A Formal Verification Environment
for Use in the Certification

of Safety-Related C Programs

von Dennis Walter

Dissertation

zur Erlangung des Grades eines Doktors der
Ingenieurwissenschaften
— Dr.-Ing. —

Vorgelegt im Fachbereich 3 (Mathematik & Informatik)
der Universitat Bremen
im September 2010

Datum des Promotionskolloquiums: 16. November 2010

Gutachter: PD Dr. Christoph Liith (Universitdt Bremen)
Prof. Dr. Jan Peleska (Universitit Bremen)

Zusammenfassung

In dieser Dissertation werden der Entwurf und die Entwicklung einer Umge-
bung zur durchgéingig formalen Verifikation funktionaler Eigenschaften sicher-
heitsbezogener, in der Programmiersprache C verfasster Software beschrieben.
Das Hauptaugenmerk liegt hierbei auf der teils automatisierten und teils vom
Benutzer gefithrten Verifikation nicht-trivialer mathematischer Berechnungen,
die etwa im Bereich moderner Sensortechnik eine bedeutende Rolle spielen
und deren nachweisliche Korrektheit Voraussetzung einer Zulassung des diese
verwendenden Gesamtsystems ist. Zu Beginn der Arbeit wird der gesetzlich-
normative Rahmen analysiert, welcher fiir eine sicherheitstechnische Zulassung
von Bedeutung ist, wenn programmierbare elektronische Systeme und damit
insbesondere auch Software verwendet werden. Die Schwerpunkte der Arbeit
liegen erstens in der Verbindung zweier bestehender formaler Sprachen, ndm-
lich der Logik hoherer Ordnung wie sie im Theorembeweiser Isabelle formal-
isiert wurde, sowie einer programmiersprachenéhnlichen Spezifikationssprache
im Stile des Design by Contract Paradigmas. Diese Verbindung ermoglicht es,
gleichzeitig codenah und auf einer angemessenen Abstraktionsebene funktionale
Eigenschaften von Programmen zu spezifizieren. Zweitens wird ein Speicher-
modell fir die Programmiersprache C im Theorembeweiser Isabelle formalisiert,
welches hinreichend detailliert ist, um géngige systemnahe Operationen model-
lieren zu kénnen, wiahrend es den damit tiblicherweise einhergehenden Verifika-
tionsaufwand in ertréglichen Grenzen hilt. Schliellich werden auch die Seman-
tik einer Sprachteilmenge von C formal definiert sowie Beweisregeln im Stile
des Hoare-Kalkiils daraus abgeleitet, so dass ein liickenloser Nachweis der Kor-
rektheit von Programmen beziiglich der spezifizierten Eigenschaften ermdoglicht
wird. Die Tauglichkeit des Ansatzes wird nachgewiesen, indem die Anwen-
dung in einem realen Projekt beschrieben wird. Konkret wurde mithilfe der
Verifikationsumgebung ein substanzieller Teil der normativ geforderten Veri-
fikationsmafinahmen fiir eine sicherheitsbezogene Software abgedeckt. Sowohl
diese Software als auch die hier beschriebene Verifikationsumgebung wurden
von einer zustdndigen Stelle beziiglich ihres Einsatzes in sicherheitsbezogenen
Szenarien positiv begutachtet.

Abstract

In this thesis the design and the development of an environment for the for-
mal verification of functional properties of safety-related software written in the
programming language C is described. The main focus lies on the partly auto-
mated and partly user-guided verification of non-trivial mathematical compu-
tations that play an important role in modern sensor technology, among others.
The demonstration of the correctness of these computations is an absolute pre-
requisite for their approval by a certification authority. The relevant legal and
normative setting is analysed at the beginning of this work, which applies to
safety-related systems that make use of programmable electronic devices and
software in particular. There are three major achievements contained in this
work. Firstly, a formal connection is established between the expressive lan-
guage of higher-order logic, as it is formalised in the theorem prover Isabelle,
and a specification language which stays close to the syntax and semantics of the
programming language and which lies in the tradition of the design by contract
methodology. This connection allows to specify functional properties of pro-
grams in a code-centric and at the same time appropriately abstract fashion, so
that the clean mathematical character of higher-level specifications is retained.
Secondly, a memory model for the programming language C is formalised within
the theorem prover Isabelle which is sufficiently detailed to model low-level mem-
ory operations while still keeping the entailed verification overhead in tolerable
bounds. Finally, a denotational semantics for a subset of C is formally defined
and a Hoare style proof calculus is derived from it such that the correctness of
programs with respect to their specifications can be shown in one integrated
framework. The applicability of the approach is demonstrated by describing its
use in a real project. Concretely, a substantial number of the verification mea-
sures stipulated by an international safety standard for safety-related software
is covered by employing the verification environment described here. The com-
pliance of both the safety-related software developed in the project as well as
the verification environment itself have been officially asserted by a responsible
certification authority.

Danksagung

Ich bedanke mich sehr herzlich bei meinem Betreuer Christoph Liith, der mir
die Arbeit an dieser Dissertation ermdéglicht und mich stets mit Rat und Tat
unterstiitzt hat.

Weiterer Dank gebiihrt den ehemaligen Mitgliedern des SAMS-Projekts, allen
voran Holger Téaubig und Udo Frese, fiir die gute Zusammenarbeit und etliche
Diskussionen, die zur Verbesserung der hier vorgestellten Arbeit beitrugen.

Schlieflich danke ich meinen Eltern und meiner Freundin Maren dafiir, dass sie
nie an mir gezweifelt haben.

Personne n’est sujet a plus de fautes
que ceux qui n’agissent que par réflexion.

Luc de Clapiers, Marquis de Vauvenargues (1715-1747)

Contents

1 Introduction
1.1 Motivation e e e e e
1.2 The SAMS Project
1.3 Contributions
1.4 Related Work oo
1.5 Overview

2 Legal and Technological Background
2.1 Laws, Standards and Guidelines
2.1.1 EC Machinery Directive
2.1.2 The Safety Standard IEC 61508
2.2 The Theorem Prover Isabelle
2.2.1 Concepts
2.2.2 Presentation of Formal Proofs.

3 Language for Functional Specification
3.1 Classification
3.2 Annotations
3.3 Specification Expressions
3.3.1 Abstract Syntax L oo
3.3.2 Embedding Isabelle/HOL
3.3.3 Types in Specification Expressions
3.4 Memory Layout Descriptions
3.4.1 Memory Descriptors L.
3.4.2 Separation Constraints
3.4.3 Validity of References and Arrays.
3.5 Further Language Elements
3.5.1 Modification Frames
3.5.2 Statement Annotations
3.5.3 Declarations and Symbolic Constants

4 Formalised Memory Model for C
4.1 Evaluation of Possible Representations
4.2 Finite Typed Maps
4.2.1 Representing Types
4.2.2 Atomic Values o
4.2.3 Flattening of Aggregate Values
4.2.4 Locations

ix

— 00~ O =

Contents

4.2.5 Memory as Finite Maps 78
4.2.6 Valid Pointers and Arrays 79
4.3 Location Inequalities oL 81
4.3.1 Structures and Arrays 82
4.4 Non-Atomic State Modification 83
4.5 Representation Functions and Memory 86
4.5.1 Representations as Structures 87
4.5.2 Representations as Arrays 89
C Programs and Specifications in Isabelle/HOL 95
5.1 Language Subset L. 95
5.1.1 Discussion of Language Features 96
5.2 Abstract Syntax 100
5.2.1 Types and Expressions 100
5.2.2 Statements and Declarations 103
5.2.3 Translation Units and Linked Programs 105
5.3 Semantics Lo 106
5.3.1 Evaluation Context 107
5.3.2 Denotational Semantics 108
5.4 Side-effect Free Expression Evaluation 113
5.4.1 A Syntactic Condition for Side-Effect Freeness 114
5.4.2 Equivalence of Semantics 115
5.5 Specifications in Isabelle/HOL 116
5.5.1 Type Checking 118
5.5.2 Modification Sets Lo 118
Hoare Logic and Verification Conditions 121
6.1 Specification Satisfaction. 121
6.2 Modular Verification 122
6.2.1 Modular Function Correctness 123
6.3 Proof Rules 124
6.3.1 Syntactic Notion of Satisfaction 124
6.3.2 Proof Strategy 125
6.3.3 Lvalues and Expressions 126
6.3.4 Function Calls and Statements 128
6.3.5 Declarations and Weakening 135
6.4 Structure of the Initial Verification Condition 136
6.41 Example. o 137
6.4.2 Structural Simplification, 138
6.5 Tactics for Simplifying Verification Conditions. 140
6.5.1 Stepping Through the iVC 140
6.5.2 Read/Update Simplification 141
6.5.3 Further Tactics 145
Verification of the SAMS Code 147
7.1 Algorithm for Computing Safety Zones 147
7.1.1 Braking Model 148
7.1.2 Computation of Safety Zones 150
7.2 Domain Modelling 0 .. 153

7.2.1 Formalisation of the Braking Model 153

Contents xi
7.2.2 Arc Approximation L. 158

7.3 Concrete Specifications and Verification 162
7.3.1 Braking Model Computations 163
7.3.2 ArcCoverings. 167

7.4 Reflection 170
741 KeyFigures oo Lo 170
7.4.2 FErrorsFound 171
7.4.3 Verification Process 174
7.4.4 TImpact of Changes 175
7.4.5 Technical Realisation 176
7.4.6 Limitations 177

7.5 IEC 61508 Safety Process Integration. 177
7.5.1 Tool Qualification 177
7.5.2 Certification of the Verification Environment 179
7.5.3 Covered Verification Measures 181
7.5.4 Traceability oo 183
Conclusion 185
8.1 Summary 185
8.2 Concluding Remarks, 186
83 Future Work 189
Isabelle/HOL Theory Graph 191
Concrete Code Examples 195
B.1 Example: Initial Verification Condition. 195
B.2 Implementation of Braking Configuration Functions 198
B.3 Implementation of the Arc Hull Function 199
Bibliography 203

xii Contents

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6

Architectural overview of the SAMS verification environment . . 4
Computation of safety zones 6

Standards for the development of AGVs and safety laser scanners 14
Flow diagram depicting applicable conformance procedures . . . 19
Assigning an SIL to safety functions in low or high demand modes 22
Software development process as of IEC 61508-3: the V-model . . 25

An example proof in the structured Isar proof language 32
The same theorem proven in the tactic style 32
Functional specification of a half-adder 39
Abstract syntax of specification expressions 42
Functional specification of a matrix transformation operation . . 49
The C type taxonomy 51
The type system of specification expressions 53
Abstract syntax of memory descriptors (mvalues) 56
Declaring theory references and Isabelle/HOL functions 63
Abbreviations for often used specification expressions 63
Redirecting C preprocessor definitions to Isabelle/HOL constants 63
Postfix annotations for Isabelle/HOL constants 63

Offsets, values, paddings and types for flattened aggregate values 74

The preorder property 75
Unrelated top-level objects 76
Update theory for integer values 80
Modification sets considering extension and deallocation 85
Abstract syntax of C expressions 101
Abstract syntax of C statements and declarations 104
Semantics of statements 0L 110
Rules for the translation from abstract to Isabelle syntax 117
Proof rules for lvalues and expressions 127
Proof rules for expressionso oL 129
Proof rules for statements 132
More proof rules for statements 134
Administrative proof rules L oL 135
Initial verification condition of the example program 138

xiii

xiv List of Figures
7.1 Safety zones in state-of-the-art safety laser scanners 148
7.2 A violated safety zone oL 148
7.3 The braking model allows circular and straight trajectories . . . 149
7.4 Two piecewise linear functions approximate the actual function . 150
7.5 The shape of the EUC is approximated by its convex hull 151
7.6 Approximation of an arc by start- and endpoint auxiliary points 152
7.7 Coordinate system for a vehicle with steered front axle 155
7.8 Geometric construction of the stop position (z,y) 156
7.9 Construction of points to obtain triangular arc coverings 160
7.10 Specification expression defining requirements on global variables 163
7.11 Computation of a braking interval for a given velocity 164
7.12 Computation of braking distances. 165
7.13 Computation of (s,) for a given (v,w) and latency ¢; 167
7.14 Function computing an arc approximation using auxiliary points 168
7.15 Covered measures required by IEC 61508-3, Annex A and B . . . 182

A.1 Isabelle/HOL theory graph 193

Chapter 1

Introduction

This thesis contributes to the field of software verification. It describes the con-
cepts, the realisation and the application of a methodology to specify desired
properties about software systems written in the programming language C and
to verify that these properties are actually satisfied. An integral part of this
work is the implementation of this methodology in a formal verification envi-
ronment, where by formal both its mathematical foundations and the rigour
applied during its construction and use are referred to.

1.1 Motivation

A safety-related system is a system whose malfunction leads to hazardous con-
ditions and therefore puts the lives and health of humans or the integrity of
the environment at risk. Computer-based safety-related systems are ubiquitous
nowadays, mostly appearing as embedded systems inside larger systems. We
find them in our cars in the shape of electronic stability control and anti-lock
braking systems. Modern aviation and railway transportation are inconceiv-
able without the aid of computer technology. We also rely on them in X-ray
computed tomography, lung ventilators, cardiac pacemakers and several other
medical equipment. Another example is the industrial process and automation
sector, where an increasing number of tasks is performed by computer-controlled
machines, but where an interaction between machines and personnel still takes
place.

Software safety. Due to the increasing complexity of these systems, which
rises with the number of requirements on their functionality, more and more
safety-related functionality is realised through software. This makes software
safety an important aspect of the overall system safety warranting its consid-
eration in all applicable modern safety standards, such as DO-178B, IEC 61508
or EN ISO 13849 [134, 80, 52]. It is commonly defined as the freedom from
hazardous conditions or the absence of unjustifiable risks in a software system.
Software safety can only be achieved through a combination of several mea-
sures, including detailed planning of the software life cycle, proper assignment
of responsibilities, the establishment of tried and tested programming guide-
lines, and the management of software configurations. All these are arguably

2 Chapter 1. Introduction

‘soft’ measures that influence software quality indirectly. The primary means to
achieve software safety is in any case to show that the created software satisfies
the requirements laid upon it. This necessitates the specification of require-
ments and the carrying out of wverification activities. Safety-related software
development processes distinguish several requirement levels that correspond to
the different levels of abstraction at which the software under development is
viewed. They assign verification activities to the artefacts produced at each
level as well as to the transition steps from one level to the next, more refined
one. Ensuring traceability is a key goal, so that low-level requirements, designs
or software functions are always derived from higher level requirements. This
validates the completeness of the top-level specifications and avoids the intro-
duction of unwanted additional functionality.

On the source code level the verification measures are intended to verify
compliance with the low-level requirements. The measures can be classified
into testing, static analysis and formal methods. The objective of testing is to
discover defects in the software and to provide exemplary evidence of the com-
pliance with specific low-level requirements by running the software with defined
input vectors. It is the only means able to eventually validate the correctness of
hardware/software integration, since this always involves the execution of the
software on a specific platform. Static analysis comprises automatic techniques
used to ensure a well-defined and restricted set of non-functional properties of
the software, such as type correctness, the exclusive use of previously initialised
variables, or the observance of syntax-based coding guidelines. Their application
is advisable, but the delivered guarantees are rather weak and can hence only
support a more comprehensive verification by other means. Formal methods
embody the techniques that can deliver the strongest guarantees about the cor-
rectness of a software, since both the models they work on as well as the analyses
they perform are by definition equipped with a mathematically precise mean-
ing. They are commonly divided into model checking, abstract interpretation
and deductive methods. The former two have recently gained much attention
through their application in industrial projects [48, 138] and their discussion in
a supplement of the latest revision of the most relevant software safety standard
in aviation, DO-178C [31]. Their most intriguing feature is that they generally
provide a large degree of automation, while at the same time allowing the verifi-
cation of well-defined yet interesting properties of a software. Examples include
verifying the bounds on the execution time or the stack usage of extremely large
(> 100 - 10® lines of code) software systems.

Deductive formal methods. In the context of software verification deduc-
tive methods are verification methods that are based on formal logic. Formal
models are expressed in terms of definitions and axioms of a suitable logic, and
properties about these models are established by proving theorems as deriva-
tions according to the logic’s rules of inference. Well-known examples of formal
methods used on higher abstraction levels include CSP or the Z specification
language and their associated reasoning tools. More recent offspring of these
are the m-calculus and the Alloy modelling language. The standard deduction-
based technique for specifying and verifying low-level functional requirements
about source code is the use of mechanised Hoare logics. Here, mechanised
refers to their realisation in software as opposed to mere pen and paper for-

1.1. Motivation 3

malisations. They are characterised by the use of a formal language —most
commonly some variant of first-order logic— to precisely state required prop-
erties of program units. These are split into preconditions and postconditions,
expressing assumptions about the program unit’s environment before the unit
is executed and guarantees about it after execution, respectively. A statement
asserting that a program satisfies its specification is generally written as a triple
of the precondition, the program unit and the postcondition. For example, the
triple

F{ True} if (x<0)x=-x; {x>0} (1.1)

asserts that after execution of the displayed program unit under no assumptions
(more precisely: if True holds) the variable x will be non-negative.

Hoare logics are equipped with a simple deductive system. This system is
used to decompose triples and to obtain a collection of purely logical propositions
in the formal language. The logical validity of these propositions implies the
correctness of the program. Classical examples are the rule for the conditional

F{PAD} ¢, {Q} F{PA-b} 2 {Q}
F{P}if (b) c; else ¢ {Q}

and the rule to logically strengthen the precondition and to weaken the post-
condition,

(1.2)

Pr—P F{P}c{Q} Q—¢&

F{P'} e {Q} '

Interpreted operationally from the bottom to the top, this rule yields two purely

logical propositions (the implications) and allows to transform the triple’s pre-

condition and postcondition such that further rules become syntactically ap-

plicable. The validity of the propositions is proven in the logic of the formal

specification language and practically involves the use of automatic or interac-
tive theorem provers.

The class of properties that can be expressed in this way is determined by
the definition of correctness, or validity of a triple, and by the expressivity of
the formal language in which the specifications are formulated. In any case,
from an abstract viewpoint classical Hoare logics regard programs as functions
I x X — P(O x X) from some input I € Z and an environment o € ¥ (which
might consist of the program’s global variables, open file descriptors, or the
contents of a hard disk) to a collection of results consisting of the function’s
output O € O and a possibly modified environment ¢’ € ¥. This is a very
general approach regarding the functional properties that can be expressed. On
the other hand, it ignores all properties that pertain to the execution steps (or
trace) that constitute a program run. Examples of properties that cannot be
reasoned about in Hoare logics are a program’s execution time, its stack usage
or the compliance with the usage protocols of libraries. Extensions that encode
these properties to some degree exist, however [8].

The focus on functional properties is a clear separation of concerns and their
sublime importance for software safety is undisputed. However, a major critique
of Hoare logics, and deductive methods in general for that matter, is that their
application is usually not entirely automatic, but demands extensive expertise
and manual interaction from their users. Moreover, the practical relevance
of software verification with Hoare logics is limited by the fact that it does
not harmonise well with language constructs present in practical programming

(1.3)

4 Chapter 1. Introduction

Source files

C Compiler 4{ Object code J

Correctness certificate Base theories

Correcl[less Proof script Program _Iogic
assertion (semantics,

proof rules,
tactics)

A

‘ L»
SAMS
front-end

A

Isabelle/HOL Statenece]

L A
Program
representation

Domain model

Th
=

Figure 1.1: Architectural overview of the SAMS verification environment

languages. The most prominent examples are memory address arithmetic and
pointer aliasing, which are ubiquitous in programs written in C.

The interest in Hoare logics and related techniques has increased recently
due to a series of success stories related to their (academic) application to verify
interesting algorithms such as memory garbage collectors. The degree of au-
tomation could be improved due to the progress made in the reasoning power
of interactive proof assistants and automatic theorem provers. Moreover, the
mismatch between Hoare logics and C’s low-level view on memory was remedied
by devising interesting new formalisations of memory models that avoid certain
problems such as excessive aliasing by their very construction.’

Overview of the methodology. The application domain targeted in our
work is that of software for safety-related control systems and industrial robotics.
High-level requirements in these domains are especially well-suited for a mathe-
matically precise formulation. A good example is the safety function of ensuring
collision avoidance for mobile robots. The distance between a moving robot and
the objects in its surrounding that is required to ensure collision avoidance can
be expressed as a function over the robot’s characteristics such as its speed,
braking behaviour and shape. Another example is the monitoring of objects
transported on band-conveyors: a laser scanner that monitors the band’s sur-
face might be required to raise a halt signal whenever an object deviating from
specified geometric characteristics is detected. A high-level requirement might
define these characteristics in terms of properties such as having right-angled
boundaries, a planar surface or a maximum height.

The approach to software verification pursued in this thesis lies in the tra-
dition of Hoare logics. Its basic architecture and the verification work flow are

IReferences for this paragraph can be found in Sec. 1.4 discussing related work.

1.1. Motivation 5

depicted in Fig. 1.1. High-level requirements and concepts of the application
domain in which the software system to be verified is used are formalised as theo-
ries of the proof assistant Isabelle [116]. This is referred to as the domain model.
The model that was developed for the concrete verification effort described in
this thesis is based on two-dimensional geometry. It formalises concepts such
as convex hulls of point sets, approximations of circular arcs by polygonal lines,
or several standard vector operations. The C source code is then annotated
with specifications expressing its required behaviour. A characteristic feature
of our methodology is that this behaviour is formulated at the level of the do-
main model. This is achieved by abstracting program entities to domain entities
and by referencing entities defined in the domain model in code specifications.
For example, a source code function computing a robot’s braking trajectory is
specified abstractly by interpreting the robot as a two-dimensional object and
expressing its motion in terms of mathematical geometric transformation func-
tions, and not by directly stating properties of the data structures that merely
represent the robot’s shape or the parameters of the transformation function in
the code. Specifications use the abstraction facilities of the state model —i.e.,
the formal representation of the program’s environment— to formally associate
program entities with their high-level domain counterparts.

Technically, the annotations are hidden from the parser of a regular compiler
by embedding them in specially formatted code comments. This ensures that the
verified code can directly be translated to object code without modifications. For
verification, the annotated source is parsed by a front-end which does recognise
the specifications. It type checks specifications as well as source code and ensures
the observance of coding guidelines. The tool eventually translates its input to
an abstract syntax tree (called the program representation) in a format that
is understood by the theorem prover. Additionally, a correctness assertion is
output; this is a theorem whose proof establishes the correctness of the program
unit under consideration with respect to its annotated specification. Verification
is eventually reduced to theorem proving. The theorem finally has to be proven
by a human verifier within the interactive the theorem prover Isabelle/HOL,
utilising the program logic which includes procedures that automate large parts
of the proof work as well as high-level theorems from the domain model.

Statement of the thesis. The hypothesis that is made and investigated in
this thesis is that formal functional verification is an adequate means to increase
the confidence in software employing sophisticated mathematical computations
to such an extent that the software is ready for use in safety-related systems.
More specifically, we argue first that safety requirements can be formulated
at the source code level in an unambiguous, well-defined language that allows
to maintain a rigorous connection to a formal model of the high-level safety
requirements. Second, we claim that it is feasible to build precise formal models
of a relevant class of programs written in the C programming language, which
can be reviewed by external bodies such as a certification authority. And third
we assert that modern interactive theorem provers for higher-order logic are
appropriate verification vehicles by which the compliance of the program model
with the formalised requirements can be established.

6 Chapter 1. Introduction

1.2 The SAMS Project

The work that this thesis is built upon was done in the context the SAMS
project, which is an acronym for Safety Component for Autonomous Mobile
Service Robots.? The project was a cooperation between Leuze electronic?, a
manufacturer of sensor equipment and specifically laser scanners, the Mathe-
matics and Computer Science Department of the University of Bremen, and the
Safe and Secure Cognitive Systems research department of the German Research
Center for Artificial Intelligence (DFKI)*. The goal of the SAMS project was
the development and certification of a safety component for autonomous mobile
robots. The task of this component, which is supposed to be mounted on an
equipment under control (EUC; here: the robot), is to provide collision avoid-
ance between the moving EUC and its environment by sensing the environment
with an associated safety laser scanner, by evaluating the scanner’s distance
measurements to detect possibly hazardous obstacles, and by timely emitting
an emergency stop signal to bring the EUC to a halt. In contrast to existing
industrial approaches to collision avoidance, the decision whether to emit the
emergency stop signal also depends on the current velocity of the EUC: at slow
speed obstacles may be detected nearer to the EUC without intervention than
at higher speed.

Figure 1.2: Computation of safety zones

The main task of the software of this component is to compute a conserva-
tive over-approximation of the actual braking area covered by the EUC during
braking, given its current forward and angular velocity. This approximation is
called a safety zone. Fig. 1.2 depicts their algorithmic computation: (a) The
motion of the EUC is anticipated according to a simple braking model, (b) the
covered area is approximated by a convex polygon, (c) the uncertainty of the
velocity measurements as well as (d) further safety margins related to the re-
sponse time of the overall system and to numerical imprecision are incorporated,
and (e) the safety zone is eventually transformed into a representation that al-
lows a fast comparison with the measurements of the laser scanner to detect
obstacles, where a minimum distance is assigned to each laser beam emitted
by the scanner. Slightly oversimplifying, an obstacle is detected whenever the
measurements of the laser scanner yield smaller values than those required by
the safety zone representation. Whenever this happens, the emergency stop
signal is emitted. Solutions like this are well-known in the scientific robotics
community [93, 60, 108]. The novel aspect of the SAMS project is that such a

2The project was funded by the German Federal Ministry of Education and Research (FKZ
01 IM F02 A)

Shttp://www.leuze.de

4http://www.dfki.de/web/research/sks

http://www.leuze.de
http://www.dfki.de/web/research/sks

1.3. Contributions 7

software has been certified by an authority (TUV Siid Rail GmbH) as conform-
ing to the requirements of the international safety standard IEC 61508-3 [80].
This substantially aids in providing a safety case for safety-related systems that
fall under the scope of the EC machinery directive (2006/42/EC), but also in
other scenarios in which the conformance with regulations is assumed or at least
supported by the conformance with TEC 61508.

1.3 Contributions

This work contributes to the field of software verification in the following ways:

1. We provide a formalised memory model for C programs that combines
the properties of the Burstall-Bornat split heap approach [34, 29] with the
unrestricted use of C’s address-of operator &. In particular, the model
allows to treat the addresses of local variables and structure members
as first-class citizens that can be assigned to pointer variables, passed
as function arguments, etc., while still keeping the induced verification
overhead in tolerable bounds.

2. We developed a specification language for C programs which allows to es-
tablish a formal connection between high-level concepts of the application
domain and their concrete representations as C datatypes. The language
is a hybrid between traditional first-order design-by-contract specification
languages such as ACSL [18] and the expressive language of Isabelle/HOL.
The language allows us to express the properties of program functions in
terms of domain concepts, rather than in terms of program variables. This
gain in abstraction significantly increases the value of code specifications
and the confidence in the correctness of the specification w.r.t. higher-
level requirements.

3. We created a verification environment in which all constituent parts have
been developed with formal scrutiny within the theorem prover Isabelle,
except for a programmatic front-end that translates annotated C source
code to the prover’s input language. All associated theories define con-
servative extensions of the default Isabelle/HOL theory library. The de-
velopment comprises the memory model for C, a deep embedding of C
programs in Isabelle/HOL together with an intuitive denotational seman-
tics, a model of parts of two-dimensional geometry together with the the-
orems necessary to prove concrete programs correct, a set of proof rules
used to derive verification conditions and finally tactics that aid in proving
the generated verification conditions. While similar work has been done
by Schirmer [136], our approach is different in that it more clearly sepa-
rates the specification and verification phases by attaching specifications to
source code instead of their representations in the theorem prover. More-
over, our scope is more limited, since the design of the environment was
guided by the concrete needs of verifying safety-related robotics software.
We claim that this deliberate restriction simplifies the tool qualification
with responsible authorities.

4. We applied the verification environment in a real-world industrial project,
where we proved the correctness of a software module used to achieve

8 Chapter 1. Introduction

collision avoidance for an automated guided vehicle protected by safety
equipment, in particular a laser scanner. A letter of conformance by the
certification authority TUV Siid Rail GmbH attests us the applicability
of our approach for software used in safety contexts up to SIL 3 of the
safety standard IEC 61508.

1.4 Related Work

Previous work that is directly related to the topic of a particular chapter in this
thesis is discussed at the beginning of the respective chapter. A classification of
our specification language is given at the beginning of Chapter 3. The discussion
of other formalisations of memory models and the semantics of C is provided
in Chapters 4 and 5, respectively. Our approach to verification is not fully
automatic, but we rely on user interaction to discharge proof obligations that
cannot be handled by the automatic procedures built into Isabelle. The relation
between our approach and fully automatic logic-based verification condition
generators is explained in Chapter 6.

The more generally related work falls into the three categories of Hoare logics
for program verification, automatic techniques for the analysis of software, and
applications of formal verification in a certification context.

Hoare logics. Hoare logics have a long tradition in computer science, origi-
nating from the seminal papers by Floyd [59] and Hoare [76]. This work has been
extended to incorporate language features such as procedures, recursion, mem-
ory allocation and arrays, among others (e.g., [35, 34, 91]). More recently, Bor-
nat [29] and Nipkow [115] have given formalisations of Hoare logics for pointer
programs in the theorem provers Jape and Isabelle. The former includes a proof
of the Schorr-Waite graph marking algorithm, which has since become a bench-
mark for tools concerned with proving programs over linked data structures
correct. Mehta and Nipkow [105] transfer this proof to Isabelle/HOL.

There exist many tools for the interactive verification of Java programs based
on Hoare-style pre-/postconditions (e. g., [10, 20, 102, 3]), but there are less such
tools for C, probably due to its low-level nature and under-definedness. The two
most advanced tools are probably Why [55] (together with its instantiation to C
named Caduceus [56]) and the framework developed by Schirmer [136] which is
also used within the Verisoft project [5]. Our verification environment is close in
spirit to these two tools. Caduceus transforms concrete C code to the interme-
diate language of Why, which excludes aliasing between variables. This enforces
a rather involved encoding of C’s program variables and is a programmatic step
whose correctness must be trusted. Schirmer, on the other hand, also differen-
tiates between C programs and a simpler program representation called Simpl,
but proves the equivalence between the two formalised semantics, hence increas-
ing trustworthiness. Schirmer and Wenzel [137] extend on this work by defining
a parametric memory model which makes use of Isabelle’s concept of local the-
ories. Gast [62] is also concerned with efficient representations of memory to
enable programmer-friendly program verification. His concept of memory lay-
outs allows to isolate the structural memory assertions of separation logic [132]
from the logical essence of specifications while retaining several properties useful
to restrict aliasing between linked data structures.

1.4. Related Work 9

SPARK [12] is a subset of the Ada programming language used in critical
systems and comes with its own verifier that allows to prove programs correct
w.r. t. manually annotated pre-/postconditions.

Recently, the interactive formal verification of systems code — i. e., programs
working at the lowest level of the software stack such as operating systems,
garbage collectors, or firmware — has gained much attention. Klein [88] gives an
overview of the advances made in formal operating systems verification. The
verification of the seL4 microkernel is described in [89]. Leinenbach and Petrova
[95] verified a simple compiler for the CO subset of C.

Automatic verification techniques. It is obviously extremely appealing to
be able to prove properties of programs correct without human intervention.
The price to pay in virtually all cases is a constraint on the kind of properties
that can practically be verified.

Blanchet et al. [25] describe Astrée, a tool based on abstract interpretation
[49] that automatically proves the absence of run-time errors in synchronous,
time-triggered, safety critical C programs, which include undefined behaviour
such as indexing arrays out of bounds, integer overflow and division by zero.
The tool as been successfully applied in industrial settings.

Motivated by the success of hardware model checking, software model check-
ers have become popular recently. These tools are also used to verify a fixed
set of program safety properties, but also allow to verify simple quantifier-free
assertions inserted into the code by the developer. Their application has been
most successful in the verification of device drivers and API usage protocols;
SLAM [9] and BLAST [75] are two examples of this. Clarke et al. [41] apply
bounded model checking to verify C programs. Essentially, the bound applies to
the maximum number of loop iterations considered by the tool. At the cost of
making the verification fail when no safe upper bound can be determined, their
tool can be applied as a debugger, because concrete error traces can be pro-
duced and visualised if property violations are detected. Their CBMC tool has
been evaluated in several case studies, e.g., [87, 130]. Chaki et al. [36] present
a tool for the automatic verification of C programs exhibiting message-passing
concurrency. Both programs and specifications are modelled as labelled transi-
tion systems (LTS) and a model checking technique based on counter-example
guided abstraction refinement [40] is employed to prove trace containment be-
tween the two LTS. Schlich and Kowalewski [138] evaluate the use of software
model checking in embedded systems. They point out that industrial users miss
the possibility to analyse arithmetic and continuous properties of their systems
when applying model checking. An excellent survey on automatic formal soft-
ware verification is given by D’Silva et al. [53].

A recent tool for the verification of operating systems code written in C is
VCC [43]. It requires manually supplied annotations of loop invariants and func-
tion contracts, but uses the SMT solver Z3 [51] to automatically discharge the
generated proof obligations. The tool has been used to verify mainly structural
properties like data type invariants of concurrent C programs [45].

A technique for (almost) automatically proving functional properties of Java
programs is described by Zee et al. [153]. They prove the functional correctness
of linked data structure implementations by combining a collection of deci-
sion procedures, first-order theorem provers and interactive theorem proving in

10 Chapter 1. Introduction

higher-order logic. They rely on invariants and assertions that must be sup-
plied manually, but otherwise achieve a high degree of automation by splitting
verification conditions into large conjunctions in which each conjunct can be
passed to an appropriate prover. They use abstract concepts like sets and rela-
tions in specifications at the interface level, similar to what is achieved by our
representation functions.

Certifying software using formal verification. The benefits of using for-
mal functional verification in a certification context, an overview of the approach
described in this thesis as well as the experiences made during verification and
certification are also described in the papers [61, 100, 150]. A major aspect by
which this work differs from many others also concerned with formal software
verification (e. g., [4, 95, 98, 105]) is that it is performed in a real world project in
which the advocated methods and the software thus verified are actually exam-
ined by a certifying authority. We share this characteristic with Heitmeyer et al.
[74], who describe the verification of security properties for a memory separation
kernel used in an embedded device. Their method is based on refinement [2]
and the focus is on establishing a formal connection between a top-level spec-
ification expressed in terms of a state machine model and annotated C source
code. In contrast to our work, the code annotations are treated as assertions
whose correctness is only manually validated.

O’Halloran [119] discusses the high cost incurred by the requirement of in-
dependence between software development and verification which is set up by
aviation standards like DO-178B [134]. He acknowledges the usefulness of au-
tomatic code generation from more abstract models and advocates a formal
approach to verifying the correctness of the output of the code generator. This
is done by a mechanical translation of both the input model and the output
source code to a dialect of Z and a subsequent refinement proof.

Barnes et al. [11] present a case study demonstrating how formal verification
can be used to achieve conformance with the upper (more demanding) levels of
the Common Criteria, an international agreement forming a basis for evaluating
the security of information technology products. They implemented an access
control software prototype in a subset of Ada and formally proved both that
the code satisfies its design specification as well as that the design specification
is a refinement of a more abstract top-level specification. They conclude that
formal verification helps in certifying high-integrity software in a cost-effective
manner.

Basir et al. [16] verify automatically generated code using theorem proving
in a certification context in the aerospace domain to enable the use of untrusted
code generators, relying on automatic first-order provers. The approach is ex-
tended in [17] to derive safety cases, i.e., structured arguments about system
safety, that reflect the hierarchical structure of the models from which the soft-
ware is automatically generated.

Peleska [126] and Loding and Peleska [97] integrate testing and formal ap-
proaches, using abstract interpretation and model checking, where abstract in-
terpretation is used to prove the absence of run-time errors and to efficiently
exclude infeasible paths, speeding up the constraint solving process used to gen-
erate input vectors for reachability testing. Their approach is compliant with
applicable software safety standards in avionics and railway domains. They

1.5. Overview 11

advocate a unit-at-a-time verification paradigm supported by the expertise of
specialists; code specifications in terms of quantifier-free pre-/postconditions are
therefore encouraged for functional testing.

Finally, an overview over the aspects to be considered by authorities when
formal methods are used in the certification of software is given by Rushby [135].

1.5 Overview

This thesis is structured as follows: Chapter 2 sets the scene by providing back-
ground on regulations applicable when certifying robotics software and by out-
lining the most important aspects of the theorem prover Isabelle. In Chapter 3
we present the specification language developed for specifying deep functional
properties of C programs. Chapter 4 contains a presentation of the memory
model formalisation on which the semantics of a subset of the C programming
language are based, as explained in Chapter 5. The Hoare-style proof rules used
for the generation of verification conditions are given in Chapter 6, together with
an account of the algorithm for solving aliasing constraints. The application of
the overall verification environment to the code developed in the SAMS project
as well as some reflections of this effort can be found in Chapter 7. We conclude
this thesis in Chapter 8.

12

Chapter 1. Introduction

Chapter 2

Legal and Technological
Background

This chapter provides the relevant background information necessary for an
understanding of the rest of the thesis. On the regulatory side it discusses the
EC machinery directive and the international safety standard IEC 61508. On
the technological side it provides the necessary conceptual information about
the theorem prover Isabelle and introduces its notation, which is used in several
parts of the thesis.

2.1 Laws, Standards and Guidelines

In this section a brief introduction to the legal conditions that make a verifi-
cation effort for safety-related software a necessity is given. The verification
environment described in this thesis can be seen as one solution to (partially)
fulfil this obligation. Since legal conditions differ substantially from country to
country, only the situation in the European Union is considered.

We assume a setting in which an automated guided vehicle (AGV) is to be
used in an industrial storehouse to transport packages from a packaging station
to a dispatch station. The packages are put on the AGV and removed from
it either automatically or manually, but the important fact is that the AGV’s
movement from station to station does not require human intervention.

Law At this point we have already entered legal grounds: AGVs are machinery
according to the definition of the European Parliament and the Council [54]!,
and hence the provisions of this directive apply to them. A primary goal of
this directive is to state and enforce health and safety requirements relating
to the design, construction and placing on the market of machinery. Part of
these provisions is the carrying out of a risk assessment “to determine the health
and safety requirements which apply to the machinery”[54, Annex I, General
Principles]. This risk assessment might partially proceed as follows:

Lor rather national law or regulations implementing the directive (e.g. the German Maschi-

nenverordnung or the Machinery Regulations in the UK)

13

14 Chapter 2. Legal and Technological Background

EN 1525 Safety of industrial trucks — Driverless trucks and their sys-
tems

EN ISO 3691-4 Industrial trucks — Safety requirements and verification —
Part 4: Driverless industrial trucks and their systems

EN 1175-[1-3] Safety of industrial trucks — Electrical requirements

EN ISO 12100-1 Safety of machinery — Basic concepts, general principles for
design — Part 1: Basic terminology, methodology

EN ISO 13849-1 Safety of machinery — Safety-related parts of control systems
— Part 1: General principles for design

EN ISO 13849-2 Safety of machinery — Safety-related parts of control systems
— Part 2: Validation

EN 61496 Safety of machinery — Electro-sensitive protective equipment
— Part 1: General requirements and tests

EN 61508-[1-7] Functional safety of electric/electronic/programmable elec-
tronic safety-related systems

Figure 2.1: Standards relevant for the development of AGVs and safety laser
scanners

1. During the identification of hazards it becomes evident that the AGV’s
driveway might interfere with the workspace of personnel.

2. A risk estimation shows the risk and in particular the non-negligible prob-
ability of serious injury for personnel through the AGV.

3. To reduce this risk, a protective measure must be taken. Because the
interference between personnel and AGV cannot be avoided, it is decided
to install a device to detect the presence of persons. This device can then
be used for collision avoidance. The concrete device opted for is a laser
scanner.

The laser scanner, a safety component, must itself be considered machinery
according to the directive, so that its construction and placing on the market
are subject to the same requirements.

Standards It is important to note that the directive itself is not the document
according to which the development of machinery is practically done. Due
to its wide application area, ranging from sawing machinery over compression
machinery to logic units ensuring safety functions, it is necessarily too general
to be used as a reference for proving compliance with the requirements stated
therein. The directive acknowledges this in its whereas clause (18): “In order
to help manufacturers to prove conformity to these essential requirements, and
to allow inspection of conformity to the essential requirements, it is desirable to
have standards that are harmonised at Community level for the prevention of
risks arising out of the design and construction of machinery.” Practically this
means that the proof of compliance with the provisions of the directive is done
or at least supported by the proper application of domain-specific standards.
Fig. 2.1 represents an incomplete list of standards relevant to the development
of said AGV and laser scanner. Standards relevant to AGVs have been taken
from [147].

Approaching our domain of interest (software verification) further, we note
that the laser scanner will perform a safety function intended as a risk reduc-

2.1. Laws, Standards and Guidelines 15

tion measure for the operation of the AGV. It is also clear that a laser scanner,
containing microprocessors and running software for the interpretation and fil-
tering of its sensor data, is a programmable electronic device. Therefore, among
others, IEC 61508 — Functional safety of electric/electronic/programmable elec-
tronic safety-related systems (which in the European Union has been published
as EN 61508) is an applicable standard. It covers the relevant aspects to be con-
sidered when electric or (programmable) electronic systems are used to execute
safety functions. Even though a manufacturer is not legally obligated to apply
the standard, there are good reasons why this should be done, as explained
in Sec. 2.1.2. But even if it were not applied, the following reasoning would
be valid, because of the directive’s provision of taking the state of the art into
account when placing machinery on the market. The state of the art, which
has no formal definition within the directive, is essentially defined by applicable
current standards, like ITEC 61508.

IEC 61508 states requirements on each phase of the system life cycle. This
concerns technical aspects of a system as well as process-related aspects. In
particular, and in contrast to many previous standards, it states elaborate re-
quirements on the software employed in a safety-related system. A whole part
of the standard (IEC 61508-3) is entitled “Software requirements” and accounts
for 52 pages alone. Major sections thereof are concerned with the verification
and validation of software, covering its planning, execution and documentation.

At this point it has hopefully become clear that software verification does
not only have the “voluntary” objectives of making the software more reliable,
making software development more productive and feeding consultants and re-
searchers involved in verification. Rather, the need for software verification for
safety-related systems can be traced back to legal regulations. This has been
taken into account during the development and application of the verification
environment.

Guidelines One further kind of official document was of importance in the
design of the verification environment. These are the Guidelines for the use
of the C language in critical systems (MISRA-C guidelines) [109]. The use of
guidelines is quite natural for any project. Generally, guidelines may relate to
best-practices for particular tasks, enforce uniform procedures, or define how
certain software tools, documents or machines are to be used. Obviously, the
term has a very broad meaning; the MISRA-C guidelines main objective is to
define a subset of the C language —often referred to as MISRA-C, though not in
the guidelines themselves— that is considered appropriate especially for use in
safety-related systems.? Their application is, again, not specifically mandated
by any standard or law; the use of a language subset, however, is encouraged
by IEC 61508-3 and is almost inevitable when dealing with an under-defined
language like C.

After this motivating fast-forward introduction, a closer look is taken at the
EC machinery directive and the safety standard IEC 61508, since they played
an important role in the SAMS project and eventually had an influence on the
design of the verification environment.

2The term “critical” used in the guidelines’ title is more general and encompasses more
than safety.

16 Chapter 2. Legal and Technological Background

2.1.1 EC Machinery Directive

The Directive 2006/42/EC of the European Parliament and of the Council of
17 May 2006 on machinery, and amending Directive 95/16/EC (recast), collo-
quially abbreviated as machinery directive, is a European directive setting up
requirements on the design, construction, placing on the market and putting
into use of machinery. Its main goals are to remove trade barriers and to enable
free movement of goods through a harmonisation of law among the member
states of the EU, and to ensure the health and increasing the safety of persons
exposed to machinery. The latter goal is pursued by defining health and safety
requirements relating to the design and construction of machinery.

Scope To understand the scope of the directive, a look at the definition of
the term “machinery” is in order. This definition is given in Article 2 of the
directive as “an assembly, fitted with or intended to be fitted with a drive system
other than directly applied human or animal effort, consisting of linked parts
or components, at least one of which moves, and which are joined together for
a specific application”. Further variations are listed to also capture assemblies
not fully satisfying this definition. In any case, the main characteristics of a
machinery are the presence of a drive system and of movable parts. In addi-
tion to machinery, the scope (Article 1) also encompasses safety components.
In indicative (i.e. incomplete) list of safety components is given in Annex V,
with the most relevant items in the context of this thesis being “logic units to
ensure safety functions” and “emergency stop devices”. The former has promi-
nently been added to the list during the most recent amendment; it was not
present in the previous machinery directive 1998/37/EC, which was in force
until December 2009.

Structure The machinery directive is structured into three parts: First, a se-
quence of so-called whereas clauses lists the most important considerations that
led to the adoption of the directive as well as its concrete shape. These clauses
are not legally binding, but rather of explanatory character. Second come 29
articles® that make up the main body of the directive. These articles refer to
12 subsequent annexes containing more detailed information about particular
subjects, e.g. the health and safety requirements or a procedure for compiling
a technical file.

Notable considerations The considerations, or whereas clauses, are not of
direct relevance here; for instance they contain discussions about particular as-
pects of why or why not the directive applies to certain machinery. Two clauses,
however, are noteworthy in this context: (14) points out the necessity of satis-
fying the essential health and safety requirements of Annex I, but relaxes this
by noting that the state of the art as well as technical and economical require-
ments should be taken into account in achieving this aim. While in its wording
this is a limiting statement —opening a loophole for machinery that cannot
reasonably be made strictly as safe as required by the directive’s provisions—
it also gives leeway to the argument that in order to show compliance with the

3Being a computer scientist and not a lawyer, we allow ourselves to write all legal terms
—article, clause, annex, etc.— in lower case, except when referring to explicit entities, e.g.
Annex I

2.1. Laws, Standards and Guidelines 17

directive one may and should refer to current best practices and standards and
apply them. This aspect is relevant for the discussion of why standards like
TEC 61508 should be applied in the manufacture of machinery. Another inter-
esting clause (23) demonstrates that the directive follows current trends of going
beyond analyses that merely try to identify the possible hazards a machinery
might evoke, towards comprehensive risk assessments. A risk assessment, above
all, additionally asks for the estimation, evaluation and comprehensive docu-
mentation of identified hazards, in terms of their probability and the extent of
the possible harm underlying the hazard. The terminology relating to safety
will be further explained in Sec. 2.1.2.

Articles The 29 articles form the main part of the directive. In the context of
a safety-related system development the most relevant aspects are the definition
of the requirements that apply to the placing on the market and putting into
service of machinery (Article 5), as well as the stipulation of the procedures
for assessing the conformity of machinery (Articles 7 and 12). Other articles
cover topics like market surveillance (Article 4), postulating that member states
should take measures to withdraw machinery from the market that does not
comply with the directive; freedom of movement (Article 6), asking member
states not to prohibit or impede the placing on the market and putting into
service of compliant machinery; or a clarification on the exact shape of the CE
marking (Article 16) that indicates compliance with the directive.

Six provisions are given in Article 5, which every manufacturer has to obey
before he is allowed to place machinery on the market or put it into service.
They are the following;:

1. Machinery must satisfy the relevant essential health and safety require-
ments of Annex I.

2. A technical file must be assembled for the machinery. This file docu-
ments the compliance with the requirements of the directive. It must
contain technical drawings of the machinery, a documentation of the risk
assessment performed, the standards that have been used, test results,
the instructions for the machinery, and the EC declaration of conformity.
The details are given in Annex VII. The importance of instructions for
the machinery is emphasised by repeatedly requesting them in a provision
on its own.

3. Conformity with the directive must be assessed in accordance with Arti-
cle 12.

4. The EC declaration of conformity, which is presented in Annex II, must
be drawn up.

5. The CE marking must be affixed on the machinery.

This puts two main burdens on the manufacturer: he must take measures to
satisfy the health and safety requirements, and he must assess the conformity
with the directive, i.e. in particular with the health and safety requirements.

Article 12 lays down three possible assessment procedures. Which one of
these procedures can or must be applied depends on the type of machinery and
on the fact whether or not it was manufactured in accordance with harmonised

18 Chapter 2. Legal and Technological Background

standards. A harmonised standard is a standard with a special status within the
directive. Article 7 introduces a conformity assumption, under which machinery
that was developed according to a harmonised standard is assumed to comply
with the health and safety requirements that are covered by that standard.

One has to keep in mind that the directive applies to any kind of machin-
ery, not just those one would call safety-related. Therefore, it is clear that for
most machinery on the market a simple and economical assessment procedure
is needed. The easiest assessment procedure is self-certification, in which the
conformity is certified by the manufacturer itself, rather than by an external cer-
tification authority. These so-called internal checks are described in Annex VIII
and essentially demand that the manufacturer must ensure the availability of
the technical file for each representative type of the series, and take “all mea-
sures necessary” to ensure compliance of the machinery with the technical file
and the directive.

Annex IV provides an exhaustive list of machinery where safety is of greater
concern. For these machinery self-certification is only possible if harmonised
standards have been applied in the manufacturing process and if they cover all
relevant health and safety requirements of the directive. Otherwise, conformity
must be assessed by an external notified body, i.e. a body that has the formal
authority to perform such an assessment and certify compliance. There are two
options: the manufacturer can perform an EC type-examination (Annex IX) as
well as internal checks on the manufacture, or he can install a quality assurance
system in his company (e.g. as described by the ISO 9000 series). A notified
body must be involved for both the type-examination and the assessment of
the quality assurance system. It is hoped by manufacturers that the latter will
prove to be a more cost-effective route to compliance [99].

Obviously, the chance to avoid involving an external body makes the use of
harmonised standards highly attractive, not least economically. Two common
reasons why manufacturers might revert to other standards are that for partic-
ular machinery there might be (not yet) a harmonised standard available, or
that other standards are more attractive, because they are more relevant out-
side the EU. However, even non-harmonised standards can practically be used
as a supportive argument in EC declarations of conformity [121]. The condi-
tions determining the possible procedures for assessing conformity are depicted
in Fig. 2.2.

Annexes The twelve annexes provide the details of the provisions laid down
in the articles. They also have legally binding character. Annex I can be re-
garded as the heart of the directive, containing the essential health and safety
requirements. They account for 30 pages, i.e. roughly half of all pages of the
directive. Importantly, it is demanded that a risk assessment is carried out to
determine the health and safety requirements that apply to the machinery, and
that the machinery is then designed and constructed according to the assess-
ment results. The risk assessment must identify the limits of the machinery and
the hazards that it generates. By estimating and evaluating the risks, the man-
ufacturer must further determine whether the remaining risk is acceptable and
in accordance with the directive, or whether more risks need to be eliminated
or reduced. The highest priority in this respect is given to the safety integra-

2.1. Laws, Standards and Guidelines 19

/ Machinery /

Referred to
in Annex IV

Manufactured
in accordance with

harmonised standards
no no
yes
b 4
v fan)
A >
UV
\ 4 4 \ \ 4 h 4 \ 4
Internal checks EC type-examination Full quality assurance
on the manufacture (Annex IX) + internal procedure
of machinery (Annex VIII) checks (Annex VIII 3) (Annex X)

Figure 2.2: Flow diagram depicting applicable conformance procedures depend-
ing on machine type and manufacturing process

tion principle*: whenever possible, the manufacturer has to eliminate risks by
choosing a design that does not create the risk in the first place. Only when
this is not possible may the risk-involving design be chosen, and appropriate
protective measures be taken to reduce the risk.

Apart from such general principles, the annex contains concrete requirements
that apply to all kinds of machinery, as well as rather specific requirements for
machinery such as lifting machinery or machinery intended for underground
work. Requirement 1.1.4 gives a good example of how specific the requirements
get for well-established and well-understood problem areas. It is concerned
with the lighting of machinery: “Machinery must be supplied with integral light-
ing suitable for the operations concerned where the absence thereof is likely to
cause a risk despite ambient lighting of normal intensity.” It then specifies char-
acteristics of a proper lighting: “Machinery must be designed and constructed
so that there is no area of shadow likely to cause nuisance/...]”. Several other
requirements relating, among others, to hazards due to fire, explosion, noise,
machinery movement, or even lightning are stipulated.

However, no requirements are given for safety components, let alone logic
devices. To show compliance with the directive for these, one has to refer to
the relevant standards. Revisiting the setting conceived at the beginning of
Sec. 2.1, it can be said that no concrete requirements on AGVs can be found
either. However, paragraph 3.3.3, concerned with self-propelled machinery, con-
tains the relevant sentence from which all else follows: “Remote-controlled ma-
chinery must be equipped with devices for stopping operation automatically and
immediately and for preventing potentially dangerous operation/...]”. Again, to

4also called inherently safe machinery design and construction by the directive

20 Chapter 2. Legal and Technological Background

show compliance the relevant standards need to be resorted to.
The remaining annexes II to XII have been alluded to above or are not
relevant in the context of this thesis.

2.1.2 The Safety Standard TEC 61508

IEC 61508 — Functional safety of electric/electronic/programmable electronic
safety-related systems[80] is an international standard published by the Inter-
national Electrotechnical Commission (IEC). It is concerned with all safety-
related aspects that arise when electric, electronic or programmable electronic
(E/E/PE) systems are used to perform safety functions. This standard is a basic
safety publication, meaning that its content must be taken into account during
the conception of other IEC safety standards. It is both intended to be used as
a template for more specific sector or product standards, and to be applied on
its own in sectors where there is no specific standard available. Major standards
derived from IEC 61508 are, e. g., ISO 26262, the upcoming safety standard for
the automotive sector, the nuclear sector safety standard IEC 61513, or the
safety standard for E/E/PE control systems EN 62061, which is a harmonised
standard according to the machinery directive. IEC 61508 is a process oriented
standard in that it considers all safety-related aspects of the whole life cycle of
an E/E/PE system, from the conception phase through design, implementation
and commissioning to the maintenance and dismantling phases. This distin-
guishes it from less modern standards that are mainly product oriented and
focus on the assessment of failure probabilities of the developed system designs.
The scope is functional safety, which is that part of overall system safety that
depends on the correct and reliable functioning of E/E/PE parts of the sys-
tem under development or of additional safety components. The ever-growing
importance of the use of software in safety-related systems is acknowledged by
the standard and software safety requirements are laid down in detail, in IEC
61508-3.

Important Terms & Concepts

We now clarify the definitions of some important terms as used in the standard
and as generally applicable in the context of safety-related system development.
The following paragraphs highlight the most important concepts introduced
or assumed therein. Since software verification is our major concern, we then
directly move on to the covered software aspects, eliding details concerned with
hardware.

1. Underlying every other concept is that of a harm. Harm needs to be
avoided, and this is what safety is all about. Harm is defined as the injury
or health impairment of persons. It may be caused directly or via the
damaging of goods or the environment.

2. A hazard is a potential source of harm. Besides taking measures to elimi-
nate or bound hazards, a vital part of the safety life cycle is the identifi-
cation of hazards.

3. Next comes the concept of a risk; it is defined as the combination of the
probability and the potential magnitude of a harm. The standard does

2.1. Laws, Standards and Guidelines 21

not discuss what “combination” precisely means, but assumes in examples
that the magnitude of a harm can be quantified and then combines the
two dimensions via multiplication. In any case, it is important to keep in
mind when talking about risks that two dimensions are always involved:
probability and severity.

4. Safety describes the absence of unjustifiable risks. Yes, it can be phrased
so simply.

5. A safety function is a function that is performed by an E/E/PE (or other)
system to maintain or reach a safe state of the equipment under control
(EUC) with a view to specified hazardous events. The canonical example
of a safety measure that does not constitute a safety function is safety-
by-construction, i. e. an inherently safe design avoiding particular hazards
altogether. On the other hand, a typical safety function would be the
switching off of a heating unit whenever the measured pressure in a kettle
exceeds a specified maximum.

6. Safety integrity measures the probability that a safety-related system is
able to perform the safety functions assigned to it.

7. Finally, verification is defined as the process of ensuring by examination
and documentation that the requirements have been met. It is to be dis-
tinguished from wvalidation, which is the process of ensuring by the same
means that the specific requirements for an intended use are satisfied. The
provided distinction is rather subtle, but is similar in spirit to the well-
known dichotomy into the two questions “Did we build the system right?”
(verification) and “Did we build the right system?” (validation). In re-
marks it is made clear what the most important distinction is: verification
applies to all development phases and ensures that the concrete require-
ments for a particular phase are adhered to as well as that the specified
outputs are produced correctly. During the validation process one checks
that the top-level safety requirements are satisfied by the final system in a
specified application scenario. We will further distinguish between verifi-
cation and formal verification in this thesis. By the latter we denote that
part of the overall verification in which formal methods are applied.

Safety integrity levels One of the central concepts introduced by the stan-
dard is that of the safety integrity level (SIL). Four levels of safety integrity
are defined (SIL 1 to SIL 4). They represent a discretised view upon the re-
quirements on the safety integrity of systems executing safety functions. The
standard uses these safety integrity levels for classifying requirements: a require-
ment is either generally applicable to all safety-related systems, or targeted at
those having a particular SIL assigned to them. The SIL assigned to a safety-
related system —called the target SIL— therefore essentially dictates which
safety requirements it must satisfy, and how demanding they will be.

An SIL is not an inherent property of a system, but of a safety function,
which is executed by one or more specific safety-related systems. It can be
understood as an evaluation of the importance of the correct functioning of those
safety-related systems for the overall safety[140]. Target SILs are determined
in the course of a risk assessment. It can be said that the standard actually

22 Chapter 2. Legal and Technological Background

STL Low demand mode High demand mode
(Prob. of failure on demand) (hazardous failures / hr)

4 1075< Py <1077 1079<F,<10°8

3 1074 < Py <1073 1078<F, <1077

2 1072 < Py <1072 1077 < F, <107

1 1072 < Py <1071 107 < F, <107°

Figure 2.3: Assigning an SIL to safety functions in low or high demand modes

pays more attention to safety integrity than to the safety functions themselves.
This is partly due to the fact that we are dealing with a generic standard, which
cannot be concerned with measures against specific hazards. But moreover,
the viewpoint is that it is easier to perform a hazard analysis and uncover the
necessary safety functions, than to “get these safety functions right”, that is, to
establish the necessary safety integrity for them.

Now the question is: how can a target SIL be established for a given safety-
related system? The target SIL crucially depends on an evaluation of the maxi-
mum tolerable risk that one is willing (and legally allowed) to accept for a given
system — where system means the EUC, from which the risk originates, and not
a particular subsystem or external safety component executing safety functions.
Whether a risk is tolerable or not can only be decided taking technological (How
much safety can currently reasonably be achieved? Are there other technologies
achieving higher safety and similar functionality?), social (How are benefits and
risks of a technology perceived in society?), as well as political (Is the devel-
opment of the technology considered important?) and legal (Are national and
international regulations met?) considerations into account. Comparisons with
other tolerated risks are also in order. For example, [146] estimates the annual
risk of fatalities to employees in the UK as 1 in 125000. While in the agriculture,
hunting, forestry and fishing sector the risk even lies at 1 in 17200, the service
sector tends to be a much safer workplace, with an annual fatality risk of only
1 in 333000. Different sectors will therefore accept different risks based on past
experiences and present situations.

Sometimes, the tolerable risk of an EUC can be expressed in terms of a
maximum fatality (or injury) rate per annum (p. a.). For the cases in which
a such quantification is possible, IEC 61508 provides a table from which the
corresponding SIL can be read off; it is reproduced here as Fig. 2.3. When as-
signing an SIL there are two different operation modes of the safety function to
consider: low demand mode, in which the safety function will only be requested
less than once a year (e. g., a car airbag), and high or continuous demand mode,
in which it is executed more often or permanently (e.g., collision avoidance
for AGVs). To illuminate the use of the table, assume that for an AGV the
maximum rate of hazardous events (person injured by AGV) is 1.5-107°, and
assume further that an analysis based on data about a previous model demon-
strates that only 4-10~2 of the hazardous situations (person crossing driveway)
lead to a hazardous event. This yields a maximum tolerable failure rate of
1.5-107°/(4-1072) = 2. 1073 p. a., or approximately 4.3 - 1078 hazardous
events per hour. Hence, the target is SIL 3 in this case.

2.1. Laws, Standards and Guidelines 23

Safety life cycle Another important aspect of IEC 61508 is that it is not only
concerned with technical properties that concrete products must satisfy, like
levels of hardware redundancy or the use of a particular programming language,
but that it explicitly acknowledges that safety can only be achieved if it is taken
into account during the whole system life cycle. The standard is therefore
process oriented rather than product oriented. It proposes a general safety life
cycle, where for each phase several requirements are specified. Importantly, this
life cycle refers to the development of the overall system (comprising the EUC
and all its safety components) and not only to the components performing safety
functions. It also proposes an E/E/PE system safety life cycle, a software safety
life cycle and a software development model; neither these nor the general safety
life cycle have prescriptive character so that other models can be used. However,
it then needs to shown that all requirements set out for the reference model are
also considered by the alternative. The following safety life cycle phases are
described in IEC 61508-1. The software development model is covered further
below.

1. Concept phase — the main goal here is to gain an understanding of the
EUC and its environment.

2. Definition of the application area — this is in particular necessary to fix the
limits of the system and to deliver these as inputs to the hazard analysis
phase.

3. Hazard analysis and risk assessment — through these, the necessary safety
functions and their safety integrity are determined. They may also affect
the system design by discovering that further risk elimination is necessary
via design changes.

4. Safety requirements specification — produces the essential safety require-
ments specification (SRS) documents, from which all further safety re-
quirements must be derived.

5. Assignment of safety requirements to specific (E/E/PE or other) systems
— during this phase the safety functions are turned into concrete systems
realising them.

6. Planning: operation, safety validation, commissioning — the major plan-
ning effort is devoted to the specification of test procedures for the vali-
dation of all safety functions and their safety integrity.

7. Realisation of safety-related systems — the realisation of other systems is
irrelevant for the safety life cycle.

8. Commissioning

9. Safety validation — ensures that the safety requirements set up in the
SRS are satisfied. It is performed according to the safety validation plans.

10. Operation, maintenance and modification

11. Decommissioning

24 Chapter 2. Legal and Technological Background

Quantitative and qualitative approaches to safety It is well known that
for most hardware components random failures are the predominant kind of
failure, where causes are of a physical nature, e.g. material fatigue or alpha
radiation. Software, on the other hand only suffers from systematic failures:
all causes of software failures are built into the software from the start and
are hence due to design or implementation flaws®. In the presence of such
systematic failures a quantitative approach to achieving safety is not appropriate
(though not completely out of the question, as argued in [69]), and qualitative
measures must be considered as well. These include the use of safety life cycles
—as described above— whose activities are believed to reduce the number of
systematic failures; the prescription of concrete measures that need to be taken
during realisation, e. g. particular code coverage measures or the setting up of a
configuration management; and even requirements on the project management,
like the assignment of responsibilities or, more generally, the implementation of
a quality assurance system. IEC 61508 acknowledges this fact and —with the
single exception of assessing “proven in use” software— takes a purely qualitative
approach to software safety. The underlying assumption is that by adhering to
the qualitative requirements of a particular SIL, the failure rate of the software
can be brought down to the corresponding hardware failure rate of that SIL.

This dichotomy is also present in SIL targeting: above, we described a quan-
titative approach to assigning a SIL to a safety function. However, the standard
also allows a qualitative approach involving the use of risk graphs, in which the
relevant categories of severity of possible harm, frequency of exposure of persons
to hazards, and alternatives to avoid the danger are discretely classified (e.g.
“avoidance possible by leaping aside” and “avoidance impossible”) and then a
matrix or graph yields SILs for each of the possible combinations.

IEC 61508-3: Requirements on Software

Having pointed out that IEC 61508 takes a qualitative approach to software
safety, we now want to further investigate the software safety life cycle accord-
ing to which software development has to be done. As before, deviations are
possible, but require explanation and justification.

V-model The development process described in IEC 61508-3 is a variation of
the well-known V-model[32], a process model essentially based on the waterfall
model. It is depicted as defined in the standard in Fig. 2.4. It obtains its name
because it separates the life cycle into two major blocks (forming the legs of the
“V”): an initial block of activities concerned with the gathering of high-level
requirements and their decomposition, or refinement, into a software design
and finally a concrete program; and a subsequent block in which the program
is integrated into the overall system and verification at all necessary levels of
abstraction ensures that the requirements set up in the first leg are satisfied.
The final validation of the integrated software in its intended application area
eventually ensures that all high-level safety requirements are met. Obviously,

5 Of course, with modern microprocessors the distinction between ‘simple’ hardware and
‘complex’ software no longer holds (if ever it did); however, the functionality of the hardware
used in safety-related systems is usually well-understood and rather comprehensively tested.
It also has to be shamefully admitted that hardware designs are commonly put under more
rigorous scrutiny than software designs[131].

2.1. Laws, Standards and Guidelines 25

E/E/PE system # Software safety Validation Validated
safety requirements requirements | —— Validation testing == goftware
specification specification
L ‘ T
|

E/E/PE system Software |, _ _ _ _ _ | '“‘(ec%r;“‘;’,‘];fgng

architecture architecture P ’

[G subsystems, ...)

L A
Softwaresystem |~ | Integration
design testing (module)
Modlule —
design
A

Module
testing

I

— > Outputs

Figure 2.4: Software development process as of IEC 61508-3: the V-model

its sequential character does not inhibit the need for iteration whenever violated
or unsatisfied requirements are discovered.

General requirements Structurally, Part 3 also proceeds by attaching re-
quirements to each phase of the software life cycle. Compliance with these
provisions is practically demonstrated by creating tables for each set of require-
ments, i.e. for each life cycle phase, and filling out these tables with arguments
or links to arguments about how the particular requirement has been met. For
specific measures that need to be taken during design, development, verification
and validation a set of tables is already given in annexes. The highlights of
these are discussed below.

No striking novelties or peculiarities can be found among the more general
requirements. These rather sum up standard software engineering practices.
Examples are the requirement of traceability from software safety requirements
back to the SRS, or from lower-level design requirements back to ones defined for
the software architecture. Traceability is a big issue in safety-related systems,
and one of the better selling points for formal methods. Traceability implies
two desired properties of a system: it is a means to make sure that the concrete
design or product satisfies the high-level requirements, a property one might call
correctness of the system; and it wards off the integration of additional func-
tionality into the system, since every feature has to be justified by at least one
high-level requirement. The latter property might be called enforced limitation
of the system.

Other requirements include the need to regard the whole software running
on a safety-related system as safety-related, unless sufficient independence be-
tween software modules can be proven, or the claim for a software configuration
management.

26 Chapter 2. Legal and Technological Background

Measures Several tables in Annex A and B provide concrete normative guid-
ance on what measures to apply in different phases of the software development
life cycle. We list here the ones that are most relevant for consideration in
the design of a formal verification environment. Measures related to testing, of
which there are quite a few, are not included, as they are separately discussed
in the following paragraph.

e Error detection needs to be taken into account in the software architec-
ture, where the term “error” refers to those within the software itself,
i.e. possible causes of systematic failures, and not to external (hardware)
failures. Measures considered appropriate are the use of error detecting
codes®, failure assertion programming, and the dynamic supervision of
control and data flow. We notice that these measures can certainly be
subsumed by the use of formal verification at the code level, in the sense
that all such errors for which a programmable detection mechanism and
a workaround exists can be avoided in the first place.

o A strongly typed programming language is supposed to be used at higher
SILs. Five high-level programming languages are explicitly mentioned.
They are Ada, Modula-2, Pascal, Fortran 77, and C.” For all languages
the restriction to language subsets is advocated, where for C it is uncondi-
tionally required to furthermore use coding guidelines and static analysis
tools. C apparently made it into the standard despite its under-definedness
and its many pitfalls because of its heavy use in industry and the tremen-
dous tool support available[73].

e The use of features considered to impede verification is discouraged: recur-
sion, dynamic memory, the unrestricted use of pointers, and unconditional
jumps should be avoided.

e Certified tools, particularly compilers, must be used. The certification of
these tools has to be done according to recognised standards, which are
not defined any further.

e The final safety assessment shall be guided by the results of a failure mode,
effects and criticality analysis (FMECA) and of a fault tree analysis (FTA),
which are therefore necessary.

Use of formal methods Several concrete formal methods are listed and ex-
plained in Part 7 of the standard. They are: CCS[107], CSP[77], HOL[66],
LOTOS]27], OBJ[65], temporal logic[129], VDM[86] and Z[141]. Curiously,
these are all rather heavy-weight modelling or verification techniques. Indus-
try standard techniques like model checking and automated code generation
from formal or semi-formal system models are not appreciated by TEC 61508,
which sets it in sharp contrast to the upcoming revision of DO-178C Software
considerations in airborne systems and equipment certification—the standard

6 This appears a bit irritating at first, since such error detecting codes are more common
and appropriate for the detection of hardware failures. However, one can imagine using them
to ensure data integrity across calls to “untrusted” functions, etc.

"The use of ladder logic and other primitive languages is also promoted, but this obviously
only applies to software of lower complexity.

2.2. The Theorem Prover Isabelle 27

for software certification in avionics— in which the adoption of these modern
development and verification techniques is one explicit focus[104].

From the viewpoint of a formal methods proponent, one can say that formal
methods are fighting on two fronts for industrial recognition and appreciation
by standards like IEC 61508: On the one hand, they can be used in the design
and early development phases, i.e. on the downward leg of the V model. Here,
in virtually all cases where formal methods are called for, there is the alternative
of applying semi-formal methods (block/flow diagrams, state charts, truth ta-
bles, Petri nets, etc.), where semi-formal methods are highly recommended from
SIL 3 upwards, while for formal methods this is the case only for SIL 4. Even
structured (development) methods (Jackson System Development or Yourdon,
among others), that establish no technical properties of the system whatsoever
and are primarily concerned with the development process itself, are a highly
recommended alternative for all safety integrity levels.

On the other hand, formal methods can be used for verification and vali-
dation, i.e. on the upward leg. Here, the traditional alternative is verification
by testing. It is interesting to note that while the standard mentions formal
methods quite prominently with respect to the design phases, testing definitely
plays the primary role in the verification phases®. However, in a remark about
requirements on module design? it is noted that the amount of functional testing
necessary can be reduced through the use of formal methods. The reduction
is not quantified. There are several required measures involving testing for the
subsequent phases of module integration and hardware/software integration for
which no formal equivalent exists. Examples include the requests for dynamic
analysis, black-box testing, performance testing, or statistical testing.

During safety validation testing again must be the primary applied mea-
sure'?, but may be supported by simulation and modelling, where the latter
also allows formal modelling techniques.

Even though the standard explicitly distinguishes static analysis and formal
methods, it is obvious that formal software verification subsumes several static
analysis techniques. The latter are highly recommended for software verification
from SIL 2 upwards. We elaborate on the issue of covering required measures
through the application of the verification environment presented in this thesis
further in Sec. 7.5.

2.2 The Theorem Prover Isabelle

Isabelle!! is a generic proof assistant. It enables the machine-assisted formalisa-
tion of logical calculi, called object logics such as first-order logic, set theory, or
higher-order logic. At the foundation of this framework lies a minimalist higher-
order meta-logic [123] that provides higher-order unification and resolution as
the basic inference mechanisms as well as implication (written =), universal

8This becomes manifest in a remark (§ 7.9.2.12) on verification, where it is said that static
analyses in general are only considered appropriate in the early life cycle phases, while after
having assured the correctness of all individual software modules, the test is the primary
means of verification. This statement is repeated in a comment on Tab. A.9.

9§ 7.4.7.2, Remark 2

10This is literally requested in § 7.7.2.6.

1Isabelle has been publicly available since 1994. Updates have been published annually in
recent years. We developed the verification environment using version Isabelle-2009.

28 Chapter 2. Legal and Technological Background

quantification (/) and equality (=) as the basic connectives. These are used to
encode natural deduction style inference rules of the respective object logic. For
example, the usual introduction rule for the universal quantifier in higher-order

logic
[z]

Px
Vz. P x

is formalised in Isabelle’s meta-logic as
(/\x.Pm):>Vx.Pa: (2.1)

The meta-level quantifier expresses the side-condition that the parameter z used
in the derivation of P x must be fresh, i.e., not appear in any contextual as-
sumption. Meta-implication, on the other hand, encodes inference steps in the
object logic, while meta-equality is primarily used to encode axiomatic defini-
tions. Rules involving several assumptions, as in the conjunction introduction
rule, are encoded by chains of implications, but are usually written in an ab-
breviated form using brackets. The following two notations for the conjunction
introduction rule (named conjI) are therefore equivalent:

A=— B=— AAB
[A4;, B]— AAB (2.2)

Isabelle provides comprehensive support for inference in excess of simple
rule application in the form of a powerful conditional rewriting engine called
the simplifier, a classical tableau prover called blast, and decision procedures for
linear integer arithmetic, among others. Moreover, it is possible to extend the
reasoning capabilities programmatically in nearly arbitrary ways by defining
so-called tactics, which are functions mapping theorems to theorems, written
in Isabelle’s implementation language ML. The soundness of such extensions
is guaranteed by the well-known LCF system approach [67] which employs the
data abstraction facilities of ML to restrict the access to the crucial datatypes
such that only sound transformations are possible.

Isabelle also provides a rich machinery for rewriting-based syntax tree trans-
formations and simpler mixfix annotations that allows us to keep definitions and
specifications close to mathematical conventions and thereby readable. During
development, the associated ProofGeneral module for the Emacs editor allows
an appropriate display of theories using a large glyph set. An integrated docu-
ment preparation system allows to transform theory definitions into PDF doc-
uments. We exploit this in several places of this thesis by inserting parts of
Isabelle theories verbatim, instead of rephrasing the respective definition in a
more conventional style.

Our work is based on Isabelle/HOL, a formalisation of higher-order logic
which represents the most widespread object logic of Isabelle. The logic comes
with a wealth of theory libraries, ranging from complex numbers over calculus
to lattices, set theory and algebraic concepts like rings and fields. We will only
cover the most relevant aspects of this logic here and refer to the excellent
tutorial [116] for further details.

2.2. The Theorem Prover Isabelle 29

2.2.1 Concepts

Isabelle/HOL is based on the simply typed lambda calculus and hence the nota-
tion slightly differs from that conventionally used in mathematical text books.
It is instead rather close to what is used in functional programming languages
like ML or Haskell.

Types

Types are built from the constructors = for function types, x for product types,
and from predefined and user defined types. The latter can be basic types such
as bool or those for the usual number types (nat for the natural numbers N, int
for the integers Z, real for the real numbers R, and complex for the complex
numbers C), but also include further type constructors such as that for sets
over a given type o (written in postfix notation as « set), lists (« list), or those
introduced by type definitions. Terms can be explicitly annotated with a type,
as in 1 :: nat, either as an explicit restriction or to serve as documentation.
Types can be defined in several ways. We briefly describe the relevant ones
used in this thesis.

Datatype definitions introduce inductive datatypes (or free algebraic data-
types) defined by a collection of constructors. Datatypes can be parametric,
i.e., defined generically over arbitrary other types. The classical example is the
datatype of lists:
datatype ’a list =
Nil
| Cons ’a "’a list"

Primed variables are used for type parameters; ’a can be instantiated with
any type, to form lists of integers, strings, etc. Syntax transformations allow us
to write the empty list Nil as [| and a non-empty list such as Cons 1 (Cons 2 Nil)
as 1#2# Nil or even shorter as [1,2]. Injectivity and disjointness properties of
the constructors are proven automatically by Isabelle.

It is possible to perform a case distinction on the constructor by which a
value of the type was built via conventional pattern matching. For example, the
test for emptiness of a list is defined thus:

definition null :: "’a list = bool"
where "null xs = (case xs of
[] = True

| (x#z) = False)"

Records can be viewed as tuples with named components for our purposes.
The following definition introduces a record type for two-dimensional points:

record point =
X :: real
Y :: real

In addition to defining point as a new type, two accessor functions X and Y
are introduced together with appropriate access and update theorems. Record
literals are written (X = a, Y = b|), accessing the X component of a record r
is done by applying the accessor, X r, and functional updates on records are

30 Chapter 2. Legal and Technological Background

written r(X := af), yielding a record value that equals r on the Y component
and has a as its X component.

Type definitions are the most elaborate form of introducing a type. They
allow us to define a type whose values are isomorphic to a given set of elements of
an existing type. For example, we could define a type of functions over natural
numbers that yield values # 0 only on a finite domain:
typedef fin_seq =

"{f :: nat = nat. dn. (Vm >n. £fm = 0)}"

by auto

The subsequent proof “by auto” verifies that our definition does not intro-
duce an empty type, which would lead to an inconsistency.

Terms

Predicates, functions, applications and constants are all terms in Isabelle/HOL.
The syntactically most obvious deviation from conventional mathematics is that
function application is written simply by juxtaposition of the function term and
its arguments, as already seen in Eq. (2.1), where P x stands for the application
of predicate P to its argument x. A predicate over a type « is simply a function
of type a = bool. Non-recursive functions are formed by lambda abstraction.
For example, the function to add two integers is denoted by the term

Az y. x 4+ y) :: int = int = int.

As usual in higher-order logic, most functions are defined in a curried form
allowing for their partial application. For example, if the above function is
bound to f, then (f 1) :: int = int yields a function that will add 1 to its
argument. Tuples can be, but seldom are, used to achieve the more conventional
type int x int = int for binary functions, as in A(x,y). = +y. Terms are named
via definitions, as seen above for the function null.

Recursive function definitions Isabelle’s function package allows us to de-
fine primitive recursive functions in a convenient way, as we would in a functional
programming language. All necessary well-foundedness proofs are performed au-
tomatically and are invisible to the user. It is even possible, though not needed
in this thesis, to define arbitrary recursive functions, if the user can supply
a well-founded relation over the terms to which the function gets recursively
applied. To provide yet another classical example, this is how the function
computing the length of a list is defined:

fun length :: "’a list = nat”
where

"length [] = 0" |

"length (x#z) = 1 + length z"

Sets Isabelle identifies sets and predicates: both sets and predicates over val-
ues of type a have type o = bool and we can consider a predicate P as the set
of all values satisfying P, i.e., P = {z. P x}. Nonetheless, Isabelle provides
syntax for set notation and defines the standard set theoretic operations such

2.2. The Theorem Prover Isabelle 31

as membership z € X (identified with P z), intersection X NY, union X UY,
set difference X — Y, subset relationship X C Y, etc. The universal set is called
UNIV, and the union over an index set is written as (J;c,;(f i), making use of
lambda as the ultimate binder: the term syntax-expands to UNION I (\i. f i),
where UNION is a higher-order function satisfying the equation

UNIONI f'={y. Iz € l.y e f z}.

Partiality Isabelle/HOL is a logic of total functions, i.e., there is no such
thing as an undefined term. Partiality can be modelled with the help of the
option datatype, which extends a given type by an element None. It is defined
as a regular datatype:

datatype ’‘a option = None | Some ’a

For a ‘partial’ function f :: a = [option Isabelle allows us to write its type
as a — (. Moreover, dom f denotes f’s domain, i.e., those values for which it
does not yield None.

Another way to model partiality is by under-specification; the function pack-
age allows us to omit certain cases that are necessary for a complete function
definition. An example is the function the satisfying the (Some z) = z, but
whose value when applied to None remains unknown. (Even though it still
denotes some value, since every function is semantically total.)

Theories, Definitions and Theorems

A formal development in Isabelle is structured into theories. A theory essentially
consists of (type and term) definitions constituting the signature of the theory,
as well as theorems. (The latter can also be named lemmas or corollaries;
this distinction only applies at the syntactic level to be able to indicate their
respective importance.) Theorems must be proven in one of two proof styles.
By using the structured Isar proof style by Wenzel [152] it is possible to write
human-readable proofs which make intermediate proof states explicit and which
“verbalise” proof steps through the use of appropriate keywords. Fig. 2.5 gives
an example Isar proof of the fact that the length of two concatenated lists is the
sum of their individual lengths.!'? The keyword lemma (as well as theorem
and corollary) introduces a new theorem named length-append and requires a
subsequent proof of its statement. The proof is by induction over zs (proof
(induct xs)), which introduces two cases. The case for the empty list is shown
first. It can be immediately proven by Isabelle’s simplifier (by simp). The
second case requires us to prove the statement for all lists a # zs, where a is
an arbitrary list element and where the induction hypothesis holds for zs. The
fix keyword introduces fresh variables for the list head a and the tail zs; this is
analogous to the step in a textbook proof where one would say “let a and zs
be arbitrary fresh entities”. The assumed hypothesis is explicitly written down
subsequently, which already allows us to conclude the second case, again by a
simple call to the simplifier. The proof is ended by the qed keyword.

The other proof style is called the tactic style, which is of a more imperative
nature. Here, unfinished proofs are in a current state consisting of one or more
proof goals which can be modified by applying tactics that yield a new state

12Where the concatenation of lists zs and ys is written infix as zs @ ys.

32 Chapter 2. Legal and Technological Background

lemma Iength_append:
"length (xs @ ys) = length xs + length ys"
proof (induct xs)
show "length ([] @ ys) = length [] + length ys"
by simp
next
fix a xs
assume A1: "length (xs @ ys) = length xs + length ys"
thus "length ((a # xs) @ ys) = length (a # xs) + length ys"
by simp
ged

Figure 2.5: An example proof in the structured Isar proof language

lemma Iength_append’:
"length (xs @ ys) = length xs + length ys"
apply (induct xs)
apply simp
apply simp
done

Figure 2.6: The same theorem proven in the tactic style

and new (hopefully simpler) goals. For example, if the current proof goal is
a conjunction A A B and rule conjl of Eq. (2.2) is applied, the subsequent
state comprises the two goals A and B, i.e., the hypotheses of the applied rule.
Proofs are hence performed backwards. The corresponding proof of length-
append in the tactic style is given in Fig. 2.6. The obvious difference is that
the intermediate proof states are not contained in the proof script. Rather, the
apply command is used to, well, apply specific proof procedures (or tactics) that
modify or discharge proof goals in the current implicit proof state. Intermediate
proof states can only be inspected when the proof is manually replayed in the
theorem prover.

Depending on the kind of proof, this is either an advantage or a disadvan-
tage. Mathematically pleasing proofs of properties of general interest certainly
deserve a structured proof document that can be understood without requiring
tool assistance to walk through single imperative proof steps. The correctness
of a concrete program function w.r.t. its specification, on the other hand, does
mostly not belong into this category. Here one is interested in a boolean result;
one is satisfied if the proof succeeds by any means — within the bounds of what
the prover allows, of course. We therefore tailored the support for correctness
proofs provided by the verification environment towards the tactic proof style.
This particularly relieves the verifier from having to write down the many in-
termediate proof states. Interesting properties of the formalisation itself (e.g.,
the split heap property of the memory model), however, were often proved in
the structured Isar style.

2.2. The Theorem Prover Isabelle 33

2.2.2 Presentation of Formal Proofs

We do not include Isabelle proofs in the written part of the thesis, as machine-
checked proofs are often rather detailed and lengthy. Instead, we resort to a
more digestible style in which only the most important proof steps are discussed.
The complete formalisation including all proofs can be found in electronic form
on the medium accompanying this thesis. We regard it as one of the true benefits
of using a theorem prover that we are able to split the presentation of interesting
properties from their detailed proofs. In pen-and-paper developments one would
rightfully demand more proof details, to verify that the author did not miss
allegedly easy cases or reasoned erroneously otherwise. Whenever a theorem is
typeset as an Isabelle theorem in this thesis, like append-length above, it has
been formally proven and its proof is part of the verification environment, if not
stated otherwise.

Likewise, all definitions that are presented in Isabelle typeface, such as null
and length in this section, are actually part of the verification environment.

34

Chapter 2. Legal and Technological Background

Chapter 3

Language for Functional
Specification

In this chapter the specification language that we developed to express func-
tional properties of C programs is described and the approach taken is delin-
eated against other relevant approaches to formal program specification. The
most distinguishing features of the specification language are presented in detail:
specifications as pre- and postconditions of program functions; a term language
for specifying admissible memory layouts; the embedding of Isabelle expressions
into specifications to achieve higher abstraction; and the modifications to C’s
type system that apply within specifications.

The formal semantics of specifications, as given by the formalisation in Is-
abelle, are deferred until Sec. 5.5, because the memory model and semantics of
C programs have not been defined yet. This ordering was deliberately chosen,
since the specification language must be comprehensible to and usable by per-
sons that are not involved in the (formal) verification process and thus should
not require knowledge about the formalisation.

3.1 Classification

The goal of every specification language used in program verification is to de-
scribe a number of properties that a program must satisfy in order to perform
its intended function faithfully in any foreseen circumstance. We would call
a program with the latter property “correct”. Virtually no specification lan-
guage is expressive enough to fully cover every aspect of program correctness;
moreover, and more importantly, no concrete specification will ever be that
complete and all-embracing. Hence, satisfaction of specifications is always a
necessary criterion for program correctness, but hardly ever a sufficient one.
Therefore every specification language needs to make its intended application
area, hence its scope, very clear. We further need to distinguish between infor-
mal specifications, which are mainly expressed in natural language, augmented
with drawings, diagrams and the like, and formal ones. A formal specification
language provides a mathematically precise semantics for each language con-
struct and each term of the language, and with the same precision defines what
it means for a program to satisfy a given specification. We are only concerned

35

36 Chapter 3. Language for Functional Specification

with formal specification languages in this thesis and will henceforth omit the
adjective “formal”; only using it when an explicit distinction against informal
specifications is needed.

To clarify the scope of the developed specification language —to which we
will refer as CSI (C Specifications with Isabelle/HOL) from now on— a view at
other well-known approaches to program specification is in order. Hatcliff et al.
[72], among others, categorise specification languages according to the level
of system abstraction that the language assumes. At the top-level of system
requirements the system is mostly viewed as a black box, or a collection of
black boxes, with all implementation details omitted. Properties of such a
system can be stated, among others, in terms of statecharts[70], or in the case
of multiple communicating systems in terms of, e. g., CSP[77]. Mostly, however,
requirements at this level are stated in natural language. Deeper properties
can be stated and examined on what one may call the analysis level, in which
models of the application domain and the system are built and analysed. On the
architectural level, properties of software systems are predominantly specified in
dialects of the UML and provide a static view of how the components of a larger
software system are related. Formal verification is not common on this level.
Finally, a specification language can directly relate to the concrete source code
implementing a software system. CSI falls into this category. Like most other
languages on this level, CSI focuses on the specification of functional properties
of programs.

This leads to another axis on which specification languages can be cate-
gorised, namely the kind of behaviour that the language intends to specify. We
encounter three major classes of behaviour amenable to specification:

1. Properties of the functional behaviour of a system are concerned with the
system’s input-output behaviour as well as invariant properties of the sys-
tem’s internal state during operation. Languages used on the analysis level
include Alloy and Z[83, 141], which are both languages based on set the-
ory, and the algebraic specification language CASL[23]. An analysis level
specification abstracts away from implementation details like the concrete
shape of data structures and operations thereupon, but rather models
them with simpler mathematical objects like relations or functions. The
essential operations of the system and their required properties as deriv-
able from system requirements documents would, however, be formalised.
It is common to subsequently refine such models into one or more detailed
models, so that more and more specific design decisions are captured in
the model. Ideally, one finally ends up with a model that reflects enough
design decisions so that an implementation can directly be derived from it,
possibly even in an automatic way. A recent industrially successful such
methodology based on Z and model refinement is described by Barnes
et al. [11]. The huge advantage of specifying at the analysis level is that
one need not be bothered with technical details of the concrete implemen-
tation like memory management, algorithm efficiency or data layout and
can instead concentrate on those properties relevant to the application do-
main. For safety-related systems, however, it is of particular importance
to ensure that the actual software running in the system is correct. During
the transition from model to code, whether it is done by hand or auto-
matically by code generators, there is always the possibility of introducing

3.1. Classification 37

errors. Tools like the Astrée static analyser [25] are therefore specifically
targeting the analysis of code automatically generated from models.

The most widely known variant of functional specification on the source
code level goes by many names, like the pre-/post technique[72], design
by contract[106], or behavioural interface specifications[94]. They are all
based on the fundamental concept of specifying the properties of program
operations —functions in procedural code and methods in object-oriented
code— by two things: firstly, the requirements that need to be satisfied
when an operation is executed (these are called the operation’s precondi-
tion(s)), and secondly, it is stated what will be true after this operation has
finished its execution when started in a state satisfying the preconditions
(the operation’s postcondition(s)). This approach to specification is based
on the notion of axiomatic program semantics, as conceived in the sem-
inal papers by Floyd [59] and Hoare [76]. Popular behavioural interface
specification languages similar to CSI are JML[33] and ACSL[18]. Pre-
/postconditions in these languages are formulated in the expression syn-
tax of the programming language they apply to, where these expressions
are usually extended with quantifiers, defined predicates and special sym-
bols denoting various entities like, e.g., a function’s return value. There
is tool support for the verification of the functional properties thus pos-
tulated: the Spec# programming system|[13], the SPARK tool suite[12],
and the Why tool[55] are probably the most well known specimen. CSI
and the verification environment described in this thesis are conceptually
closely related to the latter two systems, although the focus on the kind
of properties to be specified and verified differs.

2. When temporal properties are analysed, the system is most often viewed
as some kind of labelled transition system, being in one out of a given
(most often finite) set of possible states. The system performs transi-
tions between states as a reaction to particular events. This model is
particularly appropriate to describe reactive systems, which run indefi-
nitely. An AGV controller might be described in this way, where states
would include Braking, Halted, or SilentRunning, and a possible event
might be ObstacleDetected. Languages like LTL or CTL can be used to
specify desired temporal properties of the model, e.g. that after every
ObstacleDetected event the system eventually reaches the Halted state.
Model checking techniques allow to (automatically) ensure the model ac-
tually satisfies those properties [42]. In the case of LTL and CTL, the term
“temporal” merely refers to the fact that sequences of events are consid-
ered that occur sequentially in time. If concrete real-time constraints need
to be specified and verified (e.g., “operation P must follow @ after less
than k ms”), languages based on timed automata or Time Petri Nets can
be used[7, 21, 127]. Jhala and Majumdar [85] give an overview of soft-
ware model checking techniques, i. e. verification of temporal properties of
concrete source code.

An important distinction between the functional and the temporal anal-
ysis of a system is that the former is more concerned with data, while
the latter focuses on control. A functional specification takes a compo-
nent of the system (e.g., a program function) and describes its black-box
behaviour in terms of a (one-to-one, or general) relation between input

38 Chapter 3. Language for Functional Specification

and output data. Transition-based models, in contrast, provide an ab-
stract view of the system’s internals, in particular its discrete state, and
which (abstract) events lead to state changes. Hybrid dynamic systems]6]
allow the combined modelling of discrete and continuous behaviours by
allowing to describe transition conditions and internal states of systems
by (differential) equations. They are therefore well-suited for analysis-
level specifications of systems like a vehicle controller, where there is a
combination of discrete behaviour (the controller as a digital circuit) and
continuous behaviour (the physical motion of the vehicle). The bias of hy-
brid systems modelling, however, is not the specification and verification
of specific computations, as is the case for a language like CSI.

3. Sometimes it is important to specify the behaviour of a system with respect
to certain resources, like memory, I/O channels, synchronisation locks, or
time; for the latter two cases, timed automata, CSP and other process
algebras are often used. The former two are predominantly analysed on the
source code level, as they relate to implementation specific properties. A
currently popular approach is the use of type systems that allow the static
derivation of bounds for resource consumption[8]. Resource consumption
properties cannot be specified with CSI.

3.2 Annotations

Syntactically as well as structurally, CSI strongly resembles JML and ACSL.
Every function of the program or library is given a specification in terms of
annotations that are embedded in the source code inside specially marked com-
ments. This allows a tight coupling between specifications and source code,
while allowing regular compilers to read the source files without the need for
special preprocessors. As in the aforementioned languages, these comments
begin with the character sequence /@ and end with %/ or @x/. A function
specification is placed immediately in front of the declaration or definition of
the function it refers to. Function annotations are comprised of four annotation
elements, which are also present in the example specification shown in Fig. 3.1:

1. The precondition of the function (often referred to as the @requires clause)
is a predicate over the program state that is required to be true whenever
the function is called. More specifically, a precondition is evaluated in
the state in which the function’s formal parameters have been allocated
in memory and have been assigned the values of their actual parameters,
but in which the local variables are not yet visible. This state is referred
to as the pre-state of the function.

2. Requirements on the memory layout at function call time are further set
forth in the @memory clause. Most importantly, it states the required sizes
of arrays (which cannot be distinguished from single pointers by their types
in C) and expresses separation constraints between memory areas, e.g.,
that two arrays may not overlap, or that a pointer may not point into a
specific memory area. Semantically, such annotations simply add to the
precondition of corresponding function.

3.2. Annotations 39

/*@

Q@requires (a = 0 || a

(b =10 || bzl)

@memory sout <> xcarry
O@modifies xout, *carry
@ensures xout — (a + b) % 2

xcarry — a x b

©x/
void halfadd (bit a, bit b,

bit %out, bit xcarry);

Figure 3.1: Functional specification of a half-adder: precondition, memory lay-
out, modification frame and postcondition.

3.

The modification frame (@modifies clause) describes the memory areas
whose values might be changed by the execution of the function. Callers
of the respective function can therefore be sure that all values outside
the modification frame will keep their values across the execution of the
function. The expressions denoting modification frames are evaluated in
the same state as the precondition.

The @ensures clause specifies the postcondition of the function. It is eval-
uated in an (artificial) state in which the function’s local variables are
no longer visible, and where the formal parameters have re-obtained the
values they had before execution of the function, i. e. in the state of the pre-
condition. We call this state the post-state of the function. This predicate
may reference the values of expressions in the pre-state via a special \old
operator, as well as the function’s return value via the keyword \ result.

Together, these annotations form the contract of the function:

1.

It may only be called in program states and with arguments satisfying
the precondition and the memory layout specification. If the function is
called in a state violating this condition, none of the following guarantees
are given;

its effects on memory are bounded by the modification frame,

the function will terminate, i.e. not get stuck in an infinite loop or recur-
sion,

the function will be safe to execute, i. e. it will not perform invalid memory
accesses or division by zero (see Sec. 4.2.2 for restrictions),

and finally, after execution of the function, the program will be in a state
in which the postcondition holds.

While such an informal description of contracts will probably suffice for actually
reading, understanding, and writing specifications in CSI, it is certainly insuffi-
cient for serving as a definition. We refer the reader to Sec. 6.2.1 for a complete
formal definition.

40 Chapter 3. Language for Functional Specification

From a verification-centred point of view, merely providing specifications for
function interfaces is not sufficient. Two more constructs have been introduced
that are used to annotate arbitrary, possibly compound, statements (the @join
annotation) and loop statements (the @invariant annotation) in function bod-
ies. Such annotations do not add to the interface specification of the functions
containing them, but are solely used to enable the automatic computation of
verification conditions (cf. Sec. 6.3). They are further described in Sec. 3.5,
together with all other auxiliary specification items.

3.3 Specification Expressions

We collectively call terms occurring in pre-/postconditions as well as @join and
Qinvariant annotations specification expressions, even though these annotations
differ slightly in the set of allowed constructs, as we will see shortly. Specification
expressions are essentially predicates over program states, where in the context
of function specifications by a program state we solely mean the values of all
objects existing in memory at a given time. This comprises all global objects
(denoted by global variables), the parameters of all functions currently on the
execution stack, as well as their local variables.! A program state in this sense
does not include the contents of input or output channels like sockets or files.
It also ignores the status of interrupts and other machine-related information
that is not reflected in program variables. CSI specifications are only concerned
with program memory and not with I/O.

The syntax of specification expressions is based on that of C expressions.
This is done in virtually all approaches in the design by contract tradition,
since it is very natural: we need access to the values of program variables in
specifications anyway, and many properties are boolean combinations of arith-
metic relations between these, as, e.g., in a.x <= max_val && 0 <=i. We
do, however, not allow expressions whose evaluation causes the program state
to change in specification expressions. Even though it is not our intention
to check specifications at run-time as it is done in some design by contract
methodologies — in which case side-effecting specifications cannot be treated
transparently anymore, as their evaluation changes the program semantics —,
we took this decision because side-effects rule out many extremely useful prop-

erties. For example, commutativity is lost: a++ == b && a > b is not the
same as a > b && a++ == b: in a state where a == 1 and b == 1, the first
expression would yield true (1 in C) and end up in a state where a == 2, while

the second one would yield false (0) and not modify a’s value.

The evaluation of C expressions may have nearly arbitrary side-effects, via
the use of increment expressions (a++), function calls (f(a) — g()), or assign-
ment (x = e) — which is treated as an expression syntactically. Therefore, it
is not advisable to provide a definition of side-effect free specification expres-
sions via a restriction of the (in any case informal) definition of C expressions.
Instead, we give a constructive definition in terms of the abstract syntax of
specification expressions.

1In scenarios where dynamic memory allocation is allowed, it would of course also include
all allocated memory chunks.

3.3. Specification Expressions 41

3.3.1 Abstract Syntax

Specification expressions are built over a simple subset of C lvalues. The stan-
dard makes a distinction between lvalues as general object locators, and mod-
ifiable lvalues, which are lvalues that may appear on the left-hand side of an
assignment[82, §6.3.2.1]. Essentially, this excludes lvalues of array type, those
with an incomplete type, and const-qualified lvalues. Under these general def-
initions, expressions like *f() or *(4++x) can be modifiable lvalues. We prefer
to keep object locators clean and simple, as given by the lval category of the
abstract syntax shown in Fig. 3.2. Inside specifications, lvalues are built only
from identifiers (ident), struct field selection, the dereferencing operator *, and
array accesses. Such lvalues are the only entities which we may take the address
of (category vexp). expr defines the category of specification expressions; they
are formed over numeric literals (number), both of integral and floating type,
and vexp. Additionally, the literal symbols \true and \ false represent the values
of the Boolean type _Bool. They further include unary and binary arithmetic
operations, but no bit-shifting operations. The latter were excluded for sim-
plicity, as they were not used in the algorithms we verified. Their inclusion
would not pose any serious problems. For convenience, binary operators for
implication ——> and equivalence <—> were added. Instead of the conditional
expression (e ? f : g) of C, we chose to use an arguably more readable condi-
tional of the form \if e \then f \else g. Casts are only allowed between what
the standard calls basic types (cf. Fig. 3.4), and furthermore the newly intro-
duced types _Bool as well as the mathematical types _Int and _Real (standing
for mathematical unbounded integer and real numbers). We subsume all these
types under the label arithmetic types. Sec. 3.3.3 defines casts (i.e., explicit)
and implicit conversions in specification expressions.

The \ forall and \ exists quantifiers represent the first serious extension to
C expressions. They both allow to quantify over the arithmetic types defined
in the syntactic category btyp. Quantification over structured types or arrays is
not allowed. A quantifier introduces one or more variables whose scope matches
the quantified expression. Within, they are used like ordinary program vari-
ables, and all rules that apply to the latter also apply to the former, e. g., type
conversion. In contrast to JML and ACSL, the expressivity of the language does
not rest on the presence of these quantifiers, as explained in Sec. 3.3.2. They are
mainly included for array-related specifications, where the quantified variables
denote array indices, as in the classical specification of the maximum value of
an array:

\exists unsigned int i; i < len && a[i] = max &&
(\forall unsigned int j; j < len —> a[j] <= max)

Specifications whose domain of interest is more complex than pure arithmetic
on scalars are specified with the help of Isabelle terms, which enables the quan-
tification over values of arbitrary type, as we will see shortly.

Internally, i. e. in the Isabelle translation, every quantification over an arith-
metic type is interpreted by a quantification over either mathematical integers
(Isabelle type int) or mathematical real numbers (real) and an additional range
restriction that directly corresponds the value range of the given type. For
example, on a 32-bit machine, the above quantification would be translated to

"3 (i :: int). 0 < 1 A 1 < 4294967295 N ---"

42 Chapter 3. Language for Functional Specification
Ival ::= ident

| Ival.ident

| *lval

| lval[expr]
vexp ::= lIval | & lval
binop =+ | — | = | / | %

[&& |] | —> | <>

[<l <=l=1!'=1>1>
expr ::= number

| \true | \false | \result

| vexp

| exprl binop expr2

| — expr | ! expr

| \if exprl \then expr2 \else expr3

| (btyp) expr

| \forall bindings; expr

| \exists bindings; expr

| \old expr

| expr @ label

| \valid lval

| \array(lval, expr)

| \separated(vexpl, exprl, vexp2, expr2)

| \unrelated (vexpl, vexp2)

| $ident

| $ident(exprl, ..., exprN)

| Tident(exprl, ..., exprN)

| ::ident(exprl, ..., exprN)

| ${ isaterml ... isatermN }
bindings ::= btypl identl, ..., btypN identN
btyp ::= _Int | _Bool | _Real

| char | short | int | long | long long

| unsigned char | unsigned short |

| float | double | long double
isaterm ::= <raw isabelle text>

| {expr}

Figure 3.2: Abstract syntax of specification expressions

3.3. Specification Expressions 43

In postconditions and statement annotations it is often necessary to refer
to values of expressions in states different from the ‘current’ one. A classical
example illustrating the need is the specification of a function that increases a
global variable gx by one: this is not a predicate over a single state, but relates
one state to another. There are essentially two ways to deal with this problem:
one can introduce auxiliary variables into the specification language, which are
purely logical entities distinct from program variables. Their values are then
typically specified in preconditions and can be referred to in postconditions. For
an auxiliary variable N we might thus specify:

int gx;

/*@
@requires gx < INT_MAX && gx = N
@ensures gx — N + 1
Ox/

void inc_gx(void);

Even though auxiliary variables are a powerful concept that allows more than
just the bookkeeping of old values of expressions [91], they perform badly in
exactly this predominant usage pattern, because the back-reference to old values
is done only in an indirect way. Further, they are not easy to reason about
automatically, due to their existential nature. Therefore, we follow the JML
tradition and use a more lightweight approach. The operator \old allows one
to refer to the value of an expression in an appropriate previous state. In
the case of postconditions, this is exactly the pre-state of the function. For
@join annotations, it is the state before execution of the annotated statement.
No other specification expressions may mention this operator. We specify the
incrementing function thus:

int gx;

/*@
@requires gx < INT_MAX
Q@ensures gx =— \old gx + 1
Ox/

void inc_gx(void);

Statement annotations sometimes also need to refer to values of expressions
in arbitrary previous states. For example, in the invariant of a loop ‘pruning’
the values inside an array to some maximum value, one wants to state the
invariant property that the values of all processed elements are either equal to
the maximum or to their old value, whichever is smaller, while all unprocessed
elements are unchanged. For these purposes, @join and @invariant annotations
may use the @label operator, which evaluates its operand in the state which was
active at the C label label:

loop:
/2@
Qinvariant ... && (\forall unsigned int j;
(J > i & j < len —> a[j] = @loop(a[j])))
while (i < len) {
if (a[i] > MAX) { a[i] = MAX; }

44 Chapter 3. Language for Functional Specification

+i;
}
Two further classes of language constructs remain: memory layout specifi-

cations and references to Isabelle/HOL terms. They are described in sections
3.4 and 3.3.2, respectively.

3.3.2 Embedding Isabelle/HOL

Our aim is to specify and verify program modules for the domain of safety-
related robotics and automation. Functions in such programs often directly
represent mathematical operations over the modelled domain. They range from
simple vector operations (scalar product, transformations) over computing the
convex hull of a point set to the approximation of the behaviour of a moving
object. The set of data structures these operations work upon is rather re-
stricted. For simplicity and memory safety, they tend to be static; dynamic
objects are generally sparse, and disallowed in most safety contexts in any case.
Predominantly, these data types are structurally just tuples and sequences of
floating-point numbers and integers.

In contrast to their representations in programs, the objects of interest in
the mathematical domain are not necessarily discrete and finite. They include
time-dependent functions f : RT — X, arbitrarily shaped areas A C R?, con-
vex polygons and so forth. We argue that specifications should be written in
the language of this mathematical domain even at the low-lying module level
we consider here, and not in terms of the ‘program domain’, i.e. as relations
between values of program entities. A combination of more abstract, domain-
related specifications and the strong guarantees w.r. t. adherence to these by the
source code through the use of formal verification allows us to move the focus
of discussions with reviewers from the concrete source code to the code/module
specifications level. We have argued for this point in [61]. It is furthermore a
well-known problem that specifications written in a language close or even equal
to the programming language tend to be redundant, because they often simply
reiterate what is in the code due to their lack of expressivity. As an example,
it is not obvious how to specify a matrix inversion operation in terms of code
entities, except by repeating how it was or would be programmed, so that one
might end up with a specification like

inv.al3 =— —m.all x* m.al3 — m.a2l % m.a23
&& inv.a2l = m.al2
&& inv.a23 —

which differs from its implementation only by the use of the equality operator
== instead of the assignment operator =. Not much is gained by such a reit-
eration, and worse: it is a source of common cause failures, as the specification
and the code look the same such that errors might either be detected in both,
or be overlooked in both.

To obtain the desired degree of abstraction and detail in function specifi-
cations, an expressive, mathematically oriented language is required. Funda-
mental concepts like real numbers, sets, geometric transformations, but also
concepts from analysis like derivations, integrals or limits should be easily de-
finable or preferably predefined. Moreover, for the actual verification, a plethora

3.3. Specification Expressions 45

of lemmas about these operations and their interaction will be needed. Also, for
readability, the language should be syntactically flexible (e. g. support infix nota-
tion), and have a larger glyph set than plain ASCII: compare Int(Int(X,Y), Z)
to XNY NZ, or even Subseteq(Union(i, I, X[i]), Img(g, Z))) to U,e; Xs Cg‘ Z.

As a final point, we do not expect to be able to prove the domain-related
parts of program specifications automatically. The specifications we present in
Sec. 7.3 are simply far beyond the capabilities of current automatic provers like
the SMT solvers Z3 [51] or CVC3 [15], and even those of first-order reason-
ers like SPASS [151], despite the impressive advances these tools have made
in recent years. This means that specifications will be visible not only to the
specifier, but also to the verifier, who must understand them to successfully
prove programs correct. Provers have their own input languages, which results
in an encoding overhead: specifications must be translated to the prover’s lan-
guage. In principle, such encodings are incredibly hard to read when generated
automatically.

These considerations led to the decision to directly let specifications contain
Isabelle/HOL expressions. Isabelle/HOL satisfies several of the above criteria:
it provides a flexible and powerful syntax machinery aimed at mathematical
notation; large amounts of real analysis have been formalised, providing a good
starting point for the further development of required theorems; finally, no dis-
crepancy between specification expressions and their encoding in the prover’s
language is created if they coincide.

However, the aforementioned point about the need to refer to the program
state in terms of the values of program expressions remains valid. Simple spec-
ifications like arithmetic relations between program variables, ranges of array
indices, or validity of pointers are best written down in the C syntax. This
resulted in a hybrid approach for CSI, where Isabelle and an extension of the C
syntax can be combined by a quote/anti-quote-mechanism, letting us have the
best of both worlds.

Embedding Single Functions

There are essentially two ways to embed Isabelle/HOL terms into specifications.
Sometimes one only wants to refer to particular functions from the domain
model that correspond to concepts used in the implementation. This can be
done by referring to the function’s name, prefixing it with a $. In the following
example the Isabelle/HOL functions min, mazx :: int = int are referenced in this
way:

/*@
/o
@ensures *p — S$min(a, b) && *q =— $max(a, b)
Ox/

void twosort(int a, int b, int xp, int xq);

The arguments to $-functions are evaluated like the arguments in a C function
call, i. e., in a call-by-value fashion. This type of embedding is suitable for simple
functions that return C basic types and expect program values as arguments;
the ‘outer’ syntax remains that of C expressions. A problem with this approach
is that several program entities are not representable as values in C. The two
most important ones are arrays and pointer-linked structures. For example,

46 Chapter 3. Language for Functional Specification

in the context of a declaration struct s { int xa; int xb; } s1; a call $foo(sl)
would only make the values of s1.a and s1.b visible to foo, which are addresses.
If the intention is to also pass the contents of these addresses to foo, a different
embedding is necessary. The crucial question here is: how can parts of the pro-
gram memory that are accessible by following pointers (or, in the case of arrays,
by performing pointer arithmetic) be represented as Isabelle/HOL values? And
further: how can we describe the way in which pointers are supposed to be fol-
lowed to form such values? For example, we might want to include #sl.a in the
value, but not *sl.b. A simple approach would be to provide one read-memory
function for each C datatype. Our answer to this problem is simpler: we do not
specify in advance how to build such representations, but simply pass the whole
memory (program state) as an argument to Isabelle/HOL functions, which can
then internally read the memory parts relevant to them. Such state dependent
Isabelle/HOL functions are functions whose first argument is a program state.
They are referred to in specifications by prefixing them with a . The expression
“bar(&s1) < 1 refers to the state dependent function bar :: State = Loc = int,
where State is the type of program states in the formalised memory model. The
state that gets passed to bar is the same as the one in which the surrounding
expression is evaluated.

(Anti-)Quotations

From the viewpoint of theoretical language expressivity, we could stop here, as
it is now possible to define Isabelle/HOL predicates for the pre-/postcondition
of every function, and simply refer to these in specifications, e.g., one could
write function specifications like

/%@
@requires ~Pre_baz(&a, &b, &c)
/).
@ensures ~Post_baz(&a, &b, &c)
Qx/
void baz(int a, double b, struct s xc);

But this is unsatisfactory, because specifications would not be informative any-
more, and effectively useless in reviews and as code documentation. To avoid
this extreme orientation towards the prover, we allow to embed arbitrary Isabelle-
/HOL terms of type bool (predicates) in specifications via so-called quotations,
which live in the expr syntactic category. Such terms can be built up from
quantifiers over arbitrary types, set comprehensions, infix operators, and any-
thing else that is available in Isabelle/HOL. Quotations are embedded written
between ${ and } braces. Of course it is necessary to let such predicates refer to
the program state, in particular to values of objects. Anti-quotations serve this
purpose: specification expressions can be spliced into quotations by surround-
ing them with '{ and } braces. During the translation of specifications to pure
Isabelle/HOL terms, anti-quotations are substituted by their value according to
the formal semantics defined in Sec. 5.3. Quotations and anti-quotations may
be arbitrarily nested, though in practice only a single level of anti-quotations
occurs, which sometimes contains quoted references to bound Isabelle/HOL
variables. The following is a postcondition illustrating the use of quotations

3.3. Specification Expressions 47

and anti-quotations.
Q@ensures ${ Complex ‘{x + e} ‘{\result} € {p. |p| < 1}}

Assuming that the specified function returns a double, and that x and e are both
function parameters of same type, the postcondition states that the complex
number with real part x 4+ e and with the function’s result as imaginary part
will have a modulus of at most 1, i.e. the complex number lies within the unit
circle. (Complez is the constructor of Isabelle’s datatype of complex numbers.)

Representation Functions

A particularly common usage pattern of back-references to program entities
in quoted Isabelle/HOL terms is as arguments to representation functions. A
representation function is one that builds a domain value out of the program
value(s) forming its representation in the C program. Remember the idea that
functions implementing domain operations —as opposed to ‘auxiliary’ oper-
ations related to, e.g., logging, memory management, or data persistence—
should be specified in terms of the domain vocabulary as formalised in the
Isabelle/HOL domain model. To enable such specifications, program values
need to be ‘lifted’ into the domain somehow. While the memory model of
Chapter 4 provides a generic representation of all program values in the for-
malisation, representation functions instead directly yield proper domain values
which are independent of their concrete program representation. There is no
single function type subsuming all representation functions, but the general type
pattern is
R :: State = Loc = Val" = «

for a domain type «, which might be (real x real) set for sets of 2D-points, or
even a function type like real = real. Every such function R expects a program
state as its first argument. The C values forming the representation are read in
this state, usually starting at the address given by the second argument (Loc).
Further required program values can be passed (Val™), for example to provide
length information for arrays. (Program values are scalar here: they are either
numbers or addresses, cf. Sec. 4.2.2). A simple example of a representation
function is one that lifts an array of points of type

struct point { double x; double y; } ps[LEN];

to a set of mathematical vectors (of type real x real); this function would have
the following Isabelle/HOL type:

PointSet :: State = Loc = int = (real X real) set

and it can be used in specification expressions within quotations via the syntax
“PointSet{ps, LEN}; as with state dependent functions, of which representation
functions form a subclass, the initial state argument is implicit. This notation
for referring to representation functions in quotations is just syntactic sugar,
and it is equivalent to the regular anti-quotation ‘{"PointSet(ps, LEN)}. We
can also conveniently refer to an evaluation of a representation function in the
pre-state within quotations in postconditions via = PointSet{ps, LEN}, which
decodes to the rather unwieldy expression ‘{\old("PointSet(ps, LEN))}.

48 Chapter 3. Language for Functional Specification

To illustrate how representation functions are used when there is a discrep-
ancy between the program representation type and the domain model type in
terms of their respective ‘size’, i.e. the range of values they represent, we take a
look at the robotics domain formalised in the SAMS project. Here, one is inter-
ested in a particular class of two-dimensional geometric transformations —i. e.,
essentially functions real x real = real x real— that model the motion of phys-
ical objects. In the two-dimensional case, we call these transformations rigid
body transforms (RBT), which are uniquely defined by two parameters: a real
value ¢ € [0,2m) for the rotation part, and a vector (z,y) :: real X real for the
translation part. The interval [0, 27) can be described precisely in Isabelle/HOL
as {r :: real. 0 < r Ar < 27}. For smooth use in proofs it is more practical to
define the type denoting this interval by the quotient of the set of real numbers
(denoted UNIV below) over the equivalence relation relating all real numbers
whose absolute difference is an integer multiple of 27.2

typedef (S02)
S02 = "UNIV // {(a, b). 3 k::int . a = b + 2 * pi * real k}"

Type SO2 is now isomorphic (though not equal) to [0,27), and two auto-
matically derived morphisms allow us to switch between the two. Using SO2
instead of real has the obvious benefit that every value uniquely represents a
value in the interval. In the case of real, 0, 27, 4, etc. would either all repre-
sent the same value (in an interpretation modulo 27), or several of them would
simply be invalid. Getting back to transformations, every rigid body transform
can now uniquely be described by a pair of type RBT = (real x real) x SO2,
and a function

Tm :: RBT = real X real = real X real

that transforms a two-dimensional point according to the given RBT.

So much for the domain model; C, on the other hand, does not have such
powerful type construction facilities. Furthermore, the choice of datatypes is
often influenced by considerations that are not quite as important in a domain
formalisation, like the efficiency of execution, the existence of suitable libraries,
or the compactness of the representation. Ignoring the latter, rigid body trans-
formations might well be implemented via a general datatype of 3 x 3 matrices,
where for an RBT given by rotation ¢ and translation (x,y) one would use the
matrix

cos(¢) —sin(¢) x
sin(¢) cos(¢) y
0 0 1

The concrete C datatype might look as follows:

typedef struct matrix3 {
double v[3][3];
} matrix3_t;

This datatype allows several objects that are not rigid body transforms; among
others, all matrices in which the last row is not equal to (0 0 1) are not. To
express in a specification that a given matrix is an RBT, to which we can

2We call it SO2 to remind ourselves of the fact that the interval is isomorphic to the special
orthogonal group SO(2).

3.3. Specification Expressions 49

/*@
@requires “is_RBT(m)
©memory
src [:num] <#> dst[:num] <*> *m
Omodifies dst[:num]
Q@ensures ${ “PointSet{dst, \result} =
Tm "RBT{m} ' “PointSet{src, \result} }
©x/
int transform(matrix3_t *m,
const point_t x*src,
point_t =dst,
int num);

Figure 3.3: Functional specification of a matrix transformation operation: input
parameter m must be a rigid body transform, in which case the input points src
will be transformed by m, where the result is placed into dst.

safely apply the corresponding representation function lifting it to an element of
Isabelle/HOL type RBT, we require a recogniser function that characterises all
RBT matrices. We can define a state dependent function for use in specifications
for this purpose, which has an almost identical signature as the corresponding
representation function

18-RBT :: State = Loc = bool
RBT :: State = Loc = RBT

The use of these functions is demonstrated in Fig. 3.3: C function transform
is supposed to transform the array of points src of length num according to
matrix m and put the result into dst. The precondition is that m represents an
RBT, ensured by the state dependent function is-RBT. The postcondition is
formulated exclusively inside the domain: dst gets interpreted as a set of real
points, up to and not including its \ result’s index (implying that callers of this
function will have to check the result in order to know how many points were
actually copied). This set is equal to the set of points obtained by transforming
the points represented by src (again, up to \ result) via Tm and according to
the rigid body transform obtained from m.

From the specifier’s point of view, it is only necessary to know which repre-
sentation functions and representation recognisers exist, respectively which ones
he requires, so that they can be integrated into the domain formalisation. That
is to say, he can see the collection of recognisers and representation functions as
a library for use in specifications. From the verifier’s point of view it is neces-
sary to know what properties these functions have, in particular with respect to
dependencies on memory locations, so that the right simplification procedures
can be applied during verification condition generation. This issue is discussed
in Sec. 6.5.

3.3.3 Types in Specification Expressions

In this section we illustrate some properties of C’s built-in datatypes to moti-
vate our decision to use a simpler type system for specification expressions. The

50 Chapter 3. Language for Functional Specification

C standard defines 14 so-called basic types which together with enumerations
form the arithmetic types (cf. Fig. 3.4). They fall into two categories: (real)
floating types and integer types. Restrictions are placed on the possible value
ranges that each type covers, and there exists an ordering between the unsigned
integer types as well as the signed ones: a value of type signed char must al-
ways fit into a short int, which must fit into an int, etc. However, the standard
does not mandate the exact bit-width or value range of any type except the
character types. The characteristics of floating-point values are also implemen-
tation defined. In particular, the accuracy of floating-point operations as well
as the existence of special values like infinity or NaN (not-a-number) are not
guaranteed.

Arithmetic Conversions

The part of the language definition concerned with implicit and explicit conver-
sions between arithmetic types is a little intricate. Conversions from any integer
type to an unsigned integer type always succeed, with conversions to smaller
types effectively being defined by bit truncation, while the result of conversions
to smaller signed integer types may differ between implementations (the be-
haviour is, again, implementation-defined). Converting a value of type double
that is larger than any float into the latter type results in undefined behaviour.
And due to the so-called integer promotion rules arithmetic operations (addition
etc.) of integer values of types smaller than int are actually always performed
in type int. On a common architecture where the lengths of short int, int and
long long int are 16, 32, and 64 bits, respectively, this results in the peculiar
fact that the addition of two short ints can never overflow when assigned to an
int, while the addition of two ints might well overflow, resulting in undefined
behaviour, even when the result is assigned to a long long int.

A Type System for Specification Expressions

It is unsatisfactory to be forced to deal with such numerical intricacies within
specifications. If a particular specification is expressly concerned with numerical
properties of a function, then one obviously needs ways to express the overflow
behaviour, conditions on the definedness of operations, ranges of arithmetic
types, and so forth. In most cases, however, a specification is concerned with
more abstract, functional properties and in those cases it is more convenient, ar-
guably even necessary, to be able to abstract away from numerical details. Our
solution is to interpret all specification expressions over (unbounded) mathemat-
ical integers, real numbers, booleans and, thanks to the quotation mechanism,
any other Isabelle/HOL type. This leads to the following four basic types of
specification erpressions:

Type Isabelle/HOL equivalent Math. domain

_Bool bool {True, False}
_Int int Z
_Real real R
_Any (any type) ?

Type _Any can be regarded as a radically simple way to reconcile the funda-
mentally different type systems of Isabelle/HOL (which is founded on the poly-
morphic Hindley-Milner type system, augmented with ad-hoc polymorphism in

3.3. Specification Expressions 51

Arithmetic types
Basic types
! | Real floating types

float ‘ ‘ double ‘ ‘ long double

Integer types

Character types
‘ char ‘
Unsigned integer types Signed integer types
unsigned char‘ ‘ signed char
unsigned short int short int
unsigned int int
unsigned long int long int
unsigned long long int long long int
Enumerated types

Figure 3.4: The C type taxonomy. Enumerated types are not included in the
CSI subset of C; _Bool, _Int, and _Real are also regarded as arithmetic types.

the spirit of Haskell’s type classes [116]) with the type system of C. The idea
is that every Isabelle/HOL type except those three listed in the table above is
assigned the type _Any. In the type system of specification expressions, _Any
becomes the super-type of all other types. That is, wherever a value of type
_Any is expected, one can pass a value of any other type. From C, we in-
herit structured types, pointer types, and array types. The concepts of type
qualifiers, storage classes, incomplete types (e.g., arrays without a specified el-
ement count), and union types do not exist in specification expressions. It is
convenient to include function types for giving types to Isabelle/HOL functions
embedded via $-quotations etc. Therefore, types are defined by the following
abstract grammar:

T u= basic-type
| T (pointer)
| T[N] (array) (3.1)
| tag{ fi:7Ti; ... fa:iTn } (struct)
| T (T,) (function)

We require all lvalues occurring in specification expressions as defined by
the abstract grammar in Fig. 3.2 to be basic types or pointers: structured or

52 Chapter 3. Language for Functional Specification

even function values are not allowed. As in C, an lvalue of array type used in
an expression ‘decays’ into its corresponding pointer type. We elide a formal
definition of the translation of C lvalue types to those of Eq. (3.1), and appeal
to the reader’s intuition. The sole noteworthy fact is that all C integer types
are converted to _Int, while all floating types are converted to _Real. For
example, in the context of a declaration struct s { int a; double b[3]; } s1;
the translated type of sl is s { a : _Int; b : _Real[3] }, while s1.b has type
_Real % in an expression, due to array type decay. Type definitions via typedef
are handled transparently as in C, i.e. the defined type is considered equal to
the defining type and no explicit conversion between such types is necessary to
achieve type compatibility.

The type system of specification expressions is presented in Fig. 3.5. The
presentation is standard: an expression e is well-typed with type t if the typing
judgment I' - e : t can be derived via the given rules. The type environment
T is used to map lvalues (instead of plain variables) to their respective types.
We assume the initial type environment of a specification expression to contain
all identifiers that are visible within the expression. These comprise global vari-
ables, function parameters, declared Isabelle/HOL identifiers and constants, as
well as abbreviations (cf. Sec. 3.5.3). The first rules are concerned with lvalues,
literals and arithmetic operations. Rules (Not), (Comp) and (Conn) show that
the boolean type is taken seriously: in contrast to C, where int is the result
type of comparisons, conjunctions, disjunctions and negation, in specifications
these all yield and, where appropriate, expect operands of type _Bool. Fol-
lowing rule (IFTHENELSE), rules (Convl) and (Conv2) specify that _Int can be
implicitly converted to _Real, which itself can be converted to _Any. Other
conversions must be realised through the use of quoted Isabelle/HOL functions:
imagine a function roundToNearest :: real = int emulating the semantics of a
cast from, e.g., double to int which can be referenced as $roundToNearest(x)
for some x of type _Real. It would be possible to allow explicit casts in speci-
fication expressions and to give them an implementation defined semantics by
parameterising the formalisation over the architecture at hand. However, we
prefer to require an explicit reference to the Isabelle/HOL function defining
the desired conversion. (It is rather improbable that specifications which rely
on implementation defined behaviour will look identical for different architec-
tures, which casts doubt on the benefit of a parameterisation.) In the scope of
quantifiers, the type environment is extended by the bound identifier and its
type, which is converted to _Real or _Int as done with regular lvalues. Hence,
the environment for typing expression E in \ forall char c; E is extended by
(c — _Int). The type rules for \old, @label, and memory predicates are trivial.
In rules (DorrAR) and (HAT), the type environment is expected to yield the
function type for the respective Isabelle/HOL function. Note that the implicit
state argument of ‘hat’-referenced functions is also hidden in its type. (QUOTE)
expresses quotations are of boolean type and that all anti-quotations must be
well-typed, whereas no restrictions are placed upon ‘raw’ Isabelle/HOL text.

3.4 Memory Layout Descriptions

It is well known that one of the most severe complications both for the analysis
and the verification of imperative programs is caused by aliasing[114]. Alias-

3.4. Memory Layout Descriptions

[(lval) =t Tklval:t
[k lval: ¢ Ik &lval : ¢
I+ \true : _Bool I' - \false : _Bool
ke :t They:t ®e{+,—x/}
I'Fe @ey:t t € {_Int, _Real}

I'ter:_Int T'key:_Int
I'ke; %ex:_Int

I'ke:t t € {_Int, _Real} I'e:_Bool

(Nor)

I'—e:t I'+le:_Bool
I'bey:t Theg:t ge <, <=,>>===,I=}
TFe <es:_Bool te{_Int,_Real} (Comp)
I'e;: _Bool T'Fey:_Bool
T'Fer O es: _Bool O €&l |l > <>}
(Conn)
'kb:_Bool Thej:t Theg:t
[+ \if b \then e; \else ey : ¢ (IFTHENELSE)
I'ke:_Int I'Fe: _Real

TFe: Real (COND o —a, (Cowg)

I'(x—t)Fe:_Bool I(x—t)Fe:_Bool
I'F \forall ¢ x; e : _Bool I'F \exists ¢ x; e : _Bool

I'kFe:t I'kFe:t
'H\olde:t I'Fe©label:¢
I'Fe:tx I'ke:tx T'keg:_Int
'+ \valid(e) : _Bool Ik \array(ey, e2) : _Bool
ke :ti x T'kegity * '+ e{1,3} : t{1,3) * 'k €{2,4} _Int
I' - \unrelated(ey, e3) : _Bool I I \separated(eq, €9, €3,¢4) : _Bool
F(ident) =1<= (tl, . 7tn) I'ke;:t;
I'F Sident(eq,...,e,) : ¢ (DotLar)
I‘(ident):t<:(t1,...,tn) I'ke;:t;
T+ “ident(ey,...,e,) 1 t (Har)
T'Fe;:t; (e; not raw Isabelle/HOL text)
I'F${e - e, }:_Bool (Quore)

Figure 3.5: The type system of specification expressions

54 Chapter 3. Language for Functional Specification

ing concerns the fact that an object in memory may be referred to by several,
possibly unrelated identifiers or expressions. In the case of C, and using the
terminology of Bornat [29], there are four possible forms of aliasing. They are
subscript aliasing, where a[E] and a[F] will refer to the same memory location
when E and F evaluate to the same integer value; overlap aliasing where the
assignment to a whole struct affects the value of its members; view aliasing,
which occurs when different fields of a union are used to access the same mem-
ory area; and, most importantly, pointer aliasing concerns the situation where
either two pointers contain the same or related addresses, or where a pointer
contains the address of an object also denoted by a variable. Since the language
subset supported by CSI precludes assignment to whole structures and the use
of unions, we only need to deal with subscript and pointer aliasing.

From the viewpoint of function specifications, the most common case of
aliasing involves pointer-valued function parameters, when either addresses of
arrays are passed, or when call-by-reference is simulated by passing the addresses
of single objects. The following function foo illustrates both cases: its argument
pl is expected to be a pointer to a single read-only struct s which might itself
be a local object of the calling function, or a global object. p2 shall contain the
address of an array of struct s objects of length p2_len, and out is an output
parameter containing a valid address, again for a single object.

void foo(const struct s xpl,
struct s xp2,
int p2_len,
struct s xout);

Without any restrictions on the possible aliasing between these pointers, the
specification —and particularly the verification— of this function will be very
complex, since all of *pl, p2[i] (0 < i < p2_len) and *out might change their
values when *out is modified inside the function. (That pl is declared as pointer
to constant is irrelevant, as it does not force the object pointed to to be con-
stant.) In most practical cases, functions like this are, however, only called with
certain aliasing patterns that exhibit well-defined and well-specifiable behaviour.
For example, for the standard function

void *memcpy(void *sl, const void xs2, size_t n)

it is expressly stated that “behaviour is undefined, if s1 and s2 overlap”[81],
implying that the function should not be used for overlapping memory areas.
In the foo example, one might imagine that pl and p2 are only used for reading,
while out is written to. One could thus demand that out is aliased neither to pl
nor to any p2[i].

Furthermore, the concept of arrays in C is a very weak one. Arrays are just
contiguous blocks of memory, with the block size determined by the size of the
array element type. Array variables ‘decay’ to pointers of their first element’s
address when used in expressions, so that passing an array to a function cannot
be distinguished from passing the address of a single object. Information like
the capacity or the current element count of an array needs to be maintained
externally by the programmer. Typically, when arrays are passed to functions,
an additional parameter is used containing the minimum size of the array. The
function’s declaration does not formally reveal this fact, so that informal naming
schemes are often used (like p2 and p2_len above). It is therefore desirable to

3.4. Memory Layout Descriptions 55

be able to express the relationship between two such variables and, generally,
to specify the required capacity of an array in function interface specifications.

Additionally, when dereferencing a pointer (whether to an array or to a single
object), it must contain a wvalid address, i.e. an address at which an object of
the type given by the pointer is actually stored. There are three ways to violate
this property: a pointer might contain the NULL value, it might not have been
initialised and hence contain an arbitrary address, or it might have been assigned
an invalid value. Functions that unconditionally dereference pointers require a
precondition that ensures their validity.

CSI provides predicates for use in pre-/postconditions as well as a particular
notation to be used @memory annotations, which enable the specification of
allowed aliasing patterns for function interfaces and of requirements on pointer
and array validity. These are discussed in the next sections.

3.4.1 Memory Descriptors

We considered two ways of expressing that memory areas are unrelated (i.e.,
do not overlap). One way is to express this as a property of pointer values
and types, e.g. with a special predicate \unrelated. The intended meaning of
\unrelated (p, q) (with p and q of pointer type) would be that the area of size
sizeof (xp) starting at p does not overlap the corresponding area of q. In the
case of arrays, a predicate \separated(a, n, b, m) specifies that a and b as
arrays of sizes n and m do not overlap. We can express arbitrary aliasing situ-
ations between pointers and arrays of fixed size through boolean combinations
of such binary specifications of unrelatedness. However, pairwise specifications
are rather inelegant as they lead to a quadratic blowup of the specification in
the common situation where all or most pointers need to be unrelated. The ex-
pression \unrelated(a, b) && \unrelated(b, c) && \unrelated(c, a) illustrates
the problem. Nonetheless, the operators \separated and \unrelated are part of
CSI and can be used in pre-/postconditions.

Mvalues For a particularly common class of specifications, in which the pre-
condition requires exactly one pattern of memory layout and pointer/array va-
lidity, this pattern can be written concisely as a @memory annotation. Memory
areas are here described via muvalues, which can be regarded as a modification
of the concept of C lvalues, and two binary combinators over these. The intu-
ition is that an mvalue denotes collections of objects and hence describes the
memory areas occupied by them, while the two combinators express separation
constraints and unions of memory areas. The abstract syntax of mvalues is
described in Fig. 3.6. An identifier mvalue m denotes the object referred to by
the variable of that name and describes its memory area, of size sizeof(m). A
dereferenced mvalue *m denotes the objects obtained by interpreting the objects
denoted by m as pointers, and dereferencing them. The array range expression
mli:j] denotes all objects of the arrays denoted by m, from index i up to and
including j—1. m.f denotes all f-fields of the objects denoted by m. The formal
semantics of mvalues in Isabelle/HOL are given in Sec. 5.5. The type rules
for expressions extend to mvalues in the obvious way. Some syntactic sugar is
served: a—>f means (*a).f, v[:n] is the same as v[0:n], and v[i] is equivalent
to v[i:i+1].

56 Chapter 3. Language for Functional Specification

mual = ident (variable)
| *mual (pointer dereference)
| moalltriv-expr : triv-expr] (array range)
| moal.ident (field selection)
triv-expr ident

| int-literal
| triv-ezpr @ triv-expr

® € {+, —,*/,%}

Figure 3.6: Abstract syntax of memory descriptors (mvalues)

Mvalues allow us to describe a memory area whose size is determined either
statically (e.g., *p has a fixed size given by the type of p), or, in the case of
arrays, is given by the values of integer variables (as in a[:len]). We cannot
describe graph-shaped structures that arise from arbitrary repetitions of derefer-
encing and recursive data structures; the typical example are lists of unbounded
length. This, however, is not a problem in our application domain, as memory
allocation is prohibited (see Sec. 5.1), which practically precludes the use of
dynamically-sized datatypes.

3.4.2 Separation Constraints

We can now combine mvalues with two operators to form larger memory areas
and to express separation constraints. The operator <+4> conjoins two memory
areas and (intuitively) yields the memory area described by its operands. The
second operator <*> also conjoins two memory areas, but additionally requires
that the areas of its operands do not overlap, i.e. do not have a single memory
location in common. We can build terms over mvalues with these combinators to
form memory layout descriptions that express both the validity of the involved
memory areas as well as their separation. As an example, we state the memory
requirements on foo from above as follows:

@memory (xpl <+> p2[:ps_len]) <x> xout

This is equivalent to the following precondition (merely indicating that validity
assertions are derived from a memory layout description, too):

@requires \unrelated (pl, out)
&& \separated (p2, ps_len, out, 1)
&& \valid {...}

One particularly powerful feature of combinator-based expressions is that they
allow a linear formulation of pairwise separation constraints, as in

@memory *a <*> *xb <x> c[:n] <x> d

which concisely captures the separation of four memory areas.

We have formalised memory layout descriptions in Isabelle, and proved the
important property that memory layout descriptions can be translated to a
conjunction of binary separation constraints, as definable by the \unrelated
and \separated predicates. We increase generality by defining our theory over

3.4. Memory Layout Descriptions 57

arbitrary sets instead of memory areas. We then instantiate the theory for the
concrete memory model used (cf. Sec. 4). The datatype for memory layout
descriptions has a base constructor representing a concrete set of locations, and
two constructors representing the combinators, where we use the typographically
more appealing symbols ¢ and & for <*> and <+>, respectively.

datatype ’a mem_descr = L "’a set"
| Sep "’a mem_descr" "’a mem_descr" (infixl "{" 80)
| Join "’a mem_descr" "’a mem_descr" (infixl "®" 90)

We provide semantics by defining when a state satisfies a memory descrip-
tion. States are abstracted to sets of locations, to be interpreted as those loca-
tions, i.e. that part of memory, at which the state is defined. For example, if
states are partial functions from addresses to bytes: S : nat — word8, then we
are interested in the state’s domain dom(S). A state satisfies an atomic memory
layout description if it contains all locations mentioned in the description. The
join operator & is simply interpreted as a conjunction. To satisfy ¥ ¢ W, it must
be possible to split the state into two disjoint parts that each satisfy one of the
operands. This neatly captures the separation requirement that ¥ and ¥ may
not have locations in common.

fun sat_mem_descr :: "’a set = ’a mem_descr = bool"
(infix "E=" 70)
where

"SELX=XCS" |
"SEMGN=EEMASEND"]
"SEMON= (IS8’ S=S8"US’A

S’ N8’ ={ryNS EMAS’ =MD"

One might have expected a similar definition for & as was given for ¢, except
for the disjointness condition. However, we observe that satisfaction of memory
layout descriptions is monotone, and hence the two definitions are equivalent:

lemma sat_mono:
"WSS.SkEM-—SCS — 8 EM

lemma Join_decomposition:
"S =M @ N= (38 87.8=8 US’AS EMAS’ =MD"

From the definitions it is obvious that both ¢ and @ are associative and
commutative:

lemma Sep_assoc: "S = (A O B) 0 C=SEAO BOO "
) = "

lemma Sep_commute: "(S = M O N S ENOCW
lemma Join_assoc: "SE (A ® B) ® C=SEA® (B CO"
lemma Join_commute: "(S =M & N) = (S EN & M)"

To normalise every memory layout description into a @-combined sequence
of binary separation expressions of the form L X { L Y, we require a lemma
about distributivity of ¢ over @ and one that allows us to split up terms like
M O N O 0. These lemmas depend on the following crucial state intersection
lemma:

58 Chapter 3. Language for Functional Specification

lemma sat_Inter:
"SS’. SkEN-—S EN-— (SN S) =N

Proof. By induction over the structure of N. The interesting case is N = N1 ¢
N2: we may assume the proposition both for ¥1 and N2 and need to show (s N
S’) |E N1 § N2, given that S and S’ both satisfy N1 ¢ N2. So we can split S
=51 WS, and S’ = 5’1 W S’2. From the assumptions we obtain (S1 N S71)
= N1 and (S2 N S’2) E N2. We take the trivially disjoint split S N S’ = (S:
N S’1) W ((S1 U S2) N (8’1 U S’2) - (S1 N S71)) and using sat_mono only
need to show S N 8’2 C (S1 U S2) N (8’1 U S’3) - S1 N 8’1, which is a
set theoretic validity. O

lemma Sep_Join_distrib:

"SEMOM)ON=EEMON S M ON"

lemma Sep3_Join:

"SEAOBOC =(EEMUOB @ BOC @ (COA)"

Proof. In both cases, we explicitly construct the intuitively appropriate splits
and make use of sat_Inter and sat_mono to narrow down or extend states as
necessary. O

Memory layout descriptions are inspired by the concept of the separating
conjunction operator defined in separation logic [132]. Instead of integrating
the operator (typically denoted by the symbol * in the literature) into the logic
and putting it on one level with the usual logical connectives such as A and V,
we took a more lightweight approach and only apply @ and { to memory layout
descriptions. We thereby stay in the well-understood realms of Isabelle’s higher-
order logic with good support for proof automation. The distinction becomes
clear in a simple example: the separation logic formula x — 1%y — 2 expresses
that the memory location denoted by = contains the value 1 and is separated
from the memory location denoted by y, containing the value 2. Properties
of memory values are intertwined with properties of memory structure. On
the other hand, the memory layout description L {z} ¢ L {y} is a purely
structural description disregarding any values. In particular, the operator’s
argument L {z} is not a formula, in contrast to z — 1.

Independently from our work, Gast [62] has given a formalisation of memory
layouts similar to ours. His focus is on proving properties of programs written
in an imperative toy language performing low-level memory operations, particu-
larly in the presence of dynamic memory. There is no analog of the & operator,
as he does not aim for concise descriptions of memory layouts, i.e. readable
specifications.

3.4.3 Validity of References and Arrays

We said that memory layout descriptions implicitly express the validity of the
mvalues involved and referred to the Isabelle formalisation (Sec. 5.5) for seman-
tics. When @memory annotations are not used to describe memory validity, e. g.

3.5. Further Language Elements 59

when the respective memory cannot be described by mvalues because it has a
triangular instead of a quadratic shape (see below), two special predicates can
be used in pre-/postconditions to express the validity of pointers and arrays.
\ valid (p) evaluates to true if the pointer p, whose type we here assume to be
T *, contains an address of an object of type T. Furthermore, \array(—, —) is
a binary predicate expecting as first argument a value of pointer type and an
integer value as second argument. \array(a, n) evaluates to true if a points to
an element of an array, such that all a[0] to a[n—1] are valid accesses into the
array. For example, in the context of an array of int pointers, int *a[N], the
following expression requires that every pointer in the array points to an int
array at least the size of the corresponding pointer array index i.

\forall int i; 0 < i <N —> \array(a[i], i)

Such a ‘triangular’ shape cannot be specified through an mvalue, and hence
in admittedly rare situations like this one has to resort to using validity predi-
cates.

3.5 Further Language Elements

So far we have concentrated on annotations used for functional specifications.
A few more technical annotations are necessary to enable the type checking and
the formal verification of these specifications.

3.5.1 Modification Frames

In addition to pre- and postconditions, Fig. 3.1 and Fig. 3.3 already contained
a modification frame, or @modifies clause. A modification frame is described by
a sequence of mvalues (cf. Sec. 3.4.1) or the special symbol \nothing, in case the
function does not modify any externally visible variables, but only its local vari-
ables. It specifies which memory locations are possibly and at most modified by
an arbitrary execution of the function starting in a program state that satisfies
the precondition. In other words, every memory location not denoted by any of
the mvalues will have the same value before and after execution of the function.
The mvalues comprising a modification frame are evaluated in the pre-state.
The importance (and difficulty) of specifying modification frames has been
studied in the literature many times (Borgida et al. [28] provide an in-depth
discussion) and their relevance is not restricted to program specifications, but
extends to the field of artificial intelligence, where the problem is known as the
frame problem. Summarising the possible changes in memory caused by the
execution of a function is particularly relevant in all places where that function
is called: both the programmer and the verifier have to be able to derive which
variables will retain their value and which properties will remain true across
the function call. One might argue that a modification frame could simply be
made a part of the postcondition: to state that variable a maintains its value
across the execution of function foo, simply include the expression a == \old a
in foo’s postcondition. This approach, however, does obviously not scale to
realistic programs with hundreds and thousands of memory locations. The
huge advantage of specifying what s (possibly) changed, as opposed to being
explicit about what is not changed, is that the former is a local property: the

60 Chapter 3. Language for Functional Specification

modification frame can be determined by looking at the function body and the
modification frames in the interface specifications of all called functions. To
specify what is not changed, one needs to be able to name, i.e. to reference, all
entities existing in a program.

Modification frames have an over-approximative character. The effect of
a function execution on memory can always be made more precise inside the
postcondition. Consider the following code snippet:

/*@
@modifies a
@ensures
\if ¢ <= 0 \then a = \old a \else a = 0
©x/
void reset_if_pos(int c) {
if (¢c>0){
a = 0;
}

}

3.5.2 Statement Annotations

In contrast to function specifications, which actually prescribe the behaviour of
their corresponding functions, statement annotations merely describe the effects
of statements. Their inclusion does not alter the semantics of program execution
nor the specification of the function body in which it is contained. Statement
annotations serve two purposes: (a) they document the effects of statements in
a precise manner. This makes it possible to understand the code in terms of the
domain model on an even finer grained level than that of function interfaces.
(b) They are used during the automatic derivation of verification conditions in
Isabelle/HOL. It is in particular necessary to provide invariant annotations for
each looping statement in a function to enable the fully automatic derivation of
verification conditions.

Join Arbitrary statements can be annotated with a @join annotation that may
be accompanied by a @modifies clause. The purpose of such an annotation is to
provide a concise summary of the effects of the statement. It is useful in cases
where all program paths contained in a compound statement (some of them
possibly empty) establish a common property. Such an annotation thereby
effectively joins these program paths into one during verification, avoiding a
blow-up in the size of verification conditions. The following code snippet gives
an example, where a local variable a is set to its absolute value. This could of
course be achieved by an appropriate call to the abs() function; but imagine
that this had to be avoided for performance reasons.

/%@
Qjoin a = $abs(\old(a))
@modifies a
Ox/

if (a<0){

a = —a;

3.5. Further Language Elements 61

}

The effect of this annotation is that during verification, all statements following
the if will only have to be considered once, under the assumption that both
branches of the if make the @join predicate true. Had the @join been omitted,
subsequent statements would have to be considered twice: for the case where
the then branch has been taken and for the else branch.

The \old operator may be used in @join annotations and therein refers to the
value of its operand before execution of the annotated statement. The overall
@join expression is evaluated in the state after execution of that statement.

Invariants The second statement annotation concerns the well-known spec-
ification of invariants of looping constructs (for, do ... while, while). Loop
annotations must include an Q@invariant and a @variant annotation and may ad-
ditionally contain a @modifies clause. This use of invariants is standard, which
is why we keep the discussion short. The variant must be an expression of type
_Int. Tt provides a hint to the verification condition generator why a particu-
lar loop will terminate. To prove termination of a loop, one generally has to
find a well-founded ordering on program states such that an iteration of the
loop transforms every program state which makes the loop condition evaluate
to true into one that is strictly smaller according to the ordering. Since the
ordering is well-founded, this process cannot continue forever, and the loop has
to terminate. We take a simple approach in which the ordering on states is
expressed through an expression of type _Int, which has to be non-negative in
all states satisfying the invariant.

The invariant itself is a specification expression. It can refer to all variables
also visible in pre-/postconditions, and additionally to the function’s local vari-
ables that are in scope at the occurrence of the annotated loop. Due to possible
side-effects in loop conditions (as in while (++i < n) { ... }) and the existence
of three different looping constructs, it is not immediately clear which program
states they refer to, i. e. in which states invariants are evaluated. Again, a formal
definition can be found in Sec. 6.3, but we provide an intuition here:

o For while, the invariant refers to the program state before evaluation of
the loop condition. This includes both the state before entry into the loop,
and all states reached after execution of the loop’s body, right before re-
evaluation of the loop condition. Side-effects in loop conditions thus make
it possible that an invariant does not hold after the execution of a loop,
but only right before the final evaluation of the loop condition.

e Invariants of for and do ... while loops are best explained by a translation
to their while equivalents, expressed in terms of the C grammar:

3

2
expression opt

ool :
for (expression opt

opt expression, .) statement
and

do statement while (expression) ;

are translated to

{ expressiony,, ; while (expression?,,) { statement ; expression?,, ; } }
and

{ statement ; while (expression) statement }

62 Chapter 3. Language for Functional Specification

Invariants are evaluated exactly as if they were attached to the while
statement in the ‘expanded’ form. In particular, on entry toado ... while
loop, the invariant does not need to hold.

The following is a complete loop invariant of a for loop implementing mul-
tiplication via iterated addition.

prod = 0;
/%@
Qinvariant 0 <= i && i <= a
&& a x b= (a — i) * b + prod
Omodifies prod, i
@variant a — i
Ox/
for (i =0; i < a; +Hi) {
prod += b;
}

An invariant can refer to the value of an expression at a labelled statement
that has been executed before loop entry via the e @label syntax. It may not
use the \old operator.

3.5.3 Declarations and Symbolic Constants

There are four more annotations, that are not attached to particular functions,
but rather appear at the file level. They are not concerned with functional spec-
ifications, but are used to enable the type checking of specification expressions,
to cope with C preprocessor macros, or to avoid the tedious repetition of often
used expressions. We describe them in the following paragraphs.

Theory Imports A Qtheory annotation occurring at file level, i. e. at the level
of external declarations, simply advises the front-end performing the translation
from C source code to Isabelle/HOL theories to import the specified theories
into the theory generated for the C file in which the annotation occurs. For
example, @theory SAMSDomain declares that the domain theory of the SAMS
project (in file SAMSDomain.thy in an appropriate path) should be imported.

Declaration of Isabelle/HOL Functions To perform type checking of spec-
ification expressions, it is necessary to assign types not only to program variables
and lvalues, but also to every Isabelle/HOL function f that is referenced either
as $f (..) or 7f (..), as rules (DoLLAR) and (Har) of Fig. 3.5 indicate. While the
types of lvalues are derived from the types given in the respective variable dec-
larations in the C program, a special declaration annotation is used to declare
the types of such logic functions. The declaration syntax is that of C function
declarations, but the return type must be one of _Real, _Int, _Bool, or _Any,
as these are the expression types reflecting the types of the prover language.
The types of parameters are declared in the type system of specification expres-
sions; recall that structured types and type definitions retain their C names, but
integer and floating-point types are all replaced by _Int and _Real, respectively.

It is also possible to declare ‘nullary’ functions, i.e. constants. Fig. 3.7 de-
picts some examples in concrete syntax, including declarations of representation

3.5. Further Language Elements 63

/*@theory T Q@x/

/%@
$function {
_Real pi;
_Real sin(_Real x);

}

“function {
_Bool is_RBT(matrix3_t *m);
_Any RBT(matrix3_t *m);
_Any PointSet(point_t *v, _Int len);

}
©x/

Figure 3.7: Declaring theory references and state independent as well as state
dependent Isabelle/HOL functions.

/*@
::abbreviation {
_Bool config_OK{(config_t xc) =
c—>status =— STATUS_OK &&
c—>x1 < 0.0 &&
(c—=>strict = 1 —> c—>fail_on_warnings = 1)
}
©x/

Figure 3.8: A naming mechanism for often used specification expressions is
provided via the definition of abbreviations.

#ifdef VERIFY_MODE

/*Q@define _Int LEN = 4 x 1024; Qx/
#else

#define LEN (4 x 1024)

#endif

Figure 3.9: A pattern to redirect C preprocessor definitions to Isabelle/HOL
constants for verification purposes.

#define LEN (4 x 1024) \
/*Q@define _Int LEN = 4 x 1024; x/

Figure 3.10: Using a postfix annotation to associate expressions with Isabelle-
J/HOL constants for verification purposes. This only works if the preprocessor
supports passing comments through, as with GNU cpp’s —-CC option.

64 Chapter 3. Language for Functional Specification

functions and recognisers as well as the declaration of the mathematical constant
m, also available in the prover under the name pi.

Defining Named Specification Expressions While the domain-related
parts of specifications are assumed to use the definitions of the formalisation
to express the desired properties, there will always be a need for code-related
specifications. Examples are the requirement that certain variables of type int
must be negative, or that the members of a structure representing some con-
figuration information are consistent. Consistency might include the fact that
whenever the . strict member of the structure is set to 1, the .fail_on_warnings
member must also be set to 1. Properties like these can sometimes be more con-
veniently stated in terms of a specification expression rather than as a domain
predicate. This holds true particularly for those expressions that are concerned
mainly with values of program variables which do not have a direct correspon-
dence in the domain, like for example program configuration information. It
is possible introduce names for specification expressions at the file level via an
:: abbreviation annotation. In Fig. 3.8 we define the name config_OK for a given
specification expression. The expression is parameterised over the configuration
pointer c¢ of type config_t *; we use the syntax of C initialised declarations
here: abbreviations are declared like C functions with an initialiser. Parameter-
less abbreviations are possible, but also require brackets. Within specification
expressions in the scope of the annotation, one can refer to the defined ex-
pression as ::config_OK(conf) for an lvalue conf of correct type. In any case,
the latter expression is logically equivalent to its expansion, in which all free
occurrences of parameter c are replaced by the actual argument conf.

Symbolic Preprocessor Constants The final kind of annotation is con-
cerned with symbolic preprocessor constants and becomes relevant because of
the way we deal with preprocessor macros in CSI and the verification environ-
ment. We generally make no assumptions and do not set forth any restrictions
about the use of preprocessor macros in program code, except for the provisions
of the MISRA-C guidelines [109]. Yet we demand that macros are not referred to
inside specifications and that the preprocessor does not modify the latter. This
approach works well except in one case, which is due to the fact that C does
not have a strict concept of named constants. Variables can be declared with
the const type qualifier, but that only makes the objects thus defined read-only,
and does not allow this ‘constant variable’ to be used in what is called constant
expressions [82, §6.6]. The latter, however, must in particular be used to spec-
ify array dimensions. To obtain symbolic names for array dimensions and other
numeric values at least in the unprocessed source code, programmers usually
use preprocessor Mmacros:

#define V_LEN (4 x 1024)
int v[V_LEN];

Now, unfortunately, the value of V_LEN will also be of interest inside specifica-
tions, e.g. in a memory validity assertion like \array(v2, V_LEN). It generally
turned out that one needs access to macros defined as constant numerical ex-
pressions within specification expressions. Moreover, during verification one
would like to keep the symbolic names and not work with their expansions,

3.5. Further Language Elements 65

both for reasons of readability and because large arithmetic expressions over
constants sometimes ‘distract’ Isabelle’s simplification procedures. However, as
an artifact of our concrete approach to parsing the source code —where the
C preprocessor? is run over the code before the actual parsing is done—, we
cannot even get access to the symbolic name V_LEN in the code, but only see
its expansion.

Our two solutions to this dilemma are shown in Fig. 3.9 and Fig. 3.10. The
solution that works with all C preprocessors is to explicitly distinguish between
a translation mode for compilation and one for verification. The latter mode
is identified by the definedness of a macro VERIFY_MODE. Because during
verification the restriction to constant expressions for array dimensions does not
apply, we can simply replace macro definitions for numerical constants by regular
definitions of type _Int or _Real. To indicate their special character, they are
placed inside a special annotation @define. This way, what in compilation mode
are macros, are plain variables within specification expressions in verification
mode.

Another slightly more elegant solution can be achieved when the prepro-
cessor at hand allows to pass comments inside macro definitions through to
expansions and does not silently drop them. In this case one can extend the
grammar of C expressions by an annotation postfix operator which indicates
that its operand actually arises from a macro expansion. Fig. 3.10 illustrates
this: macro LEN will be expanded to

(4 % 1024) /+«@define _Int LEN = 4 x 1024; x/

where the annotation represents the postfix operator. Such an expression will
then be interpreted as the symbolic integer constant LEN by the parser of the
verification environment. As an additional side-effect, such an expression intro-
duces the definition of LEN, so that occurrences of LEN in specification expres-
sions can be associated with the corresponding symbolic constant. It does not
raise any problems that macro LEN might be expanded at multiple places, be-
cause all (@define) definitions thus introduced are identical and can be merged
into one.

3usually GNU cpp, available from http://gcc.gnu.org/ at the time of writing.

http://gcc.gnu.org/

66

Chapter 3. Language for Functional Specification

Chapter 4

Formalised Memory Model
for C

In this chapter the memory model is presented which has been developed as
the foundation for the formalisation of the semantics of C programs and their
specifications. After a brief evaluation of different possible memory models
the concept of memory as finite typed maps is described. These are mappings
from abstract locations to pairs of representations of C types and sequences of
primitive values. Read and write operations on memory are defined and their
properties are captured in terms of an update theory given by a collection of
conditional rewrite rules. The concept of validity of pointers is introduced.
State updates in C evoke the problem of aliasing, i.e. the presence of different
programming language expressions referring to a single memory location. We
describe how our model allows us to automatically derive the absence of certain
kinds of aliasing. Finally, we describe the interplay between representation
functions and the memory model.

4.1 Evaluation of Possible Representations

Memory models for imperative languages, which are also called state space
models or representations, abound: A simple and intuitive approach is to re-
gard memory as a function from variable names to values, Var — Value, with an
appropriate definition of values, e. g. as the union of integers and booleans ZWB.
Such a functional state model is fairly generic: by varying either the domain or
the range of the function type, the characteristics of the state as relevant to
the kind of analysis at hand can be emphasised. When memory can be allo-
cated during program execution, or when variables are first class objects whose
address can be computed in programs (as via & in C), the domain typically
gets substituted by a set of memory addresses or, more abstractly, locations
Loc, which are also added to the value type. We thus obtain a state model
Loc — Value with Loc C Value. Abstract models of this kind are often used
when properties of the programming language itself, e.g. their denotational
or operational semantics, are studied. In static program analysis techniques
like abstract interpretation, one is often interested in finite, or at least finitely
representable state abstractions that allow the effective computation of certain

67

68 Chapter 4. Formalised Memory Model for C

properties of concrete programs [114]. Idealised infinite value domains' like Z
would be replaced by bounded ones like I = [int i, intmas). For example, an
interval analysis keeping track of the minimum and maximum values that cer-
tain variables can take at particular program points might use a state model in
which variable/program point pairs are mapped to an interval (I,h) € I x I.
Even simpler value domains like P({—, 0, +}) might be used for a sign analysis,
in which the goal might be to show that certain variable always take on positive
values. Here, the value domain is a power set, indicating how uncertainty or
imprecision can be incorporated into the functional state model. Due to their
approximative character, these simple state models are not appropriate for use
in a formal functional verification environment, because they severely restrict
the kinds of properties that can be verified.

C is a programming language that provides only a weak abstraction of mem-
ory and gives the programmer freedom in breaking even that abstraction: for
example, by traversing an aggregate value through a char pointer. This leads to
another direction in which a memory model can be refined. If C programs shall
be analysed for properties pertaining to bit-shifting operations, address arith-
metic, pointer conversions, padding bytes of structure types or other low-level
details, one is virtually forced to view memory simply as a (finite) sequence of
bytes (most commonly 8-bit vectors). This is, e.g., the case in systems code
verification, where operating system routines like memory management func-
tions (malloc(), free(), etc.) shall be verified. Viewed functionally, sequences
of bytes are mappings N — [0, 255]. The concretisation of the function domain
from abstract locations Loc to numbers allows one to express machine-specific
details of address arithmetic. For example, if the local variables int x, y have
the addresses 16 and 28, respectively, and sizeof (int) == 4 (a 32-bit architec-
ture), then it is possible to derive that the assignment (&x)[3] = 0 will modify
y. (Note that according to the standard this expression leads to undefined
behaviour; however, systems code targeting a given architecture and compiler
might actually include such nasty fragments.) While it is certainly possible to
formally model memory and operations thereupon this way, it is rather hard to
formally reason about programs at this level of detail. (This holds in particular
for the case of interactive verification, where the verifier actually gets to see
and work with the memory model.) Tuch [144] formalised a memory model in
Isabelle/HOL whose type is word32 = word8 at its core, i.e. the sequence-of-
bytes model with the additional restriction that there exist only finitely many
addresses. He goes to great lengths providing an abstraction layer on top of this
model. This layer allows one to have a structured view on memory in terms
of access and update functions, that resembles C’s aggregate types and that
reflects these types in the type system of the theorem prover. So, for example,
while a struct s { int v; double x; } is in memory represented as a sequence
of bytes, access functions for v and x would be derived that internally take care
of computing the relevant offsets into the byte sequence. The amount of work,
in particular the accuracy of the formalisation is quite impressive, allowing one
even to model padding bytes in structures and the byte order of multi-byte in-
tegers. But even though a case study involving a memory allocator has been
performed, it seems that the overhead implied by the degree of detail will turn

1Note the slightly overlapping terminology here: the value domain is in fact the range of
the functional state.

4.1. Evaluation of Possible Representations 69

out to be prohibitive when more abstract functional properties of non-systems
code are considered.

We have argued that conceptually it is most natural to model memory as
a function, even if the domain (Var, Loc, word32) is finite. For the formalisa-
tion of a memory model inside a theorem prover the choice of representation
also depends on the facilities that the theorem prover provides with respect to
reasoning and simplification over the particular structure. When the domain is
finite, e. g., consisting of n variable names, it might be beneficial to use n-tuples,
where each variable’s value is stored at its corresponding position in the tuple.
In Isabelle there is a better alternative by using records, which are essentially
tuples with named fields. Read and update functions are derived automatically
for newly defined record types, which can then be exploited for the semantics
of assignments and expression evaluation. The following record R with fields
varX and varY is equipped with simplification rules such that the subsequent
lemma involving an update on field varX can be proven automatically:

record R = varX :: int
varY :: bool
lemma "(varX = 7, varY = True |) (| varX := 8 |) =

(varX = 8, varY = True)"

Schirmer [136] developed a verification environment for imperative programs
that is independent of a concrete memory model. For practical verification as
done in the Verisoft project [5], this generic environment is instantiated with
a model based on Isabelle’s records. There is a single record for the overall
program state. Every global and local variable occurring in a program is rep-
resented by a field in this record. For heap-allocated objects, the split heap
model of Burstall and Bornat [29] is used: slightly simplifying, the heap is a
collection of functions f; to f, from locations to values, one for each structure
member f; occurring in a program. This model is based on the observation
that in well-behaved programs, it can never be the case that &s.f == &t.g for
different structure members f and g. By introducing a (Isabelle) record field for
each such member, the inequality is exploited in the formalisation and the nec-
essary simplification rules come for free, as they coincide with those provided by
the record package, as shown by the above example lemma. The disadvantage
of this approach is that all objects modelled by record fields, particularly local
variables and structure members, are no first class entities: it is not possible
to take the address of these objects, because they are constants in the logic of
Isabelle/HOL about which no meta-reasoning can be performed. It is therefore
not possible to model the way in which a call-by-reference scheme is imple-
mented in C with the record representation, because the way this is typically
done is exactly by taking and passing the addresses of objects. If we disallow
expressions like &s.f, then we cannot simulate passing s.f by reference. The
alternatives are either to pass it by value, i.e. to create a copy of s.f —which
might be expensive if s.f contains a large structure—, or to put large objects
that are passed between functions into global variables. The latter style leads
to brittle and hard-to-read code.

Before we present our memory model, we identify four characteristic prop-
erties that this model was supposed to capture. They are

70 Chapter 4. Formalised Memory Model for C

1. to comply with the requirements of the ISO C standard [81] to enable its
use in a formal model of a subset of C,

2. to allow to take addresses of lvalues, including local variables &v, structure
members &s.f, and array elements &ali],

3. to represent arbitrarily nested structures and arrays, e. g.
struct { struct { int a; } x; int a[10]; },

4. to avoid the formalisation and especially reasoning overhead induced by
the low-level sequence-of-bytes model in which even simple scalar values
like integers can be further destructured.

4.2 Finite Typed Maps

Our state model is functional: states are functions with a finite domain (we also
call these finite maps), mapping identifiers of top-level objects to the representa-
tions of their types as well as their values. We distinguish top-level objects from
arbitrary objects as defined by the standard as a “region of data storage in the
execution environment, the contents of which can represent values”. Top-level
objects are those defined by local and global variable declarations as well as
function parameters. We call them top-level, because they are not contained
inside any other object. This is in contrast to, e.g., the objects denoted by
structure members, which are contained in the object denoted by the structure
itself.

4.2.1 Representing Types

We decided to incorporate type information in the memory model for a similar
reason as given by Cohen et al. [44]. In their words, “in every untyped program,
there is a typed program trying to get out”: While it is possible in C to take a
byte-level view of memory, every top-level object has a type given by the corre-
sponding variable definition, that defines its structure. Most of the time —and
particularly in code that is not system-related— the program uses its objects
in accordance with these defined types. Recording this type information in the
program state allows us to determine whether the interpretation of memory lo-
cations under particular types is valid or not. For example, we can check against
the (disallowed) interpretation of an integer memory location as a floating-point
value. Most importantly, we can give a semantics to the CSI predicates \ valid
and \array of Sec. 3.4.3, i.e. we can define the meaning of pointer and array
validity. In addition, we can check for the validity of particular explicit con-
versions (casts).? Imagine a program locally breaks the strict type discipline
and converts a pointer of type int * to type void *, i.e. essentially makes it an
untyped pointer. At some point this pointer might be converted back, under
the assumption that it still points to an object of type int, or an array of such
objects. The validity of this conversion w.r.t. the types defined by the top-level
objects can be checked in the model by looking at the memory type information.

21t would even allow us to model an extension of C that provides run-time type information
to programs, & la Java’s instanceof operator; we did not pursue this direction, however.

4.2. Finite Typed Maps 71

The C standard distinguishes between scalar types and aggregate types. The
former comprise the arithmetic types (cf. Fig. 3.4) and the pointer types, while
the latter are made up of array and structure types. This distinction is reflected
in our model: we distinguish between basic types and (run-time) types.> The
basic types correspond to the scalar types and are used for atomic values (dis-
cussed below). They cannot be destructured any further. There are three basic
types: integer, floating, and pointer types. The latter are parameterised by the
types pointed to. A type, then, is either a basic type, an array type with a given
number of elements, or a structure type with a tag name and a list of named
members, or fields, equipped with types themselves.

datatype BasicRTT =
BR_Int
| BR_Double
| BR_Ptr RTT
and RIT =
RTT_bas BasicRTT
| RTT_arr nat RTT
| RTT_rec string "(string * RTT) list"

This is a deep embedding of C types into Isabelle/HOL: the RT'T datatype
provides an explicit tree representation of all C types relevant to our modelling
of C values. C types are thus not reflected in the type system of Isabelle/HOL,
where there are only the two types RTT and BasicRTT. We omit types for
unions, bit-fields, and functions, since we do not allow them as values in our
language subset (cf. Sec. 5.1).

4.2.2 Atomic Values

The distinction between scalar and aggregate types is mirrored in the modelling
of values. Scalar values are defined by the datatype Val, which constitutes the
disjoint union of all integer, floating-point and address (or reference) values:
types

DomInt = int

DomDouble = real

datatype Val =
IntVal DomInt
| DoubleVal DomDouble
| PtrVal Loc

The type definitions for DomInt and DomDouble identify integer and float-
ing values with Isabelle/HOL’s types of mathematical, unbounded integers and
real numbers, respectively. Pointer values are addresses, called locations in our
model. They are defined by the datatype Loc, whose definition is given further
below. Note that due to the deep embedding of C types the type of locations is
not parameterised over the type of values pointed to. The value of every pointer
is simply of type Loc. All three value types are atomic in our model: there is
no explicit ‘internal representation’ of DomlInt as a sequence of bytes, nor are
there conversion functions from byte sequences to integers, or any other value

type.

3We will use the terms scalar and basic interchangeably henceforth.

72 Chapter 4. Formalised Memory Model for C

The idealisation of finite machine values as mathematical numbers is ar-
guably a standard approach in interactive formal verification (e.g., [19, 136,
102]). Pragmatically, one can say that this loss in modelling precision (and
therefore soundness, an issue we elaborate on in Sec. 5.3) is a necessary price to
pay to keep the effort required for the formal verification of systems of realistic
size in tolerable bounds. We are not aware of any successful verifications of com-
plex functional properties of realistic programs in a value model that respects
integer overflow as well as rounding errors, NaNs and infinities of floating types.
To improve on this situation is out of the scope of this thesis. In any case, we
do not propose to try and solve all verification tasks within a single tool. It ap-
pears much more promising to use separate, specialised tools to obtain partial
correctness results, which can be re-used by other tools, a point also stressed
in [126]. If, for example, the absence of integer overflow in a concrete program
has been shown by classical means, or even proven by a static analysis tool like
the one described by Blanchet et al. [25], then the idealisation to mathematical
integers in our formal model is no longer unsound for the given program.

The embedding of all scalar values in a single value type Val allows for a
uniform treatment in the model: all C expressions can be given a semantics so
as to yield a Val, and memory can be uniformly composed of atomic values,
instead of being split into separate areas for separate value types. Concrete
contexts will, however, necessitate the interpretation of values as a particular
constituent type, e.g. in the semantics of the addition of two integers. We
provide operations for the aggressive evaluation (a term borrowed from [137])
for all constituent types; under-specified functions allow the projection from Val
to the respective types:

fun

valToInt :: "Val = DomInt"
where

"valToInt (IntVal i) = i"

As Isabelle/HOL is a logic of total functions, this function is also logi-
cally defined for values not constructed via IntVal, but an application such
as valTolInt (PtrVal p) cannot be simplified, making the result of the applica-
tion effectively arbitrary. Under-specification is a common approach to dealing
with partiality in logics of total functions [111]. The boolean interpretation of
values, on the other hand, is total and complies with the C standard:

fun
is_true_val :: "Val = bool"
where
"is_true_val (IntVal n) = (n # 0)"
| "is_true_val (DoubleVal d) = (d # 0)"
| "is_true_val (RefVal r) = not_null r"

4.2.3 Flattening of Aggregate Values

The RTT datatype suggests a tree-like representation of aggregate values, i.e.
objects described by C structure or array types, that mimics the shape of that
datatype. The state would then be a function from top-level object identifiers to
pairs RTT x StructuredVal, or even just StructuredVal, since the corresponding
RTT could be directly inferred from the structure of the value. While concep-

4.2. Finite Typed Maps 73

tually this is a nice representation, it turned out that such values are rather
unwieldy. Locations (i. e., addresses) of structure members would become paths
into trees, such that address arithmetic would become path manipulation. To
reflect updates on aggregate values, an update theory for trees would have to
be derived. Especially the intricacies of the latter, like deciding what it means
to update a tree w.r.t. an invalid path, or simplifying two consecutive updates
on overlapping parts of the tree, motivated a simpler representation.

Similar to a concrete machine representation, where aggregate values eventu-
ally become sequences of bytes, we represent them as finite sequences of atomic
values (Val). Every type (RTT) uniquely determines how each aggregate value
of that type is represented as a sequence. Intuitively, scalar values are repre-
sented by sequences of length one, while the members of structures and arrays
are first turned into sequences, which are then concatenated to form the se-
quence for the aggregate. We can define a function over RTT to formalise the
notion of a flattening on the type level:

fun flatten_rtt :: "RTT = RTT list"
and flatten_frtt :: "(string * RTT) list = RTT list"
where

"flatten_rtt (RTT_bas b) = [RTT bas b]"
| "flatten_rtt (RTT_arr n etype) =

(RTT_arr n etype # concat (replicate n (flatten_rtt etype)))"
| "flatten_rtt (RTT rec r fields) =

(RTT_rec r fields # (flatten_frtt fields))"
| "flatten_frtt ((s, t) # z) = flatten_rtt t @ flatten_frtt z"
| "flatten_frtt [] = []"

Function flatten-rtt yields a sequence of types, the elements of which define
the types of the atomic values in all sequences representing values of the flattened
type. This is best described through an example, which is depicted in Fig. 4.1:
given the C declarations

struct s {

struct t { int a; } t1;
short b;

float x[3];

long *p;

3

struct s s1 = { { 101 }, 23, { 3.1, 1.7, 7.3 }, NULL };

we obtain a sequence of atomic values of length 9 for the aggregate value of sl.
The type for offset 0 is that of the overall structure, and no atomic value (more
precisely: a padding value) is present at offset 0. The insertion of such padding
items into sequences makes it possible to assign a unique type to every offset of
a sequence, a property that will be useful in the derivation of a memory update
theory (cf. Sec. 4.3). Following are the sequences for struct s’s members. The
order of the members is that given by the declaration. Hence .tl (a struct t)
comes first, which adds another padding value, plus the value of its .a member
(101). No padding is added at the end of value sequences. Next comes the .b
member, a short with value 23. Note that this atomic value occupies the same
amount of ‘space’ in the sequence as all values of scalar types do. An additional
‘padding’ value is inserted for arrays, too; in contrast to structures, it is assigned

74 Chapter 4. Formalised Memory Model for C

Offset 0 1 2 3 4 5 6 7 8
Accessor M | ta| b x | x[0] | x[1] | x[21 | .p
Value 101 23 I—+ 3.1 1.7 7.3 | null
lint_] lfloat Iroat Ifloat |
Type lstructt Ishor’[Iﬂoat x[3] IIong * |
struct s |

Figure 4.1: Offsets, values, paddings and types for flattened aggregate values

a meaningful value and becomes the array head pointer, i.e. the address of the
first array element. This enables a smooth modelling of C’s pointer decay, where
evaluating an expression of array type results in the address of the first element.
The subsequent offsets 5 to 7 contain the array member values of type float.
The value of sl is completed by the null pointer in the .p member.

Our modelling is in slight conflict with the C standard, which requires [82,
§ 6.7.2.1(13)] that “a pointer to a structure object, suitably converted, points
to its initial member, and vice versa. There may be unnamed padding within a
structure object, but not at its beginning.” The benefits of our concrete flattening
w.r.t. proving the absence of aliasing (Sec. 4.3) outweighed a strict standard
conformance in this case. The implications are that we do not support the
mentioned conversion from structure pointers to pointers to their initial member.

Apart from the structure of value sequences, the size of a type is a relevant
parameter. It is needed for determining the extent of value representations, and
to give a semantics to the sizeof operator. A direct definition of the size of
a type is given by the following function, which is related to flatten-rtt in the
obvious manner, as captured by the subsequent lemma:

fun sizeof_rtt :: "RTT = nat"
and sizeof_rtt_fields :: "(string * RTT) list = nat"
where

"sizeof_rtt (RTT _bas brtt) = 1"

"sizeof_rtt (RTT arr n rtt) = 1 + n * sizeof_rtt rtt"

"sizeof_rtt (RTT_rec name fields) = 1 + sizeof_rtt_fields fields"
"sizeof_rtt_fields [] = 0"

"sizeof_rtt_fields ((_, rtt)#z) = sizeof_rtt rtt + sizeof_rtt_fields z"

—_—— — —

lemma flatten_sizeof_rtt: "length (flatten_rtt ty) = sizeof_rtt ty"

This lemma is proven by induction over ty. Specialised induction rules for
type RTT following the recursive structure of the definition of flatten-rtt are
derived by Isabelle/HOL automatically. Many proofs pertaining to structural
properties of the memory model, specifically to the possible aliasing between
locations, do not require induction, but can be based on a non-recursive property
which we call the preorder property. A list rs of RTT has the preorder property,
if for all partitionings of rs into an initial segment xs, a single item ¢, and the
remainder ys it is the case that the flattening of ¢ is an initial segment of the

4.2. Finite Typed Maps 75

i sizeof rtt ((t#ys)li) . =0

< r>———— L L _p g »

flatten_rtt t >0
I L >

t (t#ys)!i

XS it Lys]

Figure 4.2: The preorder property: all elements t are followed by their flatten-
ings, bounded in size. The flattenings of elements contained in t’s flattening are
themselves contained in the latter.

list t#ys. Formally:

definition
preorder_prop :: "RTT list = bool"
where
"preorder_prop rs =
(Vxs t ys. rs = xs @ (t#ys) —
(sizeof_rtt t < length (t#ys) A
(take (sizeof_rtt t) (t#ys)) = flatten_rtt t))"

Importantly, we can prove that type flattenings have the preorder property:

theorem flatten_rtt_preorder_prop:
"preorder_prop (flatten_rtt rtt)"

Given the partitioning into zs, ¢, ys from above, we can therefore show that
the size of all types (t#ys)!i found in the flattening of ¢ is bounded by the
difference between the size of ¢ and the respective position 7. This formalises
the intuition of a recursive containment property: in the flattening of a (type)
tree, we find the flattenings of all descendants of the root node of the tree, which
themselves contain the flattenings of all of their descendants. This property is
depicted in Fig. 4.2 and formalised by the following lemma. It allows us to prove
the inequality between all locations denoted by nested members of a structure,
like s1.t1.a and sl.b.

lemma preorder_prop_bounded:
"preorder_prop rs —»>
(Vxs t ys. rs = xs @ (t#ys) —>
(Vi < sizeof_rtt t. (sizeof_rtt ((t#ys)!i) + i < sizeof_rtt t)))"

4.2.4 Locations

The final ingredient of the memory model is the modelling of addresses, or loca-
tions. A common (mis-)conception about pointer arithmetic in C is that more or
less any memory location can be reached from any other location by an appro-
priate pointer addition or subtraction. One must however distinguish between
standard conforming behaviour and things that ‘work’ in concrete implementa-

76 Chapter 4. Formalised Memory Model for C

\G'oba'""\\z\ HEEEEEEEEN
avt] 7/ [[[
Structs ~~___.--" |
Cnaigase | [T [[] [
Ll B NE RN RRRE ERRR I Ll
‘ 101| 23 | p-93.1| 1.7 | 7.3 | null ‘ ‘ ‘ 2 ‘ cee

Struct s | int

Figure 4.3: Distinct top-level objects are unrelated in our memory model (top);
one cannot reach Local y through pointer arithmetic on, e.g., Global x. A
memory-as-array model (bottom), on the other hand, would enable this.

tions. The C standard actually only defines pointer arithmetic [82, § 6.3.2.3,
§ 6.5.6] for two cases: (1) the addition of an integer value and a pointer as well
as the subtraction of an integer or a pointer from another pointer are defined if
the pointers point to members of the same array object*, and the result remains
in the boundaries of the array (or exceeds them by one) (2) a pointer to any
object can be converted to a pointer to character type, which can be used to
traverse all bytes of the object.

Both cases do not enforce the use of a fully linear memory-as-array model.
While we must ignore (2) due to the idealisation of numbers, (1) only requires
the ‘arithmetic reachability’ between objects within the same array. Hard-wiring
separation information into the address model aids verification, because the pos-
sibilities of aliasing are reduced. We therefore model addresses in two steps:
every top-level object has a unique base location, identified by the variable’s
name (and a number for local variables which can have equal names in distinct
functions). A special base location is assigned to the null pointer, making the
treatment of null pointers conceptually simple. No special null-cases need to be
considered when computing offsets on locations. This is sound, since pointer
arithmetic on the null pointer is not defined. A location consists of a base loca-
tion and an offset into the sequence representing atomic and aggregate values.
Fig. 4.3 visualises the address model and contrasts it to the memory-as-array
model.

datatype BaseLoc = Global string
| Local string nat
| NullBase

datatype Loc = Loc BaseLoc nat

4Single objects are identified with arrays of size one in this case.

4.2. Finite Typed Maps 77

Global and local variables can be constructed via helper functions that also
introduce convenient syntax: global variables are prefixed with a -, while locals
are identified by a leading v. Pointer arithmetic is only performed on a single
base location: it is not possible to reach another base location by adding offsets.
base-loc and loc-offset are selector functions on locations.

definition globalVar :: "string = Loc" ("~-_" [199] 200)
where "globalVar idt = Loc (Global idt) 0"

definition localVar :: "string = nat = Loc" ("v-__" [0,0] 200)
where "localVar idt n = Loc (Local idt n) 0"

fun
add_offset :: "Loc = nat = Loc"
base_loc :: "Loc = BaseLoc"
loc_offset :: "Loc = nat"

Array access and field selection

We need operations on locations that correspond to the access of the members
of structures and arrays to encapsulate the actual offset computations involved
in these accesses. We provide an array access and a field selection operation
for these purposes. An array access on locations, written m;.[i], should not be
confused with a C array access m[i] (for m an array with element type t): the
former does not involve a dereferencing on location m, but directly computes
the offset for member i on m itself. This allows it to be a state-independent
operation. m must therefore already be the location of an array element; it
must not be the location of the overall array, due to the array head pointer.
Field selection expects the location of a structure and yields the location of the
given field through an offset computation. Both operations are parameterised
over a type, which is required for the offset computations.

definition
array_acc :: "Loc = RIT = nat = Loc"
("__.[_]" [120,120,0] 119)
where

"array_acc loc rtt idx = add_offset loc (sizeof_rtt rtt * idx)"

definition field_sel :: "Loc = RTT = string = Loc"
("__—_" [120,200,120] 119)
where "field sel 1 rtt fld =
(case rtt of
(RTT_rec name fields) =
add_offset 1 (field_offset fields f1d 0 + 1)
[_ = 1"

Array access and field selection provide a view on memory that is close to
that of C lvalues, except for the lack of a state-dependent dereferencing opera-
tion. Proof obligations for programs that adhere to the type structure given by
the declarations of top-level objects will only mention location terms built via
these operations, as in ((Iz— f)y,—¢)».[¢]; no explicit offset computations will be
visible.

78 Chapter 4. Formalised Memory Model for C

4.2.5 Memory as Finite Maps

Finally, we can introduce the type of program states, i.e., our memory model.

typedef State =
"{f :: BaseLoc — (RTT X (mat — Val)). finite (dom f)}"

The memory part of a program state is a partial function with a finite
domain, mapping base locations to their type and a partial function from offsets
to atomic values. The latter represents the flattening sequence of aggregate
values and will practically also have a finite domain. By using partial functions
(instead of lists) we can easily model the ‘dummy items’ by excluding their offset
from the function’s domain.> We do not distinguish between stack-allocated and
heap-allocated objects, since we treat the addresses of both as first-class citizens
and therefore aim for a uniform treatment.

The basic operations on memory are reading and writing as well as allocating
and deallocating memory areas. Our strategy is to derive a simple theory of the
memory operations (which we call the (memory) update theory) and to defer all
sanity checks like the definedness of updated locations or type constraints to the
program semantics (cf. Sec. 5.3). While we obviously want to disallow invalid
memory accesses, we do not handle them at the low level of the update theory.
Practically, this means that all memory operations are defined as total functions,
where the effect of ‘invalid’ operations is defined so as to ease the update theory.
This leads to the following signatures of the basic memory functions.

definition
read :: "Loc = State = Val"
update :: "Loc = Val = State = State"
extend :: "Loc = RIT = State = State"”
dealloc :: "Loc = State = State"

Memory updates are modelled functionally, i.e. updates transform input
states to modified output states. Memory extension is defined at the level of
base locations, i.e. we can only extend the state by a full base location and a
corresponding type. (The function signature expects a location only for more
convenient usage.) It is not possible to ‘enlarge’ memory at an existing base
location. Deallocation means un-defining the memory function at a given base
location. We can always obtain a fresh location which is not yet mapped in a
given memory, because memory functions always have a finite domain. We do
not model restrictions in the memory size of real machines. Freshness plays an
important role in solving aliasing constraints; for example, the local variables
of a function will be fresh for the state in which the function was called, and
hence cannot be aliased to lvalues denoting ‘older’ objects.

definition
is_fresh_loc :: "Loc = State = bool" (infix "¢s" 120)
where
"l ¢5 o = (base_loc 1 ¢ dom (Rep_State ¢) A (3 xm. 1 = v-xp))"

lemma
is_fresh_loc : "(fresh_loc x o) ¢s o"

5Recall that partial functions are modelled in Isabelle/HOL as total functions into the
option datatype, which is syntactically hidden within the — arrow.

4.2. Finite Typed Maps 79

Fig. 4.4 contains the basic update theory, consisting of a series of conditional
rewrite rules. It makes use of the infix syntax for memory operations, which are
1@; o for read-int l o (accordingly [Q, o is written for read-double ! o and [@, o
for read-loc | o), o(l ::= v) for update l v o, o®(l,t) for extend l t o, and oSl
for dealloc I 0. Reading integer values is defined in terms of read by applying
aggressive evaluation. The theory contains the expected theorems: reading a
location just updated with a value yields that value; reading a different location
allows us to ‘step over’ an update; the same holds for extensions. Stepping
over a deallocation requires an inequality of base locations, since deallocation
sweeps a whole top-level object away. Updates on distinct locations commute
(update-commute), while a second update on a single location cancels the first
one. Deallocation and update as well as extension on locations with distinct
bases commutes, while deallocation cancels updates and extensions on the same
base.

4.2.6 Valid Pointers and Arrays

The concept of validity of pointers and arrays is required for two reasons: firstly,
pointers of a given type may only be dereferenced if an object of the respective
type is found at the location pointed to. A similar condition holds for valid
array accesses, where additionally the array index needs to be taken into ac-
count. Secondly, with regard to aliasing we want to derive inequalities between
lvalues based on their syntactic structure. In particular, we desire the split heap
property [29], stating that memory can be partitioned by the field names of
structures, so that a.f and b.g can never be aliased for f # g. This does not
hold unconditionally, so that a and b again have to be restricted to be valid
locations.

The validity of a location r is only defined w.r.t. a type t and a state o. To
be walid in o, r must not be a null pointer and ¢ must be equal to the type at
r in o as determined by the type flattening:

definition
valid_loc :: "Loc = RTT => State = bool"
("o’ (__[_’)" [200,200] 200)
where

"valid_loc r t o = (not_null r AN t € (state_rtt_at o r))"

where operation state-rtt-at o r yields a singleton set consisting of the type in
the flattening at r, or the empty set if r describes an undefined location in o.
The concept of a valid location is extended to valid pointers in the obvious
way: a pointer value PtrVal p is valid if its target p is a valid location. The
definition of a valid array access is a little more intricate: we cannot expect to
always deal with complete arrays in C (as would be the case in, e. g., Java), but
pointers may contain the addresses of arbitrary array elements and be used to
access further elements of the array. The following listing illustrates this:

int v[10];
int xp = &v[3];
p[2] = T7;

80 Chapter 4. Formalised Memory Model for C

definition

read_int :: "Loc = State = DomInt"
where
"read_int 1 o = valToInt (read 1 o)"

lemma read_int_update:
"l @ (o(1 ::= (IntVal v))) = v"

lemma read_int_update_other:
"l #m = 1@ (c(m ::=v)) =160 o"

lemma read_int_extend_other:
"] #£ 11 = 1 @i (cH(11, r)) =1 @i o"

lemma read_int_dealloc_other:
"base_loc 11 # base_loc 12 =—> 11 @i (0©S12) = 11 @i o"

lemma update_commute:
"l # la = (o(la ::=va, 1 ::=v)) = (61 ::=v, la ::=

lemma update_cancel:

"((o (1 ::=v°))(A ::=v)) = (o(1 ::=v))"

lemma dealloc_update_other:

"pase_loc 1 # base_loc 11 = (o (11 ::=v))&l = (¢61) (11
lemma dealloc_update_cancel:
"base_loc 1 = base_loc 11 =— (o (11 ::=v))el = co1"

lemma dealloc_extend_cancel:
"1 ¢s 0 = (o®(, v))O1 = o"

lemma dealloc_extend_other:
"[11 ¢s s; base_loc 1 # base_loc 11] —
((c® (11, v))S1) = ((e01)BA1, v))"

Va)) "

pi=)"

Figure 4.4: The update theory for DomlInt; according theories also exist for

DomDouble and Loc.

4.3. Location Inequalities 81

Program safety requires both that p[2] is a valid integer location, but also that
the array index 2 applied to p does not exceed the overall size of v. The latter
condition is necessary, since if v was nested in some larger structure whose
flattening contains subsequent valid integer locations, a too large index could
leave the array v and still end up at such a location. Though seemingly well-
behaved in our particular memory model, this is generally undefined behaviour
and must be ruled out. We therefore define the validity of an array access w.r. t.
the location of an array element r, the array element type t, a state o and the
index i. That r actually is an array element can be expressed as the fact that
it can be reached from a location | denoting an array through an array access
(with index k); index 4 is valid if k44 does not exceed the array length as given
by the type at [. Formally:

definition
valid_array_acc :: "Loc = RTT = int = State = bool"
("e[__[|_/_1" [0,0,0,0] 200)
where

"valid_array_acc r t i o =
(31 k len. not_null r N 0 < i A r = (add_offset 1 1)¢.[k]
A (RTT arr len t) € state_rtt_at o 1
A k + (nat i) < len)"

The validity of an array access implies location validity:

lemma valid_array_acc_valid_loc:
"[olrtl nl ¢1; 0 < i; i < n] = e((rt.[nat ilD¢| o)

State-dependent functions require theorems about their interplay with state
modifications. Validity is not affected by updates and extensions on the state,
so for example we have:

lemma valid_loc_update:
"e(r¢l o) = e(r¢l (o(1 ::=wv)))"

On the other hand, deallocation may obviously destroy validity; it is only pre-
served for locations with distinct base locations. Validity can be introduced by
extending a state by a fresh location. This location will then be valid for the
type by which the state was extended together with the location.

lemma valid_loc_addressof:
"1 ¢s 0 = o(1¢] (o® (1, t)I)"

Together with valid-loc-update this yields the validity of function-local variables
in all program states during function execution.

4.3 Location Inequalities

An update theory like that of Fig. 4.4 allows us to calculate the value stored
in memory at a given location, under the condition that we can decide the
(in)equality of locations. We start with a couple of seemingly trivial, immedi-
ately decidable inequalities, each concrete instance of which yet requires a tiny
proof via the lemmas given below:

1. Two local or two global variables (or field selections and array accesses
thereupon) are distinct due to their different names: x # y = va; # vy,

2. Local and global variables are distinct: v-x; # vy

82 Chapter 4. Formalised Memory Model for C

3. A fresh and a valid location are unequal and have distinct base locations:

[e(rtl 0); 1 ¢5 o] = base_loc r # base_loc 1

4. Two locations that are valid for distinct types are not equal:
[o(riesl o); e(x2¢2] 0); t1 # t2 | = r1 # r2

This is a rather notable property of our memory model, and a direct
consequence of the definition of location validity, which only allows the
unique type given by the respective type flattening to be the valid type
at a location. It follows that the above lemma is only applicable in the
presence of pointers that obey the type structure determined by the top-
level objects, which is the most common case.

4.3.1 Structures and Arrays

The fact that our definition of a type flattening has the preorder property allows
us to prove the property that is the foundation of the split heap approach. While
our model does not enforce the inequality between field selections of differently
named fields by construction, this property is well derivable®:

theorem valid_loc_field_name_neq:
"[®(r1RTT rec n1 f1dsi! o);

°(r2RTT_rec n2 flds2! o);
f1 € fst ¢ set fldsl; f2 € fst ¢ set flds2; f1 # £2]

=> TIRTT rec nil fldsi—fl # T2RTT rec n2 flds2—f2"

The inequality of field selection locations can be reduced to the inequality
of field names, at least if the field selections are done on valid locations. The
additional restriction that f1 and f2 must be fields that occur in the respective
types is due to our deep embedding of types and field names which formally
allows a selection of field f on a structure type that does not have this field.
Such side-conditions are proven automatically for all relevant types and are
stored as auxiliary theorems by the verification environment.

We can also prove that a field selection and an array access location are
unequal, given they descend from a corresponding valid location and array:

theorem field_sel_neq_array_acc:
assumes va: "e[lts]| n| S]" and
vr: "°(TRTT_rec om £fs | S)" and
ffs: "f € fst ¢ set fs" shows
"TRTT rec nm fs—f # lta.[nat n]"

For inequalities between two array access locations the situation is not so
clear cut. Two valid array accesses into arrays of distinct types can be shown
to be unequal via theorem walid-array-acc-valid-loc and inequality 4. (distinct
pointer types) of the previous section. For arrays of the same element type,
however, we essentially rely on an explicit separation assertion (cf. Sec. 3.4.2).

If we try to derive an inequality between to field selections E.f and D.g via
the above theorem, we need to be able to derive that both E and D evaluate to
valid locations. In the most common cases, this information is either available

6The proof of this split heap property is by no means immediate from the definitions;
nevertheless, we do not consider the intermediate lemmas relevant in the context of this
thesis, and hence omit them.

4.4. Non-Atomic State Modification 83

because E and D are some local variables a and b, which are always valid thanks
to wvalid-ref-addressof, or because they are pointers whose validity is ensured by
the function precondition. (In the latter case, the corresponding C expressions
would actually be (*a).f, resp. a—>f, and for b accordingly.) If, however, E is
itself a field selection c.h on some variable ¢, we end up having to show the
former is a valid location. We therefore need to be able to derive the validity
of locations obtained via field selections from the validity of the location of
the whole structure. This nesting property holds in our memory model, as
demonstrated by the following theorem:

lemma valid_loc_field_sel_nested:
"[®(1RTT rec nm fs! 0); field_type fs f = Some t | —
® ((1RTT rec nm fs—f) ¢l o)"

A similar point also applies to nested array accesses, and theorems to derive
the validity of an array access from the validity of the overall array have been
shown. The following demonstrates a variant which states that &I[k] is a valid
array reference of size n for the ‘tail’ of the overall array | of size k + n:

lemma valid_array_acc_of_array_acc:
"[e[1¢/ int k + n] o]; 0 < n]| = e[lt.[klt| nl o]"

4.4 Non-Atomic State Modification

So far, modifications on the state were atomic in the sense that they only af-
fected single locations in the case of updates and single base locations in the
case of state extensions and deallocations. But while every finite set of non-
atomic modifications could be encoded as a sequence of atomic ones, it turns
out to be more convenient to reason about non-atomic modifications directly.
Such modification sets naturally occur in a modular verification methodology
in the shape of effect summaries, of which modifies clauses are an example:
the effect of a function call on the program state is bounded by the function’s
@modifies clause. Hence, every function call (just like every loop invariant or
Qjoin predicate) introduces a modification set during verification. Their main
use is not in precisely specifying the changes that exist between memories, but
rather complementary to capture the common part of program memories.

This is formalised in two parts, relating to the values at locations and the
types, respectively. Two states are invariant w.r. t. a given modification set X ::
Loc set if the functional restrictions of their value parts (the second projection
of the overall state function) to the complement of X are equal. Expressed
extensionally, this means that both state functions yield equal values (or are
both undefined) for all locations not in X.

definition
inv_state_eq :: "Loc set = State = State = bool"
where
"inv_state_eq X S S’ =
(state_read S | (-X) = state_read S’ [(-X))"

For types, which determine the structure of a state, we are not only interested
in the equality of type mappings outside a given modification set X, but we
also want to ensure that the structure on all base locations occurring in X

84 Chapter 4. Formalised Memory Model for C

is compatible. The idea is to create a relation in which two states are only
related if one can be transformed into the other through a sequence of updates
and extensions, because these are exactly the states we need to relate during
program verification. This notion of compatibility can be expressed as follows:
S and T are structurally compatible over X if the types given by .S are equal to
those given by T on all base locations outside those occurring in X, and if the
type mapping given by S, restricted to the base locations in X, is a sub-mapping
(denoted by the symbol C,,) of that of T. Intuitively, this merely forces the
type mapping of S to be the same as that of T, except for a possibly smaller
definedness domain w.r.t. base locations occurring in X.

definition
struct_state_le :: "Loc set = State = State = bool"
where
"struct_state_le X S T =
(let B = base_loc ‘ X in
state_typing S | (- B) = state_typing T | (- B) A
state_typing S | B C,, state_typing T | B)"

The actual relation we are concerned with is simply the conjunction of in-
variance and structural compatibility. This defines a partial order:

definition

modified_on :: "Loc set = State = State = bool"

where

"modified_on X S T = (struct_state_le X S T A inv_state_eq X S T)"

lemma modified_on_refl: "T Ly T"

lemma modified_on_trans :
"[SCx T; TCx R] = S Cyx R"

The relevance of this concept of a partial ordering on states, parameterised over
a modification set, lies in the fact that during verification all intermediate states
of the symbolic execution of a function are related by this ordering. We obtain
a generalisation of lemmas read-int-update and valid-loc-update, which allow us
to ignore a single update when reading a location or proving its validity, for
states related via a whole modification set:

lemma mod_read_int_eq:
”[[SEXT;1¢X]:>1@1T=l@iS"

lemma mod_valid_loc:
"[S Cx T; o1l S) | = (1] T

Obviously, concrete states will be related via different modification sets,
which makes the above transitivity rule considering just one set inapplicable in
practice. Fortunately, the partial ordering is monotone w.r.t. the modification
set, which allows for a more algorithmic transitivity rule which relates states
via the union of two modification sets:

lemma modified_on_mono:
"X CY; SCxT] = S Cy T"

lemma modified_on_trans_Un:
assumes Al1: "o Cx o’"
and A2: "o’ Cy o’’"

4.4. Non-Atomic State Modification 85

| -8 |

s c, Sey & T 3, Tel
| | A7 A__777

= =

base_loc | \ base_loc | \

B=1 (base_loc /)

Figure 4.5: Relation between a state S before the allocation of [, and a state
Tol resulting from the extension S@(I,t), further updates and extensions on
X, and the deallocation of [.

shows "o Cey yy) 077"

Lemmas mod-read-int-eq and modified-on-trans-Un suggest a (heuristic) al-
gorithmic procedure to determine the value at a particular location [in a state T":
find a E x-path, i.e., a sequence of states SCx S1 Cx So Cx -+ - Cx S, Cx T,
such that the value of [in S is known and that [¢ X. This procedure needs to
make the implicit relation between a state and its atomically updated, extended,
and deallocated successors explicit, which looks as follows:

lemma update_modified_on:
"o B3 (o1 ::=v))"

lemma extend_modified_on:
"o By (0®(1,t))"

lemma dealloc_modified_on:
"X = fip (base_loc 1) — 061 Cx o"

where operation 1}, yields all locations that can be built from a given base loca-
tion. Note that updated and extended states are larger than their corresponding
initial states, while a deallocated state is smaller. The typical execution of a
function will first allocate some local variables, perform a series of updates both
atomic and non-atomic (e.g., via function calls), and then deallocate the lo-
cal variables, leading to a sequence of intermediate states oo, 01 = oo®(l1, 1),
09 = O’1€B(lg,t2)7 e, O = O’kfl(lk U= ’U)7 0k Cx, Okg1y ovvy Op—1 = Opn_26ls,
on = 0,_19l1. To rewrite Iy Q; 0,, to lg Q; oy, with [y not in the union of all
modification sets induced by this sequence, we require a further lemma. It must
allow us to relate the two states that exist before a particular location has been
allocated and after that location has been deallocated, like o and o,,, or o1 and
on—1. Fig. 4.5 illustrates the situation: modified locations X are depicted by
hatchings; newly allocated locations are coloured in a lighter gray; S and TSl
are structurally the same on all (base) locations on which S is defined. The
according lemma is as follows:

lemma modified_on_extend_dealloc:
" S®(,t) Ex T; 1 ¢s S| = S Cyx - 1 (base_loc 1) TOL"

86 Chapter 4. Formalised Memory Model for C

4.5 Representation Functions and Memory

The update theory presented so far provides a useful basis for determining the
(atomic) values at particular locations in states that occur during program ver-
ification. It does, however, not consider the relation between non-atomic values
created through representation functions and memory updates. Consider a rep-
resentation function Vec2DR reading the x- and y-coordinates of a C structure
of type Vec2D-t and yielding their values as a complex number Compler x y:
we want to be able to automatically derive that the complex number read in a
state where both coordinates have been updated consists of exactly the updated
values, i.e.,

Vec2DR (0 (lvecep-t— =0, lyecep-t—y = u)) | = Complex v u

This is an example where there exists a close correspondence between the
concrete C representation and its interpretation as a domain value. Another
example is the interpretation of arrays as collections, for which iteration and
indexing are defined. Each representation function over such a data type can
be equipped with an elegant update theory, which we will present below.

Abstract data types

We must contrast these structurally straightforward representation functions
with those that work over abstract data types, like binary heaps, balanced trees,
or graphs. For the latter arbitrary updates of the concrete C data structure
are often not well-defined within the domain abstraction. To illustrate the
problem we consider the abstract data type of a binary heap (of integer values),
implemented as a structure containing the number of elements currently in the
heap and an array representing a complete binary tree:

typedef struct heap {

int size:
int val [MAX];
} heap_t;

A typical heap property would state that in a heap h the child nodes of all
nodes in the tree (reachable for node i at indices 2 x i and 2 *x i + 1) have
larger values than their parents

\forall int i; 0 <= i && i < h.size —>
(2 * i < h.size —> h.val[i] <= h.val[2 % i]) &&
(2 * i +1 < h.size —> h.val[i] <= h.val[2 x i + 1])

We have to distinguish between code that uses heaps versus the code imple-
menting the heap library. In both cases, an update theory considering arbitrary
updates on the heap_t structure will not be useful. Client code will only per-
form specific kinds of updates that are encapsulated in high-level operations
(e.g., insertion, deletion) maintaining the above data type invariant. During
verification of the client code, one will only make use of the specifications of
these high-level operations, which abstract from particular updates and rather
describe the effect on the respective domain value. Specific update rules for
the data structure are only necessary for the verification of the library, i.e.,
the high-level operations themselves. Every abstract data type requires its own

4.5. Representation Functions and Memory 87

such set of specific rules, making a uniform treatment virtually impossible. As
the code verified in the SAMS project mainly used data types with a rather
close correspondence between representations and their domain abstractions,
we concentrated on these.

Partial updates

We now turn back to the cases where a direct correspondence between C aggre-
gate types and their domain interpretation exists. The general structure of the
required simplification rules for representation functions follows that of the up-
date theory for atomic values. Some rules state when an update can be ignored,
i.e., when R o(l’ ::=v) [equals R o [for a representation function R. We call
all locations for which this equation does not hold the dependence set of the
representation function. Other rules exist for the cases where the representa-
tion is affected by an update. At this point we face a problem regarding partial
updates of representations: if R depends on locations ly,...,l, (n > 1), and
one of them gets updated, we obtain a term R o(l; ::= v;) [. We would now like
to express this update in terms of the value that R yields for the non-updated
state. Effectively, we are asking for a collection of update functions f;,, one for
each location /; in the dependence set of R, that satisfy

Ro(liz=wv)l=fi, Rol)wv

This structure would allow a continuation of the update rewriting process
on R o I, where we assume o = o'(lg := v9), finally yielding a term

fo (fi (- (R oo)---) va) v

in which either R oq [has become irrelevant for the overall value, since it is de-
termined completely by the updates f,, or where the necessary properties about
R o0y | can be derived, e.g., from a given precondition. Reading such a value
would proceed along an update theory over the f;,. Typically however, domain
types do not provide such update functions for their components; this holds true
in particular for newly defined types. Even if update functions are available,
the theories over these functions will generally vary slightly, which makes them
impractical for use in an automatic update simplification procedure.

We solved this problem for a class of representation functions predominantly
used in programs that do not perform dynamic memory allocation. Functions
in this class have a finite dependence set, where all locations in this set can
be expressed as (sequences of) accesses on a single location, which we call the
function’s handle. Examples of representation functions that belong in this class
are the above Vec2DR and generally all those that build a domain value from
a single C structure or a single array. Essentially we rule out pointer-connected
structures of dynamic size, like linked lists or trees.

4.5.1 Representations as Structures

The solution to the problem of obtaining a coherent theory for partial updates
on representation functions is to build these in a two-step process. The first
step is state-dependent and transforms the set of values at the locations in the
dependence set into an intermediate representation in the shape of an Isabelle-
/HOL record. In the second step the record representation is simply lifted into

88 Chapter 4. Formalised Memory Model for C

the actual domain type. Every representation function R :: State = Loc = «
can thus be written as a composition R o | = 7 (¢ o). Accordingly, we will
speak of p-functions and 7-functions in the following. Note that the range of
every o-function as well as the domain of every 7-function is a record type.
Since records do have a uniform update theory, we obtain a systematic corre-
spondence between state updates that partially modify the representations of
domain values and updates on their intermediate record representation.

We walk through the necessary lemmas along the example of a representation
function for 2D vectors. At the moment these lemmas need to be proven by hand
for each concrete type, but their structure allows for a completely automatic
derivation. First, we define the intermediate record and a function Vec2DRec
(written o(vec) in the following) creating records given a state and a handle:

record Vec2DRec =

Xcoord :: real
Ycoord :: real
definition
"Vec2DRec o 1 =
(let x = (1yecop t—’’x’’) €d o;

¥ = (Qvecap_t—’’y’’) € o
in
(Xcoord = x, Ycoord = y|))"
The following update lemmas formalise the equivalence between a state up-

date on a location in the dependence set and a corresponding record update:

lemma Vec2DRec_update_x:

"o(vec) (0 (1lyecop t—’’x’’ ::= DoubleVal v)) 1
o(vec) o 1 (Xcoord := v)"

lemma Vec2DRec_update_y:

"o(vec) (o0 (lyecop t—’’y’’ ::= DoubleVal v)) 1
o(vec) o 1 (Ycoord := v)"

Updating locations outside the dependence set does not affect the value yielded
by a representation function. The following lemma suggests a point-wise in-
equality proof between the updated location and all locations in the depen-
dence set; sometimes it may be more efficient to prove the inequality between
base locations, for which according lemmas exist, too.

lemma Vec2DRec_update_other:
"1° ¢ {lyecop t—’’x°7, 1vecap t—’’y’’} =
o(vec) (o(1’ ::=v)) 1 = p(vec) o 1"
A disjointness condition arises for the proof of equality between two domain
values read in states related via Cx:

lemma Vec2DRec_modified_on:
"lo’ Ex 0 {lveczp_t—’’x"’, lveczo_t—’’y’’} N X = {}] =
o(vec) 0 1 = o(vec) o’ 1"

The effect of extensions and deallocations on representation functions is
a direct consequence of lemmas {extend,dealloc}-modified-on and Vec2DRec-
modified-on above.

lemma Vec2DRec_extend_other’:
"17 & {lyecop t— %", lvecop t— 'y’ '} =

4.5. Representation Functions and Memory 89

o(vec) (oc®(17,t)) 1 = p(vec) o 1"

lemma Vec2DRec_dealloc_other:
"base_loc 1 # base_loc 1’ = p(vec) (061’) 1 = p(vec) o 1"

The presented rules allow us to perform update simplification on represen-
tation function terms. Each step introduces inequality and disjointness side-
conditions. The discussion about how these are solved in a concrete verification
is deferred until Sec. 6.5.2. Nevertheless, it can already be seen that all side-
conditions can be reduced to inequalities w.r. t. location terms built up through
access operations on the handle of the representation function. We conclude the
presentation of the update theory for representation functions that work on a
single structure with the definition of the 7-function 7(vec) that lifts Vec2DRec
records to complex numbers, and the final composition of g(vec) and 7(vec) to
form the actual representation function Vec2DR, which can be referred to in
CSI specifications.

definition Vec2DRecToComplex :: "Vec2DRec = complex"
(H,T)(vec))n)
where
"7 (vec) r = (Complex (Xcoord r) (Ycoord r))"

definition Vec2DR :: "State = Loc = complex"
where
"Vec2DR o 1 = (7(vec) (o(vec) o 1))"

4.5.2 Representations as Arrays

The situation is not quite as straightforward when representation functions read
arrays. We concentrated on the case where arrays are used to hold collections of
elements, and distinguish three cases: first, the order of elements in an array can
be relevant or not; moreover, the presence of duplicate elements may play a role
for unordered collections, a case we silently assume when dealing with ordered
collections. In all three cases lists can be used as intermediaries, introducing
the problem of reflecting partial updates on representations within lists.

First we define how a list is generated from the elements of an array. There is
a generic variant that is parameterised over the representation function for the
array members, but here we concentrate on the specific incarnation that reads
lists of intermediaries via g(vec). No 7-function is applied to the list members
yet, but instead a 7-function for the whole list of intermediaries will be provided.
This is important: an intermediary shall be a value for which an update theory
exists (i.e., it shall consist of records and lists); after applying a 7-function this
property is lost. Reading a list of n elements works thus:

fun

Vec2DRec_n :: "State = Loc = nat = Vec2DRec list"
(”Q)(Vecsl)”)

where

"o(vecs) o 1 0 = [1" |
"o(vecs) o 1 (Suc n) =
(o(vec) o 1 # o(vecs) o (lvecgp_t.[lj) n)"

The transformation of such a list of records into a domain value depends on
the intended interpretation of the array. In the simplest case, we are actually

90 Chapter 4. Formalised Memory Model for C

interested in lists of complex numbers. In that case, the 7-function is just a
mapping of 7(vec) onto all list elements (see definition below). Another im-
portant interpretation is that of a set of complex numbers, in which case this
mapping would be followed by an application of function set :: 'a list = 'a set,
which is predefined in Isabelle/HOL.”

definition

Vec2DRList :: "State = Loc = DomInt = complex list"
where

"Vec2DRList o 1 n = map T (vec) (p(vecs) o 1 (nat n))"

By induction over n we can prove the obvious fact about the length of the
intermediate list, as well as the expected fact that at each index i of the list we
find the p(vec) intermediary of the ith array member.

lemma Vec2DRec_n_length:
"length (p(vecs) o 1 n) = n"

lemma Vec2DRec_n_nth:
"i <n = p(vecs) 0 1 n =
o(vecs) o 1 i @
o(vec) o (lyecop t-[i]) # o(vecs) o (lyecop t-[i+11) (n-(i+1))"

To prove that an intermediate list built with p(vecs) is independent of an
atomic update, we must show that the updated location is not in the dependence
set of any array element:

lemma Vec2DRec_n_update_other:
"[Vi<n. la ¢ {(1vecap_t- [11) vecop_t—’’x7,
(1vecop t-[il) vecop t— "y’ °} | =
o(vecs) (o(la ::=v)) 1 n = g(vecs) o 1 n"

This formulation yields a side-condition that is easy to prove in two steps if it
is known that la and [lie in distinct base locations, or if la is known to be the
selection of a field other than x or y, i.e., la=1U,—f (f € {"z”,”y"}), thanks
to lemma wvalid-loc-field-name-neq.

An update on field = (or y) of element ¢ in the array leads to an update of
the 7th value in the intermediate list. We can therefore delegate the update to
the p-function of that value, and update the list at index ¢ with its result.

lemma Vec2DRec_n_update_x_i:
"l i <n; la = (Iyecap t-L[i]) vecop t—’’x"" | =
o(vecs) (o(la ::=v)) 1 n =
(o(vecs) o 1 n)[i := g(vec) (0(la ::= v)) (lyecop t-[i1D]1"

Lists of complex numbers are built by nested applications of g-functions, so
that the delegated update itself can be simplified by an application of update
rule Vec2DRec-update-x, leading to the following rewrite rule that completely
transformed the state update into an update of the ith list element by a record
with an updated Xcoord.

lemma Vec2DRec_n_update_x_i’:
"i <n =
o(vecs) (o ((1vecop t-[il) vecop t+—’’x’’ ::= DoubleVal v)) 1 n =
(o(vecs) o 1 n)li := p(vec) 0 (lvyecop t-[il) (Xcoord := v]"

"Note that Vec2DR List is a representation function that is used in specification expressions,
which explains why its argument type is DomInt instead of nat.

4.5. Representation Functions and Memory 91

Analogous to atomic updates that do not affect the value of a representation
function, there is a rule dealing with states related via Cx, which follows the
structure of Vec2DRec-modified-on, but now obviously requires the disjointness
between X and a dependence set of an arbitrary array element:

lemma Vec2DRec_n_modified_on:
"[0 Cx 07;
Vi<n. XN {(Qyecap_t-[1]) vecop t— "%,
(Ivecop_t- [1D) vecop t— 7’y ’} = {} | =
o(vecs) 0’ 1 n = g(vecs) o 1 n"

At this point a concrete example is in order to demonstrate the use of the
update simplification rules presented so far, and also to illuminate the remaining
limitations. First, we look at a procedure that swaps two vectors in an array.
The precondition ensures that i and j are valid indices for the array vs, and
that i != j, while the postcondition demands that the elements are actually
swapped — this is such a low-level property that it can hardly be expressed in
any other way than using the list update operations directly (recall that ~"R{..}
refers to an evaluation of representation function R in the pre-state):

/%@
@requires \array(vs, len)
&& $max(i, j) < len && i = j
@modifies vs[i], vs[j]
@ensures ${ “Vec2DRList{vs, len} =
“"Vec2DRList{vs, len}[i := 7"Vec2DR{vs[j]}

j = ~Vec2DR{vs[i]}] }

Ox/
void vec_swap(Vec2D_t *vs, int i, int j) {
double tmp;
tmp = vs[i].x; v =wvs[j].x; vs[j].x = tmp;

s[i]. x
}WPZWULWVﬂHMZVﬂHM:WULy:mm

Taking v as the location pointed to by vs and writing ¢ for Vec2D_t for
brevity, then during the verification of this procedure we will obtain a sequence
of states that directly reflects the assignments in terms of state updates:

oo (initial state)

o1 = og(tmp 1= v.[i];—x Qg op)

o9 = o1(ve.[i]s—x = v [f]i—x Qg o)
o3 = 02(vi.[jli—x = tmp Qg 09)
o4 = os(tmp 1= v.[i]y—y Qg 09)
o5 = o4(ve.[i]s—y = v [7]i—y Qg o)
06 = 05(ve.[jle—y = tmp Qg 00)

Here we assume for simplicity that all read operations have been rewritten to
read the initial state (e. g., tmp Qg 0; = tmp Qg4 o) and that all arising inequality
side-conditions (e.g., tmp # v;.[i]t—a) have been proven. The specified post-
condition gets expanded to the following equation, referring to the pre-state og

92 Chapter 4. Formalised Memory Model for C

and the post-state og:

Vec2DRList og v (nat n) =
Vec2DRList g v (natn) [i:= Vec2DR og v4.[j],] := Vec2DR o v.]i]])

The equation is proven by applying the update simplification rules introduced
above to the term on the left-hand side. We obtain

Vec2DRList g v n

)
= Map Tyec (@Uecs 06 V (nat n))

(2)
= Map Tyec (Qvecs 05 U (nat n)

[7 := (0vec 05 v¢.[7])(Yeoord := vy.[i];—y Qg o))])

(3)
= Map Tyec (Qvecg 04 U (nat TL)

[i *= Quvec 04 'Ut[lm Ycoord := Ut'[j]t%y Qq UODv
J 1= 0uvee 05 t.[J](| Yeoord := vy [i]i—y Qg o))

(4)
= Map Tyec (Quecs oo Vv (nat ’I’L)

[7 = 0vec 02 vi.[j](Xcoord := tmp Qg4 o)),
i 1= Qyec 04 v.[1](Yeoord := vi.[j]li—y Qg o9)),
J 1= 0uvec 05 t.[J](| Yeoord := vy [i)i—y Qg o))

(5)
= Map Tyec (Qvecs oo v (nat ’I’L)

[i := Ouee 04 v1.[1](Yeoord := vi.[j]i—y Qg 0g)),
J 1= 0vec 05 v¢.[7](Yeoord := vy [i]i—y Qq 00))])

where step (1) is the unfolding of Vec2DR List, steps (2) and (3) are applications
of Vec2DRec-n-update-z-i’. In step (4) we have skipped the update on ¢tmp in
o4 and applied Vec2DRec-n-update-z-i’ again. We can see that this earlier list
update at index j will not have an effect on the overall list value, since it will be
overwritten by the latter update at the same index. The same argument holds
for the update at index ¢ induced by the update in 2. Step (5) reflects this; no
further simplification of the term gqecs 0o v (nat n) is possible. We continue with
the simplification of gqe. 04 v¢.[i] by applying the rules for records of Sec. 4.5.1.

Ovec 04 'Ut~[i] = Quvec 03 'Ut-[i]
= Oyec 01 Vt.[t] (Xcoord := vi.[fli—x Qg o9))
= Opec 00 V.[t] (Xcoord := vy.[fli—x Qg o))
Analogously, we can rewrite

Ovee 05 V.[J] = Ovee 00 vi.[j] (Xcoord := v.[i]i—x Qg og)).

We substitute the simplified terms back into the above equation (step (6)) and

4.5. Representation Functions and Memory 93

obtain

map Tyec (Qvecs 0o U (nat ’I?,)
[i := 0vec 04 v1.[i](| Yeoord := vi.[j]i—y Qg o9)),
J 1= 0vee 05 vi.[J](| Yeoord := vy [i)—y Qg oo)])

(6)
= Map Tyec (Qvecs ag v (nat Tl)

[i := 0vec 00 1.[i](Xcoord := vs.[jlt—x Qg oq
Yeoord := v.[jli—y Qq o0),
ilt—x Qg og ,

ili—y @q oo |])

J 1= 0vee 00 vi.[j](Xcoord := vy.|
Yeoord := v;.]|

(2 (map Tvec (Qvecs agp U (nat n)))
[i = Tyee (Ovee 00 vi.[1](| Xcoord := vy.[j
Yeoord := vy.[j

]t—>x @d oo ,

]t_>y @g 09 D)a

j = Tyec (Qvec oo ’Ut.[j](‘XCOOT’d = Ut'[i]t*)x @d g0
Ycoord := v.[i]|i—y Qa0)]

© VecoDRList oo v (nat n) [i:= Vec2DR o v:.[j],J := Vec2DR o v.[i]]

In step (7) we have applied map-update, allowing us to lift 7, into the list
updates:
map f as[i :=v] = (map [xs)[i = f v] (map-update)

Step (8) simply folds the definition of Vec2DRList and makes use of the fact that
the updates on Xcoord and Ycoord with values read in oy completely determine
the records, which coincide with the records yielded by Vec2DR oo v;.[i] and
Vec2DR og v:.[j], respectively. Given the sequence of states op to og we can
thus prove the postcondition by applying the rules presented in this section.
How the states are obtained is the topic of Sec. 6.5

Iterating Over Arrays

We have demonstrated the use of the update theorems for representation func-
tions given updates of specific array elements. The simplification steps that were
taken in this example are applied automatically by the verification environment.
We now need to consider the more common case of array manipulation within a
loop iterating over the array elements. For example, in the SAMS project arrays
of 2D vectors were mostly used to represent point sets. Individual points in these
sets were hardly ever considered in isolation. By iterating over the correspond-
ing arrays, geometric transformations over such sets could be implemented, as
in

for (i = start; i < end; ++i) {
/* Some initial computations */
vii].x = fx(...);

}V[i]-yz fy(o)

where each individual iteration does not alter the values of array elements with
smaller indices than that of the current one. The typical structure of an invariant
for such a loop will look as follows

94 Chapter 4. Formalised Memory Model for C

/%@
Q@invariant start <= i && i <= end &&
\forall int j; start <= j && j < i —> ::P(v, j)
Ox/

where ::P(v, j) denotes an arbitrary property of the domain value of v[j].
After the loop, one can then conclude that property ::P is true for all array
elements between start and end. The critical part is the invariant step, i.e., the
proof that the invariant is maintained by a single loop iteration. The lemmas
presented so far are not immediately applicable in such a proof; however, they
allow the derivation of the following more suitable lemma:

lemma Vec2DRList_prop_step’:
"[Vx € set (Vec2DRList o 1 (int mn)). P x;
o Lxo’;
Vi<n. X N {(Qyecap_t-[i]) vecap_t—’’x"7,
(1vecop_t-[i1) vecop t— "y} = {};
P (Vec2DR 0’ (lyecop t-[m1)) | =
Vx € set (Vec2DRList ¢’ 1 (int n + 1)). P x"

It directly reflects the schema of the invariant step: we want to show P holds
for all complex numbers in the set obtained by reading array [up to n + 1 in
the state ¢’ after the iteration, while knowing that it holds in o for all elements
up to n. o and o’ are related via X, corresponding to the @modifies clause of
the loop. The two conditions to be proven are that X is disjoint from the array
elements with lesser indices (meaning that the iteration does not alter previous
results, as described above), and that the domain value for array element n
actually has property P in o’.

Lemma Vec2DR List-prop-step’ follows from Vec2DRec-n-modified-on and
Vec2DRec-n-nth, which emphasises the use of these more basic lemmas, even if
they are only of limited use in automatic update simplification tactics, due to
the fact that array index computations translate to computations on list indices,
so that index inequality is generally not decidable.

This concludes the presentation of the memory model. We only presented
a sketch of the most important theorems related to the memory model in this
chapter, and skipped all the proofs. We have done so because we do not consider
the ‘history’ of these higher-level properties, i.e. the technical lemmas they
depend upon, as interesting to readers of this thesis. However, we emphasise
that the formalisation of the memory is complete in the sense that all theorems
shown here and used in the actual verification, e. g., in the SAMS project, have
been proven is Isabelle/HOL without the introduction of any axioms.

Chapter 5

C Programs and
Specifications in

Isabelle/HOL

In this chapter the subset of the C programming language that is supported by
the verification environment is identified. Furthermore the formalisation of C
programs and CSI annotations in Isabelle/HOL is discussed. The formalisation
incorporates a monadic denotational semantics of program execution based on
state transformers, which allows for side-effects in expressions. Since this is a
standard approach, only the more specific parts are shown. Finally, a simpler
semantics for side-effect free expressions is developed that is more appropriate
for use in the proof rules of the next chapter. A syntactic criterion is defined
that ensures the equivalence of the two semantics.

5.1 Language Subset

Most formalisations of the C language effectively define neither a subset nor a
superset of the actual language. On the one hand, peculiar language features
like bit-fields or variable function arguments are often excluded due to a lack of
theoretical interest or practical relevance. Bessey et al. [22] sportfully discuss
how even a minor omission of a language feature can render a static analysis tool
unusable for commercial application domains. On the other hand, restrictions
imposed by the standard out of practical considerations, like the maximum
number of function arguments or the length of identifiers, might be irrelevant for
the purposes of a formalisation. In any case, a mathematically precise definition
of the set of C programs can only be given on the syntactic level, since the
semantics of C are only informally defined by the standard. Nevertheless, we
desire a formalisation of the program semantics w.r.t. which we can prove the
correctness of our program logic that is used for program verification.

Formal Semantics Several formalisations of the semantics of C exist, both
on paper and within tools for mechanised logic [117, 26, 136, 68]. They differ
in the style of semantics (denotational, big-step or small-step operational) and

95

96 Chapter 5. C Programs and Specifications in Isabelle/HOL

the number of language features supported. Formalisations aiming at a more
or less complete coverage are often concerned with a meta-level analysis of the
semantics itself, while others tailor the semantics so as to smoothen its use in
subsequent steps, like the derivation of a program logic, or the proof of equiva-
lence w.r.t. another semantics. Important decisions concern the complexity of
the memory model, which influences the possible amount of pointer arithmetic
and low-level memory operations, and how the non-determinism inherent in the
standard is dealt with. For example, the fact that expression evaluation is left
unspecified essentially leaves the choices of fixing an evaluation order, which
incurs restrictions on the allowed side-effects in expressions, and of dealing with
several possible evaluations, hence non-determinism. Acknowledging the fre-
quency with which new formalisations of programming language semantics are
developed, Sewell et al. [139] even enable the definition of the formal semantics
of a programming language in a general framework, which allows the evaluation
rules to be typeset and automatically be translated to the input language of
several theorem provers, including Isabelle/HOL and Coq.

Our verification environment is to be used in the certification of C programs
and our aim was not to develop a particularly powerful or novel formal semantics
for C. Rather, it should be easily explainable to and understood by external
reviewers. To this end, it builds on well-understood mathematical principles,
and supports exactly those language features that appeared in the programs
we verified. We proceed in two steps: first, we discuss prominent features of C
and point out whether or in which way they are recognised by the verification
environment. Then we provide the definitive reference in terms of the abstract
syntax and formalised denotational semantics.

5.1.1 Discussion of Language Features

In the following, we mark those features whose inclusion would cause a substan-
tial extension of the formalisation of the semantics by a *.

Integer overflow and unsigned integers The semantics of integer overflow
differs between the signed and unsigned integer types. While a signed expres-
sion like INT_MAX + 1 exhibits implementation-defined behaviour, its unsigned
counterpart UINT_MAX + 1U has a well-defined wrap-around semantics and
yields 0. In accordance with the memory model, our semantics entirely ig-
nores integer overflow, so that the above expressions evaluate to INT_MAX + 1
and UINT_MAX + 1 (both of type DomlInt), respectively. We have argued in
Sec. 4.2.2 that the proof of freeness of overflow is delegated to other tools. The
SAMS code did not rely on wrap-around semantics, so that it was natural to
prohibit all kinds of overflow.

Implicit and explicit arithmetic conversions All arithmetic conversions
can remain implicit in C. Their behaviour is equal to explicit conversions and is
defined as long as the value to be converted is in the range of values representable
by the target type (possibly after truncation in the case of a conversion of
a floating-point type to an integer type). For example, after the assignment
sequence

double d = 100.1;

5.1. Language Subset 97

char ¢ = d;

c is implicitly converted from double to char and will contain the value 100.
Additionally, the arguments of arithmetic operations are subject to integer pro-
motions, as explained in Sec. 3.3.3. To avoid the unexpected consequences
entailed by such conversions, we require all conversions from types with a larger
set of representable values to a type with a smaller such set to be made explicit.
This property is checked on the syntactic level by the front-end. Further, we
assume that all conversions are value-preserving and do not result in undefined
behaviour. All conversions for which the first assumption does not hold effec-
tively perform a truncation or modulo operation, which can also be achieved by
calling appropriate functions.

Bit-level operations The verification environment does not support bit-level
operations (>>, <<, ~, &, |, and 7). There are no theoretical objections
against their inclusion for unsigned integers. However, their semantics requires
a modelling of the bit-sizes of integer types, which is an architecture-dependent
property. For example, x >> 40 is undefined if x is an unsigned integer of bit
size 32. Furthermore, value preservation is not meaningful when operating on
the bit-level, because leading Os become relevant. Consider the code snippet

unsigned char ¢ = UCHAR_MAX; /* Bits: 1111 1111 x/
unsigned int jl = ~c;
unsigned int j2 = (unsigned char)(~c);

Only j2 will actually obtain the value 0, while j1 will have all except the
last 8 bits set to 1, due to the implicit conversion of ¢ from unsigned char
to unsigned int in the second line.!

Unions and bit-fields* Unsurprisingly, C has a low-level concept of union
datatypes. They simply allow one to view a single chunk of memory as different
types of objects. C unions are untagged —in contrast to discriminated unions
of functional languages like OCaml and to variant records of Pascal—, so that
the correct access to a union datatype is not enforced at the type level. Given
a union

union u {
int x;
double v;
} oul;

the compiler cannot detect in general when ul.v is read even though ul.x was
last written to. A serious formal treatment of unions would therefore include the
supervision of a correct access scheme for unions. What is worse is that the type
of object contained in a union can be changed at run-time by an appropriate
assignment. This wreaks havoc on any type-based aliasing analysis: in the
context of the above union all pointers to int would become possible pointers
to double values. The inequalities of memory locations of Sec. 4.3 rely on the
uniqueness of the type at each location and would therefore become invalid if
unions were integrated into the model.

1We assume that a byte consists of 8 bits throughout this chapter.

98 Chapter 5. C Programs and Specifications in Isabelle/HOL

Bit-fields are reportedly seldom used [142, Q.2.26]; their inclusion is there-
fore not deemed necessary.

Type qualifiers and storage class specifiers The type qualifier volatile is
not supported. Static function-local declarations are not supported directly, but
such declarations are lifted to file scope by the front-end which also performs
an appropriate renaming of the declared identifier. This is a semantically trans-
parent transformation. The storage class specifier register is simply ignored, as
the memory model does not distinguish registers from other memory.

Pointer conversions* The implementation-defined conversion of a pointer to
an integer and back ([82, §6.3.2.3]) is not supported, just as the conversion from
a structure pointer to a pointer to its initial member is not allowed. The latter
restriction is necessary in any memory model that has the split heap property:
if it were allowed, the following code

struct inner { int x; } xip;
struct outer { struct inner vy; } *0p ;
ip = (struct inner %) op;

would introduce the location equality between op—>y and ip—>x, i.e. between
two locations obtained via accesses on distinct field names.

Pointer polymorphism C allows the implicit and explicit conversion of any
pointer to object type to the type void * and back. This is used both to imple-
ment type-agnostic memory operations as well as ‘pointer polymorphism’. By
the former we mean operations which interpret their void * arguments simply
as the address of a memory area on which to operate in a low-level manner (like
the copy operation memcpy() or memset(), which sets all bytes of a memory
area to a given value). Our memory model is not suited for such operations.
By pointer polymorphism we mean C’s simple variant of parametric polymor-
phism [1], i. e., the use of type void * in the parameter types of functions whose
behaviour does not depend on the actual types of the pointers thus passed. A
classic example for the usefulness of this principle is an operation that reverses
the elements of an array (which must be of pointer type), which can be gener-
ically declared over an array of void pointers, avoiding the need for separate
definitions for individual types.

void reverse_array(void *v[], int len);
Similarly, one can introduce parametric datatypes like one for tuples of pointers:
struct tuple { void xfst; void *snd; };

The verification environment therefore supports the conversion of any object
pointer to type void * and back.

Functions* In accordance with the MISRA guidelines, we do not allow di-
rect or mutual recursive function definitions. Since function pointers are also
excluded, this property can be checked on the syntactic level by the front-end
during a whole program analysis. The use of functions with variable parameter
numbers is prohibited as well. Structurally, functions may only have a single

5.1. Language Subset 99

exit point at the end of the function body. This is also enforced syntactically
by requiring that every function definition must end with a unique return state-
ment.

Expressions of scalar type While objects of aggregate type may be defined
both locally and globally, we demand that all expressions are of scalar, i.e.
either arithmetic or pointer, types. This entails that aggregate assignments
need to be translated by the front-end to a sequence of assignments to all scalar
components comprising the object to be modified. Furthermore, functions may
only accept parameters and return values of scalar type. Since the address of
any aggregate object may be taken, these objects can always be made available
across function calls by passing their address.

Evaluation order and side-effects in expressions The evaluation order of
the operands of binary expressions and of function arguments is left unspecified
by the standard. In combination with side-effects in expressions, this introduces
non-determinism into the language. The MISRA guidelines demand that an ex-
pression must yield the same value under every possible order of evaluation of its
subexpressions, providing the following example where the result is supposed to
depend on whether the left-hand or right-hand side of the addition are evaluated
first:

x = bli] + i+h

We note that this expression yields undefined rather than unspecified behaviour
[82,§6.5(2)], as i is both read and written to within a single expression.? In fact,
Norrish [118] has shown that all expressions not containing internal sequence
points deterministically evaluate to a value, or else expose undefined behaviour.
In program logics it is common practice to restrict all expressions to be
completely free of side-effects of any kind, including function calls. This is done
to allow the direct use of such expressions inside specifications, as exemplified
by the use of condition b in the classic Hoare rule for a simple if statement:

{bAP} 1 {Q} {-bA P} {Q}
{P} if b then c¢; else c; {Q}

This approach enforces a peculiar programming style using many auxiliary vari-
ables, which is not suitable in a context in which many trivially side-effect free
mathematical operations are used. Consider the 2D-rotation of an x-coordinate,
and its roundabout computation avoiding function calls in expressions:

x = cos(phi) * x — sin(phi) * y;
/*x vs. x/

double t1 = cos(phi);

double t2 = sin(phi);

x = tl * x — t2 % vy;

Worse cases are easily conceived. We therefore take a more relaxed approach
that still avoids all cases of undefinedness. Concretely, we allow calls of func-
tions with a @modifies \nothing specification to appear in expressions, which

2 Addition for language lawyers: and i is not only read to determine the value to be stored
in it.

100 Chapter 5. C Programs and Specifications in Isabelle/HOL

includes a large class of mathematical operations. The assignment and incre-
ment/decrement operators may, on the other hand, only be used as the top-level
operators of an expression statement.

Finally, in accordance with the MISRA guidelines, the comma operator is
not supported.

Dynamic memory management* We are compliant with the MISRA guide-
lines by ezcluding dynamic memory management via malloc() and free (). How-
ever, the memory model itself provides most necessary operations: extend and
dealloc exactly correspond to allocation and deallocation, while is-fresh-loc per-
mits the statement that a given location is not yet defined in a program state.
What is missing are a relation between program states (similar to o Cx o, e. g.
o >y ¢’) to express which locations Y have been deallocated in a post-state o’
w.r.t. pre-state o, as well as appropriate theorems about the interplay between
this relation and read operations on the program state.

Statements* Non-local exits, embodied by the break, continue and return
statements, are not treated in the formalisation. They do not pose theoretical
problems, and could be dealt with through the techniques described in [79, 149].
While the abrupt termination of a loop iteration is sometimes convenient for
the programmer, the same effect can always be achieved by an appropriate
cascade of if statements. The code of the SAMS project did not suffer from
clumsy workarounds or unreadability by omitting non-local exit statements.
Unconditional jumps via goto cannot be catered for as easily, but we consider
their use as bad practice anyway. The switch statement permits arbitrary jumps
to any point in the statement body, making it behave more or less like a goto.
We only support the modified, Java-like syntax for switch statements as defined
in [109, §6.15], which is internally translated into a cascade of if statements
during parsing. The internal translation of for and do ... while loops to their
equivalent while loop counterparts has been described in Sec. 3.5.2.

C preprocessor The C preprocessor is applied to all sources before they
are passed to our front-end. Hence, all preprocessor usage as accepted by the
MISRA guidelines is acceptable. The special treatment of arithmetic constants
defined as preprocessor macros has already been described in Sec. 3.5.3.

5.2 Abstract Syntax

The abstract syntax of C programs is represented as a collection of Isabelle-
/HOL datatypes. Roughly, they fall into the four categories of abstract syntax
for types, expressions, statements, and declarations. Fig. 5.1 shows types and
expressions.

5.2.1 Types and Expressions

We have seen the datatype for types of values in the memory model, RTT, al-
ready (cf. Sec. 4.2.1). There is another datatype Type, which is output by the
front-end translating the concrete source code into Isabelle/HOL, which is nearly

5.2. Abstract Syntax 101

datatype BasicType = IInt | IDouble | IVoid
datatype Type = BasicType BasicType
| RefType Type
| RecordType Identifier "Recordfield list"
| ArrayType Type nat
and Recordfield = Recordfield Identifier Type

datatype ArithOp = OpPlus | OpMinus | OpMult | OpDiv | OpMod
datatype CompOp = Less | LessEq | Eq | NotEq

datatype LVal = LId Identifier Type
| LArrayAcc RefExpr IntExpr Type
| LDeref RefExpr Type
| LFieldSel LVal Identifier Type
and IntExpr = IntLVal LVal
IntLit int
IntFunCall Identifier ExprList
IntUMinus IntExpr
IntArith ArithOp IntExpr IntExpr
IntCond Expr IntExpr IntExpr
IntIntComp CompUp IntExpr IntExpr
IntDoubleComp CompOp DoubleExpr DoubleExpr
IntRefEq RefExpr RefExpr
IntRefDiff RefExpr RefExpr Type
IntLAnd Expr Expr
IntLOr Expr Expr
IntLNot Expr
| DoubleToInt DoubleExpr
and DoubleExpr = DoubleLVal LVal
| DoubleLit real
| DoubleFunCall Identifier ExprList
| DoubleUMinus DoubleExpr
| DoubleArith ArithOp DoubleExpr DoubleExpr
/
/

—_—— — — — — — — — — - —

DoubleCond Expr DoubleExpr DoubleExpr
IntToDouble IntExpr
and RefExpr = RefNull
RefLVal LVal
RefAddr LVal
RefCond Expr RefExpr RefExpr
RefFunCall Identifier ExprList
RefFromVoid RefExpr Type
RefToVoid RefExpr
and Expr = IntExpr IntExpr
| DoubleExpr DoubleExpr
| RefExpr RefExpr
and ExprList = ExprList_Nil
| ExprList_Cons Expr ExprList

/
/
/
/
/
/

Figure 5.1: Abstract syntax of C expressions in Isabelle/HOL

102 Chapter 5. C Programs and Specifications in Isabelle/HOL

isomorphic, but additionally includes the constructor IVoid for type void.? Ex-
pressions are built over the simplified lvalues already described in Sec. 3.3.1
(datatype LVal). All lvalues are labelled with their respective types, from which
the types of expressions can in principle be inferred. In practice, however, the
type information is only used for pointer dereferencing, array access, field selec-
tion, pointer difference, and casts to and from void *, where all but the last two
work on the level of lvalues. In contrast to lvalues, which can be of any Type,
we only distinguish between three types of expressions, namely integer, double
and pointer (or reference) expressions. They correspond to the value domains
DomliInt, DomDouble, and Loc — since no distinction is made between different
sizes of integers or floating-point numbers in the semantics, there is no use in
distinguishing them on the level of abstract syntax. Integer expressions include
function calls with an integer result (IntFunCall) and the arithmetic operations
over integers (IntUMinus, IntArith) that are not related to bit-level operations.
Further constructors represent conditional expressions (IntCond) of the form
(e) ? iel : ie2, general comparisons of integer or double values (IntIntComp,
IntDoubleComp) as well as equality comparisons between pointer expressions
(IntRefEq), and the logical operators negation ! (IntLNot), conjunction &&
(IntLAnd), and disjunction || (IntLOr). Pointer subtraction (IntRefDiff) de-
pends on type information, because pointer difference is expressed as a factor
of the size of the pointed-to type, which is why the corresponding constructor
expects the type of the objects that the two pointers point to. All conversions
from floating-point expressions to integer expressions (and vice versa) are made
explicit in the abstract syntax (via constructors Double ToInt and IntToDouble).

Double expressions are defined analogously to integer expressions, with the
difference being that they do not include the logical (effectively boolean) ex-
pressions nor pointer arithmetic. There is only a very limited number of pointer
expressions: the constant NULL expression (RefNull); the use of an lvalue of
pointer type (RefLVal); the address-of operator applied to an lvalue (RefAddr);
conditional expressions and function calls as for integer and double expressions;
and finally the conversion of an arbitrary pointer to and from type void x*
(RefToVoid and RefFromVoid). We did not include an explicit addition be-
tween a pointer and an integer, because this can be encoded via the equality
between p + n and &p[n], i.e., we can add to a pointer by taking the address
of an appropriate array access operation. This encoding favours iteration via
array indices over iteration via pointer traversal: the following snippet can be
verified,

char xs = "someystring", xp;
for (p = s; xp; ++tp) { /* use of p here %/ }

but the encoding of ++p as p = &p[1] will make it more laborious than the
equivalent

char xs = "some,string"; int i;
for (i = 0; s[i]; ++i) { /* use of s[i] here %/ }

Finally, datatypes Fxprand FEzprList allow for a uniform treatment of expres-
sions of different types. This way we can subsume function calls with different

3In the memory model, there is no use for this type, as no object of type void exists. We
will denote the natural translation (ignoring void) from Type to RTT with a subscript ¢, as
in (BasicType IInt)y = RTT-bas BR-Int.

5.2. Abstract Syntax 103

concrete argument types under a single constructor determined by the return
type, e.g. IntFunCall.

5.2.2 Statements and Declarations

Fig. 5.2 presents statements and declarations. The former (datatype Stmt’) are
parameterised by two type variables ’a and b that serve as placeholders for
specific annotations. An EmptyStmt represents the empty statement (;). The
binary ConditionalStmt represents if statements and hence expects an expres-
sion (which is given the ‘not-null-or-zero’ boolean interpretation as in C) and
two statements, representing the then and else branches. Since all loops are
normalised, we only require a single constructor for while loops (WhileStmt),
expecting an expression, a statement for the body and a value of type b in-
terpreting the @invariant, @modifies and @variant clauses of loop annotations.
This parameterisation allows us to substitute the concrete type for loop anno-
tations without having to modify definitions or theorems that do not relate to
these. Concretely, we experimented with both deeply and shallowly embedded
loop annotations, where we finally opted for the latter (cf. datatype LoopAnno
below). Constructor SpecStmt is used for statement specifications. The type
parameter e must thus be instantiated with a datatype representing the @join
and @modifies annotations, e.g. StmtAnno below. Unlike in C, assignments are
statements (constructor AssignStmt), which is in accordance with our require-
ment that they only occur at the statement level. The left-hand side of an
assignment has to be an lvalue, while the right-hand side can be an arbitrary
expression. If the value of a function call is discarded (i.e., if it appears at the
statement level), we christen it a procedure call (ProcCallStmt). Other expres-
sions may also be evaluated only for the sake of their side-effects by converting
them into statements via FxprStmt. SeqStmt concatenates two statements, thus
achieving a uniform treatment of compound and atomic statements. C labels
are modelled by a LabeledStmt that simply expects an identifier and a statement,
which may be compound. All labels within a function must have distinct names.
The verification environment uses labels only within specifications to refer to
the values of expressions at particular program points, and not for unstructured
jumps. Labels are therefore interpreted hierarchically: given LabeledStmt | s,
label [is only visible in the (compound) statement s. We thus ensure that all
labels occurring in a specification expression attached to a statement s refer to
program points that have been passed on the way to s.

As discussed above, five statements are missing compared to the C gram-
mar: the unstructured switch statement and the four jump statements break,
continue, return, and goto. The single exit requirement is enforced by intro-
ducing an independent ReturnStmt datatype, which gets attached to a Stmt’in
the datatype Block’, which is used as the datatype for function bodies. It addi-
tionally contains a list of variable declarations (Vardecl), which neatly enforces
the declaration of all function-local variables at the beginning of the function.

At the level of global declarations and definitions we must distinguish be-
tween variables and functions. Both variable declarations and definitions are
represented as a Vardecl which contains an identifier, a type, and an optional
Initialiser. The latter is simply a rose tree of expressions, built in concrete syn-
tax through the use of braced initialisers. Function declarations are represented
by Funheader’, parameterised once again over a type variable ’a used for func-

104

Chapter 5. C Programs and Specifications in Isabelle/HOL

datatype (’a, ’b) Stmt’ = EmptyStmt

datatype ReturnStmt = ReturnStmt "Expr option"
datatype Paramdecl = Paramdecl Identifier Type

datatype Initialiser = InitialVal Expr

datatype Vardecl = Vardecl Identifier Type "Initialiser option"

datatype (’a, ’b) Block’ =

datatype ’a Funheader’ = Funheader Identifier "Paramdecl list" "’a"

datatype (’a, ’b, ’c) Fundef’ =

datatype (’a, ’b, ’c) Decl’ = FunDecl "’a Funheader’"

datatype LoopAnno = LoopAnno "(Env = unit SP)"

datatype StmtAnno = StmtAnno "Env = unit SR" "MVal list"

datatype FunSpec = FunSpec "(Env = Val list = unit SP)"

types Stmt = "(StmtAnno, LoopAnno option) Stmt’"

ConditionalStmt Expr "(’a, ’b) Stmt’" "(’a, ’b) Stmt’"
WhileStmt Expr "(’a, ’b) Stmt’" "’b"

SpecStmt "(’a, ’b) Stmt’" "’a"

AssignStmt LVal Expr

ProcCallStmt Identifier ExprList

ExprStmt Expr

SeqStmt "(’a, ’b) Stmt’" "(’a, ’b) Stmt’"

LabeledStmt Identifier "(’a, ’b) Stmt’"

—_——— — — — - —

| Initialisers "Initialiser list"

Block "Vardecl list" "(’a, ’b) Stmt’" ReturnStmt

Fundef "’a Funheader’" "(’b, ’c) Block’"

| FunDef "(’a, ’b, ’c) Fundef’"
| GVardecl Vardecl

"(MVal list) option"
"(Env = State = nat) option"

"(Env = Val list = (Val option) SR)"
"(MVal list) option"

Block = "(StmtAnno, LoopAnno option) Block’"

Funheader = "(FunSpec option) Funheader’"

Fundef = "(FunSpec option, StmtAnno, LoopAnno option) Fundef’"
Decl = "(FunSpec option, StmtAnno, LoopAnno option) Decl’"
TranslationUnit = "Decl list"

Figure 5.2: Abstract syntax of C statements and declarations in Isabelle/HOL

5.2. Abstract Syntax 105

tion specifications. The definition of a function (Fundef’) additionally contains
a body in terms of a Block’; hence, it is triply parameterised over its function
specification and the loop and statement annotations in the body. Datatype
Decl” summarises all three external declarations that can occur at file scope.

The concluding type definitions in Fig. 5.2 instantiate the type parameters of
all primed datatypes with concrete specifications and annotations, yielding the
types Stmt, Block, etc., that are actually used in the verification environment. In
particular, a TranslationUnit is just a list of external declarations. The mean-
ing of the respective datatypes LoopAnno, StmtAnno, and FunSpec will only
be explained in Sec. 5.5 as they involve as yet unknown types for evaluation
environments and state predicates. Intuitively, a loop annotation contains the
semantics of the loop invariant (since we use a shallow embedding of specifica-
tions, the invariant is not represented as an explicit datatype), an optional list
of mvalues representing the modifies clause, and the optional semantics of the
variant. Likewise, a FunSpec consists of the semantics of the precondition and
postcondition, and an optional list of mvalues.

5.2.3 Translation Units and Linked Programs

C implements a rather simple concept of modularity in terms of translation units
[82, §5.1.1.1]. A translation unit is the result of applying the C preprocessor to
a single source file, i. e., it is the source file with all #included files spliced in and
all #defined symbols substituted. Translation units can be compiled separately,
and later linked together to form an executable program. The provided external
interface of a translation unit, i. e. the set of all identifiers that are visible to other
translation units and for which storage is reserved, is given by all identifiers that
are defined with external linkage. Whether a file scope identifier has external
linkage depends on its declaration: Ignoring multiple declarations, variables
declared with no storage class specifier have external linkage, just as those
declared with the extern specifier. Variables declared as static have internal
linkage and are hence invisible to other units. Functions have external linkage,
unless they are specified with static. To complicate matters, the concept of
linkage does not yet mandate which translation unit actually reserves storage
for the object denoted by an external identifier. There must be exactly one
translation unit in which the identifier is actually defined. The definition of a
variable identifier is caused either by a declaration that has an initialiser or by
one that does not include the extern specifier. Matters are further complicated
by the fact that multiple declarations of identifiers with the same name can
hardly be avoided in C, due to the lack of a proper namespace concept: including
a header file of some library might introduce external declarations of identifiers
whose names are also used for different purposes in the translation unit at hand.
To avoid having to know about all names introduced by such header files, a
peculiar special case has been introduced: if an identifier gets declared with
external linkage, but has previously been declared with internal linkage, then
the linkage is not altered, and the second declaration is effectively ignored. This
makes the following code snipped be legal C, in which print_int will output O:

static int ¢ = 0;
extern int c;

106 Chapter 5. C Programs and Specifications in Isabelle/HOL

int main(void) { print_int(c); return 0;}

This suggests a model of a normalised translation unit, consisting of a se-
quence of external identifiers whose storage is defined outside the unit (but
whose names and types are known), followed by a sequence of external identi-
fiers whose storage is defined inside the unit and which are visible to other units,
followed by a sequence of identifiers whose storage and visibility are restricted
to the unit itself. Such a normalisation is also performed by the CIL C front-end
[113].

Translation units do not constitute parts of a program that can be executed
in isolation, due to the lack of storage for some external identifiers. The same
holds for the verification of a program function, which also requires that all
variables occurring in it have memory (in our case a base location) assigned to
them. Therefore, a translation unit is not an appropriate concept for modular
verification. Instead, we assume that all identifiers used by a function will
eventually be assigned storage by some translation unit when the whole program
is linked together. We therefore verify each function in a context in which all
variables used by the function exist, and have their corresponding base location
assigned to them.

In Sec. 4.2.4 we assigned global identifiers a base location identified purely
by name. Since each identifier with external linkage may only be defined exactly
once, we can assume a memory location Global ”z” for each identifier x declared
with external linkage. For identifiers with internal linkage, we need to distin-
guish between an x declared in translation unit 77, e.g. as static int x, and
another x from T declared as static double x. The solution is to introduce
unique identifiers for translation units (denoted by id(T;) below), and assign
each x of T; the base location

Global " (id(T})) t z”

where T is some symbol not allowed inside regular C identifiers. We thereby lift
all external identifiers to the same global visibility level. It is only a theoretical
problem that this allows to syntactically refer to variables with internal linkage
from functions in other translation units: programs are always translated from
C source code, and never written explicitly as Isabelle/HOL datatypes. In sum-
mary, this approach allows for modularity in the sense that each function can
be verified in isolation, under the assumption that it will eventually be embed-
ded in a program that assigns memory to all occurring identifiers. Functions
appearing in different translation units will correctly refer to the same memory
location when using equal identifiers with external linkage, while referring to
different memory locations when using equal identifiers with internal linkage.

5.3 Semantics

We defined a denotational semantics for C programs, against which the program
logic of the next chapter is proven correct. The semantics is denotational instead
of operational for two reasons:

o It is symbolically executable by Isabelle’s simplifier, because it is defined
by a set of unconditional equations. We can make good use of this fact
during verification condition generation to ameliorate the situation of not

5.3. Semantics 107

being able to directly use program terms within specifications. Instead,
we use the semantics of these expressions, and let the simplifier reduce
them to terms that are nearly equal to what other approaches achieve by a
direct use of expressions. An interesting way of validating the semantics by
comparing its evaluation results on concrete inputs with test data obtained
from feeding the same input to compiled programs has been described in
[24]. Such a validation can only be done with an executable semantics.

e We are at any rate interested in a deterministic semantics; operational
semantics usually require determinism proofs, due to the non-deterministic
nature of the rule-based formulation. In contrast, a denotational semantics
can be easily formulated so as to make determinism inherent.

We introduce type definitions for state predicates, state relations, and for
state transformers which are used in the subsequent definitions.

types
’a SP = "’a = State = bool"
’a SR = "State = (’a X State) = bool"
’a ST = "State — (’a X State)"

A state predicate (SP) is a predicate over a State and an additional parameter
‘a; a state relation (SR) is similar, but expects two states. State transformers
(ST) form the basis of the denotational semantics: they are partial functions
from a State to a result of type ’a and a successor State. Note that this is
exactly the type of a state monad with exceptions [110], allowing us to use the
well-known monadic operations bind (written >>=), eta, and failure:

definition

bind :: "’a ST = (’a = ’b ST) = ’b ST"
where

"bind £ g = (AS. case £ S of

None = None
| Some (a, S’) = g a S’)"

definition

"eta x = (As. Some (x, s))"
definition

"failure = (As. None)"

Operator >>= sequences two monadic operations, where the right-hand side
operand ¢ is parameterised over the result of the left-hand side f. It yields a
monadic operation that first evaluates f and then, in the case of success, applies
g to the result a and successor state S’. Failure is propagated, i.e., if f fails
(by yielding None), g is not evaluated at all. eta simply injects a value into the
monad, leaving the state untouched, while failure is the monadic operation that
always fails. All failures are treated identically as total failures, and there is no
catch operation to recover from a failure.

5.3.1 Evaluation Context

Programs, statements, expressions, and lvalues are evaluated w.r.t. an envi-
ronment ' :: Env, defined as an Isabelle/HOL record which contains three
sub-environments in terms of a mapping from local and global variables to their

108 Chapter 5. C Programs and Specifications in Isabelle/HOL

locations, one from labels to program states and one from function identifiers
to the function’s signature (including its specification) as well as its semantics.
types

FunSem = "(Val list = (Val optiomn) ST)"
record FunData =

FDSpec :: "(Val list = unitSP) X (Val list = (Val option) SR)"
FDMod :: "Val list = State = Loc set"”
FDSig :: "Paramdecl list X Type"
record Env =
funEnv :: "Identifier — (FunData X FunSem option)"
varEnv :: "Identifier — Loc"
labEnv :: "Identifier — State"

The denotational semantics of C functions have type FunSem; they are state
transformers whose result is the function’s return value (which is None precisely
if the C function has return type void) that are parameterised over the actual
function arguments (of type Val list). Record FunData contains the seman-
tics of the precondition and postcondition of a C function in its FDSpec field
(Val list = unitSP and Val list = (Val option) SR, respectively). Their signa-
tures convey their assigned semantics. Both are parameterised over the actual
function arguments. The precondition is a state predicate ignoring the addi-
tional parameter (by instantiating it with type wnit), while the postcondition
is a state relation which may refer to values of expressions in the post-state as
well as the pre-state. Its Val option argument stands for the optional function
result value. The semantics of a @modifies clause (FDMod) is a function yielding
the set of locations that may be modified by the function, given the function’s
arguments (Val list) and the pre-state. It cannot simply be a Loc set since a
©@modifies clause is state dependent, as it may contain dereference operations,
e.g., *p for a global variable p of pointer type. Finally, field FDSig contains the
types and names of the function parameters as well as the return type.

5.3.2 Denotational Semantics
Lvalues and Expressions

Since expressions may have side-effects, we assign to each lvalue and expression
datatype a semantic function that yields a state transformer with a result type
denoting the value of the respective term. Lvalues evaluate to the location they
describe, integer expressions evaluate to Domlint, and so forth:

sem_1lv :: "Env = LVal = Loc ST"

sem_int :: "Env = IntExpr = DomInt ST"
sem_double :: "Env = DoubleExpr = DomDouble ST"
sem_ref :: "Env = RefExpr = Loc ST"
sem_expr :: "Env = Expr = Val ST"
sem_exprlist :: "Env = ExprList = (Val list) ST"

The semantics of general expressions simply delegate the evaluation to the
corresponding type of expression and wrap the result by the corresponding con-
structor of datatype Val:

"sem_expr I' (IntExpr e) = (sem_int I' e >>= eta o IntVal)"

"sem_expr I' (DoubleExpr e) = (sem_double I' e >>= eta o DoubleVal)"
"sem_expr I' (RefExpr e) = (sem_ref I' e >>= eta o PtrVal)"

5.3. Semantics 109

The semantic function for lvalues must take care that no invalid memory
accesses occur. Such accesses are possible both for array accesses and derefer-
encing, in which case the denotation must be a failure. Plain identifiers and
structure field selection are always safe; the former are simply looked up in the
environment I', while the latter first evaluate their left-hand side lvalue, bind
the result and apply the field selection function of the memory model to it. An
array access first evaluates the reference expression r denoting the array (bind-
ing it to [), then evaluates the index expression to i, and then performs two
checks: nullchk ensures that [is not null (failing otherwise), while arraychk fails
if accessing [at index i will exceed the array bounds or if [does not denote
an array element itself at all. Note that no distinction is made whether r is of
array or pointer type: C’s pointer decay is elegantly avoided through the fact
that all array variables point to their initial element in our memory model (cf.
array head pointers in Sec. 4.2.3). Dereferencing works similar to array access,
by first evaluating the reference expression and then checking its non-nullity
and its validity (defchk).

"sem_lv I' (LId i t) = eta (lookup_var I' i)"
"sem_lv I' (LFieldSel 1v i t) = (sem_lv I' 1lv >>= Al.
(eta (1 (type_1v lv)ﬂ—>i)))”
"sem_lv I' (LArrayAcc r e t) = (sem_ref I' r >>= Al.
(sem_int T e >>= MAi.
(nullchk 1 >>=)A1.
(arraychk 1 (ty) i))))"
"sem_lv I' (LDeref r t) = (sem_ref I' r >>= nullchk >>= (Al.
defchk 1 (tyg)))"

The semantics of integer, double and pointer expressions are rather straight-
forward. Due to the restriction that all expressions must yield a deterministic
value under all evaluation orders or fail otherwise, we can fix a left-to-right
evaluation order. We briefly describe the equations for reading an lvalue, for
function calls and for binary arithmetic operations.

"sem_int I' (IntLVal 1lv) = (sem_lv I' 1v >>= read_int_st)"
"sem_int I' (IntFunCall f es) = (sem_exprlist I' es >>=
((lookup_funsem I' £)) >>=
eta o valToInt o the)"
"sem_int I' (IntArith arop el e2) =
(sem_int T' el >>= Avl.
(sem_int T' e2 >>= Av2.
eta (arith_op arop v1 v2)))"

An lvalue interpreted as an integer expression is evaluated by first obtaining
the location it denotes through sem-lv and then applying read-int to it.* Func-
tion calls are evaluated by first evaluating all function arguments, then looking
up the semantics of the function by its name in the environment I', and finally
aggressively extracting the integer return value from the function result of type
Val option. A binary arithmetic expression first evaluates its operands in se-
quence and then applies the appropriate operator obtained via arith-op to the
resulting values.

Double expressions and pointer expressions are evaluated in a similar fash-

4The monadic notation forces us to introduce a side-effect free operation read-int-st which
lifts read-int to the monadic level.

110 Chapter 5. C Programs and Specifications in Isabelle/HOL

fun
iter :: "bool ST = unit ST = nat = bool ST"
where
"iter b p 0 = eta True"
| "iter b p (Suc n) = (b >>= (cond (p >> iter b p n) (eta False)))"
definition
loop_cond :: "bool ST = unit ST = nat = State = bool"
where
"loop_cond b pn x = (dz. iter b p n x = Some (False, z))"
definition
iter_sem :: "bool ST = unit ST = bool ST"
where
"iter_sem b p x = (if (3 n. loop_cond b p n x)
then iter b p (LEAST n. loop_cond b p n x) x
else None)"

fun
sem_s :: "Env = Stmt = unit ST"
where
"sem_s I' (EmptyStmt) = skip"
| "sem_s I" (ConditionalStmt c p q) =
(sem_bool I' ¢ >>= cond (sem_s I' p) (sem_s I' @))"
| "sem_s I' (WhileStmt b p _) =
(iter_sem (sem_bool I' b) (sem_s I' p) >> skip)"
| "sem_s I' (AssignStmt v e) = (sem_1lv I' v >>= Alv.
(sem_expr I' e >>= Jev.
upd 1v ev))"
| "sem_s I' (ProcCallStmt idt args) =
(sem_exprlist I' args >>= ((lookup_funsem I' idt)) >>= skip’)"
| "sem_s I' (ExprStmt e) = (sem_expr I' e >>= skip’)"
| "sem_s I' (LabeledStmt 1 stmt) = (A\S. sem_s (add_label I' 1 S) stmt
5) "
| "sem_s I' (SeqStmt s1 s2)

= (sem_s I' s1 >>= A_. sem_s I' s2)"
| "sem_s I' (SpecStmt s spec) =

(sem_s T" s)"

Figure 5.3: Semantics of statements

ion. For example, the semantics of the address-of operator evaluates the lvalue
operand and simply yields the obtained location as the result. Conversions from
a pointer type to type void * and vice versa are semantically transparent: the
corresponding equations simply delegate the evaluation to the operand expres-
sion. This is possible because all locations have the same type in the memory
model. The ‘dynamic’ type check occurs whenever a pointer is dereferenced, as
explained above.

"sem_ref I' (RefAddr 1v) = (sem_lv I' 1v >>= eta)"
"sem_ref I' (RefFromVoid re t) = (sem_ref I' re)"

5.3. Semantics 111

Statements

The semantics of statements are presented in Fig. 5.3. Most equations are stan-
dard. In a conditional statement the condition c is evaluated as a boolean value
(non-null pointers and non-zero integers and doubles yield True) and depending
on the outcome, the then- or else-branch is evaluated.? The denotation of loops
is usually expressed in terms of a least-fixed point operator over the domain of
state transformers; this is however not necessary and an equivalent, more intu-
itive and operational definition can be given in terms of the bounded iteration
operator iter [84]. The definition is complicated by the fact that loop conditions
may have side-effects. A while loop evaluates its loop condition (sem-bool T b)
and its body (sem-s T p) in turn until the condition becomes Fualse. If this never
happens, the loop diverges, which we identify with failure because we are only
interested in terminating programs. iter b p n (with b and p state transformers)
gives the semantics of a while loop bounded to n iterations. Its boolean result
indicates the final outcome of the loop condition. Predicate loop-cond b p n o
tells whether the loop terminates after at most n iterations starting in o, which
is the case if the result of iter b p n o is False. The overall semantics of a while
loop are now given by iter-sem: it is the n-fold iteration via iter such that n is
the least number of iterations after which the loop condition becomes Fulse, if
such a number exists. Otherwise, the semantics is identified with failure.

The litmus test for a correct definition of the semantics of loops is the un-
folding lemma:

lemma while_unfold:
"sem_s I' (WhileStmt c s a) =
sem_s I' (ConditionalStmt c¢ (SeqStmt s (WhileStmt c¢ s a)) EmptyStmt)"

Evaluating a loop is the same as testing the loop condition, and executing the
loop body once followed by the whole loop in case it evaluates to True, and
doing nothing otherwise.

The other noteworthy equation is that for a labelled statement, which has an
effect on the environment that its statement operand is evaluated in. It simply
adds a mapping from the given label to the current state into the environment.

Declarations

A complete formalisation requires further definitions for the return statement,
for blocks, local variable declarations, and variable initialisation. We elide their
definitions, as they are merely of an infrastructural character. The semantics
for function definitions is interesting, as it differs from similar formalisations
such as [136]. Recall that functions are state transformers parameterised over
a list of actual argument values. The semantics of function calls therefore be-
comes trivial, since the function semantics simply has to be looked up in the
environment. No action has to be taken that prepares a function call, such as
writing the argument values to special ‘parameter passing’ locations in memory.
Likewise, the semantics of functions does not involve fetching the arguments.
However, since function parameters are ordinary variables that may be modified
within the body of the function, they must be available as memory locations.
This is achieved by using a higher-order operator that realises local scoping of

5cond a b c is equal to if c then a else b and is only used for notational convenience.

112 Chapter 5. C Programs and Specifications in Isabelle/HOL

a location: local-loc p z t allocates an arbitrary fresh memory location ! with
name z and type t, calls p [, and afterwards deallocates the location. The result
of this operation is that of p [.

definition
local_loc :: "(Loc = ’a ST) = string = RIT = ’a ST"
where
"local_loc p x t = (fresh_loc_st x t >>= Al.
(p 1 >>=)Ar.
(dealloc_st 1 >>
eta r)))"

This behaviour is exactly what is required for the semantics of functions:
Given the function body and non-empty lists of argument values and parame-
ters, in sem-paramdecls we introduce a local scope for the first parameter with
local-loc, passing it a state transformer that immediately updates the state at
the freshly generated location loc with the argument value and continues with
the remaining parameters in an updated environment that maps the parameter
name to loc. Finally, when all parameters are processed, the so extended state
and environment are used to evaluate the function body via sem-block.

fun
sem_paramdecls ::
"Env = Block = Paramdecl list = Val list = (Val option) ST"
where
"sem_paramdecls I' blk [] [] = (sem_block I' blk)"
| "sem_paramdecls I' blk (p#ps) (vi#vs) =
(case p of
Paramdecl name typ =
local_loc (Aloc. (update_st loc vl >>= A_.
sem_paramdecls (add_var I' name loc) blk ps vs)) name (typy))"
fun
sem_fundef :: "Env = Fundef = Val list = (Val option) ST"
where
"sem_fundef I' (Fundef hdr blk) args =
sem_paramdecls I' blk (funParams hdr) args"

The semantics of a function is then given by sem-fundef which merely del-
egates to sem-paramdecls after extracting the parameters from the function
definition.

Since we disallow recursion, the call graph of any admissible program is a
tree. Therefore, the set of all its functions can be linearised in such a way that
that no function at index 4 will call, directly or through other functions, any
function with an index > 4. The linearisation allows us to build an explicit
environment for every function in which its semantics is evaluated. Such an
environment contains the semantics of all functions appearing earlier in the
linearisation (cf. Sec. 6.2).

5.4. Side-effect Free Expression Evaluation 113

5.4 Side-effect Free Expression Evaluation

By using the standard monad laws and by unfolding the definition of the
monadic read operations:

(etax>=g)=gx (eta-lunit)
(f>=ecta)=f (eta-runit)
f>=MAr.gx>=h)=((f>=g9) >=h) (bind-assoc)
read-int-st | o = Some (1Q; 0, o) (read-int-st)

the semantics of simple expressions can be evaluated by Isabelle’s simplifier; for
example, in an environment I" mapping x and y to local variables v-z; and v-y;
we obtain the following for the expression x + y:

sem-int T (IntArith OpPlus (IntLVal (LId x t))
(IntLVal (LId y t))) o

read-int-st vz >>= \vj.
read-int-st v-y, >>= Ava.
eta (v1 + v2) =
Some (v-2; Q0 +v-y, @, 0, 0)

The initial and final state coincide and the syntactic addition has been rewritten
to a semantic addition. The latter is a desirable property for program verifi-
cation, since we obtain a direct correspondence between program expressions
and semantic terms. Expressions in which the program state is merely read and
never written to and which do not result in failure occur frequently, particularly
as conditional expressions of if and while statements. Unfortunately, allegedly
simple expressions that dereference a pointer or access an array may result in
failure, so that these expressions cannot be simplified in a useful way. Consider
the evaluation of *p for a local variable p:

sem-int T (IntLVal (LDeref (RefLVal (LId p t)) t')) o =
(read-loc-st (v-p,) >= Ax.
(nullchk x >= \x'. (defchk ©' ty >>= read-int-st))) o

To simplify the right-hand side further, rewrite rules related to nulichk and
defchk are required. However, such rules can be formulated much more easily
in an extensional fashion and not inside the monad (i.e., we need to make the
state explicit):

valid-loc Il t 0 = defchk 1t 0 = etal o Anullchkl o =etal o

We therefore do not simplify expressions by using the monadic semantics,
but follow a different strategy in which we define a simpler semantics for the eval-
uation of side-effect free expressions, whose equivalence w.r.t. the full monadic
semantics we prove under the assumption that the evaluated expression is in
fact side-effect free.

First of all, we require a formal notion of side-effect freeness for all types of
expressions. An expression is side-effect free for an environment I' and a state
o if its evaluation under I' and ¢ does not alter o:

definition

114 Chapter 5. C Programs and Specifications in Isabelle/HOL

sef_expr :: "Env = Expr = State = bool"
where
"sef_expr I' e 0 = (Jv. sem_expr I' e 0 = Some (v, o))"

Note that this a semantic criterion that allows an expression to alter the state
temporarily, as long as the initial state is finally restored.

We then partially define a family of semantic functions that merely read
the state to yield a value, ignoring all possible failures that might occur during
evaluation:

sef_sem_1v :: "Env = LVal = State = Loc"
sef_sem_int :: "Env = IntExpr = State = DomInt"
sef_sem_double :: "Env = DoubleExpr = State => DomDouble"
sef_sem_ref :: "Env = RefExpr = State = Loc"
sef_sem_expr :: "Env = Expr = State = Val"

These functions are defined via primitive recursion over the expression data-
types. They are under-specified because we do not provide equations for function
calls, since these are generally not side-effect free. The equations for construc-
tors whose semantics is naturally side-effect free are rather obvious. An lvalue
is read as an integer by evaluating the lvalue as a location and reading at that
location; pointer equality can be translated to a direct comparison between two
recursively evaluated pointer values, which is then converted to Domlint:

"sef_sem_int I' (IntLVal 1lv) =
(Mo. (sef_sem_1v I' 1v o) @; o)"
"sef_sem_int ' (IntRefEq rl r2) =
(Ao. bool_to_int (sef_sem_ref I' r1 o = sef_sem_ref I' r2 o))"

The interesting cases are those for array access and pointer dereferencing,
where the sanity checks of the full monadic semantics are simply omitted:

"sef_sem_1lv I" (LArrayAcc r e t) =

(MAo. let 1 = (sef_sem_ ref I' r o);
i = sef_sem_int I' e o
in lgy. [nat i])"

"sef_sem_1v I' (LDeref r t) = (MAo. sef_sem ref I' r o)"

Under these simple semantics, the expression *p from above gets fully sim-
plified:

sef-sem-int T' (IntLVal (LDeref (RefLVal (LId p t)) t')) o
=(v-p,Qo)Qo

5.4.1 A Syntactic Condition for Side-Effect Freeness

We would expect that the side-effect free semantics is ‘equivalent’ to the full
monadic semantics for side-effect free expressions, in the following way:

sef-exprI' e 0 = sem-exprI' e 0 = Some (sef-sem-expr ' e 0, o) (5.1)

This necessitates a proof of semantic side-effect freeness whenever a term
matching the left-hand side is supposed to be replaced by the right-hand side.
However, the definition of sef-expr does not provide any hints about its proof.
Ideally, a criterion for side-effect freeness would be defined along the structure of
the expression. It should be reducible to True or False in all simple cases; e. g.,

5.4. Side-effect Free Expression Evaluation 115

expressions containing function calls should reduce to False, while expressions
without pointers, arrays and functions (like x + 9 — 3) should yield True. For
array accesses and pointers we would like the criterion to reduce to validity
constraints about the respective pointer and array access in terms of wvalid-loc
and valid-array-acc. We can define this criterion as follows:

syn_sef_1v :: "Env = LVal = State = bool"
syn_sef_int :: "Env = IntExpr = State = bool"
syn_sef_double :: "Env = DoubleExpr = State = bool"
syn_sef_ref :: "Env = RefExpr = State = bool"
syn_sef_expr :: "Env = Expr = State = bool"

Some representative equations show how the condition for side-effect freeness
in an environment I' and a state o is built up; literals are always side-effect free,
the condition for Ivalues and binary arithmetic operators is built by delegation,
and function calls are (conservatively) regarded as not side-effect free.

"syn_sef_int I' (IntLit i) = (Ao. True)"
"syn_sef_int I' (IntLVal 1v) = (Ao. syn_sef_1lv I' 1v o)"
"syn_sef_int I' (IntArith arop el e2) =

(MAo. syn_sef_int I' el o A syn_sef_int I' e2 o)"
"syn_sef_int I' (IntFunCall i e) = (Ao. False)"

The interesting equations are those for array and pointer access. An array
access is side-effect free if both the pointer expression denoting the array and
the index expression are, and if the array access itself is valid according to
valid-array-acc. Likewise, a pointer access is side-effect free if the expression
being dereferenced is and if the pointer is valid according to wvalid-loc. In both
cases we use the side-effect free semantics to evaluate the expressions used in
the validity constraints:

"syn_sef_lv I' (LArrayAcc r e t) =
(Ao. syn_sef_ ref I' r o A
syn_sef_int I' e o0 A
(let 1 = sef_sem_ref I' r o;
i = sef_sem_int I' e o
in o[ltﬂ/ il o))"
"syn_sef_lv I' (LDeref r t) =
(MAo. syn_sef_ ref ' r 0 N o((sef_sem_ref I' r o) tﬂl o))"

5.4.2 Equivalence of Semantics

Analogous to the proposition of Eq. (5.1) we can now establish the correctness
of the side-effect free semantics:

theorem sef_sem_correct:
"syn_sef_expr I' e 0 =
sem_expr I' e 0 = Some (sef_sem_expr I' e o, o)"

The proof is by induction over the structure of the expression datatypes and
therefore requires the consideration of 37 cases. It is a good example of the
usefulness of machine-assisted proofs, since the sheer number makes it easy to
overlook cases or wrongly consider cases obvious. Actually, all but two out of
37 cases are proven automatically, where the two cases are the expected ones
for array and pointer access. The proof goal for pointer access looks as follows

116 Chapter 5. C Programs and Specifications in Isabelle/HOL

after simplification:

[syn-sef-ref T r o;
o((sef-sem-ref T r 0)1,| 0);
sem-ref T r o = Some (sef-sem-refT' r o, 0) | =
(sem-ref T r >>= Ax. (nullchk x >>= M. defchk 1 ty)) o =
Some (sef-sem-ref T r o, o)

We may assume that the reference expression r is syntactically side-effect free
and that it represents a valid location. Further, we know that both semantics
coincide for 7. We need to show that the additional checks nullchk and defchk
both do not result in failure, do not modify the state, and simply pass the
location computed by sem-ref I' r through without altering it. This is ensured
by the validity assumption for sef-sem-ref I' v 0. The case for array access can
be closed in a similar fashion.

Theorem sef-sem-correct trivially implies that the syntactic criterion for side-
effect freeness implies the semantic one:

corollary syn_sef_expr_sound:
"syn_sef_expr I' e 0 = sef_expr I' e 0"

5.5 Specifications in Isabelle/HOL

In contrast to programs, specifications are embedded shallowly as Isabelle/HOL
functions. We cannot define this translation within Isabelle/HOL over the ab-
stract syntax of specification expressions (cf. Fig. 3.2) in terms of the semantic
functions sem-exzpr etc., since arbitrary Isabelle/HOL code may appear in quo-
tations, and anti-quotations may refer back to bound variables introduced in
quotations. That is, while one would certainly expect the semantics of the
specification expression

${ Jy:: DomInt. yxy = ‘{x + 1} }

to include Jy :: Domlint. y*xy = [, @Q; 0 + 1 for appropriate o and [, there is no
way in Isabelle/HOL to reflect the fact that an identifier $i in abstract syntax
refers to a quantified variable, as in

${ F y: DomInt. yxy = ‘{x[$i]} }

Therefore, the translation from the specification language to Isabelle/HOL ex-
pressions is performed by the front-end, which outputs the latter as plain strings
to be parsed and analysed by Isabelle/HOL.

The types for preconditions, postconditions, invariants and statement anno-
tations are specified by the constructors FunSpec, LoopAnno, and StmtAnno in
Fig. 3.2. We focus on the translation of postconditions, as all other translations
are similar and slightly simpler. A postcondition has type

Env = Val list = (Val option) SR

The translation is performed by a collection of operations {#7, #7, #7, #7, #7 }

on the abstract syntax of specification terms, for predicates, lvalues and the

5.5. Specifications in Isabelle/HOL 117

Predicates:
#7(\true) = True
#7(A&&B) = (#7(A) A #°(B))
#7(\result) = f(the Q)
(f € valTo{Int, Double, Loc})
#7(\forall _Int x;) = Vz:: DomiInt. #(e)
#7(\valid(p)) = o ((#7(P)) type-of (p)|)
o (array(p, 1) 2 a[(A7(P)pe-oriey| (A7 (n))] 0]
#7(EL < E2) < #7(El) < #5(E2) (v e{l,d})
£7(SF(eL, o, eN)) 2 f (#7(eD)) o (#7(eN))
) = Jo@#(eD) - (#7(eN))
) = (s (#2,(aD)) s2 (#7,(a2)) - -s1)
(z; € {i,d,r})

#7("f(el, ..., eN)
#7(${s1 {al} s2 {a2} -~ 51 }

FExpressions:
#"(ldent) = ident (identa bound variable)
#7(%a) 2 a
#o(val) = #9(lval)@, o (z € {i,d,r})
#200d(e) 2 #7(e)
£l Y poie) () = o)
#7(EL + E2) = #2(EL) + #7(E2) (v € {i,d})
Lvalues:
o (ident) = lookup-var T ident

(ident a program variable)

a(valle]) = (#7,(lval)) ey [#7 (e)]
(ty = type-of(Ival[e]))

Figure 5.4: Rules for the translation from abstract to Isabelle syntax

expression types. The generated Isabelle term for a postcondition Post of an
n-argument function will have the form

AT vs oy (R, 02). case vs of [v1,...,v,] = #72(Post) (5.2)

The translation operation #7 thus generates the body of the lambda term (5.2).
This means we translate state predicates in the implicit context of an environ-
ment I', the pre-state o; and post-state o5 as well as function argument values
v; and a result value . The superscript ¢ indicates which state is active, i.e.,
being used for expression evaluation. The active state is only changed from the
post-state to the pre-state or the state of a program label during the evaluation
of \old and @ expressions. The translation via the #7 resembles the side-effect
free expression semantics on the quotation-free part of a specification term.
Fig. 5.4 shows representative translation rules. The logical constants and
connectives are directly translated to their Isabelle equivalents. The keyword
\ result becomes (2, aggressively evaluated from Val option to one of the three
domain value types, depending on the return type of the function. Quantifiers
are directly interpreted as Isabelle/HOL quantifiers. We assume that the ab-

118 Chapter 5. C Programs and Specifications in Isabelle/HOL

stract syntax distinguishes between bound variables and identifiers for program
variables. e @ | lets e be evaluated in the state at label |, which is looked up
in the implicit environment I'. Each pointer predicate directly corresponds to
an Isabelle/HOL counterpart, e. g. pointer validity e(-.| -) interprets \valid. An
auxiliary function type-of(-) provides the RTT type of an expression or lvalue.
Quotations are output verbatim, except for anti-quotations, the translation of
which is spliced into the quotation on the point of occurrence. The translation
of expressions and lvalues behaves like the respective side-effect free semantic
function, but outputs references to variables bound by quantifiers of the speci-
fication language (ident) as well as references to plain Isabelle variables ($a) by
their name (a).

5.5.1 Type Checking

By allowing quotations of arbitrary Isabelle/HOL terms in specification expres-
sions, Isabelle/HOL must be used to fulle type-check the latter. To allow for
early detection of type errors, the front-end is used to check those parts of
specification expressions outside of quotations, assuming that quotations have
type _Bool. Type errors in anti-quotations are only discovered when the out-
put of the front-end is parsed in by Isabelle/HOL. The return and argument
types of Isabelle/HOL functions that are referred to syntactically explicitly (as
in $f (...)) can be determined from their declaration (cf. Sec. 3.5.3) and the
front-end uses this information during type-checking.

5.5.2 Modification Sets

The datatype for mvalues (cf. Sec. 3.5.1) equals that of lvalues, except that
concrete array indices are replaced by intervals i:j. The denotation of an mvalue
is a modification set and depends on the pre-state, e.g. to specify that *x is
changed when passing a pointer x to a function. The front-end simply outputs
an mvalue as an appropriate value of the datatype MVal, so that modification
sets are evaluated in Isabelle/HOL as follows.

fun tl_mval :: "Env = State = MVal = Loc set"
where
"tl_mval I' o (MId ident ty) = {lookup_var I' ident}"
| "tl_mval I" ¢ (MDeref mv ty) = (A1. 1 @1 o) ¢ (tl_mval I" ¢ mv)"
| "tl_mval I' ¢ (MArrayAcc mv indexpr ty) =
(let 1s = tl_mval T' o mv;
rs (A1. 1 @1 o) ¢ 1s
in (case indexpr of
(MInterval a b) =
let i1 = sem_int_sef I' a o;
i2 = sem_int_sef I' b ¢

in
{rtyﬁ.[nat i] | ir. i1 < i AN i< i2 AN r € rs}))
| "tl_mval I' 0 (MFieldSel mv f ty) =
(let 1s = tl_mval I' 0 mv
in {ryyy—f | r. r € 1s "

Function tl-mwval does not directly compute the set of locations, but only
those locations at which modifiable objects lie in memory (called start loca-

5.5. Specifications in Isabelle/HOL 119

tions in the following). The actual modification set can be computed from the
start locations easily, by just expanding the computed set by all locations that
comprise the modifiable object. For example, for an object declared as

struct ipt { int x; int y; } *pl;

for the mvalue xpl tl-mval will yield the start location [of the object that
pl points to, which has to be expanded to {I,l;pr—"x", l;p:—"y"} according to
its type. This slightly roundabout definition allows us to define tl-mwval in a
structurally simple manner.

The modification set described by a simple identifier is the singleton set
containing the location assigned to the identifier by I'. Dereferencing a pointer
means computing the set of locations denoted by the operand mwv and then
computing [@; ¢ for all locations [thus obtained. The modification set denoted
by an array interval is the one which introduces sets of larger size; its start
locations are all array accesses with indices between the lower and upper indices
a and b on the locations obtained by evaluating the operand mvalue. For field
selection we simply map the appropriate selector onto the set denoted by the
operand.

120 Chapter 5. C Programs and Specifications in Isabelle/HOL

Chapter 6

Hoare Logic and
Verification Conditions

This chapter is concerned with the methodology and necessary infrastructure
for proving programs correct. First, the notion of satisfaction between a pro-
gram and its specification is formalised, akin to the notion of total correctness
in Hoare logics. Modularity is achieved by verifying functions separately, and
reusing already proven specifications. Proof rules allow for the derivation of ver-
ification conditions along the structure of the program syntax. The structure
of these verification conditions is anslysed, which are supposed to be simplified
interactively by the verifier, with the help of proof tactics provided for this pur-
pose. Finally, the algorithmic structure of the main tactic for simplifying state
changes in verification conditions, which we term read/update simplification, is
described.

6.1 Specification Satisfaction

We need to define what it means for a program to satisfy its specification. At
the lowest level, specification satisfaction is defined in terms of the program
semantics. Given a state transformer p and a specification consisting of two
state predicates P :: unit SP and @ :: 'b SP and a modification set A, we say
that p satisfies the specification (writing A | [P] p [Q]) if p terminates for all
states o’ in which P holds, yielding a result and post-state (a,o) for which Q
holds, and if the post-state differs from the pre-state only on locations in A.
Formally we define

definition
sat :: "Loc set = unitSP = ’b ST = ’b SP = bool"
where

"(A = [P] p [Q]) =
(Vo’. Po’ — (3 ao. po’ =Some (a, 0) NQao Ao’ Cp o))"

This definition requires the termination of the state transformer and hence
formalises a notion of total correctness. Since the semantics identifies all in-
termediate failures like dereferencing an invalid pointer with complete failure,
A E [P] p [Q] implies that p only performs valid memory accesses. All partic-

121

122 Chapter 6. Hoare Logic and Verification Conditions

ular notions of satisfaction such as those for expressions, statements, etc., will
be based on this fundamental definition.

6.2 Modular Verification

One should be able to verify a single C function f when given its specification,
the existence of all global variables referred to in f as well as the specifications
of all functions called by f. This opens up the question about the concrete
environment I' (or set of environments) in which f should be verified. Recalling
that the semantics of function calls is given by looking up the called function’s
semantics in the environment, and noting that during the verification of f some
called function g might not have been implemented yet, we would like I" to
contain some semantics for g from which we only demand that it satisfies the
—existing— specification of g.

Ultimately, we want to state that all functions are correct w.r.t. a sin-
gle concrete environment containing the semantics of all actually implemented
functions, of course. The lack of recursion and function pointers allows us to as-
sume that we can assign a unique index ¢ € {1,...,n} to each program function
such that Vf; € calls f;. 7 < i, where calls f; yields all functions directly called
by fi. We can then subsequently enrich an initial environment © containing all
global variables of the program and the specifications of all functions, but no
semantics, by the semantics of individual functions, as follows:

Ih=0
I'y = add-fun Ty (id-of f1) (eval-spec © f1, Some (sem-fundef Ty f1))
Iy = add-fun Ty (id-of f2) (eval-spec © fa, Some (sem-fundef T'1 f3))

Ty, = add-fun T',,_1 (id-of f,,) (eval-spec © f,,, Some (sem-fundef T'p_1 fn))
(6.1)
T';41 equals T';, except that it maps the function identifier f; 1 to its specification
(evaluated in ©, as specifications only depend on global variables, but not on
function semantics or labels) and its semantics, which is evaluated in T';. The
latter ensures that the semantics are well-defined, since all functions called by
fi+1 have their semantics assigned in I';.
As argued above, we want to characterise the relevant properties of I';, before
being able to construct it. The first step is to state that an environment maps

a function identifier to a function satisfying the specification assigned to it:

definition

fun_satisfies_spec :: "Env = Identifier = bool"
where
"fun_satisfies_spec I' fid =

(let ptypes = lookup_funargs I' fid in

let f_st = lookup_funsem I' fid in
let Pre = lookup_funspec_pre I' fid in
let Post = lookup_funspec_post I' fid in
let locf = lookup_funmod I' fid in

(Vargs S1. args_types ptypes args —
((locf args S1) = [(AS. S = S1 A Pre args S)]
f_st args
[(Ab S. Post args S1 (b, S))] D))"

6.2. Modular Verification 123

All entities related to identifier fid are looked up in the environment; they are
the parameter types ptypes, the semantics as a state transformer parameterised
over argument values f-st, pre- and postcondition Pre, Post, and the modification
set locf which also depends on arguments and a state. Function fid satisfies its
specification if for all arguments args matching the types of the parameters
(args-types ptypes args) the state transformer f-st args satisfies the displayed
specification. We make use of a common trick [115] here, to turn Post, which
is a state relation by nature, into a state predicate: higher-order logic allows us
to quantify over states (here: SI1); in the precondition we force it to be equal to
the pre-state and use it in the post-condition as the according argument of Post.
A similar definition exists for specification satisfaction by a function definition;
here, all relevant entities are taken from the definition instead of being looked
up in the environment, which is only used to evaluate the function’s semantics:

fundef_satisfies_spec :: "Env = Fundef = bool"

The second step is to characterise an environment as an extension of a given
environment. An extension I' of an environment © is one that maps all variables,
labels and function specifications defined in © to the exact same values, but
possibly has a larger domain:!

definition
env_ext :: "Env = Env = bool"
where
"env_ext O I' =
(varEnv © C,, varEnv I' A labEnv © C,, labEnv I' A
(Option.map fst o funEnv ©) C,, (Option.map fst o funEnv I'))"

A correct extension T' of © w.r.t. a function definition f is an extension
that additionally defines the semantics of all functions called by f such that
they satisfy their specifications:

definition
cenv_ext :: "Env = Fundef = Env = bool"
where
"cenv_ext © f I' =
(env_ext © I' N (Vg € calls f. fun_satisfies_spec I' g))"

We write © <y I for cenv-ext © f T

6.2.1 Modular Function Correctness

With these definitions we can state our notion of modular function correctness:

definition
correct_function_modular :: "Env = Fundef = bool"
where
"correct_function_modular © fd =
(VI'. © <¢gq I' — fundef_satisfies_spec I' fd)"

A function definition fd is modularly correct w. . t. an environment © (which
will be © of Eq. (6.1) in concrete verifications) if we can prove that its definition
satisfies its assigned specification in an environment which is a correct extension
of © for fd. This proof can be done once and for all and is independent of any
modifications in functions that are called by fd, as long as their specifications

LC,y, is the canonical partial function ordering satisfying f C,, g iff V& € dom f. f ¢ = g x.

124 Chapter 6. Hoare Logic and Verification Conditions

remain the same. As soon as I';, can be constructed, i. e., as soon as all program
functions are defined, we can prove that © <izq I',, to obtain that fd satisfies its
specification w.r.t. I'y,.

6.3 Proof Rules

Approaches to program verification based on pre- and postconditions (e.g.,
[58, 96, 56, 13, 19, 43]) usually view the program as a predicate transformer
and compute verification conditions (VCs for short) whose validity implies that
the program satisfies its specification. This is done either by letting the pro-
gram transform the precondition into a predicate that must imply the specified
postcondition (strongest postcondition style VC generation), or by transforming
the postcondition into a predicate that must be implied by the specified pre-
condition (weakest precondition style). The verification conditions ideally do
not make reference to any constructs of the programming language any more.
They are derived through the application of appropriate proof rules of a pro-
gram logic. As Hatcliff et al. [72] point out, it is more convenient to work in a
program logic for a specific programming language than directly with the pro-
gram semantics, because reusable proof principles can be encapsulated in the
logic. More importantly, rules of the program logic are firstly syntax-driven and
therefore suitable for an automatic application both in an interactive theorem
prover and programmatic verification condition generators. Secondly, the pro-
gram semantics do not take modularity considerations into account, which are
of paramount importance for feasible verification.

6.3.1 Syntactic Notion of Satisfaction

The theoretically cleanest approach to defining a program logic in Isabelle-
/HOL is to define an inductive set of derivable ‘Hoare triples’ (of the form
A, T F [P] p [Q]) where each introduction rule of the set represents a rule of the
program logic. The validity of such a triple would be defined w.r. t. the semantic
notion of satisfaction A = [P] (semantics of p in T') [Q], and soundness and
(Cook) completeness of the program logic would be proven, asserting that the
inductive set contains all and only the valid triples.

From a practical point of view, this strict separation of program logic and
‘outer’ logic in which the former is embedded is unnecessary: while we certainly
require all derivation rules to be sound, the completeness property is only of
theoretical interest, because all logically interesting derivation steps are done
outside the program logic, by weakening or strengthening predicates of the outer
logic, anyway. This is manifested in the usual Hoare rule for strengthening the
precondition, where P, P’ and @ are arbitrary Isabelle/HOL predicates:

P— P ATFI[P]p[Q
ATE[Pp[Q]

(6.2)

This observation motivates a shallow embedding of Hoare triples in which each
triple is directly defined in terms of an appropriate ‘semantic triple’. For exam-
ple, the assertion that a syntactic integer expression satisfies its specification
simply states that its semantics evaluated in I' satisfies its specification:

definition

6.3. Proof Rules 125

sat_i’ :: "Loc set = Env = unitSP = IntExpr = DomInt SP => bool"
where
"sat_i’” A T P ie Q = (A = [P] sem_int T ie [Q])"

Similarly we define the satisfaction for functions, given their parameters params,
body blk and arguments args:

definition
sat_params’ :: "Loc set = Env = unitSP = Block =
Paramdecl list = Val list = (Val option) SP = bool"
where
"sat_params’ A I' P blk params args Q =
(A E [P] sem_paramdecls I' blk params args [Q])"

We write A,T' F; [P] ie [Q] for sat-i AT P de Q and call A, T the context of
the triple. All other syntactic categories have analogous definitions that are
syntactically distinguished only by the respective subscript. (F; for lvalues, F,
for pointer expressions, I, for expressions, b, for statements, etc.)

6.3.2 Proof Strategy

Our general strategy for proving the correctness of a function with definition
fd w.r.t. the concrete initial environment © is to proceed in two phases. The
modification set A, precondition P and postcondition @, the function body and
parameter list params can all be extracted from fd. We start from the correctness
assertion correct-function-modular fd © and turn it into an appropriate triple in
an environment that correctly extends ©,

AT S1args. [© 9T | = AT Fparams [AS. P T args S A S = 5]
(body params args) ,
[AbS. QT args Sy (b,9)]

on which an initial strengthening of the precondition P is performed, introducing
two proof obligations

1. AT Syargs. [© < T | = AT Fparams [7P' T Si1] (body params args)
[AbS. QT args Sy (b,9)]
2. AT Sy args. PT args Sy — P’ T 51 S
(6.3)
where ?P’ is a meta-variable that will be instantiated by applying the proof
rules described in the subsequent sections with a concrete predicate R not con-
taining meta-variables. We call the single remaining subgoal P I" args S1 —
RT S Sy the initial verification condition (iVC). At this point the second phase
is entered, where the verifier interactively applies specialised tactics to discharge
the proof obligation, as described in Sec. 6.5.

Our strategy is therefore similar to classical weakest precondition style verifi-
cation condition generators (e. g., [96, 57]), because we also perform a backwards
proof from @ to R along the program structure. However, it substantially differs
in the structure of the generated R and the way that the implication from P is
proven.

A Note on Rule Structure

We use unification to let VC computations for subexpressions communicate
their results to the proof context in which they are applied. For example, 7P’

126 Chapter 6. Hoare Logic and Verification Conditions

will be instantiated with the result R of the VC computation in the first goal of
Eq. (6.3), and unification makes this result appear in the second goal, which also
contains ?P’. To compute VCs fully automatically according to this strategy, all
proof rules must exhibit a certain structure. The two conditions are that both
the postcondition of a triple in the conclusion of a rule and the preconditions of
triples in the premises must be plain meta-variables. This ensures that when we
start with the goal state of Eq. (6.3) we can always apply the appropriate rules,
and all subsequent goal states containing triples will also have a meta-variable
in the precondition.

6.3.3 Lvalues and Expressions

A representative selection of rules for Ivalues and integer expressions is depicted
in Fig. 6.1. They are, as usual, best understood by reading them backwards.
The rule for identifiers is trivial: since looking up an identifier ¢ has no side-
effects, we know that if loc is the location to which ¢ gets mapped in I', then
if the pre-state satisfies @ loc, the postcondition (which expects the returned
location as an argument) will be A loc S. Q loc S, or simply Q. To prove a triple
for the dereferencing of a pointer expression e, we need to prove that evaluating
e yields a location r that satisfies the postcondition @) and is valid for the type
of the overall lvalue. Rule PR-LArrayAcc demonstrates how two triples are
connected to account for the sequential evaluation inherent in the semantics; to
prove an array access correct, we prove that the pointer expression a denoting
the array satisfies a triple with intermediate postcondition A a S. R a S, which
is used as the precondition of the triple for the index expression i, in which a
is now universally quantified. The postcondition of the latter triple obtains the
value of ¢ (named j) and requires @) to be satisfied for the location ayy,.[nat j
and the array access at j to be valid. PR-LFieldSel follows the pattern of the
previous two rules: we need to prove triples for the operands whose evaluation
in the semantics may cause side-effects (in this case only the lvalue a whose
field f is accessed), and ultimately reflect the additional effects that the overall
lvalue/expression evaluation has (here: selecting a field) in the post-condition
of the appropriate operand.

This scheme is also applied in the rules for binary operators, PR-IntArith
and PR-IntIntComp. Functions arith-op and comp-op simply yield a binary
function on domain values for their given arguments, e.g., Az y. x + y for
OpPlus etc. Rule PR-IntLVal introduces the effect of reading the value at a
location in the postcondition. It is crucial to let-bind this value to avoid a
blow-up of the size of the initial verification condition: had we passed the read-
term to @ directly instead (by writing @ (lv@;S) S), lv@; S would possibly
appear multiple times in the S-reduced postcondition. However, a term reading
an intermediate lvalue in an intermediate state needs to be simplified during
read/update simplification. Consequently, it is important to have it occur just
once.

Rule PR-IntLAnd demonstrates that the injudicious combination of side-
effects in expressions and non-strict operators like && leads to a duplication
of verification conditions: to prove that e; && ey satisfies postcondition @,
we need to show that e, establishes () when started in a state satisfying Qe,
which is the postcondition established by e; in the case where it evaluates to
True. Furthermore, e; must establish @ itself if it evaluates to False, since

6.3. Proof Rules 127

Lvalues

theorem PR_LId:
"lookup_var I' i = loc = A, I' F1v [(AS. @ loc S)] LId i t [Q]"

theorem PR_LDeref:
"I ty) = ty;
A, Trr [Pl e[AS. Qr S A e(riyl $)]]
— A, I' F1v [P]LDeref e t[Q]"

theorem PR_LArrayAcc:
"I (ty) = ty;
Va. (A, T'Fi [R al i [(A\j S. @ (aty.[nat j1) S A
elatyl jI SIDI);
A, T Fr [P] a [R]]
= A, T F1v [P]LArrayAcc a i t[Q]"

theorem PR_LFieldSel:
"[((type_lv a)y) = ty;
A, T F1v [P] a [Ab 8. Q (bty—1f) S] | =
A, T' F1v [P] LFieldSel a f t [Q]"

Integer expressions
theorem PR_IntLVal:
"[[A, " Fiv [P] 1 [(A1v S. let iv = (1v @i S) in Q iv S)]]]
— A, T +i [P] IntLVal 1 [Q]"

theorem PR_IntArith:
"[arith_op ao = opf;
Va. (A, T' i [Ral t [Ab S. Q (opf a b) S1);
A, T Fi [P] s [R]]
— A, I' +i [P] IntArith ao s t [Q]"

theorem PR_IntIntComp:
"[comp_op co = cof;
Va. (A, T i [Ra] t [(Ab S. Q (cof a b) S)1);
A, T'+i [P] s [R]]
= A, T' Fi [P] IntIntComp co s t [Q]"

theorem PR_IntLAnd:
"I A, T kb [Qe] e2 [Av S. Q (bool_to_int v) S];
A, " +b [P] e1 [Av S. (=v — @ (bool_to_int v) S)
AN (v — Qe 3]]
= A, T' +i [P] IntLAnd el e2 [Q]"

Figure 6.1: Proof rules for lvalues and expressions

128 Chapter 6. Hoare Logic and Verification Conditions

non-strictness prevents the evaluation of e5. Note that @ will generally not be
a simple postcondition, but the (possibly large) computed initial verification
condition for the expressions and statements following e; && es in the overall
function to be verified. Further note that the duplication is solely due to the
possible side-effects that e; and es might have; the result of the conjunction is
False if ey evaluates to False, whether ey is evaluated or not. The duplication
can be avoided if both e; and ey are side-effect free, since then their evaluation
has no impact on the state and the result of a strict evaluation of the conjunction
can directly be put into the precondition. Using sef-sem-bool of the side-effect
free semantics (cf. Sec. 5.4) we can thus formulate a variant of the rule:

Vo. syn-sef-expr I' (IntLAnd e e3) o
AT H;, [Ao. Q ((sef-sem-bool T ey o) A (sef-sem-bool T eq o)) o]
IntLAnd ey ey
@]

We observe that there is not much use in formulating the effect of side-effect
free expression evaluation in terms of triples. Instead, the context in which the
expression occurs should directly evaluate it via the side-effect free semantics.
We have done this, e. g., in rule PR-ConditionalStmt-sef below.

For the sake of (relative) completeness, Fig. 6.2 displays further rules for
several expression kinds. Rule PR-IntRefDiff is for pointer difference, another
integer expression: the postcondition of the second operand r, requires that
both references r1 and r9 point into the same array with initial element m with
indices ¢ and j, where m must denote an array large enough to make both ¢ and
j valid indices. The postcondition of the conclusion ¢ must then hold for the
integer difference ¢ — j.

The rules for pointer expressions are straightforward; ¢ nulloc must hold
initially to make @ true after evaluating the NULL literal, where nulloc =
Loc NullBase 0, i. e., the location of the null pointer in the memory model. The
postcondition for the address-of operator (which expects a value of type Loc)
and the triple for its operand (which evaluates its argument as an lvalue, hence
a Loc, t0o) coincide. Pointer conversions to and from void x (PR-RefToVoid
and PR-RefFromVoid) are transparent, just as in the semantics.

Finally, there are rules for general expressions. PR-IntExpr simply delegates
its work to a triple for integer expressions, where the postcondition lifts the
obtained Domlint back into an expression value of type Val. If the expression is
used in a boolean context (PR-IntEzpr-b), the integer value IntVal i is evaluated
as a boolean value. Expression lists, which appear as function arguments, have
two rules for the empty and the non-empty expression list (PR-ExprList-Nil and
PR-ExprList-Cons).

6.3.4 Function Calls and Statements
Function calls

The rules for function calls have a more elaborate structure than previous
rules. We present the one for functions with an integer result, PR-IntFunCall-3-
modular, in Fig. 6.3. In the semantics of calling a function fid within a function
definition fd the arguments are evaluated, fid is looked up in the environment,
and its semantics is applied to the arguments. For a modular verification, we

6.3. Proof Rules

129

Integer expressions

theorem PR_IntRefDiff:
ulI t},lg = t;
Va. (A, T"Fr [R a] r2
[(Ab S. dmn i j. a =m¢.[i] A
b =m¢.[j] N e[megl nl SI A
int i < n+1Aint j <n+1A
Q (int i - int j) S)1);
A, T br [P] r1 [R]]
= A, T' i [P] IntRefDiff r1 r2 t’ [Q]"
Pointer expressions
theorem PR_RefNull:
"A, T br [Q nulloc] RefNull [Q]"
theorem PR_RefAddr:
"TA, T F1v [P] Iv [(A r. Q r)]]
= A, T br [P] RefAddr 1v [Q]"
theorem PR_RefToVoid:
" A, T' br [P] re [R] —
A, T Fr [P] RefToVoid re [R]"

theorem PR_RefFromVoid:
" A, T' br [P] re [R] —
A, T Fr [P] RefFromVoid re t [R]"

Expressions
theorem PR_IntExpr:

"A, T'Fi [P] e [Xi. @ (IntVal i)]
= A, T e [P] IntExpr e [Q]"

theorem PR_IntExpr_b:

"A, ' i [P] e [Xi. Q (is_true_val (IntVal i))]
= A, T +b [P] IntExpr e [Q]"

theorem PR_ExprList_Nil:
"A, T Fes [P []] ExprList_Nil [P]"
theorem PR_ExprList_Cons:

"[Vb. (A, T' Fes [Q b] es [Abs. R (b#bs)]);
A, T e [P] e [Q]]

— A, I' es [P] ExprList_Cons e es [R]"

Figure 6.2: Proof rules for expressions

130 Chapter 6. Hoare Logic and Verification Conditions

only want to depend on specification information. To ensure that I' contains
a proper semantics for fid satisfying its specification as given by the initial en-
vironment ©, we require that © <iyg I'. Since fid is an arbitrary identifier as
far as the function call rule is concerned, we must formally demand that it be
mapped by © (env-maps-funid fid ©). Furthermore, fd must actually call fid
(fid € calls fd)>.

To ensure a postcondition () after a function call, then, four conditions need
to be true for the state S after the evaluation of the function arguments (vs):

1. The called function’s precondition must hold

lookup-funspec-pre © fid vs S,

2. the types of the values obtained from evaluating the arguments must
match the types of the formal parameters

args-types (lookup-funargs © fid) vs,

3. the modification set of the called function, interpreted in S, must be a
subset of the modification set A of the conclusion

lookup-funmod © fid vs S C A,

4. the state T after the function call must satisfy Q (valTolnt (the a)) T.
However, we cannot precisely characterise T'; we only know it satisfies the
called function’s postcondition

lookup-funspec-post © fid vs S (a,T)

and, importantly, that it equals S on all locations but those in the modi-
fication set of fid (denoted by X hereafter):

S Elookup—funmod © fid vs S T

Note how a local weakening from fid’s postcondition to @ is achieved here w.r.t.
T, within the postcondition of a triple. Strictly speaking, fid’s postcondition
—which locally specifies fid's effects— cannot imply @, which generally will
incorporate a larger context, e.g. reference variables not known to the former.
However, we can strengthen the premiss of the implication by S Cx T, which is
in fact a strong assertion: all information about S that does not depend on the
locations in X also holds for T'. Since S is the state obtained by evaluating the
function arguments in some previous state S’ satisfying P, we obtain enough
contextual information about S to prove the implication (only if the conclusion
of the rule, A,T'F; [P] IntFunCall fid es [Q)], is a valid triple, of course).

This formulation is not necessary to prove a function call rule correct at
all; ignoring side-effects in the function arguments, a much simpler rule would
identify P and @ in the conclusion with the pre- and postcondition of the called
function:

A, T+ [(pre(fid) in T)] IntFunCall fid es [{post(fid) in T)]

2While it is structurally obvious that all functions fid in the body of fd are called by fd,
the mere rule has no notion of being only applied to subterms of fd, which enforces an explicit
premiss.

6.3. Proof Rules 131

This rule, however, could only be ‘adapted’ for actual use by applying a global
weakening as in Eq. (6.2). Since the pre- and postcondition are local to the
function they specify, such a weakening will not succeed. In brief, our notion
of framing through modification sets requires a local weakening inside precon-
ditions or postconditions, not a global one.

Statements

The rules for the empty statement, the sequencing statement and expression
statements in Fig. 6.3 are entirely standard. Since our pre- and postcondi-
tions are shallowly embedded, we cannot use substitution to reflect assign-
ments in predicates. Instead, we explicitly modify the program state. Rule
PR-AssignStmt shows this: to prove an assignment with postcondition @, we
evaluate the lvalue we assign to (in the second premiss), demanding it is a mod-
ifiable location (I € A). We then evaluate the expression ¢ (in the first premiss);
the updated state is bound to an auxiliary variable S/, which is passed to Q.
This is equivalent to substitution: we create the predicate stating that updating
the state at lv with ¢ yields a state satisfying (). The state predicate R is both
the precondition of the first premiss and the postcondition of the second, thus
again logically connecting Q and P in the conclusion. Conditional statements
with side-effecting conditions are handled by rule PR-ConditionalStmt. Both
branches s; and s5 need to establish the postcondition R, but may assume differ-
ent preconditions @t and Qe. After evaluation of the condition ¢, either of these
must hold, depending on the value b of the condition. Like rule PR-IntLAnd,
this rule leads to a duplication of the postcondition R.

Specification statements Sec. 3.5.2 discussed the use of statement specifi-
cations to avoid this duplication and Sec. 5.2.2 presented the translation of a
@join annotation to the SpecStmt constructor. The according proof rule is PR-
SpecStmt. It is an example in which the precondition of the conclusion is not
merely a variable. We call y the modification set and ¢ the translation of the
Qjoin predicate given by the statement specification for statement s. The goal
is to bound the duplications of the postcondition that are introduced by s (e. g.
due to conditional statements in s) to ¢ (which is small), while retaining a sin-
gle reference to the overall postcondition R (which may be large). We therefore
introduce the premiss that s establishes ¢ when started in a state satisfying a
precondition P, only modifying locations in u. We effectively start a new verifi-
cation condition generation w.r.t. s, starting from ¢. The precondition for the
SpecStmt structurally resembles the local weakening of the function call rule: P
must hold, g must be a subset of the specified modification set A, and the state
T obtained from executing s, which we again cannot characterise precisely but
for which S T, T holds and which satisfies ¢, must make the postcondition R
true. If we read the rule operationally from the viewpoint of backwards verifi-
cation condition generation, the key property of this rule is that R is isolated
from s such that P’s size only depends on the structure of s and .

Loops The rule for loops with possible side-effects in conditions is PR- While-
Stmit-modlist, shown in Fig. 6.4. Its rather cryptic appearance is mostly due
to the fact that all variables depending on quantified variables need to make
this dependency explicit. E.g., the precondition of the loop body, J, must be

132 Chapter 6. Hoare Logic and Verification Conditions

Function Calls
theorem PR_IntFunCall_3_ modular:
" © <¢q T';
fid € calls fd;
env_maps_funid fid ©O;
A, T Fes [P] es
[Avs S. lookup_funspec_pre © fid vs S A
args_types (lookup_funargs © fid) vs A
(V (a::Val option) T. S Elookup_funmod © fidvs s T
— lookup_funspec_post © fid vs S (a, T)
— @ (valToInt (the a)) T) A
lookup_funmod © fid vs S C A]]
— A, T' Fi [P] IntFunCall fid es [Q] "

Statements
theorem PR_EmptyStmt:
"A, T ks [P] EmptyStmt [P]"

theorem PR_SeqStmt:
"I A, T ks [Q] s2 [R];
A, T ks [P] s1 [Q]]
— A, T' s [P] SeqStmt s1 s2 [R]"

theorem PR_AssignStmt:
"[Vvi. (A, T ke [R1] t [Xa S. VS’. S(1 ::=a) =S’ — Q S’]);

A, T'F1v [P] 1v [A1 S. R1S A1 € AT]
= A, T' s [P] AssignStmt 1v t[Q]"

theorem PR_ConditionalStmt:
" A, T ks [Qt] s1 [R];
A, T Fs [Qe] s2 [R];
A, THb [Pl ¢ [AbS. (b — Qt S) A (=b — Qe S)] |
= A, T' bs [P] ConditionalStmt c¢ s1 s2 [R]"

theorem PR_SpecStmt:
" [modified_locs I' mlist = ModlF;
spec I' = p;
Vu o. ModiF o = 4 —
(p, T'Fs [P p ol s [(AS. ¢ o (O, SN]
= A, I' Fs [(AS. Yu. ModlF S = p —
PusSSApuCANA
(VT. S Ty T —
S (O, T) — R T))]
SpecStmt s (StmtAnno spec mlist) [R]"

theorem PR_ExprStmt:
"A, T' ke [P] e [(Av. Q)]
= A, T Fs [P] ExprStmt e [Q]"

Figure 6.3: Proof rules for statements

6.3. Proof Rules 133

written as J p IV because it depends both on the quantified location set p and
the quantified termination counter N. We omit these technical arguments in
the following and call ¢ the annotated invariant, p its associated modification
set, and A the measure function of type State = nat.

The precondition of the loop triple in the conclusion requires that the in-
variant ¢ holds; that p is a subset of the set of modifiable locations A in the
context; and that in each state T" with S C,, T" we may infer a predicate K from
the invariant. (This, again, is a local weakening.) We want to show that the
postcondition F' holds after execution of the while statement. This holds given
two premises. The first premiss states that an arbitrary run of the body c in a
state satisfying J re-establishes the invariant ¢. The second premiss states that
after evaluation of the condition b under the precondition K we either obtain
F directly —if b evaluates to False—, or we obtain a state satisfying the inter-
mediate predicate J —if b evaluates to True. Both premises are formulated in
the context of the annotated modification set pu, instead of the context A of the
loop itself, ensuring that the loop condition and body only modify locations as
annotated in the loop specification.

Termination of the loop is also ensured, employing the annotated variant
A. Intuitively, the rule encodes the requirement that the variant, mapping
program states to natural numbers, strictly decreases in each iteration. To
achieve this, we introduce a universally quantified natural number N, of which
we require that A T < N in the postcondition of the loop body. A typical
formulation of loop termination might require A S = N in the precondition
of the loop body to enforce a decrease of the measure in one iteration. This
however violates the requirement of Sec. 6.3.2 that all preconditions in premises
are plain meta-variables. Therefore, no additional requirement is placed on N
in the precondition K, but K merely becomes a function over N. By doing
S0, the overall premiss states that whenever a state satisfies K for an arbitrary
number N, then after execution of the loop condition and body it will end in
a state in which the measure yields a number strictly smaller than N. In the
conclusion we connect the actual measure to N by applying K to A T, where
T now stands for an arbitrary state at the beginning of a loop iteration.

Side-effect freeness

Rules PR-ConditionalStmt-sef and PR-WhileStmt-sef can be used when the
evaluation of the respective condition is guaranteed to be side-effect free, which
is the most common case. We look at the former rule here. The triple for the
evaluation of the condition c is replaced by a direct call to the side-effect free
semantics: for brevity we let EP denote the predicate determining whether ¢
is side-effect free and Sem denote its value under these semantics. Under the
premiss that the two branches s; and so establish the postcondition R under the
preconditions @t and Qe, respectively, we know that the conditional statement
will establish R when executed in a state S that ensures EP and which either
satisfies Qt or Qe, depending on the boolean value of Sem S. Since EP is
integrated into the precondition it is not required that c be side-effect free under
all circumstances: using array accesses and dereferencing pointers in c is fine
because EP will generate the necessary validity constraints in state S. The only
case in which the rule cannot be used is when function calls occur in ¢, because
syn-sef-expr over-approximates function calls as always having side-effects.

134 Chapter 6. Hoare Logic and Verification Conditions

Statements
theorem PR_WhileStmt_modlist:
"[modified_locs T mlist = u’;

invar I' () = ¢;
var I' = A;

Yu SN, p’ S=p
(u, T'Fs [J p NI
(u, T Fb [K pu NI

—
c [(AT. ¢ TAAT<MI) A
b [(AT. (b —J uNT A (=b — FT)I)]

= A, ' Fs [(AS. Vpu. pu’ S=pu —
(0 S ApuCAA
(VT. STy T —
¢ T — K pu (AT T)))]
WhileStmt b ¢ (Some (LoopAnno invar (Some mlist) (Some var)))
[F1"

theorem PR_Label:
"[VS’. (A, add_label I' 1 S’ ks [P S’] p [Q])]
= A, T' ks [(AS. P S S)] LabeledStmt 1 p [Q]"

theorem PR_ConditionalStmt_sef:
"[\S. syn_sef_expr ' ¢ S = EP S;
/\S. sef_sem_expr I' ¢ S = Sem S;
A, T Fs [Qt] s1 [R]; A, T ks [Qe] s2 [R]]
— A, I'Fs [(NAS. EP S A
(is_true_val (Sem S) — Qt S) A
(— is_true_val (Sem S) — Qe S))] ConditionalStmt c¢ s1 s2 [R]"

theorem PR_WhileStmt_sef:
"[modified_locs I' mlist = M;
invar I' () = ®;
var I' = A;
/\S. syn_sef_expr I' b S = EP S;
/\S. sef_sem_expr I' b S = Sem S;
ANSN MS, T'ks [JMS) N ¢ [(AT. T AAT<ND]
= A, I'ks [(AS. VM’. M S =M —
(® S AM CAA
(VT. S Cy T —
T — EPT A
(is_true_val (Sem T) — J M’ (A T) T) A
(— is_true_val (Sem T) — F T))))]
WhileStmt b c¢ (Some (LoopAnno invar (Some mlist) (Some var)))
[F]"

Figure 6.4: More proof rules for statements

6.3. Proof Rules 135

Weakening

theorem PR_wk_pre_s[rule_format]:
" A, T ks [P’] ¢ [Q]; VS. PS — P’ 5]
= A, ' bs [P] ¢ [Q]"

Declarations
theorem PR_Params_Nil:
"A, T Fblock [P] blk [Q] = A, T Fparams [P] blk [] [] [Q]"

theorem PR_Params_Cons:
"[V n. (AU fiL Local p n, (add_var I" p (v-pn))
Fparams [P n]
blk ps z
[(Ab S. VS’. S6&(vpn) =S> — Qb S]
= A, T tparams [(AS. V n. (v-pn) ¢s S —
(VS’. S®(v-pn, al, tyy) =8’ —
Pn 8’))]
blk ((Paramdecl p ty)#ps) (al#z)
Qi

Modular function correctness
theorem PR_correct_function_modular:
"VI. © < T —
(Vargs S1. args_types (funParams (funHeader f)) args —
(sem_funmod I' (funHeader f) args S1, I' hparams
[(AS. S = S1 A funPrecondition I' (funHeader f) args S)]
(funBlock f) (funParams (funHeader f)) args
[(Ab T. funPostcondition I' (funHeader f) args S1 (b, T))]))
—> correct_function_modular © f"

Figure 6.5: Proof rules for weakening, declarations and modular function cor-
rectness

6.3.5 Declarations and Weakening

The final set of rules —a selection of which are displayed in Fig. 6.5— are
concerned with global predicate weakening, declarations of function parameters
and of local variables, and finally the translation of the initial proof obligation
correct-function-modular © fid into a triple. Rule PR-wk-pre-s formalises the
strengthening of a precondition, which becomes a weakening when read back-
wards: to prove a triple under the precondition P, it suffices to prove it under
the weaker precondition P’. We therefore subsume both the strengthening of
a precondition and the weakening of a postcondition under the general term
weakening. Such rules exist for all kinds of triples, but during verification con-
dition generation only a single initial weakening is performed, due to the specific
structure of the proof rules which have the necessary (local) weakening already
built in.

Rule PR-Params-Cons describes the effect on predicates of introducing a lo-
cally scoped variable, in this case a function parameter: blk denotes the function
body, Paramdecl p ty is a function parameter, a; the according argument value,

136 Chapter 6. Hoare Logic and Verification Conditions

and ps and z are the remaining parameters and arguments. To prove the triple
with postcondition @@ means to prove that Q) is established after allocating a
location for p, continuing with ps, evaluating the body blk in the extended state
and deallocating all local variables afterwards. Therefore, the premiss requires
that given a precondition P, blk, ps and z establish the postcondition in which
@ holds after deallocating the location v-p,. This triple must be valid for the
modification set A extended by the allocated variable v-p, (and all its offsets),
since local variables may always be modified by the functions defining them.
The precondition of the conclusion must anticipate the allocation for parameter
p. It consequently assumes a fresh location v-p, for its state S and requires
that the state S’ which extends S by v-p,, assigning it the value aq, satisfies
P. This rule is correct because the state model enforces that all states have
a finite domain and that we can always allocate another location. Otherwise,
the precondition in the conclusion would explicitly have to ensure these proper-
ties, eventually leading to additional verification conditions to be proven by the
verifier.

Rule PR-correct-function-modular allows to conclude that a function defini-
tion f is modularly correct w.r.t. an environment © by proving a pqrqms triple
whose structure we have described in Sec. 6.3.2 and which is constructed from
the terms contained in f.

6.4 Structure of the Initial Verification Condi-
tion

Approaches to program verification that generate verification conditions and
pass them to an automatic prover (e.g., [14, 96, 56, 58]) optimise the structure
of the generated VC for the prover, to either enable automatic proofs at all or
to speed up the proof process. The common method, as described by Leino
[96], is to transform the input program into a minimalist intermediate language
of guarded commands. The translated program is further massaged within this
language to take on a single static assignment form (SSA, [50]), where each pro-
gram variable is assigned to exactly once. Finally, a weakest precondition style
verification condition generator is applied to the SSA program. This sequence of
transformations leads to VCs that are hardly comprehensible by a human veri-
fier. This is not a problem in those cases where the VC is successfully proven by
the associated automatic prover. But if the proof fails, tools such as Spec# [14]
can merely point the verifier at a source code location which possibly caused or
at least contributed to the error. A logical analysis of the error w.r.t. the VCs
is generally not feasible.

In our case, it is essential that a verifier understands the structure of the
initial VC, as it is his task to prove it. As pointed out earlier, the iVC is an
implication P — R, where P is the function’s precondition and R generated
by application of the proof rules. An analysis of the rules reveals that R is a

6.4. Structure of the Initial Verification Condition 137

term constructed according to the following simple grammar:

R == ld¢dsS—VS. Solt)=5 — R (ext)
| VS S(lu=e)=5 — Ry (upd)
| letv=1@,Sin R (read)
| RiAe(ly] S) (deref)
| Ry noll] 0| 8] (array) (6.4)
| (e— R1) A (—e — R3) (cond)
| Rl/\(uQA)/\(VT.SEMT—>R2—>R3) (Wk)
| RiANA <A (var)
| ® (annotated specification expression) (spec)

In this grammar, [denotes terms built over location variables and the access
operations l;—f and l;.[n]; S, S’, and T are program state variables; e denotes
arithmetic expressions built over let-bound variables, such as (v1 +1) *xvg; p and
A denote modification sets; A and A’ denote evaluations of annotated variants
in different program states; ® represents specification expressions occurring in
the function to be verified, such as invariants and pre-/postconditions of called
functions; and the R; denote subexpressions constructed recursively.

The first three grammar rules introduce new variables. Each extension or
update on the state as well as each reference to an lvalue in an expression in
a function results in an occurrence of a term of these shapes. Thanks to these
bindings we avoid a combinatorial explosion of the size of the VC similar to [57],
because no compound term can appear more than once. Terms described by
(deref) and (array) are introduced by pointer dereferencing and array access,
while (cond) describes the split introduced by if-statements. Interestingly, the
shape of terms generated by function calls, specification statements and while
loops is the same; it is the one described by (wk). In each case, we can un-
derstand R; as the condition that must hold in the pre-state of the respective
statement or expression (e.g., a called function’s precondition), Ry as the con-
dition ensured by its execution (e.g., the corresponding postcondition), and R3
as the condition to be established afterwards. Finally, (var) describes terms in-
troduced by termination requirements of loops. Both A and A’ are evaluations
of variant expressions in program states.

6.4.1 Example

Consider the following simple function which we use to illustrate the concrete
shape of an iVC:

int set(int *a, int b) {
if (a != NULL) {
xa = b;
}
return;

}

We omitted the specification here and assume that after the translation of this
code by the front-end and after the computation of the iVC P,Q, Ay are the
precondition, postcondition, and modification set, respectively. The iVC is dis-
played in Fig. 6.6. Ignoring the syntactic noise we clearly see that it encodes
all possible execution paths of the program, together with all necessary validity

138 Chapter 6. Hoare Logic and Verification Conditions

[P Si: A=A Ufty v-"as U fp v-7b"n] =
v-"a’, gs 51 —
(VS2. S1®@(v-"a", vq, ptr) = So —
Vb g Sy —
(VSg SQ@(V"’b77n/,Ub, Z"Ilt) =53 —
(let ¢ =v-"a”,@Q;S3 in
(¢ # nulloc —
(let a =v-"a”, @ S5 in
((let b= v-"b", @; S5 in
VSy. Ss(a = IntValb) = Sy —
(VS5. S40v- 0" = S5 —
(VSG S5@V'”(I”n = S@ —
Q S1 (None, Sg)))) Aa € A)
A @ (aint| S3))) A
(¢ = nulloc —
(VS}. S36v-"b" = S} —
(VSg. Sjev-"a”, = S§ —
Q S1 (None, 55)))))))

Figure 6.6: Initial verification condition of the example program

conditions (e(a;y:| S3)) and checks for allowed modifications (a € A). In this
case, there are only two paths, both of which finally require that @ holds. They
initially allocate fresh locations for the parameters and assign them the input
values (vq,vp). The first path then assumes ¢ # nulloc, reads the values of a
and b and introduces a successor state Sy reflecting the assignment. The second
path assumes ¢ = nulloc and immediately deallocates the local variables, subse-
quently requiring (). We argue that a verifier can still maintain the connection
between the concrete source code and the generated iVC. This holds true also
for larger programs for two reasons. First, all updated intermediate states and
all read lvalues are bound to variables and hence the substitutions inherent in
classical formulations of Hoare rules or weakest precondition equations are de-
layed. The control flow defined by the source code can be mapped directly to
the structure of the iVC. Second, the grammar of Eq. (6.4) can be used as a
guide through the structure of the formula.

Another example including a concrete specification using representation func-
tions is given in the Appendix in Sec. B.1.

6.4.2 Structural Simplification

We have said that the structure of the iVC encodes all possible paths through
a function. More precisely, it encodes all static paths defined by the syntactic
structure of the function, encoding loops and function calls as abstract state
transitions as described by grammar rule (wk). While every conditional intro-
duces a branch in the iVC (grammar rule (cond)), semantically certain (combi-
nations of) branches might never be executed. Static paths which can never be
executed are called infeasible paths in the literature. The following code snippet
is an easy example with an infeasible then-branch:

6.4. Structure of the Initial Verification Condition 139

x = 0;
if (x) {y=11}
It turned out useful during practical verification to eliminate two simple cases

of infeasible paths as an initial simplification step. These paths were introduced
by restrictions set up in the MISRA C programming guidelines.

Failure Propagation

The first kind of infeasible path is introduced by the particular failure propa-
gation that was adopted in the SAMS code. Due to the MISRA requirement
that each function shall have but one exit point and due to the absence of an
exception mechanism in C, recognised failures during a computation have to
be manually propagated to the end of the function body. This can in principle
be done without the introduction of infeasible paths by an intricate nesting of
conditional statements. However, such an approach makes the code hard to
read. Our solution was to conceptually divide the function body into logical
units and to protect each unit by an if-statement checking for a function-local
failure status. Whenever a unit detects a failure, it sets the status accordingly,
and thereby prevents all subsequent units from being executed. In code this
looks as follows:

if (OK) { /* statements possibly modifying OK %/ }
if (OK) { ... }
/* etc. x/

This approach introduces infeasible paths: it is impossible to enter the then-
branch of the second if-statement if OK was false before the first one. However,
the iVC will initially contain this path:

let ok=v-"OK”,@; S in
(Olﬂ?é 00— Pl) AN
(ok=0—
(let ok’=v-"0OK”,,@; S in
(0]{3}7é 0— PQ) A
(0k'=0 — Py)

(6.5)

The condition ok’ # 0 can obviously never be true given ok = 0. We have
developed simplification tactics that erase infeasible paths such as this one from
the iVC, rewriting it to the equivalent term

let ok = v-"OK”, @, S in
(0k#0 —s P A (6.6)

Defensive Programming

Defensive programming is required for safety-related software. It includes the
cautious treatment of a function’s input parameters by performing sanity checks
on their values. This can make the iVC larger than necessary, when a func-
tion’s precondition already precludes certain input vectors, which are nonethe-
less checked within the function to conform to defensive programming. For

140 Chapter 6. Hoare Logic and Verification Conditions

example, the computation of a square root might be specified and (partially)
defined as follows:

/%@
Orequires x >= 0
@modifies errno
@ensures $abs(\ result * \result — x) <= $eps
Ox/

double sqrt(double x) {
if (x>=0) { /* Compute square root */ }
else { /* Some error notification x/ }

}

The generally sensible check in the code that x is non-negative will always yield
true whenever the function is used in a program in which all functions calling
sqrt are formally verified. Moreover, during verification of sqrt we assume
the precondition x >= 0 in any case. Our simplification tactics can perform
a similar reduction of the iVC in this case like from Eq. (6.5) to Eq. (6.6) by
eliminating the else-branch.

6.5 Tactics for Simplifying Verification Condi-
tions

In this section we explain how the properties of the memory model presented
in Chapter 4 are put to use during the reduction of the iVC to either program
safety VCs or domain-related property VCs and present the tactics developed
for this purpose. We stop at the point where all safety VCs have been proven
and all effects of the program have been reflected in the domain-related VCs.
The latter condition is satisfied if all remaining proof goals either do not refer
to any program state except the initial one any more, or if all references to a
program state are such that the relation of the state to other program states
is irrelevant. How these remaining proof goals can be closed strongly depends
on the concrete domain and its associated theorems. We provide examples of
concrete verifications done in the SAMS project in the next chapter.

6.5.1 Stepping Through the iVC

We view the simplified iVC as a tree described by the grammar rules of Eq. (6.4).
The overall strategy is that the verifier can employ tactics to traverse this tree
from the root to the nodes by transforming the proof state appropriately, as
well as to prove or at least simplify these nodes. A single tactic called pr_step
realises the step-wise traversal of the tree. We define its mode of operation
w.r.t. the grammar rules and the effect on the proof state:

(ext) Assume the freshness condition | ¢g S as well as the state equality
Sa(l,t) = 5 (introducing a fresh variable S’) and yield the new proof goal
R;.

(upd) Assume the state equality S(I ::= e¢) = S’ for a freshly introduced
variable S’ and yield the new proof goal R;.

6.5. Tactics for Simplifying Verification Conditions 141

(read) Perform read/update simplification for the read-term [@, S, yielding
an equality [@, S = ¢’; assume this equation for later re-use; substitute v by
v’ in Ry and yield this as the new proof goal.

(cond) Introduce two new proof goals R; and Ry in which e and —e are
assumed, respectively.

(wk) Introduce three proof goals Ry, 4 C A, and R3, where in the latter
read /update simplification is performed for Rs and the result is assumed and
a fresh state variable 1" is introduced about which S C,, T is assumed.

In the cases (deref), (array), (var), pr_step introduces two proof goals, one
non-terminal R, and one terminal (e.g., o(l;] S)). Annotated specification
expressions of (spec) are also regarded as terminal nodes. We can see that
the iterated application of pr_step conceptually corresponds to a symbolic
execution of the function.

6.5.2 Read/Update Simplification

The traversal realised by pr_step has one computational aspect, which is the
simplification of terms depending on intermediate states. There are two kinds of
such terms: let-bindings in which the defining term reads an lvalue in a program
state (we also call these read-terms) and representation functions, which occur
nested within specification expressions and not as nodes of their own in the iVC
tree.

The task of read/update simplification is to rewrite read-terms and represen-
tation function terms in a proof state according to their update theory and hence
by considering the program state in which they are evaluated and that state’s
relation to previous program states. A typical proof state in which read/update
simplification of a read-term would be called for looks as follows:

[...; Si(ly ==e1) = S9; Sa(ly :=eq) = Ss;
53 EHS Tl; Tl(lg = 63) = 54; e]] (67)
— letv=10,@Q;5;in R; v

Because of the way that pr_step treats state modifications ((ext), (upd), (wk)),
there is always a current state (here: Sy) representing the point in the func-
tion that has been reached through symbolic execution. This state is always
related to the initial state (S1) via a chain of equalities or T, relations. In the
chain all successive intermediate states are related via an extension, an update,
a deallocation or w.r.t. a modification set. We have already given an exam-
ple of a concrete read/update simplification for representation functions over
arrays in Sec. 4.5.2. Regarding Eq. (6.7) read/update simplification means to
rewrite {4 @; Sy according the update theory for integer locations (cf. Fig. 4.4
and Sec. 4.4). Assuming that Iy # I3 and Iy & ps, but Iy = ls, we obtain the
rewrite sequence
l4@; Sy =1,Q; Ty (I3 == e3) (substitution)
=0,Q; T (read-int-update-other)
=1,Q; S5 (mod-read-int-eq)
(
(

= l4 @z SQ(ZQ = 62)

:62

substitution)

read-int-update)

142 Chapter 6. Hoare Logic and Verification Conditions

We can thus instantiate the usual higher-order substitution rule
[s=t;, Ps]= Pt (subst) (6.8)

using this equality to simplify the conclusion of Eq. (6.7) to Ry e3. We note that
one occurrence of a program state is eliminated by the simplification. We also
note that occurrences of read-terms are syntactically restricted to let-bindings.
It it is thus clear how to isolate them from the proof state’s conclusion for simpli-
fication (by B-expansion) and how to pass them to the simplification procedure
described below to derive the equality. This simple substitution mechanism
is also possible for representation function terms which appear nested inside
specification expressions outside the scope of quantifiers.

Congruence Rules

When representation functions appear within the scope of quantifiers, a simple
[-expansion cannot isolate them. Moreover, when they appear in the conclusion
of an implication it might be necessary to take the premiss of the implication
into account to be able to successfully perform read/update simplification on
them. Consider the following example:

[[ey Sl(ll = 61) = SQ; Sg(lg L= 62) = Sg;
S3 Ty T1; Th(lz i=e3) = Sy; S4 Ty, To; ...] (6.9)
= V(i nat). 0 <iAi<len— |VecR Ty (I3;.[i])] < 1

The specification expression in the conclusion is a typical one expressing that all
elements of an array, interpreted as vectors, have lengths less than 1. There are
two possibilities to simplify the representation function: the user can massage
the proof state and isolate the term manually (here by applying universal and
implication introduction rules) before calling the simplification algorithm. This
can be necessary if representation functions appear deeply nested in logically
complex specification expressions. For simpler cases such as the one above,
however, it is more reasonable to let the system apply congruence rules during
read /update simplification to accumulate further assumptions that can be used
during the simplification. The method we use is akin to a simple form of window
inference [133, 101]. Concretely, we only use the following two congruence rules
which allow us to rewrite within universal quantifiers under the proviso that
we assume an arbitrary fresh variable x as the quantified item and to rewrite
within the conclusion of an implication while assuming its premiss.

[Nz Pr=Qa]= (Vo. Pa)=(Vo. Q) (iff-alll)
[P=Q=Q = (P —Q) =(P—Q (imp-rcong)
Regarding Eq. (6.9) these congruences allow the algorithm to consider the term

VecR Ty (l34.[1]) for an arbitrary ¢ about which 0 < ¢ A4 < len is assumed.

Algorithm

The algorithm for read/update simplification expects a proof goal of the form
t = 7t, where 7t is a meta-variable that will be instantiated at the end of
the algorithm and ¢ is either a simple read-term or the full application of a

6.5. Tactics for Simplifying Verification Conditions 143

representation function to its arguments. It performs three tasks: (1) it repeat-
edly applies theorems from the appropriate update theory for ¢ to either reflect
updates in the value that ¢ represents (e.g., theorem read-int-update) or to ig-
nore updates that do not affect t’s value (e. g., theorem read-int-update-other),
(2) in the latter case it proves the corresponding inequality conditions, and (3) it
decides when to stop attempting further simplifications.

For uniformity the algorithm regards both read-terms and representation
functions as functions over a location and a state, f [S. It also uniformly
works over dependence sets (cf. Sec. 4.5), i.e. locations which affect the value
of f. We denote these by D I. For read-terms (f I S = 1@, S) we have
D | = {l}. The example representation function Vec2DR [S has D | =
{lvecept— 72" lvecop4—"y”}. The algorithm can only deal with finite depen-
dence sets; their shape is inferred from the update theory for the given represen-
tation function. If no arrays are involved, D [can be brought into a normal form
{l1,...,1,}. The algorithm can also deal with arrays of structures or scalars as
for Vec2DRec-n of Sec. 4.5.2, in which case D [is the union of the dependence
sets of the members:

Di= J {,...,1i} where I =1Ip.[i],—f; or I} =1,.][i]

a<i<b

Given f I S, there is either a state S’ such that one of S'(I' :=v) = S,
S'e(l',t), S’el, or S' C,, S is assumed, or S is the initial state Si. In the latter
case, the algorithm stops and instantiates 7¢' with f [S. In the former case
the relation between D [and I’ or u must be analysed. The assumption S'©l
enforces a proof that [and I have different base locations: D I N fpase-ioc 2 = {}-
(Trying to prove | = I’ is not useful as it corresponds to reading a deallocated
location). If the proof succeeds (see the subsequent paragraph) the algorithm
continues with f [S’; otherwise it stops and instantiates 7¢' with f [S. The
assumption S'@(l’,t) = S also suggests to prove that D I N Mpase-toc ¥ = {} and
to continue with f I S’ in the case of success. The assumption S’'(I' :=v) = S
leaves two choices: either I’ € D [or I’ ¢ D I. The algorithm tries to show
the former case first. The proof is trivial if I’ syntactically appears in D [;
otherwise, the algorithm looks for assumptions of the form I’ = 1" or I” =1’
and tries to prove I” € D 1.2 For each location in D [, the algorithm knows
how to reflect the update on I’ in the value represented by f [S by virtue of
the update theory. For example, if f 1 S = 1@;S and [= I’, the result is
simply v, and the algorithm stops, instantiating 7t with v. If I’ € D [cannot
be shown in this way, the algorithm tries to prove I’ &€ D [(see below). The
remaining possible assumption is S’ T, S. Since this assumption does not
contain information about the values assigned to locations in u, the algorithm
must stop and instantiate 7¢’ with f [S if it cannot prove D I N pu = {}. If it
can, it continues with f 1 5"

Proving inequalities The algorithm outlined above relies on a procedure
that proves statements of the two forms I’ ¢ D [and D I N X = {}, where X
is either a modification set p or a term fpase-1oc 17, denoting all offsets of a base
location. If D I ={l,...,l,} the latter is equivalent to Iy € X A --- Al, € X,

3Such equalities can be introduced by the conditions of if- and while-statements, as in
if (p=q)

144 Chapter 6. Hoare Logic and Verification Conditions

and if D 1 = U,<;p{li,--., 1L} it is equivalent to 1§ & X A -+ NI}, & X
under the assumption a < ¢ < b for a fresh variable ¢. Therefore, the two
cases uniformly require proofs of statements of the form [¢ Y. Y can be
considered as being built from unions of singleton location sets such as {l;— [},
set comprehensions {I. Ji. a < i Ai < bAl.[i] =1} introduced by array slices
in @modifies clauses such as v[a:b], and mappings of access operators on these
sets, (Al lg—="f7) “ {I. Ji. a < i Ai < bAI.[i] =1}, introduced by chains of
accesses in modifies clauses such as v[a:b].f.* To prove | € J,.,,, Y; means
to individually prove [€ Y;. To prove | ¢ {l. Ji. a < iAi < bAl,.[i] =1} one can
assume a < i A < b for a fresh variable ¢ and prove [# [}.[i]. Mapping access
operators on location sets works similarly but requires one to apply the mapping
on the representative location, yielding the proof obligation I # I}.[i],—” f” for
the above mapping. We can see that eventually all proof obligations can be
reduced to atomic inequalities between location terms that possibly incorporate
array indices about which a range assumption is made.

After reduction to atomic location inequalities, the procedure inspects each
inequality in sequence. Based on the structure of the two involved location
terms it decides which theorem of the memory model to apply. The possible
cases are as follows:

1. Both locations are built from accesses to locations denoting distinct local
9.,

or global variables, e.g., (v-"27,,);—="f” # (v-"y"m)w-[i]. In these cases
the inequality is immediate.

2. The top-level access on both terms is a field selection and distinct fields
are accessed, e.g. [;—"f” # I;,—”g”. The memory model allows to infer
that the locations are unequal if both terms denote valid locations in some
state.

3. The top-level access on both terms is a field selection on the same field.
Since field selection is injective, the procedure continues with proving the
accessed locations themselves unequal.

4. The top-level accesses are a field selection and an array access, respec-
tively; the memory model ensures their distinctness if both denote valid
locations.

5. The top-level accesses are both array accesses, e.g. l;.[i] # I},.[j]. The
procedure can only prove the locations unequal if both are valid ones. In
the case that t # ¢’ the inequality is immediate. Otherwise, the procedure
delegates to Isabelle/HOL’s linear integer arithmetic decision procedure
to derive whether 4 = j under the assumptions of the current proof state.
If it derives ¢ = j, the locations are unequal if and only if [# I’. If it
derives i # j, the locations are certainly unequal. If it fails, the inequality
cannot be decided.

6. One of the locations is the value of a valid pointer whose value cannot be
associated with a concrete location (an indeterminate location). This is
the case if it is the result of reading a global pointer variable in the initial
state (y-g@; S1) or if it is a pointer argument value (v :: Loc). If the other

4f ¢ X is the image of f under X, i.e., {y. Ix € X. f x =y}

6.5. Tactics for Simplifying Verification Conditions 145

location is based on a local variable then the inequality is immediate, since
a valid location cannot point to a fresh location. For example, it is true
that g @; S1 # v, given the assumptions v, €5 S1 and e((g @Q; S1)¢| S1).

If the other location is based on an indeterminate location as well, the
inequality must be derived from existing assumptions. The procedure can
deal with two cases. We assume the inequality to be derived is v # v'.

(a) The precondition of the function to be verified, or the postconditions
of functions called during symbolic execution, or the conditions of
the taken branches asserted facts which from which v # v’ is implied
as a propositional tautology.

(b) The precondition contains a separation constraint from which a bi-
nary assertion S; = L X ¢ L X' can be derived by the rules described
in Sec. 3.4.2 such that v € X and v’ € X’.5 By the definition of sat-
isfaction of separation constraints this implies that v # v’.

An example for this case is a function specification containing the
separation constraint @memory xa <*> xb. If a and b are global
integer pointers, the constraint gets translated to

Sl IZ L {7-”a” @l Sl} O L {’y-”b” @l Sl}

and allows the procedure to derive that the two mentioned location
terms denote unequal locations.

6.5.3 Further Tactics

Besides pr_step the verification environment provides other noteworthy tactics
which we briefly describe here.

1. prtac is the tactic by which the iVC can be generated from the initial
proof obligation correct-function-modular © fid. It also performs the sim-
plifications described in Sec. 6.4.2 and conceals a substantial amount of
technicalities from the verifier, such as looking up identifiers in environ-
ments, expanding specifications of called functions, evaluating the seman-
tics of modification sets, and several more.

2. pr_valid is used to automatically prove validity proof goals of the form
o(l;| S) or e[l| n| S] using the rules of Sec. 4.2.6. It is immediately clear
that this tactic cannot be a decision procedure, i.e., cannot be complete,
since it is in general undecidable whether a pointer or array access is
always valid. In practice, however, intervention by the verifier was only
necessary when the index expression of an array access involved non-linear
arithmetic, as in e[a;| (i + j)div2| S]. In these cases he needs to aid the
tactic by deriving the fact that 0 < (i + j) div2 < n, where o[l;| n| 5’|
is known for some state S’ related to S via updates or modification sets.
In contrast, when knowing that i is a valid index for array a, the tactic
successfully derives the validity of a pointer required by a called function’s
precondition, as in foo(&a[i]), both if a is a function local array as well
as if its own validity is assured by the calling function’s precondition.

5Here, L is the constructor for the datatype mem-descr and L X and L X’ are memory
descriptions of type Loc mem-descr. We recall that S = M { M’ only holds if the domain of
S is the disjoint union of the locations described by M and M’.

146 Chapter 6. Hoare Logic and Verification Conditions

3. pr_simp is the tactic for explicitly requesting read/update simplification
in an arbitrary proof state. In the standard case, the tactic looks for oc-
currences of representation functions and read-terms both in the assump-
tions of the current proof goal as well as in the conclusion. For each such
term ¢ it extracts a subgoal of the form ¢t = 7t and applies the algorithm
described above to this equation. t is then substituted by the obtained
instantiation for ?¢’ in the proof state. The tactic can be configured to
only select terms matching certain criteria, such as specific variable names
or program states.

Chapter 7

Verification of the SAMS
Code

In the preceding chapters the verification environment for the functional ver-
ification of C programs in Isabelle/HOL was presented. In this chapter it is
demonstrated how the environment was used in a concrete certification effort.
This is done from two different perspectives; first examples of concrete functions
that were implemented in the SAMS project as well as their specifications are
discussed and interesting aspects of their verification are pointed out. After-
wards —beginning with Sec. 7.5— the integration of this environment into the
broader verification and validation process that is required by IEC 61508-3 is
worked out.

7.1 Algorithm for Computing Safety Zones

We have formally verified the algorithm responsible for computing safety zones,
which is part of the overall safety-related software developed in the SAMS
project. Before we can discuss its verification, a brief description of its workings
is in order.

A laser scanner is a sensor that measures the distance to obstacles in its sur-
roundings by emitting laser beams in a fixed angular range and measuring the
time until the reflection of each emitted beam returns (time of flight measure-
ment). Since the running time is proportional to the distance of the reflecting
object, the latter can be computed from the former. A laser scanner was used
in the safety component developed in the SAMS project. The safety compo-
nent’s function is to raise a signal whenever objects are detected as being “too
close” to the equipment under control (EUC). In our case the EUC reacting
to the component’s signals is a moving vehicle such as an automated guided
vehicle (AGV). Here, the component’s function is to raise an emergency stop
signal to ensure collision avoidance. The definition of “too close” depends on
the application scenario and is configured manually for each such scenario in
most state-of-the-art scanner-based safety components.!

IFor example, the safety laser scanners ROTOSCAN RSj by Leuze electronic (http:
//wwu.leuze.de) or the S3000 by SICK (http://www.sick.com)

147

http://www.leuze.de
http://www.leuze.de
http://www.sick.com

148 Chapter 7. Verification of the SAMS Code

Figure 7.1: Safety zones in state-of-the-art safety laser scanners. The green
polygon represents a safety zone.

Figure 7.2: The safety zone is violated by the blue object.

Definition 7.1. A safety zone is the area monitored by the safety component
in which detected objects lead to a safety-related reaction of the component,
namely the emission of an emergency stop signal. A safety zone is determined
by the minimum distances that must be measured by the scanner in every cycle.

Fig. 7.1 depicts a scanner emitting beams, some of which are reflected by
obstacles?, and visualises an (arbitrarily chosen) safety zone. Fig. 7.2 depicts
the same situation, but with an additional object that it detected inside the
safety zone (a safety zone violation).

7.1.1 Braking Model

The novel aspect of the software developed in the SAMS project is that the
monitored safety zones for the EUC are chosen depending on the current velocity
of the EUC. To enable this, the safety zones are computed by a microcontroller
of the safety component during operation. This is an obvious improvement over
a fixed, manually configured set of safety zones, since for safety reasons these
have to be conservatively defined and will hence be too large for most velocities,
impairing the flexible movement of the AGV. The computed safety zone for a
given (imprecise measurement of the) current velocity must be a superset of
the braking area which is the area covered by the EUC during braking. In

2Some beams are not reflected at all, which represents the case where the maximum range
of the scanner is exceeded before the beam reaches an object.

7.1. Algorithm for Computing Safety Zones 149

Figure 7.3: The braking model allows circular and straight trajectories (indi-
cated by dashed lines; dotted lines show examples of invalid braking behaviour)

reality, the braking area is not merely a function of the velocity of the EUC,
but also depends on physical properties such as the friction between the wheels
of the EUC and the surface it drives on, the strength of its mechanical brakes,
and many others. We developed a simplified braking model that enables us
to reason about the braking behaviour of vehicles that are typically used in
industrial settings. The braking model is defined in a two-dimensional model of
the world; this is reasonable since laser scanners only sense their environment in
two dimensions and because industrial AGVs usually drive on flat ground. The
fundamental assumption of the braking model is that the braking trajectory of
the EUC is either a straight line or a circular arc. An intuitive example is a
car that brakes with a fixed steering and without slipping or sliding. This is
depicted in Fig. 7.3.

The braking model must be capable of determining a safe approximation
of the braking distance that a concrete EUC will cover for a given velocity
U < Upmaz, Where vy,q, is the maximum velocity of the EUC. More precisely, a
braking configuration (s,a) must be determined:

Definition 7.2. A braking configuration (s, «) for a given forward velocity v and
angular velocity w defines the length s and the angle « of the arc that describes
the braking trajectory covered by the EUC while performing an emergency stop
at velocity (v, w) according to the braking model. As a special case, (s,0) defines
a straight line of length s.

To this end, the braking model is parameterised over a number of brak-
ing measurements, (v1,$1), -, (Vmaz, Smaz); Which must be determined before
putting the EUC into operation. Here, s; is the braking distance covered by
the EUC during an emergency stop at velocity v; in straight forward move-
ment. These are used to generate a piecewise linear function which yields
an over-approximation of the actual braking distance for any forward veloc-
ity v1 < v < Umas.®> Fig. 7.4 depicts two possible linear approximations of a
convex braking function interpolated from one or two braking measurements,
respectively. The braking distance covered when cornering is extrapolated from
the braking distance at forward movement. The energetic considerations on
which the extrapolation is based are described in Sec. 7.2.1 further below. The
strategy is to first compute a velocity vg for straight forward motion that in-

3Technically, the function will yield an over-approximation only if the actual braking be-
haviour of the EUC is described by a convex function from velocities to distances, which is
the case for all relevant vehicles.

150 Chapter 7. Verification of the SAMS Code

(Umam Smaz)

Figure 7.4: Two piecewise linear functions f and g approximate the actual
braking function h (shown as a dashed line). ¢ makes use of an additional
sampling point (v1, s1)

duces at least as much kinetic energy as is present at the given velocity (v,w),
and to use v for the computation of s. The value of « then follows immediately.

Another assumption is that all objects in the surroundings of the EUC are
stationary, which is a common assumption for collision avoidance in industrial
settings. While persons are obviously not stationary, one can expect that they
at least do not actively approach the EUC during its operation. Finally, it is
assumed that the braking behaviour of the EUC is independent of time and its
current location.

7.1.2 Computation of Safety Zones

When the EUC and the safety component are in operation, the scanner cyclically
yields a sequence of distance measurements in its angular range. For example,
the scanner that was used in the SAMS project* yields up to 529 distance
measurements in a range of 190° every 40ms. Within these 40ms the safety
software has to determine whether it is safe for the EUC to continue travelling,
or whether an emergency stop signal must be raised. This procedure is repeated
for all sequences of measurements. The scanner’s cycle time thus defines the
clocking of the safety software. Each sequence is measured while the EUC
travels at its current velocity (v,w). These measurements are immediately used
by the safety software to detect violations of the currently required safety zone.
The latter, in turn, is determined by (v,w) according to the braking model.
The task of the software module considered in this chapter is to compute these
safety zones.

In each cycle, a safety zone is computed that is safe for the current velocity
of the EUC. The algorithm expects the following inputs: (1) a velocity interval

4ROTOSCAN RS4 by Leuze electronic

7.1. Algorithm for Computing Safety Zones 151

Figure 7.5: The shape of the EUC is approximated by its convex hull

that safely approximates the actual current velocity: (v,w) € [Umin, Vmaz] X
[Winin, Wmaz]; (2) a finite set of points [R;]"_; representing the convex hull of the
contour of the EUC (cf. Fig. 7.5); (3) the abovementioned braking measurements
(v1,81)y- -+ (Umazs Smaz) from which the braking behaviour can be determined
by the braking model; and finally (4) a latency T; that safely approximates the
duration until a potential emergency stop takes full effect, i.e., a time in which
the vehicle continues moving at its current velocity. It proceeds as follows:?

First, the input velocity interval [Vimin, Vmaz] X [Wimin, Wmaz] 1S transformed
into the braking configuration area [Smin, Smaz] X [¥min, Qmaz]. The transforma-
tion braking-configuration(v,w) describes a movement consisting of moving for
time T} with velocity (v,w), and then braking on a circular arc that retains the
radius defined by v and w.

[Step 1] For (v,w) in {Umin, Vmaz } X {Wmin, Wmaz }, compute the braking con-
figuration (s, «) as follows, and determine minimum and maximum S;in, Smax,
Qmin, and e of the four results:

(s, @) = braking-configuration(v,w) (7.1)

Then, compute the safety zone in terms of a finite set of points [P,]X_; and
a buffer radius gq. The safety zone is an area A" ([Pk]szl; q), given by the union
of the convex hull of [P]_, and the set of all points having distance of at most
q > 0 to any point of that convex hull, a construction called the Minkowski
sum:

AT ([Pl y5q) = {P+Q | P € conv {[Pliei},1Q| < q} (7.2)

[Step 2a] To compute points [P;]/_, | approximate the braking trajectories for
all points of the convex hull [R;]7_;: For all (s, &) € {Smins Smaz } X{Qmin, ¥maz }
compute

Hoo = {[Uls0:Ulsar Visar - Vicaliza}
where U, 5 o and V; 5 o are given as follows (for ¢ in 1,...,n):
Ui oo =Ri Ulea =T(3. %) Ri
Ulsa =T(s,0) - R (7.3)
VO = Ul QLU —UY) VA, = T(kx by

5The subsequent text of subsection 7.1.2 is a slightly adapted and extended version of
Sec. 2.1 of [150] which is in major parts due to the author’s colleague Holger Téaubig.

152 Chapter 7. Verification of the SAMS Code

3

1,8,xx

US

1,8,0

Figure 7.6: Approximation of an arc by start- and endpoint and L = 4 auxiliary
points

with
cosa —sina ssinc § cos §
T(s,a) = | sina cosa ssinc§sing
0 0 1
and
1 tang 0
Q(a) = | —tan § 1 0
0 0 1

This computation approximates the arc determined by (s, «) by its endpoints
(R; and U},) and L auxiliary points V7. It can be easily understood graph-
ically; we give an example where L = 4 in Fig. 7.6. The auxiliary points are
simply the intersections of tangents of the arc that are set ¥ angular units apart.

Now, [Py]f, is the result of a standard convex hull algorithm like Gra-

ham scan applied to the union of the H, for all (s,a) € {Smin;Smaz} X

{amin y Amax } -

[Step 2b] The buffer radius ¢ includes a conservative error approximation for
the algorithm. In particular, it incorporates the error introduced by transform-
ing the velocity interval [Umina 'Umax] X [Wmina wma:c] into [Smina Smaa:] X [amina amax]-
This error is associated with the fact that the true s,,,; and o, are not de-
termined by applying braking-configuration to vme: and wiez, but by some
(0,W) € [Vmin, Umaz) X [Wimins Wmaz). We elide the details here, but point out
that the correctness of the definition of ¢ given in Eq. (7.4) has been for-
mally verified, meaning that the safety zone AT ([Pk]le; q) contains all brak-
ing trajectories of all points of the convex hull [R;]; for all velocities (v,w) €

7.2. Domain Modelling 153

[Vmins Vmaz) X [Wmin, Wmaz]- ¢ is given by the equation

g = & (@masmin)® ma {[spax; [Smin|} + (1 — cos @mess@min) max {|R,}.

1<i<n
(7.4)

[Step 3] Finally, the computed points [Py]f_, are transformed into scanner
coordinates, and the safety zone AT ([Pk]i(:l; q) is sampled into a laser-scan like
representation, defining a minimum length for each laser beam which has to be
measured in order to ensure that no obstacle is inside the safety zone. We elide
the details of the sampling subroutine, because it is not part of the subsequent
discussion about the domain modelling and the verification of the algorithm.

The guarantee that the algorithm gives about the computed safety zone
for a velocity interval [Vmin, Vmaz] X [Wmins Wmaz] 1S that the EUC stops within
the safety zone if it travels for latency time 7; with constant velocity (v,w) €
[Vimins Vmaz] X [Wmin, Wmaz) and then brakes according to the braking model. Its
correctness relies on two properties whose verification we will examine in the
following: the correctness of the computation of (s, «) according to the braking
model and a conservative approximation of the area A¥ ([Pk]szl; q).

7.2 Domain Modelling

We show two fragments of the domain model which are used in the specification
and verification of two exemplary functions in Sec. 7.3 that form a crucial part
of the overall algorithm.

The overall domain modelling consists of 11 Isabelle theory files, about 110
definitions and 510 theorems. The domain was largely developed in about five
months by a mathematician without prior knowledge of Isabelle, with contri-
butions by the author of this thesis. We consider this a point supporting the
argument that the key competency when working with Isabelle is a strong back-
ground in mathematics and particularly in formal logic. Moreover, the theorem
prover Isabelle is mature enough a tool so that the necessary technicalities ac-
companying its use do not overly distract from or impede a formal development.°

7.2.1 Formalisation of the Braking Model
Preliminary Definitions

We employ Isabelle’s expressive type definition facilities to introduce a type SO2
of angles that is isomorphic to the set of radian angles {¢ :: real. 0 < ¢ < 27}.
Using this type instead of the larger type real allows us to omit side-conditions
in theorems involving angles.

For technical reasons, it is most convenient to use quotient sets as the carriers
of newly defined types. We can use the set of all real numbers quotiented by the
natural ‘modulo 27’ equivalence relation between angles, since it is equivalent
to the above set of all angles:

6We decided not to translate the domain formalisation described subsequently and use
the original German terms instead. This way we can show the definitions and theorems in
the form in which they were presented to the certification authority TUV Siid Rail GmbH.
An exception is the use of @memory clauses, which were not yet implemented at the time of
certification, where equivalent specifications using \unrelated and \separated were used.

154 Chapter 7. Verification of the SAMS Code

definition

S02_rel :: "(real * real) set"

where

"S02_rel = {(a, b) . 3 k::int . a =b + 2 * pi * real k}"

typedef (S02)
S02 = "UNIV//S02_rel"

We recall that the quotient X//R is defined as |, y {{y- Rz y}}. For an equiv-
alence relation, such as SO2-rel, this is the set of all its equivalence classes. Along
with the above definition, Isabelle defines a function Rep-SO2:: SO2 = real set
yielding all real numbers in the equivalence class of the given angle. It has a
partial inverse function Abs-SO2 :: real set = SO2 that abstracts equivalence
classes of real numbers. We define a constructor function from angles given as
real numbers:

definition

S02_C :: "real = S02"

where

"S02 C a = Abs_S02 (S02_rel‘‘{a})"

The movement of vehicles can be described by rigid body transformations,
which are affine transformations with the additional property that the Euclidean
distance between any two transformed points equals the distance of the original
points. Such transformations are given by a translational and a rotational part:

types
SKT = "Punkt * S02"

where Punkt is identical to the type complezr of complex numbers and represents
two-dimensional points. Again, a constructor function comes in handy:

definition

SKT_C :: "Punkt = real = SKT"
where

"SKT_C p a = (p, S02_C a)"

By using complex arithmetic we can concisely define the application of a rigid
body transformation to a given point. It is well-known that rotation coincides
with complex multiplication by unit vectors and that translation coincides with
complex addition. Mathematically, if we are given a rotation angle ¢ and a
translation vector (z,w), the transformation of rotating a point (z,y) by ¢
and translating the result by (z,w) is given by (cos(¢),sin(¢)) - (z,y) + (z,w).
Since Isabelle allows us to overload operators, we can adopt this literally in the
definition of the transformation function:

definition

transformiere :: "SKT = Punkt => Punkt"

where

"transformiere H p = (holeRotation H) * p + (holeTranslation H)"

While it is trivial to extract the translational part of the rigid body trans-
formation H (holeTranslation simply yields the first component of the tuple),
the rotational part of H of type SO2 must be converted to a complex number
with an absolute value (modulus) equal to 1 and an argument equal to the angle
¢ represented by the SO2 value. This is done via holeRotation.

definition

7.2. Domain Modelling 155

rotation :: "real = complex"
where
"rotation a = Complex (cos a) (sin a)"

definition

holeRotation :: "SKT = complex"

where

"holeRotation H = contents (rotation ¢ Rep_S02 (snd H))"

lemma rotation_Rep_S02_singleton:
" Jx. rotation ¢ Rep_S02 a = {x}"

We turn the set of equivalent angles into a singleton by mapping rotation
on it (using the facts that sin(¢) = sin(¢ + 27) and cos(¢) = cos(¢ + 27) in the
proof of lemma rotation-Rep-SO2-singleton), and extract the singleton’s sole
element via contents, a pre-defined function satisfying contents {z} = .

Arc Transformations

The fundamental rigid body transformation we are interested in is the trans-
formation along an arc or along a straight line, since these are used to describe
the braking behaviour of vehicles in the model. The coordinate system used
to describe a vehicle’s movement has its origin at the centre of the axle that
points towards the centre of the circle described by the driven curve. We call
this point the vehicle’s reference point. In the standard case of a four-wheeled
vehicle with steered front axle this is the centre of the back axle, as depicted in
Fig. 7.7.

Figure 7.7: Coordinate system for a four-wheeled vehicle with steered front axle

The first task is to compute the coordinates (z, y) of the reference point given
that it travels a braking distance of s units along an arc whose angle is «. (How
the braking model yields (s, «) for a given pair of forward and angular velocity
(v,w) is described further below.) Together with the angle « these coordinates
induce the rigid body transformation that transforms any point of the vehicle
contour to its corresponding end position. The situation is depicted in Fig. 7.8.
The final orientation of the vehicle is equal to «, the angle of the travelled arc.
(z,y) is the end position of the vehicle’s reference point. Euclidean geometry

156 Chapter 7. Verification of the SAMS Code

tells us that the length of the chord a equals 2R sin § and that s = aRR. Thus,

sinw(:t) if x 7& 0
1 ifz=0

3 [0
S 5

a=s = ssinc(%), where sinc(z) =

@
2

/| (@y)

i

0 a

Figure 7.8: Geometric construction of the stop position (z,y)

The sinc function (for sinus cardinalis) is the continuous extension of Smjﬂ
and allows us to use the same formula for the case where the vehicle brakes
during a straight forward motion, where (x,y) = (s,0). Moreover, the angle

[e3

between the x-axis and the chord a equals . Hence, we obtain

a
(x) = ssinc > <C9S O%) (7.5)
Y 2 \sin §

We are finally in a position to formally define the rigid body transformation
in terms of an arc length s and an arc angle of a. We call this an arc transfor-
mation. It is defined by a translational part given by Eq. (7.5) and a rotational
part of a.

definition
bogentransformation :: "real = real = SKT"
where
"bogentransformation s o =
SKT_C ((s*sinc (a/2)) *gr (rotation (a/2))) "

In the following, the parameters s, a of arc transformations are always those
determined by the motion of the vehicle’s reference point. An arbitrary point
p of the vehicle’s contour can now be transformed to its end position after
braking by applying the arc transformation. The end position of p is given by
transformiere (bogentransformation s «) p.

Approximating the Braking Distance

Next, we need to formalise the piecewise linear approximation of the actual con-
vex braking function, to obtain (s, «) for a given velocity measurement (v,w).
As explained in Sec. 7.1.2, we may assume the existence of braking measure-
ments (v1,81),- .., (vn, S,) wWhere each s; denotes the braking distance covered
by the vehicle when braking at velocity (v;,0), i.e. straight forward motion.

7.2. Domain Modelling 157

Here we assume that the v; are ordered and that v; is the maximum value and
that v, = s, = 0. The approximation of the braking distance s for a velocity v
with v; > v > v;41 is determined by

Si — Si41 (

S = v — ’l}i+1) + Si+1 (76)

Vi — Vi1
In the case that v > v; we define a cubic over-approximation of the braking
function, which has been determined as safe for all braking behaviours in which
greater velocities do not result in a decrease of braking power.
S1 3
§=-—=v (7.7
(v1)3
In contrast to the program code, where the lookup of 7 has to be efficient,
we can specify the linear approximation in a simple fashion whose correctness
can easily be validated. The primitive recursive function bremsweg-approx-fkt
expects a list of (vj,s;) pairs in decreasing order w.r.t. v; and performs the
respective computation of Eq. (7.6) or Eq. (7.7).

fun
bremsweg_approx_fkt :: "(real * real) list = real = real"
where
"bremsweg_approx_fkt [(vm, sm)] v = (sm / vm™3) * v°3 " |
"bremsweg_approx_fkt ((v1, s1) # (v2, s2) # z) v =
(if vl < v then bremsweg_approx_fkt [(vl, s1)] v
else if v2 < v then (s1 - s82) / (vl - v2) * (v - v2) + s2
else bremsweg_approx_fkt ((v2, s2) # z) v)"

bremsweg-approxz-fkt can be applied directly to compute s if w = 0. For mo-
tion along a curve, where w # 0, s is over-approximated by applying bremsweg-
approz-fkt to a straight forward velocity vg at which the kinetic energy of the
EUC is at least as large as when travelling at velocity (v,w). The brief physical
derivation of vg goes thus: the kinetic energy of an object moving at velocity
(v,w) is given by %va + %sz, where m is the object’s mass and J its mo-
ment of inertia; J is bounded by the mazimum extension D of the object (the
maximum distance of any two points occupied by the object) via J < D?m;
this yields a bound on the object’s kinetic energy as %m(v2 + D%*w?); by let-
ting vg = Vv2 + D2w?, the desired straight forward velocity is found. This is
formalised in function aequiv-v-gerade:

definition
aequiv_v_gerade :: "real = real = real = real"
where "aequiv_v_gerade v w D = sqrt (v> + (D * w)?)"

Once s is computed, « is given by a = (s/v) w, because braking on a circular
arc entails that v/w is constant throughout and equal to the circle’s radius R,
which in turn equals s/«.

We conclude this section with a validation that bremsweg-approz-fkt is de-
fined correctly. The criterion is that it should yield a convex function if applied
to a list of braking measurements that are given in decreasing order and which
themselves define a sub-linear list:
fun

sublineare_liste :: "(real X real) list = bool"
where

158 Chapter 7. Verification of the SAMS Code

"sublineare_liste [(x1, y1), (x2, y2)] = (y2 < y1)" |

"sublineare_liste ((x1, y1) # (x2, y2) # (x3, y3) # z) =
((y2 - y1) < (x2 - x1) / (x3 - x1) * (y3 - y1) A
sublineare_liste ((x2, y2) # (x3, y3) # z))"

A sub-linear list contains pairs (z;,y;) in which the slope between the pairs
(z4,y:) and (42, yi+2) (given by ff:z%) is greater or equal to the slope be-
tween (x;,y;) and (z;41,yi+1). This criterion can also be used to validate that
concrete braking measurements do not contradict the assumption of a convex
braking function: a convex braking function will lead to measurements that
constitute a sub-linear list. The convexity of a function between boundaries xg

and xx can be defined in a similar vein:

definition konvexe_fkt :: "(real = real) = real = real = bool"
where
"konvexe_fkt f x0 xN =

(Vx1 x2 x3. x0 < x1 AN x1 < x2 AN x2 < x3 AN x3< xN —

(f x2 - £ x1) * (x3 - x1) < (f x3 - f x1) * (x2 - x1))"

Noting that sortiert-nach P is a predicate over lists asserting that con-
secutive elements e;, e;41 in the list satisfy P e; e;41, it can be shown that
bremsweg-approz-fkt yields a convex function between 0 and vy, the maximum
velocity measurement.

lemma bremsweg_approx_fkt_konvex:
"[sublineare_liste xs;

sortiert_nach (Ax y. fst x > fst y) xs;

xs = (vl, s1) # b # list; last xs = (0, 0)]
— konvexe_fkt (bremsweg_approx_fkt xs) 0 vi"

The proof of this theorem is by induction over list, the tail of the tuple-list
zs. It rests on several properties of convex functions, such as the fact that the
boundaries in which a function is convex can be concatenated:

lemma konvexe_fkt_zusammengesetzt:
"[a<b; b<c; c<d; konvexe_fkt f a c; konvexe_fkt f b d]
—> konvexe_fkt f a d"

or the fact that the mapping from list indices to the first component of the list’s
elements is a monotone function:

lemma sortiert_nach_gr:
"(Wa b. a < b — b < length bs —
sortiert_nach (A(v::real, s::real) (v’, s’). v’ < v) bs —
fst (bs ! a) < v — fst (bs ! b) < v)"

7.2.2 Arc Approximation

The domain formalisation is furthermore concerned with the approximation of
arcs by polylines, and the covering of arcs by the convex hulls of these polylines.
Arc coverings play an important role in the computation of safety zones. In this
section we illustrate the relevant concepts as well as the proof that the polyline
defined through auxiliary points as shown in Fig. 7.6 covers the associated arc.

7.2. Domain Modelling 159

Arcs

The necessity for computing arc coverings arises from the fact that the braking
area covered by a vehicle is defined by the union of the arcs described by all
contour points of the vehicle. A conservative approximation (i.e., a superset)
of this union yields the basis for a safe and correct safety zone. The arcs de-
scribed by contour points are given by the trace of arc transformations, in the
following way. We define the end point of an arc as the application of an arc
transformation:

definition

bogenendpunkt :: "real = real = Punkt = Punkt"

where

"bogenendpunkt s « p = transformiere (bogentransformation s a) p"

and then define an arc (bogen) from a point p to its end point bogenendpunkt s o p
as the set of all points reached by scaling the transformation between 0 and 1:

definition
bogen :: "real = real = Punkt = Punkt set"
where
"bogen s o p =
{p’. (da. 0 < a AN a <1 A p’ = bogenendpunkt (a*xs) (a*a) p)}"

We call a superset X of an arc, bogen s a p C X, an arc covering. Computed
arc coverings describe convex sets, a concept we briefly recapitulate next.

Convex Sets of Vectors

A set X of two-dimensional points, or vectors, is convez if for each pair of vectors
vy, vy € X, the line connecting them, which is given by {t-v; + (1 —¢)-v9 | 0 <
t < 1}, is also contained in X. Formally:

definition

konvex :: "Punkt set = bool"

where

"konvex K = (Vx€K. VyeK. Vt. (0<t A t<1) —
(t p x + (1 - t) *p y) € K)"

The convex hull of a set of vectors X is the smallest convex superset of
X. Since the superset relationship defines a complete lattice, it is equal to the
intersection of all convex supersets:

definition

konvexe_huelle :: "Punkt set = Punkt set"
where

"konvexe_huelle X = ﬂ{K . konvex K N XCK}"

We note that several standard properties of convex hulls can be proven
automatically by Isabelle. These include the fact that a set X is a subset of
its convex hull; that the convex hull operator behaves as an identity on convex
sets; that it is a monotonic and idempotent operator; or that the union of the
convex hulls of a set of vector sets X; is a subset of the convex hull of the union
of the Xz

lemma subset_konvexe_huelle:

160 Chapter 7. Verification of the SAMS Code

Figure 7.9: Construction of points V; to obtain triangles covering arc segments

"X C konvexe_huelle X"

lemma konvex_imp_konvexe_huelle_eq:
"konvex K = konvexe_huelle K = K"

lemma konvexe_huelle_monoton:
"X C Y — konvexe_huelle X C konvexe_huelle Y"

lemma konvexe_huelle_idem:
"konvexe_huelle (konvexe_huelle X) = konvexe_huelle X"

lemma konvexe_huelle_Union:
”U (konvexe_huelle ¢ X) C konvexe_huelle (UX) "

Arc Coverings

Every arc with an angle less than 7 is covered by the triangle defined by the
arc’s end points and the intersection of the tangents through these end points.
This situation is depicted in Fig. 7.9, where the arcs with end points P and U;
as well as Uy and @, both with an angle of 5, are contained in the triangles
constructed with the intersection points Vi and Vs, respectively. The latter two
can easily be constructed if the points are regarded as Euclidean vectors; e. g.,
V7 is the sum of P, half the direction vector P — Uy, and the altitude (vector)

of the isosceles triangle AP V; Uy, two of whose angles are known to be §:

1 1
V1:P—|—§(P—U1)—|—tan<% (0 1>(P—U1)

>
:P+;-< 1 tanm)-(P—Ul)

%:PJr;'(—tan(i) 1)-(U1—Q).

These equations are directly adapted (once again disguised as complex arith-
metic operations) in the definition of function konverpunkt which yields the in-
tersection point, or convex point, given start point S, end point F, and the angle
« of the arc from S to E. Using the variable names of Fig. 7.9, we therefore

have konvexpunkt P Uy (%) =V.

7.2. Domain Modelling 161

definition

konvexpunkt :: "Punkt = Punkt = real = Punkt"

where

"konvexpunkt S E o = S + Complex 1 (- tan (a/2)) * (E-S)/2"

For the computation of safety zones it not only necessary to compute over-
approximations of arcs (by triangles), but these should also be as tight as pos-
sible, to keep the safety zone small. The approximation using a single convex
point yields extremely large triangles for arc angles close to m, since the tan-
gents become almost parallel. The solution is to increase the number of auxiliary
points by splitting the arc into n equal segments. Fig. 7.9 is an example, if the
arc from P to @ is considered as split into two halves, using the intermediate
point U; and two auxiliary points V7, V4. The overall arc is then covered by the
convex hull of the points P, Vi, Vs, Q. This allows to generalise the computa-
tion of the convex point to the computation of an arbitrary number n > 1 of
auxiliary points. Given a start point S and an arc of length n - s (n € N) and
angle n - «, the convex point of the first segment of length s and angle a can
be computed. The arc transformation that defines the arc can then be used to
transform this auxiliary point to obtain auxiliary points for the remaining n — 1
segments. For example, by applying the transformation that maps P to U; to
V1, one obtains V5.

As a technical aside, we note that scaling the parameters s, « of the trans-
formation bogenendpunkt by a natural number n is equal to the exponentiation
(iterated, n-fold application) of that function by n:

lemma bogenendpunkt_power:
"bogenendpunkt s o ~ n = bogenendpunkt (s*real n) (a*real n)"

Finally, given a start point S, an arc starting at S of length n-s and angle n-«
we can define the set of points whose convex hull covers the arc, hence contains
all points of the arc. It consists of S, the end point of the arc (bogenendpunkt (n-
s) (n-a) S), and all transformations of the convex point of the first segment by
(bogenendpunkt s o)t (i < n).
definition
konvexpunkt_menge :: "Punkt = real = real = nat = Punkt set"
where
"konvexpunkt_menge S s o« n =

{S, bogenendpunkt (s*real n) (a*real n) S} U
{K . Ji<n . K = ((bogenendpunkt s «)~i)
(konvexpunkt S (bogenendpunkt s « S) a)}"

Applying the convex hull operator konvexe-huelle to konverpunkt-huelle yields
the actual arc covering:

definition
konvexpunkt_huelle :: "Punkt = real = real = nat = Punkt set"
where
"konvexpunkt_huelle S s o n =
konvexe_huelle (konvexpunkt_menge S s o n)"

The correctness of all these constructions can be summarised in a single theo-
rem stating that the arc as defined by bogen is a subset of the corresponding
konvexpunkt-huelle, hence that the latter covers the former.

162 Chapter 7. Verification of the SAMS Code

theorem bogen_in_konvexpunkt_huelle:
"la| < pi =
bogen (s * real n) (a * real n) S C konvexpunkt_huelle S s « n"

Proof (sketch). We can split an arc of length n - s into n parts

bogen (n-s) (n-a) S
= U{B 3i < n. B = (bogenendpunkt s a)® * (bogen s o S)} (7.8)

so that it suffices to show that for an arbitrary i < n
(bogenendpunkt s o)' ¢ (bogen s o S) C konvexpunkt-huelle S s an. (7.9)

We have proven formally that the transformed corner points of the triangle
covering the first arc segment lies in the overall proposed covering (the proof is
omitted here):

A = {S, konvexpunkt S (bogenendpunkt s o S) «, bogenendpunkt s o S’}

(bogenendpunkt s a)' ¢ A C konvezpunkt-huelle S s o n. (7.10)

Since the right-hand side denotes a convex set, it must also be a superset of the
convex hull of the left-hand side:

konvexe-huelle ((bogenendpunkt s a)* * A) C konvexpunkt-huelle S s an, (7.11)
so that by transitivity with Eq. (7.9) it suffices to show

(bogenendpunkt s)* * (bogen s o S) C konvexe-huelle ((bogenendpunkt s)' * A).

(7.12)
We employ the fact that forming the convex hull and applying a rigid body
transformation commutes, and that the image operator ‘ is monotone to reduce
the proof to

bogen s a S C konvexe-huelle A, (7.13)

which is exactly the statement that an arc is covered by the triangle construction
of Fig. 7.9. O

7.3 Concrete Specifications and Verification

The purpose of this section is to highlight some applications of the update sim-
plification rules of the memory model in concrete program code, to demonstrate
that additional, tailor-made lemmas are required to prove real functions correct,
and especially to show that the CSI specification language allows for readable
and concise specifications of code performing geometric operations. The section
does not list the details of all steps in a typical use of the verification envi-
ronment. Therefore, the examples given are taken from the middle of actual
verification attempts.

7.3. Concrete Specifications and Verification 163

_Bool bremskonfiguration_OK () =

0 < mindist_bremsmessung &&

0 < sams_konfiguration.fahrzeug.
maximale_ausdehnung_original &&

sams_konfiguration.bremswege.anzahl >= 2 &&

sams_konfiguration.bremswege.anzahl <
SAMS_BREMSDATEN__ARRSZ &&

sams_konfiguration.bremswege. messungen

[sams_konfiguration .bremswege.anzahl —1].v = 0.0 &&
sams_konfiguration.bremswege. messungen
[sams_konfiguration .bremswege.anzahl —1].s = 0.0 &&

${ let bs= "Bremsmessungliste{
sams_konfiguration.bremswege. messungen ,
sams_konfiguration.bremswege.anzahl}
in (sortiert-nach
(A(v1,51) (v2,82). v1 — ‘mindist_bremsmessung > wv2) bs) A
sublineare-liste bs

+;

Figure 7.10: The specification expression bremskonfiguration_OK defines re-
quirements on on global variables that ensure valid braking configuration set-
tings

7.3.1 Braking Model Computations
Data Invariants

The configuration data that are required for the braking model computations
are kept in global structures. This is a typical use case for data invariants: the
global structures need to satisfy certain properties to describe a wvalid braking
configuration. We use abbreviations (cf. Sec. 3.5.3) to name the expression de-
scribing their validity, as in Fig. 7.10. mindist_bremsmessung must be a positive
value that denotes the minimum difference between two velocities used as brak-
ing measurements. Its concrete value is of no importance in CSI specifications,
since numerical precision is not verified by the verification environment. Fur-
ther subexpressions require the maximum extension of the EUC model to be
positive, demand that at least two measurements exist, that the measurement
array has (0.0,0.0) as its last element, that the list of braking measurements is
sorted by the velocity component in descending order, with a difference of at
least mindist_bremsmessung between adjacent measurements, and that this list
defines a sub-linear list. The last two properties are expressed in terms of a
domain representation of the array sams_konfiguration.bremswege.messungen as
a list of real tuples.

Data invariants do not form an independent concept. They are instead
emulated by adding the corresponding abbreviations to the preconditions of
all functions that depend on them. This approach is more verbose than a tight
integration, which might make them available automatically during verification,
but keeps them implicit in specifications. On the other hand, explicitness can
be regarded a benefit in safety-related specifications.

164 Chapter 7. Verification of the SAMS Code

/%@
Qrequires 0 <= v
&& v < sams_konfiguration.bremswege.messungen[0].v
&& ::bremskonfiguration_OK ()
@modifies \nothing
@ensures 0 < \result
&& \result < sams_konfiguration.bremswege.anzahl
&& sams_konfiguration.bremswege. messungen[\ result —1].v > v
&& v >= sams_konfiguration.bremswege. messungen|[\ result].v
©@x/
Int32 bin_suche_index_v(Float32 v);

Figure 7.11: Computation of the interval of braking measurements into which
the given velocity v falls, via binary search

Binary Search Algorithm

Fig. 7.11 shows the specification of the auxiliary function bin_suche_index_v,
which finds the upper index of an interval into which a given velocity v falls
w.r.t. the braking measurement array. The specification does not employ ab-
straction, but instead expresses a property over C data structures. This is
appropriate, since its functionality is program related (finding an index in an
array). Its implementation is entirely standard” and is given in Sec. B.2, in-
cluding the relevant invariant. A simple loop narrows two indices imin and imax
down (by assigning one of them the value (imin + imax) / 2) until they meet
at the interval containing v. The invariant states that v consistently lies inside
the interval defined by the two indices. The proof is almost fully mechanical,
which means that it consists of a mere sequence of calls to the verification tactics
pr_tac, pr_step, pr_simp, and pr_valid, as well as unparameterised calls to
Isabelle’s simplifier via the simp tactic. Serious user interaction is only required
to prove a couple of arithmetic goals. Concretely, the following theorems were
proven during the course of verification and then added to the simplifier rule
set (by applying simp add: thm;...thm,,) in the appropriate places:

lemma int_pos_sum_div_2:

"[0 < a; a+ 1 <b] = ac< (a+b)div (2::int)"

lemma div_2_less:
"l a < b; b<c] = (a+b)div (2::int) < c"

lemma div_2_less’:
"l a<b; b <c] = (a+b)div (2::int) < c"

lemma div_2_nonneg:
”[[O < a; 0L b]] = 0 < (a + b::int) div 2"

All these rules themselves can be proven by Isabelle’s arithmetic decision
procedure. (Note that modus ponens cannot be applied to the property of
being automatically provable: if A and A — B can be proven automatically,

7 Even including the famous overflow bug for gigantic arrays that many binary
searches feature, as described by J. Bloch at http://googleresearch.blogspot.com/2006/
06/extra-extra-read-all-about-it-nearly.html.

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

7.3. Concrete Specifications and Verification 165

/*@

Q@requires ::bremskonfiguration_OK{()

@modifies \nothing

Q@ensures

${ let ts= "BremsmessungListe{
sams_konfiguration.bremswege. messungen
sams_konfiguration . bremswege.anzahl}
in
‘“{\result} x |'v] = bremsweg-approz-fkt ts |'v|

Qx/
Float32 bremsweg_geradeaus(Float32 v);

Figure 7.12: Computation of the time it takes to travel the braking distance for
velocity v according to the braking model, while driving at v

then B is not necessarily provable automatically on its own.) The simple yet
specialised character of these rules is common for auxiliary lemmas required
during proofs with the verification environment. They are neither of general
interest, so that it would be worth putting them into a library, nor are they
inherently necessary to finish a proof. They are simply a means to the end of
quickly finishing a current proof goal. In this case, they are needed to prove the
validity of array accesses at the index (imin + imax) / 2 as well as to re-establish
the loop invariant at the end of the loop body.

Straight Forward Motion

Function bremsweg_ geradeaus in Fig. 7.12 is used to compute the braking dis-
tance s at straight forward motion for a given velocity v according to the braking
model. For technical reasons, it returns the quotient s/v instead of s. The im-
plementation uses the above binary search to find the measurement interval in
which v lies, and computes the corresponding quotient (it is also displayed in
Sec. B.2). If the maximum velocity is exceeded, the cubic over-approximation
is used. Essentially, the procedure represents an efficient implementation of the
domain-level function bremsweg-approz-fkt, a fact that is directly expressed in
the postcondition, and whose proof is the main task in the overall correctness
proof. Aliasing, on the other hand, poses no problems, because the function
only assigns to local variables.

We only consider the normal case where a given velocity v lies inside one
of the measurement intervals (i. e., effectively below the maximum velocity for
which a measurement was taken). The recursive function bremsweg-approz-fkt
can then be expressed in a closed form by using list index operations, which can
later directly be related to the array index operations in the code.

lemma bremsweg_approx_fkt_value_normal:
"Yi. fst (bs ! i) > v — fst (bs ! Suc i) < v —
sortiert_nach (A(v,s) (v’,s’). v’ < v) bs —
Suc i < length bs —>
bremsweg_approx_fkt bs v =
(snd (bs ! i) - snd (bs ! Suc i)) /
(fst (bs ! i) - fst (bs ! Suc i)) *

166 Chapter 7. Verification of the SAMS Code

(v - (fst (bs ! Suc i))) + snd (bs ! Suc i)"

The precondition :: bremskonfiguration_OK provides the required property
of sortedness, while the remaining three premises are satisfied by the post-
condition of the binary search routine, i.e., the index it returns provides the
interval bounds for v. We further point out that bs is instantiated with a
BremsmessungListe term when applied to the postcondition, while the \ result
term on its left-hand side will consist of array expressions like sams_konfiguration
.bremswege .messungen]i].v. Effectively, we have to provide an operation on the
domain value (the list of measurements) that corresponds to the primitive read
operation in the code. This is a case where the C representation of the domain
value is not used en bloc in the code, making additional lemmas necessary that
equate array accesses and list indexing. For example:

lemma BremsmessunglListe_array_acc_v:

"Vim. i<n — ((m)premsmessung t-[1]) Bremsmessung t—’’V’’ @ o =
fst (BremsmessunglListe_n o mn ! i)"

The proof script for this function contains 19 auxiliary lemmas in total,
some of which were only used in the proofs of other auxiliary lemmas, but not
in the main correctness proof. The proof of function bremsweg_geradeaus is
rather straightforward and consists of slightly over 200 applications of tactics.
This number could seriously be reduced by a more anticipating proof strategy
avoiding repetitive proof steps. However, it shows that the more abstract level of
specifications entails increased manual guidance. The auxiliary lemmas shown
above were not unconditionally added to the set of rewrite rules for the simplifier,
but only applied in exactly the places where they were needed, preceded by a
manual massaging of the proof state to make them applicable.

Computing the Braking Configuration

In Fig. 7.13 we present the function to compute the arc length s and the angle
alpha from a given velocity pair v, w. Its fifth parameter t_| can be used to
indicate an additional latency time during which the EUC travels unbraked.
Its @memory annotation is typical: the out-parameters s and alpha have to be
separate from all memory areas that are read by the function and its callees. In
this case, these are the structure for error messages and logging, sams_andere,
and the configuration data sams_konfiguration.

The postcondition only describes the state in the case where the return value
is sams_sicher, indicating that the computation succeeded. We adopted the fail-
ure model used in the code (cf. Sec. 6.4.2) also in specifications, and only stated
the specifications for successful executions of internal functions. This was suf-
ficient, in particular since the @modifies clause, which has to hold uncondition-
ally, excludes unwanted side-effects such as setting the variable launch_rockets
to true, or at least makes their possibility visible.

The postcondition is further divided into the case where v and w are both 0,
and the more interesting case where they are not. There, the equivalent straight
forward velocity vG is computed via the domain function aequiv-v-gerade, the
measurements are interpreted as a list, as before, and the overall braking time
is computed using bremsweg-approz-fkt and the latency parameter t_|I, as well
as the pre-configured latency (sams_konfiguration . einstellungen .t_r). Finally,
the output values stored in *s and *alpha are specified, and vG is guaranteed

7.3. Concrete Specifications and Verification 167

/*@
Q@requires ::bremskonfiguration_OK{()
&& \valid(s) && \valid(alpha)
Omemory *s <#*> kalpha <x> (sams_andere <|>
sams_konfiguration)
O@modifies sams_andere, xalpha, xs
@ensures \result — sams_sicher —>
((v=08&& w=—0 —> xs = 0 && xalpha = 0) &&
(v!=0]| w!l=0—
${
let vG = '{$aequiv_v_gerade(v, w,
sams_konfiguration.fahrzeug.maximale_ausdehnung_original)};
ts = "Bremsmessungliste{
sams_konfiguration.bremswege. messungen ,
sams_konfiguration .bremswege.anzahl };
t = bremsweg-approz-fkt ts vG | vG +
‘{sams_konfiguration.einstellungen .t_r + t_I}

1n
Yxs} = ‘v x t A ‘{xalpha} = ‘w x ¢t A
vG < ‘{sams_konfiguration.fahrzeug.v_max}
)
Qx/
SAMSStatus berechne_bremskonfiguration(Float32 v,
Float32 w,

Laenge *s,
WinkelRad x*alpha,
Float32 t_I);

Figure 7.13: Computation of (s,«) for a given (v,w) and latency t;

to be bounded by the configured maximum velocity (or else sams_sicher would
not have been returned).

The proof of this function is much simpler than the previous one, since
the relevant domain abstraction work is done by the called functions, i.e.,
bremsweg_ geradeaus itself uses all C representations en bloc, and performs no
complicated arithmetic that could not be handled by Isabelle’s simplifier. Only
two trivial auxiliary lemmas were needed, and the proof consists of less than 50
tactic applications.

7.3.2 Arc Coverings

Function bogenhuelle_L in Fig. 7.14 implements the approximation of arcs given
by their length s and angle alpha using L auxiliary points, as described on
the domain level in Sec. 7.2.2. For practical reasons, the function does not
approximate a single arc, but yields approximations of all arcs described by the
points in the given array startpunkte_daten, which in practice constitutes the
contour points of the EUC.

A successful execution of this function conceptually proceeds as follows. The
relevant array lengths are ensured (i. e., the correct relation between startpunkte
_laenge and ergebnis_laenge_max is checked) and L >= 1is true. Then, for each
of the EUC contour points, the corresponding arc is split into L segments of equal

168 Chapter 7. Verification of the SAMS Code

/%@
@requires
startpunkte_laenge x L <= ergebnis_laenge_max

&& 4 < L

&& S$fabs(alpha) <= 2 % sams_pi

Omemory startpunkte_daten [:startpunkte_laenge] <>
ergebnis_daten [: ergebnis_laenge_max] <#>
sams_andere

@modifies
sams_andere, ergebnis_daten [:startpunkte_laenge x L]
@ensures (\ result = sams_sicher) —>

${ Vi.0<i A i<'startpunkte_laenge —
let sp = “Vektor2DR{&startpunkte_daten[$i]};
X = {sp, bogenendpunkt ‘s ‘alpha sp} U
{¢. 35 0<j Aj< 'L A
q = "Vektor2DR{&ergebnis_daten[$i + $]
*x startpunkte_laenge]})}
in (bogen ‘s ‘alpha sp) C konveze-huelle X)
}
@x/
SAMSStatus bogenhuelle_L(Laenge s,
WinkelRad alpha,
Int32 L,
const Vektor2D # startpunkte_daten,
Int32 startpunkte_laenge,
Vektor2D x ergebnis_daten,
Int32 ergebnis_laenge_max);

Figure 7.14: Function computing an arc approximation using L auxiliary points

length, and the endpoint of the first segment (given by s / L and alpha / L as
arc transformation parameters) is computed. The start- and endpoints of this
segment are passed to a subroutine (bogenhuelle_1) that computes the convex
point for the segment. This convex point is subsequently arc-transformed to
obtain the convex points for the remaining L — 1 segments, so that the approx-
imation depicted in Fig. 7.9 is achieved. All convex points thus computed are
stored in the result array ergebnis_daten.

The postcondition states that for all points sp in the input array, the arc de-
scribed by this point (bogen s alpha sp) is covered by the convex hull of the corre-
sponding point set X consisting of sp, the arc endpoint bogenendpunkt s alpha sp
and the associated convex points stored in the output array. This is, quite no-
tably, a high-level property expressed on the domain level, and not merely a
statement about the values of C data structures. Only in one technical de-
tail, the specification tells for each individual contour point at which indices its
convex points are stored.®

The correctness proof has a clear conceptual structure. For an arbitrary
point sp of the input array, it must be shown that its arc is covered by the convex

8With hindsight, it would have been beneficial during verification to make coverings of
multiple arcs an independent domain concept, so that the point arrays could have been treated
more uniformly, avoiding arithmetic in indices and the need for several auxiliary lemmas.

7.3. Concrete Specifications and Verification 169

hull of X. We instantiate theorem bogen-in-konverpunkt-huelle as following,
writing « for the function parameter alpha for brevity:

bogen ((s/L) * real L) ((«/L) * real L) sp
C konvezpunkt-huelle sp (s/L) (a/L) L (7.14)

so that by transitivity the proof goal becomes
konvexpunkt-huelle sp (s/L) (a/L) L C konveze-huelle X (7.15)
which can further be reduced due to monotonicity of konvexe-huelle
konvexpunkt-menge sp (s/L) (/L) L C X. (7.16)
We simplify further, along the definitions of X and konvezpunkt-menge.”

{K. 3i < L. K = (bogenendpunkt (s/L) (a/L))*
(konvexpunkt sp (bogenendpunkt (s/L) (a/L) sp) o)}
C{q (3.0<jAj<LA
q = Vector2DR o (ergebnis-daten,.[i + j * startpunkte-laenge]))}
(7.17)
The stated subset relationship actually is a proper equality, which is proven
by showing, for some i’ < L

(bogenendpunkt (s/L) (a/L))"
(konvexpunkt sp (bogenendpunkt (s/L) (/L) sp) o) =
Vector2DR o (ergebnis-daten,.[i + i * startpunkte-laenge]). (7.18)

This equation is simply the statement that the output array contains, at the
given index, the convex point of the i’-th segment of the arc described by sp,
obtained by transforming the convex point of the initial segment. But this is
exactly what is achieved by the abovementioned algorithm.

So far, the proof sketch has ignored the necessary update simplification steps.
For example, the state o in Eq. (7.18) will be the post-state of the function, so
that update simplification must be applied to compute its actual value. Unfor-
tunately it is necessary to manually insert array bounds assertions and apply
congruence rules at several places in the proof, which obfuscates its structure.
Concretely, to simplify the vector term in Eq. (7.17), we (manually) apply the
following tailor-made congruence rule:'°

lemma Vector2DR_set_index_cong[rule_format] :

"(WVj. 0 < j — j<n — p(vec) o’ (1 j) = p(vec) o (1 j)) =

{q. 3 (G::int) > 0. j <n AP qj (o(vec) o’ (1 j))} =

{g. 3j > 0. j <n AP gqj (olvec) o (1 jI)}"
This rule allows us to rewrite a representation function term that includes a loca-
tion [which depends on an existentially bound index variable j while assuming
that j lies within its specified bounds. This is necessary to be able to apply
rules such as Vec2DRec-n-update-other (cf. Sec. 4.5.2), which are conditional
over array bounds.

9The ‘free’ variable i on the right-hand side is the index of sp in the input array.
10Recall that Vector2DR o | = 7(vec) (o(vec) o 1), where g(vec) yields an intermediary
Isabelle record and 7(vec) transforms it into the final domain value (cf. Sec. 4.5.1)

170 Chapter 7. Verification of the SAMS Code

At one point, it was necessary to prove that an array index a is valid, under
the assumption that the index a * n (n > 0) was valid:

lemma left_mult_le_cancel:
"[o < a; a *n < b; (0::int) < n] = a < b"

The Isabelle/HOL library contains several of similar lemmas, but none of them
allowed the proof procedure invoked during update simplification to prove the
validity of the array access, so that the above lemma had to manually be proven
and added to the procedure’s rule set.

Another situation where auxiliary lemmas were required was related to the
scaling of s and alpha by fractions of L. The prover was not able to derive that
if || < 27, then a scaling of a by a particular factor between 0 and 1 is, too.
So it had to be tuned by adding the following lemma, where the specific term
structure in the conclusion matches that which appeared in the proof state:

lemma aux_alpha_k_over_1:
"[1< k;k<1; abs o < 2 % pi | =
abs (a *k /1 -« /1) < 2 * pi"

In total, 19 auxiliary lemmas were deemed necessary during the proof of
function bogenhuelle_L. The correctness proof consists of slightly over 300 ap-
plications of tactics.

7.4 Reflection

This section is concerned with a (subjective) evaluation of the verification envi-
ronment. It is based on the experiences made while formally verifying functional
properties of the SAMS software with it. In particular, we highlight the errors
that were found thanks to its use as well as the effect it had on the overall
verification process. The limitations regarding both its scope and its technical
realisation are also pointed out.

7.4.1 Key Figures

While we have concentrated on selected functions and their verification above,
we provide here some general figures about the software and the SAMS project.

The project staff comprised seven persons according to the project plan.
The duration of the project was three years. This time includes the initial
phase during which the product requirements were worked out. The verification
environment was designed and built during this time, too. This makes it hard
to tell how much time went into its design and development and how much time
went into the verification of the software functions. We found shortcomings in
the tool’s realisation, particularly efficiency problems when dealing with large
functions, even while we verified functions from the SAMS software.

The final version of the software module computing safety zones was handed
to the certification authority in September 2009. The correctness proofs of the
functions that comprise this module were done by the author in the last six
months of the project. Similar functions had been verified before. However, no
substantial parts of the individual proof scripts for functions from the SAMS
software existed before.

7.4. Reflection 171

The software module consists 11 C files and 15 C header files at an overall
size of 240 kB. The total number of lines of code in these files is 2804. Comments
and specifications (which syntactically are comments, too) add up to 2535 lines.
(These figures were determined using the cloc tool'l.) The C files contain def-
initions of 39 functions in total, ignoring functions for logging purposes and to
record control flow. All of these were formally specified and both the specifica-
tions and the source code were examined in specification review sessions. The
largest specification with 63 lines was that of the top-level function to compute
the safety zone. Its size is substantial, but does not exceed the limits for a com-
prehensible specification in our opinion. The structuring of specifications with
the help of @abbreviation annotations proved crucial to keep specifications read-
able. Eventually, 29 functions (74%) were formally verified when the software
was handed to the authority.

Two functionally interesting, but rather long functions were not verified.
They are a function implementing the well-known Graham Scan algorithm [120]
to compute the convex hull of a set of points as well as the function that sam-
ples the safety zone into a laser-scan like representation (Step 3 in Sec. 7.1.2).
With its 149 lines of code, a verification of the latter function was simply not
manageable. The number of assumptions in the proof state became so large
that our own update simplification, but also Isabelle’s simplifier ran for minutes
without visible progress.

Related efforts targeting the verification of realistic C programs include the
full functional verification of the seL4 microkernel [89]. The verified software
comprises 8700 lines of C code and 600 lines of assembler. They report a total
verification effort of 20 person years (py), including time to develop the necessary
verification infrastructure and including 11 py for the correctness proof. The
latter is divided into a refinement proof from an abstract (non-deterministic)
specification to a concrete one, which took 8 py, and the proof relating the con-
crete specification to the source code (3 py). Another example is the verification
of a non-optimising compiler for a subset of C called C0, which itself is writ-
ten in CO, by Leinenbach and Petrova [95]. The program consists of 1500 lines
of CO code whose verification took about one person year. Our work compares
favourably to these if one considers the combination of code size and verification
effort.

7.4.2 Errors Found

Myers et al. [112] define testing as the process of executing a program with
the intent of finding errors. Dijkstra, with a more critical attitude towards
testing, argues that testing can be used to show the presence of bugs, but
never to show their absence. Put so generally, this statement is certainly not
true: exhaustive testing can provide the same strong guarantees as a formal
correctness proof. Moreover, formal approaches to testing demonstrate that
there is no insurmountable border between formal methods and testing [125,
124, 30, 37]. Nevertheless, formal methods are often contrasted to testing by
arguing that they are inherently able to prove the complete absence of certain
classes of bugs from a given program. Yet the number and kind of found bugs,
or errors, is also a valid criterion for evaluating the use of a formal verification

HFreely available at http://cloc.sourceforge.net. The version used was 1.51.

http://cloc.sourceforge.net

172 Chapter 7. Verification of the SAMS Code

environment. In every non-trivial program there will initially be deviations from
the specification, or the specification itself will be flawed or incomplete. To find
these flaws and eradicate them is one crucial step in achieving safety in software.
We consider it as important as asserting that certain classes of errors are not
present in the end product, because this final step cannot be reached without
the preceding iterative process of improving both specification and software. A
useful verification tool should therefore help discovering flaws in the software.

But the use of a tool or methodology —in particular one that has a large
influence on the overall development process— can also have ‘hidden’ effects on
software quality. We believe that this was the case for the use of the formal
verification environment in the SAMS project. One reason is that the code
was continually implemented with ease of verifiability in mind. Code quality
increases if the developers are involved in creating sketches of the correctness
proofs for central program functions. Obviously, this calls for highly competent
and mathematically inclined developers. A further reason is that the verifiers
and domain experts took part in code reviews and could add their expertise
about potential problems in the code. This led to an ultimately rather low
number of errors that were discovered during the actual function correctness
proofs. This observation is also reported by Klein et al. [90], who point out
that in their formal verification of an operating system microkernel, no deeper
algorithmic bugs were found during source code verification, as these had already
been detected or avoided while working out the low-level specification. The
following three sections list some of the errors we found .

Errors Uncovered During Domain Modelling

High-level errors were uncovered by virtue of the formal domain modelling. For
this, no associated code needs to exist, even if in the cases at hand it did (as ex-
plained in Sec. 7.4.3 below and in [61]). For example, the initial definition of the
function bremsweg-approz-fkt modelling the EUC’s braking behaviour was writ-
ten under the assumption that a quadratic over-approximation of the braking
distance above the maximum measured velocity would suffice to obtain a con-
vex function (cf. theorem bremsweg-approz-fkt-konvex on page 158). However,
a formal proof attempt of this fact unveiled that, in fact, a cubic approximation
would be necessary. Both code and specification were amended to incorporate
this insight.

This concrete error would probably not have caused failures in the deployed
system; however, the error was structurally a faulty assumption about the ap-
plication domain. Such errors are hard to detect in general. Assessing domain
assumptions by formalising them and trying to derive their ‘obvious’ properties
is an effective means for tackling this problem.

Errors in the Specification

Formal verification is extremely well-suited for ensuring the completeness of
specifications, i.e., to uncover hidden assumptions or to highlight omissions.
While formally verifying the code, several minor flaws were detected, such as
asserting that the variable keeping the maximum velocity is strictly positive, or
that the configured number of laser beams is below a threshold. Since array

7.4. Reflection 173

lengths and array pointers must be maintained separately in C, several precon-
ditions of the kind

\array(a, len) && 0 <= idx && idx < len

were used, some of which were missed until they were needed during verification.

A more serious bug was found in the specification of the top-level routine
computing the safety zone: it described the function’s output as the intersection
of the monitored area (the area visible to the laser scanner) and the computed
safety zone. However, both areas were expressed in different coordinate systems;
the former took the position of the laser scanner as its origin, while the latter
used the reference point of the EUC (depicted in Fig. 7.7). The obvious solution
was to apply a coordinate transformation to the safety zone before intersecting
the two. The bug was discovered while planning the correctness proof of the
function on paper. In fact, the bug was found because the transformation
was applied in the code from the beginning, leading to a mismatch with the
specification.

Errors in the Code

There were relatively few errors in the SAMS code that could be detected
through formal verification. We attribute this fact to the thorough scientific
scrutiny under which the domain model, the specifications as well as the code
were put at virtually all times. Moreover, SAMS being a research project, there
was certainly less pressure w.r.t. time to market and cost efficiency, which
commonly benefits quality. All persons involved in the specification, design,
development and verification of the safety-related software collaborated closely.
This situation is probably uncommon for a purely industrial project, where the
pressures are stronger and where project members might be separated across
several companies. We therefore assume that the number of errors found in
such projects would be greater than it was in the SAMS project. Of course
one can argue that time to market pressure would in fact prevent the appli-
cation of time-consuming verification methods in the first place. There are
however indications that formal specification and verification actually increase
cost-effectiveness [11].

Nonetheless, the following two errors were actually only found during formal
program verification. In function bogenhuelle_L we found a ‘disguised’ off-by-
one error: the transformation that was applied to the convex point of the first
segment to obtain the remaining convex points was implemented as

s_1 =s / (Float32)1;
alpha_1 = alpha / (Float32)1;
for (k = 1; k < L & ret = sams_sicher; ++k)
Je)
bremskonfiguration_zu_skt(s_k — s_1,
alpha_k — alpha_1,
&bogen_k);

where bogen_k was supposed to receive the desired transformation matrix for
the (k + 1)-th segment in an iteration. We discovered that the subtraction of
s_1 and alpha_1 resulted in the duplicate computation of the convex point for

174 Chapter 7. Verification of the SAMS Code

the first segment, but left the final convex point uncomputed. The error was
fixed, and verification succeeded.

The other error was discovered in a function performing the standard geo-
metric test whether a point lies mathematically to the left of a given straight
line, by computing a determinant and checking its sign (endpunkt_links_von
_richtung). The test was supposed to check for strict left-ness, i.e., it should
reject points lying on the line. Since it used a (<) comparison instead of (<=),
the behaviour was incorrect.

7.4.3 Verification Process

In this subsection we reiterate the arguments made in [150] about the charac-
teristics and benefits of the verification process adopted in the SAMS project.

Verification as a joint effort. One aspect of formal verification is that be-
cause correctness relies on formal proof, it is not that crucial anymore to strictly
separate the roles of tester/verifier and implementer. In contrast, the close co-
operation between the verifier and the implementer boosted productivity in our
case: verification became a joint effort. Writing specifications which validate the
safety requirements, and can be formally verified, is not easy; it requires an un-
derstanding of the implementation, the domain model, and how the verification
works. It is easy to specify something which is correct but cannot be verified;
on the other hand, it is also a temptation to write low-level specifications which
just restate what the code is doing in elementary terms without the abstraction
required to state useful safety properties. In our case, the specifications were
authored together in regular specification meetings. Sometimes a specification
was only formulated after prototypical code had been written and initially re-
viewed for obvious errors. These meetings ensured a good understanding of the
specifications by the implementers, and vice versa a sufficient understanding of
the code by the verifiers to enable them to do their work.

A somewhat unusual example of a close collaboration between implementer
and verifier is a change of the implementation induced by verifiability consid-
erations. It refers to the function to convert the safety zone into a sequence
of vectors corresponding to a laser scan (Step (e) in Fig. 1.2). Initially, the
specification interpreted the resulting sequence as the rays of an idealised laser
scanner. We switched both specification and implementation to a sector-based
interpretation, in which each result describes the whole area of a sector. This
fitted in well with the other specifications and allowed us to specify the result
simply as a superset of the actual safety zone, and was easier to verify formally.
Again, we share this observation with Klein et al. [90], who regard it essential to
be able to modify the source code with the aim of easing verification to complete
the verification on time.

In personal communication —among others with members of CEA-LIST!2,
who were at that time cooperating with Airbus to formally verify C code—
it was often noted that industrial partners are very reluctant when it comes
to giving away their source code, even to project partners, let alone accepting
proposals for code changes. Therefore, the situation in the SAMS project was
probably exceptionally well-suited for a formal verification effort.

128oftware Reliability Laboratory of the Commissariat & 'Energie Atomique, Saclay, France.

7.4. Reflection 175

Code-centric specification and verification. We experienced another in-
teresting interplay between specification, implementation and application. It
shows that in the application domain (safety-related robotics software) a strict
waterfall-like development process (of which the V-model is a descendant) is
not suitable or at least entails problems. This is because apart from safety, the
availability of systems is also of sublime importance, but can really only be as-
sessed on running systems. This leads to a feedback loop from the lowest parts
of the model —the coding level— up to the specification and design levels. The
argument is independent of the application of formal methods, but noteworthy
nonetheless. At first, the specification required that an emergency stop should
be initiated whenever the speed of the vehicle exceeded the maximum speed for
which a braking distance was measured. However, simulations on a prototypi-
cal implementation revealed that this requirement was too restrictive: in typical
applications, the measured maximum velocity v,, may be exceeded occasionally
by a small margin, and initiating an emergency stop in these situations would
severely reduce availability. Hence, the requirement was modified so that the
braking distance for speeds larger than v,, could safely be over-approximated,
and the specification adapted accordingly.

The importance of being formal. Formal specification necessitates to state
requirements precisely. A beneficial side effect is that it focuses discussions and
manifests design decisions. Besides the well-known issue of the ambiguities in
natural language specifications, it turned out to be easier for specifiers and
implementers to use the vocabulary of the domain formalisation to state these
requirements and to reach agreement on their respective meaning. For quick
sanity checks of specifications written down or modified during meetings, we
provide tool support for the type-checking of specifications. This pertains both
to code-related specification expressions (e.g., types of program variables) as
well as Isabelle expressions used in code specifications. A typical specification
meeting would end with a function specification reviewed and type-checked.

7.4.4 Impact of Changes

A major annoyance is the fragility of proofs, i. e. their lack of robustness w.r. t.
changes in source code. This particularly hurts in the face of interactive ver-
ification: proofs are not generated automatically by a push-button tool, but
proofs scripts are written by humans —even if they sometimes only consist of
a short sequence of calls to automatic proof tactics. We easily support ‘regres-
sion verification’, i.e. the automatic checking of all existing correctness proofs
against modified source code as well as modified specifications.!® Unfortunately,
however, many proof scripts become invalid even through small modifications
like the rearrangement of statements or a semantics-preserving rewriting of ex-
pressions. This meant that they had to be adapted manually in most cases.
This problem only stays tractable because the change impact is always
shielded at the function interface boundaries: As long as the interface spec-
ification of a function f does not change, all its callers are not affected by
changes in the body of f. If the specification is modified, all callers need to be

13This functionality is not built into the verification environment itself, but is instead re-
alised by a collection of scripts that are executed once a day, or on demand.

176 Chapter 7. Verification of the SAMS Code

re-verified; again, their callers are not affected, as long as no changes to other
specifications become necessary.

7.4.5 Technical Realisation

By technical realisation we refer to the issues pertaining to the use of Isabelle
as the prover back-end and interface for the verifier, and more specifically the
use of higher-order logic, i.e., Isabelle/HOL, for all parts of the formalisation.
We do not intend to argue for or against the use of either, which has been done
elsewhere [122, 105, 5, 88, 100]; instead, we want to point out two aspects that
emerged during our practical verification work.

Structured proof states. A lot of information has to be maintained during
a correctness proof, ranging from the specification of the function to be proven
over a symbolic encoding of one or several program executions to intermediate
facts such as the results of update simplification steps, which may be kept for
later re-use. Unfortunately, provers like Isabelle represent proof states in a very
simplistic structure essentially consisting of a list of assumptions and a single
conclusion. This forces one to encode a more complex structure on the level of
the object logic. For example, we introduced another equality operator (=) to
express relations between program states (e.g., ¢/ = o(l == v)) and identified
it with the regular equality (i.e., x = y iff x = y). This was done simply to
be able to recognise those equalities relevant to update simplification. Having
two operators for equality is irritating from the user’s point of view. Moreover,
having to maintain such equalities in the user visible proof state clutters up the
proof state display, while they are in most cases not of interest to the user.

The same applies to caching the results or by-products of expensive proof
steps. For example, we implemented a procedure performing update simplifica-
tion on an arbitrary expression containing read terms (I @; o, etc.). In addition
to substituting the final results of all update simplifications, the procedure adds
the associated equations (e.g., [@; ¢ = v) as assumptions and re-uses them sub-
sequently. This speeds up the whole update simplification process by an order
of magnitude, but adds several more technical assumptions.

The efficiency of proof procedures is furthermore impaired by the flat as-
sumption structure, because it often depends on the number of facts (and
thereby assumptions) to consider. This is true in particular for Isabelle’s sim-
plifier, which can easily get trapped in an infinite rewrite loop, whose cause is
really hard to detect in the face of over a hundred assumptions and rather poor
support for tracing its steps. We invented dummy marker predicates with trivial
definitions, such as INV x = z for loop invariants, and fine-tuned the congru-
ence rules of the simplifier to prevent it from considering the marker’s argument
during its operation. In the case of INV, the latter is a user-defined invariant
expression and can hence include a subexpression evoking non-termination.

Fine-grained control over proof steps. Another stumbling block is the
restricted possibility of controlling individual proof steps. A characteristic ex-
ample is the proof that a given array index lies within certain bounds. Some-
times Isabelle’s powerful arithmetic proof procedure is able to find a proof, but
only when given the right (and often rather obvious) selection of assumptions

7.5. IEC 61508 Safety Process Integration 177

manually, while it does not terminate when given all assumptions of the proof
state. The matured user interface provides no help in performing this selection,
and Isabelle’s traditional proof style is not geared towards user-guided assump-
tion management either. The KeY prover for program verification [19] has a
richer user interface and lets the user select subterms to which so-called taclets
(reminiscent of Isabelle’s tactics) are to be applied.

We considered switching to the Isar structured proof language by Wenzel
[152] (cf. Sec. 2.2.1). However, its philosophy of making all intermediate facts
and assumptions literally explicit in the proof script quickly became inconve-
nient. A user does not want to (and for efficiency reasons must not be required
to) type in the large number of technical assumptions that occur during pro-
gram verification. In contrast to proofs on the domain level, which are often
mathematically pleasing and structurally concise, proofs of programs consist
largely of long sequences of technical steps.

7.4.6 Limitations

Our tool focuses on functional correctness, and does not consider aspects like ex-
ecution time analysis and bounds, resource consumption, concurrency, and the
interface between hardware and software. This is a clear separation of concerns,
as it is becoming common consensus that only the use of multiple, specialised
tools and methodologies can achieve a high level of confidence in software [78].
There are further limitations in the realm of functional properties and run-
time errors. Like other formalisations, we idealise the numerical domains that
programs work on from bounded integers and floating-point numbers to math-
ematical integers and real numbers. This may in exceptional cases result in
undetected run-time errors; we have given an example in [100]. The price we
had to pay to obtain a formalisation in which interesting, abstract, functional
properties can be proven with tolerable effort was a slight mismatch between
the actual (machine-) and the formal semantics.

7.5 IEC 61508 Safety Process Integration

Two questions arise when a tool such as our verification environment is used in
an ITEC 61508-3 software development. Firstly, which requirements are inflicted
on the tool itself to qualify its use? And secondly, what is the benefit of the
tool’s usage, primarily w.r.t. the fulfilment of regulatory stipulations regarding
the verification and validation of the developed software?

7.5.1 Tool Qualification

The notion of tool qualification or tool certification is present in several safety
standards, but with differing degrees of detail. They have in common that the
high level of rigour with which safety-related systems are developed to some
degree permeates the tools used for its development.

DO-178B

DO-178B defines tool qualification as “the process necessary to obtain certifica-
tion credit for a software tool within the context of a specific airborne system.”

178 Chapter 7. Verification of the SAMS Code

Certification credit is in turn defined as “acceptance by the certification authority
that a process, product or demonstration satisfies a certification requirement.”
So whenever a requirement of the standard shall be satisfied by the use of a tool
whose output is not individually verified, the tool must be qualified (§12.2).
Tools can only be qualified on a per project basis, although a previous qualifi-
cation obviously supports the qualification for similar projects. This generates
incentives for the creators of verification and validation tools to make them
“qualifiable”, or to provide reference qualifications, because their users are for-
mally guaranteed to profit from the certification credit. Kornecki and Zalewski
[92] provide an overview of tool qualification in the development of dependable
software that is based on DO-178B.

IEC 61508

IEC 61508 highly recommends the use of certified tools (Part 3, §7.4.4 and
Table A.3) from SIL 2, “whenever possible” (Part 7, § C.4.3). However, it does
not introduce any criteria by which one can decide whether a given tool has
to be certified, nor does it list requirements for a tool certification, such as the
documentation of use cases or validation measures for the tool. The amount of
information about tool certification is rather sparse overall. IEC 61508-3 makes
the developer of the safety-related software (as opposed to the tool vendor)
responsible for demonstrating that the applied tools are compliant with the
requirements of the standard. The effect is similar to the requirement of DO-
178B which explicitly puts tool qualification on a per project basis.

The standard provides the alternative of using tools with increased confi-
dence from use, and highly recommends them for all SILs. In combination with
the fact that the standard is agnostic of any kind of certification credit, this
limits the motivation for tool developers to perform tool certification for IEC
61508-3.14 Since little guidance is provided on how to certify a tool, most certi-
fications in practice are individual efforts arising from a collaboration between
the tool vendor and a certification authority [64, 46].

ISO/DIS 26262

The descendant of IEC 61508 for the automotive domain, ISO/DIS 26262 Road
vehicles — Functional safety, pays more attention to the role of tools in the
safety life cycle. It introduces the concepts of tool impact, tool error detection
and tool confidence level. Tool impact is defined as the possibility that a safety
requirement is violated by a failure or an erroneous output of a software tool,
while tool error detection describes the probability that a failure or an erroneous
output of a software tool will be detected (by other verification measures). The
tool confidence level is finally a discrete measure of confidence in the tool com-
puted from the previous two — ranging from TCL1, where no qualification is
necessary, to TCL4 requiring extensive qualification.

Four methods are recommended to achieve a qualification: (1) increased
confidence from use, (2) evaluation of the development process, (3) validation
of the software tool, and (4) development in compliance with a safety standard.

14We learned in personal communication with the Institut fiir Arbeitsschutz der Deutschen
Gesetzlichen Unfallversicherung (IFA) that this situation is about to be improved in the
upcoming second edition of the standard.

7.5. IEC 61508 Safety Process Integration 179

Conrad et al. [47] describe how a code generator and a static analysis tool have
been qualified as compliant with this standard using the third method.

7.5.2 Certification of the Verification Environment

Since the verification environment was only developed during the course of the
SAMS project, invoking increased confidence from use was not an option to
justify its employment. This made a tool certification necessary. To this end
we cooperated with the certification authority TUV Siid Rail GmbH. The cer-
tification effort was divided into the following work packages:

Defining the scope of formal verification This entails extracting from
the standard which requirements are supposed to be fulfilled by the application
of the verification environment. A straightforward mapping from requirements
to the functionality of the tool could be achieved based on the tables listing
procedures and measures in Annexes A and B of IEC 61508-3. The mapping is
described subsequently in Sec. 7.5.3.

Moreover, we used the verification and validation plan to delineate the formal
verification from other verification tasks. For the life cycle phases of module
design and coding we used the following five verification methods:

o Code reviews

e Formal specification of the program functions
¢ Reviews of formal specifications

e Formal proof in the verification environment

o Dynamical analysis and test; these were used to demonstrate that no
overflow or underflow of floating point expressions occurs and that the
maximum rounding error lies within specified bounds. The RT-Tester
tool [148] was used for this purpose.

It is noteworthy that we defined the formal specification of program functions
as a verification activity as well as a specification activity. Very generally, the
reason is that by structuring and implementing code with formal verification in
mind, the code quality is already improved. More concretely, by writing formal
specifications for program functions which are formulated in terms of higher
level domain concepts we ensure both that the domain concepts are sufficient
to express these specifications, and that the code’s module structure is suitable
to satisfy the requirements dictated by the domain modelling.

Modular verification on a function-by-function basis allowed us to focus for-
mal verification on those functions which are crucial to functional correctness;
other functions may contain constructs that our tool cannot reason about, or
may not pertain to global correctuness (e.g., logging), and can be treated more
adequately by manual review or functional tests.

Providing documentation The following documentation about the verifi-
cation environment and its planned use for the verification of the SAMS safety-
related software were handed to the certification authority:

180 Chapter 7. Verification of the SAMS Code

e A set of slides from a presentation demonstrating the approach and the
scope of the verification environment, which was held in front of the cer-
tification authority.

e A plan for validating compliance with the MISRA C guidelines. Most
of the rules set forth therein are checked automatically by the front-end.
Some rules are not easily checked automatically, such as the requirement
that “limited dependence should be placed on C’s operator precedence rules
in expresions” [109, Rule 12.1], or that there shall be no unreachable code.
The implementation of the MISRA analyser is described further in the
master’s thesis by Mértins [103]

o A validation plan for the verification environment itself. The plan de-
scribes Isabelle’s LCF-style architecture (cf. Sec. 2.2) which allows one
to restrict the correctness analysis to a well-defined small kernel. It also
includes the calculation that justifies Isabelle’s increased confidence from
use. It finally describes validation measures for the parser component of
the front-end, for the formalised semantics as well as for the notion of
function correctness as presented in Sec. 6.2.1. We appeal to internal re-
views as well as reviews of our publications by the scientific community
as the validation measures for the latter two.

e The abovementioned verification and validation plan

e A reference manual of the verification environment describing its function-
ality and usage

« Publicly available course material for the Isabelle theorem prover!®. The
material is divided into four sessions and consists of 132 presentation slides
and 15 Isabelle/HOL example theories

Inspection and audits An on-site audit was done by the certification au-
thority in which the verification of several example programs as well as concrete
functions from the SAMS software were demonstrated. Moreover, reviews of all
documents from the previous work package were performed.

Issue of letter of conformance and technical report Based on the on-
site audits and the reviews of the verification and validation plan in particular,
the software verification and validation procedures were acknowledged to fulfil
the SIL 3 requirements according to IEC 61508-3. This was confirmed in a
letter of conformance as well as a more detailed technical report, from which we
quote the following: “SAMS verification environment and the theorem prover
Isabelle are applicable in use for the specification and formal verification of
MISRA-C software libraries according to the standard IEC 61508-8:1998 up to
SIL 3. [...] The related analyses and tests have shown that there are no safety-
related objections against the use of SAMS verification environment for software
verification in the phases system design, module design and implementation.”
Formal proof was recognised as the central means of verification. In contrast
to the new extensions of Isabelle/HOL in the form of theories and tactics that
lie at the heart of the verification environment, we successfully argued that

15 Available at http://isabelle.in.tum.de/coursematerial/IJCARO4

http://isabelle.in.tum.de/coursematerial/IJCAR04

7.5. IEC 61508 Safety Process Integration 181

the bare Isabelle system has already acquired increased confidence from use:
“Isabelle has been used by scientists and mathematicians in academia. Hence,
it is considered a proven tool for the formal verification.” In fact, we estimated
the number of hours that Isabelle has been in serious use as 2 - 10 hours.
The technique of demonstrating increased confidence from use by estimating
usage hours, by evaluating the tool’s development activity, by ensuring a proper
attention to defect reports and by securing the public maintenance of a list of
known defects is commonly applied for non-certified compilers and was adopted
here.

Open-minded authorities.

To our surprise the external reviewers from the certification authority were
quite open-minded towards the use of expressive (higher-order) formal logic for
specifications and an interactive theorem prover for doing the actual verification.
In our case this was Isabelle/HOL, but its specifics did not play an important
role and HOL4 or Coq or any other well-known prover with an active research
community, ample documentation and a large enough number of global usage
hours could have been chosen.

7.5.3 Covered Verification Measures

Annex A of IEC 61508-3 gives guidance on the selection of procedures and
measures to fulfil the requirements of the different life cycle phases defined in
the standard. It is presented in the form of ten tables, whose headings we list
here for reference: (1) Specification of software safety requirements, (2) Software
design and development: software architecture, (3) Software design and develop-
ment: tools and programming languages, (4) Software design and development:
detailed design, (5) Software design and development: software module and in-
tegration testing, (6) Integration of the programmable electronic, (7) Software
safety validation, (8) Modification, (9) Software verification, (10) Functional
safety assessment. The individual measures are detailed in associated tables in
Annex B.

Procedures and measures that can arguably be covered by using the veri-
fication environment belong to tables A.1, A.2, A.4, A.5 and A.9. Regarding
Table A.1, the standard unconditionally demands that the safety requirements
are primarily specified in natural language amended with a mathematical de-
scription if applicable. It asks for the use of semi-formal or formal methods as
an additional technique to increase the clarity of the specification. This require-
ment is obviously satisfied by formalising requirements in terms of the formal
domain model in the verification environment. Table A.2 mainly asks for tech-
niques that increase error detection and fault tolerance. Among others, it also
asks for the use of formal methods. The less obvious measures that are covered
have been explicitly enumerated by the certification authority in the letter of
conformance. The list is reproduced in Fig. 7.15.

With regard to Table A.4, four out of six measures are covered: the use of
formal methods, of computer-aided design tools, of design and coding guide-
lines, and of structured programming. Missing are defensive programming and
modularisation. The standard interprets modularisation structurally, and our
tool does not apply code metrics. In practice, functions which can be formally

182 Chapter 7. Verification of the SAMS Code

Table A.4 | Software design and development: detailed design

lc | Formal methods such as, e.g., CCS, CSP, HOL, LO-
TOS, OBJ, temporal logic, VDM, and Z

2 | Computer-aided design tools

5 | Design and coding guidelines (detailed in B.1)

6 | Structured programming

Table A.9 | Software verification
1 | Formal proof
3 | Static analysis (detailed in B.8)

Table B.1 | Design and coding guidelines
Use of coding guidelines
No dynamic objects

a | No dynamic variables
Restricted use of interrupts
Restricted use of pointers
Restricted use of recursions
No unconditional jumps in programs written in higher-
level languages

Table B.8 | Static analysis

Marginal value analysis
Control flow analysis

Data flow analysis

Error estimation

Symbolic execution

N O O W N

0 O W =

Figure 7.15: Covered measures required by IEC 61508-3, Annex A and B, as
accredited by the certification authority

verified with tolerable effort adhere to these structural properties anyway. In
contrast, the modularity we do achieve is of a more behavioural nature: the
effect of a function is summarised in its interface specification, even though the
function body might be of arbitrary size and complexity.

Concerning Table A.9, we cover formal proofs and static analysis. The lat-
ter includes the measures marginal value analysis, control as well as data flow
analysis and symbolic execution. Whereas our Hoare-logic style verification re-
sembles a symbolic execution, many properties that are derived from the other
analyses, like ensuring that only initialised variables are read, are also subsumed
by formal verification.

However, most of the work in a verification effort goes into testing, so one
would require that the overall amount of functional testing can be reduced in a
development process using formal verification. This is confirmed in a remark in
the standard (§7.4.7.2, Remark 2). In our case, the only tests that had to be
performed on the module level were related to over-/underflow and numerical
stability. No functional testing had to be performed for the formally verified
units, due to the level of detail at which both specifications and the programming
language are modelled.

7.5. IEC 61508 Safety Process Integration 183

7.5.4 Traceability

The V-model of IEC 61508-3 (cf. Fig. 2.4) asks for traceability between ad-
jacent phases on the downward leg, i.e. from the system safety requirements
down to the code, as well as ‘horizontal’ verification on the upward leg from
code to the integrated and validated system, where appropriate tests ensure
the satisfaction of all requirements. The model somewhat neglects model-based
analysis and does not assign it a specific level; it might be considered part of
the software architecture, but in any case has a direct link to the safety require-
ments. A definite strength of our methodology is the very strong link between
this analysis level and the concrete source code (at the bottom of the V-model):
Formal code verification in our methodology ensures both traceability between
code and module design, and between module design and the analysis level.
The main reason for this is the high level of abstraction of code specifications,
in which the domain formalisation is directly embedded. For example, take the
specification in Fig. 7.14 of the function computing a polygonal approximation
of the curve described by a single point of the vehicle’s contour during an emer-
gency stop. Its specification directly expresses that the area described by the
returned polygon completely contains the braking curve in the two-dimensional
environment model.

184 Chapter 7. Verification of the SAMS Code

Chapter 8

Conclusion

8.1 Summary

In this thesis we have shown how formal functional specification and verifi-
cation can be applied to enable the use of mathematically-oriented software
in safety-related systems. We have presented the design and realisation of a
formal verification environment that allows to establish a formal connection
between high-level safety requirements and concrete source code. We have fur-
ther demonstrated its application in the certification of a software module that
is part of a safety-related system ensuring collision avoidance for automated
guided vehicles.

We started by giving a brief overview of applicable law, in particular the
EC machinery directive (Sec. 2.1.1), and pertinent safety standards, where we
focused on IEC 61508, a standard applicable for the functional safety of pro-
grammable electronic devices. We highlighted the important concepts codified
in the standard, especially the safety integrity level (SIL) which is used to clas-
sify the safety requirements to be considered for a concrete system (Sec. 2.1.2).

A functional specification language (CSI) was devised which is based on
classical preconditions and postconditions of program functions. Specifications
are attached to C source code through annotations. A unique feature of the
language is the high level of abstraction and the conciseness of specifications
which it affords. This is achieved by formalising the domain model derived
from high-level safety requirements as Isabelle/HOL theories and by expressing
source code specifications in terms of this model (Sec. 3.3.2). The connection
between domain objects and program objects is established through the concept
of representation functions. These are logic functions which interpret specific
memory areas as the representations of domain objects. We furthermore devised
binary combinators by which memory layouts, specifically aliasing patterns, can
be described. These descriptions avoid combinatorial problems that are inherent
in pairwise inequality constraints (Sec. 3.4).

The memory model for C is the crucial link between program values and
logic values and determines the ease with which pointer programs can be ver-
ified. Our memory model is based on finite typed maps, i.e., functions that
map locations to typed sequences of atomic values (Sec. 4.2). The included
type information allowed us to neatly define the validity of pointer and array

185

186 Chapter 8. Conclusion

accesses (Sec. 4.2.6). The chosen representation format is largely compliant
with the loose memory model of the C standard. Importantly however, our
model allows for a restricted form of the split-heap property, where two valid
locations denoting structure fields with different names are never aliased. The
model further allows to treat local variables as first-class entities whose address
can be taken, stored and passed to other functions, which was a key design
goal. Rules for update simplification, i.e. the process of deciding whether and
how to integrate a state update into a given memory-dependent logic value,
were developed for both simple program values and representation functions,
enabling a uniform and largely automatic treatment of all memory-dependent
values during verification (Sec. 4.5).

The memory model and the formal denotational semantics for C programs
(Chapter 5) provide the basis of the program logic by which programs are even-
tually verified to satisfy their specification. The structured specifications at-
tached to C functions are encoded in simple Hoare-style assertions within the
theorem prover. Program functions can be verified individually, relying only on
the specifications of called functions, due to the definition of modular correctness
(Sec. 6.2). The associated proof rules are of a rather administrative character
and their application within the verification environment is fully automatic.
The verification conditions thus generated are described by a simple grammar
and represent the paths of a symbolic execution of the program (Sec. 6.4). This
distinguishes our approach from related ones that also generate verification con-
ditions, but where the connection to the actual source code is mostly lost. We
finally described the special purpose tactics by which the theorem prover was
extended. These are used by verifiers to simplify and eventually discharge the
verification conditions (Sec. 6.5). The focus regarding automation is on memory
update simplification, pointer validity and the deconstruction of the verification
condition according to the grammar. Proofs of the domain-related parts have
to be done mostly manually using Isabelle’s regular proof support.

The verification environment was used in the SAMS project to satisfy several
software verification objectives in an IEC 61508-3 certification. We presented
the formalisation of high-level requirements in the domain model (Sec. 7.2) and
showed concrete source code specifications of the algorithm computing safety
zones (Sec. 7.3). Most functions of the safety-related software had been formally
verified when they were handed to the certification authority. To assess our claim
about the adequacy of formal verification for mathematically-oriented software,
an evaluation was performed (Sec. 7.4) with respect to the errors found through
formal verification, the influence it had on the development process as well as
its technical and conceptual limitations.

Finally, we described how to integrate the verification environment into
a safety-related software development process according to IEC 61508-3. We
sketched the tool qualification and outlined the ‘certification credit’ obtained
by using the tool. This specifically includes the reduction of functional testing
on the module level and the coverage of several static analysis measures.

8.2 Concluding Remarks

Our general hypothesis was that the verification methodology described in this
thesis contributes to the successful certification of computationally complex soft-

8.2. Concluding Remarks 187

ware and hence enables its use in safety-related systems. The results of the
SAMS project support this claim. A certification authority confirmed that the
safety-related software developed in the project, whose verification was largely
performed according to this methodology, is ready for use in a system com-
plying with the requirements of the safety standard IEC 61508-3 up to SIL 3.
Moreover, it was acknowledged that the verification environment can be used
to satisfy a specified number of verification objectives up to SIL 3.

Formal connection to high-level requirements. We identify two char-
acteristics of the software we verified that are important when applying our
methodology. First, the correct implementation of computationally complex be-
haviour is crucial for software safety. Contrast, for example, an algorithm that
merely chooses a safety zone from a given small set of pre-defined, user-validated
safety zones suitable for a given velocity with an algorithm that computes these
zones. The latter’s implementation is susceptible to vastly more errors and thus
exacts a larger verification effort. The relevant properties go beyond the capa-
bilities of automatic verification techniques and can only be verified by review,
testing or deductive formal methods. Second, the safety requirements —such as
the appropriateness of computed safety zones w.r.t. the braking model— are
well-suited for a mathematically rigorous specification on the geometric level,
which can be based on a corresponding domain formalisation. Many require-
ments about safety devices measuring distances and used for detection such as
laser scanners, light curtains or ultrasonic sensors are of this kind. Formal func-
tional verification still proves useful if requirements specified at a lower level are
verified, although a shorter traceability link is established.

We note that the targeted safety requirements are essentially free from dy-
namic aspects. While the braking model arguably describes the dynamics of the
EUC, these are determined in a simple manner by the current state of the EUC
without any future interference by the safety component: once an emergency
stop signal is raised, the EUC comes to a halt. We cannot handle safety re-
quirements related to true dynamic aspects of the system. One example where
dynamic aspects are at the heart of the safety requirements is given by Platzer
and Clarke [128] who verify the behaviour of aircraft during collision avoidance
manoeuvres.

In the robotics domain, where safety becomes an issue as robots and hu-
mans increasingly interact with each other, algorithms based on probabilistic
approaches prevail [143]. This is because they crucially have to cope with un-
certainty. In combination with the use of high-dimensional sensors like cameras
even the formal specification of desired non-dynamic properties becomes hard.
For example, we would not know how to specify that an algorithm reliably
detects human faces on camera images.

Memory model. Our goal with respect to the formalisation of the memory
model was rather pragmatic. Like other modern formalisations that are not
based on separation logic [137, 145, 90, 56] we used the ideas of the Burstall-
Bornat split heap memory model to exclude certain aliasing patterns, most
importantly that between differently named structure fields, from the start.
However, our memory model does not assign a separate memory area to each
structure field, but stores structures en bloc. We are not sure if our initial

188 Chapter 8. Conclusion

assumption that the simplicity of the model would ease a tool qualification is
actually valid. The certification authority made no comments in this direction.
The probably more important fact is that the model remains largely faithful to
the C standard. This simplifies a future integration of further memory aspects.
The unique feature of our model —if compared to other approaches used in
the verification of realistic programs— is that the use of local variables is not
restricted. Emulating call-by-reference by passing pointers is a very common
pattern in C programs, as witnessed by countless functions of the GNU C li-
brary!. It is also frequently used in the SAMS software. In contrast, modelling
precision to the bit-level was not of great importance so far, as it certainly is in
other domains like operating system verification as done in the Verisoft project.

Mathematical domain modelling in an interactive theorem prover.
The tasks of visualisation, simulation and numerical computations are all es-
sential parts of safety engineering and required to explore the problem space
and to quickly validate approaches to a solution. Tools used for this purpose
include computer algebra systems (CAS) like Maple or Mathematica and nu-
merical computing environments like MATLAB.? These tools are also practi-
cally superior to theorem provers in the symbolic manipulation of expressions,
in solving linear equation systems or differential equations, or in integrating
and differentiating functions. However, the models yielded by these tools are
semi-formal and less reliable than those developed in a theorem prover. CAS
apply extremely complex and optimised algorithms which are known to contain
bugs.?> We therefore propose that initial models be developed and analysed
semi-formally, and that the formalisation in the theorem prover be done when
the design has stabilised. This ultimately leads to formally documented, repeat-
able, machine-checked proofs of the safety-related properties of the system to
be developed.

A possibility for a deeper cooperation of unsafe but powerful tools and theo-
rem provers lies in a ‘guess and verify’ approach, where the output of the former
is verified by the latter. This is sensible in cases where verifying a result is drasti-
cally simpler than obtaining the result. Solutions of linear equation systems are
an example. This idea has been successfully applied by Harrison [71], who uses
numerical algorithms for semidefinite programming to obtain sums of squares
representations for certain real polynomials and verifies their equivalence in a
theorem prover.

Finally, the formalisation of a geometry-based model requires that appropri-
ate definitions and theorems of real analysis are available. Standard theorems
of real analysis such as Rolle’s theorem, the mean value theorem, or even the
Hahn-Banach theorem have all been formalised in Isabelle. However, most ap-
plications of Isabelle are concerned with discrete mathematics and the set of
theorems about real analysis is fragmentary. We had to prove rather founda-
tional theorems about elementary functions ourselves. We therefore advocate
a top-down approach to domain modelling where missing theorems are merely

Thttp://www.gnu.org/software/libc

%http://www.wolfram.com, http://www.maplesoft.com, http://www.mathworks.com

3For example, a known bug of Mathematica 7.0 was that it evaluated Vz2 = z to True,
while at the same time being able to find an instance for which Va2 # z holds (cf. the
Usenet discussion at http://groups.google.com/group/comp.soft-sys.math.mathematica/
msg/£54913012cd2e8£77pli=1).

http://www.gnu.org/software/libc
http://www.wolfram.com
http://www.maplesoft.com
http://www.mathworks.com
http://groups.google.com/group/comp.soft-sys.math.mathematica/msg/f54913012cd2e8f7?pli=1
http://groups.google.com/group/comp.soft-sys.math.mathematica/msg/f54913012cd2e8f7?pli=1

8.3. Future Work 189

assumed initially and proven later, when their necessity is definite. In our expe-
rience this reduced the number of ‘orphan’ theorems whose proof consumed time
but which were not needed for the specification and verification of programs.

8.3 Future Work

The confirmation by a certification authority that the verification environment
is compliant with IEC 61508-3 up to SIL 3 represents a satisfactory milestone in
its development. However, several extensions and improvements are imaginable.

Qualification for other standards It would be interesting to apply our ver-
ification environment in a project in which software is certified against the
arguably most demanding software safety standard DO-178B. The stan-
dard explicitly states that the software verification process objectives are
satisfied by analyses, reviews, and the development and execution of test
cases. The largest challenge would therefore be to obtain certification
credit for requirements that must originally be satisfied by testing. A
recent publication [31] expresses doubt that this will be possible.

Usability It would be very useful to attach more ‘extra-logical’ structure to
the generated verification conditions. The discussed encoding via dummy
predicates provides boundless opportunities such as the mapping of sym-
bolic program states to corresponding line numbers in the source code.
Another idea is to categorise assumptions (‘technical’, ‘postcondition’,
‘domain-level property’) and to display them accordingly. To this end,
the matured user interface ProofGeneral should be dropped, possibly in
exchange for Gast’s new I3P interface [63], which emphasises extensibility
and has a modern look and feel.

Integration of automatic tools The degree of automation that is achieved
w.r.t. update simplification and, more importantly, regarding arithmetic
proof goals needs to be improved. Moreover, Isabelle’s reasoning tools
like the simplifier become slow in the face of hundreds of assumptions.
This is a use case where SMT solvers shine. However, their use is in
slight opposition to the high abstraction level of specifications that we
promote, since the theories they support are rather weak. For example,
most of them do not even support simple set algebra. The approach of
FRAMA-C and of Zee et al. [153] is (very) roughly analogous to repeatedly
applying the pr_step tactic and then passing the resulting verification
conditions to a whole collection of provers, with the hope that each VC
will be verified by at least one prover. Isabelle provides the infrastructure
(named Sledgehammer) to implement this solution by allowing to delegate
sub-proofs to other provers.

Deriving test cases from specifications Writing formal specifications is a
labour intensive task. Its value would increase if specifications were re-used
to automatically generate test cases and to obtain an ‘oracle’ determining
whether a test case passed or failed. Universal quantifiers naturally lend
themselves to being used as generators: for testing, Vz. P(x) — Q(x)
can be seen as the operation of generating items x that satisfy P (via a

190 Chapter 8. Conclusion

P-generator) and testing whether all of them satisfy). This is an idea
that is also exploited in the QuickCheck tool [38, 39].

Hybrid systems An early idea [61] similar to the modelling of hybrid systems,
which has not been followed subsequently in the SAMS project, was to use
the semantics of program functions as formal objects whose properties are
described by their verified specification. These objects would describe
a discrete system which reacts to its inputs in specified time intervals by
yielding new outputs. The domain model would be lifted by one dimension
by turning all entities into time-dependent functions. The behaviour of
some of these entities, such as the motion of the EUC, would be influenced
by the output of the discrete system. By proving properties about the
behaviour of the robot controlled by the software in this model we would
eventually be able to establish a formal connection between the source
code and time-related high-level requirements.

Appendix A

Isabelle/HOL Theory

Graph

The Isabelle/HOL theories developed in the SAMS project are comprised of the
theories implementing the verification environment and those concerned with
the domain modelling. Fig. A.1 depicts all involved theories. It can be seen
that the two strands are entirely separated until joined in theory RecordRepr,
which defines representation functions. Their dependency on both strands stems
from the fact that they define mappings from memory areas to interpretations in
the domain. The following table briefly summarises the contents of the theories,
except for Polynomial and Poly-Deriv which are pre-defined by Isabelle/HOL

and are concerned with univariate polynomials and their differentiation.

Theory name

Description

Auzxiliaries

State

ILC
Selection
Parameters
Modifies
ST

Spec

Env
SpecIL.C

Sem

Generally helpful theorems and definitions with-
out specific relation to the verification environ-
ment

The memory model

Abstract syntax (datatypes) for C programs
Definitions and theorems related to array access
and field selection

Correspondence between function parameter
types and argument values

Non-atomic state modification (@modifies
clauses)

State transformers as monads (type 'a ST) and
basic monadic operations

State predicates and relations (types ’a SP and
‘a SR) and their satisfaction relation w.r.t.
state transformers

Environments I' for program variables, function
specifications and function semantics
Instantiation of the datatypes of ILC to con-
crete specification types

Semantics of lvalues, expressions, statements,
functions, and specification items

191

192 Chapter A. Isabelle/HOL Theory Graph
SemLemmas Equivalence of full and side-effect free semantics
under certain conditions
ModularCorrectness | Correctness of C programs w.r.t. their specifi-
cations and the relation to environment exten-
sions

ProofRulesSetup Definition of Hoare triples for lvalues, expres-
sions, etc., and preparatory lemmas for correct-
ness proof of proof rule for while statement

ProofRules 93 theorems comprising the set of proof rules
used to derive the initial verification condition

TacticLemmas Auxiliary theorems required by automatic proof
tactics

SAMS Theory setting up the proof tactics

SAMSTools Auxiliary theorems related to differentiation

SAMSMonoton Monotone functions and their derivations

SAMSKonvex Convex sets of points

Trigonometrie Theorems over trigonometric functions

SAMSDomain Definitions and theorems of domain-related con-
cepts (rigid body transformations, braking be-
haviour, braking measurements, circular arcs)

SAMSAlphalinien Theorems about the relation between velocity
space (v,w) and braking configuration space
(s,0)

SAMSPufferradius | idem

Bogenhuelle Theorems about arc approximation by polygo-
nal lines

RecordRepr Representation functions for the aggregate C

types used in the SAMS project

193

Pure

[HOL]
Auxiliaries ‘ ‘ SAMSTools ‘ ‘ Polynomial ‘ ‘ SAMSMonoton
State | ILC | [sAMSKonvex Poly_Deriv
Selection Parameters Trigonometrie
| ST SAMSDomain | [SAMSAIphalinien

Modifies

Bogenhuelle ‘ ‘ SAMSPufferradius

SpeclLC

SemLemmas

RecordRepr

Figure A.1: Isabelle/HOL theories of the verification environment (left strand)
and the SAMS domain (right strand)

194 Chapter A. Isabelle/HOL Theory Graph

Appendix B

Concrete Code Examples

B.1 Example: Initial Verification Condition

In this section we present the full proof state introduced by the execution of the
tactic prtac deriving the initial verification condition for a given representation
of a C function, as promised in Sec. 6.4.1.

The function add_rotate, shown below, is supposed to perform the following
mathematical operation:

(0 -1 , , [0 ifp=NULL
1= (1 O> (r+p) where p { p otherwise (B-1)

The result vector g shall equal the vector obtained by rotating the sum of r and
p by 90 degrees. If the pointer for p is NULL, only r shall be rotated.

In the following, we present the complete contents of a file vec.c in which
this operation is implemented. The initial type definition and file-scope annota-
tions introduce the type of vectors, make the relevant theories (RecordRepr and
Rotation) visible in the theory generated by the front-end, and bind the repre-
sentation function Vec2DR (cf. Sec. 4.5.1 for its definition) to the type vec2d of
vector representations.

typedef struct Vec2DStruct {
double x; double y;
} vec2D;

/*@ Q@theory RecordRepr ©x/
/*@ Q@theory Rotation ©@x/
/*@ “function _Any Vec2DR(vec2D xp); ©x/

The remaining content of vec.c comprises the specification and definition
of function add_rotate. The functions expects three pointers p, r, q, pointing
to vectors denoted by the same name in Eq. (B.1). The function specification
directly corresponds to Eq. (B.1), with the necessary additional constraints
on pointer validity. rot-left performs the rotation by 90 degrees, and vector
addition is denoted by the overloaded infix 4+ operator. The implementation of
the function is rather obvious and requires no explanation. We have added a
©join annotation for the if statement that ensures non-nullity of p to avoid a
duplication of the postcondition in the initial verification condition.

195

196 Chapter B. Concrete Code Examples

/%@
Q@requires (\valid(p) || p = NULL) &&
\valid(r) && \valid(q) && r !'= q && p != ¢
Omodifies xq
Q@ensures ${ "Vec2DR{q} = rot_left ("Vec2DR{r} +
(if ‘{p = NULL} then 0 else "Vec2DR{p})) }
©@x/
void add_rotate(vec2D xp, vec2D x*r, vec2D xq) {
vec2D z = {0.0, 0.0};
/%@
Qjoin (\if \old(p) = 0
\then p = &z
\else p = \old(p)) && \valid(p)

@modifies p

Ox/
if (p=20){p==&z; }
q—=>x = —(p—=>y + r—=>y);
q—>>y = p—>X + r—>x,
return;

To demonstrate that add_rotate satisfies its specification (cf. Sec. 6.2.1) the
following lemma must be proven

lemma
"correct_function_modular sams_genv add_rotate_def"

where sams-genv is an environment mapping only the identifier add-rotate
to the specification of this function, and being undefined everywhere else. By
applying the proof tactic prtac to this proof goal, the initial verification condi-
tion is computed. It is shown in the framed box below, and has been output
directly by Isabelle. Therefore, the proof state looks exactly as it does when a
verifier views it inside the user interface of the theorem prover. The notation is
consistent with that used in this thesis, except for a few shorthands; for exam-
ple, the formally incorrect {}»,» is displayed instead of the longer {},»,» , which
correctly indicates the dependence on the variable index n.

The initial state S; and several intermediate states arising from the ini-
tialisation of the function parameters are bound on the meta-level already (S,
S’, S’a to S’'d). The relation between these states is maintained by according
assumptions, e.g., S1®(v-"p”,, PtrVal p, Vec2D-t ¥x) = S’. Furthermore, the
facts that all local variables and parameters are fresh for the initial state S; has
been derived. Finally, the validity requirements of the precondition have been
translated to e(pyecep.¢| S1) ete., and the pointer values (locations) p and r are
assumed to be inequal to gq.

The conclusion of the proof goal is a term over the grammar of Eq. (6.4).

»
n

B.1. Example: Initial Verification Condition 197

(NI St prqSmn S’ naS’anb S’b nc S’c S°d.
[sams_genv < T'; ’’p’’Y ¢g S1; Si®(’’p’’Y, PtrVal p, Vec2D_t *) = S’;
1oV gés S’; S’®(”r”y, PtrVal r, Vec2D_t *) = S’a; ”q”y §Es S’a;
S’a®(“q“”, PtrVal q, Vec2D_t *) = S’b; 1ogrV ¢s S’b;
S’b@(?7z°°Y, Vec2D_t) = S’c;
87c(?7z27Y :i= PtrVal (*’z°"Vyeeop v—’’x77)) = 8°d; S = S1;
®(pvecop t151) V p = NULL; e(ryecop +1S1); e(qvecop t151); r # q;
p # q; 2’z ¢s S1; 7’q’’Y ¢s S1; 7r’’Y ¢s S1; True]

= (VS’. 5°d(’’z’""yecop t—’’x’’ ::= DoubleVal 0) = §’ —>
(VS’a. S’(“z””vecgp_t%“y” ::= DoubleVal 0) = S’a —»
(VA’. {qvecap_t—’y’’s Qvecap_t—’’x’’F U ftospro U
'ﬂ‘:;r;) U
ﬂ‘;lqu @]
TT))Z)J =
A —

(VM. ﬂwpn =M —
(if ’’p’’" @1 S’a = NULL
then V5°.
S’a(”p”” ::= PtrVal ’’z’°Y) =8 —
(if ’’p’’Y @1 S’a = NULL then ’’p’’Y @1 8’ = 7’z?’Y
else *’p’’Y @1 8§’ = 7’p’’Y @1 S’a) A
o(C’p>’Y @1 57) yecap_t15”)
else o((’’p’’Y @1 S’a)yecop t/S’a)) A
M C A A
(VT. S’a Cy T —
(if ’’p’’" @1 S’a = NULL
then ’’p’’V @1 T = 7°z7°"
else ’’p’’Y @ T = ’’p’’Y @1 S’a) A
o(C’’p>’" @1 Dyecop tIT) —
(let rv = 77q>’Y @ T
in ((let rva = ’’p’’Y @1 T
in (let dv = rvayeczp t—’’y’’ @ T; rva = ppV @1 T
in (let dva = rvayecop t—’’y’’ @ T
in VS’. T(rvyecop t+— ’’x’’ ::= DoubleVal (- (dv + dva))) = S’ —>
(let rv = 1220V @1 8°
in ((let rva = ’’p’’Y @1 S’
in (let dv = rvayecgp t—’’x’’ @ S’;
rva = 2’r’’V @1 8’
in (let dva = rvayecop t—’’x’’ @ S’
in VS’a.
S’ (rvyecop t—’’y’’ ::= DoubleVal (dv + dva)) = S’a —
(VS’. 8’ag’’z’’V =87 —
(VS8’a. 8°07’7q’’Y = S’a —»
(V8’. 8’an’’r’’? =57 —
(VS’a. 8’6°'p’’Y = 3’a —
(if p = NULL
then Vec2DR S’a q = rot_left (Vec2DR S’a r)
else Vec2DR S’a q
rot_left
(Vec2DR S’a r + Vec2DR S’a p))))))) A

198 Chapter B. Concrete Code Examples

o (rvayecap t1S87)) A
°(rVaVec2D_t/S’)) A
TVyec2p t— 'y’’’ € A?) A
o (rvyecap t18°))) A
o (rvayecop t1T)) A
e (rvayecap_t/T)) A
TVyecop t—’’x77 € A?) A
o (rvyecop t1T)))))) A
2z° Y yecop_t—7 7y’
€ {qvecan_t— "y’ ", QVec2p_t— %"’} U flroprs U floopss U foges U
fo0z222) A
72227 yecop_t— %7
€ {qvecan_t— "y’ ", QVec2p_t— " %"’} U firoprs U floopss U g U
fr0z0)

B.2 Implementation of Braking Configuration
Functions

The code snippets in this and the next section are taken literally from the SAMS
project code. (Only the indentation has been adjusted to fit the code onto the
page.) They are shown here for reference purposes.

The following function implements the binary search routine that finds the
index at which the upper bound of the interval resides in which the input ve-
locity v is contained in the array of braking measurements sams_konfiguration.
bremswege.messungen.

Int32 bin_suche_index_v(Float32 v)

{
Int32 i;
Int32 imax = 0;
Int32 imin = sams_konfiguration.bremswege.anzahl —1;
/%@

Q@invariant 0 <= imax && imax < imin &&
imin < sams_konfiguration.bremswege.anzahl &&
sams_konfiguration.bremswege. messungen[imax].v > v &&
v >= sams_konfiguration.bremswege.messungen[imin].v

@modifies i, imin, imax
@variant imin — imax
Q@x/

while (imin—imax > 1) {
i = (imax+imin) / 2;

if (v >= sams_konfiguration.bremswege.messungen[i].v) {
imin = i;

else {
imax = i;

}

}

return imin;

B.3. Implementation of the Arc Hull Function 199

The following function yields the quotient of the braking distance covered
during a braking in forward motion starting from velocity v, and v itself.

Float32 bremsweg_geradeaus(Float32 v)

{
Float32 ret;
Int32 iv;
const Bremsmessung * const m =
sams_konfiguration.bremswege. messungen;
/*@
Qjoin v = $fabs(\old v)
O@modifies v
Qx/
if (v<0.0){
vV = —Vv;
I3
if (v>=m[0].v) {
ret = m[0].s / (m[O].vxm[O].vxm[O].v) * vxv;
else
{
iv = bin_suche_index_v(v);
if (iv = sams_konfiguration.bremswege.anzahl—-1) {
ret = m[iv—1].s / m[iv—1].v;
}
else {
ret = ((m[iv—-1].s — m[iv].s) / (m[iv—=1].v — m[iv].v) =x
(v —m[iv].v) + m[iv].s) / v;
}
}
return ret;
}

B.3 Implementation of the Arc Hull Function

The following is the definition of the function bogenhuelle_L computing the
approximation of an arc using L auxiliary points. Its verification has been
discussed in Sec. 7.3.2.

SAMSStatus bogenhuelle_L(Laenge s, WinkelRad alpha, Int32 |,
const Vektor2D x*startpunkte_daten, Int32 startpunkte_laenge,
Vektor2D xergebnis_daten, Int32 ergebnis_laenge_max)

{
StarrkoerperTransformation bogen_k;
Int32 k;
Laenge s_1, s_k;
WinkelRad alpha_1, alpha_k;
Vektor2D endpunkte_b1l [SAMS_ROBOTERKONTUR__ARRSZ];

SAMSStatus ret = sams_sicher;

200 Chapter B. Concrete Code Examples

/* Execution flow logging x/
pak_funktionseintritt(pakn_bogenhuelle_L);

if (I < 1)
{

ret = sams_systemfehler;

schreibe_ereignis_int(err_huelleL_minlpkt, |);
}

else if ((startpunkte_laenge > SAMS_ROBOTERKONTUR__ARRSZ) ||
(I = startpunkte_laenge > ergebnis_laenge_max))

ret = sams_systemfehler;
schreibe_ereignis(err_arraygrenze_ueberschritten);
else

/* All arcs have length s/| and angle alpha/l. x/
s_1 =s / (Float32)1;
alpha_1 = alpha / (Float32)1;
/* Compute end points. %/
bremskonfiguration_zu_skt(s_1, alpha_1, &bogen_k);
ret = transformiere(&bogen_k,
startpunkte_daten ,
startpunkte_laenge ,
endpunkte_bl,
SAMS_ROBOTERKONTUR__ARRSZ);
if (ret = sams_sicher)
{
/* Compute additional points of first arc. */
ret = bogenhuelle_1(alpha_1,
startpunkte_daten ,
endpunkte_bl,
startpunkte_laenge ,
ergebnis_daten ,
ergebnis_laenge_max);

after_bl:
/* Compute further arcs by transforming first. x/
/%@
Qinvariant 1 <= k && k <= | &&
(ret = sams_sicher —>
Qafter_bl(ret) = sams_sicher) &&

${ V (i:: DomInt). 0<i A i< ‘startpunkte_laenge —
(V(j::DomInt).0<j A j< 'k —
transformiere
(bogentransformation
(‘s xmreal j / real ‘1)
(‘alpha *real j / real ‘1))
“Vektor2DR{ergebnis_daten[$i]} =
“Vektor2DR{ergebnis_daten[$i + $j =
startpunkte_laenge]})

Omodifies sams_andere, ret, k, s_k, alpha_k, bogen_k,
ergebnis_daten [startpunkte_laenge
startpunkte_laenge * |]

B.3. Implementation of the Arc Hull Function

201
@variant | — k
Qx/
for (k = 1; (ret sams_sicher) && (k < 1); ++k)
{
s_k = (s * (Float32)k) / (Float32)1;
alpha_k = (alpha * (Float32)k) / (Float32)1;
/* Transformation arc 1 to arc k */
bremskonfiguration_zu_skt(s_k, alpha_k, &bogen_k);
ret = transformiere(&bogen_k,
ergebnis_daten ,
startpunkte_laenge ,
&ergebnis_daten [k x
startpunkte_laenge],
ergebnis_laenge_max — k x*
startpunkte_laenge);
}

}
}

/* Execution flow logging x/

pak_funktionsaustritt(pakn_bogenhuelle_L);
return ret;

202 Chapter B. Concrete Code Examples

Bibliography

[1]

M. Abadi, L. Cardelli, and P. L. Curien. Formal parametric poly-
morphism. Theoretical Computer Science, 121(1-2):9-58, 1993. doi:
10.1016/0304-3975(93)90082-5.

Martin Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253-284, 1991. doi: 10.1016/
0304-3975(91)90224-P.

Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Mar-
tin Giese, Reiner Hahnle, Wolfram Menzel, Wojciech Mostowski, Andreas
Roth, Steffen Schlager, and Peter H. Schmitt. The KeY tool. Software
and System Modeling, 4:32-54, 2005. doi: 10.1007/s10270-004-0058-x.

Eyad Alkassar and Mark A. Hillebrand. Formal functional verification of
device drivers. In Jim Woodcock and Natarajan Shankar, editors, Ver-
ified Software: Theories, Tools, FExperiments Second International Con-
ference, VSTTE 2008, volume 5295 of Lecture Notes in Computer Sci-
ence, pages 225-239, Toronto, Canada, October 2008. Springer. doi:
10.1007/978-3-540-87873-5_19.

Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W.
Schirmer, and Artem Starostin. The verisoft approach to systems ver-
ification. In Natarajan Shankar and Jim Woodcock, editors, 2nd IFIP
Working Conference on Verified Software: Theories, Tools, and Ezxperi-
ments (VSTTE’08), volume 5295 of Lecture Notes in Computer Science,
pages 209-224. Springer, 2008. doi: 10.1007/978-3-540-87873-5_ 18.

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138(1):3-34, 1995. doi:
10.1016/0304-3975(94)00202-T.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoreti-
cal Computer Science, 126(2):183-235, 1994. doi: 10.1016/0304-3975(94)
90010-8.

David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang
Loidl, and Alberto Momigliano. A program logic for resources. Theoretical

Computer Science, 389(3):411-445, 2007. doi: 10.1016/j.tcs.2007.09.003.

203

204

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Thomas Ball and Sriram K. Rajamani. Automatically validating temporal
safety properties of interfaces. In SPIN ’01: Proceedings of the 8th inter-
national SPIN workshop on Model checking of software, pages 103—122,
New York, NY, USA, 2001. Springer.

Michael Balser, Wolfgang Reif, Gerhard Schellhorn, Kurt Stenzel, and
Andreas Thums. Formal system development with KIV. In Fundamen-
tal Approaches to Software Engineering, volume 1783 of Lecture Notes
in Computer Science, pages 363-366. Springer, 2000. doi: 10.1007/
3-540-46428-X_ 25.

Jarnet Barnes, Rod Chapman, Randy Johnson, James Widmaier, David
Cooper, and Bill Everett. Engineering the tokeneer enclave protection
software. In Intl. Symp. on Secure Software Engineering (ISSSE’06). IEEE
Computer Society, 2006.

John Barnes. High Integrity Software: The SPARK Approach to Safety
and Security. Addison-Wesley, 2003.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices, pages 49-69. Springer, 2005. doi:
10.1007/b105030.

Mike Barnett, Bor-Yuh Chang, Robert DeLine, Bart Jacobs, and K. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
Formal Methods for Components and Objects, volume 4111 of Lecture
Notes in Computer Science, pages 364—387. Springer, 2006. doi: 10.1007/
11804192 17.

Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger
Hermanns, editors, Proceedings of the 19" International Conference on
Computer Aided Verification (CAV ’07), volume 4590 of Lecture Notes in
Computer Science, pages 298-302. Springer, July 2007. Berlin, Germany.

Nurlida Basir, Ewen Denney, and Bernd Fischer. Constructing a safety
case for automatically generated code from formal program verification
information. In 27th Int. Conference on Computer Safety, Reliability, and
Security (SAFECOMP’08), volume 5219 of Lecture Notes in Computer
Science, pages 249-262. Springer, 2008. doi: 10.1007/978-3-540-87698-4.

Nurlida Basir, Ewen Denney, and Bernd Fischer. Deriving safety cases for
hierarchical structure in model-based development. In Erwin Schoitsch,
editor, 29th Int. Conf. on Computer Safety, Reliability and Security
(SAFECOMP 2010), volume 6351 of Lecture Notes in Computer Science,
pages 68-81. Springer, 2010. doi: 10.1007/978-3-642-15651-9_ 6.

Patrick Baudin, Jean-Christophe Fillidtre, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI C specification
language. http://frama-c.cea.fr/download/acsl_1.4.pdf, October
2008. Preliminary design, version 1.4.

http://frama-c.cea.fr/download/acsl_1.4.pdf

Bibliography 205

[19]

[25]

[26]

[27]

[28]

Bernhard Beckert, Reiner Hahnle, and Peter H. Schmitt, editors. Verifi-
cation of Object-Oriented Software: The KeY Approach, volume 4334 of
Lecture Notes in Computer Science. Springer, 2007.

Joachim van den Berg and Bart Jacobs. The LOOP compiler for Java and
JML. In TACAS 2001: Proceedings of the 7th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pages 299-312, London, UK, 2001. Springer.

B. Berthomieu and M. Diaz. Modeling and verification of time dependent
systems using time Petri nets. IEEE Transactions on Software Engineer-
ing, 17(3):259-273, 1991. doi: 10.1109/32.75415.

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler.
A few billion lines of code later: using static analysis to find bugs in
the real world. Communications of the ACM, 53(2):66-75, 2010. doi:
10.1145/1646353.1646374.

Michel Bidoit and Peter D. Mosses. CASL User Manual, volume 2900 of
Lecture Notes in Computer Science. Springer, 2004.

Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael
Smith, and Keith Wansbrough. Engineering with logic: HOL specification
and symbolic-evaluation testing for TCP implementations. In J. Gregory
Morrisett and Simon L. Peyton Jones, editors, POPL’06, pages 55—66.
ACM, 2006. doi: 10.1145/1111037.1111043.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In Proceedings of the ACM SIGPLAN 2003 Conference on Pro-
gramming Language Design and Implementation (PLDI’03), pages 196—
207, San Diego, California, USA, June 7-14 2003. ACM Press.

Sandrine Blazy and Xavier Leroy. Mechanized semantics for the Clight
subset of the C language. Journal of Automated Reasoning, 43(3):263-288,
2009. doi: 10.1007/s10817-009-9148-3.

Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specifi-
cation language LOTOS. Comput. Netw. ISDN Syst., 14(1):25-59, 1987.
doi: 10.1016/0169-7552(87)90085-7.

A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in
procedure specifications. Software Engineering, IEEE Transactions on,
21(10):785-798, Oct 1995. doi: 10.1109/32.469460.

Richard Bornat. Proving pointer programs in Hoare logic. In Mathematics
of Program Construction, pages 102—126, 2000.

Ed Brinksma and Jan Tretmans. Testing transition systems: An anno-
tated bibliography. In Modeling and Verification of Parallel Processes, vol-
ume 2067 of Lecture Notes in Computer Science, pages 187-195. Springer,
2001. doi: 10.1007/3-540-45510-8_ 9.

206

Bibliography

[31]

[32]

[33]

[35]

[36]

[37]

[38]

[39]

[40]

[42]

Duncan Brown, Hervé Delseny, Kelly Hayhurst, and Virginie Wiels. Guid-
ance for using formal methods in a certification context. In Embedded Real
Time Software and Systems, Toulouse, France, May 2010.

Manfred Broy and Andreas Rausch. Das neue V-Modell XT. Informatik-
Spektrum, 28(3):220-229, 2005. doi: 10.1007/s00287-005-0488-z.

Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R.
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An
overview of JML tools and applications. International Journal on Soft-
ware Tools for Technology Transfer, 7(3):212-232, June 2005. doi:
10.1007/s10009-004-0167-4.

R. M. Burstall. Some techniques for proving correctness of programs which
alter data structures. In Bernard Meltzer and Donald Michie, editors, Pro-
ceedings of the Seventh Annual Machine Intelligence Workshop, volume 7
of Machine Intelligence, pages 23-50. Edinburgh University Press, 1972.

Robert Cartwright and Derek Oppen. The logic of aliasing. Acta Infor-
matica, 15(4):365-384, August 1981. doi: 10.1007/BF00264535.

S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav.
Efficient verification of sequential and concurrent C programs. Formal
Methods in System Design, 25:129-166, 2004. ISSN 0925-9856. doi: 10.
1023/B:FORM.0000040026.56959.91.

T.S. Chow. Testing software design modeled by finite-state machines.
IEEFE Transactions on Software Engineering, SE-4(3):178-187, May 1978.
doi: 10.1109/TSE.1978.231496.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for
random testing of haskell programs. In ICFP ’00: Proceedings of the
fifth ACM SIGPLAN international conference on Functional program-
ming, pages 268-279, New York, NY, USA, 2000. ACM. doi: 10.1145/
351240.351266.

Koen Claessen and John Hughes. Testing monadic code with quickcheck.
SIGPLAN Notices, 37(12):47-59, 2002. doi: 10.1145/636517.636527.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50:752-794, September 2003. ISSN 0004-5411. doi:
10.1145/876638.876643.

Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Tools and Algorithms for the Construction and
Analysis of Systems, volume 2988 of Lecture Notes in Computer Science,
pages 168-176. Springer, 2004. doi: 10.1007/b96393.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Check-
ing. MIT Press, 1999.

Bibliography 207

[43]

[45]

[51]

[52]

[53]

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach,
Michat Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
VCC: A practical system for verifying concurrent C. In Theorem Proving
in Higher Order Logics (TPHOLs 2009), volume 5674 of Lecture Notes in
Computer Science, Munich, Germany, 2009. Springer.

Ernie Cohen, Michal Moskal, Wolfram Schulte, and Stephan Tobies. A
precise yet efficient memory model for C. In 4th International Workshop on
Systems Software Verification (SSV 2009), Electronic Notes in Theoretical
Computer Science. Elsevier Science B.V., 2009.

Ernie Cohen, Michal Moskal, Wolfram Schulte, and Stephan Tobies. Local
verification of global invariants in concurrent programs. In Computer
Aided Verification, volume 6174 of Lecture Notes in Computer Science,
pages 480—494. Springer, 2010. doi: 10.1007/978-3-642-14295-6_ 42.

Mirko Conrad. Testing-based translation validation of generated code
in the context of IEC 61508. Formal Methods in System Design, 35:389—
401, 2009. doi: 10.1007/s10703-009-0082-0.

Mirko Conrad, Patrick Munier, and Frank Rauch. Qualifying software
tools according to ISO 26262. In Modellbasierte Entwicklung eingebetteter
Systeme VI (MBEES), pages 117-128. fortiss GmbH, Miinchen, 2010.

P. Cousot. Proving the absence of run-time errors in safety-critical avion-
ics code. In C. Kirsch and R. Wilhelm, editors, Proceedings of the Seventh
ACM & IEEFE International Conference on Embedded Sofware, Embedded
Systems Week, (EMSOFT 2007), pages 7-9, Salzburg, Austria, September
2007. ACM press.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approxi-
mation of fixpoints. In POPL "77: Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages
238-252, New York, NY, USA, 1977. ACM. doi: 10.1145/512950.512973.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An
efficient method of computing static single assignment form. In POPL ’89:
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 25-35, New York, NY, USA, 1989.
ACM. doi: 10.1145/75277.75280.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, vol-
ume 4963 of Lecture Notes in Computer Science, pages 337-340. Springer,
2008.

DIN. EN ISO 13849-1:2006: Sicherheit von Maschinen — Sicherheitsbe-
zogene Teile von Steuerungen — Teil 1: Allgemeine Gestaltungsleitsétze,
2006. Deutsches Institut fiir Normung e.V., Berlin.

V. D’Silva, D. Kroening, and G. Weissenbacher. A survey of automated
techniques for formal software verification. Computer-Aided Design of

208

Bibliography

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[62]

[63]

[64]

[65]

Integrated Circuits and Systems, IEEE Transactions on, 27(7):1165-1178,
July 2008. doi: 10.1109/TCAD.2008.923410.

The European Parliament and the Council. Directive 2006/42/EC. Offi-
cial Journal of the FEuropean Union, L 157, 9 June 2006.

J.-C. Fillidtre. Verification of Non-Functional Programs using Interpreta-
tions in Type Theory. Journal of Functional Programming, 13(4):709-745,
July 2003.

Jean-Christophe Fillidtre and Claude Marché. Multi-Prover Verification
of C Programs. In Sizth International Conference on Formal Engineering
Methods (ICFEM), volume 3308 of Lecture Notes in Computer Science,
pages 15-29, Seattle, November 2004. Springer.

Cormac Flanagan and James B. Saxe. Avoiding exponential explosion:
generating compact verification conditions. In POPL ’01: Proceedings of
the 28th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 193—205, New York, NY, USA, 2001. ACM Press.
doi: 10.1145/360204.360220.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for Java.
In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation, pages 234-245, New
York, NY, USA, 2002. ACM Press. doi: 10.1145/512529.512558.

Robert Floyd. Assigning meanings to programs. In Mathematical Aspects
of Computer Science, pages 19-32, 1967.

Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window
approach to collision avoidance. IEEE Robotics and Automation Maga-
zine, 4(1):23-33, 1997.

Udo Frese, Daniel Hausmann, Christoph Liith, Holger Taubig, and Dennis
Walter. The importance of being formal. In Hardi Hungar, editor, Proc.
SafeCert 2008, volume 238 of FElectronic Notes in Theoretical Computer
Science, pages 57-70. Elsevier Science, 2008. doi: 10.1016/j.entcs.2009.
09.006.

Holger Gast. Reasoning about memory layouts. In FM 2009: Formal
Methods, volume 5850 of Lecture Notes in Computer Science, pages 628—
643. Springer, 2009. doi: 10.1007/978-3-642-05089-3.

Holger Gast. Towards a modular extensible Isabelle interface. In
TPHOLs’09, 2009. Emerging Trends Section.

Tilmann Glétzner. IEC 61508 certification of a code generator. In System
Safety, 3rd IET International Conference on, pages 1-4, 2008.

Joseph Goguen and Grant Malcolm, editors. Software engineering with
OBJ : algebraic specification in action. Kluwer Academic Publishers, 2000.

Bibliography 209

[66]

[67]

[68]

[72]

[75]

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a
theorem proving environment for higher order logic. Cambridge University

Press, New York, NY, USA, 1993.

Mike Gordon. From LCF to HOL: a short history. In Proof, language,
and interaction: essays in honour of Robin Milner, pages 169-185. MIT
Press, Cambridge, MA, USA, 2000.

Yuri Gurevich and James K. Huggins. The semantics of the C pro-
gramming language. In Computer Science Logic, volume 702 of Lec-
ture Notes in Computer Science, pages 274-308. Springer, 1993. doi:
10.1007/3-540-56992-8.

Richard Hamlet. Random testing. In Encyclopedia of Software Engineer-
ing, pages 970-978. Wiley, 1994.

David Harel. Statecharts: a visual formalism for complex systems.
Science of Computer Programming, 8(3):231-274, 1987. doi: 10.1016/
0167-6423(87)90035-9.

John Harrison. Verifying nonlinear real formulas via sums of squares. In
Klaus Schneider and Jens Brandt, editors, Proc. of the 20th Int. Confer-
ence on Theorem Proving in Higher Order Logics, TPHOLs 2007, volume
4732 of Lecture Notes in Computer Science, pages 102—118. Springer, 2007.

John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Miiller, and
Matthew Parkinson. Behavioral interface specification languages. Techni-
cal Report CS-TR~09-01, School of Electrical Engineering and Computer
Science, University of Central Florida, 2009. Submitted for publication.

Les Hatton. Safer C. Int. Series in Software Engineering. McGraw-Hill
Book Company, 1995.

Constance Heitmeyer, Myla Archer, Elizabeth Leonard, and John
McLean. Applying formal methods to a certifiably secure software sys-
tem. IEEE Transactions on Software Engineering, 34:82-98, 2008. doi:
10.1109/TSE.2007.70772.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire
Sutre. Software verification with Blast. In Proc. of the Tenth Int. Work-
shop on Model Checking of Software (SPIN), volume 2648 of Lecture Notes
in Computer Science, pages 235-239, 2003. doi: 10.1007/3-540-44829-2__
17.

C. A. R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576-580, 1969. doi: 10.1145/363235.363259.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Int.
Ltd., 1985.

C.A.R. Hoare. Viewpoint retrospective: an axiomatic basis for computer
programming. Communications of the ACM, 52(10):30-32, 2009. doi:
10.1145/1562764.1562779.

210

Bibliography

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[88]

[89]

[90]

[91]

Marieke Huisman and Bart Jacobs. Java program verification via a Hoare
logic with abrupt termination. In Fundamental Approaches to Software
Engineering, volume 1783 of Lecture Notes in Computer Science, pages
284-303. Springer, 2000. doi: 10.1007/3-540-46428-X_ 20.

IEC. IEC 61508 — Functional safety of electrical/electronic/programmable
electronic safety-related systems. International Electrotechnical Commis-
sion, Geneva, Switzerland, 2000.

ISO/IEC. ISO/IEC 9899:1990 — Programming languages — C. Inter-
national Organization for Standardization/International Electrotechnical
Commission, Geneva, Switzerland, 1990.

ISO/IEC. ISO/IEC 9899:1999 — Programming languages — C. Inter-
national Organization for Standardization/International Electrotechnical
Commission, Geneva, Switzerland, 1999.

Daniel Jackson. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology, 11(2):256-290,
2002. doi: 10.1145/505145.505149.

Bart Jacobs and Erik Poll. Coalgebras and monads in the semantics of
Java. Theoretical Computer Science, 291(3):329-349, 2003. doi: 10.1016/
S0304-3975(02)00366-3.

Ranjit Jhala and Rupak Majumdar. Software model checking. ACM
Computing Surveys, 41(4):1-54, 2009. doi: 10.1145/1592434.1592438.

C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall,
2nd edition, 1990.

Moonzoo Kim, Yunja Choi, Yunho Kim, and Hotae Kim. Formal verifi-
cation of a flash memory device driver — an experience report. In Model
Checking Software, volume 5156 of Lecture Notes in Computer Science,
pages 144-159. Springer, 2008. doi: 10.1007/978-3-540-85114-1_12.

Gerwin Klein. Operating system verification — an overview. SADHANA
— Academy Proceedings in Engineering Sciences, 34:27-70, Feb 2009.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
selL4: Formal verification of an OS kernel. In Proc. 22nd ACM Symposium
on Operating Systems Principles (SOSP), pages 207-220, Big Sky, MT,
USA, October 2009. ACM.

Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
sell4: Formal verification of an OS kernel. Communications of the ACM,
53(6):107-115, Jun 2010.

Thomas Kleymann. Hoare logic and auxiliary variables. Formal Aspects of
Computing, 11(5):541-566, December 1999. doi: 10.1007/s001650050057.

Bibliography 211

[92]

[95]

[96]

[97]

[98]

[101]

[102]

Andrew Kornecki and Janusz Zalewski. Certification of software for real-
time safety-critical systems: state of the art. Innovations in Systems and
Software Engineering, 5:149-161, 2009. ISSN 1614-5046. doi: 10.1007/
s11334-009-0088-1.

A. Lankenau and T. Rofer. A safe and versatile mobility assistant. Rein-
venting the Wheelchair. IEEE Robotics and Automation Magazine, 8(1):
29-37, 2001.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: a behavioral interface specification language for Java. SIGSOFT
Software Engineering Notes, 31(3):1-38, 2006. doi: 10.1145/1127878.
1127884.

Dirk Leinenbach and Elena Petrova. Pervasive compiler verification -
from verified programs to verified systems. In Proc. 3rd Int. Workshop
on Systems Software Verification (SSV 2008), volume 217 of Electronic
Notes in Theoretical Computer Science, pages 23-40, 2008. doi: 10.1016/
j-entcs.2008.06.040.

K. Rustan M. Leino. Efficient weakest preconditions. Information Pro-
cessing Letters, 93(6):281-288, 2005.

Helge Loding and Jan Peleska. Symbolic and abstract interpretation for
C/C++ programs. In Proceedings of the 3rd International Workshop on
Systems Software Verification (SSV 2008), volume 217 of Electronic Notes
in Theoretical Computer Science, pages 113-131, 2008. doi: 10.1016/j.
entcs.2008.06.045.

Alexey Loginov, Thomas Reps, and Mooly Sagiv. Automated verification
of the Deutsch-Schorr-Waite tree-traversal algorithm. In Static Analysis
Symposium, volume 4134 of Lecture Notes in Computer Science, pages
261-279. Springer, 2006. doi: 10.1007/11823230_17.

Damte Ltd. Guide to the new Machinery Directive 2006/42/EC.
http://www.machinebuilding.net/, 2009. Retrieved Nov 2009.

Christoph Liith and Dennis Walter. Certifiable specification and verifica-
tion of C programs. In Ana Cavalcanti and Dennis Dams, editors, FM
2009: Formal Methods, Second World Congress, Eindhoven, The Nether-
lands, November 2-6, 2009, Proceedings, volume 5850, pages 419-434.
Springer, 2009. doi: 10.1007/978-3-642-05089-3_ 27.

C. Liith and B. Wolff. TAS — a generic window inference system. In
J. Harrison and M. Aagaard, editors, Theorem Proving in Higher Order
Logics: 13th International Conference, TPHOLs 2000, number 1869 in
Lecture Notes in Computer Science, pages 405-422. Springer, 2000.

C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for
certification of Java/JavaCard programs annotated in JML. Journal of
Logic and Algebraic Programming, 58(1-2):89-106, 2004. doi: 10.1016/j.
jlap.2003.07.006.

212

Bibliography

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

Hennes Martins. Statische Analyse von C-Programmen auf Einhaltung der
MISRA-C-Richtlinien. Master’s thesis, Universitidt Bremen, May 2010.

John McHale. Upgrade to DO-178B certification — DO-178C — to ad-
dress modern avionics software trends. Avionics Intelligence, http:
//avi.pennnet.com, Oct 2009. Retrieved Nov 2009.

Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-
order logic. Information and Computation, 199:200-227, 2005.

B. Meyer. Applying design by contract. Computer, 25(10):40-51, Oct
1992. doi: 10.1109/2.161279.

Robin Milner. Communication and concurrency. Prentice-Hall, Inc., Up-

per Saddle River, NJ;, USA, 1989.

J. Minguez and L. Montano. Nearness diagram (ND) navigation: Collision
avoidance in troublesome scenarios. IEEE Transactions on Robotics and
Automation, 20(1):45-59, 2004.

MISRA. MISRA-C:2004 — Guidelines for the use of the C language in
critical systems. Motor Industry Research Association (MIRA) Limited,
Nuneaton, UK, 2004.

Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1):55-92, 1991. doi: 10.1016/0890-5401(91)90052-4.

O. Miiller and K. Slind. Treating Partiality in a Logic of Total Functions.
The Computer Journal, 40(10):640-651, 1997. doi: 10.1093/comjnl/40.
10.640.

Glenford J. Myers, Tom Badgett, Todd M. Thomas, and Corey Sandler.
The Art of Software Testing. John Wiley and Sons, 2004.

George C. Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation of
C programs. In Compiler Construction, pages 209-265. Springer, 2002.
doi: 10.1007/3-540-45937-5__16.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer, 2005. Corr. 2nd printing.

Tobias Nipkow. Hoare logics in Isabelle/HOL. In H. Schwichtenberg and
R. Steinbriiggen, editors, Proof and System-Reliability, pages 341-367.
Kluwer, 2002.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes
in Computer Science. Springer, 2002.

Michael Norrish. C' formalised in HOL. PhD thesis, University of Cam-
bridge, 1998.

Michael Norrish. Deterministic expressions in C. In S. Doaitse Swierstra,
editor, ESOP, volume 1576 of Lecture Notes in Computer Science, pages
147-161. Springer, 1999. doi: 10.1007/3-540-49099-X_ 10.

http://avi.pennnet.com
http://avi.pennnet.com

Bibliography 213

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127)

[128]

[129]

[130]

[131]

Colin O’Halloran. Guess and verify — back to the future. In Ana
Cavalcanti and Dennis Dams, editors, FM 2009: Formal Methods, Sec-
ond World Congress, Eindhoven, The Netherlands, November 2-6, 2009,
Proceedings, volume 5850, pages 23-32. Springer, 2009. doi: 10.1007/
978-3-642-05089-3__3.

Joseph O’Rourke. Computational Geometry in C. Cambridge University
Press, 2nd edition, 1998.

H.-J. Ostermann. Neue Maschinenrichtlinie 2006/42/EG sowie Maschi-
nenrichtlinie 98/37/EG. http://www.maschinenrichtlinie.de, 2009. Re-
trieved Oct 2009.

Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A proto-
type verification system. In CADE, pages 748-752, 1992. doi: 10.1007/
3-540-55602-8_ 217.

Lawrence C. Paulson. The foundation of a generic theorem prover. Journal
of Automated Reasoning, 5(3):363-397, 1989.

J. Peleska and M. Siegel. Test automation of safety-critical reactive sys-
tems. South African Computer Jounal, 19:53-77, 1997.

Jan Peleska. Formal methods and the development of dependable systems.
Institut fiir Informatik und Praktische Mathematik, Christian-Albrechts-
Universitéit Kiel, Bericht Nr. 9612, December 1996. Habilitationsschrift.

Jan Peleska. A unified approach to abstract interpretation, formal veri-
fication and testing of C/C++ modules. In John S. Fitzgerald, Anne E.
Haxthausen, and Husnu Yenigun, editors, Theoretical Aspects of Comput-
ing - ICTAC 2008, volume 5160 of Lecture Notes in Computer Science,
pages 3-22. Springer, 2008. doi: 10.1007/978-3-540-85762-4.

Wojciech Penczek and Agata Polrola. Advances in Verification of Time
Petri Nets and Timed Automata. Studies in Computational Intelligence.
Springer, 2006. doi: 10.1007/978-3-540-32870-4.

André Platzer and Edmund M. Clarke. Formal verification of curved
flight collision avoidance maneuvers: A case study. In Ana Cavalcanti
and Dennis Dams, editors, F'M, volume 5850 of LNCS, pages 547-562.
Springer, 2009. doi: 10.1007/978-3-642-05089-3__35.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, pages 46-57, 1977. doi: 10.1109/
SFCS.1977.32.

Hendrik Post and Wolfgang Kiichlin. Integrated static analysis for Linux
device driver verification. In Integrated Formal Methods, volume 4591 of
Lecture Notes in Computer Science, pages 518-537. Springer, 2007. doi:
10.1007/978-3-540-73210-5_27.

Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent
advances in SAT-based formal verification. International Journal on Soft-
ware Tools for Technology Transfer (STTT), 7:156-173, 2005.

214

Bibliography

132]

[133]

[134]

[135]

[136]

[137]

[138]

[139)]

[140]

[141]

[142]

[143]

[144]

[145]

John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings Seventeenth Annual IEEE Symposium on Logic
in Computer Science, pages 55—74, Los Alamitos, California, 2002. IEEE
Computer Society.

Peter J. Robinson and John Staples. Formalizing a hierarchical structure
of practical mathematical reasoning. Journal of Logic and Computation,
3(1):47-61, 1993. doi: 10.1093/logcom/3.1.47.

RTCA. DO-178B — Software considerations in airborne systems and equip-
ment certification. RTCA, Inc., Washington, D.C., United States, 1992.
Errata March 1999.

John Rushby. Formal methods and their role in the certification of crit-
ical systems. Technical report, Safety and Reliability of Software Based
Systems (Twelfth Annual CSR Workshop), 1995.

Norbert Schirmer. Verification of Sequential Imperative Programs in Is-

abelle/HOL. PhD thesis, Technische Universitdt Minchen, 2006.

Norbert Schirmer and Makarius Wenzel. State spaces — The locale way. In
4th International Workshop on Systems Software Verification (SSV 2009),
volume 254 of Electronic Notes in Theoretical Computer Science, pages
161-179. Elsevier Science B.V., 2009. doi: 10.1016/j.entcs.2009.09.065.

Bastian Schlich and Stefan Kowalewski. Model checking C source code
for embedded systems. International Journal on Software Tools for
Technology Transfer (STTT), 11(3):187-202, July 2009. doi: 10.1007/
$10009-009-0106-5.

Peter Sewell, , Francesco Zappa Nardelli, Scott Owens, Gilles Peskine,
Thomas Ridge, Susmit Sarkar, and Rok Strnisa. Ott: Effective tool sup-
port for the working semanticist. Journal of Functional Programming, 20
(01):71-122, 2010. doi: 10.1017/S0956796809990293.

David J. Smith and Kenneth G. L. Simpson. Functional Safety — A
straightforward guide to applying IEC 61508 and related standards. El-
sevier, second edition, 2004.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall Int.
Ltd., 1992.

Steve Summit. comp.lang.c Frequently Asked Questions. http://c-
faq.com, 2005. Retrieved Feb 2010.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics. MIT Press, 2005.

Harvey Tuch. Formal Memory Models for Verifying C Systems Code. PhD
thesis, The University of New South Wales, 2008.

Harvey Tuch. Formal verification of C systems code. Journal of Automated
Reasoning, 42(2-4):125-187, April 2009. doi: 10.1007/s10817-009-9120-2.

Bibliography 215

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

UK Health and Safety Executive. Reducing risks, protecting people. HSE
Books, Sudbury, Suffolk, 2001.

VDI Leitfaden. Leitfaden FTS-Sicherheit. VDI-Gesellschaft Fordertech-
nik Materialfluss Logistik — Fachbereich B7 Fahrerlose Transportsysteme
(FTS), 2009.

Verified Systems International GmbH. RT-Tester 6.0 — User Manual.
http://www.verified.de/en/products/rt-tester, 2008. Retrieved
Jul 2010.

Dennis Walter, Lutz Schréder, and Till Mossakowski. Parametrized ex-
ceptions. In Jose Fiadeiro and Jan Rutten, editors, Algebra and Coalgebra
in Computer Science, volume 3629 of Lecture Notes in Computer Science,
pages 424-438. Springer, 2005. doi: 10.1007/11548133_27.

Dennis Walter, Holger Téaubig, and Christoph Liith. Experiences in ap-
plying formal verification in robotics. In Erwin Schoitsch, editor, 29th
Int. Conf. on Computer Safety, Reliability and Security (SAFECOMP
2010), volume 6351 of Lecture Notes in Computer Science, pages 347—
360. Springer, 2010. doi: 10.1007/978-3-642-15651-9 26.

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,
Martin Suda, and Patrick Wischnewski. SPASS version 3.5. In Automated
Deduction — CADE-22, volume 5663 of Lecture Notes in Computer Sci-
ence, pages 140-145. Springer, 2009. doi: 10.1007/978-3-642-02959-2__10.

Markus Wenzel. Isabelle/Isar — A wversatile environment for human-
readable formal proof documents. PhD thesis, Institut fir Informatik,
Technische Universitdt Miinchen, 2002.

Karen Zee, Viktor Kuncak, and Martin Rinard. Full functional verifi-
cation of linked data structures. In PLDI ’08: Proceedings of the 2008
ACM SIGPLAN conference on Programming language design and im-
plementation, pages 349-361, New York, NY, USA, 2008. ACM. doi:
10.1145/1375581.1375624.

http://www.verified.de/en/products/rt-tester

	1 Introduction
	1.1 Motivation
	1.2 The SAMS Project
	1.3 Contributions
	1.4 Related Work
	1.5 Overview

	2 Legal and Technological Background
	2.1 Laws, Standards and Guidelines
	2.1.1 EC Machinery Directive
	2.1.2 The Safety Standard IEC 61508

	2.2 The Theorem Prover Isabelle
	2.2.1 Concepts
	2.2.2 Presentation of Formal Proofs

	3 Language for Functional Specification
	3.1 Classification
	3.2 Annotations
	3.3 Specification Expressions
	3.3.1 Abstract Syntax
	3.3.2 Embedding Isabelle/HOL
	3.3.3 Types in Specification Expressions

	3.4 Memory Layout Descriptions
	3.4.1 Memory Descriptors
	3.4.2 Separation Constraints
	3.4.3 Validity of References and Arrays

	3.5 Further Language Elements
	3.5.1 Modification Frames
	3.5.2 Statement Annotations
	3.5.3 Declarations and Symbolic Constants

	4 Formalised Memory Model for C
	4.1 Evaluation of Possible Representations
	4.2 Finite Typed Maps
	4.2.1 Representing Types
	4.2.2 Atomic Values
	4.2.3 Flattening of Aggregate Values
	4.2.4 Locations
	4.2.5 Memory as Finite Maps
	4.2.6 Valid Pointers and Arrays

	4.3 Location Inequalities
	4.3.1 Structures and Arrays

	4.4 Non-Atomic State Modification
	4.5 Representation Functions and Memory
	4.5.1 Representations as Structures
	4.5.2 Representations as Arrays

	5 C Programs and Specifications in Isabelle/HOL
	5.1 Language Subset
	5.1.1 Discussion of Language Features

	5.2 Abstract Syntax
	5.2.1 Types and Expressions
	5.2.2 Statements and Declarations
	5.2.3 Translation Units and Linked Programs

	5.3 Semantics
	5.3.1 Evaluation Context
	5.3.2 Denotational Semantics

	5.4 Side-effect Free Expression Evaluation
	5.4.1 A Syntactic Condition for Side-Effect Freeness
	5.4.2 Equivalence of Semantics

	5.5 Specifications in Isabelle/HOL
	5.5.1 Type Checking
	5.5.2 Modification Sets

	6 Hoare Logic and Verification Conditions
	6.1 Specification Satisfaction
	6.2 Modular Verification
	6.2.1 Modular Function Correctness

	6.3 Proof Rules
	6.3.1 Syntactic Notion of Satisfaction
	6.3.2 Proof Strategy
	6.3.3 Lvalues and Expressions
	6.3.4 Function Calls and Statements
	6.3.5 Declarations and Weakening

	6.4 Structure of the Initial Verification Condition
	6.4.1 Example
	6.4.2 Structural Simplification

	6.5 Tactics for Simplifying Verification Conditions
	6.5.1 Stepping Through the iVC
	6.5.2 Read/Update Simplification
	6.5.3 Further Tactics

	7 Verification of the SAMS Code
	7.1 Algorithm for Computing Safety Zones
	7.1.1 Braking Model
	7.1.2 Computation of Safety Zones

	7.2 Domain Modelling
	7.2.1 Formalisation of the Braking Model
	7.2.2 Arc Approximation

	7.3 Concrete Specifications and Verification
	7.3.1 Braking Model Computations
	7.3.2 Arc Coverings

	7.4 Reflection
	7.4.1 Key Figures
	7.4.2 Errors Found
	7.4.3 Verification Process
	7.4.4 Impact of Changes
	7.4.5 Technical Realisation
	7.4.6 Limitations

	7.5 IEC 61508 Safety Process Integration
	7.5.1 Tool Qualification
	7.5.2 Certification of the Verification Environment
	7.5.3 Covered Verification Measures
	7.5.4 Traceability

	8 Conclusion
	8.1 Summary
	8.2 Concluding Remarks
	8.3 Future Work

	A Isabelle/HOL Theory Graph
	B Concrete Code Examples
	B.1 Example: Initial Verification Condition
	B.2 Implementation of Braking Configuration Functions
	B.3 Implementation of the Arc Hull Function

	Bibliography

