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Abstract. A sound and complete embedding of conditional logics into
classical higher-order logic is presented. This embedding enables the ap-
plication of off-the-shelf higher-order automated theorem provers and
model finders for reasoning within and about conditional logics.

1 Introduction

Conditional logics capture default entailment in a modal framework via a defea-
sible implication operator “ ⇒ ” such that α⇒ β reads as, “If α then, typically
β”. A peculiarity of conditional logics is that α is a formula and can contain
other occurrences of “⇒”.

Thanks to their expressivity, conditional logics have been successfully applied
in several domains like non-monotonic reasoning [9], belief revision [12] and
security [13].

Despite their wide range of potential applications, the formalization of a
proper proof theory for conditional logics has been tackled only recently and
only for a limited set of axiomatizations [18,19]. Moreover, there is no uniform
framework to specify and reason about such formalisms.

Following the work of [6], a semantic embedding of conditional logic in classi-
cal higher-order logic HOL (Church’s type theory) is presented. This embedding
exploits the natural correspondence between selection function semantics for con-
ditional logics [20] and HOL. In fact, selection function semantics can be seen as
an higher-order extension of well-known Kripke semantics for modal logic and
cannot be naturally embedded into first-order logic.

The contributions of the paper are threefold. First, we prove that the pre-
sented embedding is sound and complete w.r.t. selection function semantics. Sec-
ond, we show how to apply off-the-shelf higher-order theorem provers and model
finders for reasoning within and about conditional logics. Third, we investigate
the practical value of such embedding through several experiments with differ-
ent higher-order reasoning systems (HOL-RSs). As part of these experiments,
several correspondence results between prominent conditional logic axioms and
related semantic conditions have been automatically verified.
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2 Conditional Logics

In order to make the paper self contained, we briefly resume syntax and semantics
of conditional logics. For a deeper treatment we refer to [18].

Definition 1. The formulas of conditional logic are given by

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ

where p ranges over a set of Boolean variables and ⇒ is a binary modal operator.

From the selected set of primitive connectives, other logical connectives can
be introduced as abbreviations: e.g., ϕ ∧ ψ and ϕ → ψ (material implication)
abbreviate ¬(¬ϕ ∨ ¬ψ) and ¬ϕ ∨ψ, etc. Syntactically, conditional logics can be
seen as a generalization of multimodal logic where the index of modality ⇒ is
a formula of the same language. For instance, in (A ⇒ B) ⇒ C the subformula
A⇒ B is the index of the second occurrence of ⇒.

Regarding semantics, many different formalizations have been proposed (see
[15]), here we focus on the selection function semantics [10], which is based on
possible world structures and has been successfully used in [17] to develop proof
methods for some conditional logics.

Definition 2. A model of conditional logics is a tuple M = 〈S, f, h〉 where,

– S is a non empty set of items called states;
– f : S × 2S → 2S is the selection function;
– h is an assignment which, for each Boolean variable p, assigns the subset of

states h(p) where p holds.

Intuitively the selection function f selects, for a world w and a formula ϕ, the
set of worlds f(w,A) which are “most-similar to w” or “closer to w” given the
information ϕ.

Definition 3 (Semantic Interpretation). An interpretation for a conditional
logic is a pair M, s where M is a model and s is a state in M. The satisfaction
relation |= holds between interpretations and formulae of the logic, and it is
defined recursively as follows:

– M, s |= p iff s ∈ h(p)
– M, s |= ¬ϕ iff not M, s |= ϕ
– M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ
– M, s |= ϕ ⇒ ψ iff M, t |= ψ for all t ∈ f(s, [ϕ]) where, [ϕ] = {w | M, w |=
ϕ}.

As usual, a conditional formula ϕ is valid in a model M = 〈S, f, h〉, denoted
with M |= ϕ, iff for all s ∈ S holds M, s |= ϕ. A formula ϕ is valid, denoted
|= ϕ, iff it is valid in every model.

Notice that f is defined to take [ϕ] (called the proof set of ϕ w.r.t. a given
model M) instead of ϕ. This approach has the consequence of forcing the so-
called normality property: given a model M, if ϕ and ϕ′ are equivalent (i.e.,



they are satisfied in the same set of states), then they index the same formulas
w.r.t. to the ⇒ modality.

The axiomatic counterpart of the normality condition is given by the rule
(RCEA)

ϕ↔ ϕ′

(RCEA)
(ϕ⇒ ψ) ↔ (ϕ′ ⇒ ψ)

Moreover, it can be easily shown that the above semantics forces also the fol-
lowing rules to hold:

(ϕ1 ∧ . . . ∧ ϕn) ↔ ψ
(RCK)

(ϕ0 ⇒ ϕ1 ∧ . . . ∧ ϕ0 ⇒ ϕn) → (ϕ0 ⇒ ψ)

ϕ↔ ϕ′

(RCEC)
(ψ ⇒ ϕ) ↔ (ψ ⇒ ϕ′)

We refer to CK [10] as the minimal conditional logic closed under rules
RCEA, RCEC and RCK. In what follows, only conditional logics extending CK
are considered.

3 Classical Higher-Order Logic

HOL is a logic based on simply typed λ-calculus [11,2]. The set T of simple
types in HOL is usually freely generated from a set of basic types {o, i} (where
o denotes the type of Booleans) using the function type constructor �.

Definition 4. The terms of HOL are defined by (α, β, o ∈ T )

s, t ::= pα | Xα | (λXα.sβ)α�β | (sα�β)β | (¬o�o so)o |
(so ∨o�o�o to)o | (Π(α�o)�o sα�o)o

pα denotes typed constants and Xα typed variables (distinct from pα).

Complex typed terms are constructed via abstraction and application. The prim-
itive logical connectives are ¬o�o,∨o�o�o and Π(α�o)�o (for each type α). From
these, other logical connectives can be introduced as abbreviations: e.g., ∧ and
→ abbreviate the terms λA.λB.¬(¬A∨¬B) and λA.λB.¬A∨B, etc. HOL terms
of type o are called formulas. Binder notation ∀Xα.so is used as an abbrevia-
tion for (Π(α�o)�o (λXα.so)). Substitution of a term Aα for a variable Xα in a
term Bβ is denoted by [A/X ]B, where it is assumed that the bound variables of
B avoid variable capture. Well known operations and relations on HOL terms
include βη-normalization and βη-equality, denoted by s =βη t.

The following definition of HOL semantics closely follows the standard liter-
ature [1,2].



Definition 5. A frame is a collection {Dα}α∈T of nonempty sets called do-
mains such that Do = {T, F} where T represents truth and F falsehood, Di 6= ∅
is chosen arbitrary, and Dα�β are collections of functions mapping Dα into Dβ.

Definition 6. An interpretation is a tuple 〈{Dα}α∈T , I〉 where {Dα}α∈T is
a frame and where function I maps each typed constant cα to an appropriate
element of Dα, which is called the denotation of cα. The denotations of ¬,∨ and
Π(α�o)�o are always chosen as usual. A variable assignment φ maps variables Xα

to elements in Dα. An interpretation is a Henkin model (general model) if and
only if there is a binary valuation function V such that V(φ, sα) ∈ Dα for each
variable assignment φ and term sα, and the following conditions are satisfied for
all φ, variables Xα, constants pα, and terms lα�β , rα, sβ (for α, β ∈ T ):

– V(φ,Xα) = φ(Xα)
– V(φ, pα) = I(pα)
– V(φ, (lα�β rα)) = (V(φ, lα�β))(V(φ, rα))
– V(φ, λXα.sβ) represents the function from Dα into Dβ whose value for each

argument z ∈ Dα is V(φ[z/Xα], sβ), where φ[z/Xα] is that variable assign-
ment such that φ[z/Xα](Xα) = z and φ[z/Xα]Yβ = φYβ when Yβ 6= Xα.

If an interpretation H = 〈{Dα}α∈T , I〉 is an Henkin model the function V
is uniquely determined and V(φ, sα) ∈ Dα is called the denotation of sα. H is
called a standard model if and only if for all α and β, Dα�β is the set of all
functions from Dα into Dβ . It is easy to verify that each standard model is also
a Henkin model. A formula A of HOL is valid in a Henkin model H if and only
if V(φ,A) = T for all variable assignments φ. In this case we write H |= A. A is
(Henkin) valid, denoted as |= A, if and only if H |= A for all Henkin models H.

Proposition 1. Let V be the valuation function of Henkin model H. The fol-
lowing properties hold for all assignments φ, terms so, to, lα, rα, and variables
Xα, Vα (for α ∈ T ):

– V(φ, (¬so)) = T iff V(φ, so) = F
– V(φ, (so ∨ to)) = T iff V(φ, so) = T or V(φ, so) = T
– V(φ, (so ∧ to)) = T iff V(φ, so) = T and V(φ, so) = T

– V(φ, (so → to)) = T iff V(φ, so) = F or V(φ, so) = T
– V(φ, (∀Xα.so)) = V(φ, (Π(α�o)�o (λXα.so))) = T iff for all v ∈ Dα holds

V(φ[v/Vα], ((λXα.so) V )) = T

– if lα =βη rα then V(φ, lα) = V(φ, rα)

4 Embedding Conditional Logics in HOL

Conditional logic formulas are identified with certain HOL terms (predicates) of
type i � o. They can be applied to terms of type i, which are assumed to denote
possible states.



Definition 7. The mapping ⌊·⌋ translates formulas ϕ of conditional logic CK
into HOL terms ⌊ϕ⌋ of type i � o. The primitives of conditional logic are mapped
as follows:

⌊p⌋ = pi�o (pi�o is a HOL constant symbol)
⌊¬⌋ = λAi�o.λXi.¬(A X)
⌊∨⌋ = λAi�o.λBi�o.λXi.(A X) ∨ (B X)
⌊⇒⌋ = λAi�o.λBi�o.λXi.∀Wi.(f X A W ) → (B W )

The constant symbol f in the mapping of ⇒ is of type i � (i � o) � (i � o). It
realizes the selection function, i.e., its interpretation is chosen appropriately (cf.
below).

Compound formulas are recursively mapped as follows:

⌊¬ϕ⌋ = (⌊¬⌋⌊ϕ⌋)
⌊ϕ ∨ ψ⌋ = (⌊∨⌋⌊ϕ⌋⌊ψ⌋)
⌊ϕ ∧ ψ⌋ = (⌊∧⌋⌊ϕ⌋⌊ψ⌋)
⌊ϕ⇒ ψ⌋ = (⌊⇒⌋⌊ϕ⌋⌊ψ⌋)

Analyzing the validity of a translated formula ⌊ϕ⌋ for a state represented by
term ti corresponds to evaluating the application (⌊ϕ⌋ ti). In line with [6], we
can easily encode the notion of validity as follows

vld := λAi�o.∀Si.(A S)

With this definition, validity of a conditional formula ϕ in CK corresponds to
the validity of the corresponding formula (vld ⌊ϕ⌋) in HOL, and vice versa.

We illustrate the approach with formula p⇒ p where p is a Boolean variable.
This formula corresponds to the HOL term (vld ⌊p ⇒ p⌋) which expands into
(type information is omitted) (λA.∀S.(A S))((λA.λB.λX.∀W.(f X A W ) →
(B W )) p p) and βη-normalizes to ∀S.∀W.(f S p W ) → (p W )). It is easy to
verify that this HOL formula is countersatisfiable, which is the expected result
in CK.

To prove the soundness and completeness of the embedding, a mapping from
selection function models into Henkin models is employed.

Definition 8. Given a selection function model M = 〈S, f, |=〉. The Henkin
model HM = 〈{Dα}α∈T , I〉 for M is defined as follows: Di is chosen as the set
of states S, and for all combinations of α and β, Dα�β is chosen as the set of
all functions from Dα to Dβ.

1 Let p1, . . . , pm for m ≥ 1 be the Boolean variables

of the conditional logic and let ⌊pj⌋ = pji�o for i = 1, . . . ,m. We define I as
follows:

1 This choice in particular means that Di�o is the set of all possible predicates q over
S; these predicates can also be viewed a sets {x ∈ S | q(x) = T}. Note, that modulo
this technicality, Di�o is identical to ’2S ’ in Def. 2.



– For 1 ≤ i ≤ m, choose I(pji�o) ∈ Di�o so that (I(pji�o))(w) = T for all

w ∈ Di with M, w |= pj, and (I(pji�o))(w) = F otherwise.
– Choose I(fi�(i�o)�(i�o)) ∈ Di�(i�o)�(i�o) so that for all s, t ∈ Di and q ∈
Di�o holds (I(fi�(i�o)�(i�o)))(s, q, t) = T if t ∈ f(s, {x ∈ S | q(x) = T }) in
M, and (I(fi�(i�o)�(i�o)))(s, q, t) = F otherwise.

– For all other constants sα, choose I(sα) arbitrarily.
2

It is easy to verify that HM is a Henkin model.3 It is even a standard model,
since the function spaces are full.

Lemma 1. Let HM be a Henkin model for a selection function model M. For
all conditional logic formulas ϕ, states s, and variable assignments φ it holds:

M, s |= ϕ iff V(φ[s/Si], (⌊ϕ⌋ S)) = T

Proof. The proof is by induction on the structure of ϕ.
ϕ = pj. By definition of ⌊·⌋, V, and HM holds V(φ[s/Si], (⌊p

j⌋ S)) =
V(φ[s/Si], (p

j
i�o S)) = (I(pji�o))(s) = T iff M, s |= pj.

For ϕ = (¬r) the argument is similar to ϕ = (p ∨ r) below.
ϕ = (p ∨ r). M, s |= (p ∨ t) iff M, s |= p or M, s |= t. By induction

V(φ[s/Si], (⌊p⌋ S)) = T or V(φ[s/Si], (⌊r⌋ S)) = T . By Prop. 1, definition of ⌊·⌋
and since ((⌊p∨r⌋) S) =βη ((⌊p⌋ S)∨(⌊r⌋ S)) it holds V(φ[s/Si], ((⌊p∨r⌋) S)) =
V(φ[s/Si], ((⌊p⌋ S) ∨ (⌊r⌋ S))) = T .

ϕ = (p ⇒ r). M, s |= p ⇒ r iff, for all t ∈ f(s, [p]) holds M, t |= r. This
is equivalent to, for all t holds (i) t 6∈ f(s, [p]) or (ii) M, t |= r. By induc-
tion applied to (ii) with φ′ = φ[s/Si] holds V(φ′[t/Ti], (⌊r⌋ T )) = T . Further-
more, again by induction, for all t and φ′′ with φ′′ = φ′[t/Ti] = φ[s/Si][t/Ti]
we have M, u |= p iff V(φ′′[u/Ui], (⌊p⌋ Ui)) = T . Hence, by construction of
HM, (i) is equivalent to (I(f))(s, [p], t) = (I(f))(s, {u | M, u |= p}, t) =
(I(f))(s, {u | V(φ′′[u/Ui], (⌊p⌋ Ui)) = T }, t) = F . By definition of V, and since
s = V(φ′′, Si) and t = V(φ′′, Ti) it holds V(φ′′, (f Si ⌊p⌋ Ti)) = F . By combining
these results and by Prop. 1 we get that for all t V(φ′[t/Ti], ((f Si ⌊p⌋ Ti) →
(⌊r⌋ Ti))) = V(φ′[t/Ti], (λW.((f Si ⌊p⌋ Wi) → (⌊r⌋ Wi)) Ti)) = T , which by
Prop. 1 is equivalent to V(φ′, (Π(i�o)�o (λWi.((f Si ⌊p⌋ Wi) → (⌊r⌋ Wi))))) =
V(φ′, (∀Wi.((f Si ⌊p⌋ Wi) → (⌊r⌋ Wi))) = T . By Prop. 1, definition of ⌊·⌋
and since (⌊p ⇒ r⌋ S) =βη (∀Wi.((f Si ⌊p⌋ Wi) → (⌊r⌋ Wi))) we finally have
V(φ[s/Si], (⌊p⇒ r⌋ S)) = T .

2 In fact, we may safely assume that there are no other typed constant symbols given,
except for the symbol fi�(i�o)�(i�o), the symbols pji�o, and the logical connectives.

3 In HM we have merely fixed Di and the interpretation of the constant symbols pji�o

and fi�(i�o)�(i�o). These constraints are obviously not in conflict with any of the
requirements in Defs. 5 and 6. The existence of a valuation function V for an HOL
interpretation crucially depends on how sparse the function spaces have been chosen
in frame {Dα}α∈T . [1] discusses criteria that are sufficient to ensure the existence
of a valuation function; they require that certain λ-abstractions have denotations in
frame {Dα}α∈T . The function spaces are full, so this is trivially the case.



Theorem 1 (Soundness and Completeness).

|= (vld ⌊ϕ⌋) in HOL if and only if |= ϕ in CK

Proof. (Soundness) The proof is by contraposition. Assume 6|= ϕ in CK, that
is, there is a selection function model M = 〈S, f, h〉 and a state s ∈ S, such
that M, s 6|= ϕ. By Lemma 1 we have that V(φ[s/Si], (⌊ϕ⌋ S)) = F for a
variable assignment φ in Henkin model HM = 〈{Dα}α∈T , I〉 for M. Thus,
by Prop. 1, definition of vld and since (∀Si.⌊ϕ⌋ S) =βη (vld ⌊ϕ⌋) we know that
V(φ, (∀Si.⌊ϕ⌋ S)) = V(φ, (vld ⌊ϕ⌋)) = F . Hence, HM 6|= (vld ⌊ϕ⌋), and thus
6|= (vld ⌊ϕ⌋) in HOL.

(Completeness) The proof is again by contraposition. Assume 6|= (vld ⌊ϕ⌋) in
HOL, that is, there is a Henkin model H = 〈{Dα}α∈T , I〉 and a variable assign-
ment φ with V(φ, (vld ⌊ϕ⌋)) = F . From (vld ⌊ϕ⌋) =βη (∀Si.⌊ϕ⌋ S) and Prop. 1 we
get V(φ, (∀Si.⌊ϕ⌋ S)) = F , and hence, by definition of vld, V(φ[s/Si], ⌊ϕ⌋ S) = F
for some s ∈ Di. Without loss of generality we can assume that Henkin Model
H is in fact a Henkin model HM for a corresponding selection function model
M. By Lemma 1 we thus know that M, s 6|= ϕ, and hence 6|= ϕ in CK.

Theorem 1 does not trivially follow from previous literature on embedding
modal logics into HOL because of the complexity of the selection function. In
fact, standard modalities are usually evaluated over a so-called accessibility re-
lationship of type R(i, w), where i is an index and w is a world. Conditional
modalities are instead evaluated over selection functions of type f(w,A) where
w is a world, A is a set of worlds and f is a function which returns a set of
worlds.

5 Experiments: Analyzing the Literature

The presented semantic embedding of conditional logics into HOL is of practical
relevance. It supports the application of standard HOL-RSs to problems encoded
within conditional logics and also to problems about conditional logics. Examples
of the latter kind include correspondence claims between certain axioms and
related conditions on the semantic structures (e.g., the conditional logic axiom
ϕ⇒ ϕ corresponds to the semantic condition that f(w, [ϕ]) ⊆ [ϕ]).

This section reports on experiments in which such kind of questions have
been studied with HOL-RSs. The HOL-RSs employed in the case study are:

LEO-II (version v1.2.6). A higher-order automated theorem prover based on
extensional resolution [7]. LEO-II4 cooperates with the first-order theorem
prover E.

TPS (version 3.080227G1d). A fully automated version of the higher-order
theorem proving environment TPS5 [3]. Proof search in TPS is controlled
by modes (sets of flag settings), and the automated TPS version employed
here applies strategy scheduling over these modes.

4
http://www.leoprover.org

5
http://gtps.math.cmu.edu/tps.html

http://www.leoprover.org
http://gtps.math.cmu.edu/tps.html


Satallax (version 1.4). A higher-order automated theorem prover based on
a complete ground tableau calculus for HOL with a choice operator [4].
Satallax6, which cooperates with SAT solver MiniSat, has additional model
finding capabilities.

IsabelleP (version 2009-2). The proof assistant Isabelle/HOL7 [14] is nor-
mally used interactively. IsabelleP is an automated version of Isabelle/HOL,
in which several tactics are subsequently applied.

Refute and Nitpick (versions 2009-2). Isabelle/HOL’s ability to find
(counter-)models using the refute [24] and nitpick8 [8] commands has been
integrated into automatic systems.

The reasoning systems described above are available online via the System-
OnTPTP tool [21]. They support the new TPTP THF infrastructure for HOL
[22] and they accept problems formalized in the THF representation language.

The problems studied in the experiments are:

Problem 1. Is the presented embedding consistent? In order to study this ques-
tion, the formalization of the embedding has been passed to the HOL-RSs.

Problem 2. Are the rules RCEA, RCK, and RCEC implied in the embedding?
They obviously should, since CK is defined as the minimal conditional logic
closed under these rules. The problems passed to the HOL-RSs are (types are
omitted): RCEA: ∀P,Q,R.(vld ⌊P ↔ Q⌋) → (vld ⌊(P ⇒ R) ↔ (Q ⇒ R)⌋),
RCK: ∀P0, P1, P2, Q.(vld ⌊(P1 ∧ P2) ↔ Q⌋) → (vld ⌊((P0 ⇒ P1) ∧ (P0 ⇒
P2)) → (P0 ⇒ Q)⌋), RCEC: ∀P,Q,R.(vld ⌊P ↔ Q⌋) → (vld ⌊(R ⇒ P ) ↔
(R ⇒ Q)⌋)

Problem 3. Do the correspondence results between conditional logic axioms and
semantic conditions as presented in Figure 1 (copied from [18]) indeed hold?

ID (∀A.vld ⌊A⇒ A⌋) ↔ (∀A,W.(f W A) ⊆ A)
MP (∀A,B.vld ⌊(A⇒ B) → (A→ B)⌋) ↔ (∀A,W.(A W ) → ((f W A)W ))
CS (∀A,B.vld ⌊(A ∧ B) → (A ⇒ B)⌋) ↔ (∀A,W.(A W ) → (f W A) ⊆

(λXi.X =W ))
CEM (∀A,B.vld ⌊(A ⇒ B) ∨ (A ⇒ ¬B)⌋) ↔ (∀A,W.(f W A) = ∅ ∨

∃V.(f W A) = (λX.X = V ))
. . . The formalizations of AC, RT, CV, and CA are analogous, and the HOL

encodings of ⊆, ∅, ∩, and ∪ are straightforward.

In the experiments, each equivalence statement has actually been split in its two
implication directions.

Problem 4. A subtle point, concerning correspondence theory for conditional
logics, is the interpretation of the scopes of the implicit universal quantifiers

6
http://www.ps.uni-saarland.de/~cebrown/satallax/

7
http://isabelle.in.tum.de

8
http://www4.in.tum.de/~blanchet/nitpick.html

http://www.ps.uni-saarland.de/~cebrown/satallax/
http://isabelle.in.tum.de
http://www4.in.tum.de/~blanchet/nitpick.html


ID Axiom A ⇒ A

Condition f(w, [A]) ⊆ [A]

MP Axiom (A ⇒ B) → (A → B)
Condition w ∈ [A] → w ∈ f(w, [A])

CS Axiom (A ∧B) → (A ⇒ B)
Condition w ∈ [A] → f(w, [A]) ⊆ {w}

CEM Axiom (A ⇒ B) ∨ (A ⇒ ¬B)
Condition |f(w, [A])| ≤ 1

AC Axiom (A ⇒ B) ∧ (A ⇒ C) → (A ∧ C ⇒ B)
Condition f(w, [A]) ⊆ [B] → f(w, [A ∧B]) ⊆ f(w, [A])

RT Axiom (A ∧B ⇒ C) → ((A ⇒ B) → (A ⇒ C))
Condition f(w, [A]) ⊆ [B] → f(w, [A]) ⊆ f(w, [A ∧B])

CV Axiom (A ⇒ B) ∧ ¬(A ⇒ ¬C) → (A ∧ C ⇒ B)
Condition (f(w, [A]) ⊆ [B] and f(w, [A]) ∩ [C] 6= ∅) → f(w, [A ∧ C]) ⊆ [B]

CA Axiom (A ⇒ B) ∧ (C ⇒ B) → (A ∨ C ⇒ B)
Condition f(w, [A ∨ B]) ⊆ f(w, [A]) ∪ f(w, [B])

Fig. 1. Conditional logic axioms and semantic conditions

in the correspondence statements in Figure 1. For example, for ID and MP
we might read (ID’) ∀A.((vld ⌊A ⇒ A⌋) ↔ W.((f W A) ⊆ A)) and (MP’)
∀A,B.(vld ⌊(A ⇒ B) → (A → B)⌋ ↔ (∀W.(A W ) → ((f W A) W ))). An
interesting, non-trivial question (suited also for sharpening the intuition on the
particular conditional logics axioms) is whether these misread statements are
still provable. Therefore analogous primed versions have been formalized for all
correspondence problems as further benchmark examples.

Problem 5. Do the following logic inclusions hold: (a) CK+{MP,CS} includes
CK+{CEM}? (b) CK+{CEM,MP} includes CK+{CS}? (c) CK+{RT,AC} in-
cludes CK+{(A ⇒ B) → (((A ∧ B) ⇒ C) ↔ (A ⇒ C))}? The formalizations
are obvious and we show only the case for (a):

∀A,B.vld ⌊(A⇒ B) → (A→ B)⌋,

∀A,B.vld ⌊(A ∧B) → (A⇒ B)⌋

⊢ ∀A,B.vld ⌊(A⇒ B) ∨ (A⇒ ¬B)⌋

With the results from Problem (3), such questions can alternatively be formalized
with the respective semantic conditions.

The detailed results of the experiments are presented in Table 1. Exploiting
the SystemOnTPTP infrastructure, all experiment runs were done remotely at
the University of Miami on 2.80GHz computers with 1GB memory and running
the Linux operating system. The timeout was set to 180 seconds.

The first column of the table presents the problem number and the second
column presents the result status as confirmed by the HOL-RSs: THM stands for
‘theorem’, CSA for ‘countersatisfiable’, and SAT for ‘satisfiable’. The remaining



Problem Status L T S I N R

1 SAT 0.26 3.34 2.88
2 RCEA THM 0.06 0.44 0.29 18.02
2 RCK THM 0.06 0.36 0.29 18.03
2 RCEC THM 0.05 0.36 0.30 32.94
3 ID� THM 0.03 0.36 0.27 18.03
3 ID� THM 0.03 0.34 0.27 17.95
3 MP� THM 0.04 0.34 0.27 18.18
3 MP� THM 0.04 0.35 18.05
3 CS� THM 0.04 0.37 0.27 48.13
3 CS� THM 0.13 0.37 0.27 48.42
3 CEM� THM 1.04 33.24
3 CEM� THM 0.13 0.38 34.10
3 AC� THM 0.38 0.30 21.85
3 AC� THM 0.40 18.05
3 RT� THM 0.62 1.33 18.05
3 RT� THM 0.42 18.08
3 CV� THM 0.44 125.35
3 CV� THM 0.44 86.83
3 CA� THM 0.37 1.44 18.06
3 CA� THM 6.83
4 ID’� THM 0.05 0.50 0.37 18.05
4 ID’� THM 0.08 0.44 0.36 18.20
4 MP’� THM 0.06 0.49 0.34 17.98
4 MP’� CSA 3.45 3.00
4 CS’� THM 0.04 0.36 0.29 18.01
4 CS’� CSA 0.28 3.56 3.11
4 CEM’� THM 1.04 2.00 33.23
4 CEM’� CSA 3.59 2.98
4 AC’� ?
4 AC’� CSA 4.75 3.82
4 RT’� THM 109.42 31.73 0.39 18.05
4 RT’� CSA 3.60 3.00
4 CV’� THM 111.06 31.85 0.40 51.14
4 CV’� THM 31.78 0.41 54.61
4 CA’� CSA 3.57 3.09
4 CA’� ?
5(a) ax. CSA 3.69 3.01
5(a) sem. CSA 3.62 3.06
5(b) ax. THM 0.06 8.71
5(b) sem. THM 63.30
5(c) ax. THM 56.52
5(c) sem. THM 14.89 44.69 42.46

Table 1. Performance results of HOL-RSs.



columns report the time after which the particular HOL-RSs reported the dis-
played status. L stands for LEO-II, T for TPS, S for Satallax, I for IsabelleP, N
for Nitpick, and R for Refute.

All correspondence claims have been confirmed by the HOL-RSs. For the
primed versions the situation is different and several counterexamples have been
reported by the model finders, in particular, for several forward directions. Two
of these counterexamples are exemplary presented next. It is straightforward to
check that they indeed invalidate the respective primed correspondence state-
ments.9

Refute reports the following countermodel for MP�: choose Di = {i1}, A =
{i1}, B = {i1}, W = i1, and

f =

{

i1 −→

{

∅ −→ ∅
{i1} −→ ∅

Nitpick reports for RT’�: choose Di = {i1, i2}, A = {i2}, B = {i1}, C = ∅,
W = i2, and

f =















































i1 −→















∅ −→ ∅
{i1} −→ ∅
{i2} −→ {i2}
{i1, i2} −→ ∅

i2 −→















∅ −→ {i2}
{i1} −→ ∅
{i2} −→ {i1}
{i1, i2} −→ ∅

For both the axiomatic and semantic formalization of Problem 5(a) coun-
termodels are quickly found. For example, for the axiomatic version 5(a) ax.
Nitpick reports: choose Di = {i1, i2}, A = ∅, B = {i1}, and

f =















































i1 −→















∅ −→ ∅
{i1} −→ {i1}
{i2} −→ ∅
{i1, i2} −→ ∅

i2 −→















∅ −→ {i1, i2}
{i1} −→ ∅
{i2} −→ {i2}
{i1, i2} −→ {i2}

Inclusion claims 5(b) and 5(c) are confirmed as theorems.
With the tools provided by the SystemOnTPTP infrastructure it is straight-

forward to write a small shell script which bundles the mentioned HOL-RSs into

9 Concerning, problem 4 we might wonder why the suggested denotations for f below
cannot be used as candidates for generating countermodels to the corresponding
non-primed correspondence statements — this is clearly not the case: e.g., note that
the f suggested for invalidating MP’� (which returns ∅ for all arguments W and
A) is in fact incompatible with (and thus excluded by) MP�s antecedent (to see
this choose A = {i1}, B = ∅). Such a kind of further analysis is again effectively
supported by the HOL-RSs.



a single online reasoning system, and, in fact, this is how the experiments pre-
sented in this section have been carried out. As the results demonstrate, this
combined HOL reasoner is powerful for reasoning about conditional logics; in
particular the combination of HOL theorem proving and HOL (counter-)model
finding is intriguing. Hence, there is good evidence that the HOL-RSs could
fruitfully support the analysis of similar questions in the exploration of further
conditional logics. Note also, that in most cases there are at least two match-
ing results by independent systems. Another interesting observation is that TPS
was the strongest prover in the experiments followed by IsabelleP, Satallax, and
LEO-II. Since this is exactly the opposite order of the outcome of the 2010
CASC10 competition, these problems are obviously interesting new benchmarks
for the TPTP library.

The approach is applicable also to reasoning within conditional logics For ex-
ample, formula ((p ⇒ q) ↔ (p → q)) → (p ⇒ p) is obviously countersatisfiable,
and all model finders quickly find respective countermodels. Satallax is fastest
in 0.28 seconds. The countermodel reported by Nitpick is Di = {i1}, p = ∅, q =
{i1}, and

f =

{

i1 −→

{

∅ −→ {i1}
{i1} −→ ∅

Unfortunately, a library of specific benchmark problems for conditional logics
is currently not available, and therefore the (direct) conditional logics provers
CondLean, GoalDuck and leanCK have been evaluated in [16] only with respect
to classical modal logic problems. In this evaluation the modal logic problems
were encoded in conditional logics by defining ✷ϕ as an abbreviation for T ⇒ ϕ.
Evaluating our approach wrt. these artificially encoded classical modal logic
problems does hardly make sense though, and the existing direct embedding of
classical modal logic in HOL [6] should for good reasons be preferred for these
test examples. First experiments with small hand-translated examples from this
test suite were nevertheless successful.

Evidence against the preconception that our higher-order based approach
to reasoning in conditional logics cannot be effective in practice comes from
a recent case study on automated reasoning in first-order modal logics [23].
In this case study an higher-order based approach which is closely related to
the one presented here (and which was realized with the provers Satallax and
LEO-II), performed reasonably well behind the specialist provers MLeanTAB11

and MLeanSeP12. In particular, the higher-order provers did better (in terms
of proving problems) than the direct prover GQML13 and a first-order solution
based on MSPASS14.

As a final remark on this section we underline that solutions to problems
in Section 5 are already known in theory of conditional logics. This does not
straightforwardly imply that HOL-Reasoners (HOL-RSs) can solve them. In gen-

10
http://www.tptp.org/CASC/J5/

11 http://www.leancop.de/mleantap/programs/mleantap11.pl
12 http://www.leancop.de/mleansep/programs/mleansep11.pl
13 http://cialdea.dia.uniroma3.it/GQML/
14 http://www.cs.man.ac.uk/~schmidt/mspass/

http://www.tptp.org/CASC/J5/
http://www.leancop.de/mleantap/programs/mleantap11.pl
http://www.leancop.de/mleansep/programs/mleansep11.pl
http://cialdea.dia.uniroma3.it/GQML/
http://www.cs.man.ac.uk/~schmidt/mspass/


eral, HOL is undecidable, the aim of what presented above is to show that the
theoretical embedding of CLs into HOL has also practical benefits due that it
is possible to use HOL-RSs to reason about and within CLs. This is possible by
making HOL-RSs cooperate working on the same task. Concerning model gen-
eration, we show that countermodels can be constructed for ill-formulated/ill-
conjectured correspondence claims.

6 Conclusion

A sound and complete embedding of conditional logics into classical higher-order
logic has been presented. Similar to other non-classical logics [6], conditional
logics can be seen as natural fragments of classical higher-order logic, and they
can be studied and automated as such. Up to authors knowledge, the presented
work is the first integrated approach to automated deduction for all extensions of
CK that involve any combination of the axioms reported in Figure 1. Previously
existing proof methods [18,19] are limited to extensions of CK including only ID,
MP, CS and CEM. Theorem proving for conditional logics appears to be much
more difficult than for modal logic. There are very few modal provers for CLs,
namely there are sequent calculi for CK+{ID,MP/CEM,CS} [18] and tableaux
for CK+{CEM,MP} [19]. Model builders exist only for CK+{CEM,MP} [19]. No
theorem provers are known for CK+{CS,AC,RT,CV,CA} and no model builders
are known for CK+{ID,CS,AC,RT,CV,CA}. The presented methodology offers
theorem provers and model finders for above mentioned logics. Moreover, the
HOL embedding permits use to reason about meta-theorems in an automated
way, and naturally extends to First-Order CLs.

Future work includes the systematic analysis of further properties of condi-
tional logics. For example, following [5] and motivated by the results for Problem
5, the systematic verification (respectively exploration) of inclusion and equiv-
alence relations between different conditional logics should be feasible. We also
plan to create a library of meaningful and challenging benchmark problems for
conditional logics and to evaluate the scalability of our approach. Moreover, a
comparison with direct theorem provers for conditional logics and also with re-
lated techniques based on translations into first-order logic is needed. However,
it is not obvious how these approaches could possibly be applied for reasoning
about properties of conditional logics as studied in this paper.

Another line of future research is to extend second-order quantifier elimina-
tions techniques like SCAN or SCHEMA to deal with CLs. In fact, both algo-
rithms are not directly suited for reasoning under CLs due to the peculiarities
of selection-function semantics.
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