern of my work, it is worth noting

that different languages or paradigms also require different tooling. For example,

the source code of some symbolic programming languages may include non-textual

components that depend on different forms of editing (and therefore tooling) than

regular text. Code could contain a mathematical formula, an image, or an interactive

widget. The overarching programming paradigm dictates, to some extent, which

representational forms other than plain text are adequate. Van Roy [VR09] defines the

term “programming paradigm” as “an approach to programming a computer based

on a mathematical theory or a coherent set of principles”. He argues that an ideal

programming language should support multiple paradigms so that programmers are

capable of solving a variety of problems; however, this “multiparadigm programming”

gives rise to questions on how different paradigms are best supported within a single

environment so as to reduce the cognitive load for programmers.

In addition, the creators of programming languages often seem to make arbitrary

choices as far as syntax and semantics are concerned. As a result, the design of

languages may be based more on personal taste of a small group of developers than on

objective measures [HLG12]. This begs the question whether an objective measure on

what exactly constitutes a “better” programming language exists. Stefik et al. [SSSS11]

have created a programming language that is based on empirical metrics gained from

a long-term study. They claim that results from their study towards more intuitiveness

in programming languages were “highly encouraging”. For example, they found that

participants rated the syntactical keyword “repeat” significantly more intuitive as

the widely used keyword “for”. In another study [HGL13], researchers remarked,

“physical aspects of notation, often considered superficial, can have a profound impact

on performance”. Although these results appear intriguing, it seems unlikely that they

will have a major influence on mainstream programming languages currently used in

industry. Myers and Ko [MPK04], for instance, note:

“It is somewhat surprising that in spite of over 30 years of research in the

areas of empirical studies of programmers (ESP) and human-computer in-

teraction (HCI), the designs of new programming languages and debugging

tools have generally not taken advantage of what has been discovered.”

The adoption of programming languages depends on a variety of factors. In a recent

and extensive study, Meyerovich and Rabkin [MR13] analyzed a large number of

15

Chapter 2. Background

project repositories and surveys of programmers in order to empirically find out which

factors contribute to the popularity of programming languages. The authors report

three findings: First, they observe a power-law distribution in language adoption

(few languages are used the most). Second, external factors (e.g., available libraries,

existing code, and personal experience) are more important than intrinsic language

features (e.g., performance, reliability, semantics). Third, developers adopt and

abandon languages multiple times during their professional life, independent of age.

Furthermore, they tend to be familiar with more languages when teachers introduced

them to different language paradigms in their education. Finally, Meyerovich and

Rabkin remark, “developers consider ease and flexibility as more important than

correctness”.

2.1.2 Cognitive Aspects of Programming

The gap between industry and academia becomes even more evident in research on

the psychology of programming, specifically on cognitive architectures and mental

models. According to Hansen et al. [HLG12], the first period of research on the

cognitive aspects of programming began in the 1960s and 1970s. Researchers ap-

plied psychological theories to computer science and carried out experiments that

“looked for correlations between task performance and language/human factors – e.g.,

the presence or absence of language features, years of experience, and answers to

code comprehension questionnaires”. Hansen et al. explain that the second period,

starting at 1980, has focused on cognitive models in order “to explain basic mental

processes and their interactions”. In other words, they have investigated the usability

of programming languages.

As previously mentioned, some studies have had intriguing results but dominant

programming languages have ignored academic findings. It is remarkable that scientific

accomplishments have not shaped programming more fundamentally, not least since

it is often referred to as one of the mentally most demanding tasks humans perform.

A characteristic example of this omission, mentioned in [HLG12], was the decision

on which design of two versions of a certain language feature in the C++ language

(“Concepts”) to reject. After debates among disagreeing experts, the feature was finally

removed without considering an objective study of the advantages and disadvantages

of those designs.

16

2.1. Source Code, Programming, and Usability

The differences in mental models between novice- and expert-programmers are well

known. Winslow [Win96] reviewed significant findings of psychological studies

about computer programming in a paper about “Programming Pedagogy”. He notes,

“[novices] lack an adequate mental model of the area” and “it takes approximately ten

years to turn a novice into an expert”. A detailed discussion of mental models and

cognitive architectures for programming is beyond the scope of my work. However,

this section intends to acknowledge tooling (the focus of this work) as only one vital

component for improving the usability of programming. The Programming paradigm,

the design of a programming language, and mental models positively affect if pro-

grammers feel that working with source code is “usable” according to the ISO 9241

definition.

2.1.3 Forms of Representation

The definitions of “Source Code” at the beginning of the chapter do not unequivocally

state that source code has to be text. I would argue that most programmers–other than

those working in highly specialized domains–usually think of source code as consisting

of “listings of commands” as in the Oxford definition. Code, however, might also be

represented in purely visual ways or textual and visual ways (hybrid representation).

Here, the word “representation” refers to the external representation (i.e., the output

that the programmer interacts with on the screen), and not the internal representation.

(Visual representations are often automatically translated to textual representation

without programmer intervention.) I will introduce the aforementioned three forms of

external representation in this section since they arguably belong to the most deciding

factors concerning how programmers interact with source code. These forms also

differ significantly in how toolmakers should design appropriate editors.

Textual Representation

At the present time, textual representation is evidently the most widely used form, not

least because programming was invented as sequences of text-based commands. While

devices using punch cards could already perform calculations purely mechanically in

the 18th century, the first electronic computer was built in the 1940s [Rob08]. The

act of programming involved using assembly language to write low-level instructions

for the machine to execute. Today, programming usually means using a high-level

17

Chapter 2. Background

programming language, such as Java or C, and entering textual instructions into an

editor. Most editors colorize parts of the text according to the API and semantics of

the programming language, thereby helping programmers to recognize keywords and

relationships in the code.

Depending on the editor, applications support programmers to varying degrees in

writing code; however, textual programming requires the programmer first to learn

and internalize the programming language. To be able to solve different tasks efficiently,

programmers should usually learn more than one programming paradigm [VR09],

which also often implies learning more than one programming language. This text-

based nature of most programming languages provides an opportunity for usability

improvements of programming: All improvements that affect the general interaction

with text directly apply to text-based programming environments. (The same is not

necessarily true for visual programming, for instance.)

Visual Representation

Visual representations could be divided into two categories: Representations that

solely act as a “facade” to an underlying text-based programming language, and

representations that were primarily designed to be visual. The latter could internally

be translated into a text-based representation; however, the programmer does not see

or modify the output in that case. Visual representation means programming concepts

are not exclusively expressed as text but as visual elements that the programmer

manipulates in order to create a meaningful program. Components could be user

interface elements such as boxes, sliders, arrows, or any other graphical elements,

including text snippets displayed in input fields. The editing activity typically consists

of configuring, rearranging, and connecting components on a canvas, but the details

depend on the concrete development environment.

Compared with text-based languages, where any text editor can be used to mod-

ify programs, visual programming languages and their tight coupling to the editing

environment could be regarded as disadvantage. Some domains, however, derive

particular benefits from the graphical representation. For instance, Petri nets, a mod-

eling language for distributed systems, communicates concepts through its graphical

notation and may thus increase the programmer’s understanding of the overall system.

Moreover, user interfaces for creative audio and video tools are well suited because

the development environments give artists visual real-time control and feedback over

18

2.1. Source Code, Programming, and Usability

music, video, or hardware installations. This degree of interactive and intuitive pro-

gram manipulation is hard to imagine with text-based languages. Besides artists,

novice-programmers are a popular target audience for environments with visual rep-

resentation. Programming concepts can be simplified through visual notation, which

benefits novices in learning the fundamentals of programming. Such environments

often fall into the previously mentioned category of tools that purely act as a “facade”

for code generation.

According to critics, visual programming could not deliver its promise of increasing code

understanding [MK09]. They point out that research has shown text to be more natural

and space-efficient than visual languages [MK09]. Other mentioned disadvantages

include the lack of specifications and portability, difficulties with automatically laying

out the components of a program without causing disorientation, or the challenges

involved in creating the same infrastructure and tools that currently exist for text-based

languages [Mye90].

Hybrid Representation

The debate on whether the future of programming is textual or visual in nature has

been persistent since the development of the first visual languages. Since arguments in

favor of both approaches could be listed, “the best of both worlds” might be combined

in hybrid representations. Symbolic programming in particular appears as a natural

fit for representations consisting of mixed modes. For example, a symbol could be a

mathematical formula rendered in mathematical notation instead of a sequence of

characters. Users could then manipulate the formula using a widget that provides

unique capabilities for maths, while other parts of the program remain textual. The

potential of symbolic programming goes far beyond this simple example. Recent

projects such as the “Wolfram Language”1 have demonstrated the vast possibilities

that emerge when symbolic manipulation is linked with built-in knowledge about

computation and artificial intelligence.

Discussion

In textual development environments, programmers can reuse all of their already

acquired skills for working with text. Text allows programmers to express their

1https://www.wolfram.com/language/

19

https://www.wolfram.com/language/

Chapter 2. Background

Source Code	

written in Programming Languages	

	

Programming Paradigms	

Textual	
 Visual	
 Hybrid	

Form	

Development Environments	

support…	
 realize…	

are inherently…	

Figure 2.1: Relationships between programming languages, programming paradigms,
development environments, and forms of representation. (Parts of this diagram are
inspired by Figure 1 in [VR09].)

intentions precisely; files with textual content can be easily stored and exchanged,

or searched and compared. Furthermore, the large portion of existing source code is

text-based, requiring maintenance work for decades to come.

Despite decades of research and hundreds of published papers, visual programming

still has not gained significant acceptance. Currently, its strength primarily lies in

specialized domains. Although some of the existing programming paradigms lend

themselves better to visual programming than others (e.g., the dataflow and reactive

programming paradigm), successful visual programming may require the introduction

of new programming paradigms that are inherently visual and exploit new interactive

capabilities. Mathematical and scientific computing can take advantage of hybrid

representations that visualize the output of computations within the source code. As

programming languages further advance, hybrid forms and embedded widgets might

increasingly appear in mainstream development environments. (Hybrid approaches

are further discussed in the following sections on types of IDEs.)

Figure 2.1 illustrates the relationships between programming languages, programming

paradigms, development environments, and forms of representation: Source code is

20

2.2. Integrated Development Environments

written in different programming languages that realize one or more programming

paradigms. Languages are either inherently textual, visual, or hybrid. Development

environments, in turn, support one or many languages and represent languages

either as textual, visual, or hybrid. (Note the difference between inherently and

represent.)

2.2 Integrated Development Environments

Programmers typically create and edit source code in Integrated Development Envi-

ronments (IDEs); that is, applications that provide collections of tools for working

with code. Some programmers favor text editors over IDEs. Although text editors are

components of IDEs, as I will discuss later, the boundaries between an IDE and a text

editor can be blurred.

2.2.1 IDE Components

To my knowledge, an official definition of IDE does not exist; nevertheless the term

commonly implies presence of typical features for editing, inspecting, running, and

debugging source code. The visible feature set of IDEs could be divided into the

following functional units:

File Browsing and Version Control

Source code is usually browsed in hierarchical views of files and folders, as

known from the file browsing facilities of operating systems. In addition, VCS

(Version Control Systems) may link to the file browser and–depending on the

degree of integration–enable features for interacting with code repositories.

Projects and File Sets

An IDE allows programmers to create a project that groups related source code

as form of organization. File sets are organizational structures for creating

sub-groups of source code within a project. The term for this concept varies and

an IDE might have multiple mechanisms for sub-grouping and code organization

or none at all. Projects may also persist settings for the current session and

restore its state when the programmer reopens the IDE.

21

Chapter 2. Background

Code Editing and Code Intelligence

Code editing in a text editor is one of the core capabilities of an IDE. The edit-

ing facilities typically include syntax and error highlighting, auto-completion,

code formatting, bracket matching, code folding, interactive gutters, help and

documentation lookup, and other forms of instant feedback for programmers.

Features concerning code intelligence (syntactic and semantic analysis) consider-

ably vary between IDEs. The availability of automatic program transformations

(Refactoring) is a distinctive feature that sets IDEs apart from pure text editors.

In addition to providing general tooling for programming, most IDEs support

multiple programming languages. Syntax highlighting, code completion, or

error reporting, for example, are language-specific features. Some IDEs support

only a single language or a subset of related languages (e.g., web programming

languages or languages for mobile development).

Navigation and Search

Since larger projects may consist of hundreds or thousands of files, navigating

and searching source code is a crucial IDE feature. Code navigation can take

various forms. IDEs provide facilities for navigating within a single source file

(intra-code navigation) and navigating between multiple source files (inter-code

navigation). Programmers navigate source code by selecting linked keywords or

entities in hierarchical views. Search commonly allows users to find and replace

code within individual files or project-wide.

Testing and Debugging

The process of testing or executing programs differs between programming

languages, but IDEs typically allow code to be run and tested in predefined

or configurable target environments. Users can attach a debugger to running

programs for diagnosing and finding errors.

Extensibility and Customization

Most IDEs provide an architecture for plug-ins to let users install additional fea-

tures on the environment. Features could be enhancements to the user interface

or support for new programming languages. Standard customization options

include the possibility to change the editor appearance, keyboard shortcuts, or

compiler settings.

22

2.2. Integrated Development Environments

2.2.2 Usability and Usefulness of IDEs

The high number of IDE modules indicates that programmers are confronted with a

considerable amount of features. Over the years, IDEs have grown in functionality

and tend to keep adding more components. The abundance of functionality has led to

convoluted user interfaces and an enormous number of keyboard shortcuts. Perhaps

unsurprisingly, a high number of changes to Eclipse, a popular open-source IDE, can

be attributed to usability-related issues [HW09].

In their review of literature on IDE usability, Kline and Seffah [KS05] note:

“All of these results indicate that, in general, IDEs and related tools have

not had the positive effects on developer productivity and software quality

anticipated in the early 1980s. This is unfortunate because the cost of

adopting an IDE is not insignificant: It can be as high as about $20,000

(US) per developer after all product and training costs are considered

(Lending and Chervany, 1998).”

The rise of polyglot programming (i.e., programming in multiple languages) has forced

developers to use more than one development environment. The requirement to create

programs for several target platforms, as it is common practice for mobile develop-

ment, entails that developers become familiar with different IDEs. This switching of

development tools can lead to productivity loss because the user interface, keyboard

shortcuts, and configuration are not consistent between applications.

Kline and Seffah also stress the significant difference between usability and usefulness.

In their paper “Designing Useful Tools for Developers” [LM11], LaToza and Myers

argue, “useful tools must solve an important problem”. They define an important

problem as one that sufficiently satisfies the criteria of frequency, duration, and quality

impact. For example, an issue that frequently occurs with little impact and an issue

that less frequently occurs with high impact could both be regarded as “important

problems”. In Chapter 3, I present work for solving such problems.

2.2.3 Text Editors and IDEs

Usability issues and confusing interfaces might have contributed to some develop-

ers favoring text editors over IDEs. Text editors, as standalone applications, differ

from IDEs in that they lack particular components and graphical tools of IDEs but

23

Chapter 2. Background

instead provide advanced text editing features. Since most of these operations are

completely keyboard-driven, users can reach high efficiency once they master the

keyboard shortcuts. Some text editors offer extensions points to support multiple pro-

gramming languages or third-party plug-ins that add specific functionality. When such

extension mechanisms are exploited, text editors begin to resemble IDEs. Although the

boundaries between an IDE and a text editor can be blurred, developers seem to have

a clear idea of which concrete applications belong to each type.

The popular open-source text editor Emacs2 is an example of a text editor that–through

its extension architecture and customization options–can be turned into a full-fledged

IDE. “Emacs-type” editors [Fin91] have arguably had major influence on modern

IDEs. As a consequence of the number of available tools, developers regularly engage

in debates3 about the advantages of their chosen environment and point out the

weaknesses of competing products. Although these comparisons are rarely based on

objective evidence, there are empirical studies discussing trade-offs between IDEs and

text editors.

For instance, Dillon et al. [DAB12] conducted a study in a python programming course

where one group of students had transitioned from using an IDE to using a text editor,

while the other group had transitioned from text editor to IDE usage. (The authors

refer to IDE as “visual environment”, namely IDLE, and to text editor as “command-line

environment”, namely VIM.) Dillon et al. summarize, “the consistency and affordance

of certain features in visual environments could cause novices to develop a false

perception of programming”; and, in contrast, “command line environments may

enable novices to develop better mental models for programming because of their

limited features, which could also allow them to transition to other environments

much easier”. Studying expert programmers in this way, however, may be difficult due

to a variety of confounding factors.

2.3 Types of IDEs

Very recently, the programming language BASIC has celebrated its 50th birthday. BASIC

played an important part in the development of the first application that could be

labeled as IDE. In the following sections, I present illustrative examples of historic tools,

2http://www.gnu.org/software/emacs/
3http://en.wikipedia.org/wiki/Editor_war

24

http://www.gnu.org/software/emacs/
http://en.wikipedia.org/wiki/Editor_war

2.3. Types of IDEs

introduce different types of IDEs, and conclude with recent developments in the IDE

landscape. Most of the examples are either open-source or commercial applications, or

applications that have grown out of research projects. More research-oriented projects

and enhancements to individual modules are presented in Chapter 3.

2.3.1 The first IDE

The Dartmouth Time Sharing System (DTTS) revolutionized computing in the 1960s

since it enabled multiple users to operate a computer via terminal. In his paper on

BASIC [Kur81], Thomas E. Kurtz explains that, before DTTS, executing programs

involved punch cards, printouts, and long waiting times until users received the results

of their programs. The introduction of DTTS and BASIC eliminated administrative

issues and was better suited for teaching students the fundamentals of programming.

Students could interact with their programs in an environment that, in a basic form,

resembled an IDE. Kurtz notes:

“[...] the user deals directly only with his BASIC program. He need not

even know that such things as “object code” exist. The user could compile

(by typing RUN), receive error messages, edit by typing line-numbered

lines, and recompile, all within seconds.”

2.3.2 Textual Environments

As previously mentioned, text editors (source code editors) become IDEs through their

extension architecture. Emacs (Figure 2.2a), originally developed by Richard Stallman

in the 1970s, includes a basic graphical user interface that could be operated via the

mouse. However, the efficieny commonly associated with operating text editors is

gained by manipulating text through keyboard shortcuts or composed keybindings.

Other popular text editors for code editing include VIM4 or Sublime Text5. VIM assumes

a special position through its modal editing style and composable editing operations.

While general-purpose editors let users flexibly edit textual content, structure editors

impose constraints during editing. The Cornell Program Synthesizer [TR81] is an early

example of an editor enforcing syntax-directed editing and thus trading flexibility for

4http://www.vim.org/
5http://http://www.sublimetext.com/

25

http://www.vim.org/
http://http://www.sublimetext.com/

Chapter 2. Background

maintaining the document structure. In chapters 3 and 5, I will revisit text editors and

their different interaction styles.

(a) Emacs6 (b) Vim7

Figure 2.2: Two popular text editors: Emacs and Vim.

REPLs (Read-Eval-Print-Loop) are possibly the simplest form of text-based environ-

ments. An REPL could be a UNIX command line shell that reads user input, evaluates

the input, and prints the output before returning back to the read state. Consequently,

REPLs could be regarded as rudimentary text-based development environments.

2.3.3 Modern Desktop Environments

Although almost all IDEs can be labeled as “Desktop IDEs”, by this term, I refer to

conventional IDEs that today many programmers use for classic software development

tasks. The IDE for Smalltalk, one of the first object-oriented languages, preceded

modern software development environments for desktop computers. The Smalltalk

IDE has been described as follows:

“[...] first true Integrated Development Environment (IDE), and the first

IDE that eliminated the “Edit-Compile-Link-Run-Test-Debug” build cycle

by integrating them all together so that cycle turn around time can be

7http://upload.wikimedia.org/wikipedia/commons/5/5a/Emacs-screenshot.png
7http://media.cdn.ubuntu-de.org/wiki/attachments/11/39/vim-in-action.png

26

http://upload.wikimedia.org/wikipedia/commons/5/5a/Emacs-screenshot.png
http://media.cdn.ubuntu-de.org/wiki/attachments/11/39/vim-in-action.png

2.3. Types of IDEs

(a) The Smalltalk-80 IDE [Gol83] (b) Eclipse10

Figure 2.3: The Smalltalk IDE as predecessor to modern IDEs such as Eclipse.

measured in seconds and all phases can be active at once - true interactive

development!8”

Figure 2.3 shows the early user interface of the Smalltalk-80 IDE. The system browser

on the top allowed programmers to navigate through categories and to easier find

programmable objects, methods, and properties; the scripting pane below displays

modifiable code. Although modern IDEs have extended navigation and browsing

facilities, the Smalltalk browser could be regarded as a model for the class browsers of

modern IDEs.

Eclipse (Figure 2.3b), a project initiated in 2001 and promoted by a consortium of

industry leaders9, is a widely used open-source IDE. Its open and extensible architecture

has been a “catalyst” [MK09] for a number of tool-focused software engineering studies

that otherwise would have been difficult and costly to conduct [MK09].

Other popular IDEs include Netbeans (open-source)11, IntelliJ IDEA (commercial)12,

Microsoft’s Visual Studio (commercial)13 or Apple’s Xcode (free but closed-source)14.

Some IDEs (e.g., Visual Studio or Xcode) primarily target the environment and ecosys-

tem of the manufacturer’s own programming languages.

8http://www.smalltalk.org/articles/article_20040000_11.html
9http://www.eclipse.org/org/

10http://www.eclipse.org/screenshots/images/AJDT-Mac.png
11http://netbeans.org/
12http://www.jetbrains.com/idea/
13http://www.visualstudio.com/
14http://developer.apple.com/xcode/

27

http://www.smalltalk.org/articles/article_20040000_11.html
http://www.eclipse.org/org/
http://www.eclipse.org/screenshots/images/AJDT-Mac.png
http://netbeans.org/
http://www.jetbrains.com/idea/
http://www.visualstudio.com/
http://developer.apple.com/xcode/

Chapter 2. Background

(a) Rand Corporation’s GRaIL16 (b) MIT’s Scratch17

Figure 2.4: Two environments for visual programming with almost 40 years between
their development: GRaIL and Scratch.

2.3.4 Visual Programming Environments

According to Myers [Mye90], “Visual Programming” ”[...] refers to any system that

allows the user to specify a program in a two (or more) dimensional fashion”. He

emphasizes the difference between “Visual Programming” (VP) and “Program Visual-

ization” (PV): While the first term denotes programs created using graphics, the latter

implies textually specified programs, with some parts of the program being visualized

after creation. Myers uses the term “Visual Languages” (VL) to refer to both VP and

PV and, in his taxonomy, further differentiates between compiled and interpretive

languages.

Remarkably, one of the first environments for graphical programming was already

developed in 1968 and still appears futuristic when compared to the state-of-the-art of

current development environments. The project GRaIL (GRaphical Input Language,

Figure 2.4a) provided programmers with an editor that was operated using a tablet

and a stylus. The system recognized drawn forms and converted them to parts of a

flowchart. GraIL interpreted all hand-drawn figures and stylus gestures in real-time

while showing the result on a display surface. The details of the interaction are

described in a research memorandum published by Rand Corporation15.

15http://www.rand.org/content/dam/rand/pubs/research_memoranda/2005/RM5999.
pdf

17http://www.youtube.com/watch?v=QQhVQ1UG6aM
17http://scratched.media.mit.edu/sites/default/files/GettingStartedGuidev14.

pdf

28

http://www.rand.org/content/dam/rand/pubs/research_memoranda/2005/RM5999.pdf
http://www.rand.org/content/dam/rand/pubs/research_memoranda/2005/RM5999.pdf
http://www.youtube.com/watch?v=QQhVQ1UG6aM
http://scratched.media.mit.edu/sites/default/files/GettingStartedGuidev14.pdf
http://scratched.media.mit.edu/sites/default/files/GettingStartedGuidev14.pdf

2.3. Types of IDEs

MIT’s Scratch (Figure 2.4b), developed much later in 2006, is an example of a visual

programming environment aimed at children and youths. Users construct programs

by arranging and configuring code blocks on a canvas. Although many other visual

environments exist, Scratch stands out since it has been subject of a considerable

amount of research18 around visual programming. Android App Inventor19, another

MIT project, is similar to Scratch in its user interface concepts but targets mobile

application development. An extensive review of programming environments and

languages for novice programmers can be found in a publication by Kelleher and

Pausch [KP05].

In contrast to development environments for novices, domain-specific visual environ-

ments are used by experts in highly specialized areas, such as scientific modeling

and engineering, design of electronic circuits, algorithmic trading, or 3D modeling.

For creative audio and video applications, artists frequently work with flow-based

programming environments. For instance, in the environment vvvv20, the effects of

visual manipulations occur in real-time when component parameters or links between

elements are changed. This “wiring together” of components gives programmers

immediate feedback and thus allows them to interactively refine their compositions.

The scientific modeling environment LabVIEW21 uses similar techniques of graphically

connecting functional blocks and thereby controlling the flow of data through the

program.

2.3.5 Hybrid Environments

Classifying environments into textual, visual, and hybrid environments leads to a fine

line to be drawn between visual programming environments and hybrid environments.

Depending on the definition, an environment allowing programmers to specify scripts

containing program logic as part of an otherwise graphical specification of a program,

could be classified as visual environment; here, this approach is referred to as “hybrid”

environments. Apple’s HyperCard [Goo87], released in 1987 and frequently mentioned

as predecessor of modern authoring tools or visual GUI builders, may fall into this

category. The development environment allowed users to attach scripts to objects

arranged on virtual stacks of cards. Although the application primarily targeted

18http://scratch.mit.edu/info/research/
19http://appinventor.mit.edu/
20http://vvvv.org/
21http://www.ni.com/labview/

29

http://scratch.mit.edu/info/research/
http://appinventor.mit.edu/
http://vvvv.org/
http://www.ni.com/labview/

Chapter 2. Background

(a) Barista (Ko and Myers [KM06]) (b) Qt console in IPython24

Figure 2.5: Two hybrid development environments mixing textual and graphical
elements.

non-programmers, the scripts controlled the appearance and interactivity; it thus

represented a hybrid approach to programming.

The research project Barista (Basic Abstractions for Rapidly Implementing Structured

Text-editing Applications) by Ko and Myers [KM06] is a framework for building

hybrid code editors. Figure 2.5a shows the user interface of a Barista application

displaying text alongside graphical content in the editor window. The authors call

this example the “media-rich annotation of a Java method”. The textual source code

remains editable as in a purely textual environment, but additional embedded elements

represent individual parts of the code visually and interactively (labeled “situated,

task-appropriate views” by the authors).

IPython22, another project supporting mixed presentation forms, lets developers in-

teractively work in the terminal or a web-based “notebook”. IPython describes its

notebook as “a web-based interactive computational environment where you can com-

bine code execution, text, mathematics, plots and rich media into a single document”23.

The architecture of IPython is language-agnostic; that is, its kernel can be reused for

other programming languages that aim to facilitate interactive scientific computing.

Figure 2.5b shows the output of a graphics operation in IPython’s Qt console as inline

plot below the corresponding textual setup code and its final method call for plotting

the result.
22http://www.ipython.org
23http://ipython.org/notebook.html
24http://ipython.org/_static/screenshots/ipython-qtconsole-thumb.png

30

http://www.ipython.org
http://ipython.org/notebook.html
http://ipython.org/_static/screenshots/ipython-qtconsole-thumb.png

2.3. Types of IDEs

2.3.6 Recent Developments

Recently, two types of development environments have received new interest, namely

live-programming environments and Web IDEs. I have briefly mentioned the concept of

live-programming in visual environments for audio and video applications. However,

live-programming is also applicable in textual environments, as demonstrated by

McDirmid [McD13]. He argues that some live-programming environments are only

partially useful since they are limited to showing the visual result, whereas steps

in between single calculations (the program execution) remain hidden. With his

language YinYan, he attempts to fix the issue by allowing programmers to “probe”

selected expressions that show their values in the source code during the execution

of the program. Additionally, YinYang’s “tracing” enhances regular print-debugging

by linking navigable output back to source code positions. These concepts endeavor

to achieve “true” live-programming environments where editing, debugging, and

deploying applications occur in real-time without technology-imposed interruptions

and delays while programming.

Successfully crowd-funded projects such as LightTable25 indicate that instant feedback

attracts wide interest beyond the research community. This seems to be further

supported by Apple, who have recently integrated a feature called Playgrounds into the

Xcode IDE. Playgrounds are enabled by Apple’s new programming language Swift26 and

allow developers to edit code and immediately see the results of execution. When code

runs over time, additional panels visualize the changing values and let users “scrub”

through the code so that single execution steps can be inspected and fine-tuned.

Web IDEs, as the name suggests, are IDEs running within web browsers instead of

regular application windows. Since applications from a growing number of domains are

brought to web browsers, Web IDEs may be the logical next step in IDE evolution. The

availability of open-source components for basic code editing might have contributed

to the steady increase of new web-based development environments. Organizations

behind large IDEs such as Eclipse or Visual Studio, have been working on web-based

code editors (e.g., Eclipse Orion27) or on moving individual components to the web

(e.g., Visual Studio Online28). According to Kats et al. [KVKV12], Web IDEs enable

“connectedness”, “centralized configuration and deployment”, “integration with other

25http://www.lighttable.com/
26https://developer.apple.com/swift/
27http://www.eclipse.org/orion
28http://www.visualstudio.com/

31

http://www.lighttable.com/
https://developer.apple.com/swift/
http://www.eclipse.org/orion
http://www.visualstudio.com/

Chapter 2. Background

services”, and “infinitely scalable resources”. However, Kats et al. note that IDE

architecture must be fundamentally re-examined since the web platform imposes

numerous technical and social constraints. The authors’ outlined research agenda

shows that moving software development to the web generates a number of challenges

for future research.

2.4 Programming on Touchscreens

In the preceding sections of this chapter, I have presented definitions of the term

“source code” and given an overview of programming languages, paradigms, and

usability aspects. I have introduced different forms of representation and types of IDEs

for working with these representations. While future IDEs might implement more

live-programming features, run on the web, or realize hybrid programming paradigms,

the previous discussion has so far not considered another important factor, namely the

target device. Except for few systems, such as GRaIL, all shown IDEs run in desktop

environments. The term WIMP (Windows Icons Menus Pointer) has commonly been

used to refer to the dominant interaction style of conventional dektop systems: Users

interact, through the mouse and keyboard, by selecting icons and menu entries on a

window-based operation system. In recent years, however, more and more “Post-WIMP”

systems have entered the market. A large proportion of smartphones and tablets use

touchscreens that require different user interfaces and interaction styles.

While there is some research on touch-based programming, major IDEs have yet to

be adapted to work on touchscreens. The cautious adoption of new target devices

and the general stagnation of improvements in user interaction could be attributed to

various factors. On the one hand, IDEs have often been developed over several years

(or decades) and thus tend to be complex with regard to their internal application

architecture and their external user interfaces. This inherent complexity generates

challenges for porting the systems to new platforms. IDEs might need to be entirely

re-architected and re-designed for space-constrained touch-enabled devices. On the

other hand, in order to edit source code and handle the large amount of functionality,

efficient usage of desktop IDEs relies on the keyboard. Text input and the absence

of keyboard shortcuts, in contrast, has been a well-known shortcoming of devices

with touchscreens. Despite considerable research in the area of touch-based text entry,

32

2.4. Programming on Touchscreens

almost all commercial systems provide software keyboards that can be difficult to

use.

Although I discuss the topic of software architecture for IDEs at the end of this thesis, my

work is mainly concerned with the challenges of improving IDE interaction for touch-

based devices. The capabilities of modern devices for multi-touch interaction and their

support for gestural interaction styles enable new tools for touch-centric manipulation

and creation of source code. As previously mentioned, textual representation of source

code has, compared with its alternatives, a number of intrinsic advantages. Since

current mainstream programming languages are optimized for editing in regular text

editors, this research can build upon extensive infrastructure. Consequently, the scope

and approach of my work is examining the interaction with textual representation

of source code on touchscreens (touchable source code). More specifically, this work

includes research on the aspects of editing, selecting, and creating source code (Figure

2.6); that is, the research is primarily directed towards the code editor.

Textual Base Representation	

Text Editing and Source Code Editing	

Touch-­‐enabled	
 Device	

IDE	

Touchable	
 Source	
 Code	

Editing	
 Selecting	
 Creating	

Mul7-­‐touch	
 and	
 Gestures	

Figure 2.6: Scope and general approach of this work. Devices with touchscreens
serve as hardware platform. The IDE natively runs on the target device and supports
touchable source code consisting of three main layers: Users interact, through multi-
touch and gestures, with the text and code editing layer; the code editing layer uses
textual representation as basis. The top interaction layer shows the research part of
this work (editing, selecting, and creating source code).

33

Chapter 3

Related Work

In this chapter, I summarize related research on touch-based development environ-

ments and interaction methods for code editors. Work presented here focuses on the

user interface and interaction, whereas technical aspects and software architecture are

separately discussed in Chapter 8. Also, this chapter includes work on improvements

to code intelligence features such as code completion, or how researchers have tackled

the problem of navigating large code bases. Furthermore, I highlight projects from

the field of text entry and editing since textual programming on touchscreens calls for

efficient input methods. Finally, I show existing techniques for gesture-driven execu-

tion of (menu) commands, and conclude with projects that have applied multi-modal

interaction.

My work lies at the intersection of two main research areas: Human-Computer In-

teraction (HCI) and Software Engineering (SE). Relevant conferences for referenced

work primarily include the following ACM (Association for Computing Machinery)

conferences:

• CHI (Conference on Human Factors in Computing Systems)

• UIST (User Interface Software and Technology)

• SPLASH (Systems, Programming, Languages, and Applications: Software for

Humanity) with its sister conferences OOPSLA (Object-Oriented Programming,

Systems, Languages & Applications) and Onward!

• EICS (Engineering Interactive Computing Systems)

35

Chapter 3. Related Work

• MobileHCI (Conference on Human-Computer Interaction with Mobile Devices

and Services)

Relevant work was also presented at:

• ICSE (International Conference on Software Engineering) and some of its work-

shops, such as CHASE (Workshop on Cooperative and Human Aspects of Software

Engineering)

• VL/HCC (IEEE Symposium on Visual Languages and Human-Centric Computing)

• VISSOFT (IEEE Workshop on Visualizing Software for Understanding and Analy-

sis) and SOFTVIS (ACM Symposium on Software Visualization)

3.1 Touch and Pen Development Environments

Existing development environments for touchscreens could be divided into environ-

ments for 1) tabletops, 2) tablets, and 3) smartphones. Classification based on device

type or screen size, however, considers only the hardware and ignores the software

and its design philosophy. For instance, some environments support structured editing

and use graphical programming, whereas other tools allow for flexible input and use

textual representation. In this section, I do not strictly categorize related projects based

on hardware or software, but briefly present notable work in mostly chronological

order.

In Chapter 2, I have briefly discussed GRaIL1, one of the first IDEs for graphical

programming of flow diagrams. Users operated GRaIL with a pen-like input device

and a tablet, similarly to how graphic tablets work today. Alan Kay, who had worked

with the system at that time, emphasized the advantages of this direct manipulation

interaction style23:

“[...] I used it for half an hour in 1968 and felt like I was sticking my hands

right through the display and actually touching the information structures

directly.”

1http://www.rand.org/content/dam/rand/pubs/research_memoranda/2005/RM5999.
pdf

2http://vgable.com/blog/2009/01/18/touching-the-information/
3Video source: http://www.youtube.com/watch?v=QQhVQ1UG6aM

36

http://www.rand.org/content/dam/rand/pubs/research_memoranda/2005/RM5999.pdf
http://www.rand.org/content/dam/rand/pubs/research_memoranda/2005/RM5999.pdf
http://vgable.com/blog/2009/01/18/touching-the-information/
http://www.youtube.com/watch?v=QQhVQ1UG6aM

3.1. Touch and Pen Development Environments

Another early work (1972) by Anderson [And72] introduced a special notation for

programming on tablets. In contrast to GRaIL, users not only drew symbols such

as boxes, but also used textual statements to specify the logic of a program module.

Braces and box-like symbols drawn near the right margin of textual statements denoted

control statements and conditions (e.g., if-then, do-while). Anderson pointed out that

this notation was more compact, printable, and allowed for easier editing than pure

flowcharting. In view of tablet usage, he notes:

“[...] with hardware costs continuing to decline and with increasing expe-

rience in developing flexible character recognizers for use in conjunction

with these tablets, the tablet is becoming increasingly viable as a means of

communicating with a computer”

While graphic tablets are more widely used today, their primary field of application is

digital design and drawing. Software development tools have yet to be rediscovered as

potential environment for pen-based programming.

Frisch et al. [FHD09] have investigated diagram editing on tabletops, that is, large

interactive surfaces where users sit or stand around a table and work on the touch-

screen from above. In their study, the authors asked users to interact with the diagram

by performing those gestures that they regarded most appropriate for an action. In

other words, actual end users rather than experts should design the gesture set. An

often cited work by Wobbrock et al. [WMW09] has inspired a number of such studies

that elicited user-defined gesture sets. After calculating the level of agreement among

the participants’ gestures, researchers usually present a final gesture set. Designers of

similar applications could then use the set as template or recommendation when creat-

ing their own applications. Unlike user-defined gestures, however, gestures created by

interactions designers or domain experts might result in fewer ambiguities.

Zeleznik et al. [ZBAK10] have demonstrated that multi-touch technology is well-

suited for technical work and problem-solving domains. Their system Hands-On Maths

implements a number of interaction techniques for solving mathematical problems.

Users manage virtual documents, write equations holding a pen device, and perform

transformations to these equations using multi-touch gestures or bi-manual interaction

techniques. Zeleznik et al. have argued that users would better learn and perform their

tasks more efficiently if direct multi-touch manipulation and free-form pen input was

enabled. Positive feedback from their prototype evaluation has shown that users find

working in such environments comfortable and natural. Matulic and Norrie [MN13]

37

Chapter 3. Related Work

took a comparable approach and combined pen input and gestures for document

editing on a tabletop. The system follows the same pattern of replacing certain UI

widgets with gestural interaction.

CodePad by Parnin et al. [PGR10] is an environment for maintaining concentration

during programming and software development tasks. The project attaches importance

not only to the efficiency or naturalness of interaction but also to task coordination

so that programmers keep their focus. For this purpose, CodePad provides interactive

spaces for programming-related tasks on secondary touch-enabled devices. These

devices connect to the main IDE and bring additional comfort to development scenarios

such as refactoring, visualization, or navigation. The project draws its design ideas

from the fact that developers usually deal with different artifacts and vary in their

personal working styles. Rather than predicting and displaying relevant information

directly in the IDE, a physically separate space enables programmers to interactively

manage related content and synchronize with the central system. Parnin et al. call this

a “mental playground” for developers and an “additional place to keep their thoughts”.

Although the authors have implemented some of their presented features, their work

remains a vision and suggests research challenges for future work.

The project CoffeeTable [HBKW11], while also supporting multiple devices, aims to en-

hance the software development process through a central tabletop application. Devel-

opers place their laptops onto the surface and then exchange information, visualize the

software architecture, or assign elements to their personal laptop workspaces.

In addition to utilizing tabletops, researchers have explored the idea of programming

on tablets and smartphones. McDirmid [McD11] has introduced the programming lan-

guage YinYang and discussed its suitability for programming games on tablet hardware.

The language is designed around composable tiles with attached identity and behavior.

By simplifying the display of programs through this model, YinYang trades flexibility

for ease of code input. The development environment eliminates cursor movement

and selection by tapping on tiles and selection of menu entries—actions that are easier

to perform on tablets than code entry via a software keyboard. While the author did

not conduct a formal study on input efficiency, his personal test showed that touch

input was about 66% slower than regular keyboard input.

Hesenius et al. [HOMH12] pursued a similar strategy for their tablet-based devel-

opment environment Touching Factor. To increase developer productivity, they used

38

3.1. Touch and Pen Development Environments

concatenative programming4 with its more concise syntax. Despite their advantages

regarding input efficiency, neither YinYang nor Touching Factor allows users to program

in popular textual languages; also, both projects have not formally evaluated their

approach.

The idea to use a smartphone for programming has motivated successful projects such

as TouchDevelop by Tillmann et al. [TMdHF11]. Since smartphones have become

ubiquitous, mobile development environments have the potential to make program-

ming available not only to programmers in developed countries but also to people

in developing countries, where a phone may be the user’s only personal computing

device [TMdHF11]. TouchDevelop primarily aims at giving students and hobbyists the

opportunity to create applications using solely the touchscreen and the capabilities of

their device. Users create their programs in a structured programming language; this

structured language, in turn, enables them to edit their programs in an (although not

strictly) structured editor that provides primitives for common tasks. The resulting

programs run on the devices themselves. Download statistics for the TouchDevelop ap-

plication indicate that its concept has been found valuable by non-professionals.

Ihantola et al. [IHK13] have created a mobile programming environment that is

geared towards teaching programming. Their system facilitates slightly more flexible

input by extending a block-based approach with selectable options that can change

the behavior of individual code fragments. In addition to programming on phones,

Nguyen et al. [NCT13] have developed GROPG, an application that provides interactive

debugging features directly on smartphones, similarly to the functionality of desktop

debuggers. Furthermore, projects such as ScratchJr5 or Hopscotch6 have used the

iPad as platform to let young children create interactive programs. Both applications

mainly employ drag-and-drop interaction with blocks of code for visual construction of

programs.

So far, most of the mentioned projects have used variants of structured input to tackle

the issue of efficient code input on touchscreens. Biegel et al. [BHLD14] have recently

pursued a different approach. Instead of creating new applications from scratch, they

have used the popular Eclipse IDE as basis and “touchified” it; that is, they modified

the IDE in particular ways in order to optimize its UI for touch input. For example, the

authors have changed the arrangement of panels, increased the size of user interface

4http://en.wikipedia.org/wiki/Concatenative_programming_language
5http://www.scratchjr.org/
6http://www.gethopscotch.com/

39

http://en.wikipedia.org/wiki/Concatenative_programming_language
http://www.scratchjr.org/
http://www.gethopscotch.com/

Chapter 3. Related Work

elements, and replaced menus with touch-optimized alternatives. On the one hand,

this approach successfully reduces the technical hurdles associated with porting IDE

functionality to touchscreens. Rather than rewriting the entire IDE–a task that would

be immensely time-consuming and non-trivial in the case of Eclipse–UI adjustments

render the application usable on touch displays. On the other hand, this solution

may not be able to take full advantage of natural interaction. As the evolution of

operating systems (e.g., Microsoft Windows) towards touch-interaction has shown,

new interaction techniques remain limited in expression when the core of the system

was originally designed according to the WIMP paradigm. With regard to mobile

devices, a touch-optimized application layer cannot simply be modified to match

the look-and-feel of the platform, thereby risking to deteriorate the user experience.

Therefore, the approach might be most beneficial in situations where the regular

desktop version and the “touchified” version are interchangeably used (e.g., on laptops

that can be converted to tablets). Techniques, such as those proposed in this work,

could additionally be integrated to enhance the editor of the IDE.

3.2 Text Editing

Finseth, author of the exhaustive treatise “The Craft of Text Editing” [Fin91], loosely

defines text editing as follows: “In its most general form, text editing is the process

of taking some input, changing it, and producing some output”. The tool for text

editing, the text editor, is operated by humans and since humans have different

levels of experience and different goals, the design of text editors “must incorporate

knowledge of what task or tasks the user is trying to accomplish” [Fin91]. Finseth

lists five basic types of users with varying amounts of experience in computer usage

and programming: Neophyte, Novice, Basic, Power, and Programmer-Level. Although

“Basic” users, according to this categorization, already understand simple programming

concepts, this work mainly targets the last two categories.

Text input and text editing on touchscreens have notoriously been difficult and led

to a considerable amount of research on interaction techniques, not least since text

operations are crucial for a large number of applications (and for programming in

particular). Before I present solutions to text input on touchscreens, I first discuss text

editing as practiced in desktop environments since it lays the foundations for mobile

40

3.2. Text Editing

and touch-based solutions. Moreover, I differentiate between work on text entry (or

text input) and text editing.

3.2.1 Text Editing in Desktop Environments

Larry Tesler, who contributed the ubiquitous text editing pattern Cut/Copy-Paste more

than 40 years ago, has stressed the importance of modeless text editing [Tes12]. Lesler

defines a mode as:

“a state of the user interface that lasts for a period of time, is not asso-

ciated with any particular object, and has no role other than to place an

interpretation on operator input.”

Tesler gives a concrete example of using modes for text editing: In NLS (onLine System),

an early system by Douglas Engelbart for designing technical specifications, typing the

letter “M” activated “Move” mode. After marking the start, end, and destination of the

source, invoking an “ok” action completed the command. By introducing modeless

suffix command syntax, where users specify actions after the objects they operate

on, Tesler and colleagues could improve error-recovery by using features such as

re-selection and undo.

On the one hand, modes can have adverse effects on error rates and consequently

degrade usability during text editing [Tes12]. On the other hand, text editors such

as VIM7 exclusively rely on modes and still enjoy high popularity with developers.

However, VIM is widely perceived as having a steep learning curve for becoming

efficient. Furthermore, Tesler argues that modeless editing typically requires fewer

keystrokes and button presses, and ultimately saves time. His modeless system Gypsy

implemented basic text editing features that later became standard: Among other

things, Gypsy introduced clicking between characters to set the cursor insertion point,

dragging down and up to select text, double-clicking to select a word, cut/copy and

paste, and searching text via editable input fields.

Another early work on text editing includes Pike’s text editor sam [Pik87] and Acme

[Pik94]. In sam, users could perform repetitive editing tasks by typing command syntax

containing regular expressions. Acme aimed at supporting programmers in an editing

environment that promoted mouse usage as interaction style for text operations.

7http://www.vim.org

41

http://www.vim.org

Chapter 3. Related Work

In contrast to text editors, structure editors enforce a syntax-directed editing style; that

is, users directly modify the syntax tree. For instance, a structure editor for XML

documents can prevent users from invalid operations because all edits are checked

against a formal schema. Despite their advantages in preventing errors, early syntax-

directed editors could not gain wide acceptance due to usability issues [KU93]. The top-

down editing style can render individual modifications to source code time-consuming

[KAM05b]. To propose improvements to structure editors, Ko et al. [KAM05b] have

studied programmers’ text editing strategies. In the authors’ user study on how

programmers approach code editing, they have identified a number of patterns. For

instance, editing names in declarations and references accounted for 43% of all edits,

while editing lists accounted for 23% of their data. 15% of all edits were applied to

infix expressions, 6% to keyword structures, 8% to literals, and 3% to comments. The

details of these results indicate the situations where structured editing features might

be beneficial and where more flexible, unstructured editing should be supported.

3.2.2 Text Entry on Touchscreens

Text entry on touchscreens has motivated numerous publications on ways of entering

characters most efficiently without the presence of a physical keyboard. (Due to the

large body of available work, this section only lists selected publications.) Most owners

of tablets and smartphones have presumably experienced inaccuracies when using

on-screen keyboards or have missed the tactile feedback of physical keyboards. Given

the importance of text input, it appears surprising that smartphone manufacturers

have only slowly improved the efficiency of their text entry systems. In a study by

Findlater et al. [FWW11], typing speed on a flat surface (under ideal conditions) was

31% slower than typing on a physical keyboard.

Zhai et al. [ZKG+09] converted their research project ShapeWriter into a (formerly

available) Android application. In ShapeWriter, users draw a stroke over the letters

of a word while the system compensates for inaccuracies or missing letters; the user’s

intended word is found by interpreting the stroke shape. Later, Bi and colleagues

[BCO+12] have extended this concept of drawing over letters to bi-manual input and

multiple strokes. Swype8 builds upon similar mechanics as ShapeWriter and comes

pre-installed on some Android devices. Lately, Apple has introduced QuickType9 in

8http://www.swype.com/
9https://www.apple.com/de/ios/ios8/quicktype/

42

http://www.swype.com/
https://www.apple.com/de/ios/ios8/quicktype/

3.2. Text Editing

iOS 8. QuickType improves typing by predicting appropriate words and phrases based

on the user’s context (e.g., whom the user writes to or which application he uses for

writing). Apple has only recently opened up their APIs for integrating system-wide

custom keyboards.

Furthermore, there has been a number of publications on performance characteristics

of different keyboard layouts [LGYT11], adapting keyboard layouts to the user’s grasp

[CLWC13], and on algorithmic optimizations for the word correction and completion

features of text input systems [BOZ14]. Researchers have employed strategies such as

zooming to enlarge the small touchable areas of keys [PWM14, OHOW13] or used the

back of the device (instead of the front) as interaction area [SO13]. Findlater et al.

[FLW12] have proposed combining bi-manual interaction and multi-touch gestures for

entering alternative characters and punctuation. Moreover, researchers have explored

ways of gesturing over ordinary keyboards [ZL14], and performing gestures while

hovering over the keyboard surface [TKH+14].

Kristensson et al. [KBC+13] have noted that, despite progress in the field of text

entry methods, “the research community is scattered across different fields, such

as human-computer interaction (HCI), natural language processing (NLP), speech

processing, and augmentative and alternative communication (AAC)”. They have listed

three “grand challenges” in text entry, namely: 1) generally improving performance, in

particular on mobile devices; 2) better supporting the diversity of writing systems and

languages; and 3) providing appropriate methods for users with disabilities.

3.2.3 Text Editing Gestures

Editing text includes operations such as selecting words or paragraphs, deleting lines,

or placing the cursor between characters. The advent of touch-enabled devices has

stimulated research on how traditional text editing features can be adapted to take

advantage of gestures. However, researchers considered gesture-driven text editing

earlier than one might expect. In 1987, for example, Wolf et al. [WMS87] explored the

use of hand-drawn gestures for text editing. (Wolf et al. note that the earliest work on

gestural text editing dates back to 1969, but those projects focused more on design and

implementation aspects.) The authors have listed four advantages of this interaction

style. Gestures 1) allow users to specify the command and its arguments in a single

action; 2) improve learning and recall due to their spatial form; 3) enhance the user’s

43

Chapter 3. Related Work

sense of directly manipulating objects; 4) mimic the user’s accustomed working styles

when using pencil and paper.

Furthermore, early work by Goldberg and Goodisman [GG91] from Xerox PARC (Palo

Alto Research Center) describes how the researchers explored the use of a stylus for

text manipulation. Although some of their efforts focused on the technical issues of

gesture recognition–which is today more reliable due to improved algorithms–they also

highlight design principles. For example, they stress the importance of not attempting

to imitate paper, but rather focusing on tasks where stylus systems are superior in

comparison with “analogue” interaction style.

More recently, Fuccella et al. [FIM13] have investigated gestural techniques for editing

text on touch-devices such as smartphones. The authors have remarked that research

on text editing has not received the same amount of attention as research on text

entry. Their approach incorporates drawing gestures for caret movement and text

selection on top of the manufacturers’ on-screen keyboards. This gestural layer is

optional and may or may not be used depending on personal preference. In their user

study, participants who had used the gestures could increase performance between

13% and 24%. The technique of Fuccella et al., however, suffers from the disadvantage

of requiring the keyboard–which covers a considerable portion of the screen–to be

visible while performing the gestures.

In another recent work, Leiva et al. [LAV13] have proposed MinGestures, simple

directional gestures for text operations like deleting, inserting, merging, or splitting.

Their research is driven by disambiguating text editing operations from handwritten

text, and the results primarily apply to post-editing interfaces.

Text editing systems as provided by the operating systems of smartphone manufacturers

typically display UI widgets for text manipulation. Users perform editing tasks through

a combination of dragging selection handles and triggering actions in pop-up menus.

Smartphone operating systems have not yet included gestural text editing capabilities

by default, but users can take advantage of such features by installing a number of

third-party applications from “App Stores”.

In summary, there has been some progress in gestural text editing, but currently only

few users take advantage of editing gestures, and there is no agreed upon gesture set

for standard operations.

44

3.3. Editor User Interfaces and Interaction

3.3 Editor User Interfaces and Interaction

In this section, I highlight novel approaches in user interface design for development

environments. Additionally, I present specific techniques for intelligent source code

editing in code editors and show how researchers have tackled the issue of efficiently

navigating large code bases.

3.3.1 Novel Editor Interfaces

(Note: The following two paragraphs on the projects Code Bubbles, Code Canvas,

and Debugger Canvas are a slightly reworded version of my related work section in

[RWE13]). A number of research projects on novel editor UI concepts could be labeled

as canvas-based editing. Code Bubbles [BRZ+10] has been much-discussed in the

programming community and has continued development after its first presentation.

Code Bubbles seeks to improve code understanding and maintenance; it disregards the

file-oriented nature of existing IDEs and instead shows code fragments that appear

as connected, interactive bubbles on a pannable 2D canvas. Instead of constantly

switching views, the tool automatically groups these concurrently visible bubbles into

working sets for the task at hand. Simultaneous code views simplify code inspection

since they visualize calling sequences and assist developers in understanding the

program flow. The developers of Code Bubbles have demonstrated that their metaphor

significantly reduces the time spent navigating and the time needed to complete code

understanding tasks.

A similar project, Code Canvas [DR10], also takes advantage of spatial memory in

order to reduce disorientation. Using a canvas, linked code fragments, semantic

zoom, and information overlays, it serves as an interactive map for developers. Since

CodeBubbles and Code Canvas have shared some ideas, a collaboration between both

projects has finally led to the industrial tool Debugger Canvas [DBR+12]. The tool is

now part of the debugging facilities of Microsoft Visual Studio. In Debugger Canvas,

a map-like, zoomable surface supports debugging tasks by displaying call paths and

execution traces in a set of connected code fragments (bubbles). Developers can

then step back and forth through the code and visually explore relationships. This

feature is particularly helpful when working with unfamiliar code bases and might help

programmers forming a better “mental model” of the program. However, the authors

of Debugger Canvas acknowledge that their representation may not be as beneficial

45

Chapter 3. Related Work

when developers are familiar with a code base or when they work on smaller problems.

(The tool is realized as separate mode within the main IDE so that switching incurs a

certain overhead.) Since the previously mentioned projects use a zoomable canvas and

do not exclusively rely on traditional user interface elements, they might work well on

touchscreens after adding support for multi-touch interaction.

Other researchers have proposed solutions to augment editors rather than replace the

entire UI. For instance, French et al. [FKD13] have integrated visual programming

elements into textual source code. Since the authors acknowledge that visual pro-

gramming suffers from the frequently cited scaling-up problem [BBB+95], they display

visual elements only when appropriate (e.g., for images, editing tables, or visually

editing regular expressions). This is in line with other work on hybrid environments

such as Barista [KM06], which I have already mentioned in Chapter 2.

Furthermore, I have mentioned live programming approaches in Chapter 2. Likewise,

these projects fall under the category of “novel editor interfaces” since they provide

additional UI elements for interactive and real-time manipulation of an executing

program. Apple’s recently introduced Swift programming language and a feature called

Playgrounds enable such functionality in the Xcode IDE. This integration demonstrates

that mainstream languages have now started integrating promising concepts that were

already used decades ago [HW85] and officially introduced as live programming in

Hancock’s dissertation (2003) [Han03]10.

3.3.2 Intelligent Code Editing

The term “Intelligent Code Editing” refers to IDE features that provide programmers

with help, hints, and recommendations during code editing. Most major IDEs inherently

support code intelligence features for a number of programming languages, whereas

general-purpose text editors often require add-ons. Code intelligence is usually realized

by means of parsing syntax trees, analyzing usage patterns, or even taking advantage

of collective intelligence through crowd-sourcing techniques. After analyzing the code,

the IDE typically displays UI widgets or lets programmers fine-tune results by selecting

menu entries. The ultimate goal of code intelligence is speeding up programming and

preventing users from programming errors.

10http://lambda-the-ultimate.org/node/4715

46

http://lambda-the-ultimate.org/node/4715

3.3. Editor User Interfaces and Interaction

Code Completion

Code completion (or auto-complete) could be regarded as one of the most basic and–

due to growing APIs and the proliferation of code libraries–principal forms of code

intelligence. Code completion encourages developers to explore APIs without having

to switch to separate windows for documentation. The mechanics of code completion

usually work similar to the following pattern: After each entered keystroke, the IDE

refines a list of displayed suggestions; the programmer selects a suggestion from a

menu and completes part of the code by inserting the suggestion through a keystroke

or mouse click. (In Eclipse, auto-completion is called content assist). Since the list

of matches can be large and may contain irrelevant entries, most scientific work on

code completion suggests ways of improving the quality and order of the displayed

matches. For example, improvements beyond analyzing the program structure have

been based on program history [RL08, LHKM13], or crowd-sourcing channels such

as mined code repositories [BMM09, ZYZ+12] and code examples [MFSM10]. For a

recent comparison of different techniques, see [ARSH14].

Omar et al. [OYLM12] have extended code completion with an approach called

“Active Code Completion”. While IDEs like Eclipse display only menu entries and static

documentation next to suggestions, Active Code Completion shows palettes; that is,

custom widgets for code generation. For instance, when a command involving colors

is about to be completed, a color palette renders different color values and a search

field for color names. Another example presented by Omar et al. is a widget for testing

regular expressions before they are inserted into the code. Furthermore, the authors

have developed general guidelines for their concept, which could prove to be useful

when designing similar IDE features.

Errors and Visualizations

Since programmers rarely write code free from errors, features such as highlighting

syntax errors, pointing out bad coding practices, or suggesting fixes for potentially

flawed code, have become standard in modern IDEs. Eclipse, for example, displays

small light bubbles called “Quick Fixes” in the editor gutter when the static analysis

engine detects errors. After a keystroke or click on the bubble, developers can then

select an option to let the IDE automatically fix the code. However, despite their

benefits, research has repeatedly shown that developers tend to ignore results of

47

Chapter 3. Related Work

static analysis tools due to false positives, large volumes of generated warnings, and

inappropriate presentation [JSMHB13]. This is why other projects have attempted to

improve visualizations of problematic code while avoiding information overload and

distractions [MHB10, LvdH11]. The issues commonly associated with error reporting

and debugging have led to tools that allow developers to ask the IDE questions on

why errors have occurred, and to tools that display real-time information about the

run-time behavior of programs in the gutter area of editors [LBM14].

In addition to improving error visualization, new approaches have exploited crowd-

sourcing techniques to help programmers with interpreting error messages and recov-

ering from errors. HelpMeOut [HMBK10], for example, assists users in fixing errors

based on other developers’ past solutions. The tool presents fixes in a separate panel

that explains the error message, allows voting solutions up and down, and lets pro-

grammers automatically integrate the suggested fix into their source code. Fast et

al. [FSW+14] have taken the idea a step further and integrated emergent behaviors

into the IDE; that is, tools driven by knowledge about how developers actually use

programming languages. This knowledge-base fosters applications for uncovering bugs

that occur when programmers differ from common idioms and language conventions

(i.e., when code is unlikely to appear in practice).

Example-centric Editing and Help

Bruch et al. [BBMM10] have previously labeled IDEs that integrate the knowledge

of masses as “IDE 2.0”–following “Web 2.0”, a term that was introduced for crowd-

based web applications about ten years ago. Researchers have devised a number of

projects that apply crowd-sourcing methods for automatic recommendation of code

examples and code snippets. Conventional IDEs support code snippets (short pre-

defined blocks of code) either through auto-completion features or user-defined code

templates. Programmers can trigger code templates via keyboard shortcuts and then

adjust template placeholders to fit their needs. Integration of more complex code

examples, on the other hand, first involves manual copying from documentation or

web sources, and then adapting the examples to the current context.

Programming by Example (or Example-centric Programming) is the research area that

has dealt with advanced strategies for integrating code examples into the programming

workflow. The projects Codelets [OB12] and SnipMatch [WYBV12] appear particularly

interesting from a UI perspective.

48

3.3. Editor User Interfaces and Interaction

Codelets treats code examples as searchable “first-class” objects and displays an in-

teractive adjustment interface as embedded element. This helper-widget allows the

programmer to configure the code based on criteria that documentation authors have

defined in advance. In addition, the widget draws connection lines to parts of the

surrounding code and stays synchronized after edits. In a user study, users of Codelets

could complete example-based tasks 43% faster. Although the authors of Codelets claim

that authoring such examples is straightforward, their concept might suffer from a lack

of prepared third-party Codelets for the multitude of available languages, frameworks,

and libraries.

SnipMatch supports example-centric programming by taking the local code context

(e.g., variable names, cursor position, dependencies) into account when searching and

ranking snippets. After triggering the search interface via a keyboard shortcut, users

can scroll through matches and preview the snippet inline as it would appear if the

code context was considered. Following the selection of a snippet, programmers can

change arguments in a dialog box that reflects all edits in the code while the user is

typing. Authors must prepare the snippets, but due to the similarity to editing code

templates in IDEs, the process seems more lightweight than with Codelets. The central

idea is that shared repositories grow over time as users contribute more snippets.

3.3.3 Code Navigation and Search

Besides editing source code, navigating between source files and within source files

takes a considerable amount of a developer’s time. In a study by Ko et al. [KMCA06],

developers spent 35% of their task time on navigating source code. Developers

spend more time reading than writing code, for example, when diagnosing errors or

attempting to understand unfamiliar code bases. As a result, navigation facilities of

IDEs for fast moving between different parts of a program, and for quickly locating

specific code, are crucial for productivity. Ko et al. also noted, “Eclipse’s navigation

tools caused significant overhead [...] by opening new tabs and requiring a return

navigation”. Programmers can quickly get lost in large programs, but most IDEs do not

make these digressions visible to the developer. After having examined Eclipse usage

data of 67,500 Java developers, researchers discovered that only 6% of developers had

used call graph tools for navigating method chains, and only 18% had used tools for

navigating the inheritance hierarchies of an object-oriented program [VM10]. These

49

Chapter 3. Related Work

findings were attributed to poor usability and lack of discoverability of the built-in

navigational aids of IDEs.

Mylyn11, a popular Eclipse extension, attempts to improve navigation by creating

a “task-context” that automatically collects and displays relevant artifacts. This au-

tomatism, however, might also lead to incorrect assumptions about the developers’

intentions. NavTracks [SES05], another frequently cited work, enhances browsing by

recommending files that programmers might need at hand, although this approach

could be criticized for similar reasons as Mylyn. To support the navigation of soft-

ware artifacts, the previously mentioned canvas-based editors such as Code Bubbles

[BRZ+10] and Code Canvas [DR10] exploit the users’ spatial skills. However, Parnin

et al. [PGR10] cast doubt on the effectiveness of previous approaches by arguing,

“predictive guesses are rarely correct [...] and spatial visualizations break down when

developers must transition to spatially distant locations [...] increasing the likelihood

to become disoriented when panning and zooming.” He proposes displaying addi-

tional information in form of waypoints on top of code and navigation trails between

waypoints. Henley and Fleming [HF14] have expressed similar concerns about canvas-

based editors leading to “on-screen clutter”, navigation errors, and the increased time

spent with having to rearrange code fragments.

Krämer et al. [KKK+13] have stressed the importance of promoting call-graph navi-

gation. They have compared the tools Blaze [KKKB12] and Stacksplorer [KKD+11] to

traditional call-graph tools found in IDEs. Stacksplorer shows automatically updated

method callers and callees in columns next to a focused method in the editor, whereas

Blaze displays a single path through the currently focused method. Both tools could

decrease completion times in user studies involving maintenance tasks. Krämer et al.

note that developers employ less effective strategies, such as text searches, when IDEs

do not provide call-graph tools.

Improving on previous work, Henley and Fleming [HF14] have designed Patchworks.

This code editor displays a grid of 3 x 2 fixed patches with each patch holding a

code fragment. Users can move the grid to the left and right and use a ribbon view

as overview or for adjustments of the patches. Because the grid is restricted to one

dimension, users tend to be less susceptible to navigation mistakes than on 2D canvases.

The results from a user study comparing Patchworks to Code Bubbles and Eclipse showed

11https://www.eclipse.org/mylyn/

50

https://www.eclipse.org/mylyn/

3.4. Commands, Menus, and Gestures

that Patchworks users made fewer navigation mistakes, navigated faster, and overall

reacted positively to this concept.

3.4 Commands, Menus, and Gestures

The proliferation of functionality in IDEs presents challenges for efficiently invoking

commands. Command execution in desktop IDEs has been driven by classic WIMP

interaction style, such as extended context menus and an abundance of keyboard

shortcuts. Due to the absence of a mouse and keyboard, touchscreens require alter-

native methods comprising multi-touch and gesture-driven controls. Such interfaces

are often referred to as NUIs (Natural User Interfaces); however, the sole use of

touch-based interaction does not necessarily imply that an interface feels “natural” to

the user. Norman [Nor10], for instance, referred to NUIs as “marketing name” and

stated:

“The strength of the graphical user interface (GUI) has little to do with its

use of graphics: It has to do with the ease of remembering actions, both in

what actions are possible and how to invoke them.”

His essay continues by pointing out the disadvantages of gesture-driven systems such

as lack of visibility, feedback, and discoverability. According to Norman, however,

these drawbacks can be overcome when following “basic rules of interaction design”.

Although Apple’s iPhone has clearly had tremendous influence on popularizing NUIs,

in their Human Interface Guidelines12, for example, they recommend cautious use of

well-established standard gestures (e.g., the well-known swipe and pinch gestures);

complex gestures should be avoided as the only way of performing actions.

HCI research on multi-touch interfaces has had a long history13. Researchers have

sought ways to make gestural interaction more efficient and to address the above-

mentioned concerns. In this section, I concentrate on presenting methods that are

most relevant to the IDE introduced in later chapters. Proficient users of code editors

gain much of their efficiency from keyboard shortcuts; touch-optimized methods for

triggering commands are therefore of particular concern here. Due to advantages

regarding cognitive factors, the use of gestural strokes as command shortcuts [AZ09] or

12https://developer.apple.com/library/ios/documentation/UserExperience/
Conceptual/MobileHIG/

13http://www.billbuxton.com/multitouchOverview.html

51

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/
http://www.billbuxton.com/multitouchOverview.html

Chapter 3. Related Work

other stroke-based menu designs have often been suggested as activation mechanism.

An argument in favor of this approach is motivated by the fact that keyboard shortcuts

can be hard to remember because often no intrinsic mapping between a command and

its shortcut exists.

One notable method exploiting strokes has been designed by Kurtenbach [Kur93].

He has introduced marking menus and carried out a number of studies on using

the technique for efficient command invocation. Marking menus are circular menus

where selections are performed by stroking (or marking) towards an item. Since the

menu is displayed after a short delay, expert users who have internalized the item

directions can rapidly execute a command without being distracted by the visual

representation. According to Kurtenbach, the essential design principles of marking

menus are “self-revelation, guidance and rehearsal”:

“Self-revelation means a marking menu reveals to a user what functions

or items are available. Guidance means a marking menu guides a user

in selecting an item. Rehearsal means that the guidance provided by the

marking menu is a rehearsal of making the mark needed to select an item.”

Menus can be nested, which results in “zig-zag” gestures when selecting an item at a

deeper level in the hierarchy. Later, multi-touch marking menus [LGF10] have been

developed as touch-compatible extension. Since this version exploits multi-finger

chords for selecting nested menu items, it might be more suitable for two-handed

operation or tabletop applications.

Marking menus are an attractive choice for contextual actions because they target

both novices and experts. Owing to their simple directional and pre-defined gestures,

designers are freed from the burden of making up custom gesture sets. This is further

supported by the finding of mark-based gestures being faster and more accurate

than free-form gestures [BNLH11]. Because of the elegance of their design and their

efficiency, this work makes use of marking menus as means of providing gestural access

to commands. In Chapter 7, I present the details of this method and an extension that

lets users quickly repeat standard code editing actions.

Kurtenbach’s work has inspired numerous variations of marking menus. Several studies

have sought to extend and improve on the original design but only few attempts appear

to be viable in mainstream user interfaces. However, researchers have also developed

alternatives with straightforward designs. With FastTap [GCS+14], for example, an

item of a displayed grid is selected by using one’s thumb and finger (corresponding to

52

3.4. Commands, Menus, and Gestures

Item 1	

Item 2	

Item 3	

Item 4	

Item 5	

Item 6	

Item 7	

Item 8	

Item 9	

Item 1	
Item 8	

Item 2	

Item 3	

Item 4	
Item 5	

Item 6	

Item 7	

Item 01	
 Item 02	
 Item 03	
 Item 04	

Item 05	
 Item 06	
 Item 07	
 Item 08	

Item 09	
 Item 10	
 Item 11	
 Item 12	

Item 13	
 Item 14	
 Item 15	
 Item 16	

Figure 3.1: Exemplary selection points for a menu item in different menu layouts.
Left: A regular linear menu. More items are usually revealed when users perform
up-and-down swipe gestures. Middle: A radial menu. In contrast to linear menus, the
distance to select an item remains constant since items are put at different angles
around the menu center. (Eight slices are preferable). This enables fast directional
selection gestures without having to display the menu. Radial menus can be nested,
leading to “zig-zag” selection gestures when an item at deeper levels in the hierarchy is
selected (marking menus [Kur93]). Right: A grid-based menu for two-finger selection.
The grid is displayed after an activation tap onto the button in the corner. Fast selection
without displaying the selection-grid is performed by chording with the thumb and
forefinger (FastTap [FC12]).

an activation tap and selection tap). In expert-mode, chorded thumb-and-finger taps

speed up selection by virtue of similar principles as in expert-mode of marking menus,

that is, through spatial and muscle memory. While FastTap might be an appropriate

choice for global UI actions due to its fixed activation button, marking menus may be

easier to integrate as context menus.

Another menu design, called “Under-the-Rock Menus”, has been devised by Zeleznik

et al. [ZBAK10]. When the user starts dragging an object to a target location, a

semi-transparent radial menu “grows” at the starting point. Moving the finger back to

the menu and selecting an item allows the user to change the default operation for

the dragging movement. In a source code editing context, for instance, such a design

could be applied to targets where a dragging action must support multiple different

operations (e.g., cut/copy), while the most frequently used operation is set as default.

Thus, users could perform certain actions without requiring any menu selection. Figure

53

Chapter 3. Related Work

3.1 illustrates the different designs of the three mentioned menu layouts (linear, radial,

and grid).

Other options for initiating operations include bi-manual techniques such as those

suggested for the BiPad toolkit [WHM12]. Although these methods enable new

interaction techniques, they are not considered for this work since users have reported

that two-handed interaction feels unnatural [ZBAK10] and generally preferred one-

handed use when possible [ZBAK10, KBCV08, FHD09]. Moreover, supporting bi-

manual interaction may complicate the implementation of applications and requires

integrating additional instructions for the user.

Apart from the design characteristics of menus, the choice of which commands should

be visible to the user and how to categorize them is widely regarded important. Divid-

ing commands into categories of related items or alphabetically ordering commands are

obvious choices. Findings of the effectiveness of ordering strategies are contradictory,

although it has recently been argued that functional groupings should be preferred

due to advantages in learning the commands [Sam13].

Furthermore, predictive models may enhance selection by showing users only those

commands that they will most likely execute next. In a study by Parnin et al. [PGR10],

lists that promoted the four most recently selected documents could cover almost 70%

of navigations between documents. A more advanced model than simple recency-based

and frequency-based lists has been suggested by Fitchett and Cockburn [FC12]. Their

algorithm AccessRank considers multiple factors (e.g., temporal information about item

access) for determining the most likely items. Additionally, AccessRank provides list

stability; that is, it minimizes automatic (and potentially confusing) re-ordering of

item locations.

As this section has shown, implementors of touch-based UIs can draw on a variety

of command execution methods without resorting to keyboard shortcuts. Although

keyboard shortcuts could be enabled on a virtual keyboard, the user experience may

deteriorate when WIMP interaction style is enforced in NUI environments. Despite the

known issues associated with gesture-driven interaction, the advantages of conforming

to the inherent paradigm of the target platform should outweigh adverse effects.

54

3.5. Multi-modal Development Tools

3.5 Multi-modal Development Tools

This final section of related work highlights projects incorporating more than a single

input channel for interaction. So-called multi-modal applications combine information

from multiple input sources such as speech, gaze, or pen input. Researchers have

argued that multi-modal systems are capable of reducing errors, increasing flexibility,

and adding more expressiveness to user interfaces [DLO09]. Since these attributes

appear to be particularly desirable in complex application areas, this raises the ques-

tion of how the domain of software development could benefit from multi-modal

concepts.

Bolt’s system Put-That-There [Bol80] has been an early and frequently cited work

on multi-modality. Through voice and pointing gestures, a user sitting on a chair

could move and modify graphical objects on a large display wall in front of him. The

combination of input modalities, according to Bolt, made interacting with the system

more expressive. Since then, a large body of work has been devoted to joining input

sources in ways that outperform uni-modal interaction or motivate novel UI concepts.

For instance, Hinckley et al. [HYP+10] have advocated tools combining touch and pen

input for richer interactions. The authors have demonstrated an example where a user

keeps holding two fingers onto an object overlapping a photo while his other hand is

moving the pen along the edges of the object to cut the traced part out of the photo.

The work of Hinckley et al. has proposed a number of such interactions allowing users

to perform object selection in tandem with mode switching.

Besides pen and touch interaction, researchers have combined direct manipulation

with natural language to make complex editing interfaces more approachable to end

users. The project PixelTone [LDW+13], for example, runs on a tablet as multi-modal

user interface for image manipulation. Voice commands (e.g., “make this greener”)

and the simultaneous setting of target areas via touch input (e.g., circling an area)

enable a rich input vocabulary for photo editing. PixelTone also lets users first tag

objects through natural language and pointing (“this is Bob”) and then refer to these

tags later (“make Bob brighter”).

As far as software development is concerned, only little work has been done to exploit

the potential benefits of multi-modal interaction. Code Space [BDHM11] blends touch

with in-air pointing to form hybrid interactions that support developer meetings.

The system allows a team of developers to discuss code or distribute tasks using

55

Chapter 3. Related Work

personal smartphones and a shared multi-touch wall. In-air gesturing is employed as

a means of manipulating on-screen code fragments, annotating code, or transferring

data. The previously mentioned project Hands-On Maths [ZBAK10] has utilized hybrid

multi-touch and pen-based interaction for algebraic transformations and document

management in a virtual-paper-environment.

To explore multi-modality in a code editing context, I assisted in supervising the design

and development of EyeDE [GREW14]. EyeDE is the prototype of a code editor that

contributes eye-tracking as input modality in addition to regular mouse and keyboard

usage. The editor runs in a web browser and processes gaze data received from an

eye-tracking server. Since the user’s gaze point and focus of attention often match,

interface elements can intelligently adjust in the current field of view without involving

substantial physical effort from the user. For instance, EyeDE automatically provides

navigation aids when the user keeps gazing on an activation trigger displayed above

methods calls (see Figure 3.2); that way, the programmer could jump to the decla-

ration of a method. Other examples include displaying the body of a method below

method calls, highlighting all occurrences of a variable, or looking up documentation.

In addition, the system lets users switch files and scroll within files through gaze

control.

Using eye-tracking information in a code editing context seems promising: Develop-

ment environments could reduce the cognitive effort and increase the user experience

by inferring which information and tools programmers need at hand. However, gaze-

based interaction has not been without its issues. First, the inherent inaccuracies of

eye-tracking impede precise calculations at the character-level in source code. Second,

since the eyes are “always on”, user interfaces require methods for resolving the is-

sue of unintended command triggering (the so-called Midas Touch problem). Finally,

advanced tracking technology is not yet widely available in consumer devices.

Opportunities for extending EyeDE may include the integration of natural language,

similar to PixelTone. For instance, after selecting a block of code via gaze controls, users

could apply code transformations via voice commands (e.g., “extract this into a new

function”). Begel and Graham [BG06] have designed a spoken version of Java and

concluded that programming by voice, although feasible, is slower, and programmers

are averse to dictating code. Since the keyboard is usually the most efficient and

accurate way of editing textual code, adding voice support may thus be most beneficial

for handicapped users or in particular environments.

56

3.5. Multi-modal Development Tools

Figure 3.2: EyeDE, a gaze-enhanced IDE prototype developed by Glücker et al.
[GREW14]. The screenshot shows the expanded body of a method after the user
had gazed on the trigger (“bubble”) displayed above the method call.

Although my work does not explicitly employ multi-modal techniques, work presented

in Chapter 4 includes a study on pen usage for source code editing. It remains

future work to explore how multi-modal interaction techniques could further enhance

software development environments.

57

Part II

Source Code Interaction

59

Chapter 4

Editing Source Code

Source code editing comprises different types of operations, ranging from simple text

editing operations to more complex structural transformations. In order to address

the issue of editing source code on touchscreens, I conducted a user study. The main

purpose of the study was finding out how users would apply gesture-driven interaction

for manipulating the textual representation of source code. Furthermore, the study

has given insights into the advantages and disadvantages of interacting through a pen

device, compared with interaction through conventional touches.

I first introduce the mechanics of typical code editing operations, including behavior-

preserving structural transformations. In the second part of this chapter, I report the

details and findings of the user study, and discuss implications for the design and

implementation of gesture-driven code editors.

The study has previously been published in [RWE13]. This chapter is an exhaustively

revised and extended version of the original paper.

4.1 Introduction

According to Pressman [Pre10], software organizations often spend up to 70% of

their resources on maintenance work. Maintenance-oriented activities in IDEs include

reading and understanding the code base, navigating dependencies, searching relevant

code, editing code, and testing [KAM05a].

61

Chapter 4. Editing Source Code

Before actual code editing, developers first need to understand the program. Ko et al.

[KMCA06] have observed that developers pass through three main stages when they

attempt to understand unfamiliar source code: They first explore the code by searching

until they find certain cues; when the search process reveals valuable code fragments,

they start relating the code by navigating dependencies forward and backward; finally,

they collect found information and start editing as soon as they regard the collected

information as sufficient.

4.1.1 Code Editing Operations

Although the act of code editing obviously includes typing new code, in this work I

differentiate between editing code and creating code. (The latter is addressed in Chapter

6). Here, the term “editing code” is understood to mean editing and transforming

already existing code instead of writing new code from scratch. Concerning the type

of operations, the process of code editing could be divided into four main categories

(Figure 4.1):

Text Editing Operations

At a basic level, developers edit code by applying standard text editing operations,

such as inserting and deleting characters or executing cut/copy-paste commands.

In that regard, editing source code is comparable to editing text in a word

processing application.

Code Editing Operations

Developers also perform operations not commonly found in word processing

applications. For example, code editors provide commands for commenting

selected source code in and out or for manipulating lines of code (e.g., swapping,

duplicating, splitting, or joining lines). Thus, code editing operations could be

regarded as more advanced text editing commands operating on the textual

structures found in source code (i.e., tokens, lines or blocks).

Code Intelligence Operations

IDEs support code intelligence features for automating a series of otherwise

manual edits. For example, IDEs highlight programming errors and provide

shortcuts for automatically applying a suggested fix (e.g., the Quick Fix feature in

Eclipse) or implement convenience features for local code transformations (e.g.,

62

4.1. Introduction

the Quick Assist feature in Eclipse). Particular operations (e.g., Auto-complete

and Quick Fixes) not only edit existing code but also create new code.

Refactoring Operations

Most major IDEs contain commands for applying structural transformations

without changing the intended external behavior of the code. These so-called

refactoring actions are semi-automate mechanisms for increasing the code quality

and hence free developers from having to perform multiple steps of a single

refactoring manually.

Text Editing
Operations	

Code Editing
Operations	

Refactoring
Operations	

Source Code
Editing	

Code Intelligence
Operations	

Figure 4.1: Four principal types of operations for source code editing.

Figure 4.2 illustrates these four different types along two axes. The horizontal axis

indicates the degree of automatism performed by the IDE, as contrasted with manual

execution by the developer. Most automated operations are, in fact, semi-automated

since they require user intervention, that is, selecting menu entries or confirming

dialog boxes. The vertical axis indicates the level of abstraction at which the operation

executes.

For instance, text editing operations such as manually inserting a character at the

beginning of a string apply changes to the textual representation (i.e., at the source

code level), while refactoring operations automatically apply a series of transformations

to the AST (Abstract Syntax Tree). The AST is an internal tree representation of the

source code. The developer does not directly interact with the AST but modifies

its textual representation. The details of this functional interaction between the

AST and the textual representation are language-specific and differently handled by

corresponding IDE modules (also see Chapter 8). When further details about the

context and dependencies of an edit are required, direct syntactical changes to the

source code representation tend to become less useful. Instead, the IDE performs

semantic analysis and transforms the AST, which is projected back to the textual

representation. Operations involving the AST and file dependencies may result in more

63

Chapter 4. Editing Source Code

Text Editing
Operations	

Code Editing
Operations	

Refactoring
Operations	

Code Intelligence
Operations	

direct (Source Code)	

indirect (AST)	

manual	
 (semi-)automated	
Degree of Automatism	

Le
ve

l o
f

A
b

st
ra

ct
io

n	

Figure 4.2: Types of code editing operations arranged along two axes. The horizontal
axis shows the degree of automatism, ranging from manual developer execution to
semi-automated execution by the IDE. The vertical axis shows the level of abstraction,
ranging from direct manipulation of the source code to semi-automate transformation
of the AST.

fundamental changes of the textual representation. Therefore, the IDE often gathers

user input to determine the scope of the change or to resolve ambiguities. In contrast,

manual edits of the source code are “cheaper” to perform since they are direct and

keyboard-driven. Executing code intelligence and refactoring operations, on the other

hand, can be regarded as indirect interaction style since it may entail selecting menus

or confirming dialogs.

4.1.2 Code Editing Triggers

Code editing operations are typically triggered via the following UI mechanics:

Keyboard Shortcuts

Keyboard shortcuts for text editing operations (e.g., for cut/copy-paste) are

largely identical across applications, while the mappings for code editing opera-

tions tend to be arbitrary and dependent on the IDE.

64

4.1. Introduction

Application Menu Selection

IDEs usually display editing commands in global edit and refactoring menus.

Some commands show the default keyboard shortcuts next to the item labels.

Menu items that cannot be selected are grayed out.

Context Menu Selection

Dependent on the location of invocation, right-clicking on source code displays

context-specific operations from all application menus. Disabled items are either

grayed out or not shown at all.

Gutter Menu Selection

The gutter area shows icons for errors and suggested fixes. Clicking on an icon

presents the available operations in a pop-up menu, requiring further selection

via the mouse or keyboard.

Inline Menu Selection

Similar to options in the gutter menu, suggested fixes and local transformations

can be triggered by clicking on an icon displayed between source code lines,

followed by selecting an entry from the pop-up menu.

Drag-and-Drop

Mouse-based cut/copy-paste operations are initiated by dragging selected code

to new locations. The mode of the operation (cut or copy) can be set by holding

a modifier key.

Optimizing these code editing triggers for touchscreens requires adaptations of their

presentation and user interaction. For example, drag-and-drop operations might be

easier to perform than keyboard shortcuts or selection from long linear lists. Hence,

the user study has aimed at examining ways in which interaction through gestures and

multi-touch can replace conventional WIMP methods.

Supporting refactoring commands through direct manipulation is challenging because

individual steps of the process may require additional parameterization. For that

purpose, desktop IDEs typically display modal dialog boxes and configuration wizards.

Due to their modal nature, however, they obstruct the underlying user interface and

interrupt the programmer’s workflow. In touch-based environments, parameters could

be encoded into gestures so as to reduce modal UI elements. In addition, parameters

could be pre-defined with sensible default values, which would eliminate the need for

any configuration in advance.

65

Chapter 4. Editing Source Code

(a) Eclipse (b) Xcode

Figure 4.3: Refactoring Application Menus in Eclipse (left) and Apple’s Xcode (right).
Since refactoring commands are added over time, the menus keep growing until
items must be nested into multiple sub-menus. Some of the commands were assigned
arbitrary keyboard shortcuts by the IDE developers.

Since refactoring is a central part of code editing, the user study has included fre-

quently used commands for restructuring code. The following sections introduce this

development practice in more detail.

4.2 Refactoring

The process of refactoring, that is, increasing the quality of programs so that future

changes are easier to perform and less time-consuming, is closely linked to software

maintenance. Opdyke [Opd92] has defined refactoring as “behavior preserving pro-

gram transformations”. Fowler et al. [Fow99] have later described refactoring as the

process of restructuring software without changing its externally “observable behavior”.

In other words, when programmers refactor code, they attempt to improve the internal

structure of software but keep the exposed functionality identical for consumers of the

66

4.2. Refactoring

software. (The term “consumers” includes not only end users of the software but also

other programs that might use its services.)

Due to the high percentage of maintenance-related work, refactoring code is a frequent

and important activity. For example, Zhenchang and Stroulia [XS06] have reported

that up to 70% of the structural changes of the Eclipse IDE source code can be

attributed to refactoring. Furthermore, the Extreme Programming (XP) methodology,

widely used among professionals, advocates refactoring as continuous activity during

development.

Without the practice of refactoring, software quality tends to degenerate over time

as source code is continually modified because of changing requirements, bug fixes,

or addition of new features. In his seminal paper “Programs, life cycles, and laws of

software evolution” [Leh80], Lehman has formulated these observations as follows

(first two laws of his eight laws):

1. “An E-type program that is used must be continually adapted else it becomes pro-

gressively less satisfactory.” (Lehman categorized constantly evolving software

for solving real-world problems as “E-type” programs.)

2. “As a program is evolved its complexity increases unless work is done to maintain

or reduce it.”

Fowler et al. [Fow99] have cataloged a number of refactorings in their book, including

detailed step-wise instructions for each code transformation. The following two source

code listings (Listing 4.1 and 4.2) show a simplified example for the transformation

caused by the refactoring Extract Local Variable. (The example uses JavaScript since

this language was used for the user study.)

1 function askDeepThought () {
2 return 6 * 7;
3 }

Listing 4.1: Function before refactoring.

67

Chapter 4. Editing Source Code

1 function askDeepThought () {
2 var answer = 6 * 7;
3 return answer;
4 }

Listing 4.2: Function after applying the refactoring Extract Local Variable.

At the source code level, the transformation is obvious: The multiplication has been

extracted into the local variable answer. With the introduction of a descriptive variable

name, the intent of the code may have become clearer while the resulting behavior of

the code has not been modified. (The clarification of intent is, of course, hard to argue

for such a simple example without context.) Figure 4.4 illustrates how the transfor-

mation works at the AST level. This AST format is based on the Mozilla Spidermonkey

Parser API1, but the structure is essentially similar for other parsers.

Block Statement	

Return Statement	

Binary Expression	

Left	
 Right	

Literal	
 Literal	

Operator	

Block Statement	

Variable Declaration	

Binary Expression	

Left	
 Right	

Literal	
 Literal	

Operator	

Identifier	

Return Statement	

Identifier	

Figure 4.4: Transformation of the AST for the refactoring operation Extract Local
Variable. (Inspired by Figure 13 in [NCV+12].)

A developer could have triggered this refactoring by selecting the multiplication and

then invoking the command Extract Local Variable via menu selection or a keyboard

shortcut. The IDE would then provide a UI element for entering the new variable name

(e.g., a dialog box containing an input field). After confirmation of the change, the AST

will be transformed according to the illustration, and the user could continue working

with the updated textual representation of the transform. Formal analysis can partially

1https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/
Parser_API

68

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Parser_API
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Parser_API

4.2. Refactoring

guarantee that the behavior of the code is preserved, although formal methods are

harder to realize for dynamic programming languages. Unit tests are another way of

ensuring correct program behavior after refactoring.

Other structural changes require a more complex series of steps. For instance, users

might first need to review the changes to be performed and make adjustments before

confirming the operation. If the user ignores potential warnings before executing the

refactoring, the result might lead to errors and thus to code that does not result in the

same behavior as before.

In order to better understand the benefits and drawbacks of refactoring, and to make

sound decisions for tool design, researchers have examined how developers refactor.

Murphy-Hill et al. [MHPB09] have extensively studied developers’ refactoring practices

and noticed two frequently employed main strategies: floss refactoring and root-canal

refactoring. The authors describe the two tactics as follows:

“During floss refactoring, the programmer uses refactoring as a means

to reach a specific end, such as adding a feature or fixing a bug. Thus,

during floss refactoring the programmer intersperses refactoring with other

kinds of program changes to keep code healthy. Root-canal refactoring, in

contrast, is used for correcting deteriorated code and involves a protracted

process consisting of exclusive refactoring.”

In other words, developers steadily apply floss refactoring to improve the code they

are currently editing; they may even be unaware of refactoring taking place. With

root-canal refactoring, on the other hand, developers may deliberately set time aside for

performing a larger structural change. While the former tactic is proactively interleaved

with normal programming, the latter is explicitly carried out when deteriorated code

has accumulated after a number of changes. Due to their differences in time and

context of execution, both strategies need adequate support with tooling.

4.2.1 Refactoring Tools

Studies have shown that the refactoring tools of modern desktop IDEs are underused

[MHB07, MHPB09]. Developers perform up to 90% of all transformations manually

[MHPB09]. Since manual refactoring can be slower and more error-prone than relying

on tools, research has investigated the reasons why developers avoid existing IDE

facilities. Among other reasons, such as developers not being aware of the provided

69

Chapter 4. Editing Source Code

IDE commands, researchers have primarily blamed the lack of usable interfaces and

shortcomings concerning interaction [MHPB09].

Figure 4.5 shows the confirmation dialog for the refactoring Change Method Signature in

the Eclipse IDE. The developer made problematic changes in the previous configuration

dialog and now has to review the listed errors by going back to readjusting the

refactoring parameters. Alternatively, he may choose to cancel the refactoring or to

continue and thereby introduce potential issues into the program.

Figure 4.5: Confirmation dialog with listed errors after triggering the refactoring
Change Method Signature in the Eclipse IDE.

Figure 4.6 shows another error message after invoking the command Extract Constant.

The error message indicates that the developer’s previous selection of code is incorrect.

Although the error message vaguely points out the problem (an expression must be

selected), the developer has to confirm the dialog, re-select code, and try again.

Figure 4.6: Error dialog after triggering the refactoring Extract Constant in the Eclipse
IDE.

70

4.2. Refactoring

These errors point towards a number of design issues with the built-in refactoring

commands of IDEs [MHB08]:

• It is often unclear which parts of the code must be selected in order to cor-

rectly invoke the command. Also, the mapping between command name and

refactoring behavior is non-intuitive.

• Some refactorings first show modal configuration dialogs with parameters that

need to be adjusted or reviewed.

• Vague and confusing error messages force developers to go back to configuration

dialogs, readjust parameters, and try again.

The combination of unclear invocation, obtrusive configuration dialogs, and vague

error messages might be part of the reason developers often resort to manual restruc-

turing. Murphy-Hill and Black [MHB08] have identified and described these issues in

more detail and designed techniques to assist developers in refactoring. For instance,

they have developed Selection Assist (colorizing of whole statements) and Box View

(simplified view of nested statements) to facilitate selecting the correct part of source

code prior to invoking the command; Refactoring Annotations display feedback as

colored overlays and render arrows when certain preconditions are violated.

Furthermore, Murphy-Hill and Black [MHAB11] have devised techniques for improving

the initiation phase of a transformation. They have argued that having to recall the

(sometimes imprecise) names of specific refactorings and their invocation through

long menus or arbitrary keyboard shortcuts aggravate the triggering of commands.

As alternative mechanism, they have used marking menus (see Chapter 3) and thus

exploited spatial mappings by assigning commands to their most suitable item direction

in the circular menu.

Refactoring by drag-and-drop [LCJ13] appears as natural and logical next step to

improve the user interaction of refactoring. Since drag-and-drop is a lightweight

method for combining both the initiation and configuration of a command into a

single action, some of the overhead associated with performing an action can be

reduced. Parameters can automatically be inferred by the source and target of the

drag-and-drop action, or they are simply set to reasonable default values. For example,

as demonstrated by Lee et al. [LCJ13], the exact location of newly created code

for the Extract Method refactoring is automatically determined by the drag target.

In contrast, such precise control is not supported by regular Eclipse refactorings.

71

Chapter 4. Editing Source Code

Lee et al. have measured the physical effort of drag-and-drop refactoring in a user

study. They have found that, compared with traditional methods relying on menus

and keyboard shortcuts, the technique reduced the overall effort with respect to all

required keystrokes, mouse clicks, and mouse movements.

4.2.2 Gesture-driven Tools

As stated earlier, gestures have the advantage of encoding multiple parameters into

a single, fluid action. Rather than enforcing indirect interaction with code through

menus and keyboard shortcuts, touch-enabled devices let users directly transform code

using finger motions.

Previous research on developers’ preferences for restructuring code may also be well-

aligned with the use of gestures. Vakilian et al. [VCN+12], for instance, have con-

cluded, “programmers prefer lightweight methods of invoking refactorings, usually

perform small changes using the refactoring tool, proceed with an automated refac-

toring even when it may change the behavior of the program, and rarely preview the

automated refactorings”. Moreover, Murphy-Hill et al. [MHPB09] have observed that

developers rarely change the configuration of refactorings, suggesting that default

values are adequate in most cases; extra interface elements for adjusting parameters

may thus be unnecessary.

Assuming that simple gesture designs are used, touch interaction implicitly results

in “lightweight interaction” since the developer’s fingers already touch the screen for

other actions such as scrolling. Moving the fingers to the code structures of interest

and performing a local transformation seems most natural. This interaction form also

improves command triggering because developers are not burdened by navigating long

menus and freed from remembering keyboard shortcuts. Since most code changes are

local and small, the physical effort required should be within acceptable ranges.

Without reviewing configuration and preview dialogs, programmers might temporarily

set the code into an invalid state if the modification violates particular conditions.

However, since errors and warnings are usually ignored when restructuring software

[VCN+12], behavior-preservation can be accomplished after the transform, for exam-

ple by means of manually reviewing the change, applying suggested error fixes, or

executing unit tests.

72

4.3. User Study

In their project Hands-on Math (see Chapter 3), Zeleznik et al. [ZBAK10] have demon-

strated how gesture-driven transformation enhances interaction in a mathematical

application. Among other things, they have shown how dragging with one finger and

pinching with two fingers reorders and simplifies terms in mathematical equations.

Although such modifications are equally conceivable for source code, this approach

entails some challenges. It raises questions such as the following:

• How does the interaction scale to the large number of existing commands for

editing code?

• How are commands without obvious mappings to gesture-driven interaction best

supported?

• How are conflicts and ambiguities arising from other existing gestures (e.g.,

standard gestures of the operating system) resolved?

• How can additional parameterization and input be realized when the gesture

itself cannot encode all information?

To summarize the previous sections: Refactoring is an important and frequent activity,

but existing tools insufficiently support the process. Developers prefer lightweight,

unobtrusive, and configuration-less tools for assistance when practicing floss refac-

toring, that is, frequent and small changes during programming to counteract code

degeneration. Direct manipulation through gestures seems promising for code editing

on touchscreens, but the details of the interaction need further study. By means of a

conducted user study, I attempt to explore these details in the following sections.

4.3 User Study

The aim of the study was to examine how users apply multi-touch and gestural inter-

action to source code editing and restructuring on a touchscreen. Since interaction

through a pen instead of finger motions has been shown to be beneficial in related

application domains [ZBAK10], participants had to perform all tasks using both inter-

action styles. The study has revealed preferences for pen and finger input and given

insights into their respective performance characteristics. The results can be used as

guidelines for implementers of touch-enabled code editors.

73

Chapter 4. Editing Source Code

This user study is different from previous studies on touch-centric code editing since it

has investigated non-constrained editing in a regular text-based programming language.

Prior work (Chapter 3) has either studied desktop IDEs (e.g., Eclipse), different

domains (e.g., maths), or structured editing using visual programming techniques. In

addition, users directly worked on a touchscreen in a specially prepared environment

for code editing.

Involving users into the design of suitable gestures, an approach commonly called

“participatory design”, might lead to better results than gesture designs by developers

and experts. Wobbrock et al. [WMW09] have remarked that gestures designed by

developers do not necessarily reflect user behavior since developers are driven by

technical issues revolving around reliable recognition. Moreover, Wobbrock et al. have

found that their own gesture set covered only 60.9% of the gestures designed by

users. These findings indicate that users generate valuable solutions that should be

considered when incorporating gesture-driven interaction into new domains.

4.3.1 Editor Operations

The tasks of the study build on a set of standard editor operations. Users had to

perform gestures for all operations listed in Table 4.1. This list is based on multiple

sources:

• Commands of the edit and refactor menus of popular development environments

such as Eclipse, Visual Studio, Xcode and Sublime Text.

• Recent research of refactoring practice, yielding commands that are regarded as

important and commands that are frequently executed by developers [KZN12,

NCV+12, VCN+12].

• Informal feedback from software practitioners (colleagues and friends).

Although the list of operations should not be regarded as exhaustive, both qualitative

feedback from participants during the study and results from the post-study question-

naire seemed to suggest that no essential and frequently used commands had been

missing in the study.

The operations are categorized into five different groups: Text editing operations,

selections operations, code editing operations, refactoring operations, and navigation

operations. While I will analyze selection operations in depth in Chapter 5, this study

74

4.3. User Study

Category Operation

Text Editing Operations
Move Caret
Copy/Paste
Undo/Redo

Selection Operations

Select Identifier
Select Multiple Identifiers
Select Line
Select Multiple Lines
Select Block

Code Editing Operations

Move Lines
Duplicate Line
Delete Line
Toggle Comment

Refactoring Operations

Extract Method (Without Locals)
Extract Method (With Parameter)
Inline Method
Inline Temp
Replace Temp With Query
Introduce Explaining Variable (Extract Local)
Rename (Multiple Variables)

Navigation Operations Goto Method Declaration

Table 4.1: All 20 operations used in the study: 3 text editing operations, 5 selection
operations, 4 code editing operations, 7 refactoring operations, and 1 navigation
operation.

already contains basic commands for selecting identifiers, lines, and blocks. Many

editing commands and refactorings require valid selections, users therefore had to

perform the selection action either as part of the tasks or in isolation.

Code intelligence operations (see Figure 4.1) were not part of this study: first, because

code intelligence functionality is often used during code creation (see Chapter 6);

second, because incorporating additional operations would have further increased the

number of tasks for the participants. Since all tasks had to be performed twice (once

using the pen and once using the fingers), concerns about the total study time per

participant limited the final number to twenty operations.

75

Chapter 4. Editing Source Code

The reasoning behind including at least one navigation operation (Goto Method Decla-

ration) was to see how participants would perform actions where code editing involves

scrolling the editor viewport or jumping to different parts of the source code.

4.3.2 Participants

All participants filled in a questionnaire (see Appendix A) before the test. They were

asked to specify their experience in certain programming languages, IDEs, and their

usage of devices with touchscreens.

16 participants (14 male, 2 female) from the University of Regensburg, aged between

21 and 32 years (M = 24), were recruited. All participants were studying as under-

graduate, postgraduate, or PhD students in computer science disciplines such as media

informatics or information science.

While all but one of the participants indicated (on a 5-Point Likert scale) that they use

devices with touchscreens always or frequently, 9 stated that they never use a pen as

input device. All participants were right-handed.

12 participants had between 2 and 5 years of programming experience, 2 had more

than 10 years. 11 participants regarded themselves as quite experienced in the pro-

gramming language Java, 4 selected very experienced. As for JavaScript, 7 participants

indicated quite experienced and 4 indicated very experienced. 10 participants considered

themselves as quite experienced in using the Eclipse IDE, 2 were very experienced.

In addition, the participants named the programming languages and IDEs in which

they regarded themselves at least somewhat experienced (number of mentions in

parentheses): PHP (8), C++ (7), C (5), C# (5), Visual Studio (5), NetBeans (4), and

Objective-C (3).

4.3.3 Test Setup

The test system consisted of two main components: an editor running on an iPad 3

tablet showing the source code for the tasks, and a second connected editor running

on the laptop of the experimenter. By means of a socket connection between the two

systems, all touch events on the tablet and the keypress events of pen buttons were

visualized as overlays on the experimenter’s editor (Figure 4.7).

76

4.3. User Study

Figure 4.7: The experimenter’s system showing the split editor window with a surround-
ing tablet frame. A touch point (red circle) and pen button press (semi-transparent
gray box) are displayed as overlays in the editor area. The overlays visualize the par-
ticipant interacting in real-time on the tablet and enable screen recording of the entire
session on the laptop. Instructions on the top of the screen assist the experimenter in
introducing each task.

The system of the experimenter not only passively visualized and recorded the interac-

tion, but the experimenter could also actively act as “wizard” and control particular

editor functionality of the tablet instance. The following interactions were directly

reflected in real-time on the participant’s tablet editor:

• Modifications of the source code.

• Selections of source code lines.

• The cursor position.

• Scrolling of the editor viewport.

• Showing or hiding the on-screen keyboard.

A split view on both systems showed the initial state of the source code on the left

side and the desired state on the right side. In order to ensure that all participants

received the same instructions, additional notes for each task were displayed on the

experimenter’s system. These instructions also included information about which lines

to select or where to position the cursor (see Appendix A).

77

Chapter 4. Editing Source Code

Figure 4.8: The participant’s system showing a split editor instance on the tablet. The
left side shows the initial state of a code example; the right side shows the desired
state. The editor also reflects the actions of the experimenter’s system on the laptop
(e.g., selecting lines to introduce a task).

The entire setup (Figure 4.9) resembled, to some extent, a “Wizard-of-Oz” experiment,

although all participants were fully aware of interacting with a remotely controlled

system. (In conventional “Wizard-of-Oz” studies, participants are lead to believe that

they are interacting with a real, working system.) Using this setup, the experimenter

could track all tablet interaction on the laptop. Since each code example could be

explained to the participant by highlighting particular code lines or positioning the

cursor, inconvenient pointing on the small tablet screen in front of the participant

could be avoided (Figure 4.8).

Editor	

 Instance	

Editor	

 Instance	

Experimenter	
 Participant	

Editor Events	

Interaction Events	

REC	

Figure 4.9: Illustration of the test setup: The experimenter’s laptop sends editor events
to the participant’s tablet and receives interaction events from the tablet. All data is
recorded and logged into a database.

The pen used in this study was an Adonit Jot Touch with two hardware buttons and a

transparent touch-disk attached to the pen tip. The transparent disk ensures that the

78

4.3. User Study

tablet correctly registers the touch, and it minimizes the occlusion problem of the pen

tip; hence, users could still see the source code characters under the pen tip through

the disk.

For later analysis, all interaction events were logged to an SQLite database on the

tablet. Since not all characteristics of the interaction can be reconstructed from logged

touch events, the area around the tablet was captured on video so that the participant’s

hands and pen usage could be seen.

In order to reduce the participants’ mental load for refactoring tasks, the choice of

programming language fell on JavaScript. Due to JavaScript being a dynamically typed

programming language, the participants had to concern themselves less with issues re-

garding the type system. Rather than being distracted by types of variable declarations

or return types, the users should concentrate on the interaction of transforming the

source code.

4.3.4 Procedure

The procedure itself was primarily based on the “guessibility study” by Wobbrock et

al. [WMW09]. They have achieved good results by first showing users the effect of a

surface gesture and then letting participants perform the cause of the gesture. Since

the test system did not respond to user input and accepted all input, the users’ behavior

was not affected by technical aspects such as gesture recognition.

In this study, the participants were first introduced to the test setup and could then

try a demo task. Each of the twenty different tasks had to be done once using the

pen and once using normal touch interaction without the pen. Consequently, each

participant completed forty tasks in fully randomized order; in total, 640 tasks were

performed:

16 participants x 20 tasks x 2 input types = 640 tasks

Participants took 75 minutes on average for the test (including filling in the pre-study

and post-study questionnaires).

A single task consisted of the four phases:

79

Chapter 4. Editing Source Code

Instruction Phase

The experimenter introduced the code example using the previously mentioned

features of the test setup. He made sure that the participant understood both

the initial state of the source code and the desired state.

Preparation Phase

The participant, thinking aloud, should try to find an adequate gesture. He was

free to touch the surface or use the pen device.

Articulation Phase

When the participant was ready to articulate the gesture again, he could start

recording by pressing on the task title. Another press stopped recording when

the participant was satisfied with the result.

Evaluation Phase

A modal dialog displayed two post-task questions that the participant was asked

to answer before moving on to the next task.

Similar to the study in [WMW09], the first question of the evaluation phase asked

if the participant thought the performed gesture was a “good match for its intended

purpose” (factor goodness, measured on a 7-Point Likert scale). As for the second

question, the SMEQ (Subjective Mental Effort Question) recommended by Sauro and

Dumas [SD09] was used. Users should indicate their perceived effort by moving a

slider on a scale ranging from “not at all hard to do” to “tremendously hard to do”

(values from 0 to 220, respectively). This scale has been shown to be reliable and easy

for participants to use in its interactive version.

After all tasks had been performed, the participants filled out a final questionnaire

where they indicated which input method they prefer (pen, fingers, or both) and which

commands they frequently use in their development environments.

4.3.5 Results

The following sections report results regarding the amount of agreement among the

participants, the relationships between performance measures and answers to the

post-task questions, and qualitative data from questionnaires and observations.

80

4.3. User Study

Figure 4.10: After each task, participants answered two questions. They rated the
perceived goodness of their performed gesture and set the perceived effort on a scale
(SMEQ) using a slider.

Agreement

To classify all performed gestures, both the video captures and the logged touch events

have been analyzed. Analyzing the videos included manually decomposing gestures

into their key components and encoding that information for statistical tools. Hence,

this process involved human judgment about which gestures consist of similar parts

and should consequently be viewed as the same gesture for a task.

While the videos show how participants touch the surface and move their fingers or

the pen, an additional custom-built visualization component of the test system displays

the complete gesture trail (Figure 4.11). This component was exploited as assistive tool

for validating the video-based judgments. For each task, it displays all finger touches,

all pen touches, or all finger and pen touches. Each option applies to either a single

participant or all participants.

81

Chapter 4. Editing Source Code

Figure 4.11: Visualization of the test system: Different options display finger touches
and pen touches, either per participants or for all participants. Here, two visible
patterns of gesture trails show the agreement for the task Select Multiple Lines.

The option to display all combined touches of a task creates a visual impression of the

agreement among all participants: The more overlap of semi-transparent gesture trails,

the higher the agreement. Scattered trails with less overlap signify less agreement.

Figure 4.11 shows an example of a strongly pronounced effect with two visible patterns:

One group of participants selected multiple lines of code by swiping over the line

numbers in the gutter on the left side of the editor, while the other group swiped

across the code block from top-left to bottom-right. Figure 4.12 illustrates the effect

in weaker form for the Undo/Redo task: Although some trails approximate to circular

motions, other patterns resemble swipe motions. Overall, the agreement was therefore

lower for this task.

To calculate the agreement scores, the approach adopted from [WMW09] has been

used. For example, analyzing the task Select Line (Pen) resulted in five groups of size 8,

5, 1, 1, 1. The agreement score is calculated as follows (Equation 4.1):

Aslp =
�

8

16

�2

+
�

5

16

�2

+
�

1

16

�2

+
�

1

16

�2

+
�

1

16

�2

= 0.36 (4.1)

82

4.3. User Study

Figure 4.12: Visualization of the agreement for the task Undo/Redo: Although overlap-
ping circular patterns are recognizable, the overall effect is less pronounced.

For the task Move Lines (Finger) with group sizes of 12, 1, 1, 1, 1, the agreement score

is calculated as follows (Equation 4.2):

Aml f =
�

12

16

�2

+
�

1

16

�2

+
�

1

16

�2

+
�

1

16

�2

+
�

1

16

�2

= 0.58 (4.2)

According to these scores, the gesture for moving lines led to higher agreement

(Aml f = 0.58) than the gesture for selecting multiple lines (Aslp = 0.36). Figure 4.13

graphs the agreement scores for all tasks and both input methods. As expected, the

agreement scores are lower for refactoring tasks involving multiple steps than for basic

operations such as selecting one or more lines of code. Overall, the agreement scores

are lower (M = 0.20, MPen = 0.19, MF inger = 0.20) than in [WMW09], which might

be due to the more complex application domain of this study. Users generally agreed

most on selection gestures for identifiers, lines, and blocks, and on gestures for moving

the caret and moving lines.

83

Chapter 4. Editing Source Code

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●
● ●

● ●

0.2

0.4

0.6

In
lin

e
Te

m
p

To
gg

le
 C

om
m

en
t

In
lin

e
M

et
ho

d

R
ep

la
ce

 T
em

p
W

ith
 Q

ue
ry

D
el

et
e

Li
ne

C
op

y
P

as
te

G
ot

o
M

et
ho

d
D

ec
la

ra
tio

n

E
xt

ra
ct

 M
et

ho
d

W
ith

 P
ar

am
et

er

S
el

ec
t M

ul
tip

le
 Id

en
tif

ie
rs

U
nd

o
R

ed
o

E
xt

ra
ct

 M
et

ho
d

W
ith

ou
t L

oc
al

s

D
up

lic
at

e
Li

ne

In
tr

od
uc

e
E

xp
la

in
in

g
V

ar
ia

bl
e

S
el

ec
t B

lo
ck

R
en

am
e

M
ul

tip
le

 V
ar

ia
bl

es

S
el

ec
t I

de
nt

ifi
er

M
ov

e
C

ar
et

S
el

ec
t M

ul
tip

le
 L

in
es

S
el

ec
t L

in
e

M
ov

e
Li

ne
s

Task

S
co

re Input
● Finger

Pen

Figure 4.13: The gesture agreement scores for all tasks.

Goodness, SMEQ, and Task Times

Goodness ratings have a mean value of 5.21 (MPen = 5.21, MF inger = 5.22); SMEQ

values have a mean value of 50.25 (MPen = 49.34, MF inger = 51.16). The values for

goodness and SMEQ negatively correlate: Higher goodness rankings tend to have

lower SMEQ values and vice versa (r =−0.83, t(38) =−9.26, p < 0.01). The mean

task times (in seconds) for the preparation phase (Prep) and articulation phase (Art)

are: MF inger,Prep = 65.9, MF inger,Ar t = 21.7, MPen,Prep = 65.6, MPen,Ar t = 24.3

Relationships: Goodness–SMEQ–Agreement–Articulation-Time

The relationships between the two post-task values for goodness and SMEQ, the

calculated agreement score, and the measured articulation time are illustrated in

the two bubble charts of Figure 4.14 and Figure 4.15. The diagrams show that the

most agreed upon gestures were those that users perceived as good matches and least

84

4.3. User Study

effortful. Also, those gestures were articulated fastest. This is contrary to some of

the results in [WMW09] where articulation time did not affect goodness ratings, and

gestures that took longer to perform were perceived as easier.

Furthermore, the results for the number of touch events are not in line with the findings

in [WMW09]: In this study, gestures consisting of more touch events were perceived

as more effortful (but did not have lower goodness ratings). However, previous

results could also be confirmed: Better gestures became more quickly apparent to

participants (less preparation time) and popularity (high agreement) identified better

gestures.

No significant differences between pen and finger interaction were detected in any of

the mentioned values.

Copy Paste

Copy Paste (P)

Delete Line

Delete Line (P)

Duplicate Line
Duplicate Line (P)

Extract Method With Parameter
Extract Method With Parameter (P)

Extract Method Without Locals

Extract Method Without Locals (P)

Goto Method Declaration

Goto Method Declaration (P)

Inline MethodInline Method (P)

Inline Temp

Inline Temp (P)

Introduce Explaining Variable

Introduce Explaining Variable (P)

Move Caret

Move Caret (P)

Move Lines
Move Lines (P)

Rename Multiple Variables

Rename Multiple Variables (P)

Replace Temp With Query

Replace Temp With Query (P)

Select Block

Select Block (P)

Select Identifier

Select Identifier (P)

Select Line

Select Line (P)

Select Multiple Identifiers

Select Multiple Identifiers (P)

Select Multiple Lines

Select Multiple Lines (P)

Toggle Comment

Toggle Comment (P)

Undo/Redo

Undo/Redo (P)

4.0

4.5

5.0

5.5

6.0

6.5

20 40 60 80 10
0

SMEQ

G
oo

dn
es

s

Agreement
0.1
0.2

0.3

0.4

0.5

Input Type
Finger
Pen

Goodness − SMEQ − Agreement

Figure 4.14: Bubble chart showing aggregated values for gesture goodness (vertical),
SMEQ (horizontal) and agreement (size).

85

Chapter 4. Editing Source Code

Copy Paste

Copy Paste (P)

Delete Line

Delete Line (P)

Duplicate Line
Duplicate Line (P)

Extract Method With Parameter
Extract Method With Parameter (P)

Extract Method Without Locals
Extract Method Without Locals (P)

Goto Method Declaration

Goto Method Declaration (P)

Inline Method

Inline Method(P)

Inline Temp

Inline Temp (P)

Introduce Explaining Variable

Introduce Explaining Variable (P)

Move Caret
Move Caret (P)

Move Lines
Move Lines (P)

Rename Multiple Variables

Rename Multiple Variables (P)

Replace Temp With Query

Replace Temp With Query (P)

Select Block

Select Block (P)

Select Identifier

Select Identifier (P)

Select Line

Select Line (P)

Select Multiple Identifiers

Select Multiple Identifiers (P)

Select Multiple Lines

Select Multiple Lines (P)

Toggle Comment

Toggle Comment (P)

Undo/Redo

Undo/Redo (P)

4.0

4.5

5.0

5.5

6.0

6.5

20 40 60 80 10
0

SMEQ

G
oo

dn
es

s
Articulation Time

10
20

30

40

50

Input Type
Finger
Pen

Goodness − SMEQ − Articulation Time

Figure 4.15: Bubble chart showing aggregated values for goodness (vertical), SMEQ
(horizontal) and articulation time (size).

Input Preferences and IDE Features

The results from the post-study questionnaire (see Appendix A) indicate the partici-

pants’ preferred input methods and the IDE features they frequently use. 44% of the

participants chose the pen as their preferred input method, 25% chose finger touches,

and 31% preferred mixed pen and finger interaction.

According to their own judgment, participants frequently employ the following IDE

features (number of mentions in parentheses): Rename (6), Auto-complete (5), Navi-

gation to method or class (5), Auto-format (4), Save (3), Extract method (2), Create

new method (2).

4.3.6 Observations

The users’ mental models appeared strongly influenced by the interaction concepts

of mobile operating systems. Most of the participants could easily be identified as

86

4.3. User Study

“Android users” or “iOS users”: They either directly referred to a specific platform

(e.g., “On Android, I can...”) or mentioned certain platform-specific features (e.g., the

magnifying glass on iOS).

Participants frequently asked for context menus since they either could not think of

a suitable gesture or found a menu more convenient in particular situations. At the

same time, however, they expressed their dislike for menus that contain too many

items; consequently, they took the expected frequency of operations into account when

deciding if an operation should be added to a context menu.

Some participants were concerned that selection and gesture recognition might not be

precise enough in a working system. They supposed that inaccuracies might lead to

frequent re-selections and adjustments in the editor.

Most users seemed to prefer one-handed gestures and only conservatively employed

multi-touch interaction. Hence, only few gestures were performed with more than

two fingers. According to comments during the study, the pen was perceived as more

accurate than interaction using finger touches. Participants frequently decided to

perform the same gesture for both the pen and finger version of the task. The two

hardware buttons of the pen were sometimes used as replacements for the left and

right buttons of a mouse.

As far as specific refactoring operations are concerned, users generally seemed to find it

easier to extract than to inline code. Some of the inline operations resulted in sequences

of unnecessary steps for completing the task. For users without prior knowledge of

inline refactorings, it was not apparent that the transformation could be automated

and hence only required a gestural trigger.

4.3.7 Discussion

As previously stated, the mean agreement score was lower than in the study by

Wobbrock et al. [WMW09]. The difference could by explained by the dissimilar

user group (programmers) and application domain (software development). This

assumption is further supported by the finding that faster gestures had higher goodness

ratings and lower SMEQ scores. Participants probably valued the efficiency of execution

more than in the Wobbrock study where users “were recruited from the general public

and were not computer scientists or user interface designers” [WMW09].

87

Chapter 4. Editing Source Code

Some operations led to only little agreement on an adequate gesture (as also reported

by Wobbrock et al.). On the one hand, the time-consuming design of this type of

study might be disproportionate to the expected outcome. On the other hand, a small

number of operations yielded high agreement scores. The majority of participants,

for example, proposed using the line gutter to select code blocks. Without involving

users, this area might not have been predicted as the most popular target for line

selection.

During the study, some participants stated that they would retrospectively solve indi-

vidual tasks differently or that they could not remember their previous actions. Since

the tasks were presented in randomized order, participants might have had problems

developing more consistent gesture sets. These issues could be reduced by providing

users with the full set of tasks in advance and then letting them freely design the

corresponding gestures.

Another limitation of user-elicited gesture designs is their tendency to lack creative

and novel multi-touch operations. In this study, most users confined themselves to

one-handed interaction using only one finger. In another study on custom gesture

sets, Oh and Findlater [OF13] concluded, “Our findings showed that even when

asked to create novel gestures, participants tended to focus on the familiar.”; and

Zelenik et al. [ZBAK10] remarked, “In essence, if the effort expended on bi-manual

interaction appears to greatly exceeds any performance benefit gained, then uni-

manual interaction may be preferred.” However, the lack of innovation also generates

positive effects: Conservative gesture designs might be easier to learn for users, and

more effortless to implement for developers.

In the pre-study questionnaire, 56% of all participants responded that they never

use a pen for touch input. In the post-study questionnaire, 44% chose the pen as

their preferred input method, and 31% preferred mixed pen and finger interaction.

Overall, this distribution indicates that the pen was positively received. (Users viewed

the device as more accurate.) Although the pen with its hardware buttons provides

additional flexibility for interaction design, its integration into a system for code input

poses challenges: Pen usage could be inconvenient when code editing operations

frequently involve keyboard usage.

Other challenges arising from user-elicited gestures include the difficulties of ensuring

non-ambiguous and conflict-free gestures. Since the users worked on isolated tasks in a

non-responsive system, they could not foresee all potential problems of their proposed

88

4.3. User Study

solutions. Some of the solutions might interfere with operating system gestures or

learned standard gestures that should not be repurposed. The resulting issues and

possible solutions for resolving conflicts in a responsive system are further discussed in

Chapter 7.

The work presented in this chapter can be extended into several directions:

Scaling to more operations

The proposed gestures contain solutions for only a basic subset of possible

operations. However, the more operations an application has to support, the

harder it is to find non-conflicting custom gestures; hence, in addition to gestures,

applications may need to display touch-optimized menu (see Chapter 7).

Supporting inter-file operations

The code examples of the tasks included only intra-file operations. It remains

open to explore how commands have to be adjusted so that multiple source files

are part of a single interaction.

Enabling disambiguation

Some operation might benefit from temporary disambiguation options. This

would allow the same gesture to be reused for multiple operations (e.g., through

interaction techniques such as Under-the-Rock Menus, see Chapter 3).

Improving discoverability

Since custom gestures are not self-revealing (i.e., users do not know where and

how to perform gestures in the UI), additional disclosure mechanisms should

inform users about the available operations and the details of their invocation.

4.3.8 Design Recommendations

Figure 4.16 illustrates the final gesture set, which could serve as starting point for

implementers of touch-enabled code editors. Gestures that are likely to interfere

with conventional platform gestures have been disambiguated by adding a second

touch point. Refactoring operations, for example, might otherwise cause conflicts with

built-in gestures for scrolling the viewport. Motions and targets, however, have not

been modified to maintain the identities of the proposed gestures.

Also, the set includes user interface elements that should be considered as interactive

zones: To select multiple lines and code blocks, for instance, the majority of users have

89

Chapter 4. Editing Source Code

Figure 4.16: Gesture set including basic operations for selection, editing, and refactor-
ing in text-based editors. (SelectFirstIdentifier > 2FingerTap * means: Select the first
identifier, then (>) perform multiple (*) taps using 2 fingers.)

90

4.3. User Study

employed the line gutter as target for swipe motions. As another subtle, yet important,

usability aspect, the study has revealed the need for additional “buffer zones” at the

top and bottom of the editor area: Almost all participants accidentally touched buttons

in the top navigation bar when they tried to perform their gestures in the editor area

below.

4.3.9 Conclusion

Rather than radically changing software development tools for touchscreens, I suggest

enhancing existing text-based editors with gestural interaction for code editing and

refactoring operations. In the first part of this chapter, I have introduced the different

types of operations and their impact on the representation of code. In the second part,

I have discussed refactoring in more detail since this software development practice is

a crucial and frequently performed activity during code editing.

The third part has presented a user study on how participants applied gesture-driven

interaction to standard code editing tasks. In contrast to arbitrarily designed gesture

sets, user-generated gestures are based on the most agreed upon solutions among

all participants. The agreement among participants can be measured and serves

as basis for the final set of recommended code editing gestures. This participatory

approach was supported by a custom-built test setup consisting of two connected code

editor instances. That way, participants could concentrate on their tasks, whereas the

experimenter remotely controlled the participant’s tablet editor to explain the tasks

and record all interaction events.

Furthermore, the study explored the advantages of using a pen (instead of finger

touches) for interaction. Although the comparison has not revealed any significant

differences in the measured performance values, qualitative feedback has hinted at the

value of the pen’s accuracy. However, for the rest of this work, I will not further consider

pen interaction due to the issues associated with code entry (Chapter 6).

Beyond the results, I have learned two lessons from conducting the study: First, the

approach can be time-consuming, both with regard to the required test setup and the

analysis. Hence, the question whether the expected output justifies the cost should

be considered before conducting similar studies. Second, when the proposed gestures

are integrated into a working system, conflicts might arise due to interference with

the existing multi-touch commands of the operating system. Neither the experimenter

91

Chapter 4. Editing Source Code

nor the participants can easily foresee these (often subtle) implementation issues.

Nevertheless, the study has uncovered a number of valuable opportunities for source

code interaction. Gesture-driven UI widgets could be integrated alongside pure gestural

approaches to reduce the potential for ambiguities and conflicts. Concrete solutions to

that end are demonstrated in Chapter 7.

92

Chapter 5

Selecting Source Code

Before programmers perform a code editing operation, they usually select textual

structures of the source code. Since selection commands are so frequently performed,

touch-centric editors should provide efficient interaction techniques while compensat-

ing for the absence of a physical keyboard and mouse.

In this chapter, I introduce the mechanics of code selection by examining desktop

editors and text editing applications of mobile platforms. Furthermore, I report

the findings of a user study that has revealed frequently performed operations and

selection patterns in a realistic software development situation. The study results

have motivated the design of a touch-enabled syntax-aware selection technique and

a number of gesture-driven and widget-based methods for selecting structural code

regions. These techniques are presented at the end of this chapter.

5.1 Introduction

For most code editing operations, selection is a precondition to set the target or scope of

an operation that the programmer is about to execute next. For example, a simple copy

command requires the programmer to specify which part of the source code he wants

to copy, whereas the corresponding paste command is either performed by inserting

the clipboard content at the cursor position or by replacing an active selection. The

following sections introduce the selection concept of desktop applications and current

93

Chapter 5. Selecting Source Code

mobile platforms. Also, I highlight the differences between selecting in “Emacs-type”

[Fin91] editors and modal editors such as VIM.

5.1.1 Terminology and Selection Mechanics

A selection marks a defined range of the text as “active”, that is, highlighted for the

user to distinguish selected code from non-selected code. In the code editor, a selection

sets an internal state to be considered for subsequent editing operations. Selected text

consists of a start position and an end position. When users select text beginning at

the start position, they can extend the range to a position before or after this start

position. It is perhaps more accurate to call the positions selection anchor and selection

head, respectively: The anchor is first set and remains at a fixed position; the head

extends the selection to either before or after the anchor. (Other text editors use similar

terminology: Emacs, for example, calls the mentioned components region, mark, and

point). Figure 5.1 illustrates the anchor and head of an active selection range (the

body of the method askDeepThought).

Selection Anchor (30)	

function askDeepThought() { !
 var answer = 6 * 7; !
 return answer; !
} !

Selection Head (66)	

Selection Range: {30, 66} 	

Figure 5.1: Illustration of the selection range from the anchor at character index 30 to
the head at index 66.

When a selection is active, most operating systems provide that entering a character

replaces the entire content of the selected text with the new character. When no

selection is visible, the range can be thought of being empty. For instance, a cursor

positioned at character index 66 would result in a range from character index 66 to

index 66; the anchor and head are at the same positions. Also, some editors support

a feature called multiple selections, that is, different parts of the source code are in

selected state and can then be modified at once. With multiple active selections,

94

5.1. Introduction

one range becomes the primary selection, which is the sole receiver of operations not

compatible with multiple active ranges.

5.1.2 Modeless vs. Modal Selection

The basics of the selection concept were introduced with Tesler’s editor Gypsy about 40

years ago (see [Tes12] and Chapter 3). The selection features, as today implemented

by IDEs and general-purpose text editors, have arguably been influenced by Emacs.

The command set of “Emacs-type” editors [Fin91] enables modeless selecting of textual

structures. By combining selection operations with cursor movement commands (e.g.,

jumping to the end of a word or line), users can select larger structural regions with

little effort. This interaction style is in contrast to the modal editing of editors such

as VIM, where users either explicitly enter a special selection mode or perform their

selection implicitly in “normal mode” (i.e., without visually marking text).

Selecting text constructs in VIM, for instance, first involves entering a mode, then

(optionally) entering modifiers, followed by commands for text objects (e.g., words,

sentences, or paragraphs) or motions (e.g., end of word or forward one line). A

sequence of keys forms a composed keyboard shortcut that can precisely perform the

intended operation; however, the functionality of individual keys and their flexible

interplay have to be learned and practiced. The acquired skills cannot be easily

transferred to other editors that use different or simpler mechanics. Moreover, the

modal interaction style may be difficult to transfer to touchscreens. The advantage

of touch-based selection, as later demonstrated, can be attributed to the ability of

users directly pointing at textual structures. This direct manipulation style might be

thwarted by modal editing. The following discussion, therefore, primarily revolves

around the more familiar Emacs-type selections.

5.1.3 Selection in Desktop IDEs

Although IDE manufacturers differ in concrete implementations of selection features,

the central functionality is largely identical across editors.

Most keyboard shortcuts consist of one or two modifier keys (Command [Mac OS],

Control, Option [Alt], Shift) and a character key. Similarly, mouse selection can be

altered by pressing additional modifier keys. While the OS provides general keyboard

95

Chapter 5. Selecting Source Code

Action Positions Element

Move/Select to Previous
Next

Character

Move/Select to Start of current
Start of previous
End of current
End of next

Word

Move/Select to Start of current
Previous (Nearest Character)
End of current
Next (Nearest Character)

Line

Move/Select to Start of current
Start of previous
End of current
End of next

Paragraph

Move/Select to Start of
End of

Document

Select Start to end of (all of) Document

Move/Select to Previous
Next
Enclosing

Syntactical Element

Table 5.1: List of common OS- and IDE-provided commands for cursor movement and
text selection.

shortcuts that work across all text-based applications, IDEs may override these default

shortcuts to enable more adequate code-centric behavior. For instance, the IDE might

override the OS shortcut for selecting the next word with selecting the next syntactical

element.

Table 5.1 lists a number of common text selection commands. Most commands are

provided by the OS. IDEs add functionality or alter shortcuts to operate on basic

syntactical structures. Most shortcuts can either be used for navigation (moving the

cursor to a new location) or selection (moving the cursor to a new location and

selecting the text to that location, usually by holding the modifier key Shift). On Mac

OS, for example, holding the Option and Shift keys while pressing the Right Arrow

key moves the selection head to the end of the current word (first press) and with

subsequent presses to the end of the next word, and so on.

96

5.1. Introduction

Text elements include characters, words, lines, paragraphs, and the current document.

Some IDEs provide the feature to select an enclosing syntactical element (i.e., the next

containing element). Multiple presses of the corresponding shortcut could select the

following structures in a program written in CamelCase notation1:

[Cursor Position]
> Next Camel Hump

> Whole Word
> Containing Expression

> Containing Block
> Whole Method Body

> Whole Method
> Whole Class

Table 5.2 lists standard OS selection commands when using the mouse. (In Windows,

some of the commands are application-specific.) Pressing the mouse button, dragging

towards a target location, and releasing the mouse button selects a range. Multiple non-

contiguous ranges can be selected by holding Command (Mac OS) or Ctrl (Windows).

Holding Option (Mac OS) or Alt (Windows) allows for selecting rectangular blocks.

Double-clicking selects words, triple-clicking extends the selection to paragraphs.

Action Positions Element

Select Contiguous Range
Select Non-contiguous

Rectangular
Ranges

Select Start to end of (whole) Word
Select Start to end of (whole) Paragraph

Table 5.2: List of elements that can be selected using the mouse.

5.1.4 Selection on Mobile Platforms

Since selection via the keyboard and mouse is not available on touch-enabled devices,

smartphones and tablets provide on-screen widgets and gestures for text selection. In

this section, I describe how the mobile platforms iOS and Android have attempted to

solve the problem of precisely selecting text on small screens.
1http://en.wikipedia.org/wiki/CamelCase

97

http://en.wikipedia.org/wiki/CamelCase

Chapter 5. Selecting Source Code

The following description uses the example of the standard Notes app on iOS (as of

version 7.1.2): Provided that the text was already set into the editable state by tapping

into the text, selecting text first requires an initiation gesture. This gesture could be

pressing-and-holding the finger onto the surface until a magnifying glass is displayed

for accurate cursor movement (Figure 5.2, top-left). Releasing the finger invokes

a pop-up menu containing selection buttons (Figure 5.2, top-right). Pressing the

button “Select” selects the word under the cursor and replaces the menu with editing

operations (Figure 5.2, bottom-left). Moving the selection handle on the left or right

expands or shrinks the range under the magnifying glass (Figure 5.2, bottom-right).

When the textfield is not in the editable state, pressing-and-holding directly transitions

to the editing state, with the word at the touch location selected.

Figure 5.2: Initiating and changing text selection on iOS.

Text selection (including editing) on iOS follows a sequence of four steps:

1. Initiating the selection.

2. Changing the selection.

3. Performing edits.

4. Ending the selection.

In addition, users can exploit selection gestures (Table 5.3) to accelerate the transition

to the selected state. For example, double-tapping selects the word at the location of the

tap; two-finger-tapping selects the whole paragraph. Also, the selection handles snap

to word boundaries when they are quickly dragged (swiped) towards the beginning or

end of a word.

On Android (as of version 4.1.2), text selection is initiated by double-tapping or

pressing-and-holding (called long-press on Android), which selects the word at the

98

5.1. Introduction

Gesture Element

Press-and-hold Word
Double-tap Word
Two-finger-tap Paragraph
Swipe handle (to word boundary) Range
Two-finger-drag (pinch/pull) Range

Table 5.3: List of selection gestures and selected text elements on the iOS platform.

touch location (Figure 5.3, no. 2). In the selected state, a contextual action bar (Figure

5.3, no. 1) shows text editing options as buttons. Similar to the iOS selection widget,

the Android handles at the start and end can be moved to adjust the range.

Figure 5.3: Initiating and adjusting text selection on Android2.

Android, by default, does not support any text editing gestures (Table 5.4) except

double-taps and long-presses. When the alternative Swype keyboard is enabled, the

whole text can be selected by swiping from a special symbol in the lower left corner of

the keyboard to the letter “A”. Furthermore, Android uses visually larger handles and

does not employ magnification features for adjustments.

Gesture Selection

Press-and-hold Word
Double-tap Word
Swipe to “A” (Swype) Document

Table 5.4: List of selection gestures and selected text elements on the Android platform.

To improve on the approaches provided by mobile operating systems, researchers have

proposed gesture-driven enhancements to text selection. For instance, Fuccella et al.

[FIM13] (see Chapter 3) have developed a technique where gestures are performed on

top of the keyboard: Two-finger-swiping to the left or right moves the selection head

2http://developer.android.com/design/building-blocks/text-fields.html

99

http://developer.android.com/design/building-blocks/text-fields.html

Chapter 5. Selecting Source Code

one word left or right; two-finger-swiping up or down moves the selection head to the

start or end of the text.

5.2 User Study

In this section, I detail a user study that examined how programmers perform selections

in an IDE. Results from the same study have been been published in [FHRC14], but

focused on different aspects; that is, the paper has broadly described students’ app

coding behavior from different perspectives. In contrast, the findings presented here

concentrate on the process of code selection and its analysis based on IDE interaction

logs. The quantitative results of this analysis have contributed to devising appropriate

interaction methods for touch-centric code selection. The concrete designs of these

techniques are introduced in the last part of this chapter.

5.2.1 Participants

The data was collected during the final exams of two programming courses on Android

application development at the University of Regensburg in the winter term 2012/2013

and the summer term 2013. The 78 participating students were majoring in media

informatics or information science, typically studying in the second or third semester.

(Both disciplines are closely related to applied computer science). Students had basic

knowledge of object-oriented programming with Java from an introductory course

taught in the first semester. Mobile application development with Java and the Android

framework is a follow-up course taught in the second semester. Hence, all participants

had prior experience with Java, the Eclipse IDE, and the Android Development Tools

(ADT)3. The Eclipse IDE had been used as standard IDE for all Java courses; ADT

provides Android-specific tooling as plug-in or standalone version.

5.2.2 Test Setup

The assessment was conducted in a university facility equipped with 57 personal

computers running Windows and Linux operating systems. At each assessment, all

3http://developer.android.com/tools/sdk/eclipse-adt.html

100

http://developer.android.com/tools/ sdk/eclipse-adt.html

5.2. User Study

students were divided into two consecutive groups in order to alleviate both technical

and organizational supervision concerns.

Students were provided with a pre-configured version of ADT. Since they had used

ADT for course assignments before, students were familiar with the features of the

development environment. In addition to ADT, the following tools for logging and

analysis of their coding behavior were pre-installed and automatically started at the

beginning of the evaluation:

1. A screen recording software captured videos (for analysis of the students’

problem-solving strategies).

2. A custom-built Firefox plug-in logged particular browser events (for analysis of

the students’ search patterns regarding documentation and help).

3. An Eclipse plug-in logged low-level IDE events (for analysis of the student’s IDE

usage and interaction).

The analysis of selections is based only on the log files of the third tool, the publicly

available Eclipse plug-in FLUORITE [YM11]. Compared to other logging tools, this

plug-in captures low-level commands in the editor so that researchers can explore

frequently triggered commands and detect fine-grained usage patterns. FLUORITE logs

all data into XML files, which are stored in the workspace when the IDE is closed. The

authors of the tool have built a separate application for producing summary reports

and charts. However, since their program did not provide the necessary information, all

relevant data was extracted by parsing the XML files using custom scripts. Furthermore,

a custom replay-application (presented below) supported more precise analysis of the

performed selections.

5.2.3 Procedure

A handout (see Appendix B), given to students prior to the assessment, informed all

participants that anonymized data would be collected for research purposes. Although

they could choose to opt out of data collection, all students agreed to take part in the

study.

All of the tools mentioned above were integrated into one single package, which was

distributed over the local network before the assessment began. Students were then

101

Chapter 5. Selecting Source Code

asked to execute a setup-script that created desktop shortcuts for the IDE and browser.

Additionally, the script started the video recording software.

After having configured their IDE workspace, students began working on the tasks that

were described on extra handouts. Due to the limited exam duration of two hours

(one and a half hour in the summer term), pre-installed workspace-packages provided

students with existing code for extension or modification according to the requirements

of each task. The following list briefly describes each task. (The tasks had primarily

been designed by the lecturer of both Android courses, see Appendix B.)

Tasks in Winter Term 2012/2013

Quiz App

Create the layout and UI code for a quiz app: The app contains textfields for the

question and answer, as well as buttons for revealing the answer and going to

the next question. The provided data model had to be used as foundation.

Responsive UI

Implement a background operation: An existing app had to be extended so

that an “expensive” operation (faculty calculation of a large number) runs in a

background thread, displays the progress, and shows the result in a UI dialog.

Refactoring

Refactor an existing app: The source code of the provided app had to be improved

so that it adheres to software engineering principles and best practices that had

been taught in the course (e.g., naming conventions or variable usage).

Tasks in Summer Term 2013

Tax Calculator

Create the layout and UI code for a tax calculator app: The app contains a

textfield for a price without tax and a textfield for the price including tax. When

one of the textfields change, the other textfield should update correspondingly.

Debugging

Debug an existing quiz app: The provided app contained three bugs that had to

be uncovered. The causes of the bugs and the suggested fixes should be noted in

a text file.

102

5.2. User Study

At the end of the assessment, a submission-script was started and compressed the

workspace, log files, and video file into a single file. This file was then manually

collected from each student. (The reasons for manual collection were due to file size

restrictions imposed by the technical infrastructure.)

5.2.4 Analysis

As previously mentioned, the FLOURITE analyzer application did not prove useful for

examining selection events. The XML files were thus analyzed using a combination of

the following three methods:

• Scripts: Custom scripts were mainly used for generating tables of average and

absolute command frequencies.

• Replay Application: A web UI read the XML files and replayed the entire session

in an editor. This method was used for visual inspection of all events and

sending information about individual events to a server application that returned

extended data (see next section).

• Server Application: Selection events were sent to a Java application using the

Eclipse framework for identification of selected AST nodes. This tool stored the

results in a database for further analysis in statistics software.

This next two sections describe the functionality of the replay and server application in

more detail, and explain how selections have been matched to AST nodes.

Selection Replay

The Eclipse IDE itself was not used for replaying the interaction logs due to the

development overhead that this approach would have generated. The web-based

approach allowed for quicker prototyping of the required functionality and omission

of non-essential interaction events.

In order to reconstruct selections from the XML log files, all interaction events had

to be replayed so that the current state of the source code could be inspected at a

particular point of a participant’s code editing session. For example, a selection event

in FLOURITE is logged as follows (Listing 5.1):

103

Chapter 5. Selecting Source Code

1 <Command __id="91" _type="SelectTextCommand" caretOffset="253"
end="301" start="253" timestamp="1073828" />

Listing 5.1: XML log format of a FLOURITE selection event.

To determine the selected part of the code based on the logged character indices, all

previous events up to this point had to be replayed. Figure 5.4 shows a screenshot of

the application that was built for that purpose.

Figure 5.4: Web-based application for replaying and stepping through all logged events.
Selection events are further analyzed by a server application.

After an XML file is dragged into the editor area, the control panel at the top of

the screen enables stepping through single events of the session, fast-forwarding to

an entered event identifier, or automatically replaying all events in real-time. The

application replays only those events that modify the state of the source code in the

editor, including events where participants switch to a different file-tab for performing

edits. Also, the application displays all selections and sends information about the

interaction to a server application for further analysis. Figure 5.5 illustrates the

interplay between the client and server application. The system supports two different

modes of operation:

104

5.2. User Study

Selection Event	

Replay	

Applica+on	
 Server	

Selec+on	

Analyzer	

Selection	
AST Result	

AST Result	

Replay	

Applica+on	

Selection Event	

Server	

Selection	

Selec+on	

Analyzer	

AST Result	

Figure 5.5: Components of the analysis system for selection events. Two modes are
supported: Manual replay (top half) and automatic replay (bottom half).

Manual Replay

When manual stepping through events or the replay feature is used, the client

sends information about the selection (the source, start index, and length) to

the server. The server delegates the data to a Java application that determines

the corresponding AST node for the selection and returns the result to the server.

The server then sends the result to the client, which displays the information in

a tooltip.

Automatic Replay

When all interaction events up to an entered event identifier are automatically

replayed, timing-information is ignored so that the entire session is completed

as quickly as possible. This mode first stores all selections in a database on the

105

Chapter 5. Selecting Source Code

server. After the storage phase, the Java application is launched, determines the

AST data for all selections, and writes the results into the same database. The

complete database is then processed by statistics software.

While manual mode was used for visual inspection of the selection process and single

AST results from the server, automatic mode was exploited to bulk-process and analyze

all selection events. Only Java source files were analyzed; other Android project files

such as XML layouts or strings files were ignored.

AST Node Finding

The Eclipse JDT core framework exposes the necessary interfaces to find the AST

nodes for a selection. The framework provides the ASTParser and NodeFinder
classes: ASTParser creates a CompilationUnit instance based on a source string

and configurable options. For the analysis of this work, the parser was configured

to recover statements containing syntax errors. The resulting CompilationUnit
instance (the AST root), the start of the selection, and the length of the selection are

then passed into NodeFinder.

The node finding algorithm works as follows (as described in the documentation of

NodeFinder4):

“[F]irst the visitor tries to find a node with the exact start and length. [I]f

no such node exists then the node that encloses the range defined by start

and length is returned. [I]f the length is zero then also nodes are consid-

ered where the node’s start or end position matches start. [O]therwise

null is returned.”

In other words, the algorithm first tries to find the first covered node (i.e., the node

that is enclosed by the selection range) in a top-down traversal, and then falls back to

finding the last covering node (i.e., the node that encloses the selection range).

5.2.5 Results

In this section, I report the results that have been generated using the previously

mentioned tools for analysis. The results include:

4http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.jdt.doc.isv/
reference/api/org/eclipse/jdt/core/dom/NodeFinder.html

106

http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/NodeFinder.html
http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/NodeFinder.html

5.2. User Study

• The average and total frequencies of performed IDE commands.

• The types of selected AST nodes with their relative frequencies.

• The relative frequencies for matches at structural boundaries.

• The average number of selected lines.

• The relative frequency of selection directions.

Command Frequencies

Table 5.5 lists the average and total command frequencies.

Type Average Total

All Commands 1483.6 115717
All Unique Commands 23.0 112

Insert String 443.1 34558
Move Caret 313.4 24446
Delete (Backspace) 135.2 10549
Select Text 108.3 8450
Open File 91.1 7109
Movement (Arrow Keys) 72.3 5637
Content Assist Proposals (Automatic) 51.7 4029
Content Assist (Manual) 65.7 5127
Save File 31.8 2483
Paste 26.1 2035
Copy 15.3 1196
Cut 6.2 487
Quick Assist (Manual) 5.5 429
Undo 5.1 394
Save All (Menu) 5.7 446
Delete (Menu) 4.9 386
Organize Imports 4.2 326
Format Code 3.4 269
Rename 2.3 176

Table 5.5: List of the average frequencies (per participant) and total frequencies (across
all participants) of performed Eclipse commands. The list contains only commands
with avg. frequencies > 1.

107

Chapter 5. Selecting Source Code

On average, participants performed 1483 commands during the exam session. About

7% of all triggered commands are selection commands. Each participant executed,

on average, only 23 unique commands. Excluding high-frequency operations such as

inserting characters and moving the cursor, the average number of unique commands is

even lower (14). This data shows that code selection is the most frequently performed

operation after the (expected) dominating operations of character insertion, deletion,

and cursor movement.

Relative AST Node Frequencies

Figure 5.6 lists selected AST node types after normalizing for the relative frequency.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 0.69

 2.86

22.99

 0.49
 0.51

 0.67

 1.35
 1.53

 0.27

 0.88

 0.20

 1.04

 0.27

 4.70

11.30

 0.78

 0.55

 0.27

 1.53

 0.96

 0.53

31.66

 0.27

 1.31

 0.45

 0.57

 0.37

 6.13

 0.29

 3.47

ImportDeclaration
ForStatement

Javadoc
NumberLiteral

SingleVariableDeclaration
VariableDeclarationFragment

ThisExpression
SwitchStatement

BooleanLiteral
CastExpression

ReturnStatement
NullLiteral

TextElement
ClassInstanceCreation

AnonymousClassDeclaration
Modifier

IfStatement
QualifiedName
InfixExpression

StringLiteral
CompilationUnit
FieldDeclaration

PrimitiveType
Assignment

VariableDeclarationStatement
MethodDeclaration

TypeDeclaration
MethodInvocation

Block
SimpleName

0 10 20 30 40 50
Relative Frequency (%)

N
od

e
Ty

pe

Figure 5.6: List of relative frequencies for the selected AST node types. The graph
contains only frequencies > 0.2%.

108

5.2. User Study

The most frequently selected AST nodes (with relative frequencies > 10%) are names,

blocks, and method invocations.

Structural Boundaries

Matching AST nodes for selections have been determined according to the described

node finding process. To examine if the node boundaries precisely match the actual

selection boundaries, the indices of the AST node (i.e., the start and end position in the

source code representation) have been compared to the selection indices. As displayed

in the chart of Figure 5.7, 51.1% of all selections match the AST boundary at the end

position; 46.6% of selections match at the start position; for both positions, 40.4%

exact matches have been detected. These results show that about half of all selections

match at structural boundaries.

46.6

51.1

40.4

End

Start

Start and End

0 10 20 30 40 50
Relative Frequency (%)

M
at

ch
in

g
A

S
T

 B
ou

nd
ar

y

Figure 5.7: Relative frequency of selections precisely matching at AST node boundaries.

It should be noted that comparing node boundaries to selection ranges through an

automated node finding process does not capture all matches. For instance, given

the source code priceWithoutTax.getContext(), the user might have selected

getContext(). Since the selection includes the parentheses of the method call, the

node finding algorithm identifies a node of type MethodInvocation, with its start and

end positions enclosing the entire source code; the node boundary and the selection

boundary are not considered as matching. If the user had selected getContext
without the parentheses, the node finding algorithm would have identified a node of

type SimpleName and a match would have been recorded. Therefore, the results here

should be regarded as conservative estimates.

109

Chapter 5. Selecting Source Code

Number of Selected Lines

Figure 5.8 graphs the number of selected lines for different AST node types. The

average number of selected lines is highest for method invocations, type declarations,

and method declarations. The unexpected result of method invocation nodes having a

higher number of selected lines than method declarations can be explained by the use

of certain Android design patterns: Developers frequently create anonymous classes

for setting a click-listener on a UI object; this leads to the anonymous class spanning

multiple lines as part of the method argument. Selections of variable declarations,

field declarations, and comments span the lowest number of lines.

●

●

●

●

●

●

●

●

●

●

●

●

●

4.9

3.5

3.6

6.5

2

3.4

3.5

2.3

3.6

7.5

3.4

6.6

2.3

FieldDeclaration
Javadoc

VariableDeclarationStatement
ForStatement

SwitchStatement
Block

IfStatement
ClassInstanceCreation

MethodDeclaration
AnonymousClassDeclaration

CompilationUnit
TypeDeclaration

MethodInvocation

2 3 4 5 6 7
Avg. Number of Selected Lines

N
od

e
Ty

pe

Figure 5.8: Average number of selected lines for AST node types. The list contains
only selections spanning more than one line.

Selection Direction

52% of all selections were performed so that the selection head was positioned after the

selection anchor (i.e., from left to right), whereas 48% were performed in the opposite

direction. A goodness-of-fit test (P(χ2 > 7.30) = 0.007) shows that frequencies

significantly differ from an expected equal distribution of 50% for each direction

(which appears reasonable to assume).

110

5.2. User Study

Direction Percent

Head after anchor (left to right) 52%
Head before anchor (right to left) 48%

Table 5.6: Percentage of selections for each selection direction.

5.2.6 Discussion

The user study has allowed for examining a large number of interaction events in a

realistic development setting. Although most participants could be regarded as novices

in programming and code editing, it stands to reason that results might be similar with

more experienced programmers. In a prior study about structure editors, for instance,

Ko et al. [KAM05b] have found that “name edits” were the most frequently performed

editing operations (43% of their data) in a group of participants with “above-average”

Java expertise. The study of this work supports their finding since AST name nodes

were most frequently selected (relative frequency of 32%).

Furthermore, researchers previously observed the high number of backspacing in code

editing environments (as compared with lower reported backspacing frequencies in

regular document editing environments) [YM11]. This study confirms the finding.

Reasons could be repeated fixing of typos, renaming, or rewriting code for new attempts

at a solution. The low number of unique commands indicates that users tend to ignore

a large number of available IDE commands.

The overall high number of selection events suggests that code selection is a worthwhile

area for improvements, particularly because existing mobile platforms only have

limited capabilities in this regard. The list with relative frequencies of selected AST

nodes provides clues to possible optimizations. For instance, the selection of block

statements or other frequently selected syntactical elements appears as promising

target for enhanced interaction methods. Unfortunately, the employed logging plug-in

FLOURITE does not capture how a user performs a selection. Differences between

mouse and keyboard usage thus remain unclear. It seems reasonable to assume that

more experienced programmers select code more often using keyboard shortcuts in

order to avoid frequent switching to the mouse.

Irrespective of whether the keyboard or mouse was used, the selection directions

appear broadly balanced, with slightly more operations initiated by placing the head

after the anchor. As explained in the introduction, smartphones and tablets typically

111

Chapter 5. Selecting Source Code

display widgets (handles) for fine-tuning the selected range in both directions. As

shown by the data, techniques that do not employ such widgets should keep supporting

the initiation and extension of the selection range to both directions. Since the observed

ranges have not exceeded eight lines, interaction techniques for one-handed two-finger

selection of multiple lines should be feasible in most situations.

The results of this study have motivated the design of touch-centric selection mecha-

nisms (presented in the next section) that consider structural boundaries, as opposed

to treating source code as regular textual content. A large number of selections exactly

match at structural boundaries. Hence, syntax-aware code selection, combined with

gesture-driven interaction, could considerably improve the process of selecting regions

of code on touchscreens.

5.3 Interaction Methods

In the following sections, I introduce the mechanics of syntax-aware code selection

and present the details of the designed interaction techniques for code selection. All

techniques have been implemented in the IDE shown in Chapter 7.

5.3.1 Syntax-aware Selection

Syntax-aware selection ensures that selection ranges align at the structural boundaries

of code. This approach...

• reduces manually adjusting small selection handles.

• requires less touch-precision and therefore works with smaller font sizes.

• selects syntactic regions for subsequent editing operations (e.g., refactoring).

• combines both coarse and fine selection adjustments.

• supports multiple non-contiguous selection ranges.

• does not open or require the on-screen keyboard for selection.

112

5.3. Interaction Methods

Initiating the Selection

Selections are initiated by performing a touch-and-hold (long-press) gesture on the

source code. This interaction is similar to the default behavior of text selection on

mobile platforms. After a duration threshold, the source location at the touch point is

determined. At this source location, the surrounding AST node (i.e., the innermost

node that contains the source location) is searched. The selected range is then updated

to match the boundaries of the found AST node.

if (answer == 42) { !
 console.log("life, the universe and everything") !
} !

Get	
 Touch	

Loca,on	
 {x,	
 y}	

Touch-­‐and-­‐Hold	

~0.2s	

Determine	
 Source	

Loca,on	
 {line,	
 col}	

Find	
 Source	
 Range	

{start,	
 end}	
 around	

Source	
 Loca,on	
 	

Update	
 Selec,on	

Range	
 {start,	
 end}	

if (answer == 42) { !
 console.log("life, the universe and everything") !
} !

Figure 5.9: Main steps of initiating a syntax-aware selection operation in the code
editor. The blue circle represents a duration threshold or dwelling time at the initial
touch location.

In the example shown in Figure 5.9, the innermost surrounding node is of type if

statement. (Unlike concrete syntax trees, abstract syntax trees do not record keywords

or punctuation; touching-and-holding the keyword if, therefore, leads to the respective

statement node being found.) Since this node consists of child nodes for the test

expression and the consequent statement, these nodes are enclosed by the selection

range. If the if statement contained an alternate statement, it would be included in the

selection range. Since the same mechanics are applied for other AST node types, the

regions that become selected should be quickly predictable for the user.

113

Chapter 5. Selecting Source Code

var answer = result + " is the answer" !Variable Declaration	

 Variable Declarator	

 Identifier	

 Binary Expression	

 Identifier	

 Literal	

Variable Declaration	

 Variable Declarator	

 Identifier	

 Binary Expression	

 Identifier	

 Literal	

Variable Declaration	

 Variable Declarator	

 Identifier	

 Binary Expression	

 Identifier	

 Literal	

Variable Declaration	

 Variable Declarator	

 Identifier	

 Binary Expression	

 Identifier	

 Literal	

Variable Declaration	

 Variable Declarator	

 Identifier	

 Binary Expression	

 Identifier	

 Literal	

var answer = result + " is the answer" !

var answer = result + " is the answer" !

var answer = result + " is the answer" !

var answer = result + " is the answer" !

Figure 5.10: Touching different elements of the variable declaration node selects the
corresponding child nodes in the syntax tree.

Another example is demonstrated in Figure 5.10. Here, different touch locations select

different child nodes of a variable declaration:

• Touching the root of the declaration, the keyword, selects the entire declaration

(for similar reasons why an if keyword selects the entire statement, see above).

• Touching the identifier of the declarator node selects only the identifier.

• Touching the operator selects the entire binary expression.

• Touching the left identifier node or the right literal node selects only these leaf

nodes.

114

5.3. Interaction Methods

Technically, this approach depends on the concrete implementation of node visitors

that traverse the syntax tree and either visit or skip certain child nodes. An alternative

implementation, for instance, could skip the identifier node of a variable declarator.

In the example of Figure 5.10, this would result in the additional selection of the

binary expression node when the user performed a touch-and-hold gesture on answer.

Skipping the touched child node selects the parent node, which may–depending on the

node type–extend the range to before or after the touched node (Figure 5.11).

Variable Declaration	

 Variable Declarator	

 Identifier	

 Literal	

 	

Variable Declaration	

 Variable Declarator	

 Identifier (Skipped)	

 Literal	

ExpressionStatement	

 CallExpression	

 MemberExpression	

 Identifier	

 Identifier	

 	

ExpressionStatement	

 CallExpression	

 MemberExpression	

 Identifier	

 Identifier (Skipped)	

var answer = 42 !

deepThought.calculateAnswer() !

var answer = 42 !

deepThought.calculateAnswer() !

a) !

b) !

a) !

b) !

Figure 5.11: The effects of visiting (a) and skipping (b) child nodes. When child nodes
are skipped while traversing the syntax tree, the respective parent node will be selected.
While this behavior might be desired in the top example, it might be inconvenient in
the bottom case.

Here, the recommended method is to select the innermost touched node; that is, to

visit all child nodes while traversing the tree. This approach is based on the assumption

that users often select identifier nodes (which the study results seem to confirm).

However, particular node types at higher positions in the hierarchy cannot be directly

selected. While touching-and-holding the character “.” in the bottom example of Figure

115

Chapter 5. Selecting Source Code

5.11 could be utilized to select the entire call expression (including the parentheses),

there is no obvious way to select the expression statement including a (here optional)

terminating semicolon. Semicolons can be selected via adjustment or line selection

methods, detailed in the following sections.

Changing the Selected Range

Although the initiation phase quickly selects ranges based on structural boundaries,

the user might want to adjust this range further. According to the study results, half of

all selections do not precisely align at node boundaries, suggesting that AST selection

should not replace the possibility for fine manual adjustments. However, conventional

selection handles can be enhanced by supporting both coarse syntactical selection and

fine character-wise adjustments. That way, syntax-aware selection continues to be

available after the initiation phase.

var answer = result + " is the answer" !

var answer = result + " is the answer" !

Magnet Handle	

Adjustment Handle	

Figure 5.12: Selection handles consisting of a magnet handle (top handle) for snapping
(limiting) the selection to syntax boundaries of other child nodes, and an adjustment
handle (bottom handle) for conventional character-wise selection.

Mobile platforms typically render small widgets for adjusting the start and end position

of the range by dragging handles to the corresponding character positions. This system

can be extended by splitting one handle into two active areas: While the bottom handle

works similar to conventional selection widgets, the top handle serves as “selection

magnet” and snaps to the next logical syntax boundaries when the user releases the

finger. Figure 5.12 illustrates this design.

116

5.3. Interaction Methods

Since the magnet handles now modify two locations (instead of one as in the initiation

phase), the selection mechanism must treat both locations differently: The first handle

snaps to the start location of its surrounding node, whereas the second handle snaps

to the end location of its surrounding node. The selection can thus be adjusted to a

different range within a child node, or to any descendant, sibling, or ancestor. If the

second handle is dragged before the character position of the first handle, the logic is

reversed (i.e., the second handle is set to the start location of its surrounding node,

while the first handle is set to the end location of its surrounding node). As shown in

Figure 5.12, this design lets users constrain the selection to a specific child node of the

variable declarator (result) after the initial coarse selection of the entire assignment.

The bottom handles allow for further character-wise adjustment.

Multiple Selections

An increasing number of desktop IDEs have integrated a feature called “multiple

selections”. This feature allows users to select multiple non-contiguous ranges and

modify these ranges at once (e.g., by replacing the contents). The functionality is

typically triggered by pressing modifier keys.

The previously presented design lends itself well for implementing the distinction

between single and multiple selections based on the touch duration: Repeatedly

initiating a touch-and-hold gesture adds a new selection to the previous selection. The

most recent selection becomes the primary selection that displays the selection handles.

A tap gesture clears all active selections.

5.3.2 Selection Gestures and Widgets

In this section, I introduce two gesture-driven selection techniques and one widget-

based technique. Like syntax-aware selection, these methods have emerged from the

study results. While syntax-aware selection forms the basis, the three approaches

presented here either complement the interaction (selection spans) or provide enhance-

ments for specific code structures (selection panning and selection rails).

117

Chapter 5. Selecting Source Code

Selection Spans

Although syntax-aware selection lets users select any part of the code, the approach

does not take advantage of multi-touch interaction. Selection spans allow users to set

the selection anchor and selection head through repeated drag-and-hold gestures using

one finger or two fingers (Figure 5.13). The interaction for each version works as

follows:

• One finger: A range is selected by setting the anchor with the first touch-and-

hold on the start point. Moving the finger to the end point, followed by dwelling,

sets the head. Subsequent dwelling at other end points always adjusts the head,

while the anchor remains at the first fixed position. This allows users to readjust

the range during the interaction, should they decide to select a different range.

Selection handles are displayed when the user lifts the finger.

• Two fingers: Although the interaction is performed with both fingers simultane-

ously, one finger always touches few milliseconds first and thus sets the anchor,

whereas the second touch sets the head. In contrast to single-touch interaction,

the multi-touch version adjusts both the anchor and the head (or only the head).

Selection handles are displayed when the user lifts the finger.

var answer = result + " is the answer" !
var output = answer + " to life, the universe, and everything" !
!

var answer = result + " is the answer" !
var output = answer + " to life, the universe, and everything" !
!

1	
 2	

3	

Figure 5.13: Selection spans. Top half: One or two fingers set the anchor (first touch-
and-hold, no. 1) and head (dwelling, no. 2). While single-touch interaction allows
users to readjust the head (dwelling, no. 3), the multi-touch version readjusts both
positions during the interaction. Bottom half: Selection handles are displayed when
the user lifts the finger(s).

Selections spans allow users to bypass the adjustment of handles by limiting the range

already during the initiation phase.

118

5.3. Interaction Methods

Selection Panning

Selection panning uses the gutter area as touch target. The study presented in Chapter

4 has identified this area as popular target for selecting a single line or multiple

lines of code. With selection panning, touching-and-holding on a line number selects

the corresponding line. A line range is selected by dragging towards the end line

number and lifting the finger. When the initial touch-and-hold is skipped and the user

immediately starts panning on the gutter, only a single line will be selected.

if (result) { !
"answer = 42; !

} else { !
"continueCalculating(); !

} !

	

3	

4	

5	

6	

7	

	

if (!answer) !
"if (result) { !
" "answer = 42; !
"} else { !
" "continueCalculating(); !
"} !

} !

2	

3	

4	

5	

6	

7	

8	

Figure 5.14: Selection panning. Top half: Line ranges are selected by panning over the
line gutter using single-touch or multi-touch interaction. Bottom half: The touches
can be shifted towards the right so that pinching the fingers decreases or increases the
range on top of the code.

Alternatively, a two-finger gesture selects a line range with a single operation. When

the fingers are lifted, the anchor is positioned at the start of the first touched line while

the head is positioned at the end of the second touched line. During the interaction,

the range can be readjusted by horizontally sliding the touches towards the right and

then pinching the fingers (Figure 5.14). This horizontal shift allows users to increase

or decrease the line range on top of the code.

119

Chapter 5. Selecting Source Code

Selection Rails

Selection rails are a widget-based technique for quickly selecting block statements, which

have shown to be the second most frequently selected node type in the user study.

After a touch-and-hold on any part of the line gutter, bold lines are displayed next to

block statements in the editor area. Tapping on a line (rail) selects the corresponding

block. Multiple taps on the same line extend the line range by selecting the parent

node of the current block; thus, the selection can be extended up to the root node of

the current document.

Figure 5.15 shows five selection rails in a code example containing multiple block

statements. (Block statements also enclose the single-line consequent and alternate

nodes of the if statement node.) Invisible hit areas ensure that users do not need to

touch the width of the line precisely. A short-tap elsewhere in the editor area hides all

selection rails.

function calculateAnswer() { !
"while (!answer) { !
" "if (fetchResult() == 42) { !
" " "answer = "life, the universe and everything";
" "} else { !
" " "// nothing !
" "} !
"} !

} !

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

	

Figure 5.15: Selection rails are bold lines that enable quick selection of block statements.
Multiple taps on the same rail extend the range up to the next parent node. Here, the
user has first touched the rail next to the if statement. Another touch would select the
while statement, and so on.

5.4 Conclusion

Selection is an essential and frequently performed operation in code editors. Touch-

enabled devices, however, lack interaction methods for executing this operation effi-

ciently. Desktop editors provide a number of keyboard shortcuts for quickly selecting

120

5.4. Conclusion

text elements like words, sentences, and paragraphs. In contrast, widely used mobile

platforms have employed UI widgets and limited support of gestures. Since these meth-

ods are insufficient for selecting source code, I have proposed touch-centric interaction

techniques that take the syntax and structure into account.

In this chapter, I have first introduced the terminology of text selection and described

the difference between modeless and modal commands. Examples of the selection

concept, as realized by desktop and mobile operating systems, have demonstrated

how users typically select text. Furthermore, I have presented a user study that has

examined programmers’ code selection behavior in a realistic development scenario.

While the results have revealed various properties of their performed commands, two

particular results have motivated the design of new interaction techniques: First,

programmers frequently select code at structural boundaries and second, they select

certain node types of the syntax tree much more frequently than other types.

In the final part of this chapter, I have proposed multi-touch interaction techniques

for code selection on touchscreens. Syntax-aware selection lets users perform quick

selection of structural code regions based on AST node boundaries. Additional gesture-

driven and widget-based techniques (selection spans, selection panning, and selection

rails) provide enhancements for specific code structures. I present implementations of

these approaches in Chapter 7.

Opportunities for future work include conducting a follow-up study that investigates

the designed methods from a usability perspective. This might also show if the program-

mers’ expected selections match those generated by the devised interactions.

121

Chapter 6

Creating Source Code

While the previous two chapters have addressed the interaction with existing source

code, this chapter concentrates on the interaction of creating new code. Researchers

have long sought methods for efficient text entry on touchscreens. Entry of source

code adds new challenges, primarily arising from the need for code-centric meth-

ods to match the well-established and keyboard-driven techniques of their desktop

counterparts.

This chapter is divided into five main sections: In the first section, I introduce the

challenges of touch-centric code input. In the second section, I describe the state-

of-the-art of standard code creation mechanisms in desktop editors. Following that,

I present the model and design approach of a custom keyboard for code entry. In

the fourth section, I report the results of a user study centered around entering code

with this custom keyboard. The final section proposes improvements based on user

feedback and presents simulations of an enhanced model for code entry.

6.1 Challenges

So far, I have outlined strategies for editing existing source code. However, typing new

code into a system that lacks a physical keyboard remains a major issue. Although

mobile platforms typically provide on-screen (virtual) keyboards for typing characters

into applications, a number of problems are associated with their use.

123

Chapter 6. Creating Source Code

6.1.1 Fat Fingers

Haptics are perhaps the most noticeable difference between on-screen keyboards

and physical keyboards. Missing tactile feedback coupled with inaccuracies between

intended and actual touch locations (known as the touch offset) worsens the user

experience of typing on flat surfaces. One of the most well-known interaction issues

with any touch-based system is the “fat finger problem”: The combination of the user’s

entire fingertip being a potential contact point and the finger occluding the touch

target impede precise pointing at the intended location. Although this random noise

contributes to touch inaccuracies, researchers have argued that up to 70% of inaccurate

touches do not arise from “fat fingers” but from a systematic error that depends on the

user and the finger posture [HB10]. Hence, systems could more accurately recognize

touches if they adapted to users and sensed certain properties such as the angle at

which the finger touches the surface.

6.1.2 Touch Model

In order to improve the accuracy, research projects have incorporated information

about the users’ hand postures (i.e., which fingers of which hand are used) [GJM+13].

Similar to the previous approach, applications should learn the users’ intended touch

locations in relation to the actual touch locations and adapt over time. Although

user adaptation has been shown to improve the touch accuracy, a known problem

with machine learning techniques is that they require collected training data until

they become useful. Furthermore, most available mobile devices do not provide

information about the user’s grip, finger posture, fingertip, or the size and angle of

the touched area. Application developers are limited to only working with basic data

about the locations of individual touches. These constraints have stimulated research

on statistical methods that generate substantial improvements by considering only

touch locations and potential target objects in the UI [BZ13].

Besides user adaptation and probabilistic methods, researchers have proposed a variety

of input methods ranging from magnifying touch areas, shifting touch targets, and

other interaction techniques, some of which I have mentioned in Chapter 3. Most of the

mentioned strategies have attempted to improve the touch model of text entry.

124

6.1. Challenges

6.1.3 Language Model

The second important component for efficient text entry is the language model. Spelling

correction and completion, for example, have become standard on mobile platforms.

When users inadvertently hit the wrong key, the system displays a list of corrections;

when users type only part of a word, the system displays possible completions. More

advanced approaches such as Apple’s Quick Type1 additionally analyze the user’s

context to improve the quality of suggestions. Moreover, research has shown that both

correction and completion are not mutually exclusive but rather supplement each other

[BOZ14]. Both capabilities can be optimized without losing the major advantages of

each objective. This optimization problem, however, is not trivial: The keyboard of

the Android platform, for example, is driven by 21 weighted parameters affecting the

quality of the text entry system [BOZ14].

6.1.4 Text vs. Source Code

Overall, the best results are probably achieved when the touch model and the language

model are combined [WPR+14]. However, existing solutions only cover conventional

scenarios such as messaging or writing text documents. Programming differs from the

typical use cases for text entry methods. It might even amplify known problem areas

for the following reasons:

• Typing the text elements of source code may be more onerous than typing regular

textual content.

• Various special characters are disproportionately often accessed.

• Auto-completion is not only a convenient but rather essential and frequently

performed operation.

• Conventional spelling correction systems are not optimized for programming

languages.

• Programmers interleave typing with performing keyboard shortcuts.

As a consequence, the touch model and language model must either be optimized for

source code and/or be complemented by a third major building block. To make it

1https://www.apple.com/de/ios/ios8/quicktype/

125

https://www.apple.com/de/ios/ios8/quicktype/

Chapter 6. Creating Source Code

clear which properties should compose a code-centric text entry component, I present

existing code creation mechanisms in the following sections.

Touch Model	
 Language Model	

Code Creation	

Code Model ?	

Figure 6.1: Touch-based text entry systems are typically driven by an underlying
touch model and language model. A third building block might need to be added for
optimized code entry.

6.2 Code Creation in Desktop IDEs

Obvious methods for generating code include manually typing in the editor or pasting

a snippet from an external source. This section lists additional ways of creating code

through IDE features, which I have categorized into five main areas: Smart Typing,

Code Completion, Code Hints, Code Templates, and Code Generation.

Although modern desktop IDEs differ in their naming and implementation details of

code creation methods, the concepts are similar between applications. Code Assistance

is perhaps a suitable umbrella term for these collections of functionality that support

programmers in writing source code more quickly and with fewer errors. On the one

hand, users of touch-enabled editors would certainly expect similar functionality; this

expectation has also been confirmed by the user study presented later. On the other

hand, adopting the user experience from desktop applications appears inadequate.

Therefore, code creation requires–similar to other functional areas–changes pertaining

to the different interaction paradigm on touchscreens.

Rather than showing the code creation features of every major IDE, I clarify each

principle using the example of the popular Eclipse IDE.

126

6.2. Code Creation in Desktop IDEs

6.2.1 Smart Typing

Smart Typing refers to the capability of IDEs to insert pairs of specific characters such

as parentheses, brackets, quotation marks, or comment signs during typing. When

the programmer inserts the first character of a pair, the IDE automatically inserts the

matching closing character. For example, entering an opening brace automatically

inserts the closing brace, whereupon the programmer continues typing the code

between the braces. Smart Typing also applies to indentations: Pressing enter not only

creates a new line but also indents the line accordingly. Overall, this feature helps

programmers saving keystrokes when entering special characters.

Figure 6.2: Smart Typing automatically inserts matching character pairs during typing.
The cursor is placed so that writing continues between the character pair.

6.2.2 Code Completion

Code Completion (sometimes also called Auto-complete) is one of the primary ways

for accelerated typing of code. When programmers trigger this feature, the editor

completes partially typed code. A typical use case is the completion of member functions

and attributes: After typing the name of an entity, followed by a trigger character such

as “.”, the programmer selects an entry from the displayed list of suggestions. The list

of choices is then filtered with each subsequent keystroke. Accepting the selection by

pressing Enter (sometimes also Tab) inserts the completion and hides the pop-up list.

A keyboard shortcut usually lets programmers manually show completions at arbitrary

locations in the source code.

In many IDEs, code completion does not stop with completing members but also

includes keywords, variable names, parameters, missing parentheses, and even paths

to local files. More advanced code completion engines attempt to consider the current

context and pre-filter the list of suggestions. The NetBeans IDE, for example, displays

smart suggestions in a separate section at the top of the list. Smart suggestions are

choices that might be more relevant to the user’s current context. Since the list can

contain a considerable number of suggestions, this behavior accelerates the insertion

of more likely completions.

127

Chapter 6. Creating Source Code

IDEs like IntelliJ or Visual Studio optionally perform instant completion, that is, almost

every keystroke (rather than only a special character) triggers completions. Because the

constant display and updating can be distracting, some IDEs show the pop-up only after

a delay and/or only at certain characters. Most IDEs provide settings for configuring

trigger characters, delays for pop-up lists, and the sorting of suggestions.

Figure 6.3: Code Completion displays a filterable list of suggestions that the programmer
can accept and insert.

6.2.3 Code Hints

Code Hints provide corrections for potential errors. Programmers also repurpose this

feature to create code by intentionally introducing errors and thereby invoking the

display of a hint. When the editor detects errors, it displays hints as small widgets (e.g.,

a light bulb icon) in the gutter area or directly above or below the code as inline-widget.

Clicking on the widget or executing a keyboard shortcut then shows a list with possible

corrections for the erroneous code.

When the programmer selects an option, the IDE tries to repair the code. The action

may also result in code being generated: The programmer could intentionally refer

to code that has yet to be written, for example by calling an unknown method. The

IDE detects the unresolvable method name and shows the appropriate code hint that

allows the programmer to create the method definition. The same process could be

used for generating variable declarations or other code structures.

Eclipse calls Code Hints “Quick Fixes” and supplements the feature with “Quick Assist”.

Programmers can use the latter to generate code even when no error exists, for instance

for performing local code transformations. Some transformations, such as adding an

else block to an if statement or extracting a local variable, create new code. However,

128

6.2. Code Creation in Desktop IDEs

the large number of available code hints begs the question to what extent programmers

really exploit these features for code generation purposes.

Figure 6.4: In addition to repairing erroneous code, code hints can generate new code
when the editor cannot resolve a method that the programmer has attempted to call.

6.2.4 Code Templates

Code Templates (sometimes called Live Templates) allow programmers to quickly insert

blocks of code and only fill in the required placeholders of the template. The templates

are usually triggered by typing a configured abbreviation, followed by using either

the code completion mechanism or a reserved keyboard shortcut. After expansion

of the template, the editor marks the placeholder regions of the inserted code. To

create a new private method, for instance, the programmer types “private”, inserts the

suggested template and then navigates through the placeholders to modify the return

type, parameters, and method body. Some editors enforce a valid context before a

template can be inserted.

Most IDEs let users configure custom templates. Applying this mechanism, program-

mers do not need to recall the exact pattern of a rarely used structure, or, perhaps

more commonly, they quickly insert and modify frequently used code snippets.

Figure 6.5: An active code template for defining a new method. Using the Tab key, the
programmer can navigate back and forth between the editable regions and fill in the
details. Pressing Esc ends the template, pressing Enter moves the cursor to the location
displaying the cursor marker.

129

Chapter 6. Creating Source Code

6.2.5 Code Generation

Here, Code Generation refers both to dialog-based generation methods and to all other

mechanisms not fitting into the previous categories. Some IDEs, for instance, provide

dialogs for generating the accessor methods of selected fields in a class. Other features

generate overriding methods in subclasses or surround selected code with particular

statements (e.g., if or for).

Figure 6.6: Menu options for code generation in the Eclipse IDE. Options starting with
“Override” or “Generate” lead to dialogs containing adjustment parameters for new
code to be generated.

6.3 Towards a Code Entry Keyboard

In this section, I present the design of a custom keyboard that has been optimized

for code entry. The design has been evaluated in a user study and is part of the

implementation shown in Chapter 7.

6.3.1 General Design Approach

Although the design of the keyboard is not tied to a particular platform, the concrete

implementation used in the study has been developed for iOS and the iPad. To make

the differences clearer, I briefly introduce the default keyboard of this platform and

highlight its shortcomings concerning code entry. The following sections refer to the

iPad default keyboard as IDK and the code entry keyboard as CEK.

Figure 6.7 shows the native iOS (version 7.1.2) keyboard. In landscape mode on an

iPad Air (screen size: 19.7 cm x 14.8 cm), the on-screen representation takes up 100%

of the horizontal screen space and about 46% (~6.8 cm) of the total vertical screen

130

6.3. Towards a Code Entry Keyboard

Figure 6.7: Default English QWERTY keyboard of the iPad in landscape orientation.

space. The rectangular area of the standard letter keys is 1.52 cm x 1.44 cm, the

horizontal gap between the keys is 2.7 mm, and the vertical gap is 2.5 mm.

The English QWERTY layout, by default, shows all letter keys, Shift keys for typing

uppercase characters, special keys for toggling the entire layout to show numbers

and special characters, and other standard keys such as Backspace and Enter. The

functionality of Enter depends on the active application (e.g., the label changes to Go

when typing into the address bar of the built-in web browser). While holding Shift

enables typing of uppercase letters, a single tap only enables uppercase mode for the

following letter and then toggles back to lowercase mode.

Special characters are distributed over two separate layouts. The second layout can

be accessed by pressing a special button that replaces Shift in the first layout. For

example, to access “=”, the user has to first press the button labeled “.?123”, then

“#+=”, and finally “=”. Keys are triggered only after the finger is lifted from the

surface. Touching-and-holding certain (visually indistinguishable) keys shows a small

temporary pop-up displaying related items above the touched area. A special key in

the lower right corner allows users to undock the keyboard, that is, to freely move the

keyboard from the bottom to another vertical position. Furthermore, the keyboard

can be split into two smaller halves by performing a pinch gesture over the keyboard.

Changing to another localization of the keyboard can result in changed dimensions

of the keys. For example, changing from the English to the German layout introduces

keys for Umlauts (“äöü”) and “ß”; as a consequence, the width of all keys is reduced

accordingly.

As far as code entry is concerned, the described standard keyboard has a number of

shortcomings:

131

Chapter 6. Creating Source Code

• The keyboard covers almost half of the vertical screen space.

• Special characters that are frequently used for coding are onerous to access.

• There is no support for accelerated triggering of text editing commands (e.g.,

moving the cursor to the end of the line).

• The keyboard does not exploit multi-touch and gestural interaction.

An optimized code entry keyboard might need to satisfy the following requirements in

order to address these issues:

• Users should be in control of the keyboard size.

• Special characters for coding should be quick to access.

• Standard text and code editing commands should be quick to perform.

• Multi-touch and gestural interaction should enhance the user experience.

Furthermore, as emphasized in [FWW11], virtual keyboards could benefit from cus-

tomization. In contrast to physical keyboards, software-based keyboards could adapt

to the user or let the user configure specific elements of the layout. (The latter

might be attractive for programmers who appear to be particularly receptive regarding

customizations of their code editing environment.)

6.3.2 Keyboard Layout and Size

Figure 6.8 shows a screenshot of the initial layout for the proposed code entry keyboard.

Compared with the IDK, the CEK has a reduced height (~5.5 cm vs. ~6.8 cm) and

displays an additional key per row. The entire set of keys is horizontally and vertically

centered within the available lower area of the keyboard. All keys maintain a horizontal

and vertical gap of 1.9 mm; the size of individual keys is adjusted accordingly. By

default, the keys are thus smaller than those of the IDK, but users can progressively

increase the size. The top part of the keyboard, taking up 7.8 mm of the 5.5 cm, is

reserved for supportive widgets.

Users may choose to resize the keyboard by performing a standard pinch gesture over

the keyboard. Pinching resizes the bottom part of the keyboard proportionally while

the top bar maintains its vertical height. The resized area can extend over the screen

edges, clipping the contents if necessary. Employing this resizing option, users can

132

6.3. Towards a Code Entry Keyboard

Figure 6.8: Initial layout of the proposed keyboard for code entry.

intuitively adjust the key sizes to their liking. Moreover, the keyboard can be undocked

and freely dragged to any location on the screen, both horizontally and vertically.

Dragging is initiated either after touching-and-holding on the top bar or by dragging

simultaneously with pinching (Figure 6.9).

Whereas the keyboard “floats” above the editor contents in the undocked state, the

docked state positions the keyboard at the bottom of the screen and shifts the editor

content to the top (i.e., the editor content does not cover the area below the keyboard).

When the keyboard is set to the docked state, it keeps the size that was configured

in the undocked state. Resizing and repositioning is disabled when the keyboard is

docked.

Figure 6.9: In the undocked state, the keyboard can be resized using a pinch gesture
(double-headed arrow) and dragged to new locations after performing a touch-and-
hold gesture (circle).

Similar to the IDK, the CEK uses the standard QWERTY layout but replaces some IDK

keys and adds new keys that are more adequate for code editing. All keys provide a

configurable default behavior when pressed. A gesture-driven menu system (described

133

Chapter 6. Creating Source Code

after this section) triggers additional behaviors when activated. The following keys

differ from the IDK:

Cursor (row 1, key 1)

Moves the cursor similar to the mechanics of the arrow keys and modifier keys

on physical keyboards: The cursor can be moved one character to the left or

right, one line up or down, to the start or end of a line, and one word to the left

or right.

Backspace (row 1, key 12)

In addition to the default backspace functionality, the key enables deleting up to

the start or end of the word before of after the cursor, deleting the whole line,

and deleting the line before or after the cursor.

Tab (row 2, key 1)

Inserts a soft tab (i.e., the number of spaces corresponding to the width of a tab

character at the current cursor position). The key also indents or outdents a

line/selection by one unit, or automatically indents the line/selection.

Enter (row 2, key 11)

Applies automatic indentation after inserting a new line.

Undo/Redo (row 3, key 1)

Performs an undo/redo operation for the last change.

Shift (row 3, key 2 and row 3, key 12)

In contrast to the toggling Shift key of the IDK, this key initiates a quasi-mode,

that is, it enables uppercase letters only as long as the finger touches the key and

disables the mode when the finger is lifted.

Comma (row 3, key 10)

Inserts a comma, semicolon, underscore, hash sign, and other special characters.

Period (row 3, key 11)

Inserts a period, exclamation mark, question mark, colon, and other special

characters.

Special (row 4, key 1)

Replaces the current layout with a new layout displaying all available special

characters in a single layout (see Figure 6.10).

134

6.3. Towards a Code Entry Keyboard

Parentheses (row 4, key 2)

Inserts parentheses, square brackets, angle brackets, braces, and other special

characters. When character pairs are inserted, the cursor is positioned between

the characters.

Quotes (row 4, key 3)

Inserts double quotes, single quotes, and other special characters. When charac-

ter pairs are inserted, the cursor is positioned between the characters.

Equals (row 4, key 5)

Inserts an equal sign and special characters for arithmetic operations.

Search (row 4, key 6)

Triggers the editor’s search functionality and shows the search/replace widget.

(Pressing this key had no effect in the user study.)

Undock/Dock (row 4, key 7) Toggles docking and undocking of the keyboard. In

the undocked state, the keyboard can be resized and repositioned while “floating”

above the editor content.

Overall, this design attempts to stay as close as possible to the familiar QWERTY layout

but adds frequently needed keys for code entry. While the Special layout displays all

special characters in one separate layout (Figure 6.10), all characters are also accessible

from the initial layout through gesture-driven interaction. In addition, the layout and

key behaviors are fully customizable via a JSON configuration file. A visual editor

for this configuration file could provide customization options for users who prefer

different arrangements.

Figure 6.10: Although all relevant special characters can be accessed from the basic
layout, an additional layout displays all special characters at once.

135

Chapter 6. Creating Source Code

6.3.3 Gestures and Marking Buttons

In the previous section, I have mentioned additional actions triggered through gesture-

driven interaction. The CEK executes the default functionality for a key when the

finger is lifted from the surface. This behavior is in line with the IDK but differs from

physical keyboards: Physical keyboards afford both a touched state and a pressed state

for each key; the latter triggers the key, whereas the former lets users rest the fingers

on the keyboard. Since virtual keyboards do not provide a pressed state, the key is

usually triggered as soon as the user lifts the finger (released state).

In the CEK, the touched state displays a marking menu [Kur93] (Figure 6.11) after a

touch-and-hold gesture. (Marking menus are described in Chapter 3.) The key thus

acts as activation area for the menu. When the user then drags the finger from the

center to an item placed at one of the eight directions, the item is highlighted. Lifting

the finger selects the item and hides the menu; lifting the finger over the center cancels

the menu selection. Exploiting expert-mode of marking menus, users can rapidly

select an item by flicking the finger from the key towards one of the eight directions.

Expert-mode skips both the initial delay and the visual representation of the menu and

thereby enables fast access to individual entries during typing.

Figure 6.11: Marking menus for the Cursor key (left) and the Parentheses key (right).
Marking menus are displayed after a touch-and-hold gesture on a key and show up
to eight additional actions (novice-mode). All actions can be rapidly executed by
performing directional flick gestures (expert-mode).

With non-hierarchical marking menus, each key supports up to nine different actions

(the default action plus eight menu items). When the keyboard is docked at the bottom

of the screen, the lower three menu directions extend over the bottom screen edge in

novice-mode. Custom configuration could, therefore, leave the clipped items at screen

edges unassigned while expert-mode would still allow for gestural access.

136

6.3. Towards a Code Entry Keyboard

It is perhaps most reasonable to group related keys or actions around the base key (e.g.,

grouping square brackets, angle brackets, and braces around parentheses). However,

since the direction of a menu item affects the resulting gesture, items should not be

placed at different directions arbitrarily. A common practice with marking menus is

assigning an action and the inverse of the same action to opposite directions. This

arrangement, although not always possible, might more naturally reflect the users’

way of thinking. For example, undo and redo or indent and outdent are appropriate

action pairs for opposite directions. Another strategy could be placing items at those

directions that are easier or faster to access with gestural movements. “Off-axis” items

(i.e., the four corner items at diagonal directions) are more difficult to access than

horizontal and vertical “on-axis” items [KB93], and vertical movements are faster than

horizontal movements [Sam13]. These findings could be combined with data about

the character frequencies of a programming language so that frequently performed

characters are assigned to the vertical and horizontal directions.

Due to the touch-and-hold gesture for menu activation, resting fingers on the keyboard

may inadvertently trigger the menu display. This ambiguity could be resolved by

recognizing the number of fingers simultaneously touching the surface: The menu

display could be disabled when a certain number of fingers is resting on the surface or

as soon as “finger resting patterns” are detected. (The keyboard version used in the

study, however, does not implement this behavior.)

The approach of integrating marking menus is similar to the built-in pop-up menus of

the IDK. The IDK uses such menus to display extra characters. On physical keyboards,

in contrast, special characters or alternate functionality is triggered via modifier keys.

Marking menus additionally exploit gestural capabilities and reduce the needed visual

attention through their fast eyes-free expert-mode. The next section shows how this

interaction technique has been utilized for triggering code templates.

6.3.4 Code Templates

Code templates are pre-defined code snippets, which programmers typically insert by

pressing a keyboard shortcut, followed by navigating to placeholders and filling in

code. Template functionality becomes particularly useful in touch-based editors since

it can save a considerable amount of keystrokes. To let users invoke code templates

during typing, the CEK applies the previously mentioned interaction to letter keys: A

marking menu provides gestural access to all code templates starting with the same

137

Chapter 6. Creating Source Code

letter of the key. For example, the letter key “F” inserts templates such as Function, for,

or for...in (Figure 6.12).

Figure 6.12: Code templates are mapped to keys matching the first letter of the
template. Marking menus are employed for invoking the templates.

This design shows some similarity to Augmented Letters [RMG+13] since it associates

the first letter with marking menu items. Augmented Letters, however, are different in

that they are triggered by drawn shapes instead of permanently displayed keyboard

keys (e.g., the user draws an “S” shape to invoke a marking menu containing all items

starting with “S”). The technique presented here is similar in that it takes advantage

of linguistic mappings, which may help users learning and recalling menu items

[RMG+13]. Instead of having to learn full abbreviations, such as those of desktop IDEs,

users only need to remember the first letter and–for accelerated execution–internalize

the direction of the menu item.

Figure 6.13: After insertion of the code template, the keyboard renders a supportive
widget for navigating between editable regions. In this case, the programmer has
inserted a Function template and can now navigate between the name, parameters,
and body of the function.

Besides enabling template insertion through mnemonic marking menus, the keyboard

renders a supportive widget for template navigation (Figure 6.13). The top left area of

the keyboard displays all placeholders in an ordered horizontal list. By tapping on the

items, the user can directly jump back and forth between the marked regions of the

template and continue modifying the selected code. The widget is activated as soon

138

6.3. Towards a Code Entry Keyboard

as the template is inserted, and the displayed placeholders depend on the template

configuration that is loaded from an external file. The last item in the list (“<End>”)

lets users exit the template at any point.

6.3.5 Code Completion

Programmers frequently use code completion in IDEs [MKF06]. The suggestions are

usually displayed in pop-up menus when the user types certain characters or manually

invokes the menu with a keyboard shortcut. Instead of rendering the list of completions

within the source code, code completion as proposed here, is integrated into the

keyboard: The CEK renders suggestions as horizontal list in the top widget area of the

keyboard (Figure 6.14). The left half already displays navigational items for active code

templates; the right half still provides sufficient space for the list of suggestions. The

list is scrollable through swipe motions, although scrolling should be rarely required

since suggestions are filtered with each keystroke. A completion is applied when

the user taps on an entry. The direct selection of completions could be regarded as

advantage over desktop IDEs where users have to perform additional keystrokes when

they wish to apply an entry other than the topmost item.

Figure 6.14: Widget for code completion in the top right area of the keyboard. In this
case, the programmer has started typing the prefix “ca” and is instantly provided with
a list of selectable suggestions from the code completion engine.

Some IDEs refresh the list of completions after each keystroke. This behavior, however,

can be distracting because it continuously updates the pop-up menu at the cursor

position. In the CEK, completions are “always on” and updated instantly, but their

visual presentation may be less distracting. The placement of suggestions within

the top area of the keyboard is less obtrusive since it does not interfere with the

cursor. Furthermore, the inline-menus of desktop IDEs might be hard to use on small

touchscreens. Here, the distance to reach each suggestion while typing remains near

constant, and each item provides a sufficiently large hit-area for finger touches.

139

Chapter 6. Creating Source Code

6.3.6 Underlying Models

This section outlines how the three building blocks, as illustrated in Figure 6.1, drive

the CEK. (Improvements to this model are proposed at the end of this chapter.) The

models were intentionally kept simple for the CEK version used in the study. Since

the CEK already introduces both a modified keyboard layout and new UI components

that should be evaluated, the effects of model variations would have been hard to

isolate.

The touch model does not use any offset modeling or adaptation techniques. A

keystroke is detected by checking if a touch falls within the visual boundary of the

key area and by distinguishing between keystrokes and menu items (novice- and

expert-mode). Four main parameters are used to determine which action should be

recognized:

AllowableKeyMovement

The action is a potential keystroke if the distance between the first touch and

subsequent touch events of the same finger lies within a certain threshold.

MinimumFlickDistance

The action is a potential flick gesture if the distance between the first touch and

the last touch of the same finger covers at least the allowable key movement

(AllowableKeyMovement).

MinimumFlickVelocity

The action is a potential flick gesture if the first touch at least reaches a certain

velocity threshold on subsequent touch events of the same finger.

MinimumPressDuration

The action is a potential menu invocation if the first touch is held still at least for

a certain duration threshold.

When the system recognizes a pinch gesture over the keys, existing touch events are

canceled in order to prevent unwanted keystrokes when resizing the keyboard. Also,

the CEK does not have limits regarding the number of simultaneous touches.

As far as the language model is concerned, the CEK in its implementation for the

study does not use spelling correction or predictive features. A basic language model

is realized through a code completion engine2. Suggestions are instantly updated

2http://ternjs.net/

140

http://ternjs.net/

6.4. User Study

after each keystroke and inserted as previously described. The engine only uses prefix

matching but does not apply CamelCase matching or subsequence matching. For instance,

typing “ca” matches “catNames” but typing “cN” or “nam” does not.

The third building block of Figure 6.1, the “code model”, extends the touch model and

language model with code-related features. In the proposed design, this extension is

realized through features such as:

• A keyboard layout optimized for entering source code tokens.

• Gesture-driven invocation of special characters and smart typing.

• Gesture-driven invocation of editing commands and code templates.

• Supportive UI widgets for template navigation and code completion.

Code Hints (in Eclipse terminology: Quick Fixes and Quick Assist) are not yet supported.

While most code-related enhancements are currently realized through UI techniques,

the term “code model” also implies added intelligence, such as modeled touch offsets

or predictive features while typing code. These enhancements are addressed later in

this chapter.

6.4 User Study

The purpose of the user study is to evaluate the suitability of the CEK in a code

entry task, uncover potentials usability flaws, and quantitatively measure text entry

properties. Hence, the analysis includes both quantitative and qualitative results, both

of which are basis for a proposed design revision given at the end of this part.

6.4.1 Participants

10 participants (9 male, 1 female) volunteered for the study and filled in a questionnaire

(Appendix C) before the test. They were asked to specify their programming experience,

frequently used applications for software development, and their usage of devices with

touchscreens.

Ages ranged from 22 to 26 years (M = 24.2). All participants were undergraduate or

postgraduate students of media informatics or information science. While two students

141

Chapter 6. Creating Source Code

had only between 1 and 2 years of programming experience, most students indicated

between 3 and 4 years or more than 5 years.

4 participants reported that they use smartphones with touchscreens “frequently”, 6

selected “always”. As for tablet usage, 1 selected “never”, 6 “rarely”, and 3 “frequently”.

9 participants were right-handed, 1 was left-handed.

When asked for frequently used IDEs and text editors, the following applications

were named (number of mentions in parentheses): Eclipse (10), Sublime Text (7),

Notepad++ (4), Visual Studio (2). As frequently used languages for programming or

scripting, participants mentioned: Java (10), JavaScript (9), PHP (4), HTML (4), C#

(3), Python (3), XML (2).

6.4.2 Test Setup

The task was performed on an iPad Air tablet with a screen resolution of 2048 x 1536

pixels (264 pixels/inch). The test application displayed a full-screen editor that used

the CEK as default input method. In addition, the editor displayed a line gutter on

the left side, a custom-designed cursor, and buttons for adjusting the font size. The

system logged all interaction events for later analysis into a local SQLite database on

the device. Figure 6.15 shows the screen with an opened demo task.

6.4.3 Tasks and Procedure

First, participants were given instructions on how to use the system. Specifically, they

were introduced to the following features of the test system:

• Cursor (dragging the cursor to a new location; double-tapping the cursor to

toggle between showing and hiding the keyboard).

• Special Keys (Cursor, Tab, Undo, Shift, Special Characters, Parentheses, Quotes,

Equals).

• Docking/Undocking (undocking, moving, and resizing the keyboard; docking

the keyboard using the adjusted size; orienting the editor to portrait mode or

landscape mode).

• Marking menus (both novice-mode and expert-mode).

142

6.4. User Study

• Code Templates (inserting templates and navigating between placeholders,

demonstrated by example templates for var, function, for, if, and return).

• Code Completion (inserting suggestions using the widget).

Figure 6.15: Screen after opening the demo task of the CEK study. The CEK is docked
at the bottom of the screen. A custom-designed cursor is displayed at the end of the
code example. Two buttons for increasing or decreasing the font size are displayed in
the bar at the top of the screen. The bar could be hidden by pressing the icon next to
the file name on the right edge.

After the instructions, the participants could familiarize themselves with the system

until they felt confident in using the keyboard. This phase typically only took about

five minutes on average. Furthermore, they were asked to configure the editing

environment to their liking, including the tablet orientation, editor font size, keyboard

position, and keyboard size. To enforce at least a minimum of typing before the task,

the participants had to enter the 9 lines of code of the demo task.

After the introductory phase, a program from a printed A4 sheet had to be transcribed

as fast and accurately as possible. Since the total task duration had been regarded as

143

Chapter 6. Creating Source Code

too long in a pilot test, the program was stripped to about 60% of its original length.

The final program (Appendix C) contained 50 lines of code (1012 characters), written

in JavaScript. The source code was coherent and contained typical programming

constructs such as function definitions, variable declaration, for statements, if statements,

array operations, and string operations. Although the participants could correct errors,

they were instructed to find a reasonable compromise between speed and accuracy.

(Text entry was not constrained.)

6.4.4 Results

The reported results in this section include various measures of text entry performance.

The metrics are based on the method-agnostic measures (WPM, KSPC, Error Rate)

and method-specific measures (Selection Deviation) given in [Mac07]. Each section

lists the corresponding formula to make it clear how each value has been calculated.

According to the terminology given in [Mac07], the program that participants had to

type is referred to as the presented string (P); the final, resulting string entered by each

participant is referred to as the transcribed string (T); and the series of the participant’s

performed actions (keystrokes and editing commands) as the input stream (IS). Also,

the results include the keyboard configurations and the frequencies or properties of:

keys, gestures and menu selections, code templates, and code completions. The section

concludes with qualitative feedback and recorded observations.

Task Duration and Typing Speed

Participants took, on average, 15.1 minutes (M = 15.1, SD = 2.4) to complete the task.

The average WPM value (Equation 6.1) is 13.4 WPM (M = 13.4, SD = 2.4), with a

minimum observed value of 10.5 WPM and a maximum of 18.2 WPM. WPM, however,

may be an inappropriate metric for reporting source code entry speed (also see the

discussion section) but is given for completeness here.

W PM =
|T | − 1

S
× 60×

1

5
(6.1)

|T | is the length of the transcribed string; S is the duration in seconds. A word is

considered to consist of 5 characters.

144

6.4. User Study

A metric that is more adequate for source code could be based on tokens instead of

words. For example, the average token length of the presented string is 3.1. Although

the length is dependent on the programming language, a token may be considered

shorter than the average English word. (The example code uses long identifier names

and the token length is still much lower than 5). Using a token length of 3, the

formula (Equation 6.2) would result in an average value of 22.4 TPM (tokens per

minute) (M = 22.4, SD = 3.9). A more valid value could be found by mining source

code repositories and determining the average token length across main families of

programming languages.

T PM =
|T | − 1

S
× 60×

1

3
(6.2)

Keystrokes

The metric for keystrokes per character (KSPC) measures the text entry performance

as ratio of the number of needed keystrokes to the number of characters in the

transcribed string (Equation 6.3). The average KSPC value of this study is 0.76

(M = 0.76, SD = 0.09).

KSPC =
|IS|
|T |

(6.3)

|IS| is the length of the input stream; |T | is the length of the transcribed string.

The value reported here is the empirical, observed KSPC value and not the characteristic,

absolute KSPC value that measures the efficiency of a text entry method based on a

language model [Mac07]; the latter states the average number of keystrokes needed

for each character. Here, a keystroke includes not only pressing a letter key but

also performing a marking menu gesture, dragging the cursor, selecting a template

placeholder, and inserting a suggestion from code completion. The more keystrokes

needed, the higher the KSPC value. (Lower values are generally considered better.)

Also, correcting errors increases KSPC since backspacing and undo actions are part of

the input stream.

145

Chapter 6. Creating Source Code

Error Rate

[Mac07] discusses several metrics for reporting errors. The metric reported here is

the MSD Error Rate (Equation 6.4), which is based on the Minimum String Distance

between the presented and transcribed string. MSD is also known as the Levenshtein

Distance3. This value shows how similar two strings are by calculating the minimum

number of editing primitives (insertions, deletions, substitutions) required to transform

one string into the other [Mac07]. According to this metric, the average error rate of

the study was 5% (M = 0.050, SD = 0.033).

MSD Error Rate =
MSD(P, T)

MAX (|P|, |T |)
(6.4)

MSD(P, T) is the minimum string distance (Levenshtein distance) between the pre-

sented and the transcribed string; MAX (|P|, |T |) is the larger of the length of the

presented and the transcribed string.

Keyboard Configuration

All participants were introduced to keyboard properties that they could configure

during the introduction phase and during the task.

The font size could be increased or decreased in 10%-steps by pressing toolbar buttons.

Most participants changed the default size of 12 points to a larger value. On average,

they increased the font size to 1.26 times (M = 1.26, SD = 0.25) the default size,

which corresponds to about 15 points.

No participant changed the landscape orientation of the tablet during the task. All

participants left the keyboard in the docked state for the entire duration of the task.

The keyboard was, on average, zoomed to 1.19 times (M = 1.19, SD = 0.06) its initial

size of 1024 x 285 points. Since this average zoomed size of 1220 x 340 points (2440

x 680 pixels on the iPad’s Retina display) extends the screen edges, most participants

horizontally centered the keyboard so that all resized keys were visible within the

screen bounds. Resizing resulted in an average key size of 13.2 mm x 12.0 mm for

the letter keys. For comparison, the default size of a letter key on the iPad’s landscape

keyboard is 15.2 mm x 14.2 mm; on the German keyboard, key sizes shrink to 12.9

3http://en.wikipedia.org/wiki/Levenshtein_distance

146

http://en.wikipedia.org/wiki/Levenshtein_distance

6.4. User Study

mm x 14.2 mm due to the extra keys for Umlauts. Figure 6.16 illustrates the average

keyboard frame and key size in relation to the screen dimensions.

Screen: 1024 x 768 points (19.86 cm x 14.89 cm)	

Keyboard: 1220 x 340 points (23.66 cm x 6.59 cm)	

Q	
 Key: 68 x 62 points (1.32 cm x 1.20 cm)	

function findCats() {!
!
}!

Figure 6.16: The average user-configured keyboard frame and key size in relation to
the screen dimensions.

Selection Deviations

In order to determine how close participants were in pressing each key near its center

point, the average target-relative deviation is calculated according to Equation 6.5,

given in [Mac07]. The deviation indicates the relative distance of the touch point in

relation to the center point of the key. For instance, a deviation of 0% means that each

key is exactly hit at its center point; a deviation of 100% means that each key is hit

at its visual bounds. In this study, the average selection deviation was 0.53 (53%)

(Figure 6.17).

deviat ion=
∑

t∈T

|Pt |
∑

i=1

p

(x i − x t)2+ (yi − yt)2

St
∑

t∈T |Pt |
(6.5)

t is the key (target) in the set T of all keys; Pt is the set of all touch points for t; (x i , yi)

are the coordinates of a touch point, (x t , yt) are the coordinates of the center point

147

Chapter 6. Creating Source Code

of the key. Since the equation abstracts a key as circle with radius St , non-uniform

keys (Space, Enter, ABC) have not been considered. Letter keys have a slightly larger

width than height; hence, half of the average between the width and height of a key

has been used as radius.

Q	

Ø ~7 mm	

Figure 6.17: The shaded circular area shows the average key deviation in relation to
the visual boundary of the key.

Figure 6.18 shows the relationship between the average selection deviation per partic-

ipant and the corresponding average zoom factor of the keyboard. Since the values

positively correlate (r = 0.83, t(8) = 4.13, p < 0.01), larger keys tend to lead to higher

relative deviation and vice versa.

●

●

●

●

●

●

●

●

●

●

1.0

1.1

1.2

1.3

0.40 0.45 0.50 0.55 0.60
Deviation

Z
oo

m

Figure 6.18: Correlation between the average selection deviation and the average
zoom factor, per participant.

148

6.4. User Study

When the deviations are individually calculated per key, the selection points for the

keys in Table 6.1 fell at least one standard deviation beyond the average deviation.

The list only includes keys that were pressed at least 100 times in total. Enhancing the

selection of these keys might have the largest impact on touch accuracy.

Key Selection Deviation

Backspace 0.77
, 0.76
. 0.69
= 0.79

Table 6.1: Selection deviations for keys with total selection counts >= 100 and
selection points at least one standard deviation beyond the average deviation. (Ordered
by selection frequency.)

Gestures and Menu Selections

Figure 6.19 graphs the total number of selections, performed either in novice-mode or

expert-mode, over time in minutes. Since the two lines do not cross in the left graph,

the selection frequency increased about equally for both modes.

●
●

●
●

●

●
●

●
●

●
●

●
●

● ● ●

●
● ● ● ●

●
● ● ●

● ●
● ● ● ● ●

All Cursor

0

100

200

300

4 8 12 16 4 8 12 16
Task Duration in Minutes

To
ta

l N
um

be
r

of
 S

el
ec

tio
ns

Selection Mode
● Expert

Novice

Figure 6.19: Graph of menu selections, performed either in novice-mode or expert-
mode, over time in minutes. Left: for all keys; right: for the Cursor key. The line for
expert-mode running above the line for novice-mode indicates that participants early
transitioned to expert behavior with the Cursor key.

149

Chapter 6. Creating Source Code

As for the Cursor key (right graph), the expert-mode line runs above the novice-mode

line, indicating an early transition to expert behavior. The same effect, however, could

not be observed for other keys.

Participants performed a total of 580 menu selections, consisting of 345 (60%) selec-

tions in novice-mode and 235 (40%) in expert-mode. Table 6.2 lists menu selections

that were at least, on average, performed twice per participant (or have a relative

frequency > 1%):

Menu Item Base Key Type Relative Frequency (%)

; , Key 15.2
Function F Template 12.6
[] () Key 9.8
return R Template 9.5
Go Char Left Cursor Command 6.2
Go Line Down Cursor Command 5.5
for F Template 5.5
Go Char Right Cursor Command 5.0
Variable V Template 4.7
: . Key 3.8
{} () Key 3.8
Go Line End Cursor Command 3.6
if I Template 3.4
+ = Key 1.9
Del. Word Before Backspace Command 1.9
Del. Word After Backspace Command 1.6
Go Line Up Cursor Command 1.6

Table 6.2: Relative frequencies for triggered menu items. Base Key is the key that
triggers a Menu Item. Type is one of Key (a regular key), Template (a code template), or
Command (a function).

As previously stated, regular keystrokes and menu gestures were disambiguated by

thresholds for the distance and velocity between pressing and releasing a key. The

thresholds were set to default values that seemed to work well in pre-study tests: The

default value for a menu flick to be recognized as such was 50 points for distance and

100 points/s for velocity.

The average distance between pressing a regular key and lifting the finger (dkp) was

5.3 points (Mdkp = 5.3, SDdkp = 5.5); the average velocity (vkp) was 67.8 points

per second (Mvkp = 67.8, SDvkp = 78.8). For triggering expert-mode menu selections

150

6.4. User Study

(i.e., without displaying the menu), the average distance (dms) was 61.3 points

(Mdms = 61.3, SDdms = 9.5); the average velocity (vms) was 687.6 points per second

(Mvms = 687.6, SDvms = 313.1).

Although these values were affected by the existing default values of the test system,

the results may nevertheless be used for adjusting the defaults and evaluating them in

a follow-up study. To maximize the allowed movement distance for the more important

regular keystrokes, MAX (Mdkp, Mdms) could be set as distance threshold (~5.9 mm

or about 50% of the size of an average key). To minimize the required velocity for

triggering a menu selection, a reasonable upper bound of Mvkp could be found by

adding two standard deviations: Mvkp + 2SDvkp = 225.4 points/s. All values apply to

the average size of a key (see previous section).

Key Frequencies

Table 6.3 lists frequently used keys, excluding regular letter keys. Like in previous

studies (see Chapter 5), Backspace was the most frequently pressed key. While the

values for Return and Shift are perhaps expected, the relative high usage of the non-

standard Cursor key might suggest that participants found its functionality particularly

valuable.

Key Relative Frequency (%)

Backspace 11.6
Return 4.4
Shift 2.5
Cursor 2.5
() 2.1
123 1.9
ABC 1.9
. 1.6
, 1.3
= 1.3
Undo 1.0

Table 6.3: Relative frequencies for non-letter keys with frequencies >= 1%.

151

Chapter 6. Creating Source Code

Code Templates and Code Completion

The participants triggered, on average, 26.2 (M = 26.2, SD = 8.2) code completions

and inserted 20.9 (M = 20.9, SD = 3.1) code templates. Table 6.4 specifies the

relative frequencies of inserted code templates and their usage in relation to the actual

occurrence of the template structures in the task. For instance, 100% usage indicates

that participants exploited each opportunity to insert the template.

Template Relative Frequency (%) Usage (%)

Function Definition 34.9 100
Return Statement 26.3 91.7
For Statement 15.3 100
Variable Definition 12.9 67.5
If Statement 9.6 100
Assignment (left = right) 0.5 10.0
Function Call (functionName()) 0.5 1.7

Table 6.4: Relative frequencies for triggered code templates and their usage; that is,
the percentage of exploited opportunities to insert the template.

Qualitative Feedback and Observations

After the task, the participants were asked which features of the keyboard they found

inconvenient and which features they found particularly convenient. Some participants

also gave feedback during the task (although they were not explicitly instructed to

“think aloud”).

Almost all participants stated that they found code templates and code completion

very convenient and time-saving. Some participants noted that they quickly became

used to the menus that had been added to individual keys. Furthermore, they thought

that they learned the “shortcuts” (expert-mode) during the task or that, given more

time, they would quickly learn them.

Half of all participants noted that the code completion feature should insert parentheses

(which the test system did not) when choosing a method, and they pointed out that

method parameters should be displayed. Also, half of all participants wished that an

active code template was not automatically canceled when the cursor was manually

dragged to another location within the template.

152

6.4. User Study

Two participants considered the placement of the Undo key inappropriate and confused

it with the position of the left Shift key. Another participant regarded the size of the

Tab key as too small. Three participants mentioned their extensive use of the Cursor

key in desktop editors and positively acknowledged its availability in the keyboard

layout. One of the participants suggested to move the Cursor key to the lower right

position of the keyboard.

Four participants sometimes experienced problems when they tried to invoke the

marking menu in novice-mode. The implementation used in the study canceled novice-

mode when the finger was moved while holding a key. Future implementations should

thus allow some “jitter” while touching-and-holding a key. (Also see the following

discussion on that issue.)

Overall, participants commented very positively on the user experience of the keyboard

and remarked that it worked “surprisingly well”.

6.4.5 Discussion

The results include a number of metrics that are commonly reported in studies of text

entry systems [Mac07]. However, as Kristensson et al. [KBC+13] note, “Currently

there is no universally accepted experimental procedure for evaluating text entry

performance”. The values given here should, therefore, be cautiously interpreted, in

particular due to the different context of this study (source code vs. text). Below, I

attempt to analyze notable results.

Typing Speed

Text entry speeds for on-screen keyboards tend to range from 15 to 30 WPM [Kri09].

For the iPhone, studies have stated average typing speeds of 18.5 WPM [MLC09]

and 15.9 WPM [ALS10]. In another study, 15.4 WPM have been measured for a

simulated iOS keyboard of a research prototype [WPR+14]. For comparison: On

physical keyboards, average typing speeds of 38 to 40 WPM [Ost97] and 33 CWPM

(corrected WPM) [KHHK99] have been reported; a web-based typing test reports an

average value of 41 WPM4. However, all of these values refer to entering regular text

or English phrase sets.

4http://www.ratatype.com/learn/average-typing-speed/

153

http://www.ratatype.com/learn/average-typing-speed/

Chapter 6. Creating Source Code

To my knowledge, no comparable values exist for entry speeds of source code on

typical virtual keyboards. Despite supportive features of the CEK for entering special

characters, transcription of source code is expectedly slower and possibly requires more

attention than transcription of English phrases. Participants also had to continuously

refer to the printed document rather than type short phrases displayed on a screen.

In addition, the CEK employed no advanced touch model (and a language model

only through code completion). The proposed TPM metric might be a more adequate

measure due to the large number of short tokens in source code. Since code written

in functional and scripting languages is often more compact than code in procedural

and object-oriented languages [NF14], a sound TPM metric might need to account for

differences in token length. Moreover, a follow-up study using the IDK as baseline may

yield a more meaningful relative rather than absolute comparison of entry speed.

KSPC and Error Rate

The KSPC value being below 1 indicates that participants could take advantage of

the supportive widgets for code templates, certain special characters (e.g., pairs of

parentheses), and code completion. The high usage of code templates supports the

usefulness of this feature. Since most of the participants’ positive feedback was related

to keystroke-saving features and the gesture-driven menus, the trigger mechanism

through marking menus seems suitable. The KSPC value might further decrease with

repeated usage of the keyboard when menu locations are internalized by users.

Although the reported error rate does not consider the exact behavior during error

correction, the value gives an initial impression of the participants’ overall accuracy.

(The KSPC calculation also captures errors since keystrokes for corrections increase

the value.) The measured rate of 5% appears as an acceptable value for a first version

of the CEK.

Keyboard Configuration

All participants enlarged the size of the keyboard and used it in its docked state. Most

participants moved the keyboard so that all keys were visible within the screen bounds.

This size and position resemble, in essence, the default display area of the IDK. The

default CEK area, in contrast, was apparently considered too small, suggesting that

participants are used to larger keys on tablet keyboards. The average configuration

154

6.4. User Study

casts some doubt on the usefulness of features for resizing the keyboard and setting it

into an undocked state (although one participant appreciated the possibility of docking

the keyboard in his configured size). The average configured font size of 15 points

points to the default size being too small. For tasks concentrating on reading source

code, however, different values might apply.

Keys and Commands

As the study in Chapter 5, this study has again confirmed the importance of the

Backspace key during code editing. Here, the Backspace key could delete not only the

previous character but also words or lines to the left or right. On the one hand, the

data shows that participants frequently used the added functionality. On the other

hand, Backspace had the highest selection deviation; hence, the key should probably be

enlarged in future revisions of the CEK. Additionally, the Cursor key, which is not part

of standard keyboards, seemed to be popular. As one participant proposed, the key

could be moved to the more expected lower right area of the keyboard. The left Shift

key and Undo key should probably be swapped because two participants remarked

that they would expect Shift as the outermost left key. Enlarging both Shift keys would

result in a design trade-off between the number of additional keys in the same row

(e.g., Undo) and potential accuracy gains from hitting larger keys.

Gestures and Selections

The CEK calculates the distance and velocity between touching and lifting the finger

in order to disambiguate regular keystrokes and menu gestures. Finding suitable

thresholds is crucial for preventing both functionalities from triggering at the same

time. In order to find the “sweet spot”, the proposed values should be evaluated in a

follow-up study. Incidentally, the suggested distance threshold is approximately equal

to half the size of a key. This value leads to a straightforward guideline for triggering

the menu in expert-mode: Originating from the center of a key, the touch triggers a

menu item when the finger crosses the visual boundary of the key.

Novice-mode required the finger to be held still while dwelling on the key, but the

study showed that some participants performed slight “jitter” movements and thereby

inadvertently canceled the menu. A more robust design should, therefore, allow slight

movements while invoking novice-mode.

155

Chapter 6. Creating Source Code

Both the CEK and the IDK trigger a keystroke when the finger is lifted or display pop-

up menus when touching-and-holding. Contrasting physical keyboards, this design

inhibits the touched state for resting the fingers on the keyboard. When the allowed

duration of a valid keystroke is limited, the keyboard could additionally support finger

resting. This idea has been closer examined by Kim et al. [KSL+13]. Their project

TapBoard uses a short tap (less than 450 ms) for triggering keys and, according to the

authors, participants found typing in this mode natural, and they were equally fast. To

improve the interaction, a design variation of the CEK could thus utilize this threshold

and the number of simultaneously pressed keys.

UX and Summary

The overall design approach of adding frequently needed characters to the layout,

reducing layout switches, adding supportive widgets, and supporting fast command

triggers through marking menus has been well received by users. They could work

with the familiar QWERTY layout as basis and quickly learned the added functionality

after only few minutes of training time. Improvements to this design should primarily

be directed towards supporting a more advanced touch model and language model.

Furthermore, while smart typing was partially supported by menu items, code hints

(see the introductory section) is another useful code creation method that could be

added to the keyboard.

6.5 Improvements and Simulations

In this section, I propose specific enhancements to the CEK, based on the presented

study results. Enhancements include a revision of the key layout, touch model, and

language model. Also, first simulations of the new models demonstrate their potential

benefits.

6.5.1 Key Layout

Figure 6.20 shows a revised key layout of the CEK. Compared to the previous version,

the following keys have been changed:

156

6.5. Improvements and Simulations

Figure 6.20: A revised key layout for the CEK.

• The Search key, inactive during the user study, has been removed. Displaying

the search widget does not necessarily require a dedicated trigger key. Since

the widget would be displayed in the top bar of the keyboard, a button or icon

placed near this area might be more suitable.

• The Cursor key has been moved to the lower right area of the keyboard and

thus closer aligns with the Arrow keys on physical keyboards. A trade-off of

this position is the clipped display of the lower menu items in novice-mode. In

order to reduce the issue, the bottommost point of the menu could be shifted

to the bottom screen edge so that all items become visible. In addition, the

menu displays a tooltip at the top of the screen when the users moves the finger

towards a menu slice. (This feature was already active during the user study.)

• The Undo key has been placed at the top left position. Some participants confused

Undo and Shift during the study. Moreover, Undo (or Back) tends to be placed at

the top and left areas in desktop applications.

• Backspace, both Shift keys, Tab, Special, and Dock/Undock have been enlarged.

The increased area might better account for larger selection deviations at the

leftmost and rightmost positions.

Since one of the strengths of virtual keyboards is their customizability, certain choices

(e.g., the placement and mapping of special keys or menu items) are left up to the user

by providing a configuration file or GUI. Users might quickly learn key locations and

exploit directional flick gestures, regardless of their initial configuration.

157

Chapter 6. Creating Source Code

6.5.2 Touch Model

A more advanced touch model for the CEK comprises two main parts: Improving

the accuracy for hitting keys and improving the interaction (i.e., the disambiguation

between keystrokes and menu gestures).

Accuracy

Previously, the CEK merely used the visual boundary to determine the target key for a

touch point. A slightly better approach could determine the target key based on the

closest distance between the touch point on the keyboard area and the center point of a

key. More advanced approaches may either use machine learning techniques or utilize

additional sensor data about touches. However, machine learning techniques require

training data; extended information (e.g., posture, size, or angle) about finger touches

is often not available on commodity tablets. An approach that is solely based on

positional data about touches and target sizes has recently been suggested in [BZ13]:

The Bayesian Touch Criterion (BTC) is a statistically derived criterion for finger touches

and has been shown to significantly improve selection accuracy. For completeness,

Equation 6.6 shows the calculation:

BT D2(s, t) =
1

2

�

(sx − cx)2

0.0075d2+ 1.68
+

(sy − cy)2

0.0108d2+ 1.33

�

+

1

2
ln(0.0075d2+ 1.68) +

1

2
ln(0.0108d2+ 1.33)

(6.6)

The equation already contains experimentally measured constant values, see [BZ13]

for details of the derivation. (sx , sy) is the touch point s; (cx , cy) is the center point

of the target t; d is the diameter of t. All units are millimeters. The result of the

calculation is the Bayesian Touch Distance (BT D). The target for a touch is then

found by calculating BT D for each target and choosing the target with the lowest

value.

Figure 6.21 shows 100000 randomly placed touch points distributed over a number

of CEK keys. The keys are abstracted as circles, with their diameter set to the width

of a key plus half of the gap between keys. BT C is used for calculating the closest

(randomly colored) target key for each touch point.

158

6.5. Improvements and Simulations

Figure 6.21: Simulation of the Bayesian Touch Criterion applied to the CEK. The graphic
shows 100000 randomly placed touch points and their target keys.

Applying BT C results in gapless hit areas according to the BT D calculation. In its

current form, this approach could be used for enhancing the hit areas of keys that can

be abstracted as circles. Since non-uniform keys have larger hit areas, not using BT C

for these keys and falling back to a closest-centroid approach might be acceptable. The

exact differences in hit accuracy between showing and hiding a rectangular border

around keys should be separately measured.

Interaction

As pointed out in the discussion, the disambiguation between keystrokes and gestures

could be improved while also allowing for finger resting. A revised version could

implement the interaction according to the following rules (also see Figure 6.22):

• When only one finger is touching-and-holding and the key provides a menu,

display the menu and cancel the keystroke. Also allow small “jitter” movements

while holding the key. If the key does not provide a menu, do nothing.

• When multiple fingers are simultaneously touching-and-holding, cancel all ac-

tions and do nothing.

• When any finger is lifted, trigger the keystroke only if the time between pressing

and lifting the finger does not exceed a threshold of 450 ms [KSL+13].

• When the visual boundary of the key is crossed with a velocity of 225 points/s,

trigger an existing menu item in expert-mode. (This threshold should be refined

after further studies.)

159

Chapter 6. Creating Source Code

A limitation of this design is the lacking support for repeating a key while touching-

and-holding. The CEK version of the study, however, did not support key repeats, and

no participant pointed it out as missing feature. (The IDK also does not support key

repeats.)

Touched	

Novice Mode	
 Released	

1 Finger? 	

Has Menu?	

t > 200 ms? 	

 d < key radius? 	

No	

Yes	

Yes	

No	

t < 450 ms?	

Pressed	

Yes	

Expert Mode	

v > 225 points/s?	

Yes	

No	
 No	

t	
 =	
)me,	
 d	
 =	
 distance,	
 v	
 =	
 velocity	
 State	

Temporary

State	

Figure 6.22: A refined key interaction model for the CEK.

6.5.3 Language Model

Modeling language for text entry systems usually involves statistical procedures applied

to a vocabulary or lexicon to predict which words the user might enter next. As the user

is typing, the model is queried for likely matches, which are presented as selectable

suggestions in the user interface. The ability to predict what the user might type next

can be obtained from n-gram models: Markov chains store occurrences for each word

and its following word. Simple predictions then consider the previous word in order

to calculate the likelihood for the next word. More advanced bi-gram models that

take the likelihood of word pairs into account are common for supporting European

160

6.5. Improvements and Simulations

languages [Mac07]. Furthermore, static offline models are often combined with online

adaptive techniques, based on the assumption that users tend to reuse entered words

[Mac07]. According to Tanaka-Ishii [Mac07], an ideal language model combines both

offline and online techniques:

• “A large general corpus for developing the static initial language

model. [...]”

• “A document of specific context to adapt the initial language model

dynamically.”

The Language Model of Source Code

As far as source code is concerned, the language model typically consists of a syntax

tree and the user’s editing context. IDE modules utilize the data to provide editor

services such as code completion or refactoring. Since code completion engines both

consider the programming language and continually analyze entered code, it could

be argued that they realize both of the above-mentioned components of a robust

language model. The degree of “intelligence” built into these engines, however, varies

substantially between IDEs. Without smart code completion, using SDKs and libraries

with their ever-growing number of methods and properties can impede developer

productivity.

Most open-source or commercial engines analyze types, previously defined identifiers,

variable scope, and other heuristics for filtering the list of possible matches. This

reduced list is presented to the programmer, who can either select the topmost sug-

gestion, navigate to a different entry, or refine the list with additional keystrokes. The

most likely items should be promoted to the top of the list to reduce the decision

and selection time. Often, however, the list is only alphabetically sorted. Eclipse, for

instance, takes a hybrid approach: Entries are alphabetically sorted, but when sufficient

context information is available (e.g., the expected return type), individual entries

are sorted to the top [HP11]. Researchers have proposed more elaborate solutions to

predict likely completions, for example by mining code examples for popular items

[MFSM10], identifying emergent programming practices of crowds [FSW+14], or

considering only the lines of code directly before the editing point [ARSH14].

161

Chapter 6. Creating Source Code

Language-agnostic Code Completion

Due to the lack of static type information, smart code completion for dynamic languages,

such as JavaScript or Python, has been much more challenging. Nevertheless, the goal

here is to improve code completion without resorting to static type information and

in language-agnostic ways. Supporting code intelligence for multiple programming

languages requires considerable implementation effort; this cost can be reduced by

employing language-agnostic approaches.

Basic code completion capabilities could be provided–without consideration of any

semantics–by simple indexing of all identifiers and keywords in a source file. To

increase the quality of suggestions, completion engines for dynamic languages can

utilize type inference; that is, attempting to infer the runtime type of a value (e.g., a

variable value) at any given point in time. Inferring types, however, again introduces

language-specific code intelligence into the completion system.

Due to these issues, the approach suggested here treats an existing code completion

engine as “black box”: The engine is only expected to return a list of sorted proposals,

which could either be generated by basic identifier indexing or sophisticated type infer-

ence. The client of the engine adds the following two improvements as complementary

layers:

1. Predictions: The most likely next suggestion is based on the user’s personal

code completion history. Predictions are sorted to the top of the list and thus

facilitate quicker selection and saving of keystrokes. The rest of the list is sorted

according to the internal process of the completion engine.

2. Spelling Correction: Despite a more fault-tolerant touch model, users may still

make mistakes when entering code. Surprisingly, most existing code completion

engines fail when misspelled code is entered. Adding a spelling correction layer

returns basic proposals even when the completion engine fails to return any

results.

Predictions

Hindle et al. [HBS+12] have found that “a high degree of local repetitiveness, or

regularity, is present in code corpora and, furthermore, that n-gram models effectively

capture these local regularities”. Programmers frequently reuse identifiers, similarly

162

6.5. Improvements and Simulations

to how writers reuse phrases when writing a text. Applied to code completions, this

insight suggests that a programmer’s locally completed code could serve as basis for

generating predictions of future completions. Research has shown that code completion

systems that use historical data from a user’s editing session can outperform default

algorithms, even when no additional type information is available [RL08].

Predictions could be generated by Markov chains, or by only taking the most frequently

used or most recently used items into account. An algorithm that combines multiple

factors has been proposed in [FC12]: AccessRank not only uses Markov chains, but

also the combined frequency and recency of previously visited items. Additionally,

AccessRank incorporates a configurable threshold that either favors the stability or

accuracy of the generated prediction list. On the one hand, maximizing stability

is particularly desirable in UIs where frequent reordering of list items should be

minimized; the positions of already learned item locations should change as little

as possible so as to not interfere with usability. On the other hand, highly ranked

predictions should be sorted as far as possible to the top of the list to enable quick

selection. Dependent on the application domain, this threshold can be configured

accordingly.

Equation 6.7 shows the main components of AccessRank. (For details on how the

individual components are calculated, see [FC12].)

wn = wmn
αwcr fn

1
α wtn

(6.7)

wn is the AccessRank score of an item; wmn
is the Markov weight; wcr fn

is the weight for

the combined frequency and recency (CRF); wtn
is the time weight, which considers the

time and day of item access. α is an empirically determined threshold for weighting

the Markov and CRF components. After calculating the AccessRank score for each

item, an additional pass compares item pairs and determines if one item is allowed

to overtake another item in rank based on a switching threshold (also empirically

determined).

The time weighting component is optional and can be turned off to achieve performance

improvements. Code completions, for instance, are probably less sensitive to the exact

time and day of access than other item types. Although implementing AcessRank

is more time-consuming than implementing comparable algorithms, its predictions

163

Chapter 6. Creating Source Code

have been shown to be more accurate and stable than those of other approaches

[FC12].

Using AccessRank for code completions involves recording an item visit when the user

selects a completion from the list. As a consequence, user-initiated completions become

the basis for predictions rather than already existing tokens in the code.

Spelling Correction

A spelling correction layer could either correct only common programming language

keywords (e.g., “while” or “self”), or all locally entered keywords and identifiers. A

combination of mostly language-agnostic tokens and local tokens might yield the best

results. For instance, when the user starts typing “finc”, the spelling corrector should

suggest “func” or “function”; when the user types “slef”, it should suggest “self”; when

“car” is entered to refer to an existing local token “cat”, the spelling corrector should

suggest the token.

The spelling correction layer may only need to be queried when the code completion

engine fails to return any results; otherwise the interaction between code completion

and spelling correction could introduce ambiguity. (Although Bi et al. [BOZ14] have

demonstrated that both completion and correction accuracy can be maximized, it is

questionable if the added complexity could be justified in a programming environ-

ment.)

Standard algorithms should be sufficient to generate useful corrections for the men-

tioned use cases. Most spell checkers rank suggestions by calculating the Damerau–

Levensthein distance5 from the entered word to words in the lexicon. The approaches

mostly differ in their use of efficient data structures for achieving the best runtime

performance with a large lexicon.

Combining Predictions and Spelling Correction

Figure 6.23 illustrates the revised language model for code completion. The previously

explained layers for predictions and spelling correction are intended to operate on top

of an existing code completion engine.

5http://en.wikipedia.org/wiki/Damerau-Levenshtein_distance

164

http://en.wikipedia.org/wiki/Damerau-Levenshtein_distance

6.5. Improvements and Simulations

On every keystroke	

Has Completions?	

No	

Get Completions	

(Code Completion

Engine)	

Calculate prediction
list (AccessRank)	

Merge completion list
and prediction list and
Promote predictions

to top	

Update displayed
completions	

Run spelling correction
for current token	

Yes	

Corrected	
 comple/ons	

Figure 6.23: The proposed model for code completions in the CEK.

Simulation

To measure the effectiveness of this revised code completion model, I have simulated

both the old and the new approaches using the source code of the task given in the

user study. The simulation is based on automatically triggering code completions for

a “perfectly entered” program (i.e., each character is linearly replayed as it occurs in

the source code; see the discussion below on limitations of this method). To keep the

simulation simple, the spelling correction layer has not been added.

Both methods have been compared according to the following procedure:

1. Find all tokens for potential code completions in the source code (i.e., all

keywords and identifiers).

165

Chapter 6. Creating Source Code

2. Linearly replay each character of the program and trigger code completion when

the first character of a token is encountered.

3. Check if the current token is found in the list of completions and record its rank.

4. Calculate the mean and standard deviation of the rank totals.

The mean rank values and standard deviations for the two versions are shown in Table

6.5. The average rank for the old approach is 2.54 and 1.61 for the new approach.

Lower ranks (and therefore higher positions in the displayed list) are achieved when

the predictions are merged into the list of completions. With an extended version

of the source code containing 80 instead of 50 lines of code, the difference between

the old and new approaches becomes even larger (2.74 and 1.45, respectively). The

simulation used the standard AccessRank configuration for medium list stability and

prediction accuracy.

Type LOC Completed Tokens Rank (M) Rank (SD)

Regular 50 85 2.54 3.12
with Predictions 50 85 1.61 3.23
Regular 80 168 2.74 3.42
with Predictions 80 168 1.45 3.11

Table 6.5: Mean ranks and standard deviations for code completions with and without
predictions.

By replaying the source code and automatically invoking the code completion engine

at the positions of tokens, the effects of different code completion strategies could be

isolated and compared. However, this approach has several limitations: First, it does

not accommodate for programmers non-linearly editing incomplete code or triggering

completions at other character positions of a token. Second, it neglects usability issues

such as searching and selecting an entry in the displayed list. Third, the code sample

is small and might not be representative. A thorough study would need to involve

humans for more realistic measures.

The goal of this initial simulation was to validate the proposed model at a basic

level. The results seem to suggest that local AccessRank-based predictions for reused

tokens improve the average rank of suggestions. Moreover, this enhancement can be

implemented in a language-agnostic way on top of existing code completion engines,

the predictions are fast to compute, and no complex analysis- or change-tracking-

infrastructure is required.

166

6.5. Improvements and Simulations

6.5.4 Widgets

In previous sections, I have presented improvements to the key layout, touch model,

and language model of the CEK. In this section, I suggest enhancements to the UI

widgets displayed at the top area of the keyboard.

Code Completion

Programmers frequently employ the code completion mechanism as quick way for

browsing documentation. Most editors display abbreviated documentation in a pop-up

next to the selected proposal. In the CEK, the completion list is “always on” and

proposals are inserted when the user taps on an item. Documentation could be

integrated by pressing an icon next to each item or by performing a gesture. For

instance, a swipe-up gesture over an item could invoke a small pop-up above the item.

Tapping another item while the pop-up is visible then updates the documentation until

the pop-up is dismissed.

Code Templates

The CEK version of the user study displayed items for navigating template placeholders.

When no template was active, this space remained unused. The empty area could

be used for predicting templates (again using AccessRank). For example, when the

user has repeatedly created an if template within a for template, AccessRank captures

this transition and next time suggests an if template after an inserted for template.

(Although the current editing context could additionally be considered, this would

most likely introduce language-specific functionality.)

6.5.5 A Revised Model

Extending the basic model shown in the introduction of this chapter, the refined model

illustrated in Figure 6.24 summarizes all previously discussed components. It comprises

three main layers that aim at representing a hardware- and language-agnostic approach

to code entry on touchscreens.

167

Chapter 6. Creating Source Code

Touch Model	

•  Bayesian Touch Criterion / Closest Centroid	

•  Key Interaction / State Transitions / Thresholds	

Language Model	

•  Code Completion Engine (LS / LA) 	

•  Completion Predictions (AccessRank, LA)	

•  Spelling Correction (Damerau-Levenshtein, LA)	

•  Template Predictions (AccessRank, LA)	

	

LS = Language-specific, LA = Language-agnostic	

User Interface	

•  Optimized Key Layout / Special Chars / Smart Typing	

•  Quick Command Access (Gestures / Marking Menus)	

•  Templates (Marking Menus / Navigation Widget)	

•  Completions (“Always On” / Selection Widget)	

•  Customization (Key Layout / Command Mapping)	

Touch-based Code Entry	

Figure 6.24: A revised model for code entry on touchscreens.

6.6 Conclusion

In previous chapters, I have addressed interaction techniques for editing and selecting

source code. In this chapter, I have focused on methods for creating source code on

touchscreens. The first section has introduced the challenges involved with entering

text on a touchscreen using a virtual keyboard. Text entry has long been an important

HCI research area. Previous efforts, however, have largely been directed towards

optimizing the input of English phrases. Source code differs in that special characters

should be quick to access, whole code structures should be easy to create, and code

intelligence functionality should support the programmer.

168

6.6. Conclusion

The second section has listed five common ways of how these goals are achieved in

desktop editors. Having detailed their mechanics, I have presented the design of a

custom keyboard for code entry (CEK). This keyboard provides an optimized layout,

enables fast gesture-driven access to special characters and commands, and renders

supportive UI widgets for controlling two essential productivity features, namely code

completion and template insertion.

Furthermore, the CEK was subject of user study on code entry. I have reported several

text entry metrics and other interaction-related measures. The positive user feedback

and the fact that the first version only implemented a rudimentary touch model and

language model have motivated further research on improvements. Following the

user study, I have suggested specific enhancements concerning the key layout, touch

model, language model, and UI widgets. Simulations of the new models have given

first insights into their effects on a future version of the CEK.

Finally, I have shown a revised model for code entry on touchscreens. Future research

efforts could primarily address three areas: First, the enhancements should be evalu-

ated in a larger follow-up study, ideally involving experts. Second, other code creation

mechanism besides code templates and code completions should be examined. Third,

in order to better assess text entry speeds, the CEK should be compared to a baseline

keyboard such as the IDK.

Although virtual keyboards still lack the haptics and preciseness of physical keyboards, I

have attempted to demonstrate how appropriate interaction techniques and algorithms

mitigate the limitations of existing systems.

169

Part III

Design and Implementation

171

Chapter 7

A Touch-enabled IDE

This chapter presents the design of a coherent system integrating the previously studied

interaction techniques for touch-centric code editing and their supporting IDE modules.

The first part discusses platform choices and the devised approach to interaction design

for gestures, commands, and menus. The second part introduces concrete modules

for file browsing, working set management, code navigation, code entry and editing,

and code review. While the following chapter discusses technical aspects and software

architecture, this chapter focuses on the interactive behavior and elaborates on the

rationale behind all design decisions.

7.1 Device Class and Platform

The proliferation of devices with differently sized touchscreens and the variety of

operating systems have led to numerous possible configurations for designing and

implementing touch-enabled software. Consequently, the choice of a particular device

class and OS frequently precedes concrete design work. Recent attempts at enabling

adaptive layouts that dynamically adjust to changed screen properties have reduced

the technical implementation effort, but human judgment is required to instruct the

system how to adapt the UI to the new environment. Furthermore, as applications

grow in complexity and increase their use of custom-developed UI elements, standard

frameworks tend to fall short. This is particularly true for cross-platform development

tools, which often trade user experience (e.g., platform conventions or performance)

for reduced deployment effort. While popular platforms, such as Android, iOS, or

173

Chapter 7. A Touch-enabled IDE

Windows Mobile, may be equally suitable for achieving successful user experience,

the type of device might be the more decisive factor as far as the present work is

concerned.

Touchscreens are available in a variety of sizes, ranging from tiny smartwatch screens

to smartphone screens, tablets, tabletops, and large display walls. Common sense

might suggest that extreme screen sizes (i.e., smartwatches or large display walls)

are inappropriate for typical programming tasks. The issue becomes less clear, how-

ever, when considering the medium-sized range including smartphones, tablets, and

tabletops. The project TouchDevelop [TMdHF11] (see Chapter 3) has demonstrated

that programming on a smartphone screen is technically feasible by introducing a

special-purpose programming language. The interaction techniques proposed in this

work permit more flexible editing in a mainstream programming language but might

be degraded or rendered unusable on small smartphone screens. Tabletops, on the

other hand, provide sufficient screen space but may be most appealing in collaborative

work scenarios. Also, time-consuming editing tasks, performed in a top-down view of

source code on the surface, could be strenuous. (Chapter 9 revisits potential uses of

tabletops for software development tasks.)

In a study about the impact of screen sizes on usability, Raptis et al. [RTKS13] have

found that “users who interact with larger than 4.3in screens are more efficient during

information seeking tasks”. Although their own study investigated devices only up to a

screen size of 5.3 inches, the authors refer to a prior study incorporating mobile screens

up to 9.7 inches and state, “the largest screen led to higher participants’ enjoyment,

while the smaller screen-size elicited greater perceived mobility”. 4.3 inches could

be regarded as typical size for a modern smartphone, while 9.7 inches, for instance,

is the size of the iPad tablet. The user interface and interaction surface required

for programming might impose stricter limits regarding small screen sizes. Hence,

the design and interaction methods presented here are intended to work best on

tablet-sized screens (~7 inches and above).

7.2 Approach to Interaction Design

The following sections describe the general approach of this work for enabling gesture-

driven interaction and invoking commands.

174

7.2. Approach to Interaction Design

7.2.1 Integration of Gestures

Designing a touch-based system involves consideration of the extent to which gesture-

driven interaction should be supported. Conservative approaches primarily support

tap-based interaction where users point on the visible elements of the user interface

(e.g., buttons or list items). Although a tap could be classified as discrete gesture,

modern UIs frequently exploit continuous movements, such as swipe or pinch gestures.

A swipe, for instance, is often used for navigating list entries back and forth since the

required movement appears to map naturally to the behavior of the UI widget. The

advantages of this direct manipulation are perhaps most evident in the ubiquitous

pan gesture for scrolling content. Less familiar gestures include motions consisting of

multiple strokes or shapes. For example, users could draw an “X” on the screen to close

the current view of the application. On the one hand, such designs may contribute

to an expressive gesture vocabulary; on the other hand, as the number of actions

increases, finding matching motions and shapes can become difficult and may result in

arbitrary or ambiguous mappings between actions and their triggers.

Tap and 	

Long-press Gestures	

 Single-stroke and
Continuous Gestures	

Multi-stroke and
Shape Gestures	

direct	
 arbitrary	
 Mapping	

visible	
 invisible	
 Triggers	

low	
 high	
 Effort	

familiar	
 unfamiliar	
 Familiarity	

conven6onal	
 expressive	
 Expressiveness	

Figure 7.1: Properties for varying levels of gesture-driven interaction.

Figure 7.1 illustrates properties for varying degrees of gesture-driven control. It is

important to note that these properties are not to be understood absolute but rather

as tendency. Depending on the context and task, for instance, a swipe may be more

expressive than a multi-stroke gesture. In the study presented in Chapter 4, users

designed gestures from each of the three categories, but they were cautious employing

movements from the category of “Multi-stroke and Shape Gestures“. Due to the issues

175

Chapter 7. A Touch-enabled IDE

of finding adequate mappings for large command sets, this category of gestures has

not been considered in the present work.

7.2.2 Conflict Resolution

Attaching gestural interaction to UI elements can quickly lead to conflicts. As previously

stated (Chapter 4), user-elicited gestures are particularly susceptible to this issue since

subtle ambiguities only emerge in fully working applications. User-defined gestures

then compete with the platform’s built-in gestures or the interaction of specific UI

widgets. This is why standard mobile frameworks provide developers with fine control

over event processing and gesture recognition, which enable them to react to and

resolve such conflicts. The following example (Figure 7.2) demonstrates a concrete

use case requiring methods for resolution:

Viewport	

Pan to scroll horizontally (PG) 	

Swipe to show previous file (CG)	
 Swipe to show next file (CG)	

Pan to scroll vertically (PG) 	

PG = Platform Gesture, CG = Custom Gesture	

function askDeepThought() { !
 var answer = 6 * 7; !
 return answer; !
} ! Pan to move lines (CG)	

Pan to change selection (CG)	

Pinch to zoom (PG)	

Figure 7.2: Examples of competing gestures in the editor viewport.

The editor renders a scrollable viewport that displays the source code of a file. Ac-

cording to the conventions of most mobile platforms, scrolling is performed through

horizontal and vertical pan gestures. If the designer of a gestural system intends to

add support for file navigation through horizontal swipe gestures, he might overlook

that simultaneously supporting a pan and swipe gesture results in a conflict: The swipe

176

7.2. Approach to Interaction Design

gesture cannot be performed without triggering a pan gesture. In this scenario, the

conflict causes the unintended side effect of horizontally scrolling the source code.

This example is only one of several situations where gestures require additional dis-

ambiguation. Other potential conflicts are generated by selecting code, changing the

selection range, or by applying operations such as moving selected lines to a different

location (Figure 7.2).

As a consequence, this work has mainly employed the following strategies for handling

competing gestures and ambiguities:

Target Region

A gesture that is performed in a designated area of the screen overrides a gesture

attached to the underlying larger area. For example, performing a pan gesture on

the right edge of the editor viewport triggers interpolation and outline scrolling

(see section 7.3).

Exclusive Gestures

Certain gestures may block other gestures from being simultaneously processed.

For example, when users perform a pan gesture to modify the range of a syntax-

aware selection gesture (see Chapter 5), the standard gesture for viewport

scrolling is disabled during the operation.

Number of Touches

The number of simultaneous touch points distinguishes custom gestures from

standard gestures that should not be overridden. For example, performing a pan

gesture using two fingers moves selected lines, whereas performing the same

gesture using one finger triggers the default behavior (viewport scrolling).

Thresholds

Gestures are initiated when configured thresholds for the distance and velocity of

the movement are reached. For example, when the user performs a flick gesture

over a keyboard key, the default keypress is canceled and instead a code template

will be inserted (see Chapter 6).

All other gestures are recognized as follows:

Target Element

Gestures are attached to elements of the user interface. The gesture is recognized

when it is initiated within the bounding box of the element.

177

Chapter 7. A Touch-enabled IDE

Configurable Properties

Configurable properties of a gesture determine the action to perform; that is, pan

gestures are distinguished by their direction (horizontal vs. vertical movements),

tap gestures by the number of taps, and touch-and-hold gestures by their dwelling

duration.

Editor State

The state of the editor document (text buffer) or viewport determines the type of

gesture. For example, a touch-and-hold gesture over selected source code triggers

a contextual menu, whereas the same gesture over non-selected code initiates a

selection operation.

7.2.3 Widget-based Techniques and Menus

Although an application could support a considerable amount of gestures by means of

disambiguation methods, another known issue associated with gesture-driven inter-

faces is their tendency to lack appropriate disclosure mechanisms. Users first need to

discover the presence of a gestural trigger for an action, but without the application

providing explicit hints, important features might remain unused. Hence, interfaces

should either integrate clues for the user or employ widgets for specific actions. For in-

stance, some of the selection techniques presented in Chapter 5 render visual elements

instead of exclusively relying on gestures.

Marking menus, a well-researched method combining both gestures and widgets, have

been discussed earlier (Chapter 3). The custom keyboard shown in Chapter 6 has

implemented this technique for accelerated access to the commands of individual keys.

Since users gradually transition from novices to experts when they repeatedly invoke a

command, they only need to be instructed how to initiate the menu itself. In addition,

this work has integrated three enhancements that optimize marking menus for code

editing operations and global actions:

Repeatable Actions

Some code editing operations (e.g., indenting code) tend to be performed in

quick succession, but repeatedly executing these operations can be onerous.

Items of commands that have been marked as “repeatable” fade out after ex-

ecution (Figure 7.3) and allow for repeated tapping on the icon during the

animation. Each tap resets the fade-out animation, thus enabling any number

178

7.2. Approach to Interaction Design

of repetitions. The animation quickly finishes so that visual distractions are

minimized.

Chorded Taps

As alternative to the space-consuming display of hierarchical marking menus,

additional menu items can be shown by performing a tap with the second finger.

As the second finger touches the surface, the first eight items are replaced with

new items. Each tap cycles through a new menu level, replacing the previous one.

This design also allows for quick chorded selection: When the menu locations

have been internalized, the first finger can be released as soon as the second

finger touches the surface and thus triggers the item in the respective menu slice.

This interaction shows some similarity to FastTap [GCS+14] (also see Chapter

3). On small screens, cycling through the breadth of the menu might be more

convenient than navigating the depth of multi-level marking menus.

Global Feedback

A global tooltip at the top of the screen displays the command names for a

short duration. This feedback has been added for three reasons: First, to reveal

the command names of items that are occluded by the user’s hands; second,

to disclose the labels for icon-based elements; third, to confirm expert-mode

selections. In novice-mode, the tooltip is updated as the user hovers over an

item of the menu.

Figure 7.3: Marking menus optimized for code editing operations. Left: Marking menu
in novice-mode with the item for code indentation highlighted. Hovering the item
triggers feedback in a global tooltip at the top of the screen. Performing taps with the
second finger cycles through additional menu levels. Right: Actions can be repeated
by tapping on an item during the fade-out animation. Each tap resets the animation
and re-executes the command.

179

Chapter 7. A Touch-enabled IDE

7.2.4 General Guidelines

Overall, the interaction design of the IDE adheres to the following guidelines:

1. Favor familiar gestures: Most actions are performed through tap-based gestures

and conventional continuous gestures (see Figure 7.1); multi-stroke and shape-

based gestures have not been exploited in this work.

2. Minimize overriding of platform gestures: Custom gestures do not override or

overload standard gestures provided by the platform. Conflict resolution, if

required, is realized through the aforementioned techniques.

3. Add special-purpose widgets: Widgets reduce the disclosure problem and the

use of arbitrary or ambiguous gestures. Examples of this work include selection

widgets (see Chapter 5) or marking menus, tailored to code editing operations

(see previous section).

7.3 IDE Components

The sections below present the design and its rationale for main IDE modules, including

file browsing, working set management, code navigation, code entry and editing, and

code review.

7.3.1 File Browsing

Most IDEs provide file browsing facilities, typically shown in a separate panel on

the right or left side of the screen. The hierarchical structure of folders and files is

represented as tree view; folders can be expanded or collapsed, and files are opened by

mouse-click or keyboard shortcut. On small touchscreens, expanding multiple levels of

the tree consumes considerable screen space and requires horizontal scrolling to display

clipped content. Hence, mobile applications frequently display only a single level of

the hierarchy, replacing the previous level when opening a folder and displaying a

button for navigation to the previous level.

Here, the file browser is displayed in a drawer (i.e., a sliding panel) that is revealed

when the gutter of the code editor is horizontally dragged with a pan gesture. The

same interaction in the reverse direction closes the drawer and maximizes the available

180

7.3. IDE Components

area of the code editor. In the drawer area, navigation is performed through tap and

swipe gestures: A tap onto a folder navigates one level deeper, whereas horizontal

swipe gestures navigate to the previous or next level–similarly to the history concept

of a web browser. Navigating back from any level to the root level is accelerated by a

two-finger-swipe gesture. While a tap gesture on a file displays its content in the first

editor pane, a touch-and-hold gesture initiates a drag-and-drop operation that lets users

assign the file to any editor pane (see the next section).

Figure 7.4: File browsing drawer with support for the following gestures: horizontal
pan, one-finger-swipe, two-finger-swipe, tap, and touch-and-hold. Here, the user has
started dragging a file into the adjacent editor pane. Feedback in form of a colored,
pulsating circle indicates valid targets for the drag-and-drop operation.

7.3.2 Working Sets, File Sets, and Layouts

Solving a programming problem or working on a maintenance task often requires

repeated switching between multiple files [KMCA06]. IDEs have included various

features to assist developers in organizing files into cohesive sets. For example, tabs let

users quickly change to opened files. Editor windows can be further subdivided into

split views for side-by-side presentation of code. The Eclipse IDE allows users to group

181

Chapter 7. A Touch-enabled IDE

files into working sets that filter folders and files and thus hide unnecessary artifacts.

More advanced organizational forms can be added through plugins that attempt to

restore a developer’s context based on metrics gathered from code editing sessions

(see Chapter 3).

This work implements the concept of working sets, file sets, and editor layouts: A

working set contains one or more file sets. File sets are collections of individual

files, bound to the view of an editor layout. Working sets can be be quickly switched

through a gesture-driven widget. File sets replace tabs and add predictions for files that

are likely to be selected next. Layouts are created by naturally mapping gestures to

zoomable split view arrangements.

The widget for managing working sets is inspired by the Patchworks code editor [HF14],

which has been shown to increase navigation speed and reduce navigational errors.

The key idea of Patchworks is a linear stripe (“patch grid”) that is constrained to left

and right movements for fast switching to related code fragments (see Chapter 3).

Here, the technique is modified to be compatible with editor layouts (instead of code

fragments) and enhanced with gestural interaction.

Working Sets

When the user performs a pinch-out gesture over the editor area (reinforcing the

metaphor of zooming out to an overview representation), a semi-transparent horizontal

list of working sets is shown (Figure 7.5). The list can be infinitely scrolled to the left

and right with pan gestures (continuous scrolling) or swipe gestures (discrete scrolling).

Unused slots are initially empty. The active working set is visually highlighted and

centered when the widget is shown. Tapping on an item changes to the working set

and, if the slot is empty, implicitly creates it at the selected position. Alternatively,

a pinch-in gesture hides the widget without changing the active working set. For

easier identification, users can add labels by double-tapping into the field below a

slot, followed by entering a short name. A working set is deleted by performing a

swipe gesture from right to left over the label area and confirming by tapping onto the

shown icon. After deletion, the slot is displayed as empty and can be reused. Since the

list provides an infinite number of slots, users are free to assign working sets to any

contiguous or non-contiguous sections of the list.

182

7.3. IDE Components

Figure 7.5: Widget for switching working sets. Performing a pinch-out gesture reveals
a semi-transparent overlay for changing working sets through pan, swipe, and tap
gestures. Working sets can be organized in slots along an infinitely scrolling horizontal
list.

Editor Layouts

An editor layout is a particular split view arrangement for side-by-side views of code. A

layout is assigned to a working set by drawing simple directional strokes that resemble

the desired arrangement. For instance, the layout is vertically split by performing a

vertical swipe gesture over the slot of the working set. A layout with a vertical split

and an additional horizontal split in the right half is created by two swipes: a vertical

swipe, followed by a horizontal swipe in the right half. The split view arrangement is

visualized through respective lines displayed over the working set (Figure 7.6). As

the user switches through layouts, the configuration is directly reflected in the editor

panes below the semi-transparent overlay. File sets associated with an editor pane

(see below) maintain their position in changed layouts. If the new layout dismisses

certain panes, their files move to the last visible pane. The layout widget supports

183

Chapter 7. A Touch-enabled IDE

eight different configurations, requiring users to perform at most two swipe gestures

that naturally map to the arrangement. After selecting a layout, each pane of the split

view arrangement can be zoomed through pinch gestures, which allow users to quickly

maximize the editing area or move to an adjacent editor pane.

Figure 7.6: Gesture-driven editor layouts. Each working set can be split into horizontal
and vertical editor panes. Layouts are switched by performing, at most, two simple
directional swipe gestures over a working set. The highlighted split view arrangement,
for instance, is created by performing a vertical swipe, followed by a horizontal swipe
in the right half of the item. Layouts are reset by performing an invalid gesture or by
swiping right to left and tapping on the displayed delete-icon.

File Sets

File sets are implicitly created when users drop files from the drawer into an editor

pane. Instead of rendering a conventional tab bar, the collection of files is displayed

in a pop-over view (Figure 7.7), which is opened by tapping on an icon at the top of

the editor pane. A pop-over is a temporary view that floats above other views and

disappears as soon as the user taps outside of its bounding box. The view embeds a

control bar and a vertically scrolling list. In contrast to horizontal tabs, a vertical list

supports browsing through a larger number of files. The control bar at the top allows

users to organize files (e.g., removing individual files or emptying the list). In order

to accelerate file switching, the list is split into two halves: The bottom half lists files

based on the recency of access (i.e., the most recently accessed file is displayed at the

top); the top half uses the AccessRank algorithm [FC12] (see Chapter 6) to predict files

that the user might select next.

184

7.3. IDE Components

Figure 7.7: Pop-over views containing file sets. File sets replace tabs and embed
vertically scrolling lists for browsing collections of files associated with an editor pane.
To accelerate file navigation, the list is split into recency-based entries (bottom) and
AccessRank-based predictions (top). Labels shown on the right mark the two sections.
A control bar at the top of the list shows options for removing individual entries or
emptying the list.

Discussion

Working sets, file sets, and layouts allow developers to collect all relevant code for a

task and reduce the navigational effort of switching between sets of related artifacts.

The importance for such organizational tools has previously been emphasized and

confirmed by other studies [KAM05a, KMCA06]. In contrast to prior work, this work

has not implemented the concept of code fragments (i.e., small units of code). Code is

organized at the granularity of files, but, as shown in the following section, supported

by tools for navigating to specific locations within files. In the initial version of the

working sets module, I experimented with a design where working sets could be

freely arranged on a 2D canvas. However, personal tests have confirmed the finding

of recent research [HF14]: Instead of burdening users with manual positioning and

sizing of individual views, providing tools that are intentionally constrained can lead to

higher efficiency. Here, constraints are established by a Patchworks-inspired widget

for organizing working sets along a single horizontal dimension, and by predefined

layouts that can be switched through natural gestures.

185

Chapter 7. A Touch-enabled IDE

In view of the lack of screen space and keyboard shortcuts, it is essential to offer

an alternate mechanism for file switching. In desktop IDEs, file switching is often

realized via the file browser, tabs, or dialogs for quickly opening files by name. Mobile

platforms, in contrast, have provided different widgets such as pop-overs. To accelerate

file navigation in these views, I have added recency-based lists and AccessRank-based

predictions. (Predictions could, as an extension, also be applied to working sets.)

The shown functionality has not included options for file creation. A perhaps obvious

choice is creating files via an “add” or “+” button placed in the toolbar at the top of

the editor pane. To support gestures, interaction techniques incorporating the bezel

of the device could be employed [HYP+10]: Users could cross the bezel and then

continue dragging a file icon into one of the visible editor panes. In touch-based

applications, this interaction may reinforce the process of “making something out of

nothing” [HYP+10].

7.3.3 Navigation

As developers navigate code, they form a mental model of the program; this mental

model, however, does not necessarily match the hierarchical organization of files or

code structures (e.g., inheritance) [SES05]. Consequently, hierarchical file browsing

facilities are insufficient for supporting developers in navigating along their “mental

path”. In this section, I present both the inter-file and intra-file navigational tools of

the IDE.

Inter-file Navigation

The features for working sets, file sets, and layouts are mainly organizational instru-

ments promoting inter-file navigation. Working sets switch collections of file sets, and

file sets ease revisiting files. Recency-based lists, displayed in the lower part of the

file set widget (Figure 7.7), can provide for up to 70% of navigations between files

[PG06]. In addition, they allow users to browse all previously accessed documents.

Predictions, displayed in the upper part, incorporate recency as factor but also consider

the transitions between documents, as well as temporal data [FC12].

Access to a file set is accelerated through gestures. While the widget could be accessed

by tapping on the name of the current file displayed in the toolbar, this interaction

186

7.3. IDE Components

requires up to three taps for file navigation: (1) showing the editor toolbar, if required,

by tapping on the icon in the upper right corner of the editor pane; (2) tapping on the

name of the current file displayed in the toolbar; (3) tapping on an entry in the file set.

The following alternative methods are available to reduce the number of required taps

(Figure 7.8):

• Temporary Trigger: A touch-and-hold gesture on the toolbar-toggle temporarily

shows the file set. The widget is shown only as long as the finger is touching the

surface. As the user continues panning downwards, the file list highlights the

corresponding entries. An entry is selected after releasing the finger. Instead of

three separate taps, this interaction requires only a combined touch-and-hold and

pan gesture. Also, it allows users to access the file set when the editor toolbar is

hidden.

• Local Gestures: The toolbar-toggle serves as visual “anchor” for initiating flick

gestures. A left-flick gesture starting at the icon navigates to the previous file of

the history and a right-flick to the next file. The same gestures can be performed

over the current name of the file when the toolbar is visible.

Figure 7.8: Gesture-driven file navigation. Local gestures are assigned to the visual
elements of the editor toolbar: Swipe gestures over the file name or toggle-icon navigate
through the history. A touch-and-hold gesture on the toggle-icon, followed by a pan
gesture, selects a file from the temporarily displayed file set widget (see Figure 7.7).
(Arrows and circle only added for emphasizing target elements.)

Code editors frequently support jumping between edit locations, thus mixing inter-file

and intra-file navigation. The VIM editor, for example, maintains different lists for

recording locations: The jump list records motions that move between and within files;

in contrast, the change list records locations of edits that were applied to the current

text buffer. Here, global gestures, performed in the editor viewport, let users navigate

the file set history. In addition, each file restores its previous scroll position and cursor

location (see section 7.3.4). Since one-finger and two-finger gestures are already

assigned to other functionalities (panning the viewport and Undo/Redo, respectively),

file set navigation is disambiguated by horizontal three-finger-swipes.

187

Chapter 7. A Touch-enabled IDE

Intra-file Navigation

Desktop editors are equipped with various methods for intra-file navigation, including

viewport scrolling, jumping to specific line numbers and method names, or moving

to related code fragments (e.g., the definition of a focused method). In this work,

users scroll the contents of the text buffer through the familiar pan gesture. However,

scrolling long files by repeatedly panning the viewport is onerous. In order to accelerate

moving to relative sections of the file, such as the upper, middle, or lower part, the

editor viewport reserves an invisible area for interpolation scrolling: When the user

pans over the right border of the editor–commonly occupied by a scroll bar in desktop

editors–the touch position is relatively mapped to the scroll position of the viewport.

This interaction allows users to move rapidly through the file or jump to a particular

section. Tapping into the invisible area causes brief visual highlighting as feedback and

disclosure mechanism.

Interpolation scrolling is extended by a gesture-controlled widget for navigating at the

method-level. Research has found that methods assume a key role for efficient source

code navigation. For example, method-level navigation gave users advantages when

they attempted to reach the target of a navigation task [HF14]. Furthermore, users

tend to focus method signatures more than other source code elements [RMM+14].

Navigation to methods is often accomplished by utilizing the concept of a document

outline, generated by a code analysis module that identifies all methods in the file.

IDEs such as Eclipse render outlines in a separate panel that is permanently displayed

or temporarily invoked through a keyboard shortcut. Here, the outline is displayed by

using the same interactive zone as for interpolation scrolling: Instead of directly starting

the pan gesture, the user first performs a touch-and-hold gesture and then continues

interpolated panning over the list. As the finger touches the name of a method, the

editor viewport is scrolled to the method and highlights its signature (Figure 7.9).

Since the widget is shown during scrolling and hidden when the finger is released, this

interaction requires only one continuous motion to locate a method quickly.

Other intra-file navigation methods, for example moving to related code fragments, are

realized through menu-based techniques (see the following sections). Menus reduce

the need to introduce arbitrary gestures for navigation actions that seem hard to map

to directional movements (previous/next or up/down).

188

7.3. IDE Components

Figure 7.9: Interpolation scrolling and outline for intra-file navigation. The interaction
of locating a specific method consists of one continuous motion: (1) performing a
touch-and-hold gesture over the right edge of an editor pane reveals a temporary
outline listing all methods in the file; (2) interpolated panning lets users rapidly move
to a certain method; (3) releasing the finger hides the widget. Scrolling to a relative
section of the code is performed by directly panning over the right editor edge (i.e.,
without displaying the outline). The touch location is relatively mapped to the scroll
position of the viewport as the user pans within the height of the editor pane.

7.3.4 Code Entry and Editing

The design of code entry and editing functionality builds upon the study results of

previous chapters. This section shows the implementation, a new cursor concept, and

the interaction between viewport scrolling and layout zooming.

The Cursor

Unlike the default behavior of text views in mobile systems, tapping into the editor

area does not automatically invoke the keyboard; instead, a tap gesture only sets

the location of a cursor representation. The rationale behind this design lies in the

common assumption that code tends to be more read then edited. This reasoning is

also apparent in editors such as VIM that, by default, sets its mode to “normal mode”

rather than “insert mode”. While the latter is only explicitly invoked for entering and

189

Chapter 7. A Touch-enabled IDE

modifying characters, the former is the starting condition for operations and their

associated motions. On space-constrained touchscreens, hiding the keyboard until

needed reduces unnecessary obstruction of the editor content. Furthermore, users can

execute a number of editing commands without having to resort to the keyboard (e.g.,

moving, deleting, or formatting code).

Figure 7.10: Cursor representation and context menu. The cursor shows a sufficiently
large semi-transparent handle for dragging. Double-tapping toggles the keyboard
visibility and a touch-and-hold gesture opens a marking menu. The menu shows items
for actions that can be applied to the current cursor position or the token under
the cursor, here (clockwise, starting at the item in the north-direction): Toggling
the keyboard, searching for the focused token, highlighting references, pasting from
the clipboard, removing the cursor, showing type information and documentation,
renaming, and jumping to the definition of the focused token. The menu interaction
works according to the description in section 7.2.3.

The cursor can be dragged using its handle and snaps to the nearest character position

when it is released. Double-tapping the circular area toggles the visibility of the

keyboard. A touch-and-hold gesture opens a context menu (i.e., novice-mode of a

marking menu, Figure 7.10). The cursor does not integrate expert-mode of marking

menus (see section 7.2.3) due to a conflict between their flick gestures and the pan

gesture for cursor dragging. However, the delay for novice-mode is set to a tolerable

minimum of about 200 ms.

Code Selection and Context Menus

The interaction techniques for code selection have been detailed in Chapter 5. Figure

7.11 shows a selected line, displaying magnet handles and adjustment handles at the

190

7.3. IDE Components

anchor and head positions. Gestures and widgets allow for syntax-aware selection;

selection rails ease the selection of block statements and facilitate extending the range

to parent nodes.

Figure 7.11: Selection handles and selection rails. Selection handles enable both
syntax-aware selection (top handle) and fine adjustments (bottom handle). Selection
rails facilitate selecting block statements and their parent nodes. See Chapter 5 for
details on the interaction design.

A touch-and-hold gesture over a selected range of code opens a context menu (Figure

7.12).

Figure 7.12: Context menu for selections. The menu shows items for actions that
can be applied to the current selection, here (clockwise, starting at the item in the
north-direction): Toggling the keyboard, toggling comments, indenting, pasting from
the clipboard, cutting, copying, outdenting, and extending the selection. The menu
interaction works according to the description in section 3.2.3.

Similar to the cursor menu, the context menu for an active selection cannot be triggered

without causing a conflict: A flick gesture over the selected range would simultaneously

cause scrolling of the viewport. Therefore, the menu enables alternative invocation

through a two-finger-tap gesture, which circumvents the delay of novice-mode and

thus accelerates the execution of a menu command. This gesture is comparable to

191

Chapter 7. A Touch-enabled IDE

the right-click on desktop systems or the identical gesture on Mac OS for triggering

contextual actions.

Duplicating and moving lines can either be achieved through contextual cut/copy-paste

actions or through faster gesture-driven methods as described in Chapter 4. However,

integrating the suggested interaction would again lead to a conflict with viewport

scrolling, which–according to the guidelines stated earlier–takes precedence over other

actions. Hence, the actions of duplicating and moving lines are distinguished by the

number of touch points: Two-finger-panning duplicates lines as proposed; holding

down a third finger at the target location sets a temporary mode for cutting instead of

copying the lines. (Desktop systems differentiate such actions through a modifier key.)

Since this interaction is not obvious, an appropriate disclosure mechanism should be

added. Alternatively, an icon shown at the target location could let the user choose

between copying and cutting.

Code Entry, Scrolling, and Zooming

Users can enter code via the code entry keyboard (CEK) presented in Chapter 6. When

the CEK is docked at the bottom of the screen, the editor area is shifted upwards, and

the cursor is updated in the focused area as the user types. The CEK integrates typical

Emacs-type [Fin91] movement commands so that users do not have to reach to the

cursor for repositioning (see Chapter 6).

Two buttons placed in the editor toolbar let users adjust the font size per editor

pane. Panes with small font size configurations can be temporarily enlarged to ease

interacting with the source code: The editor layout as a whole serves as canvas that

can be quickly maximized through a pinch gesture. The combination of font size

adjustment at the editor level and fluid zooming at the layout level enables flexible

arrangements for side-by-side code interaction and navigation. The one-finger-pan

gesture changes between viewport scrolling and layout panning, depending on the

scroll position of the viewport. This behavior ensures that all code is viewable when the

editor layout is zoomed. Figure 7.13 illustrates a zoomed editor layout with differently

configured editor panes.

The frequently used Undo/Redo commands are available via the CEK and via global

gestures, which may be used when the keyboard is hidden. Left and right two-finger-

192

7.3. IDE Components

swipes performed over the editor viewport disambiguate these actions from viewport

scrolling and layout panning.

Figure 7.13: Zoomed editor layout with differently configured editor panes. The layout
consists of a vertical split and a horizontal split in the right half. The left pane is
configured with the default font size, whereas the top right and bottom right panes
have been configured with smaller font sizes. To temporarily increase the interaction
surface of the bottom right pane, the user has zoomed and panned the editor layout as
a whole through a single pinch gesture. A one-finger-pan gesture scrolls the viewport
within the editor pane. When the viewport has reached its minimum or maximum
scroll position, the same gesture moves the editor layout to reveal clipped content.

7.3.5 Error Highlighting and Code Review

This section shows how errors or warnings from static analysis are displayed to the

user. Following that, I describe how the system enables marking problematic code via

the built-in code review facility.

193

Chapter 7. A Touch-enabled IDE

Error Highlighting

Desktop IDEs have employed a combination of techniques to present programming

errors to the user. Typically, an error is shown in the editor gutter as icon, underlined

in the source code, and reported in a separate IDE panel. In addition to syntactic and

semantic errors, IDEs frequently show warnings for violations of code conventions or

other hints generated by external plugins. For interpreted programming languages,

linting (i.e., the identification of problematic code through static analysis), has been a

popular tool to detect syntactic discrepancies or bad practices according to configured

rules.

Figure 7.14: Error highlighting. Errors and warnings are shown as colored semi-
transparent overlays in the gutter area. Repeated tapping on the overlay cycles through
all errors per line. Individual errors are displayed as pop-over view that contains a
description and points at the exact source location.

This work integrates the results of a linter into the editor gutter and adds interactivity

for highlighting errors or warnings at the exact source location. Via a toggle-button in

the editor toolbar, the user can opt-in to display errors in the gutter. A tooltip, briefly

displayed at the top of the screen, indicates the number of errors and warnings in the

file. Errors and warnings are shown as colored semi-transparent overlays (red and

yellow, respectively) over the line numbers. A tap gesture on the overlay displays a

description of the error in a pop-over view pointing directly at the source location

(Figure 7.14). If a single line contains multiple errors, repeated tapping cycles through

all errors. A tap outside of the pop-over area dismisses the view.

Code Review

Contrasting programs that automatically detect errors in the background, review tools

let users mark problematic source code manually. The process of code review has been

accepted as effective way to reduce software defects. Developers frequently resort to

194

7.3. IDE Components

external applications for conducting reviews because such functionality has not been

part of the common IDE feature set. Mobile touch-based platforms, on the other hand,

might be well-suited to support this task, which largely consists of reading, navigating,

and marking source code.

Figure 7.15: Code review facility. Review hints, represented by icons, can be dragged
from a global list onto selected code and then appear in the extended area of the
editor gutter. A tap gesture on an icon toggles code highlighting and user comments;
a swipe-left gesture lets users remove the hint after confirmation; a swipe-right or
touch-and-hold gesture reveals all stacked hints as horizontal list.

Here, code review is integrated alongside linting. A toggle-button in the editor toolbar

lets users horizontally extend the gutter area. This extension offers additional space for

displaying and interacting with review hints. A built-in collection of hints for common

flaws in source code is accessible by revealing the file browser (see section 7.3.1) and

switching to the list via a toolbar button. Each review hint is represented by an icon

and an associated color. When the list is open, users can touch-and-hold on an item

to initiate a drag operation and then drop the hint over selected code. The marked

code is temporarily highlighted in the respective color, and the icon is displayed in the

195

Chapter 7. A Touch-enabled IDE

extended gutter area. A tap gesture on the gutter-icon toggles the code highlighting

and a tooltip containing user comments (Figure 7.15). A swipe-left gesture over the

icon removes the hint after confirming with a tap on the displayed delete-icon. If more

than one hint is assigned to a particular line, the hints form a stack. The items of the

stack can be revealed as horizontal list by performing a swipe-right or a touch-and-hold

gesture on the icon.

The collection is divided into “general-purpose” hints and specific code smells. The

latter has been introduced by Fowler [Fow99] in the context of refactoring (see Chapter

4). Code smells indicate bad practices that can be resolved through appropriate

refactorings. The set of icons was originally developed for two other projects arising

from this work [Raa12a, RFW12] (see Chapter 9). Each code smell is uniquely

identified by an icon, thereby helping developers to recognize potential flaws quickly.

The functionality described here could be further extended by integrating a collaborative

workflow (see Chapter 9). Moreover, the hints could be linked to the commenting or

issue tracking features of modern version control platforms.

7.4 Conclusion

In this chapter, I have introduced the interaction design for modules of a coherent

touch-based IDE. The system integrates methods that have emerged from the user

studies of this work, as well as various supporting modules. The latter include file

browsing, working set management, code navigation, code entry and editing, and code

review. It is important to note that–within the scope of the present work–a number

of essential IDE facilities (e.g., deployment or debugging) could not be considered.

It remains open to examining how such components could be optimized for touch

interaction.

In realizing the specified facilities, I have attempted to base design decisions on a num-

ber of general guidelines. The multitude of available commands in IDEs, coupled with

the absence of keyboard shortcuts, calls for interaction methods that ease command

invocation while taking advantage of touch interaction. Exclusively relying on gestures

can lead to issues associated with finding appropriate mappings and resolving ambi-

guities. Hence, I have mainly employed a combination of familiar platform gestures

and gesture-controlled widgets. Widget-based techniques include well-researched

menu techniques with custom enhancements for code editing operations, as well as

196

7.4. Conclusion

the proposed methods for source code interaction. Although individual areas have

been evaluated in user studies, future work should examine the presented system

as a whole. This might uncover usability issues occurring when interactions involve

multiple modules.

197

Chapter 8

Software Architecture

Software development environments tend to evolve into applications with large code

bases. The steady growth of functionality and enhancements puts emphasis on software

architecture issues such as support for multiple interoperating modules or extensibility.

This chapter first identifies the main areas that tend to cause considerable implemen-

tation effort and highlights the architectural differences between traditional desktop

environments and touch-based environments. The second part addresses existing

open-source systems, their strategies for tackling software architecture issues, and

opportunities for reusing available infrastructure. The third part details principles and

patterns used for implementation and describes the concrete architecture of selected

sub-systems, their communication mechanisms, and technical constraints.

8.1 Introduction

IDEs tend to evolve into sophisticated software systems, often grown over several

years and maintained by large development teams. Moir [BW11], for instance, stated

that the open-source Eclipse project had contributions from about 1000 developers

and over 170 companies (as of 2011). Although Eclipse could be considered as an

exception since it has actively fostered growth through its modular structure, these

numbers show the potential for IDEs to become large software systems. For smaller

development teams or individuals, it seems important to early identify the areas where

complexity most likely emerges. This section highlights such areas and examines the

differences that arise from supporting touch-based target platforms.

199

Chapter 8. Software Architecture

8.1.1 Language Support

At a coarse level, IDEs can be divided into language-independent (or language-agnostic)

and language-specific systems. Language-independence, in this regard, usually im-

plies that IDEs provide extended support for multiple programming languages while

providing at least partial support for other languages. Whereas partially supported

features include basic text editing or syntax highlighting capabilities, extended support

typically comprises features such as advanced code analysis and refactoring support.

It is broadly accepted that substantial implementation effort arises from developing

language-agnostic IDE components.

This matter is further complicated when IDEs not only offer extended services within a

single programming language but also consider cross-language semantics. Tomassetti

et al. [TVT+13], for example, mention the Android platform as example for cross-

language support: Android utilizes declarative XML markup in addition to the main

programming language Java. When Java code references components declared in the

XML file, the IDE validates the references and types to indicate potential errors. An

ideal analysis infrastructure of the IDE considers references both within and across

language boundaries. Furthermore, supporting multiple languages also results in

increased effort regarding user interface components for editors. XML, for example,

may benefit from editors that render the markup as tree of expandable and collapsible

nodes; configuration files might be complemented by wizard-like UIs, and so on.

Although certain syntactic services can be developed in language-agnostic ways, deep

semantic analysis usually entails redevelopment for each supported language. Parser

generators like ANTLR1 and meta-programming tools can assist with generating lan-

guage support, but the overall complexity still increases. Language workbenches such

as MPS2 may decrease the implementation cost but mainly target domain-specific

languages (DSLs). Moreover, the results of tools that generate IDE components as part

of the language definition process are often tied to classic desktop environments or

geared towards structure editing. The disparate environments of mobile touch-based

devices impose constraints concerning the user interface and performance, thereby

limiting the advantages of unoptimized generative approaches.

Consequently, one strategy to reduce the implementation effort for IDEs is reducing the

number of supported languages, which, however, begs the question if such reduction

1http://www.antlr.org/
2http://www.jetbrains.com/mps/

200

http://www.antlr.org/
http://www.jetbrains.com/mps/

8.1. Introduction

also diminishes the value of an IDE. On the one hand, evidence suggests that many

projects consist of artifacts written in multiple different programming languages. For

instance, Tomassetti et al. note that “[...] the top 50 projects among the most active

ones indexed by the Ohloh OSS directory [...] are composed, on average, by 16 distinct

languages, ranging from a minimum of 3 (openSSH) to a maximum of 71 (Debian

GNU/Linux).” In another examined project, Hadoop, they have found that “53 out 100

commits in the repository were cross language” [TVT+13].

On the other hand, language-specific tools arguably provide more useful and tailored

services to developers. A reasonable compromise may exist in IDEs that cluster a

subset of languages. For instance, an IDE focused on web development could provide

extended support for JavaScript, HTML, and CSS files (including cross-language

semantics) while supporting other artifacts only at a basic level.

8.1.2 Presentation

The differences between desktop systems and touch-based systems are most notable

from a user perspective, but the underlying software architecture also reflects this

difference. The user interfaces of desktop applications have traditionally been created

either with native or emulated windowing toolkits that primarily render widgets

and process input events from the attached hardware. Many touch-based platforms

are similar to their desktop counterparts since they provide developers with sets of

predefined UI components and expose mechanisms for processing events. In that

regard, developing a touch-based system is similar to building a desktop system:

User interface events are mapped, through a number of established communication

mechanisms, to IDE actions and service methods. Touch-based interfaces, however,

introduce a new dimension at the UI level. Whereas desktop systems only process

keyboard events and mouse coordinates, an NUI must handle multi-touch events and

recognize gestures.

To port the UI layer of existing desktop systems to touchscreens, mouse coordinates

could be emulated through single-touch interaction. The approach seems to be popular

with public kiosk systems that run on touch displays. However, this interaction style

disregards opportunities for richer multi-touch and gesture-driven interaction and can

only be seen as transitional compromise. (Also see Chapter 3 for issues associated with

“touchification” of existing WIMP systems.) Since the UI layer of touch-enabled IDEs

needs reconsideration, software reuse of existing systems is virtually impossible.

201

Chapter 8. Software Architecture

Despite their potential for more natural interaction, gestures also tend to cause am-

biguities, lack standardized interactions, and often have low discoverability. Hence,

the development of UI functionality might lead to increased solving of new interaction

design issues that do not exist in desktop systems. Applications need mechanisms

to interpret the added input data and handle not only single touch points but also

process simultaneous points, velocities, performed patterns, and other sensor data.

Moreover, predefined widgets of UI toolkits are only insufficiently suitable for code

editing features. This lack of appropriate components requires more custom widgets

to be developed. For central UI components like the code editor, both desktop and

touch-based systems entail additional implementation effort. As demonstrated in

previous chapters, however, touch-based platforms are deficient in providing efficient

UI interactions for crucial features such as text selection and text entry.

Overall, it could be argued that the development of touch-based user interfaces in-

creases rather than reduces the implementation effort.

8.1.3 Code Analysis

Modern IDEs are capable of performing most code analysis functionality in the back-

ground as the user types new code. Since the required computations do not block the

user interface, developers can continue entering code while glancing at the real-time

feedback. In contrast, more expensive calculations (e.g., refactoring operations) are

often explicitly initiated by users.

As stated at the beginning, supporting multiple programming languages is, among

other things, costly due to the added effort for re-implementing language-specific

code analysis services. Even when generative techniques are utilized, the IDE has to

provide the infrastructure and extension mechanisms for integrating analysis services.

This section describes the components of code analysis (also called code intelligence) in

more detail. Analysis services could be divided into two main areas, namely syntactic

services and semantic services. This distinction has been suggested in the literature

[KV10, KVKV12, ESV+13] and also becomes evident in the architecture of open-source

development environments.

202

8.1. Introduction

Syntactic Services

Syntactic services, as the name suggests, analyze the syntax of programming languages

by tokenizing and parsing the source code. Since syntactic services do not depend

on types and relationships between multiple files, they are sometimes bundled into

standalone editor components.

Syntax highlighting, the visual coloring of tokens based on custom styles, is the prime

syntactic service that almost all available text editors and IDEs supply. Code folding

lets users expand and collapse multiple lines of code, a feature used to hide irrelevant

source code. Outline views generate an overview (e.g., fields and methods) of the cur-

rent source file and let users quickly navigate within the source file. Bracket matching

highlights matching pairs of brackets or parentheses to give programmers hints on

the structure and hierarchy of statements. Code formatting automatically controls the

indentation and whitespace based on configured settings and thus frees programmers

from manually formatting the code. Some IDEs provide, independently of concrete

source control systems, file diffs that highlight differences between two source files

side-by-side and optionally enable the merging of changes. Smart typing automatically

inserts closing braces, tags, or punctuation during typing. Editor components can

provide a degree of syntactic code completion, although more sophisticated completion

systems exploit semantic and predictive components. Commenting and uncommenting

of source code is a standard editor action since the format of comments varies between

programming languages and developers frequently toggle the execution of entire

code blocks. Code templates and snippets may be realized on a purely syntactic level;

they insert pre-defined code blocks with optional placeholders that developers select

and complete. Search can include both syntactic and semantic aspects but is usually

implemented as a separate service.

Semantic Services

Semantic services provide deeper analysis since they exploit type information and

dependencies. The absence of static type information (i.e., the use of dynamic pro-

gramming languages) limits advanced code intelligence; however, type inference

engines can–with accuracies ranging from precise to only “guessed”–determine the

runtime types of values and thus enable useful semantic services even in dynamic

environments.

203

Chapter 8. Software Architecture

Code completion displays suggestions, which are either manually invoked or shown

after typing only few keystrokes. This feature has high significance in touch-based

editors because it considerably saves keystrokes. Reference highlighting fosters program

understanding by visually marking all references to a variable or field. Semantic

navigation lets programmers jump to the definition of a variable or method, and allows

for inspecting inheritance hierarchies in object-oriented programs. Error highlighting

and linting shows erroneous or problematic source code while typing without the

developer having to trigger a separate compilation step. Help and documentation

presents abbreviated help inline or opens extended documentation to focused or

selected parts of the code. Refactoring provides behavior preserving transformations

and is frequently used by developers to improve the quality of code. Quick fixes and

quick assist repair errors and perform other local code transformations.

Presentation	

Native Components	

Custom Components	

NUI Event Processing	

Syntactic Services	

Syntax Highlighting	

Outlining	

Bracket Matching	

Smart Typing	

Folding	

File Diffs	

Comments	

Templates	

Semantic Services	

Code Completion	

Reference Highlighting	

Navigation	

Errors and Linting	

Help and Documentation	

Refactoring	

Quick Fixes and Quick Assist	

	

Editor	

Tokenizing and Parsing	

Abstract Syntax Tree	

Type Inference	

Figure 8.1: Components of an NUI code editing module.

204

8.2. Reference Architectures and Existing Tools

8.1.4 Other Modules and Summary

So far, I have argued that significant IDE implementation effort arises from an NUI-

compatible presentation layer and from supporting language-agnostic syntactic and

semantic editor services. While touch-based systems place higher demands on the

user interface, the effort for a code analysis infrastructure is–except for performance

constraints on mobile platforms–similar to that of desktop systems. In addition to the

UI and analysis layers, IDEs typically support other major modules like debugging, file

management and version control, or building and deployment. For the rest of this

chapter, I treat these functional areas as “black boxes” and concentrate on the editor,

its services, and the communication mechanisms. Figure 8.1 illustrates the required

components for the code editing module of an IDE.

8.2 Reference Architectures and Existing Tools

The previous overview shows that developing an IDE from scratch involves substantial

work in various different areas. Thus, reusing and building upon existing solutions

is essential. In this section, I first describe the architecture of the popular Eclipse

IDE since it is known for its modular structure and extensibility. Eclipse has also

initiated a project for a web-based IDE. This project is briefly introduced here because

it demonstrates how a change of platform impacts software architecture. In addition,

it shows how to manage multiple services, a central concept in IDE development.

Second, I present reusable components for code editors and existing tools for code

analysis. Without relying on such tools, IDE development would become prohibitive

for individual developers or small development teams.

8.2.1 The Eclipse Project

The following section on the high-level architecture of the Eclipse (desktop) IDE is

mainly based on the details given in [BW11], which reflect the state of the project

as of 2011. The second section on a web-based version of Eclipse (“Orion”) and its

service architecture relies on the information given in the public developer guide3 at

the time of this writing.

3http://wiki.eclipse.org/Orion/Documentation/Developer_Guide

205

http://wiki.eclipse.org/Orion/Documentation/Developer_Guide

Chapter 8. Software Architecture

Eclipse IDE

Eclipse was first released in 2001. Its main goal was providing a modular and extensible

framework that could serve as basis for developing tools for developers. The project

is open-source, but employees from companies such as IBM have made a significant

number of contributions. The extensible structure of Eclipse was realized through

the so-called Eclipse Component Model, which has later been replaced by the Eclipse

Equinox project.

The component model revolves around plugins, developed with the Plugin Development

Environment (PDE). Plugins can depend on other plugins and provide extension points;

that is, exported interfaces that other developers can use for their own plugins. A

general UI plugin, for example, provides extension points for adding menu items to

a menu bar. Its menu items and mappings to dynamically instantiated classes for

event processing are defined in XML configuration files. Developers can then access

an in-memory Plugin Registry and perform queries via its API. Also, extensions are

lazily loaded when they are first needed (e.g., when a user first clicks on a menu

item), which reduces memory consumption and increases the launch time of the main

application.

The presentation of Eclipse is controlled by the Workbench module, which manages

perspectives, views, and editor windows. Perspectives are combinations or arrangements

of different editors and views. Technically, the workbench is rendered by the Standard

Widget Toolkit (SWT) and its complementary JFace framework. Eclipse achieves a

consistent cross-platform look by not directly interacting with native OS libraries but

instead relying on the abstracted SWT rendering mechanisms.

Extension points allow developers adding custom content to help and documentation,

indexed by the Apache Lucene search engine library and served by a help server.

Furthermore, Eclipse provides frameworks for building debuggers or integrating version

control systems.

Eclipse 3.0 introduced, through a new project called Equinox, a number of replacements

for the component model and the update mechanism of plugins. The already existing

OSGi4 specification was chosen as modularity system for dependency management and

class loading. Plugins became bundles that could be installed, uninstalled, started, and

stopped without rebooting. Update management is realized through another project

4http://www.osgi.org

206

http://www.osgi.org

8.2. Reference Architectures and Existing Tools

called p2: Installation Units describe metadata, artifacts, and dependencies required for

installation. p2 can determine the necessary actions to set the current installation into

its new state and resolves conflicts at installation time rather than at runtime.

The Equinox project could be regarded as concrete implementation of the OSGi spec-

ification. It also forms the basis for other projects that have evolved over the years,

such as the Rich Client Platform (RCP). RCP is a collection of smaller and more generic

bundles for building Java applications and UIs that do not necessarily need IDE func-

tionalities.

Finally, the Eclipse 4 Application Platform (e4) has introduced model-driven UI develop-

ment, CSS styling for changing the appearance of the Eclipse application, and easier

consumption of services through dependency injection. Despite these changes, devel-

oping new tools based on the Eclipse platform could be challenging. As a consequence,

new Application Services have been introduced, aiming to simplify the interaction with

core functionality.

Eclipse Orion

Eclipse Orion could be viewed as project reflecting the current trend towards IDEs

that run in the web browser rather than on the desktop. Although one of the primary

goals of the project is extensibility, unlike its desktop counterpart, it concentrates on

supporting web-based programming languages and tooling. (It may seem obvious that

a web-based IDE best supports web development technologies.) Due to Orion focusing

on web technologies, the project may not need the same degree of modularity and

infrastructure like the Eclipse desktop IDE. However, moving the IDE to the web poses

new challenges arising from having to manage a distributed system and to work with

the limited computational resources of web browsers.

In Orion, a client written in JavaScript, communicates with a server component via a

REST API. Since widely deployed versions of JavaScript have lacked a single agreed

upon standard for dependency management, Orion permits different external libraries

for loading client-side modules. The core of the client architecture is a Service Registry.

New services are defined in JavaScript and registered with a Plugin Provider that

may also process supplied service properties, used to add new toolbar items and key

bindings. This mechanism is similar to the extension points of the Eclipse desktop IDE.

Extension points in Orion are interfaces that clients should implement. Plugins can

207

Chapter 8. Software Architecture

Service Registry	

Plugin Provider	
 Service	

Extension	

fulfills contract	

Service Method	

Object

Reference	

interacts

with	

registers	
 supplies	

uses services of	

Component	

Module Loader	

Dependency Management	

Other Component	

uses services of	

exposes
methods	

through	

uses	

registered at	

injected into	

Figure 8.2: High-level interactions between components, extensions, and services in
Eclipse Orion. Each component is usually defined in a separate file and loaded by a
module framework that resolves all dependencies. Components can use other com-
ponents, as well as the services defined in the Service Registry, which is injected into
components. Extensions register new services with a Plugin Provider. Services fulfill
the contract of the extension point by implementing custom functionality. Interactions
with other components of the host are realized through supplied Object References.
Components expose methods through the Object Reference and thus introduce indirec-
tion for consuming extensions. (This diagram is based on the description given in the
Orion developer guide.)

provide multiple services and are installed via their URL from any hosting web server.

Through plugins, the IDE can be extended with new functionality such as added menu

commands, content assist features for different file types, or syntax highlighting rules.

Services that receive configuration data before they can perform their own tasks are

called Managed Services.

Pre-defined services include core functionality for file management, content types,

preferences, and configuration data. Furthermore, Orion defines utility UI services

that handle menu commands, dialogs, and messages. Another set provides extension

points for customizing the editor. Developers can ask the Editor Context, a short-lived

object reference supplied to most service providers, to return the cursor position, the

208

8.2. Reference Architectures and Existing Tools

current selection, or the text of the editor window. Editing commands that transform

the text in the editor or change the selection are executed on the context via a

service method. Similarly, developers can contribute custom methods for calculating

completion proposals, highlighting the syntax based on a declarative grammar, or

outlining by applying regular expressions or inspecting the AST. Figure 8.2 illustrates

the high-level interactions between components, extensions, and services.

8.2.2 Syntactic Analysis and Editor Components

Developers can take advantage of a number of open-source projects to implement

the essential features of code editors. For example, JDT (Java Development Tools),

a subproject of Eclipse, contributes plugins that add support for the Java program-

ming language. The project contains all necessary functionality for building a code

editing module including the syntactic and semantic services, and the corresponding

views.

With the increase of web-based development tools, developers have created a number of

open-source code editors. Designed as standalone components, they can be embedded

into a host application. Although their main purpose is displaying syntax-highlighted

code, some components expose APIs to give developers fine-grained control over the

appearance and behavior of the editor. Popular projects, such as ACE5 and CodeMirror6,

free developers from implementing the low-level details of managing text buffers and

text rendering. By means of lexical analysis, the editors provide basic syntactic services

and can be extended through a plugin system.

On the one hand, such components bring advantages regarding language-independence

and support for web-oriented programming languages. On the other hand, standalone

editors tend to blur the view and model (or service) layer, a conceptual and architectural

separation that is regarded critical in application development. The mentioned projects

achieve what is commonly referred to as “Separation of Concerns” by distinguishing

between documents (the model) and text rendering or displaying of widgets (the

view). However, with their integration into another application context, this distinction

may inadvertently be removed when the component is treated as standalone module

consisting of a single API.

5http://ace.c9.io/
6http://codemirror.net/

209

http://ace.c9.io/
http://codemirror.net/

Chapter 8. Software Architecture

Adapter	

(Facade)	

Editor API	

abstracts
access to	

Model	

Documents	

Language Modes	

View	

Text Rendering	

Widgets	

Code Editor Subsystem	

Host Application	

Another Adapter	

(Facade)	

Abstraction Layer	

Figure 8.3: Abstraction layer for shielding the host application from changes occurring
in a subsystem that utilizes pre-built code editing components. Different Adapters or
Facades provide access to different functional areas of the editor subsystem in order to
maintain Separation of Concerns.

In order to maintain the separation of concerns, the host application could add an

abstraction layer. Depending on the scope, context, and implementation, abstraction

layers of this type are referred to as Adapters, Facades, or Anticorruption Layer. Adapters

and Facades are classic GoF software design patterns [GHJV95], whereas “Anticorrup-

tion Layer” is an established term of the Domain Driven Design approach [Eva04]. The

primary goal of all strategies is shielding the system from changes occurring in another

subsystem. Introducing this indirection allows developers to switch editor components

without affecting the main application. Figure 8.3 illustrates how an abstraction layer

between the host application and concrete editor subsystems could be realized.

210

8.2. Reference Architectures and Existing Tools

8.2.3 Semantic and Static Analysis

Most code editor components provide only basic syntactic services based on tokenizing

text. This section highlights existing tools that enable deeper semantic analysis. As

for the Java programming language, the Eclipse JDT project contains the necessary

building blocks. Through extension points, developers can add new functionality

to the existing incremental builder and access a Java model in form of an element

tree. Integrating code intelligence features typically involves manually traversing and

examining the syntax tree.

Language-agnostic tooling, as previously stated, exists but loses certain benefits when

integrated into other target platforms or resource-constrained environments. Particular

examples include parser generators and language workbenches [KV10]. Without

such tooling, developers have to directly interact with parser libraries for specific

programming languages. Source code of the C language family (C, C++, Objective-C),

for instance, can be analyzed by Clang7, a frontend of the LLVM compiler infrastructure

project. Since different parsers generate different AST formats, language-agnostic

IDEs require additional structures for abstraction and extension. Projects such as the

Harmonia Research Project8 can reduce the workload since they already provide an

extensible framework for language-independent assistance services. More recently, the

project srclib has attempted to enable “polyglot code analysis” by providing “toolchains”

for multiple programming languages with a “common output format” and “developer

tools that consume this format”9. The latter is realized through installable plugins for

popular code editors.

Code navigation facilities for multi-language editors could be enabled by Ctags10, a

popular program for scanning code and generating index files. Each line in the index

file contains a tag (e.g., a class name or function name), a file path, a search pattern,

and optional metadata. Code editors can parse this information to locate elements

quickly within and across files.

7http://clang.llvm.org/
8http://harmonia.cs.berkeley.edu/harmonia/
9https://srclib.org/

10http://ctags.sourceforge.net/

211

http://clang.llvm.org/
http://harmonia.cs.berkeley.edu/harmonia/
https://srclib.org/
http://ctags.sourceforge.net/

Chapter 8. Software Architecture

8.3 Concrete Architecture

In this section, I describe selected patterns and communication mechanisms used to

implement the system of the present work. The descriptions mainly focus on exemplary

high-level architecture or areas with architectural idiosyncrasies caused by touch-based

platforms.

8.3.1 Target Platform and Environment

Although the IDE has been built for the iOS platform, the principles presented here

equally apply to other mobile operating systems, such as Android or Windows Mo-

bile. The only requirement for this architecture is a platform that supports running

web-based content within the native host application. The embedding is usually accom-

plished by WebView components that communicate with the host application. Since

the presented system targets web-based programming languages, this design enables a

high degree of reuse of existing IDE tooling for web programming. Due to performance

degradation resulting from such hybrid solutions, large parts of the system including

user interaction, event processing, and widget rendering are handled natively in the

host application using the Objective-C programming language. Tools for cross-platform

development or hybrid applications have not been utilized since they appear to be

more appropriate for regular mobile applications built with standard components and

functionalities.

8.3.2 Modules and Events

It is widely accepted that structuring a complex application into multiple loosely

coupled modules is a desirable goal. The term “module”, however, is vague. In his

seminar paper “On the Criteria To Be Used in Decomposing Systems into Modules”,

Parnas [Par72] discusses indicators for segmenting an application into distinct parts.

He considers a module as “responsibility assignment rather than a subprogram” and

suggests to identify modules by “a list of difficult design decisions or design decisions

which are likely to change”. By means of information hiding, a module interface should

“reveal as little as possible about its inner workings”, thus reducing potential changes

in other modules.

212

8.3. Concrete Architecture

Editor	

Module	

Analysis	

Settings	

VCS	

Working Sets	

Keyboard	

Selection	

Gutter	

Cursor	

Outline	

…	

…	

SelectionController	

 SelectionHandle	

 SelectionRails	

 ...	

Class or Interface	

Services	

Submodule	

DocumentService	

SelectionService	

ViewportService	

…	

…	

Coordination	

Figure 8.4: Exemplary subdivision of the application into modules.

Figure 8.4 shows how the system could be decomposed into modules, submodules, and

concrete classes or interfaces. Major functional areas like the code editor or working

sets form main modules that are further subdivided. The editor module, for instance,

contains a set of services exposing an API for interacting with the core functionality of

the editor. Furthermore, it contains view modules that group a set of classes controlling

the display of UI elements.

At the class-level, a view module might internally be organized according to patterns

such as Model-View-Controller [GHJV95] where the interface is revealed via a single

controller. Parent modules may use methods of this interface to coordinate at a higher

level between view modules. In order to achieve loose coupling between modules,

communication is realized through dependency injection and events (Figure 8.5). If

Module A needs to call methods of Module B, a service interface of Module B is

injected into Module A. Through polymorphism, Module A is not bound to a concrete

implementation of Module B but instead only relies on its interface definition. However,

excessive use of interfaces can lead to a proliferation of dependencies in the system.

Within smaller coherent modules consisting of a fixed set of known classes, interfaces

213

Chapter 8. Software Architecture

AnalysisService	
 Event Bus	

Analysis	

Editor	

(3) trigger analysis
via interface	

(1) register for
scroll event and
analysis result

event	

(4) dispatch
analysis result	

ViewportService	

(2) dispatch
scroll event	

(5) process analysis
result and dispatch

update event	

Other Module	

(6) process
update event	

Figure 8.5: Loose coupling via interfaces and events between modules. The diagram
illustrates the following exemplary interaction: When the user scrolls the editor
viewport, the ViewportService dispatches a scroll event. The AnalysisService of the
Editor Module has registered for the event and triggers a code analysis task through the
interface exposed by the Analysis Module. When the analysis is finished, AnalysisService
gets notified, processes the result, and dispatches an update event. Another module
can register for this event and act accordingly. Although the module could directly
register for the event dispatched by the Analysis Module, it should register for the
high-level event that has been preprocessed by the coordinating AnalysisService of the
Editor Module.

could be exchanged for concrete objects. Also, modules that are unlikely to change or

do not modify their runtime behavior could minimize the use of abstractions.

In the above scenario, Module A still remains dependent on Module B. Coupling can

be further reduced by using a central notification system: When Event B happens in

Module B, Module A will be notified and react accordingly. Thus, when modules register

for a system-wide event, they remain decoupled from the event source. The trade-off

of this architecture is that a high volume of events could lead to inadvertent command

invocations. Moreover, the debugging effort tends to increase due to difficulties in

locating the actual sources of erroneous behavior in the system. In order to minimize

side effects, modules could expose only few high-level events for registration.

214

8.3. Concrete Architecture

8.3.3 Services and Core Objects

Similar to the term “module”, a “service” is a widely used but vaguely defined ar-

chitectural building block. Services have primarily been discussed in the context of

Service-oriented Architecture (SOA).

WorkingSetsService	

WorkingSetsRepository	

DatabaseService	

WorkingSet	

Controller	

FileSet	

File	

needs (async.)
access to	

Figure 8.6: Controllers using services for interacting with core objects. For example, a
controller that needs access to the Files of a WorkingSet object accesses the methods of
WorkingSetsService. The service delegates the responsibility to a Repository [Eva04],
decoupling the retrieval and modification of objects from their persistence mechanism.
An infrastructure service handles the actual interaction with the database. The response
at each step of the sequence is asynchronous to not block the UI during the calls.

The W3C defines “service-oriented architecture” as “set of components which can

be invoked, and whose interface descriptions can be published and discovered”11.

This description mainly refers to components that call remote procedures in a client–

server environment, but services do not necessarily need to involve a remote end.

Evans [Eva04], for example, more broadly distinguishes between Application Services

and Domain Services. While the former execute application-specific commands and

11http://www.w3.org/TR/ws-gloss/

215

http://www.w3.org/TR/ws-gloss/

Chapter 8. Software Architecture

encapsulate technical concerns, the latter carry out operations affecting the domain

model.

EditorMode	

SourceRange	

SourceLocation	

interact with	

ViewportService	

SelectionService	

LayoutService	

DocumentService	

Services	

Core Objects	

AnalysisService	
 WorkingSetsService	

SettingsService	

DatabaseService	

FileService	

VCSService	
 SecureStorageService	

CodeReviewService	
JavaScriptAnalysisService	

MarkdownAnalysisService	

DefaultAnalysisService	

EditorAnalysisService	

Editor	
 Code Analysis	
 Other Modules	
 Infrastructure	

NamedSourceRange	

CompletionInfo	

TypeInfo	

TextMarker	

DocumentationInfo	

LintHint	
 CodeSmell	

SettingsItem	

WorkingSet	

FileSet	

File	

ViewportInfo	

SettingsGroup	

VCSTree	

VCSTreeEntry	

VCSBlob	

VCSRef	

VCSRepo	

VCSCommit	

Figure 8.7: Examples of main services and core objects. The central responsibilities
of a service or object are expressed through nouns. Core objects are immutable and
can be marshaled into different representations to be used in both the native host
application and its embedded web-based component.

As part of its e4 platform, the Eclipse project has introduced Application Services, which

could be regarded as Facades [GHJV95] for plugins that interact with the core platform

or the user interface. Similarly, in this work, services represent Facades that alleviate

clients from having to deal with implementation details. Figure 8.6 illustrates the

interaction with services using the example of retrieving persisted file objects.

Figure 8.7 shows core objects that services interact with. These objects are constructed

as immutable values to reduce failures resulting from inadvertent state changes. In

addition, the objects expose mechanisms for marshaling (i.e., serializing) them to

different representations. For instance, an object of the native application layer might

216

8.3. Concrete Architecture

need to be converted to a JSON12 representation when it is transferred to the embedded

WebView component for further processing.

8.3.4 Adapters and Bridges

Adapters and Bridges are structural GoF [GHJV95] design patterns. Here, both pat-

terns play a significant role since they encapsulate the details of the two-way hybrid

interaction between the native host and the embedded WebView. Host adapters wrap

the methods used to communicate with the embedded view. Services execute adapter

methods without having to carry the details of how the adapter achieves this com-

munication. Adapters accept or return instances of the core objects mentioned in the

previous section. Similarly, the receiving end of the communication uses an adapter to

process incoming method calls and to transfer objects to service methods.

ViewportAdapter	

marshall/unmarshall	

Host	

scrollTo	

(SourceRange)	

Service Client	

process interaction
receive ScrollEvent	

ViewportService	

logic	

Bridge	

communication	

ViewportAdapter	

marshall/unmarshall	

ViewportService	

logic	

Editor	

perform scrolling	

WebView	

Event Bus	

central notifications	

dispatch ScrollEvent	

scrollTo(x, y)	

Bridge	

communication	

post 	

ScrollEvent	

call adapter	

scrollTo	

(SourceRange)	

scrollTo	

(SourceRange)	

process ScrollEvent	
translate ScrollEvent	

Figure 8.8: Adapters and bridges for two-way communication between the host and
the embedded WebView. This example shows the high-level flow of a user-initiated
event for viewport scrolling.

A Bridge is a related pattern of separating a concrete implementation from its interface.

Gamma et al. note that “Adapter and Bridge are often used at different points in the

12http:/www.json.org

217

http:/www.json.org

Chapter 8. Software Architecture

software lifecycle” and “The Adapter pattern makes things work after they’re designed;

Bridge makes them work before they are.” [GHJV95]. In this work, adapters and

bridges solely express different responsibilities at different levels: The bridge imple-

ments the low-level technical details of communication, whereas adapters internally

use the bridge to perform their tasks at a higher level. Both levels of indirection

minimize the reason for changes to service APIs. Figure 8.8 illustrates this interaction

using the example of user-initiated viewport scrolling.

The services of the embedded WebView are stateless. When the editor changes its model

or its view, those changes are communicated back to the controlling host application via

events. Host adapters are the first objects to receive the events, marshal the payloads,

and re-dispatch the events. Services can register for adapter events and translate them

into application events that service clients may register for. (A service client could be

the Controller of an MVC-structured module.)

On the one hand, this architecture introduces several layers of indirection and thereby

complicates the application structure. On the other hand, it allows full reuse of pre-

built editor components. Since the editor state is synchronized, the host can reduce

expensive bridged calls for querying the editor API. Through services and adapters,

a single editor API is grouped into multiple logical units. The main control includ-

ing event processing, handling of user interaction and gestures, and rendering of

widgets remains in the host application. Because the host utilizes the native program-

ming language of the OS, this architecture should–compared with pure web-based

approaches–result in increased performance and an enhanced user experience.

8.3.5 Model-View-Controller and Commands

Model-View-Controller (MVC)13 is an established meta-pattern, today frequently applied

for developing rich user interfaces and web applications. At its core, MVC separates

the presentation (view) from the data (model) while a coordinating unit (controller)

connects the components. Here, modules involving views are internally structured

according to MVC. Views are either native or custom-built components (widgets).

Models could be core objects or more specific immutable value objects. Controllers

create, update, and delete view components.

13http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

218

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

8.3. Concrete Architecture

MVC and Commands	

ContextMenuViewController	

ContextMenuView	

ContextMenuItemView	

AnalysisService	

GotoDefinitionCommand	
 DocumentService	

ViewportService	

ContextMenuModel	

executes	

renders	

uses	

notifies	

shows/hides	
 uses	

find	

highlight	

scroll	

Figure 8.9: The MVC and Command patterns. The diagram shows the example of a
user triggering a context menu command: To go to the definition of a variable, the user
selects a context menu action. The ViewController handles the View event by extracting
the Model data, configuring the corresponding Command object, and executing the
command. The command finds the source range of the definition (AnalysisService),
highlights the source range (DocumentService), and scrolls the editor viewport into
view (ViewportService). After executing the command, the ViewController hides the
ContextMenuView.

Controllers may also trigger stateless Commands [GHJV95] as part of processing events

from view components. Commands encapsulate method invocations, thus allowing

different parts of the application to execute and reuse specific tasks. Traditionally, the

pattern has often been used to enable functionality such as Undo/Redo. Commands can

be parameterized, and they may internally access services (Figure 8.9).

8.3.6 UI Components and Gestures

Similar to UI components of WIMP systems, NUI components could either consist of

native or custom-developed elements. A UI component generally encapsulates the

drawing and layout of primitive objects that compose a widget. Due to their interactivity,

widgets are responsible for handling user-generated events. Unlike WIMP components,

however, NUI components process multi-touch events and gestures. Although the OS

provides event handling mechanisms, custom components frequently require extended

gesture-recognition capabilities.

219

Chapter 8. Software Architecture

The UI frameworks of popular mobile platforms allow developers to extend the built-in

features, for instance by creating custom gesture recognizers. Gesture recognizers

decouple the drawing and layout of a widget from its responsibility for event handling.

This separation promotes the reuse of gesture recognizers for different views. Examples

of custom gesture recognizers and their relationships are shown in Figure 8.10.

Custom Gesture Recognizers	

GestureRecognizer	

Multi-touch handling	

PanGestureRecognizer	

Panning (dragging)	

PanAndHoldGestureRecognizer	

Panning and dwelling (holding)	

SelectionGestureRecognizer	

Selection anchor and head	

DragAndDropGestureRecognizer	

Cross-view dragging and dropping	

LayoutGestureRecognizer	

Layout gestures for Working Sets	
 …	
CompassGestureRecognizer	

Directional swipes	

View	

Controller	

resolves dynamic 	

conflicts	

attached to	

resolves static conflicts	

Figure 8.10: Examples of custom gesture recognizers and their (inheritance) relation-
ships. Gesture recognizers can be associated with multiple views. Static conflicts are
resolved by gesture recognizers, dynamic conflicts by controllers.

Gesture recognizers can form inheritance hierarchies. Typically, the OS framework

provides a base class for multi-touch handling; that is, for accessing information

about individual touches such as the location, the event phase, or timing data. In

addition, most platforms define classes that detect default gestures like panning

or swiping. These gestures can be extended by intercepting the event phases and

implementing custom logic. Here, for example, a PanAndHoldGestureRecognizer extends

the general pan gesture by introducing delays (dwelling) for initiating the panning and

recognizing short hold gestures during the movement. The gesture recognizer is then

attached to views that employ this interaction style (e.g., the gutter or the outline).

SelectionGestureRecognizer, another subclass, builds upon the same basic interaction

but additionally handles the selection anchor and head.

Adding multiple gesture recognizers to a view can result in gesture conflicts. Conflict

resolution logic can either be implemented by gesture recognizers or by coordinating

controllers. While the first option might be more appropriate for static and coarse

220

8.3. Concrete Architecture

conflicts, the latter might be more adequate for dynamic or subtle conflicts. Static

conflicts imply that one gesture should never occur simultaneously with another

gesture. Dynamic conflicts occur when the current state (or phase) of a gesture causes

another gesture to be canceled. Furthermore, the view hierarchy can be the deciding

factor if a gesture should or should not be recognized (i.e., a gesture in a child view

is canceled when the parent view first handles another gesture). Mobile platforms

usually provide framework methods that let developers intercept touch events and

prevent simultaneous recognition.

8.3.7 Concurrency and Code Analysis

While users edit code, the IDE has to update its model of the source code continu-

ally. These often computationally expensive operations should be performed in the

background to keep the UI responsive at any time. Development tools, such as the pre-

viously mentioned JDT, solve this problem by incremental builders that track changes to

project artifacts and trigger recompilation when appropriate. Integrating code analysis

for dynamic programming languages usually entails generating Abstract Syntax Trees,

inferring types, or finding syntactic discrepancies.

Depending on the amount of interruption for the user, background processing could be

categorized into obtrusive and non-obtrusive operations. Obtrusive operations perform

larger and computationally more expensive tasks like refactoring. Users may need

to manually adjust parameters and wait a number of seconds until the operation is

completed. Unobtrusive operations appear to be almost immediately performed as the

user edits code; they do not interrupt code editing and, at most, display lightweight

feedback.

Figure 8.11 shows an exemplary execution sequence for two unobtrusive code analysis

operations, namely finding block statements and identifying problematic code (linting):

An event, triggered when the source code is changed, reaches the AnalysisService that

is associated with an editor. The service determines if the model needs updating and

delegates the call to the language-specific AnalysisService of the current editor mode.

An AnalysisEngine, running in a separate process, updates the model by performing

the update through a Worker (thread). After the computation is finished, an event

reaches the EditorAnalysisService that, based on the current state of the editor, decides

if block statements and linting hints in the current viewport range need updating. Both

operations are launched in parallel by the AnalysisEngine. Its responsibility is to select

221

Chapter 8. Software Architecture

View	
 EditorAnalysisService	
Controller	
 AnalysisService	

Worker 1	
 Worker 2	

AnalysisEngine	

source code changed	

update model if needed	

update model	

dispatch: AST updated	

execute	

find blocks in viewport	

find blocks in range	

execute	

dispatch: lint complete	

lint viewport	

lint range	

execute	

dispatch app. event	

update gutter	

dispatch: blocks found	

dispatch app. event	

update rails	

Process	

Figure 8.11: Simplified sequence diagram for concurrent code analysis operations;
uses the example of updating views for block selection (selection rails) and displaying
gutter hints for warnings or errors (linting). Shaded areas highlight parallel execution.

a worker to perform the operation or to launch a new worker if required. Results

are asynchronously delivered back via events and ultimately handled by one or more

controllers, which update their view components.

Despite the steadily increasing performance of mobile devices, mobile applications

require more cautious handling of computational resources than desktop systems.

Consequently, the number of parallel workers must be limited. Moreover, users might

trigger some operations in rapid succession so that background workers are still busy

when new work is scheduled. This issue can be mitigated by throttling operations; that

is, calling operations at most once within a set time interval. Long-running operations

should report their progress as feedback for the user, as well as display actions for

canceling the operation.

8.3.8 Discussion

The previous sections have demonstrated examples of concrete object-oriented princi-

ples and patterns used to construct an IDE for mobile touch-enabled platforms. The

core of the software architecture revolves around the concept of services. Their im-

portance becomes evident in the architecture of major open-source IDEs (e.g., Eclipse

and Eclipse Orion): Services, essentially, abstract the access to a set of responsibilities

222

8.4. Conclusion

and expose their functionality through an API to other application modules. The term

“service” might also be interpreted in the broader context of object-oriented program-

ming. Aldrich [Ald13], for example, argues that “service abstractions [...] capture the

essential nature of objects” and that “the form of interoperable extension supported

by service abstractions is essential to modern software”. This ability, according to

Aldrich, has been a critical factor for the success of object-oriented programming. IDEs

with their large number of different modules appear to benefit significantly from such

interoperability.

Another architectural concern stems from the need for reuse of existing IDE infras-

tructure and tooling. Finseth’s work [Fin91] on text editing hints at the large amount

of work and thought required to implement the low-level details of text editors. In

addition to text editing, other modules such as code analysis functionality and artifact

management require substantial implementation effort. Consequently, the architecture

needs to provide mechanisms for interacting with existing libraries and doing so in

ways that shield the application from changes in third-party code.

In this work, deviation from standard IDE architecture is primarily caused by the

UI layer and performance constraints imposed by mobile platforms. While the latter

necessarily lead to architectural simplifications and trade-offs, the NUI paradigm entails

added modules for gesture recognition, more custom-developed view components, and

handling of the subtleties associated with touch-centric interaction.

8.4 Conclusion

Mobile touch-enabled IDEs share architectural characteristics with desktop systems,

but they also differ in many regards. I have argued that two areas in particular

tend to generate complexity, namely support for language-independence and the

presentation layer. Language-independence either entails manual creation of syntactic

and semantic services or exploiting generative approaches. Platform constraints and

different paradigms, however, may limit the usefulness of generated tooling. The

interaction opportunities of NUIs translate into extended responsibilities to be handled

by the presentation layer and its modules.

Furthermore, I have introduced the software architecture of Eclipse, its web-based

subproject, and tooling for code analysis. To a large degree, the success of Eclipse can

be attributed to its modular and extensible architecture. Although extensibility has

223

Chapter 8. Software Architecture

not been the primary goal of this work, I have emphasized the importance of services

and abstractions for interacting with existing components and libraries. Concrete

architectural examples have demonstrated the use of object-oriented principles and

design patterns for such interaction. Only by exploiting opportunities for reuse,

developers can shift their implementation efforts towards implementing a usable

presentation and interaction layer.

224

Part IV

Conclusions

225

Chapter 9

Conclusions

In this final chapter, I first summarize the essence of previous chapters and highlight

my research contributions. In the second part, I attempt to identify opportunities for

future research directions and introduce two related projects that have emerged from

this work. Referring to current developments, I conclude with a cautious outlook on

the future of programming environments.

9.1 Summary and Contributions

The research objective of the present work could be briefly stated as “Devising tech-

niques that improve the user interaction with textual representation of source code on

touch-enabled devices”.

9.1.1 Motivation

The motivation for studying touch-centric source code interaction lies in the fact that

devices with touchscreens have become increasingly widespread; as a consequence,

the range of applications offered extends into new domains as interaction paradigms

will continue to shift from WIMP to NUI. The field of software development, how-

ever, has not yet seen the same amount of uptake in that regard as other domains.

Both hardware- and software-related issues might be reasons for the slow adoption:

hardware-related due to the significance of physical keyboards and sufficiently large

screens for programming; software-related due to the inherent complexities of porting

227

Chapter 9. Conclusions

sophisticated IDEs to conventional touch-enabled devices. Prior approaches have

mainly employed strategies such as simplifying or constraining programming in or-

der to circumvent the typical problems associated with code input and editing on a

touchscreen.

9.1.2 Part I: Background and Prior Work

In the first part, I have introduced the context of this work by emphasizing the

relationship between the process of programming and the concept of usability. While

both the design of a programming language and the support through tooling affect

usability, this work has focused on the latter. Tooling is tailored to a certain form of

representation, a fundamental factor influencing the user interaction. Source code can

be represented purely visually, purely textually, or through hybrid forms mixing textual

and visual elements. Since the goal of this work has been enabling unconstrained code

editing in mainstream programming languages, I have chosen textual representation

as target for touch-centric enhancements.

In the second chapter of the first part, I have highlighted prior work from the in-

tersecting research areas of Human-Computer Interaction and Software Engineering.

Specifically, this has included touch- and pen-based development environments, modal

and modeless text editing, novel editor interfaces, and typical IDE functionality such

as code intelligence, navigation, or errors and help. Also, since IDEs provide extensive

feature sets, I have shown existing solutions for efficient command invocation on

touchscreens via menus, widgets, and gestures.

9.1.3 Part II: Source Code Interaction

In the second part, each of the three chapters has presented a user study examining

source code interaction in different phases, namely editing, selecting, and creating.

Editing and transforming existing code (rather than writing new code) is a frequent

activity, not least due to the established practice of refactoring. The results of the first

study include a user-elicited gesture set for code editing and transformation operations,

and insights into the suitability of a using a pen device for input, as opposed to regular

finger touches. Furthermore, the study has revealed design guidelines and limitations

concerning the unambiguous integration of user-elicited gestures into a working code

editor.

228

9.1. Summary and Contributions

The second study has investigated properties of code selections, based on events

gathered in realistic software development scenarios. Text selection capabilities of

conventional touch-enabled platforms suffer from severe shortcomings that impede

their effective use for code editing. The study results have uncovered frequently

selected elements and the need for syntax-aware methods that take AST node bound-

aries into account. Guided by the findings, I have devised several gesture-driven and

widget-based interaction techniques that aim at easing code selection on touchscreens,

specifically: Selecting along structural boundaries through syntax-aware gestures,

changing ranges through selection spans and special handles, accelerating line selection

through selection panning, and selecting block statements through selection rails.

The third chapter has addressed the creation of new source code. The lack of a physical

keyboard creates challenges for efficient input since text entry via typical virtual

keyboards has notoriously been inaccurate and slow. The need for entering special

characters and certain code structures has motivated the design of a custom keyboard

optimized for code entry. In addition to an improved key layout, the keyboard includes

gesture-driven triggers for code templates, code completions, and other functionality

such as fast cursor movement or code deletion. I have evaluated the design of this

keyboard in a user study and reported several metrics. The positive user feedback of

the study has led to a revised version with an enhanced language model and touch

model. The models have been improved by exploiting appropriate algorithms, and the

effects have been demonstrated in simulations.

9.1.4 Part III: Design and Implementation

The third part has shown implementations of previously mentioned interaction tech-

niques and other IDE modules, both from the perspectives of design and software

architecture. First, I have described the general approach to UI and interaction de-

sign for a coherent touch-enabled IDE. I have detailed the employed strategies for

disambiguating gestures and invoking commands. Following that, I have illustrated the

mechanics of concrete modules that have been realized as part of this work, including

file browsing, working set management, code navigation, code entry and editing, and

code review.

The second chapter of this part has discussed technical aspects and software architec-

ture. In contrast to desktop IDEs, touch-based platforms impose constraints resulting

from different UI paradigms and hardware limitations. I have highlighted the architec-

229

Chapter 9. Conclusions

tural differences and the areas that tend to cause considerable implementation effort.

I have stressed the importance of reusing existing components and presented relevant

reference architectures and frameworks. Using examples of selected sub-systems and

their communication mechanisms, I have demonstrated how patterns and service

abstractions can be exploited to realize the IDE modules.

9.2 Future Directions

In the first of the following two sections, I outline areas to which future research could

be dedicated. The second section includes a brief introduction to related projects that

have emerged as part of this work; these projects incorporate interaction styles that

might of interest for further exploration in software development scenarios.

9.2.1 Opportunities for Further Work

Specific suggestions on how the present work could be extended include conducting

further user studies, supporting hybrid representation, and enabling multi-modal

interaction.

User Studies

Although I have presented three user studies investigating different aspects of working

with source code, future research should continue to empirically assess the shown

interaction techniques (summative tests). More specifically, three areas could be

evaluated by complementary user studies:

• Selection techniques (Chapter 5): Although the techniques have been designed

based on study results, as well as been implemented and personally tested, users

might have different expectations of their mechanics. User testing would likely

uncover any differences between the expected and actual selection ranges.

• Revised CEK (Chapter 6): The revised code entry keyboard realizes a modified

key layout, language model, and touch model that–although already simulated–

might justify a follow-up study. Also, this study could include a comparison of

the CEK to a baseline keyboard so as to gain more meaningful measures of code

entry speed.

230

9.2. Future Directions

• IDE UX (Chapter 7): The interface and interaction design of the supporting

IDE modules have been based on findings of this work, findings of prior work,

and guidelines, but could not be separately evaluated within the scope of the

present work. Deploying the system to a larger group of users and collecting

usage information could increase the external validity of the results.

Hybrid Representation

This work has exclusively focused on interaction techniques for textual representation

of source code. However, as previously shown (Chapter 2), text can be enriched with

embedded widgets. This hybrid representation could be realized in ways that combine

the benefits of flexible textual editing and widget-based interaction. Gesture-driven

interaction might be well-suited for widgets that let users visually manipulate particular

elements. As a consequence, users might be able to reduce their need for more time-

consuming manipulations via the keyboard. Technically, existing infrastructure such as

the IPython Kernel1 could be exploited to support hybrid code views.

Multi-modal Interaction

In addition to the software-based approaches of this work, hardware-based enhance-

ments could add to the user experience and enable multi-modal interaction. As

mentioned in Chapter 3, eye-tracking in particular appears as valuable input modality.

Assuming that the required technology improves its reliability and becomes a non-

invasive component of commodity hardware, I could imagine eye-tracking as meaning-

ful extension of the programming experience. Recently, for instance, eye-tracking has

been used to improve automated source code summarization [RMM+14]. Although

the authors used the hardware only as an instrument for evaluation, similar approaches

could be implemented in interactive forms. Furthermore, psycho-physiological mea-

sures, generated by a combination of “an eye-tracker, an electrodermal activity sensor,

and an electroencephalography sensor” [FBM+14] have lately been utilized to iden-

tify problematic code in code comprehension tasks. More and more devices that

measure a user’s stress level and other body parameters are currently being miniatur-

ized and offered as “wearables” for the masses. Multi-modal interaction might thus

1http://ipython.org/

231

http://ipython.org/

Chapter 9. Conclusions

become increasingly relevant for cognitively demanding scenarios such as software

development.

9.2.2 Related Projects

The following two projects cover different forms of source code interaction on touch-

screens. The first project proposed tabletops as suitable interactive surfaces for col-

laborative code reviews; the second project applied tangible interaction to exploring

code smells and refactorings. The descriptions are slightly revised extracts from my

publications associated with these projects [Raa11, Raa12a].

Collaborative Code Reviews on Interactive Surfaces

Chapter 7 has shown an IDE module for conducting basic code review by marking

code with review hints. In [Raa11], I proposed the concept of a collaborative code

review workflow (Figure 9.1a) that is augmented with interactive tools. This workflow

is inspired by a work from Bernstein et al. [BLM+10] who successfully applied a

three-step process to improve the quality of crowd-sourced spelling and grammar

checks in a word processing interface.

Figure 9.1: Collaborative code review workflow on an interactive tabletop.

Tailored to code reviews, the process is divided into three main steps (Figure 9.1b): 1)

Reviewers mark source code that is likely to contain a bug or code smell, but they do

not further specify any details; 2) Reviewers, taking only the previously marked source

code into account, apply particular tags to bugs and code smells; 3) Reviewers perform

quality control checks on the now marked and tagged source code; the most agreed

upon defects are kept to be later addressed by refactoring tools (Figure 9.1c).

232

9.2. Future Directions

The main aims of this process are reducing variability in performance of individual

reviewers, introducing a level of indirection, and fostering collaboration. At all stages,

the reviewers are assisted by tools on the interactive surface. For instance, in the mark

stage, reviewers may use a pen device to highlight certain lines in rich code views. In

the tag stage, tangible objects representing code smells are applied to the marked lines.

Finally, the check stage allows for efficient source code browsing through multi-touch

gestures. A visual action queue in each reviewer’s personal tabletop space highlights

the next action to be performed.

The same workflow and interaction could be integrated into the tablet-based touch IDE

(Chapter 7) and thus enable both synchronous and asynchronous code reviews.

Tangible Exploration of Code Smells and Refactorings

The project CodeSmellExplorer applies tangible interaction to an application that vi-

sualizes code smells and their associated refactorings [Fow99] on a tabletop (Figure

9.2). The project has been developed as an interactive exploration and learning tool

after a University course that aimed at familiarizing students with principles of writing

maintainable code [RFW12].

Figure 9.2: Tangible exploration of code smells and refactorings.

The tangible objects are represented by cards. The front of the card shows an icon

and the name of a code smell, the back of the card displays a short description of

the code smell and a tag that is recognized by the tabletop. CodeSmellExplorer lets

users put their code smells on the tabletop and explore a digitally enriched display of

refactorings and source code examples.

The application is based on a graph network, consisting of nodes for code smells

and refactorings. Each code smell is represented by a tangible playing card that is

233

Chapter 9. Conclusions

connected to multiple refactoring nodes as soon as the card is put onto the tabletop

surface. While the code smell nodes remain at fixed position next to the tangible

object, a force-based layout algorithm arranges all connected refactoring nodes so

as to maintain a visually pleasing graph. In order to emphasize visual relationships,

the curved connection lines are colorized to match their attached code smells. Node

connections can be further inspected by tapping on the graph nodes. For instance,

when the node for Data Clumps or Primitive Obsession is tapped, then the code smell,

the connection, and the Extract Method node are highlighted. Vice versa, when the

refactoring node is tapped, all connected smells and connections lines are highlighted.

Refactoring nodes are weighted so that their size is adjusted according to the number

of connected smells.

In addition, the tool integrates interactive challenges as gamification elements. For

instance, when a code smell is double-tapped, users are presented with an application

where code smells have to be assigned to marked ranges of the code. After completion

of the challenge, a feedback visualization shows all right and wrong assignments.

9.3 The Future of Programming Environments

This work has contributed interaction techniques that aim at enhancing the interaction

with source code on touchscreens. While the proposed methods are applicable today,

future programming languages and their IDEs might introduce novel concepts that

abandon the mostly text-based nature of programming. However, in light of the burden

associated with supporting legacy systems for decades to come, fast transitions to

new approaches appear unlikely. Since textual source code is firmly established in the

industry, it will be hard for novel ideas to gain traction. Research has continually sought

alternatives to textual representation but–with respect to mainstream programming–

they have failed to materialize. Consequently, programming and tooling have largely

remained the same over the last 40 years. Differences in modern IDEs are only evident

in slight variations of similar feature sets.

At the time of this writing, observable trends in development environments include

a shift towards web-based environments and live-execution models. Although the

former merely constitutes a platform change, the latter impacts the interaction with

source code: Users manipulate code and directly observe the effects of their changes,

leading to improved feedback and a reduction of compile-run-debug cycles; essentially,

234

9.3. The Future of Programming Environments

programming is brought closer to direct manipulation. As far as the form of representa-

tion is concerned, the programming language community has repeatedly reintroduced

reactive programming and tools building upon the familiar spreadsheet metaphor.

These approaches, however, are facing challenges in supporting large-scale software

projects, and serving novices and experts alike. Although this work has primarily been

motivated by the current need for improved text-centric interaction, touch-enabled

devices are certainly well-suited to support alternate source code representations. It

remains to be hoped that future programming affords a consistent user experience

through a combination of capable programming languages, usable forms of representa-

tion, and development environments that take advantage of the interactive capabilities

of modern devices. A holistic improvement of the user experience of programming

might ultimately be enabled by approaches that consider interaction and tooling as an

integral part of the design of a programming language.

235

Bibliography

[Ald13] Jonathan Aldrich. The power of interoperability: Why objects are in-

evitable. In Proceedings of the 2013 ACM International Symposium on

New Ideas, New Paradigms, and Reflections on Programming & Software,

Onward! ’13, pages 101–116, New York, NY, USA, 2013. ACM.

[ALS10] Ahmed Sabbir Arif, Mauricio H Lopez, and Wolfgang Stuerzlinger. Two

new mobile touchscreen text entry techniques. Posters GI, 10:22–23,

2010.

[And72] Robert H. Anderson. Programming on a tablet: A proposal for a new

notation. In Proceedings of the Symposium on Two-dimensional Man-

machine Communication, pages 113–123, New York, NY, USA, 1972.

ACM.

[ARSH14] Muhammad Asaduzzaman, Chanchal K. Roy, Kevin Schneider, and Daqing

Hou. Cscc: Simple, efficient, context sensitive code completion. In

Proceedings of the 30th International Conference on Software Maintenance

and Evolution, ICSME ’14, 2014.

[AZ09] Caroline Appert and Shumin Zhai. Using strokes as command shortcuts:

Cognitive benefits and toolkit support. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’09, pages 2289–

2298, New York, NY, USA, 2009. ACM.

[BBB+95] Margaret M. Burnett, Marla J. Baker, Carisa Bohus, Paul Carlson, Sherry

Yang, and Pieter van Zee. Scaling up visual programming languages.

Computer, 28(3):45–54, March 1995.

[BBMM10] Marcel Bruch, Eric Bodden, Martin Monperrus, and Mira Mezini. IDE

2.0: Collective intelligence in software development. In Proceedings of

237

Bibliography

the FSE/SDP Workshop on Future of Software Engineering Research, FoSER

’10, pages 53–58, New York, NY, USA, 2010. ACM.

[BCO+12] Xiaojun Bi, Ciprian Chelba, Tom Ouyang, Kurt Partridge, and Shumin

Zhai. Bimanual gesture keyboard. In Proceedings of the 25th Annual ACM

Symposium on User Interface Software and Technology, UIST ’12, pages

137–146, New York, NY, USA, 2012. ACM.

[BDHM11] Andrew Bragdon, Rob DeLine, Ken Hinckley, and Meredith Ringel Morris.

Code Space: Touch + air gesture hybrid interactions for supporting

developer meetings. In Proceedings of the ACM International Conference

on Interactive Tabletops and Surfaces, ITS ’11, pages 212–221, New York,

NY, USA, 2011. ACM.

[BG06] Andrew Begel and Susan L. Graham. An assessment of a speech-based

programming environment. In Proceedings of the Visual Languages and

Human-Centric Computing, VLHCC ’06, pages 116–120, Washington, DC,

USA, 2006. IEEE Computer Society.

[BHLD14] Benjamin Biegel, Julien Hoffmann, Artur Lipinski, and Stephan Diehl. U

can touch this: Touchifying an IDE. In Proceedings of the 7th International

Workshop on Cooperative and Human Aspects of Software Engineering,

CHASE 2014, pages 8–15, New York, NY, USA, 2014. ACM.

[BLM+10] Michael S. Bernstein, Greg Little, Robert C. Miller, Björn Hartmann,

Mark S. Ackerman, David R. Karger, David Crowell, and Katrina Panovich.

Soylent: A word processor with a crowd inside. In Proceedings of the

23Nd Annual ACM Symposium on User Interface Software and Technology,

UIST ’10, pages 313–322, New York, NY, USA, 2010. ACM.

[BMM09] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from exam-

ples to improve code completion systems. In Proceedings of the the 7th

Joint Meeting of the European Software Engineering Conference and the

ACM SIGSOFT Symposium on The Foundations of Software Engineering,

ESEC/FSE ’09, pages 213–222, New York, NY, USA, 2009. ACM.

[BNLH11] Andrew Bragdon, Eugene Nelson, Yang Li, and Ken Hinckley. Experi-

mental analysis of touch-screen gesture designs in mobile environments.

In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’11, pages 403–412, New York, NY, USA, 2011. ACM.

238

Bibliography

[Bol80] Richard A. Bolt. “Put-that-there”: Voice and gesture at the graphics

interface. SIGGRAPH Comput. Graph., 14(3):262–270, July 1980.

[BOZ14] Xiaojun Bi, Tom Ouyang, and Shumin Zhai. Both complete and correct?:

Multi-objective optimization of touchscreen keyboard. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14,

pages 2297–2306, New York, NY, USA, 2014. ACM.

[BRZ+10] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri,

William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,

and Joseph J. LaViola, Jr. Code Bubbles: Rethinking the user interface

paradigm of integrated development environments. In Proceedings of

the 32Nd ACM/IEEE International Conference on Software Engineering -

Volume 1, ICSE ’10, pages 455–464, New York, NY, USA, 2010. ACM.

[BW11] Amy Brown and Greg Wilson. The Architecture Of Open Source Applica-

tions. Lulu Press, 2011.

[BZ13] Xiaojun Bi and Shumin Zhai. Bayesian Touch: A statistical criterion of

target selection with finger touch. In Proceedings of the 26th Annual ACM

Symposium on User Interface Software and Technology, UIST ’13, pages

51–60, New York, NY, USA, 2013. ACM.

[CLWC13] Lung-Pan Cheng, Hsiang-Sheng Liang, Che-Yang Wu, and Mike Y. Chen.

iGrasp: Grasp-based adaptive keyboard for mobile devices. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, CHI

’13, pages 3037–3046, New York, NY, USA, 2013. ACM.

[DAB12] Edward Dillon, Monica Anderson, and Marcus Brown. Comparing mental

models of novice programmers when using visual and command line

environments. In Proceedings of the 50th Annual Southeast Regional

Conference, ACM-SE ’12, pages 142–147, New York, NY, USA, 2012. ACM.

[DBR+12] Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and

Steven P. Reiss. Debugger Canvas: Industrial experience with the code

bubbles paradigm. In Proceedings of the 34th International Conference on

Software Engineering, ICSE ’12, pages 1064–1073, Piscataway, NJ, USA,

2012. IEEE Press.

239

Bibliography

[DLO09] Bruno Dumas, Denis Lalanne, and Sharon Oviatt. Human machine inter-

action. chapter Multimodal Interfaces: A Survey of Principles, Models

and Frameworks, pages 3–26. Springer-Verlag, Berlin, Heidelberg, 2009.

[DR10] Robert DeLine and Kael Rowan. Code Canvas: Zooming towards better

development environments. In Proceedings of the 32Nd ACM/IEEE Inter-

national Conference on Software Engineering - Volume 2, ICSE ’10, pages

207–210, New York, NY, USA, 2010. ACM.

[ESV+13] Sebastian Erdweg, Tijs Storm, Markus Völter, Meinte Boersma, Remi

Bosman, WilliamR. Cook, Albert Gerritsen, Angelo Hulshout, Steven

Kelly, Alex Loh, Gabriël D. P. Konat, PedroJ. Molina, Martin Palatnik, Risto

Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A.

Vergu, Eelco Visser, Kevin Vlist, Guido H. Wachsmuth, and Jimi Woning.

The state of the art in language workbenches. In Martin Erwig, Richard F.

Paige, and Eric Wyk, editors, Software Language Engineering, volume

8225 of Lecture Notes in Computer Science, pages 197–217. Springer

International Publishing, 2013.

[Eva04] Eric Evans. Domain-Driven Design: Tackling complexity in the heart of

software. Addison-Wesley, Boston, 2004.

[FBM+14] Thomas Fritz, Andrew Begel, Sebastian C. Müller, Serap Yigit-Elliott,

and Manuela Züger. Using psycho-physiological measures to assess task

difficulty in software development. In Proceedings of the 36th International

Conference on Software Engineering, ICSE 2014, pages 402–413, New York,

NY, USA, 2014. ACM.

[FC12] Stephen Fitchett and Andy Cockburn. AccessRank: Predicting what users

will do next. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’12, pages 2239–2242, New York, NY, USA,

2012. ACM.

[FHD09] Mathias Frisch, Jens Heydekorn, and Raimund Dachselt. Investigating

multi-touch and pen gestures for diagram editing on interactive surfaces.

In Proceedings of the ACM International Conference on Interactive Tabletops

and Surfaces, ITS ’09, pages 149–156, New York, NY, USA, 2009. ACM.

[FHRC14] Markus Fuchs, Markus Heckner, Felix Raab, and Wolff Christian. Mon-

itoring students’ mobile app coding behavior: Data analysis based on

240

Bibliography

IDE and browser interaction logs. In Proceedings of the 5th IEEE Global

Engineering Education Conference, Educon ’14. IEEE, 2014.

[FIM13] Vittorio Fuccella, Poika Isokoski, and Benoit Martin. Gestures and widgets:

Performance in text editing on multi-touch capable mobile devices. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’13, pages 2785–2794, New York, NY, USA, 2013. ACM.

[Fin91] Craig A. Finseth. The Craft of Text Editing: Emacs for the Modern World.

Springer-Verlag New York, Inc., New York, NY, USA, 1991.

[FKD13] G.W. French, J.R. Kennaway, and A.M. Day. Programs as visual, interactive

documents. Software: Practice and Experience, pages 911–930, 2013.

[FLW12] Leah Findlater, Ben Lee, and Jacob Wobbrock. Beyond QWERTY: Aug-

menting touch screen keyboards with multi-touch gestures for non-

alphanumeric input. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’12, pages 2679–2682, New York, NY,

USA, 2012. ACM.

[Fow99] Martin Fowler. Refactoring: Improving the design of existing code. Addison-

Wesley, Reading, MA, 1999.

[FSW+14] Ethan Fast, Daniel Steffee, Lucy Wang, Joel R. Brandt, and Michael S.

Bernstein. Emergent, crowd-scale programming practice in the IDE. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’14, pages 2491–2500, New York, NY, USA, 2014. ACM.

[FWW11] Leah Findlater, Jacob O. Wobbrock, and Daniel Wigdor. Typing on flat

glass: Examining ten-finger expert typing patterns on touch surfaces. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’11, pages 2453–2462, New York, NY, USA, 2011. ACM.

[GCS+14] Carl Gutwin, Andy Cockburn, Joey Scarr, Sylvain Malacria, and Scott C.

Olson. Faster command selection on tablets with FastTap. In Proceedings

of the 32Nd Annual ACM Conference on Human Factors in Computing

Systems, CHI ’14, pages 2617–2626, New York, NY, USA, 2014. ACM.

[GG91] David Goldberg and Aaron Goodisman. Stylus user interfaces for manip-

ulating text. In Proceedings of the 4th Annual ACM Symposium on User

241

Bibliography

Interface Software and Technology, UIST ’91, pages 127–135, New York,

NY, USA, 1991. ACM.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of reusable object-oriented software. Addison-Wesley,

Reading, Mass, 1995.

[GJM+13] Mayank Goel, Alex Jansen, Travis Mandel, Shwetak N. Patel, and Jacob O.

Wobbrock. ContextType: Using hand posture information to improve

mobile touch screen text entry. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, CHI ’13, pages 2795–2798, New

York, NY, USA, 2013. ACM.

[Gol83] Adele Goldberg. Smalltalk-80: The language and its implementation.

Addison-Wesley, Reading, Mass, 1983.

[Goo87] D. Goodman. The Complete HyperCard Handbook. Bantam Computer

Books, Birmingham, AL, 1987.

[GREW14] Hartmut Glücker, Felix Raab, Florian Echtler, and Christian Wolff. EyeDE:

Gaze-enhanced software development environments. In Proceedings of

the Extended Abstracts of the 32Nd Annual ACM Conference on Human

Factors in Computing Systems, CHI EA ’14, pages 1555–1560, New York,

NY, USA, 2014. ACM.

[Han03] Christopher M. Hancock. Real-time programming and the big ideas of

computational literacy. PhD thesis, Massachusetts Institute of Technology,

2003.

[Har10] Mark Harman. Why source code analysis and manipulation will always

be important. In SCAM, pages 7–19. IEEE Computer Society, 2010.

[HB10] Christian Holz and Patrick Baudisch. The generalized perceived input

point model and how to double touch accuracy by extracting fingerprints.

In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’10, pages 581–590, New York, NY, USA, 2010. ACM.

[HBKW11] John Hardy, Christopher Bull, Gerald Kotonya, and Jon Whittle. Digitally

annexing desk space for software development (NIER Track). In Proceed-

ings of the 33rd International Conference on Software Engineering, ICSE

’11, pages 812–815, New York, NY, USA, 2011. ACM.

242

Bibliography

[HBS+12] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar

Devanbu. On the naturalness of software. In Proceedings of the 34th

International Conference on Software Engineering, ICSE ’12, pages 837–

847, Piscataway, NJ, USA, 2012. IEEE Press.

[HF14] Austin Z. Henley and Scott D. Fleming. The Patchworks Code Editor:

Toward faster navigation with less code arranging and fewer navigation

mistakes. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’14, pages 2511–2520, New York, NY, USA, 2014.

ACM.

[HGL13] Michael E. Hansen, Robert L. Goldstone, and Andrew Lumsdaine. What

makes code hard to understand? CoRR, abs/1304.5257, 2013.

[HLG12] Michael E. Hansen, Andrew Lumsdaine, and Robert L. Goldstone. Cogni-

tive Architectures: A way forward for the psychology of programming.

In Proceedings of the ACM International Symposium on New Ideas, New

Paradigms, and Reflections on Programming and Software, Onward! ’12,

pages 27–38, New York, NY, USA, 2012. ACM.

[HMBK10] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klem-

mer. What would other programmers do: Suggesting solutions to error

messages. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’10, pages 1019–1028, New York, NY, USA, 2010.

ACM.

[HOMH12] Marc Hesenius, Carlos Dario Orozco Medina, and Dominikus Herzberg.

Touching Factor: Software development on tablets. In Proceedings of

the 11th International Conference on Software Composition, SC’12, pages

148–161, Berlin, Heidelberg, 2012. Springer-Verlag.

[HP11] Daqing Hou and David M. Pletcher. An evaluation of the strategies of

sorting, filtering, and grouping API methods for code completion. In

Proceedings of the 2011 27th IEEE International Conference on Software

Maintenance, ICSM ’11, pages 233–242, Washington, DC, USA, 2011.

IEEE Computer Society.

[HW85] Peter Henderson and Mark Weiser. Continuous execution: The VisiProg

environment. In Proceedings of the 8th International Conference on Soft-

243

Bibliography

ware Engineering, ICSE ’85, pages 68–74, Los Alamitos, CA, USA, 1985.

IEEE Computer Society Press.

[HW09] Daqing Hou and Yuejiao Wang. Analyzing the evolution of user-visible

features: A case study with Eclipse. In Software Maintenance, 2009. ICSM

2009. IEEE International Conference on, pages 479–482, Sept 2009.

[HYP+10] Ken Hinckley, Koji Yatani, Michel Pahud, Nicole Coddington, Jenny Ro-

denhouse, Andy Wilson, Hrvoje Benko, and Bill Buxton. Pen + Touch =

New Tools. In Proceedings of the 23Nd Annual ACM Symposium on User

Interface Software and Technology, UIST ’10, pages 27–36, New York, NY,

USA, 2010. ACM.

[IHK13] Petri Ihantola, Juha Helminen, and Ville Karavirta. How to study pro-

gramming on mobile touch devices: Interactive Python code exercises. In

Proceedings of the 13th Koli Calling International Conference on Computing

Education Research, Koli Calling ’13, pages 51–58, New York, NY, USA,

2013. ACM.

[JSMHB13] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bow-

didge. Why don’t software developers use static analysis tools to find

bugs? In Proceedings of the 2013 International Conference on Software

Engineering, ICSE ’13, pages 672–681, Piscataway, NJ, USA, 2013. IEEE

Press.

[KAM05a] Andrew J. Ko, Htet Aung, and Brad A. Myers. Eliciting design require-

ments for maintenance-oriented IDEs: A detailed study of corrective and

perfective maintenance tasks. In Proceedings of the 27th International

Conference on Software Engineering, ICSE ’05, pages 126–135, New York,

NY, USA, 2005. ACM.

[KAM05b] Andrew J. Ko, Htet Htet Aung, and Brad A. Myers. Design requirements

for more flexible structured editors from a study of programmers’ text

editing. In CHI ’05 Extended Abstracts on Human Factors in Computing

Systems, CHI EA ’05, pages 1557–1560, New York, NY, USA, 2005. ACM.

[KB93] Gordon Kurtenbach and William Buxton. The limits of expert performance

using hierarchic marking menus. In Proceedings of the INTERACT ’93 and

CHI ’93 Conference on Human Factors in Computing Systems, CHI ’93,

pages 482–487, New York, NY, USA, 1993. ACM.

244

Bibliography

[KBC+13] Per Ola Kristensson, Stephen Brewster, James Clawson, Mark Dunlop,

Leah Findlater, Poika Isokoski, Benoît Martin, Antti Oulasvirta, Keith

Vertanen, and Annalu Waller. Grand challenges in text entry. In CHI ’13

Extended Abstracts on Human Factors in Computing Systems, CHI EA ’13,

pages 3315–3318, New York, NY, USA, 2013. ACM.

[KBCV08] Amy K. Karlson, Benjamin B. Bederson, and Jose L. Contreras-Vidal.

Understanding One-Handed Use of Mobile Devices. In Joanna Lumsden,

editor, Handbook of Research on User Interface Design and Evaluation

for Mobile Technology, chapter VI, pages 86–101. Information Science

Reference, 2008.

[KHHK99] Clare-Marie Karat, Christine Halverson, Daniel Horn, and John Karat.

Patterns of entry and correction in large vocabulary continuous speech

recognition systems. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’99, pages 568–575, New York, NY,

USA, 1999. ACM.

[KKD+11] Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn Hartmann, and

Jan Borchers. Stacksplorer: Call graph navigation helps increasing code

maintenance efficiency. In Proceedings of the 24th Annual ACM Symposium

on User Interface Software and Technology, UIST ’11, pages 217–224, New

York, NY, USA, 2011. ACM.

[KKK+13] Jan-Peter Krämer, Thorsten Karrer, Joachim Kurz, Moritz Wittenhagen,

and Jan Borchers. How tools in IDEs shape developers’ navigation be-

havior. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’13, pages 3073–3082, New York, NY, USA, 2013.

ACM.

[KKKB12] Jan-Peter Krämer, Joachim Kurz, Thorsten Karrer, and Jan Borchers.

Blaze: Supporting two-phased call graph navigation in source code. In

CHI ’12 Extended Abstracts on Human Factors in Computing Systems, CHI

EA ’12, pages 2195–2200, New York, NY, USA, 2012. ACM.

[KM06] Andrew J. Ko and Brad A. Myers. Barista: An implementation framework

for enabling new tools, interaction techniques and views in code editors.

In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’06, pages 387–396, New York, NY, USA, 2006. ACM.

245

Bibliography

[KMCA06] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung.

An exploratory study of how developers seek, relate, and collect relevant

information during software maintenance tasks. IEEE Trans. Softw. Eng.,

32(12):971–987, December 2006.

[KP05] Caitlin Kelleher and Randy Pausch. Lowering the barriers to program-

ming: A taxonomy of programming environments and languages for

novice programmers. ACM Comput. Surv., 37(2):83–137, June 2005.

[Kri09] Per Ola Kristensson. Five challenges for intelligent text entry methods.

AI Magazine, 30(4):85, 2009.

[KS05] Rex Bryan Kline and Ahmed Seffah. Evaluation of integrated software

development environments: Challenges and results from three empirical

studies. Int. J. Hum.-Comput. Stud., 63(6):607–627, December 2005.

[KSL+13] Sunjun Kim, Jeongmin Son, Geehyuk Lee, Hwan Kim, and Woohun

Lee. TapBoard: Making a touch screen keyboard more touchable. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’13, pages 553–562, New York, NY, USA, 2013. ACM.

[KU93] Amir Ali Khwaja and Joseph E. Urban. Syntax-directed editing environ-

ments: Issues and features. In Proceedings of the 1993 ACM/SIGAPP

Symposium on Applied Computing: States of the Art and Practice, SAC ’93,

pages 230–237, New York, NY, USA, 1993. ACM.

[Kur81] Thomas E. Kurtz. History of programming languages I. chapter BASIC,

pages 515–537. ACM, New York, NY, USA, 1981.

[Kur93] Gordon Paul Kurtenbach. The Design and Evaluation of Marking Menus.

PhD thesis, 1993.

[KV10] Lennart C.L. Kats and Eelco Visser. The Spoofax language workbench:

Rules for declarative specification of languages and ides. In Proceedings of

the ACM International Conference on Object Oriented Programming Systems

Languages and Applications, OOPSLA ’10, pages 444–463, New York, NY,

USA, 2010. ACM.

[KVKV12] Lennart C.L. Kats, Richard G. Vogelij, Karl Trygve Kalleberg, and Eelco

Visser. Software development environments on the web: A research

agenda. In Proceedings of the ACM International Symposium on New Ideas,

246

Bibliography

New Paradigms, and Reflections on Programming and Software, Onward!

’12, pages 99–116, New York, NY, USA, 2012. ACM.

[KZN12] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A field

study of refactoring challenges and benefits. In Proceedings of the 20th

International Symposium on Foundations of Software Engineering (FSE

2012). Association for Computing Machinery, Inc., November 2012.

[LAV13] Luis A. Leiva, Vicent Alabau, and Enrique Vidal. Error-proof, high-

performance, and context-aware gestures for interactive text edition.

In CHI ’13 Extended Abstracts on Human Factors in Computing Systems,

CHI EA ’13, pages 1227–1232, New York, NY, USA, 2013. ACM.

[LBM14] Tom Lieber, Joel R. Brandt, and Rob C. Miller. Addressing misconceptions

about code with always-on programming visualizations. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14,

pages 2481–2490, New York, NY, USA, 2014. ACM.

[LCJ13] Yun Young Lee, Nicholas Chen, and Ralph E. Johnson. Drag-and-drop

refactoring: Intuitive and efficient program transformation. In Proceedings

of the 2013 International Conference on Software Engineering, ICSE ’13,

pages 23–32, Piscataway, NJ, USA, 2013. IEEE Press.

[LDW+13] Gierad P. Laput, Mira Dontcheva, Gregg Wilensky, Walter Chang, Aseem

Agarwala, Jason Linder, and Eytan Adar. PixelTone: A multimodal inter-

face for image editing. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’13, pages 2185–2194, New York, NY,

USA, 2013. ACM.

[Leh80] M.M. Lehman. Programs, life cycles, and laws of software evolution.

Proceedings of the IEEE, 68(9):1060–1076, Sept 1980.

[LGF10] G. Julian Lepinski, Tovi Grossman, and George Fitzmaurice. The design

and evaluation of multitouch marking menus. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’10,

pages 2233–2242, New York, NY, USA, 2010. ACM.

[LGYT11] Frank Chun Yat Li, Richard T. Guy, Koji Yatani, and Khai N. Truong. The

1Line Keyboard: A QWERTY layout in a single line. In Proceedings of the

247

Bibliography

24th Annual ACM Symposium on User Interface Software and Technology,

UIST ’11, pages 461–470, New York, NY, USA, 2011. ACM.

[LHKM13] Yun Young Lee, Sam Harwell, Sarfraz Khurshid, and Darko Marinov.

Temporal code completion and navigation. In Proceedings of the 2013

International Conference on Software Engineering, ICSE ’13, pages 1181–

1184, Piscataway, NJ, USA, 2013. IEEE Press.

[LM11] Thomas D. LaToza and Brad A. Myers. Designing useful tools for devel-

opers. In Proceedings of the 3rd ACM SIGPLAN Workshop on Evaluation

and Usability of Programming Languages and Tools, PLATEAU ’11, pages

45–50, New York, NY, USA, 2011. ACM.

[LvdH11] Nicolas Lopez and André van der Hoek. The Code Orb: Supporting

contextualized coding via at-a-glance views (NIER Track). In Proceedings

of the 33rd International Conference on Software Engineering, ICSE ’11,

pages 824–827, New York, NY, USA, 2011. ACM.

[Mac07] I. Scott MacKenzie. Text Entry Systems: Mobility, Accessibility, Universality.

Boston Morgan Kaufmann, Amsterdam, 2007.

[McD11] Sean McDirmid. Coding at the speed of touch. In Proceedings of the 10th

SIGPLAN Symposium on New Ideas, New Paradigms, and Reflections on

Programming and Software, ONWARD ’11, pages 61–76, New York, NY,

USA, 2011. ACM.

[McD13] Sean McDirmid. Usable live programming. In Proceedings of the 2013 ACM

International Symposium on New Ideas, New Paradigms, and Reflections

on Programming & Software, Onward! ’13, pages 53–62, New York, NY,

USA, 2013. ACM.

[MFSM10] Mathew Mooty, Andrew Faulring, Jeffrey Stylos, and Brad A. Myers.

Calcite: Completing code completion for constructors using crowds. In

Proceedings of the 2010 IEEE Symposium on Visual Languages and Human-

Centric Computing, VLHCC ’10, pages 15–22, Washington, DC, USA, 2010.

IEEE Computer Society.

[MHAB11] Emerson R. Murphy-Hill, Moin Ayazifar, and Andrew P. Black. Restructur-

ing software with gestures. In VL/HCC’11, pages 165–172, 2011.

248

Bibliography

[MHB07] Emerson Murphy-Hill and Andrew P. Black. Why don’t people use refac-

toring tools? Technical report, 1st Workshop on Refactoring Tools. TU

Berlin, 2007.

[MHB08] Emerson Murphy-Hill and Andrew P. Black. Breaking the barriers to

successful refactoring: Observations and tools for extract method. In

Proceedings of the 30th International Conference on Software Engineering,

ICSE ’08, pages 421–430, New York, NY, USA, 2008. ACM.

[MHB10] Emerson Murphy-Hill and Andrew P. Black. An interactive ambient

visualization for code smells. In Proceedings of the 5th International

Symposium on Software Visualization, SOFTVIS ’10, pages 5–14, New

York, NY, USA, 2010. ACM.

[MHPB09] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. How we

refactor, and how we know it. In Proceedings of the 31st International Con-

ference on Software Engineering, ICSE ’09, pages 287–297, Washington,

DC, USA, 2009. IEEE Computer Society.

[MK09] Brad Myers and Andrew Ko. The past, present and future of programming

in HCI. 2009.

[MKF06] Gail C. Murphy, Mik Kersten, and Leah Findlater. How are Java software

developers using the Eclipse IDE? IEEE Softw., 23(4):76–83, July 2006.

[MLC09] I. Scott MacKenzie, Mauricio H. Lopez, and Steven Castelluci. Text Entry

with the Apple iPhone and the Nintendo Wii. Proceedings of CHI2009,

pages 4–9, 2009.

[MN13] Fabrice Matulic and Moira C. Norrie. Pen and touch gestural environment

for document editing on interactive tabletops. In Proceedings of the 2013

ACM International Conference on Interactive Tabletops and Surfaces, ITS

’13, pages 41–50, New York, NY, USA, 2013. ACM.

[MPK04] Brad A. Myers, John F. Pane, and Andy Ko. Natural programming lan-

guages and environments. Commun. ACM, 47(9):47–52, September

2004.

[MR13] Leo A. Meyerovich and Ariel S. Rabkin. Empirical analysis of program-

ming language adoption. In Proceedings of the 2013 ACM SIGPLAN

International Conference on Object Oriented Programming Systems Lan-

249

Bibliography

guages & Applications, OOPSLA ’13, pages 1–18, New York, NY, USA,

2013. ACM.

[Mye90] Brad A. Myers. Taxonomies of visual programming and program visual-

ization. J. Vis. Lang. Comput., 1(1):97–123, March 1990.

[NCT13] Tuan Anh Nguyen, Christoph Csallner, and Nikolai Tillmann. GROPG: A

graphical on-phone debugger. In Proceedings of the 2013 International

Conference on Software Engineering, ICSE ’13, pages 1189–1192, Piscat-

away, NJ, USA, 2013. IEEE Press.

[NCV+12] Stas Negara, Nicholasa Chen, Mohsen Vakilian, Ralph E. Johnson, and

Danny Dig. Using continuous change analysis to understand the prac-

tice of refactoring. Technical report, University of Illinois at Urbana-

Champaign, Dept. of Computer Science, 2012.

[NF14] Sebastian Nanz and Carlo A. Furia. A comparative study of programming

languages in Rosetta Code, 2014.

[Nor10] Donald A. Norman. Natural user interfaces are not natural. Interactions,

17(3):6–10, May 2010.

[OB12] Stephen Oney and Joel Brandt. Codelets: Linking interactive documen-

tation and example code in the editor. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’12, pages 2697–

2706, New York, NY, USA, 2012. ACM.

[OF13] Uran Oh and Leah Findlater. The challenges and potential of end-user

gesture customization. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’13, pages 1129–1138, New York, NY,

USA, 2013. ACM.

[OHOW13] Stephen Oney, Chris Harrison, Amy Ogan, and Jason Wiese. ZoomBoard:

A diminutive Qwerty soft keyboard using iterative zooming for ultra-small

devices. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’13, pages 2799–2802, New York, NY, USA, 2013.

ACM.

[Opd92] W. F. Opdyke. A Program Restructuring Aid in Designing Object-Oriented

Applications Frameworks. PhD thesis, University of Illinois at Urbana-

Champaign, Dept. of Computer Science, 1992.

250

Bibliography

[Ost97] Teresia R Ostrach. Typing speed: How fast is average: 4,000 typing scores

statistically analyzed and interpreted. Orlando, FL: Five Star Staffing,

1997.

[OYLM12] Cyrus Omar, YoungSeok Yoon, Thomas D. LaToza, and Brad A. Myers. Ac-

tive Code Completion. In Proceedings of the 34th International Conference

on Software Engineering, ICSE ’12, pages 859–869, Piscataway, NJ, USA,

2012. IEEE Press.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into

modules. Commun. ACM, 15(12):1053–1058, December 1972.

[PG06] Chris Parnin and Carsten Gorg. Building usage contexts during program

comprehension. In Proceedings of the 14th IEEE International Conference

on Program Comprehension, ICPC ’06, pages 13–22, Washington, DC,

USA, 2006. IEEE Computer Society.

[PGR10] Chris Parnin, Carsten Görg, and Spencer Rugaber. CodePad: Interactive

spaces for maintaining concentration in programming environments. In

Proceedings of the 5th International Symposium on Software Visualization,

SOFTVIS ’10, pages 15–24, New York, NY, USA, 2010. ACM.

[Pik87] Rob Pike. The Text Editor Sam. Softw. Pract. Exper., 17(11):813–845,

November 1987.

[Pik94] Rob Pike. Acme: A user interface for programmers. In Proceedings of the

Winter 1994 USENIX Conference, WTEC’94, pages 18–18, Berkeley, CA,

USA, 1994. USENIX Association.

[Pre10] Roger Pressman. Software Engineering: A practitioner’s approach. McGraw-

Hill Higher Education, New York, 2010.

[PWM14] Frederic Pollmann, Dirk Wenig, and Rainer Malaka. HoverZoom: Making

on-screen keyboards more accessible. In CHI ’14 Extended Abstracts on

Human Factors in Computing Systems, CHI EA ’14, pages 1261–1266, New

York, NY, USA, 2014. ACM.

[Raa11] Felix Raab. Collaborative code reviews on interactive surfaces. In Pro-

ceedings of the 29th Annual European Conference on Cognitive Ergonomics,

ECCE ’11, pages 263–264, New York, NY, USA, 2011. ACM.

251

Bibliography

[Raa12a] Felix Raab. CodeSmellExplorer: Tangible exploration of code smells

and refactorings. In 2012 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC), pages 261–262, Sept 2012.

[Raa12b] Felix Raab. Interaktionsdesign menschzentrierter Refactoring-Tools. In-

formation, Wissenschaft & Praxis, 63(5):329–334, 2012.

[RFW12] Felix Raab, Markus Fuchs, and Christian Wolff. CodingDojo: Interactive

slides with real-time feedback. In Harald Reiterer and Oliver Deussen,

editors, Mensch & Computer 2012 – Workshopband: interaktiv informiert

– allgegenwärtig und allumfassend!?, pages 525–528, München, 2012.

Oldenbourg Verlag.

[RL08] R. Robbes and M. Lanza. How program history can improve code comple-

tion. In Proceedings of the 2008 23rd IEEE/ACM International Conference

on Automated Software Engineering, ASE ’08, pages 317–326, Washington,

DC, USA, 2008. IEEE Computer Society.

[RMG+13] Quentin Roy, Sylvain Malacria, Yves Guiard, Eric Lecolinet, and James

Eagan. Augmented Letters: Mnemonic gesture-based shortcuts. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’13, pages 2325–2328, New York, NY, USA, 2013. ACM.

[RMM+14] Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and

Sidney D’Mello. Improving automated source code summarization via

an eye-tracking study of programmers. In Proceedings of the 36th Inter-

national Conference on Software Engineering, ICSE 2014, pages 390–401,

New York, NY, USA, 2014. ACM.

[Rob08] Eric Roberts. The Art & Science of Java: An introduction to computer

science. Pearson/Addison Wesley, Boston, 2008.

[RTKS13] Dimitrios Raptis, Nikolaos Tselios, Jesper Kjeldskov, and Mikael B. Skov.

Does Size Matter?: Investigating the impact of mobile phone screen size

on users’ perceived usability, effectiveness and efficiency. In Proceedings

of the 15th International Conference on Human-computer Interaction with

Mobile Devices and Services, MobileHCI ’13, pages 127–136, New York,

NY, USA, 2013. ACM.

252

Bibliography

[RWE13] Felix Raab, Christian Wolff, and Florian Echtler. RefactorPad: Editing

source code on touchscreens. In Proceedings of the 5th ACM SIGCHI

Symposium on Engineering Interactive Computing Systems, EICS ’13, pages

223–228, New York, NY, USA, 2013. ACM.

[Sam13] Krystian Samp. Designing graphical menus for novices and experts:

Connecting design characteristics with design goals. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13,

pages 3159–3168, New York, NY, USA, 2013. ACM.

[SD09] Jeff Sauro and Joseph S. Dumas. Comparison of three one-question,

post-task usability questionnaires. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, CHI ’09, pages 1599–1608, New

York, NY, USA, 2009. ACM.

[SES05] Janice Singer, Robert Elves, and Margaret-Anne Storey. NavTracks: Sup-

porting navigation in software maintenance. In Proceedings of the 21st

IEEE International Conference on Software Maintenance, ICSM ’05, pages

325–334, Washington, DC, USA, 2005. IEEE Computer Society.

[Shn83] B. Shneiderman. Direct manipulation: A step beyond programming

languages. Computer, 16(8):57–69, Aug 1983.

[SO13] Oliver Schoenleben and Antti Oulasvirta. Sandwich Keyboard: Fast ten-

finger typing on a mobile device with adaptive touch sensing on the

back side. In Proceedings of the 15th International Conference on Human-

computer Interaction with Mobile Devices and Services, MobileHCI ’13,

pages 175–178, New York, NY, USA, 2013. ACM.

[SSSS11] A. Stefik, S. Siebert, K. Slattery, and M. Stefik. Toward intuitive pro-

gramming languages. In Program Comprehension (ICPC), 2011 IEEE 19th

International Conference on, pages 213–214, June 2011.

[Ste98] Guy L. Steele, Jr. Growing a language. In Addendum to the 1998 Proceed-

ings of the Conference on Object-oriented Programming, Systems, Languages,

and Applications (Addendum), OOPSLA ’98 Addendum, pages 0.01–A1,

New York, NY, USA, 1998. ACM.

[Swo12] Helen Sword. Stylish Academic Writing. Harvard Univ Press, Cambridge,

2012.

253

Bibliography

[Tes12] Larry Tesler. A personal history of modeless text editing and cut/copy-

paste. Interactions, 19(4):70–75, July 2012.

[TKH+14] Stuart Taylor, Cem Keskin, Otmar Hilliges, Shahram Izadi, and John

Helmes. Type-hover-swipe in 96 Bytes: A motion sensing mechanical

keyboard. In Proceedings of the 32Nd Annual ACM Conference on Human

Factors in Computing Systems, CHI ’14, pages 1695–1704, New York, NY,

USA, 2014. ACM.

[TMdHF11] Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, and Manuel

Fahndrich. TouchDevelop: Programming cloud-connected mobile devices

via touchscreen. In Proceedings of the 10th SIGPLAN Symposium on New

Ideas, New Paradigms, and Reflections on Programming and Software,

ONWARD ’11, pages 49–60, New York, NY, USA, 2011. ACM.

[TR81] Tim Teitelbaum and Thomas Reps. The Cornell Program Synthesizer: A

syntax-directed programming environment. Commun. ACM, 24(9):563–

573, September 1981.

[TVT+13] Federico Tomassetti, Antonio Vetró, Marco Torchiano, Markus Voelter, and

Bernd Kolb. A model-based approach to language integration. In Modeling

in Software Engineering (MiSE), 2013 5th International Workshop on,

pages 76–81. IEEE, 2013.

[VCN+12] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar,

Brian P. Bailey, and Ralph E. Johnson. Use, disuse, and misuse of auto-

mated refactorings. In Proceedings of the 34th International Conference

on Software Engineering, ICSE ’12, pages 233–243, Piscataway, NJ, USA,

2012. IEEE Press.

[VM10] Petcharat Viriyakattiyaporn and Gail C. Murphy. Improving program nav-

igation with an active help system. In Proceedings of the 2010 Conference

of the Center for Advanced Studies on Collaborative Research, CASCON ’10,

pages 27–41, Riverton, NJ, USA, 2010. IBM Corp.

[VR09] Peter Van Roy. Programming Paradigms for Dummies: What Every Pro-

grammer Should Know. In G. Assayag and A. Gerzso, editors, New

Computational Paradigms for Computer Music. IRCAM/Delatour, 2009.

254

Bibliography

[WHM12] Julie Wagner, Stéphane Huot, and Wendy Mackay. BiTouch and BiPad:

Designing bimanual interaction for hand-held tablets. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12,

pages 2317–2326, New York, NY, USA, 2012. ACM.

[Wig10] Daniel Wigdor. Brave NUI World: Designing natural user interfaces for

touch and gesture. Morgan Kaufmann, Burlington, MA, 2010.

[Win96] Leon E. Winslow. Programming pedagogy–a psychological overview.

SIGCSE Bull., 28(3):17–22, September 1996.

[WMS87] Catherine G. Wolf and Palmer Morrel-Samuels. The use of hand-drawn

gestures for text editing. Int. J. Man-Mach. Stud., 27(1):91–102, July

1987.

[WMW09] Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson.

User-defined gestures for surface computing. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’09, pages 1083–

1092, New York, NY, USA, 2009. ACM.

[WPR+14] Daryl Weir, Henning Pohl, Simon Rogers, Keith Vertanen, and Per Ola

Kristensson. Uncertain text entry on mobile devices. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14,

pages 2307–2316, New York, NY, USA, 2014. ACM.

[WYBV12] Doug Wightman, Zi Ye, Joel Brandt, and Roel Vertegaal. SnipMatch:

Using source code context to enhance snippet retrieval and parameteriza-

tion. In Proceedings of the 25th Annual ACM Symposium on User Interface

Software and Technology, UIST ’12, pages 219–228, New York, NY, USA,

2012. ACM.

[XS06] Zhenchang Xing and E. Stroulia. Refactoring practice: How it is and how

it should be supported – an Eclipse case study. In Software Maintenance,

2006. ICSM ’06. 22nd IEEE International Conference on, pages 458–468,

Sept 2006.

[YM11] YoungSeok Yoon and Brad A. Myers. Capturing and analyzing low-level

events from the code editor. In Proceedings of the 3rd ACM SIGPLAN

Workshop on Evaluation and Usability of Programming Languages and

Tools, PLATEAU ’11, pages 25–30, New York, NY, USA, 2011. ACM.

255

Bibliography

[ZBAK10] Robert Zeleznik, Andrew Bragdon, Ferdi Adeputra, and Hsu-Sheng Ko.

Hands-on Math: A page-based multi-touch and pen desktop for technical

work and problem solving. In Proceedings of the 23Nd Annual ACM

Symposium on User Interface Software and Technology, UIST ’10, pages

17–26, New York, NY, USA, 2010. ACM.

[ZKG+09] Shumin Zhai, Per Ola Kristensson, Pengjun Gong, Michael Greiner,

Shilei Allen Peng, Liang Mico Liu, and Anthony Dunnigan. Shapewriter

on the iPhone: From the laboratory to the real world. In CHI ’09 Extended

Abstracts on Human Factors in Computing Systems, CHI EA ’09, pages

2667–2670, New York, NY, USA, 2009. ACM.

[ZL14] Haimo Zhang and Yang Li. GestKeyboard: Enabling gesture-based inter-

action on ordinary physical keyboard. In Proceedings of the 32Nd Annual

ACM Conference on Human Factors in Computing Systems, CHI ’14, pages

1675–1684, New York, NY, USA, 2014. ACM.

[ZYZ+12] Cheng Zhang, Juyuan Yang, Yi Zhang, Jing Fan, Xin Zhang, Jianjun Zhao,

and Peizhao Ou. Automatic parameter recommendation for practical API

usage. In Proceedings of the 34th International Conference on Software

Engineering, ICSE ’12, pages 826–836, Piscataway, NJ, USA, 2012. IEEE

Press.

256

Appendices

257

Appendix A

Study on Editing Source Code

On the following pages, material from the study on editing source code (Chapter 4) is

presented, including:

1. The pre-study questionnaire provided to the participants before the study.

2. The list of all tasks with instructions for the experimenter.

3. The post-study questionnaire provided to the participants after the study.

259

Appendix A. Study on Editing Source Code

Studie "RefactorPad" (1)
Einverständniserklärung

Ziel dieser Studie:
Diese Studie verfolgt den Zweck, besser zu verstehen, wie Nutzer Quellcode auf einem Touch­
Screen bearbeiten würden. Die Ergebnisse sollen einen Beitrag dazu leisten, benutzerfreundliche
Softwareentwicklungswerkzeuge für Geräte mit Touch­Bedienung zu entwerfen.

Ablauf:
Nach der Beantwortung des folgenden Fragebogens, werden Sie gebeten, sich für mehrere
Vorgänge Interaktionsmöglichkeiten in Form von passenden Gesten zu überlegen. Dabei führen
Sie jeden Vorgang in der Test­Anwendung entweder mit den Fingern oder einem Stift (Stylus) aus.
Nach jeder Aufgabe werden Sie gebeten, zwei Fragen zu Ihrer Interaktion zu beantworten. Die
Beantwortung dieser Fragen soll weiteren Aufschluss zur Benutzerfreundlichkeit der
vorgeschlagenen Gesten geben. Bevor Sie mit der Studie anfangen, haben Sie die Möglichkeit,
sich mit der Test­Anwendung vertraut zu machen und eine Beispielaufgabe zu bearbeiten.

Die Teilnahme an dieser Studie ist freiweillig. Sie können jederzeit abbrechen. Falls Sie während
der Studie eine Pause möchten, geben Sie dem Testleiter einfach Bescheid.

Vertraulichkeit:
Alle Daten, die während dieser Studie gesammelt werden, sind vertraulich. Sie werden nur durch
einen Code (z. B. "P1") identifiziert. Eventuelle Veröffentlichungen im Rahmen dieses Projekts
enthalten keine Informationen, die Sie oder andere Teilnehmer persönlich identifizieren.

Mit der Beantwortung des Fragebogens erklären Sie sich mit diesen Informationen einverstanden.

Herzlichen Dank für Ihre Mithilfe

Felix Raab
Lehrstuhl für Medieninformatik
Universität Regensburg

Allgemeine Angaben

Ihr Alter

Ihr Geschlecht
 Männlich

 Weiblich

Sind Sie Rechts­ oder Linkshänder?
 Rechtshänder

 Linkshänder

260

Programmiererfahrung

Wie viele Jahre Programmiererfahrung haben Sie?

Weniger als
1 Jahr

1 bis 2
Jahre

2 bis 5
Jahre

5 bis 10
Jahre

Mehr als 10
Jahre

Wie vertraut sind Sie mit folgenden Programmiersprachen?

Gar nicht
vertraut

Kaum
vertraut

Mittelmäßig
vertraut

Ziemlich
vertraut

Außerordentlich
vertraut

Java

JavaScript

Wie vertraut sind Sie mit der Entwicklungsumgebung "Eclipse"?

Gar nicht
vertraut

Kaum
vertraut

Mittelmäßig
vertraut

Ziemlich
vertraut

Außerordentlich
vertraut

Mit welchen sonstigen Programmiersprachen und / oder Entwicklungsumgebungen sind Sie
mindestens "mittelmäßig vertraut"?
Sofern vorhanden, bitte kommagetrennt eingeben.

Nutzung von Touch­Screens

Wie oft nutzen Sie folgende Gerätetypen?

Nie Selten Gelegentlich Oft Immer

Geräte mit Touch­
Screens

Geräte, die mit einem
Stift (Pen / Stylus)

bedient werden

Senden

Figure A.1: Pre-study questionnaire

261

Appendix A. Study on Editing Source Code

Task Instruktion

Basic
Move	
 Caret Bewege	
 den	
 Cursor	
 in	
 Zeile	
 9	
 nach rentals.

(Cursor	
 nach	
 rentals.	
 setzen.)
Select	
 Identifier Selektiere	
 each	
 in	
 Zeile	
 9.

(each	
 in	
 Zeile	
 9	
 markieren.)
Select	
 Multiple	
 Identifiers Selektiere	
 alle	
 Vorkommen	
 von	
 result.

(result	
 in	
 Zeile	
 5,	
 36,	
 40,	
 41,	
 43	
 markieren.)
Select	
 Line Selektiere	
 Zeile	
 9.

(Zeile	
 9	
 selektieren.)
Select	
 Multiple	
 Lines Selektiere	
 Zeile	
 2	
 -­‐	
 5.

(Zeile	
 2	
 -­‐	
 5	
 selektieren.)
Select	
 Block Selektiere	
 den	
 switch-­‐Block	
 von	
 Zeile	
 11	
 -­‐	
 27.

(Zeile	
 11	
 -­‐	
 27	
 selektieren.)
Move	
 Lines Bewege	
 die	
 Zeilen	
 18	
 -­‐	
 20	
 nach	
 Zeile	
 12	
 -­‐	
 14.

(Start:	
 Zeilen	
 18	
 -­‐	
 20	
 markieren.	
 Split:	
 Zeilen	
 12	
 -­‐	
 14	
 markieren.)
Duplicate	
 Line Dupliziere	
 Zeile	
 8.

(Start:	
 Zeile	
 8	
 markieren.	
 Split:	
 Zeile	
 8	
 und	
 9	
 markieren.)
Delete	
 Line Lösche	
 Zeile	
 29.

(Start:	
 Zeile	
 29	
 markieren.	
 Split:	
 Cursor	
 auf	
 Zeile	
 29	
 setzen.)
Toggle	
 Comment Kommentiere	
 die	
 if-­‐Anweisung	
 in	
 	
 Zeile	
 31	
 -­‐	
 34	
 aus	
 und	
 dann	
 wieder	
 ein.

(Start:	
 Zeile	
 31	
 -­‐	
 34	
 markieren.	
 Split:	
 Zeile	
 31	
 -­‐	
 34	
 markieren.)
Copy/Paste Kopiere	
 die	
 switch-­‐Anweisung	
 in	
 Zeile	
 2	
 -­‐	
 14	
 nach	
 Zeile	
 18	
 -­‐	
 30.

(Start:	
 switch-­‐Anweisung	
 in	
 Zeile	
 2	
 -­‐	
 14	
 markieren.	
 Split:	
 Zeile	
 18	
 -­‐	
 30	
 markieren.)

Undo/Redo Mache	
 die	
 letzte	
 Aktion	
 rückgängig	
 und	
 stelle	
 sie	
 dann	
 wieder	
 her.
(Split:	
 Zeile	
 2	
 markieren.)

Goto	
 Method	
 Declaration Gehe	
 zur	
 Deklaration	
 der	
 Methode	
 amountFor(each)	
 in	
 Zeile	
 11.
(Zeile	
 11	
 markieren.	
 Scroll	
 zu amountFor(each).	
 Zeile	
 50	
 markieren.	
 Zurück	
 nach	
 oben	

scrollen.)

Refactoring
Extract	
 Method	
 Without	
 Locals Extrahiere	
 Zeile	
 5	
 -­‐	
 8	
 in	
 eine	
 neue	
 Methode printBanner()	
 und	
 rufe	
 diese	
 Methode	
 auf.

(Start:	
 Zeile	
 5	
 -­‐	
 8	
 markieren.	
 Split:	
 Zeile	
 18	
 -­‐	
 23	
 markieren.	
 Zeile	
 5	
 markieren.)

Extract	
 Method	
 With	
 Parameter Extrahiere	
 Zeile	
 4	
 -­‐	
 6	
 in	
 eine	
 neue	
 Methode	
 printDetails(amount)	
 und	
 rufe	
 diese	

Methode	
 auf.
(Start:	
 Zeile	
 4	
 -­‐	
 6	
 markieren.	
 Split:	
 Zeile	
 6	
 -­‐	
 10	
 markieren.	
 Zeile	
 3	
 markieren.)

Inline	
 Method Ersetze	
 den	
 Aufruf	
 moreThanFiveLateDeliveries()	
 in	
 Zeile	
 2	
 durch	
 den	
 Body	
 der	

Methode.
(Start:	
 moreThanFiveLateDeliveries()	
 in	
 Zeile	
 2	
 markieren	
 Zeile	
 6	
 markieren.	
 Split:	

Zeile	
 2	
 markieren.)

Inline	
 Temp Ersetze	
 die	
 Variable	
 basePrice	
 in	
 Zeile	
 2	
 durch	
 den	
 Ausdruck	
 in	
 Zeile	
 1.
(Start:	
 basePrice	
 in	
 Zeile	
 2	
 markieren.	
 Zeile	
 1	
 markieren.	
 Split:	
 Rückgabewert	
 in	
 Zeile	
 1	

markieren.)

Replace	
 Temp	
 With	
 Query Extrahiere	
 den	
 Ausdruck	
 in	
 Zeile	
 2	
 in	
 eine	
 neue	
 Methode basePrice()	
 und	
 ersetze	
 alle	

Variablen	
 basePrice	
 durch	
 einen	
 Aufruf	
 von basePrice().	
 (Start:	
 Zeile	
 2	
 markieren.	

basePrice	
 in	
 Zeile	
 4	
 und	
 9	
 selektieren.	
 Split:	
 Zeilen	
 11	
 -­‐	
 13	
 markieren.	
 Cursor	
 in	
 Zeile	
 2	

setzen. basePrice()	
 in	
 Zeile	
 3	
 und	
 8	
 markieren.)

Introduce	
 Explaining	
 Variable Führe	
 für	
 _quantity * _itemPrice	
 in	
 Zeile	
 3	
 und	
 5	
 eine	
 neue	
 Variable	
 basePrice	

ein.
(Start:	
 _quantity * itemPrice	
 in	
 Zeile	
 3	
 und	
 5	
 markieren.	
 Split:	
 basePrice	
 in	
 Zeile	

3,	
 4	
 und	
 5	
 markieren.)

Rename	
 Multiple	
 Variables Benenne	
 alle	
 Vorkommen	
 der	
 Variable	
 each	
 in	
 aRental	
 um.
(Start:	
 each	
 in	
 Zeile	
 1,	
 3,	
 5,	
 6,	
 10,	
 14,	
 15	
 markieren.	
 Split:	
 Alle	
 Vorkommen	
 von	
 aRentals	

markieren.)

Figure A.2: Task descriptions

262

Studie "RefactorPad" (2)

Welche Interaktionsmethode würden Sie für die durchgeführten Aufgaben bevorzugen?
 Bedienung mit den Fingern

 Bedienung mit dem Stift (Pen / Stylus)

 Bedienung mit den Fingern und mit dem Stift (Pen / Stylus)

Welche Aktionen führen Sie sonst besonders oft in Ihrer Entwicklungsumgebung aus?

Senden
Geben Sie niemals Passwörter über Google Formulare weiter.

Powered by Google Docs

Missbrauch melden ­ Nutzungsbedingungen ­ Zusätzliche Bestimmungen

Figure A.3: Post-study questionnaire

263

Appendix B

Study on Selecting Source Code

On the following pages, material from the study on selecting source code (Chapter 5)

is presented, including:

1. The handout provided to the students in the winter term 2012/2013.

2. The assignments sheet provided to the students in the winter term 2012/2013.

3. The handout provided to the students in the summer term 2013.

4. The assignments sheet provided to the students in the summer term 2013.

The tasks and assignments sheets were primarily designed by Dr. Markus Heckner,

who taught the Android programming courses at the University of Regensburg.

265

Appendix B. Study on Selecting Source Code

Handout zur Präsenzstudienleistung –

Android WS 12 / 13

Start der Bearbeitung

1. Einrichten des Laufwerks O:

Start > Ausführen > riotemp eingeben

Schließen Sie den geöffneten Internet Explorer Browser.

Jetzt steht Ihnen Laufwerk O im Windows Explorer als persönlicher Speicher zur

Verfügung. Sie können den Windows Explorer über Windows Taste + E oder alternativ

Start > Alle Programme > Zubehör > Windows Explorer aufrufen.

2. Kopieren der Entwicklungsumgebung

Wechseln Sie nach K:\PT\Medieninformatik\Kurse-MH\Android\ und kopieren Sie die

Datei Android-Studienleistung.zip in das Verzeichnis mit Ihrem NDS-Kürzel auf

Laufwerk O (bereits angelegt, z.B. O:\<IhrNDSKürzel>\).

3. Entpacken der Entwicklungsumgebung

Klicken Sie mit der rechten Maustaste auf die kopierte Datei und wählen Sie 7Zip >

Entpacken nach Android-Studienleistung\ und warten Sie bis das Zip entpackt ist.

Das Passwort lautet: androidbrain

(Drücken Sie im Anschluss ggf. F5, falls der entpackte Ordner nicht direkt sichtbar ist).

4. Initialisieren der Entwicklungsumgebung

Führen Sie per Doppelklick die Datei Init.bat im Verzeichnis Android-Studienleistung

aus und warten Sie kurz.

5. Starten der Entwicklungsumgebung

Starten Sie Eclipse über die Schnellstartleiste oder das Icon auf dem Desktop.

6. Setzen des Arbeitsbereichs

Beim Start von Eclipse werden Sie nach Ihrem Arbeitsbereich (Workspace) gefragt.

Setzen Sie den Workspace über den Button Browse auf den Ordner Android-

Studienleistung/workspace. Setzen Sie auch den Haken bei Use this as the default….

Beantworten Sie die Frage Send usage statistics to Google mit Nein, bestätigen Sie mit

Finish und schließen Sie das Welcome-Tab.

7. Setzen der korrekten Java-Version

Rufen Sie in Eclipse den Menübefehl Window > Preferences auf. Navigieren Sie in der

Liste links zu Java > Compiler und setzen Sie den Wert im Feld Compiler Compliance

Level auf 1.6. Bestätigen Sie mit OK und beantworten Sie die Frage im Popup mit Yes.

8. Importieren der Projekte

Rufen Sie den Menübefehl File > Import auf. Wählen Sie in der Liste General > Existing

Projects Into Workspace und klicken Sie auf Next. Klicken Sie den Button Browse und

266

wählen Sie das Verzeichnis Android-Studienleistung/projects. Setzen Sie unten den

Haken bei Copy Projects Into Workspace. Klicken Sie auf Finish. Warten Sie kurz…

Sie sehen anschließend im Package Explorer in Eclipse nun Ihre drei Aufgaben. Wählen

Sie dann im Menü Project den Befehl Clean (Clean All…) und bestätigen Sie mit OK.

9. Anlegen der AVD für den Emulator

9.1. Wählen Sie das erste Projekt (Quiz) und drücken Sie den Run-Button. Wählen Sie

bei Run As den Menüpunkt Android Application und bestätigen Sie mit OK.

9.2. Warten Sie kurz und beantworten Sie dann die Frage im Popup mit Yes.

9.3. Wählen Sie im Android Device Chooser die Option Launch a new Android Virtual

Device. Klicken Sie rechts unten auf den Button Manager.

9.4. Klicken Sie im Android Virtual Device Manager auf den Button New.

9.5. Geben Sie bei AVD Name folgenden Namen ein: Nexus_S. Wählen Sie als Device

Nexus S… und bestätigen Sie mit OK.

9.6. Schließen Sie den Android Device Manager und drücken Sie im Android Device

Chooser auf Refresh. Wählen Sie dann die angelegte AVD Nexus S… und

bestätigen Sie mit OK. Warten Sie kurz bis der Emulator die Anwendung startet…

Wichtige Hinweise
1. Bitte starten Sie während der Bearbeitung den Firefox-Browser nur über das Icon in

der Schnellstart-Leiste oder das Desktop-Icon.

2. Starten Sie nach jeder Aufgabe Eclipse und Firefox neu!

3. Abgabe der fertig bearbeiten Studienleistung: Schalten Sie Ihren Rechner NICHT aus

und melden Sie sich NICHT ab! Melden Sie sich bei uns – Wir sammeln die Aufgaben

auf einem USB Datenträger ein.

Datenerhebung für ein Forschungsvorhaben
Für eine Studie im Rahmen des Projekts EVELIN zur Verbesserung der Lehre im Bereich

Software-Engineering zeichnen wir die Interaktion während der Programmierung der

Aufgaben auf. Diese Daten werden lediglich im Rahmen des Forschungsprojekts

ausgewertet und haben keinerlei Bezug zur Bewertung Ihrer Studienleistung. Bewertet

wird lediglich Ihre fertige Arbeit.

Vertraulichkeit:

Alle Daten, die während dieser Studie gesammelt werden, sind vertraulich. Sie werden nur

durch einen Code (z. B. „P1“) identifiziert. Eventuelle Veröffentlichungen im Rahmen dieses

Projekts enthalten keine Informationen, die Sie oder andere Teilnehmer persönlich

identifizieren. Bitte geben Sie uns Bescheid, falls Sie damit nicht einverstanden sind.

Herzlichen Dank für Ihre Mithilfe und viel Erfolg!

Figure B.1: Handout in winter term 2012/13

267

Appendix B. Study on Selecting Source Code

Dr. Markus Heckner 08. Februar 2013

Präsenzstudienleistung Einführung in die Anwendungsprogrammierung (Android) WS 12 / 13

Sie haben zur Lösung der Aufgaben 120 Minuten Zeit.
Zugelassene Hilfsmittel sind alle Materialien der Vorlesung, sowie sämtliche Onlinequellen.
Öffnen Sie, bevor Sie mit den Aufgaben anfangen, immer die gegebenen Projekte und überprüfen Sie, über welche Klassen
und Ressourcen das Projekt bereits verfügt.
Die Hilfe Dritter (Skype, Facebook, E-Mail, etc.) in Anspruch zu nehmen ist nicht zulässig und führt zum sofortigen
Nichtbestehen der Studienleistung.

Bitte schließen Sie Eclipse nach der Bearbeitung jeder Aufgabe und starten sie es erneut zur Bearbeitung der
nächsten Aufgabe.
Bitte melden Sie sich direkt nach Fertigstellung bei uns, damit wir Ihr Projekt für die Abgabe sichern können.

Aufgabe 1 QuizApp

Gegeben ist das Projekt An StudLstg Presence QuizApp Start. In dieser Aufgabe sollen Sie eine Quiz-App erstellen.

Die App startet mit einer Zufallsfrage, die der Spieler erraten soll. Ein Klick auf den Button Lösung zeigt die Lösung zur
jeweiligen Quizfrage an, der Button Nächste Frage wechselt zur nächsten Frage. Die Auswahl der Fragen erfolgt nach
dem Zufallsprinzip. Die nächste Frage erscheint zunächst wieder ohne Lösung. Und so weiter und so fort...

Die fertige App ist auf dem folgenden Screenshot dargestelt.

(a) Quiz App vor Beantwortung einer Frage (b) Quiz App mit Lösung nach Klick auf den
Button Lösung

Abbildung 1: Quiz App

Achtung: Die Logik für die Applikation ist bereits implementiert. Verwenden Sie für Ihre Lösung die bestehenden Klas-
sen QuestionGenerator und QuizEntry, die Sie nicht verändern müssen.

Beginnen Sie Ihre Lösung mit den in diesem Projekt gegebenen Klassen und stellen die Aufgabe gemäß der obigen
Beschreibung fertig. Implementieren Sie das Layout so, wie auf dem Screenshot dargestellt (Farben können Sie ver-
nachlässigen).

268

Aufgabe 2 Responsive User Interface

Gegeben ist das Projekt An StudLstg Presence Wait Some Time Start. Die App berechnet die Fakultät einer Zahl und
gibt das Ergebnis wieder an den Nutzer aus. Die Berechnung der Fakultät findet in der Klasse FacultyCalculator
statt. Hinweis: In diesem Beispiel soll immer die Fakultät von 5000 berechnet werden: Merken Sie sich diese Zahl in der
Activity und übergeben Sie diese an die entsprechende Methode der Klasse FacultyCalculator.

(a) Fakultätsberechnung läuft, Fortschrittsan-
zeige wird angezeigt

(b) Fakultätsberechnung abgeschlossen, Er-
gebnis wird angezeigt

Abbildung 2: Fakultätsberechnung

Ergänzen Sie die folgende Funktionalität:

1. Starten Sie die Berechnung nach Klick auf den Button “Berechne Fakultät“ und geben das Ergebnis in einem
AlertDialog wieder aus (vgl. Abbildung 1b). Vernachlässigen Sie in diesem ersten Schritt die Fortschrittsanzeige
auf dem linken Screenshot (Abbildung 1a).

2. Das User Interface reagiert nicht, während die Berechnung läuft. Führen Sie die Berechnung im Hintergrund aus
zeigen Sie während der Berechnung eine zyklische Fortschrittsanzeige an (Abbildung 1a), die sich während der
Berechnung drehen muss, um anzuzeigen, dass die App aktiv “beschäftigt“ ist. Ist die Berechnung fertiggestellt,
verschwindet die Fortschrittsanzeige und der Dialog aus der vorhergehenden Teilaufgabe erscheint. Achtung: Gegen
Ende der Berechnung darf die Anzeige kurz anhalten, muss sich aber ansonsten laufend drehen (es ist in Ordnung,
wenn die Drehung kurz stockt).

2 269

Appendix B. Study on Selecting Source Code

Aufgabe 3 Refactoring

Gegeben ist das Projekt An StudLstg Refactoring Start. Die App verarbeitet eine vom Nutzer eingegebene Zeichenket-

Abbildung 3: User Interface der Refactoring-App

te und gibt das Ergebnis wieder aus. Leider entspricht der Sourcecode nicht den Prinzipien guten Software-Engineerings.

Optimieren Sie den Sourcecode der Aufgabe, ohne die Funktionalität zu verändern: Passen Sie den Code dahingehend
an, dass er leichter lesbar, modularer, weniger fehleranfällig und wartbarer wird. Wenden Sie die Prinzipien an, die Sie
bereits aus den Veranstaltungen OOP und dem Softwareentwicklungspraktikum mit Android kennen.

Tipps:

• Ggf. können Sie auch neue Klassen erstellen und bestehende Funktionen dorthin verschieben.

• Testen Sie Ihr Programm regelmäßig, ob es auch weiterhin wie zu Beginn funktioniert.

• Die Eingabe des Emulators können Sie auf lateinische Buchstaben umstellen, in dem Sie auf die Taste links unten
im Tastenfeld des Emulators drücken.

Viel Erfolg!

3

Figure B.2: Tasks in winter term 2012/13

270

Handout zur Präsenzstudienleistung –

Android SS 13

Start der Bearbeitung

1. Einrichten des Laufwerks O:

Start > Ausführen > riotemp eingeben

Schließen Sie den geöffneten Internet Explorer Browser.

Jetzt steht Ihnen Laufwerk O im Windows Explorer als persönlicher Speicher zur

Verfügung. Sie können den Windows Explorer über Windows Taste + E oder alternativ

Start > Alle Programme > Zubehör > Windows Explorer aufrufen.

2. Kopieren der Entwicklungsumgebung

Wechseln Sie nach K:\PT\Medieninformatik\Kurse-MH\Android\ und kopieren Sie die

Datei Android-Studienleistung.zip auf den Desktop.

3. Entpacken der Entwicklungsumgebung

Klicken Sie mit der rechten Maustaste auf die kopierte Datei und wählen Sie 7Zip >

Entpacken nach Android-Studienleistung\ und warten Sie bis das Zip entpackt ist.

Das Passwort lautet: droid4brain

(Drücken Sie im Anschluss ggf. F5, falls der entpackte Ordner nicht direkt sichtbar ist).

4. Verschieben der Entwicklungsumgebung auf O-Laufwerk\android

Verschieben (Rechtsklick/Ausschneiden) Sie den entpackten Ordner in das Verzeichnis

mit Ihrem NDS-Kürzel auf Laufwerk O in den Ordner android (bereits angelegt, z.B.

O:\<IhrNDSKürzel>\android).

5. Initialisieren der Entwicklungsumgebung

Führen Sie per Doppelklick die Datei Init.bat im Verzeichnis Android-Studienleistung

aus und warten Sie kurz.

6. Starten der Entwicklungsumgebung

Starten Sie Eclipse über die Schnellstartleiste oder das Icon auf dem Desktop.

7. Setzen des Arbeitsbereichs

Beim Start von Eclipse werden Sie nach Ihrem Arbeitsbereich (Workspace) gefragt.

Setzen Sie den Workspace über den Button Browse auf den Ordner Android-

Studienleistung/workspace. Setzen Sie auch den Haken bei Use this as the default….

Beantworten Sie die Frage Send usage statistics to Google mit Nein, bestätigen Sie mit

Finish und schließen Sie das Welcome-Tab.

8. Setzen der korrekten Java-Version

Rufen Sie in Eclipse den Menübefehl Window > Preferences auf. Navigieren Sie in der

Liste links zu Java > Compiler und setzen Sie den Wert im Feld Compiler Compliance

Level auf 1.6. Bestätigen Sie mit OK und beantworten Sie die Frage im Popup mit Yes.

271

Appendix B. Study on Selecting Source Code

9. Importieren der Projekte

Rufen Sie den Menübefehl File > Import auf. Wählen Sie in der Liste General > Existing

Projects Into Workspace und klicken Sie auf Next. Klicken Sie den Button Browse und

wählen Sie das Verzeichnis Android-Studienleistung/projects. Setzen Sie unten den

Haken bei Copy Projects Into Workspace. Klicken Sie auf Finish. Warten Sie kurz…

Sie sehen anschließend im Package Explorer in Eclipse nun Ihre zwei Aufgaben.

Wählen Sie dann im Menü Project den Befehl Clean (Clean All…) und bestätigen Sie

mit OK.

10. Anlegen der AVD für den Emulator

10.1. Wählen Sie ein Projekt und drücken Sie den Run-Button. Wählen Sie bei Run As

den Menüpunkt Android Application und bestätigen Sie mit OK.

10.2. Warten Sie kurz und beantworten Sie dann die Frage im Popup mit Yes.

10.3. Wählen Sie im Android Device Chooser die Option Launch a new Android

Virtual Device. Klicken Sie rechts unten auf den Button Manager.

10.4. Klicken Sie im Android Virtual Device Manager auf den Button New.

10.5. Geben Sie bei AVD Name folgenden Namen ein: Nexus_S. Wählen Sie als

Device Nexus S… und als Target Android 4.2.2 und bestätigen Sie mit OK.

10.6. Schließen Sie den Android Device Manager und drücken Sie im Android Device

Chooser auf Refresh. Wählen Sie dann die angelegte AVD Nexus S… und

bestätigen Sie mit OK. Warten Sie kurz bis der Emulator die Anwendung startet…

Wichtige Hinweise
1. Bitte starten Sie während der Bearbeitung den Firefox-Browser nur über das Icon in

der Schnellstart-Leiste oder das Desktop-Icon.

2. Starten Sie nach jeder Aufgabe Eclipse und Firefox neu!

3. Abgabe der fertig bearbeiten Studienleistung: Führen Sie die Datei Submit.bat im

Verzeichnis Android-Studienleistung aus (Doppelklick) und melden Sie sich.

Datenerhebung für ein Forschungsvorhaben
Für eine Studie im Rahmen des Projekts EVELIN zur Verbesserung der Lehre im Bereich

Software-Engineering zeichnen wir die Interaktion während der Programmierung der

Aufgaben auf. Diese Daten werden lediglich im Rahmen des Forschungsprojekts

ausgewertet und haben keinerlei Bezug zur Bewertung Ihrer Studienleistung. Bewertet

wird lediglich Ihre fertige Arbeit.

Vertraulichkeit:

Alle Daten, die während dieser Studie gesammelt werden, sind vertraulich. Sie werden nur

durch einen Code (z. B. „P1“) identifiziert. Eventuelle Veröffentlichungen im Rahmen dieses

Projekts enthalten keine Informationen, die Sie oder andere Teilnehmer persönlich

identifizieren. Bitte geben Sie uns Bescheid, falls Sie damit nicht einverstanden sind.

Herzlichen Dank für Ihre Mithilfe und viel Erfolg!

Figure B.3: Handout in summer term 2013

272

Dr. Markus Heckner 25. Juli 2013

Präsenzstudienleistung Einführung in die Anwendungsprogrammierung (Android) SS 13

Sie haben zur Lösung der Aufgaben 90 Minuten Zeit.
Zugelassene Hilfsmittel sind alle Materialien der Vorlesung, sowie sämtliche Onlinequellen.
Öffnen Sie, bevor Sie mit den Aufgaben anfangen, immer die gegebenen Projekte und überprüfen Sie, über welche Klassen
und Ressourcen das Projekt bereits verfügt.
Die Hilfe Dritter (Skype, Facebook, E-Mail, etc.) in Anspruch zu nehmen ist nicht zulässig und führt zum sofortigen
Nichtbestehen der Studienleistung.

Beachten Sie die folgenden Punkte:

• Schließen Sie Eclipse nach der Bearbeitung jeder Aufgabe und starten sie es erneut zur Bearbeitung der nächsten
Aufgabe.

• Melden Sie sich direkt nach Fertigstellung bei uns, damit wir Ihr Projekt für die Abgabe sichern können.

• Beginnen Sie mit Aufgabe 1, bearbeiten Sie Aufgabe 2 erst am Ende!

Aufgabe 1 Mehrwertsteuerrechner

Gegeben ist das Projekt An StudLstg SalesTaxApp Starter Project. In dieser Aufgabe sollen Sie eine App zur
Berechnung von Preisen mit und ohne Mehrwertsteuer erstellen.
Achtung: Beginnen Sie Ihre Lösung mit den in diesem Projekt gegebenen Klassen und stellen die Aufgabe gemäß der
obigen Beschreibung fertig. Implementieren Sie das Layout so, wie auf den Screenshots dargestellt. Die App startet
bereits mit einer leeren Activity, für die Sie das Layout anpassen müssen (die Layout-XML-Datei ist ebenfalls
bereits im Projekt enthalten): Sie müssen keine neue Activity und keine neue Layout-XML-Datei erstellen!

Auf dem (einzigen!) Screen der App werden dem Nutzer zwei Textfelder angezeigt, mithilfe derer sich Preise eingeben
lassen. Sobald der Nutzer nach der Eingabe des Preises weiter auf dem Soft-Keyboard drückt (Achtung: Dies entspricht
der Return-Taste auf der Tastatur Ihres Rechners, wenn Sie die App im Emulator testen), wird die Berechnung des Preises
durchgeführt und das entsprechende Textfeld aktualisiert: Drückt der Nutzer Return im Textfeld des Nettopreises aktua-
lisiert sich der Bruttopreis. Drückt der Nutzer Return im Textfeld des Bruttopreises aktualisiert sich der Nettopreis. Das
User-Interface der App ist auf Abbildung 1 dargestellt.

(a) App ohne Nutzereingaben (b) Erfolgreich berechneter Preis mit Mehr-
wertsteuer

Abbildung 1: App zur Berechnung der Mehrwertsteuer - Basisfunktionalität

273

Appendix B. Study on Selecting Source Code

Hinweise zur Bearbeitung:

• Die Logik zur Berechnung der Steuersätze ist bereits vollständig implementiert. Verwenden Sie für Ihre Lösung
die bestehende Klasse SalesTaxCalculator, die Sie nicht verändern müssen.

• Für das Auslösen der Berechnung kann Ihnen ein spezieller Listener helfen, der dann auslöst, wenn
der Nutzer weiter bzw. Return auf der Tastatur des PCs, auf dem der Emulator läuft, drückt. Diesen
OnEditorActionListener können Sie auf einem EditText registrieren. Nutzen Sie für die Registrierung
auf dem EditText die Instanzmethode setOnEditorActionListener.

• Die Eingabe eines Textfelds können Sie lediglich auf Nummern beschränken, rufen Sie dazu die Instanzmethode
setInputType(InputType.TYPE CLASS NUMBER) auf dem View auf, dessen Eingabe Sie beschränken
wollen.

Aufgabe 2 Debugging einer bestehenden QuizApp

Gegeben ist das Projekt An StudLstg QuizApp Buggy, das 3 Bugs enthält. Beheben Sie diese Bugs, sodass sich die
App gemäß der folgenden Beschreibung verhält. Notieren Sie die Bugs, deren Ursache und Ihre Behebung in der im
Projekt enthaltenen Datei: BUGS AND SOLUTIONS.txt.

Nach Klick auf Los gehts wechselt die App zu einer zweiten Activity, auf der das Quiz stattfindet, jedoch werden zu
Beginn keine Fragen und Antworten dargestellt. Bei Klick auf Nächste Frage startet das Quiz mit einer Zufallsfrage,
die der Spieler erraten soll. Ein Klick auf den Button Lösung zeigt die Lösung zur jeweiligen Quizfrage an, der Button
Nächste Frage wechselt jetzt weiter zur nächsten Frage. Die Auswahl der Fragen erfolgt nach dem Zufallsprinzip. Die
nächste Frage erscheint zunächst wieder ohne Lösung. Und so weiter und so fort...

Die fertige App ist auf dem folgenden Screenshot dargestellt.

(a) Quiz App vor Beantwortung einer Frage (b) Quiz App mit Lösung nach Klick auf den
Button Lösung

Abbildung 2: Quiz App

Achtung: Legen Sie unbedingt eine Kopie des Projekts in Ihrem Workspace an, um bei Bedarf immer zum Ausgangszu-
stand zurückkehren zu können!

Viel Erfolg!

2

Figure B.4: Tasks in summer term 2012/13

274

Appendix C

Study on Creating Source Code

On the following pages, material from the study on creating source code (Chapter 6) is

presented, including:

1. The pre-study questionnaire provided to the participants before the study.

2. The program that participants had to type.

3. The extended version of the source code example.

The entry task is based on example code from Chapter 4 of Eloquent JavaScript1 by Mar-

ijn Haverbeke, 2011, used under a Creative Commons Attribution 3.0 License2.

1http://eloquentjavascript.net/1st_edition/
2http://creativecommons.org/licenses/by/3.0/

275

http://eloquentjavascript.net/1st_edition/
http://creativecommons.org/licenses/by/3.0/

Appendix C. Study on Creating Source Code

TouchCode-Study
Einverständniserklärung

Ziel dieser Studie:
Diese Studie untersucht, wie Probanden Sourcecode auf einem Tablet eingeben. Dazu
werden im Anschluss an die Studie die Eigenschaften Ihrer Eingaben ausgewertet. Die
Ergebnisse sollen einen Beitrag dazu leisten, die Eingabe von Sourcecode auf Geräten mit
Touchscreens zu verbessern.

Ablauf:
Nach der Beantwortung des folgenden Fragebogens werden Sie mit der Testanwendung
auf dem Tablet vertraut gemacht und geben dann Sourcecode von einer Papiervorlage in
die Anwendung ein.

Die Teilnahme an dieser Studie ist freiwillig. Sie können jederzeit abbrechen. Falls Sie
während der Studie eine Pause möchten, geben Sie dem Testleiter einfach Bescheid.

Vertraulichkeit:
Alle Daten, die während dieser Studie gesammelt werden, sind vertraulich. Sie werden nur
durch einen Code (z. B. "P1") identifiziert. Eventuelle Veröffentlichungen im Rahmen dieses
Projekts enthalten keine Informationen, die Sie oder andere Teilnehmer persönlich
identifizieren.

Mit der Beantwortung des Fragebogens erklären Sie sich mit diesen Informationen
einverstanden.

Herzlichen Dank für Ihre Mithilfe

Felix Raab
Lehrstuhl für Medieninformatik
Universität Regensburg

Ihr Alter

Ihr Geschlecht

 Männlich

 Weiblich

Sind sie Rechts- oder Linkshänder?

 Rechtshänder

 Linkshänder

Wie oft nutzen Sie folgende Gerätetypen?

276

Bereitgestellt von

Nie Selten Gelegentlich Oft Immer

Smartphones (mit
Touchscreen)

Tablets

Wie viele Jahre Programmiererfahrung haben Sie?

1 - 2 Jahre 3 - 4 Jahre 5 - 6 Jahre
Mehr als 5

Jahre
Mehr als 10

Jahre

Welche Entwicklungsumgebungen oder Texteditoren nutzen Sie häufig?
Bei mehr als einer Nennung bitte kommasepariert eingeben.

Welche Programmiersprachen, Skriptsprachen oder Auszeichnungssprachen nutzen Sie
häufig?
Bei mehr als einer Nennung bitte kommasepariert eingeben.

Dieser Inhalt wurde nicht von Google erstellt und wird von Google auch nicht unterstützt.

Missbrauch melden ­ Nutzungsbedingungen ­ Zusätzliche Bestimmungen

Senden

Geben Sie niemals Passwörter über Google Formulare weiter.

Figure C.1: Pre-study questionnaire

277

Appendix C. Study on Creating Source Code
function findCats() {

 function catRecord(name) {
 return {
 name: name
 };
 }

 function startsWith(string, pattern) {
 return string.slice(0, pattern.length) == pattern;
 }

 function catNames(paragraph) {
 var colon = paragraph.indexOf(":");
 return paragraph.slice(colon + 2).split(", ");
 }

 function addCats(set, names) {
 for (var i = 0; i < names.length; i++) {
 set[names[i]] = catRecord(names[i]);
 }
 }

 function handleParagraph(paragraph) {
 if (startsWith(paragraph, "born")) {
 addCats(cats, catNames(paragraph));
 }
 }

 function retrieveMails() {
 return [
 "born 05/04/2006: Red Lion"
];
 }

 var cats = {};
 var mailArchive = retrieveMails();
 if (mailArchive.length == 0) {
 return cats;
 }

 for (var mail = 0; mail < mailArchive.length; mail++) {
 var paragraphs = mailArchive[mail].split("\n");
 for (var i = 0; i < paragraphs.length; i++) {
 handleParagraph(paragraphs[i]);
 }
 }
 return cats;

}	
 Figure C.2: Code entry task (shortened example code from Chapter 4 of Eloquent

JavaScript by Marijn Haverbeke, 2011, used under a Creative Commons Attribution
3.0 License).

278

http://eloquentjavascript.net/1st_edition/
http://eloquentjavascript.net/1st_edition/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

function findCats() {

 function catRecord(name, birthdate, mother) {
 return {
 name: name,
 birth: birthdate,
 mother: mother
 };
 }

 function startsWith(string, pattern) {
 return string.slice(0, pattern.length) == pattern;
 }

 function catNames(paragraph) {
 var colon = paragraph.indexOf(":");
 return paragraph.slice(colon + 2).split(", ");
 }

 function extractDate(paragraph) {
 function numberAt(start, length) {
 return Number(paragraph.slice(start, start + length));
 }
 return new Date(numberAt(11, 4), numberAt(8, 2) - 1,
numberAt(5, 2));
 }

 function extractMother(paragraph) {
 var start = paragraph.indexOf("(mother ") + "(mother
".length;
 var end = paragraph.indexOf(")");
 return paragraph.slice(start, end);
 }

 function addCats(set, names, birthdate, mother) {
 for (var i = 0; i < names.length; i++) {
 set[names[i]] = catRecord(names[i], birthdate, mother);
 }
 }

 function deadCats(set, names, deathdate) {
 for (var i = 0; i < names.length; i++) {
 set[names[i]].death = deathdate;
 }
 }

 function handleParagraph(paragraph) {
 if (startsWith(paragraph, "born")) {
 addCats(cats, catNames(paragraph), extractDate(paragraph),
 extractMother(paragraph));

279

Appendix C. Study on Creating Source Code

 } else if (startsWith(paragraph, "died")) {
 deadCats(cats, catNames(paragraph),
extractDate(paragraph));
 }
 }

 function retrieveMails() {
 return [
 "Dear nephew...",
 "etc.",
 "born 05/04/2006 (mother Lady Penelope): Red Lion"
];
 }

 var mailArchive = retrieveMails();
 var cats = {"Spot": catRecord("Spot", new Date(1997, 2, 5),
"unknown")};

 if (mailArchive.length == 0) {
 return cats;
 }

 for (var mail = 0; mail < mailArchive.length; mail++) {
 var paragraphs = mailArchive[mail].split("\n");
 for (var i = 0; i < paragraphs.length; i++) {
 handleParagraph(paragraphs[i]);
 }
 }

 return cats;
}

var catData = findCats();
console.log(catData);	

Figure C.3: Extended version of the code entry task (example code from Chapter 4
of Eloquent JavaScript by Marijn Haverbeke, 2011, used under a Creative Commons
Attribution 3.0 License).

280

http://eloquentjavascript.net/1st_edition/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Figures
	List of Tables
	Note on Writing Style
	Introduction
	Problem Statement
	Challenges
	Prior Approaches
	Research Objectives

	Research Approach
	Publications
	Structure
	HCI Terms

	I Background and Prior Work
	Background
	Source Code, Programming, and Usability
	Programming Paradigms and Languages
	Cognitive Aspects of Programming
	Forms of Representation

	Integrated Development Environments
	IDE Components
	Usability and Usefulness of IDEs
	Text Editors and IDEs

	Types of IDEs
	The first IDE
	Textual Environments
	Modern Desktop Environments
	Visual Programming Environments
	Hybrid Environments
	Recent Developments

	Programming on Touchscreens

	Related Work
	Touch and Pen Development Environments
	Text Editing
	Text Editing in Desktop Environments
	Text Entry on Touchscreens
	Text Editing Gestures

	Editor User Interfaces and Interaction
	Novel Editor Interfaces
	Intelligent Code Editing
	Code Navigation and Search

	Commands, Menus, and Gestures
	Multi-modal Development Tools

	II Source Code Interaction
	Editing Source Code
	Introduction
	Code Editing Operations
	Code Editing Triggers

	Refactoring
	Refactoring Tools
	Gesture-driven Tools

	User Study
	Editor Operations
	Participants
	Test Setup
	Procedure
	Results
	Observations
	Discussion
	Design Recommendations
	Conclusion

	Selecting Source Code
	Introduction
	Terminology and Selection Mechanics
	Modeless vs. Modal Selection
	Selection in Desktop IDEs
	Selection on Mobile Platforms

	User Study
	Participants
	Test Setup
	Procedure
	Analysis
	Results
	Discussion

	Interaction Methods
	Syntax-aware Selection
	Selection Gestures and Widgets

	Conclusion

	Creating Source Code
	Challenges
	Fat Fingers
	Touch Model
	Language Model
	Text vs. Source Code

	Code Creation in Desktop IDEs
	Smart Typing
	Code Completion
	Code Hints
	Code Templates
	Code Generation

	Towards a Code Entry Keyboard
	General Design Approach
	Keyboard Layout and Size
	Gestures and Marking Buttons
	Code Templates
	Code Completion
	Underlying Models

	User Study
	Participants
	Test Setup
	Tasks and Procedure
	Results
	Discussion

	Improvements and Simulations
	Key Layout
	Touch Model
	Language Model
	Widgets
	A Revised Model

	Conclusion

	III Design and Implementation
	A Touch-enabled IDE
	Device Class and Platform
	Approach to Interaction Design
	Integration of Gestures
	Conflict Resolution
	Widget-based Techniques and Menus
	General Guidelines

	IDE Components
	File Browsing
	Working Sets, File Sets, and Layouts
	Navigation
	Code Entry and Editing
	Error Highlighting and Code Review

	Conclusion

	Software Architecture
	Introduction
	Language Support
	Presentation
	Code Analysis
	Other Modules and Summary

	Reference Architectures and Existing Tools
	The Eclipse Project
	Syntactic Analysis and Editor Components
	Semantic and Static Analysis

	Concrete Architecture
	Target Platform and Environment
	Modules and Events
	Services and Core Objects
	Adapters and Bridges
	Model-View-Controller and Commands
	UI Components and Gestures
	Concurrency and Code Analysis
	Discussion

	Conclusion

	IV Conclusions
	Conclusions
	Summary and Contributions
	Motivation
	Part I: Background and Prior Work
	Part II: Source Code Interaction
	Part III: Design and Implementation

	Future Directions
	Opportunities for Further Work
	Related Projects

	The Future of Programming Environments

	Bibliography
	Appendices
	Appendix Study on Editing Source Code
	Appendix Study on Selecting Source Code
	Appendix Study on Creating Source Code

