154 research outputs found

    The Higher-Order Prover Leo-II.

    Get PDF
    Leo-II is an automated theorem prover for classical higher-order logic. The prover has pioneered cooperative higher-order-first-order proof automation, it has influenced the development of the TPTP THF infrastructure for higher-order logic, and it has been applied in a wide array of problems. Leo-II may also be called in proof assistants as an external aid tool to save user effort. For this it is crucial that Leo-II returns proof information in a standardised syntax, so that these proofs can eventually be transformed and verified within proof assistants. Recent progress in this direction is reported for the Isabelle/HOL system.The Leo-II project has been supported by the following grants: EPSRC grant EP/D070511/1 and DFG grants BE/2501 6-1, 8-1 and 9-1.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s10817-015-9348-y

    Proceedings of the 11th International Conference, TPHOLs’98 Canberra, Australia, September–October 1998. Supplementary Proceedings

    No full text
    Mechanical theorem provers for higher order logics have been successfully applied in many areas including hardware verification and synthesis; verification of security and communications protocols; software verification, transformation and refinement; compiler construction; and concurrency. The higher order logics used to reason about these problems and the underlying theorem prover technology that support them are also active areas of research. The International Conference on Theorem Proving in Higher Order Logics (TPHOLs) brings together people working in these and related areas for the discussion and dissemination of new ideas in the field. TPHOLs'98 continues the conference tradition of having both a completed work and work-in-progress stream. The Papers from the first stream were formally refereed, and published as volume 1479 of LNCS. This, supplementary, proceedings records work accepted under the work-in-progress category, and is intended to document emerging trends in higher-order logic research. Papers in the work-in-progress stream are vetted for relevance and contribution before acceptance. The work-in-progress stream is regarded as an important feature of the conference as it provides a venue for the presentation of ongoing research projects, where researchers invite discussion of preliminary results. Although the TPHOLs conferences have their genesis in meetings of the users of the HOL theorem proving system, each successive year has seen a higher rate of contribution from the other groups with similar goals, particularly the user communities of Coq, Isabelle, Lambda, Lego, NuPrl, and PVS. Since 1993 the proceedings have been published by Springer as volumes in Lecture Notes in Computer Science series. Bibliographic details of these publications can be found at the back of this book; more history of TPHOLs can be found with further information about the 1998 event at http://cs.anu.edu.au/TPHOLs98/.Conference Papers: Integrating TPS with Omega By Christoph Benzmuller and Volker Sorge Some Theorem Proving Aids By Paul E. Black and Phillip J. Windley Verification of the MDG Components Library in HOL By Paul Curzon, Sofiene Tahar, and Otmane Ait Mohamed Simulating Term-Rewriting in LPF and in Display Logic By Jeremy E. Dawson A Prototype Generic Tool Supporting the Embedding of Formal Notations By Andrew M. Gravell and Chris H. Pratten Embedding a Formal Notation: Experiences of Automating the Embedding of Z in the Higher Order Logics of PVS and HOL By Andrew M. Gravell and Chris H. Pratten Building HOL90 Everywhere Easily (Well Almost) By Elsa L. Gunter Program Composition in COQ-UNITY : By Francois Marques Formally Analysed Dynamic Synthesis of Hardware By Kong Woei Susanto and Tom Melham Requirements for a Simple Proof Checker By Geoffrey Watson Integrating HOL and RAISE: a practitioner's approach By Wai Wong and Karl R. P. H. Leung Effective Support for Mutually Recursive Types By Peter V. Homeie

    Why Philosophers Should Care About Computational Complexity

    Get PDF
    One might think that, once we know something is computable, how efficiently it can be computed is a practical question with little further philosophical importance. In this essay, I offer a detailed case that one would be wrong. In particular, I argue that computational complexity theory---the field that studies the resources (such as time, space, and randomness) needed to solve computational problems---leads to new perspectives on the nature of mathematical knowledge, the strong AI debate, computationalism, the problem of logical omniscience, Hume's problem of induction, Goodman's grue riddle, the foundations of quantum mechanics, economic rationality, closed timelike curves, and several other topics of philosophical interest. I end by discussing aspects of complexity theory itself that could benefit from philosophical analysis.Comment: 58 pages, to appear in "Computability: G\"odel, Turing, Church, and beyond," MIT Press, 2012. Some minor clarifications and corrections; new references adde

    Automating Access Control Logics in Simple Type Theory with LEO-II

    Full text link
    Garg and Abadi recently proved that prominent access control logics can be translated in a sound and complete way into modal logic S4. We have previously outlined how normal multimodal logics, including monomodal logics K and S4, can be embedded in simple type theory (which is also known as higher-order logic) and we have demonstrated that the higher-order theorem prover LEO-II can automate reasoning in and about them. In this paper we combine these results and describe a sound and complete embedding of different access control logics in simple type theory. Employing this framework we show that the off the shelf theorem prover LEO-II can be applied to automate reasoning in prominent access control logics.Comment: ii + 20 page

    Embedding and Automating Conditional Logics in Classical Higher-Order Logic

    Get PDF
    A sound and complete embedding of conditional logics into classical higher-order logic is presented. This embedding enables the application of off-the-shelf higher-order automated theorem provers and model finders for reasoning within and about conditional logics.Comment: 15 pages, 1 Figure, 1 Tabl

    Peer Review of a Formal Verification/Design Proof Methodology

    Get PDF
    The role of formal verification techniques in system validation was examined. The value and the state of the art of performance proving for fault-tolerant compuers were assessed. The investigation, development, and evaluation of performance proving tools were reviewed. The technical issues related to proof methodologies are examined. The technical issues discussed are summarized

    A Formal Verification Environment for Use in the Certification of Safety-Related C Programs

    Get PDF
    In this thesis the design of an environment for the formal verification of functional properties of safety-related software written in the programming language C is described. The focus lies on the verification of (primarily) geometric computations. We give an overview of the applicable regulations for safety-related software systems. We define a combination of higher-order logic as formalised in the theorem prover Isabelle and a specification language syntactically based on C expressions. The language retains the mathematical character of higher-level specifications in code specifications. A memory model for C is formalised which is appropriate to model low-level memory operations while keeping the entailed verification overhead in tolerable bounds. Finally, a Hoare style proof calculus is devised so that correctness proofs can be performed in one integrated framework. The applicability of the approach is demonstrated by describing its use in an industrial project
    corecore