111 research outputs found

    Automated Top View Registration of Broadcast Football Videos

    Full text link
    In this paper, we propose a novel method to register football broadcast video frames on the static top view model of the playing surface. The proposed method is fully automatic in contrast to the current state of the art which requires manual initialization of point correspondences between the image and the static model. Automatic registration using existing approaches has been difficult due to the lack of sufficient point correspondences. We investigate an alternate approach exploiting the edge information from the line markings on the field. We formulate the registration problem as a nearest neighbour search over a synthetically generated dictionary of edge map and homography pairs. The synthetic dictionary generation allows us to exhaustively cover a wide variety of camera angles and positions and reduce this problem to a minimal per-frame edge map matching procedure. We show that the per-frame results can be improved in videos using an optimization framework for temporal camera stabilization. We demonstrate the efficacy of our approach by presenting extensive results on a dataset collected from matches of football World Cup 2014

    Camera calibration in sport event scenarios

    Get PDF
    The main goal of this paper is the design of a novel and robust methodology for calibrating cameras from a single image in sport scenarios, such as a soccer field, or a basketball or tennis court. In these sport scenarios, the only references we use to calibrate the camera are the lines and circles delimiting the different regions. The first problem we address is the extraction of image primitives, including the challenging problems of shaded regions and lens distortion. From these primitives, we automatically recognise the location of the sport court in the scene by estimating the homography which matches the actual court with its projection onto the image. This is achieved even when only a few primitives are available. Finally, from this homography, we recover the camera calibration parameters. In particular, we estimate the focal length as well as the position and orientation in the 3D space. We present some experiments on models and real courts which illustrate the accuracy of the proposed methodology

    Real-time camera motion tracking in planar view scenarios

    Get PDF
    We propose a novel method for real-time camera motion tracking in planar view scenarios. This method relies on the geometry of a tripod, an initial estimation of camera pose for the first video frame and a primitive tracking procedure. This process uses lines and circles as primitives, which are extracted applying classification and regression tree. We have applied the proposed method to high-definition videos of soccer matches. Experimental results prove that our proposal can be applied to processing high-definition video in real time. We validate the procedure by inserting virtual content in the video sequence

    Homography Estimation in Complex Topological Scenes

    Full text link
    Surveillance videos and images are used for a broad set of applications, ranging from traffic analysis to crime detection. Extrinsic camera calibration data is important for most analysis applications. However, security cameras are susceptible to environmental conditions and small camera movements, resulting in a need for an automated re-calibration method that can account for these varying conditions. In this paper, we present an automated camera-calibration process leveraging a dictionary-based approach that does not require prior knowledge on any camera settings. The method consists of a custom implementation of a Spatial Transformer Network (STN) and a novel topological loss function. Experiments reveal that the proposed method improves the IoU metric by up to 12% w.r.t. a state-of-the-art model across five synthetic datasets and the World Cup 2014 dataset.Comment: Will be published in Intelligent Vehicle Symposium 202

    Towards Efficient Ice Surface Localization From Hockey Broadcast Video

    Get PDF
    Using computer vision-based technology in ice hockey has recently been embraced as it allows for the automatic collection of analytics. This data would be too expensive and time-consuming to otherwise collect manually. The insights gained from these analytics allow for a more in-depth understanding of the game, which can influence coaching and management decisions. A fundamental component of automatically deriving analytics from hockey broadcast video is ice rink localization. In broadcast video of hockey games, the camera pans, tilts, and zooms to follow the play. To compensate for this motion and get the absolute locations of the players and puck on the ice, an ice rink localization pipeline must find the perspective transform that maps each frame to an overhead view of the rink. The lack of publicly available datasets makes it difficult to perform research into ice rink localization. A novel annotation tool and dataset are presented, which includes 7,721 frames from National Hockey League game broadcasts. Since ice rink localization is a component of a full hockey analytics pipeline, it is important that these methods be as efficient as possible to reduce the run time. Small neural networks that reduce inference time while maintaining high accuracy can be used as an intermediate step to perform ice rink localization by segmenting the lines from the playing surface. Ice rink localization methods tend to infer the camera calibration of each frame in a broadcast sequence individually. This results in perturbations in the output of the pipeline, as there is no consideration of the camera calibrations of the frames before and after in the sequence. One way to reduce the noise in the output is to add a post-processing step after the ice has been localized to smooth the camera parameters and closely simulate the camera’s motion. Several methods for extracting the pan, tilt, and zoom from the perspective transform matrix are explored. The camera parameters obtained from the inferred perspective transform can be smoothed to give a visually coherent video output. Deep neural networks have allowed for the development of architectures that can perform several tasks at once. A basis for networks that can regress the ice rink localization parameters and simultaneously smooth them is presented. This research provides several approaches for improving ice rink localization methods. Specifically, the analytics pipelines can become faster and provide better results visually. This can allow for improved insight into hockey games, which can increase the performance of the hockey team with reduced cost

    Monocular 3D Human Pose Estimation for Sports Broadcasts using Partial Sports Field Registration

    Full text link
    The filming of sporting events projects and flattens the movement of athletes in the world onto a 2D broadcast image. The pixel locations of joints in these images can be detected with high validity. Recovering the actual 3D movement of the limbs (kinematics) of the athletes requires lifting these 2D pixel locations back into a third dimension, implying a certain scene geometry. The well-known line markings of sports fields allow for the calibration of the camera and for determining the actual geometry of the scene. Close-up shots of athletes are required to extract detailed kinematics, which in turn obfuscates the pertinent field markers for camera calibration. We suggest partial sports field registration, which determines a set of scene-consistent camera calibrations up to a single degree of freedom. Through joint optimization of 3D pose estimation and camera calibration, we demonstrate the successful extraction of 3D running kinematics on a 400m track. In this work, we combine advances in 2D human pose estimation and camera calibration via partial sports field registration to demonstrate an avenue for collecting valid large-scale kinematic datasets. We generate a synthetic dataset of more than 10k images in Unreal Engine 5 with different viewpoints, running styles, and body types, to show the limitations of existing monocular 3D HPE methods. Synthetic data and code are available at https://github.com/tobibaum/PartialSportsFieldReg_3DHPE.Comment: accept at "9th International Workshop on Computer Vision in Sports (CVsports) at CVPR 2023

    Classifying Cinematographic Shot Types

    Get PDF
    3noIn film-making, the distance from the camera to the subject greatly effects the narrative power of a shot. By the alternate use of Long shots, Medium and Close-ups the director is able to provide emphasis on key passages of the filmed scene. In this work we investigate five different inherent characteristics of single shots which contain indirect information about camera distance, without the need to recover the 3D structure of the scene. Specifically, 2D scene geometric composition, frame colour intensity properties, motion distribution, spectral amplitude and shot content are considered for classifying shots into three main categories. In the experimental phase, we demonstrate the validity of the framework and effectiveness of the proposed descriptors by classifying a significant dataset of movie shots using C4.5 Decision Trees and Support Vector Machines. After comparing the performance of the statistical classifiers using the combined descriptor set, we test the ability of each single feature in distinguishing shot types.Published on-line Nov. 2011; Print publication Jan. 2013partially_openpartially_openCanini L.; Benini S.; Leonardi R.Canini, Luca; Benini, Sergio; Leonardi, Riccard

    Multicamera System for Automatic Positioning of Objects in Game Sports

    Get PDF
    Garantir um sistema com múltiplas câmaras que seja capaz de extrair dados 3D da posição de uma bola durante um evento desportivo, através da análise e teste de técnicas de visão computacional (calibração de câmaras e reconstrução 3D)
    • …
    corecore