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Resumo

O desporto apresenta uma elevada importância e um alto impacto socioeconómico. A rápida
evolução de plataformas multimédia potenciaram oportunidades para que uma enorme quantidade
de recursos tecnológicos fosse aplicada no desporto. Rapidamente, tornou-se num campo de apli-
cação desejável para que equipas com elevados recursos financeiros recorressem a técnicas de
monitorização e sensorização para melhorar o desempenho desportivo. No entanto, para a maioria
das organizações desportivas só é possível utilizar tecnologias similares através de soluções mais
flexíveis e não-invasivas. A aplicação de técnicas de Visão Computacional para estes casos ainda
é limitada e requer uma investigação aprofundada.

A presente dissertação foca-se na localização da bola num espaço tridimensional, com parti-
cular aplicação em desportos coletivos indoor. Várias técnicas de calibração da câmaras e métodos
de reconstrução 3D foram estudados e testados com o objetivo de propor uma abordagem que
utilize um número reduzido de câmaras convencionais. O trabalho inclui a captura e preparação
de um conjunto de sequências representativas para desenvolvimento e validação da proposta, assim
como a respetiva informação de referência.

Os resultados obtidos são promissores e demonstram que uma estimação da posição 3D de
uma bola pode ser alcançada com erros aceitáveis, tendo em conta os objetivos propostos. Não
obstante, a influência do procedimento de calibração de câmaras é elevada e comprometeu todo
o processo de extração de informação 3D. Por isso, é necessário mais trabalho de investigação
relativo à sua precisão.

Este documento descreve não só as soluções que foram testadas e todas as estimativas quan-
titativas do objeto 3D, mas também as avaliações e análises de métodos de calibração de câmaras
e reconstrução 3D usados para este propósito. São, também, referidas diferentes possibilidades
passíveis de trabalho futuro relativamente a melhorias e desafios exigentes que não foram supera-
dos com o presente trabalho.
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Abstract

Sports have a great importance and a high socioeconomic impact. The rapid evolution of mul-
timedia platforms created an opportunity for a compelling quantity of technological resources
and applications to be conveyed into sports. Rapidly, it turned into a desired application field
where high-profile teams resort to monitoring and sensing techniques to improve their capabili-
ties. However, for most sporting organizations an opportunity to use similar technologies can only
be achieved with more flexible and non-invasive solutions. The application of Computer Vision
techniques for such cases is still limited and requires further investigation.

The present dissertation focus on the location of a ball in a 3D space field, with particular
application on indoor team sports. Several camera calibration techniques and 3D reconstruction
methods were studied and tested with the objective of proposing an approach that uses a reduced
number of conventional cameras. The work includes the capture and preparation of a representa-
tive sequences set to develop and validate the proposal as well as the respective reference infor-
mation.

The results obtained are promising and demonstrated that an estimation of the 3D ball posi-
tion can be achieved with acceptable errors, considering the proposed objectives. Nevertheless,
the influence caused by the camera calibration procedure is great and constrained the process of
extracting 3D information as a whole. Thus, it is necessary more investigation work concerning
its accuracy.

This document describes not only the solutions that were tested and all of the quantitative esti-
mations regarding the 3D object, but also an evaluation and analysis of both camera calibration and
3D reconstruction methods used for this purpose. Possible future work regarding improvements
and demanding challenges that were not overcome are also discussed.
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Chapter 1

Introduction

1.1 Context

Sports has an important role in contemporary society and, with globalization, its popularity has

expanded worldwide independently of the social class. Moreover, the ascent and rapid evolution of

mass media and multimedia platforms have since conveyed a compelling quantity of technological

resources into sports and it has become a multimillion-dollar industry [1].

Rapidly, sports games turned into a desired application field to implement Computer Vision

(CV) techniques where sports organizations and television (TV) stations can resort to this solution

to improve their capabilities.

“Computer Vision’s great trick is extracting descriptions of the world from pictures

or sequences of pictures.” [2]

Accordingly, distinctive and specialized tasks that rely on image understanding are solved by

computers capable of using those different techniques and knowledge for vision perception and,

more importantly, for geometric modeling. Therefore, CV can be considered a relevant area of

research and development to gather three-dimensional (3D) data of an object inserted in a certain

environment through a sequence of images obtained from a set of cameras. Considering a sports

event and its elements, it can become an essential support as an appealing tool for TV viewers and,

even, for tactical evaluation by a sports team staff.

During most sports games, elements such as the players and the ball conjugate on a determined

space field. The former was considered a challenging area for the application of CV technology

because it involved complex human motion [3]. Although players can be successfully detected

and tracked [4], identical methods cannot be widespread to ball detection due to the ball’s size,

velocity and trajectory happening above the ground at most of the times. Therefore, estimating the

3D position of a ball becomes of uttermost importance in a context of a sports game.
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1.2 Motivation

The nature of most sports don’t invariably allow to successfully monitor objects through sensors

or other devices fixed to them [5]. Necessarily, a non-invasive system can be a more practical

solution to obtain 3D information about any active element in a sports game. This can be achieved

by a vision-based approach.

Nowadays, commercially available technologies for visually tracking the trajectory of the ball

in sports games are only achievable and feasible for high-profile professional sports due to the dif-

ficulty of installation and high-cost equipment [6]. For most sports organizations, an opportunity

to enjoy and use similar technologies can only be achieved with more flexible and non-invasive

solutions. Through advances in camera technology a legitimate quality of visual capture with an

affordable availability can be guaranteed and will bestow a favorable circumstance for these or-

ganizations to implant a flexible camera system at their local sports venue and provide an easy

way for coaches and mentors to transmit an effective feedback to their athletes [7]. Not only that,

the application of CV techniques for low-profile sports organizations is still limited and requires

further developments and investigation.

Generally, detecting the 3D position of the ball in sports is essential not only to determine

final results but also to help understand some specific actions that may occur during these sporting

events. Hence, its position respecting the playing field is becoming relevant and critical for broad-

cast media and sports organizations considering that their intentions are, respectively, to produce a

more alluring TV viewer experience. Not only that, coaches and athletes are becoming more aware

of how important technology can be in tactical and technical assessment of their performance, so

much that their interest has been increasing in statistical analysis in sports sciences [5].

Cameras can capture an object’s 3D information using both active or passive techniques. Re-

spectively, an active technique uses its own source of light to measure reflected energy by the

object’s surface while a passive technique uses light emitted from the sun or from the actual scene

to measure the radiance reflected by the object’s surface. Considering sports games, mishaps and

failures to extract this information are susceptible of occurring due to the ball’s high-velocity, oc-

clusion during games, abrupt variation of movements and reduced dimensions compared to the

playing area, consequently creating a limited spatial and temporal resolution. Accordingly, in the

presence of a small object with sudden changes of movement, relying on projected light to inter-

pret 3D information will not help outlast those challenges so a passive technique is considered

more capable for this approach.

The sequential process of recovering 3D information from a set of cameras that produce two-

dimensional (2D) images require the use of an accurate camera calibration technique [8]. Since

most of these techniques are directed to small-scale scenarios, there are challenging aspects about

their application for large-scale scenarios, such as a playing fields, where the architecture of the

required acquisition area may prove to be a big benefit to overcome those difficulties. Therefore,

challenges relative to the computation of the ball’s 3D position will be its small size, high velocity

at which it travels, occlusion and different heights it assumes during sports events. Concerning
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the use of cameras, reaching a flexible and easy-to-install solution that utilizes correct calibration

techniques for a large space field will appear as the predominant scientific challenges.

1.3 Objectives

The main objective was to propose a flexible approach capable of extracting the 3D data position

of a ball using standard (surveillance) cameras. Concerning that, different camera calibration and

3D reconstruction techniques were analysed and tested using some specific movement sequences

from a ball and combining it with an evaluation of the number of cameras involved and their

location relatively to the playing area. In addition, another milestone important to achieve the

final goal was to analyze restrictions and advantages of a sports field’s spatial characteristics and

to gather all that information as to produce a versatile solution, highly accessible and with lesser

complexion.

1.4 Contributions

The main contributions of the following dissertation are described bellow:

• A methodology was proposed for the extraction of the 3D position of an object in a context

of a sports game using off-the-shelf cameras, considering measurements from the playing

field in question.

• A camera calibration method was used and improved to extract the intrinsic parameters from

several cameras disposed on the side of an indoor sports field.

• Application of several perspective techniques to estimate cameras’ locations and orienta-

tions concerning a sports field environment and using a marker based system to produce

ground-truth data.

• Analysis of different 3D reconstruction techniques to provide estimations of the 3D data

position of a ball, considering its static position and several defined movements that are

specific of some sports games.

1.5 Document Structure

This document is organized in five chapters. Chapter 2 presents the state of the art emphasizing

important related work of camera calibration and 3D reconstruction methods, and a brief discus-

sion about some important market solutions for sports analysis. Chapter 3 describes the proposed

methodology, detailing the preparation of the dataset and describing the camera calibration and

3D reconstruction methods used. Chapter 4 explains decisions made throughout the experiment

testings followed by a discussion of the results obtained. Chapter 5 presents a final discussion of

the present work, followed by a suggestion of possible future work and improvements.
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Chapter 2

Literature Review

This chapter is composed by a review of related work about methods and techniques to capture

and extract 3D information using cameras and is organized as follows. Section 2.1 analyze exis-

tent camera calibration algorithms focusing on large-scale scenarios. Section 2.2 revises possible

techniques to recover or extract 3D information with views from the scene in question. Section 2.3

exhibits a market survey about existent commercial solutions that solve the problem in question.

Lastly, section 2.4 discusses all the conclusions attained from the given review, mainly addressing

challenges and possible solutions related to the problem presented.

2.1 Camera Calibration

The retrieval of 3D information from a set of 2D images requires the use of an accurate camera cal-

ibration technique and the right choice of this geometric procedure will determine the achievable

accuracy, which is a relevant aspect for recovering the 3D points afterwards [8].

To reconstruct a scene from a set of images, the relation between the coordinates of a set

of points in 3D space with the coordinates of their corresponding 2D image points must be set-

tled [8]. Camera’s characteristics are generally grouped into intrinsic, or internal, and extrinsic,

or external, parameters and the estimation of these is called camera calibration. The intrinsic pa-

rameters describe how the camera forms an image and they can be defined as the set of parameters

that characterizes the optical, geometric and digital characteristics of the camera. These are im-

portant for linking the pixel coordinates of an image point with the corresponding coordinates in

the camera reference frame [8]. Essentially, intrinsic parameters conclude how light is projected

over the camera lens onto the image plane. On the other hand, the extrinsic parameters define

the camera’s position and orientation. They can be defined as any set of geometric parameters

that uniquely identify the transformation between the unknown reference frame and the world

reference frame [8].

Optical lens systems are normally described by the standard pinhole camera model as a rep-

resentation of the image projection process [9, 10, 11, 12, 13]. The pinhole camera model is

considered an elementary imaging device that can capture flawlessly the geometry of perspective
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Figure 2.1: Principle of a pinhole camera: light rays from an object pass through a small hole and
meet at the projection plane where a reverse image is formed. From [15].

projection. Any ray of light that is emitted to or reflected from that scene has to travel through

the pinhole camera before reaching the imaging screen. The correspondence between the area on

the imaging screen and the area in the 3D scene is determined by a certain number of rays that go

through the pinhole and assemble at the projection plane where a reverse image of the object in

question is produced, as seen in Figure 2.1. Therefore, an image is built up or projected from the

reference scene to the imaging space [14].

Since many entertainment, scientific and engineering applications rely on the mapping be-

tween 3D scenes and their corresponding 2D camera images, finding distinctive applicable camera

calibration methods still progresses as an active research issue in CV.

Calibration methods can be subdivided into two different topics: single camera calibration

and multiple camera calibration. The first can be overcome with specific calibration methods

applied to that exact camera, while the latter needs a crucial process of knowing the location

of each camera used besides utilizing the same methods to calibrate one of them individually.

The existing calibration methods, as Zhang defines in [16], can also be split into four different

categories according to the dimension of the calibration object used: a 3D reference object based,

a 2D plane based calibration, a one-dimension (1D) line based calibration and a zero-dimension

(0D) approach.

In a 3D reference object based calibration, the camera calibration can be performed by ob-

serving an object or pattern whose geometry in 3D space is recognized with high precision [16].

One of the most recognized and most important classic 3D reference object based explicit method

was introduced by Tsai [17]. He proposed a two-step calibration method that calibrates a camera

with a single image of a 3D or planar calibration pattern, typically black and white chessboards,

having recourse to the property of radial alignment constraint (RAC). This means that, assuming

radial distortion as the prominent cause of image distortion, the location vectors of a scene point

and its distorted image point should be radially aligned about the optic axis of the lens with their

cross product equal to zero [18]. If a planar calibration pattern is used, the motion will need to

be known and a precise translation of the object will provide the needed 3D reference points. Ex-
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Figure 2.2: 3D apparatus for calibrating cameras. In (a), the calibration apparatus used at Institut
National de Recherche en Informatique et en Automatique (INRIA) [19] is shown consisting of
two orthogonal planes, each with a checker pattern printed on. A 3D coordinate system is attached
to this apparatus, and the coordinates of the checker corners are known very accurately in this
coordinate system since three faces will be visible to the camera. In (b) an illustration of the
apparatus used in Tsai’s technique, which only uses one plane with a checker pattern displaced at
least once with known motion, making it equivalent as knowing the 3D coordinates of the checker
corners. From [16].

amples of 3D based apparatus for camera calibration can bee seen in Figure 2.2. Although its

groundbreaking achievement, this approach requires an expensive calibration apparatus and an

elaborate setup [16].

In a 2D plane based approach, the calibration can be done by observing a planar pattern set

out at a few (at least two) different orientations. Many approaches have been developed to use

planar patterns in camera calibration, due to their ease of manufacture, storage, and use [20].

Another notorious and important 2D plane based method is the one introduced by Zhang [21].

He proposed a flexible calibration technique for desktop vision systems (DVS) that calibrates a

camera using a planar calibration pattern with at least nine for better accuracy, as depicted in

Figure 2.3.The principle of developing a DVS was to target a general public with no expertise

on CV, thus creating an easy to perform single camera calibration. In terms of methodology,

the analysis of the relation between each feature point on the plane and the corresponding image

point, which represents the homography matrix of each image, constrains the internal and external

parameters of the camera. So, a nonlinear optimization of the results is required to get an accurate

calculation of the value of all parameters [22]. However, Zhang describes is method as an approach

that lies between photogrammetric and self-calibration because it uses an object to calibrate a

camera whose geometry in 3D space is known and, at the same time, can use the motion of the

camera in a static scene to retrieve its internal parameters by solely using image information.

As a result, Tsai’s and Zhang’s calibration methods have advanced CV and close range pho-

togrammetry one important step to the real world applications [23]. Comparing these two, Zhang’s
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Figure 2.3: Five images of a model plane, together with the extracted corners. From [21].

algorithm does not need any knowledge of the object’s motion and is more flexible as opposed to

Tsai’s one. Sun et al. [24] compared these two calibration algorithms. The results were that Tsai’s

method achieves high accuracy when trained on data of low measurement error. However, this

requires an accurate 3D measurement that typically involves hundreds of samples directed to a

fixed reference, which becomes prone to noise as Sun’s real-data experiments confirmed. In con-

trast, Zhang’s method does not require a laborious measuring task nor specialized equipments. In

fact, the sensitivity of his algorithm to pixel coordinate noise can be overcome by printing another

checkerboard pattern containing a higher number of grid corners confirming the flexibility and

suitability of Zhang’s planar approach for calibration in dynamic environments.

Following up Zhang’s method and to provide an easy-to-use refined solution, Bouguet [25]

developed a camera calibration toolbox where the nucleus calibration is fully automatic, except

for points correspondence on the planar calibration object corners for corner extraction requiring

manual input by the user. Zhang and Bouget’s work, although widely used in many academic

researches or applications, for being plane-based techniques require feature points on a plane cal-

ibration object to appear in different views which is not feasible for large-scale scenarios because

it would need a big calibration object to get an acceptable depth of calibration.

In a 1D line based concept, the camera calibration can be executed using collinear points as

calibration objects. One example is that of Zhang [27], who proposed calibration with a 1D object

consisting of three or more collinear points with known distances translated into several markers

on a straight line segment rotating around a fixed point. Through co-linearity and measurements

of the marker’s distance on the 1D line, an estimate camera parameters can be provided. The main
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Figure 2.4: A wand-like calibration object with two balls of different colours. From [26].

advantage of this kind of calibration is unreferenced knowledge of the coordinates of space points

simplifying the construction of calibration objects. Wu et al. [28] showed that the 1D calibration

object can have a new geometric interpretation if rotates around a fixed point, functioning in

essence as a 2D calibration object. Wang et al. [29] proved that 1D objects can be used for

multicamera calibration with an algorithm of a 1D object undergoing free motion. Synchronously,

all cameras must observe the 1D object undergoing at least 6 times general motions. Then, Wang

et al. [30] presented an improvement to the accuracy of the 1D calibration method because, at that

time, it was much lower than that of 2D or 3D calibration, essentially in the presence of image

noise. However, using 1D objects to calibrate cameras has great advantages, such as easiness to

construct 1D objects with known dimension, for example by marking three points on a stick; and,

in a multicamera setup, all cameras can observe the whole calibration object simultaneously, which

is essential and difficult to obtain with 3D or 2D calibration objects. The important drawback is

that the 1D object should be supervised to engage in some especial motions, such as rotations

around a fixed point and planar motions. Using sticks with markers is probably the standard

approach for calibrating commercial multicamera systems for motion capture [31, 20]. Diverting

attention to sport scenes, some systems use calibration objects [26, 32], such as wand-like objects

depicted in Figure 2.4. However, this approach presents some practical problems in these events,

such as the need to capture a specific calibration sequence and the difference of the reference frame

between the camera system and the pitch.

As previously mentioned, some calibration methods do not use or depend on a calibration ob-

ject and can be classified as a 0D approach to the problem of calibrating cameras. This is the case

of self-calibration. The task of taking pictures of the calibration object may be difficult in large-

scale scenarios and self-calibration avoids it [33]. It calibrates a camera without computing its

physical parameters explicitly [34] with those parameters being replaced by a set of non-physical

implicit parameters that are used to interpolate between some known tie-points [35]. Although no
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Figure 2.5: The planes, lines and points are selected in the image and the correspondences in the
standard model are determined. Six intersection points are used for calibration. From [37, 38].

calibration objects are necessary, a large number of parameters need to be estimated resulting in

an exhausting mathematical problem with the risk of singularities greater compared to calibration

from planes with known metric structure [36]. One of the most recognized self-calibration ap-

proaches is Structure-from-Motion (SfM). SfM is a strategy that uses movement of the camera in

a static scene, where the harshness of that scene provides two constraints on the cameras’ internal

parameters from individual camera dislocation by using image information alone. Accordingly,

if images are taken by the same camera with fixed internal parameters, correspondences between

multiple images of scene lines, points or other geometric entities across multiple views will be

sufficient to recover both the internal and external parameters establishing the first step of this

algorithm, called image matching. SfM is an attractive calibration method because internal and

external camera parameters are extracted from images of the unmodified scene itself [12].

In terms of the importance of single or multiple views usage, a single camera is the most

used in existing CV 3D reconstruction methods. However, this inflicts a restraint on the results

obtained, since the 3D scene can only be reconstructed up to a certain extent [39]. In framework

applications that demand spatial data accumulation in Euclidean space like sports games, this

restriction imposes an enormous relevance. This problem can be solved using calibrated stereo

cameras, but with additional steps for camera calibration. Nonetheless, the development of nearly

all multiple camera systems until this date have been for small-scale applications with controlled

environments. Sports events present a number of additional challenges for 3D acquisition and

extraction of objects.

For some time, a number of existing camera calibration methods available for sport scenes

used the lines of the playing field to determine camera locations, either using ad-hoc informa-

tion about the field [41, 42], vanishing points [43] or field/court models. For example, Farin et

al. [44] proposed an algorithm that uses a combinatorial search to establish correspondences be-

tween lines that were detected with a Hough transform [45] and a court model. First, it starts by

identifying white pixels after several tests and classified them as court line candidates. Then, a
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Figure 2.6: On the left, a camera mounted on a pan/tilt head. On the right, camera positions
estimated from pitch lines, using individual images. From [40].

Hough transform is applied to form a court model. At the end, a combinatorial search establishes

correspondences through a ground-plane homography estimation by assigning line candidates to

lines in the court model and making possible to determine the corresponding geometric transfor-

mation of the court. However, the Hough line detection algorithm may find lines that are not part

of the court and omit some lines that do belong to the court. Besides that, lines can also be too

vulnerable to be discovered or not appearing on the camera view. Claiming that the initializa-

tion speed of this calibration achieves about one second on a standard computer, Farin et al. [46]

presented an enhancement to increase the speed to real-time by maintaining the same white line

detector but performing, afterwards, an extraction of the line parameters by applying a Random

Sample Consensus (RANSAC)-based [9] line detector. These two algorithms presented are fully

automatic, robust against large occlusions and flexible to different sports.

Nonetheless, the ground-plane homography limits to the mapping between the image plane

and the standard court plane which is a transform from one 2D plane to another 2D plane, making

it impossible to provide any 3D height information of the object. Therefore, Han et al. [37, 38] pro-

posed a 3D modeling consisting on handling both the ground plane and the net plane to generate

six intersect points and upgrade to a full camera matrix, and a two-step algorithm to recognize a set

of features at positions within these two planes to estimate high quality camera calibration param-

eters. Figure 2.5 shows an example of the points marked for calibration. At the end, they present

an estimation error less than 5% of estimated average players’ height on the image sequences

tested. However, while the ground-plane homography only establishes 2D to 2D mapping, the full

camera matrix allowed to compute the height of objects if their ground position is known.

In sports broadcasts, it is common to use a 3D line model of a standardized playing field to

calibrate cameras. Relating image lines and model lines leads to a set of 2D-to-3D line correspon-

dences with existing approaches dealing with each camera separately, depending on the known

appearance and geometry of the playing field [47, 48]. Thomas et al. [40] discuss TV broadcast

camera calibration approaches for different sports, where a broadcast camera with a zoom lens

is mounted on a pan/tilt head, as seen left on Figure 2.6, by presenting two different scenarios:
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tracking camera movement using pitch lines and tracking of using areas of rich texture. On the

first scenario, it is considered that cameras covering sports events remain in fixed positions during

a match. Therefore, it makes sense to use this prior knowledge to compute an accurate camera

position, after storing multiple images (see right on Figure 2.6) that indicates a common camera

position value. The challenge of the initialisation process, described in [49], is to locate pitch lines

in the image and deduce which lines on the pitch they correspond to, only knowing the camera

position and pitch dimensions. The Hough transform can be used as a mean to allow establishing

a measure of how well the image matches the set of lines that would be expected to be visible

from a given pose. On the second scenario, it is considered that there are significant changes in

camera focal length, but can make use of the constraint that the camera is generally mounted on

a fixed point. The challenge is to be able to estimate the camera pose for these kind of applica-

tions from the content of the image where no lines exist at all, such as athletics. The approach

on [50] is pointed out, where lines are used to initialize and track the calibration. In the case of

pan-tilt-zoom (PTZ) cameras, once the center of projection of the camera is known, pan, tilt and

zoom can be determined more by comparing image lines with a database of projected model lines

for different values of pan, tilt and zoom. Here, a Kanade-Lucas-Tomasi (KLT)-based tracker [51]

is used to identify and track features, using a combination of fixed reference features; the camera

pose is computed from the observed feature points, along with a RANSAC process to remove out-

liers. More recently, Sankoh et al. [52] proposed a method that estimates an homography matrix

for the first frame and identifies reliable corresponding feature points between consecutive frames

using Speeded Up Robust Features (SURF) [53]. Then, estimates homography for next frame and

extracts objects’ texture regions in that same frame, completing that course for the remainder of

frames of a single moving camera. In order to evaluate and observe the estimation accuracy of

the homography matrix in each consecutive frame, the authors compared it with the RANSAC-

based line detection method in [38] under the same manually calculated conditions. The results

demonstrated that the proposed method can estimate the homography matrix more accurately by

calculating a lower average distance between the projected point and the real feature point. The

estimation accuracy of the homography matrix has a tremendous effect on the quality of object

extraction, thus producing more reliable results.

Resorting to broadcast images, Wen et al. [54] introduce a technique of calibrating basketball

videos by generating the panoramic image from a whole court view shot video. Then, a homogra-

phy transformation is estimated using the tracked KLT features (court lines and advertising images

on the court) between consecutive frames and each frame is transformed to an identical coordinate

system. After that, court region in the panoramic image is detected based on the dominant color.

Considering that panoramic court may be distorted due to accumulated transformation errors, the

court is warped to a quadrangle. Finally, by employing the obtained corner correspondence, the

quadrangular basketball court is rectified to a standard one using a homography to remove the

perspective effect. His robustness permits that one frame with missing court features can obtain

those lost features from other frames.

Without employing homography calculations, Zhang et al. [55] introduce a method to obtain
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Figure 2.7: Two possible camera arrangements for soccer scenes: a linear arrangement and a
curved arrangement with piecewise linear properties over large scales. Both arrangements have
different properties. (a) In the linear arrangement, all cameras are placed on a line next to the long
side of the pitch and have the same look-at angle. (b) In the curved arrangement, all cameras are
placed around a corner of the pitch and point to a spot in the scene. From [58].

Figure 2.8: Multicamera feature matches, considered as inliers. Most outliers are removed using
the angle-based filtering. Only a subset of the multicamera matches are shown. From [58].

an adequate calibration information of a single moving camera based on a football field model

with marked line pick-up algorithms. Using a priori knowledge about an unchanging camera’s

physical location, it develops a two-stage camera calibration method. First, it uses a Direct Linear

Transformation (DLT) [56] method to calculate the coordinates of the camera location. Second,

it employs a pan-tilt model to simplify camera projection equations and takes advantage of the

Levenberg-Marquardt (LM) [57] nonlinear algorithm to get camera parameters, instead of com-

puting the homography matrix. The author names it Pan-tilt Camera Calibration Algorithm and

compares it to the DLT method, by examining their robustness. Shen et al. [10] also use the DLT

method along with a non-linear optimization [9] to get the projection matrix in a monocular 3D

reconstruction of a ball in a table tennis game. Since the DLT method needs at least six court-to-

image point correspondences and the table tennis court dimensions are known, four corners of the

table and two upper points of net are used.

Focusing on multiple cameras, Goorts et al. [59] present a method to calibrate large scale cam-

era networks for 3D CV applications in sport scenes using (two) plane sweepings [60] and a depth

filtering step using 8 cameras, placed in a linear arrangement as shown in Figure 2.7. In the ini-

tialization phase, i.e. when cameras are calibrated, Scale-Invariant Feature Transform (SIFT) [61]

local feature points, such as playing field lines and players, are detected in the scene to generate
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camera correspondences. Then, these are paired between cameras and those pairwise correspon-

dences are tracked across multiple cameras (see Figure 2.8) using a graph-based search algorithm.

Those matching correspondences will be used to calculate the camera’s position, orientation and

intrinsic parameters through Svoboda et al. [62] calibration method, that requires at least 3 cam-

eras and a moving laser pointer used inside camera’s field-of-view (FoV) in order to find image

correspondence points. Nevertheless, segments in the virtual image can only have one depth and

will result in players disappearing if they are overlapping in the image. Furthermore, the method

is only suitable for a smaller baseline setup (about 1 meter). Hence, Goorts et al. [63] extends the

plane sweep approach, allowing the generation of higher quality results by employing an initial

plane sweep to generate a crude depth map, filter it and use it for a second, depth-selective plane

sweep. The experiment consists on 7 cameras aimed at the pitch with a static location and orien-

tation and placed around one-quarter of the field with a wide baseline setup, i.e. around 10 meters

between each camera. As shown in Figure 2.7, these methods presented can have two possible

camera arrangements: a linear arrangement and a curved arrangement. Goorts et al. [64] also used

the same method but with a different variation. Once the multiple camera matches are determined,

they perform an angle-based filtering which further enhances the correctness of the final result

of the calibration by eliminating possible mismatches. Pairwise feature matches are propagated

over all camera views using a confident-based voting method However, it does not permit that the

cameras are too much rotated relative to each other because it is assumed that lines connecting

matching features are more or less parallel and if the cameras are placed far apart, results would

not be correct. To complement this work, in [58] he also presented some alternatives for feature-

based point correspondence determination. For the first alternative, they moved an easily-detected

orange ball in the scene. The ball can be detected by selecting the largest orange object in the

scene, and the point can be determined by choosing the center of the circle enclosing the orange

pixel blob. Results showed that the method is reliable for calibration, resulting in only a few out-

liers. However, they claim some issues regarding the practical availability in sports scenes. First,

there must be a calibration recording, which costs time and effort. Second, it is forbidden to enter

the pitch before or right after the game. This will limit the possible locations of the ball to the side

of the pitch and the spectator area, resulting in less correspondences useful. The second alternative

uses a stroboscope to generate light flashes. The stroboscope is attached to the synchronization

signal of the cameras, determining that a flash occurs only when cameras take a frame allowing

the stroboscope to provide a light flash with high intensity for a short time. If the shutter time of

the cameras is reduced, the only thing visible in the image will be the flash.

Puwein et al. [65] also presented a framework to calibrate multicamera sequences but separated

by wide baselines. By providing the calibration of a single frame, a method to extract and update a

feature-based representation of the scene being captured is bootstrapped, taking advantage of dif-

ferent kinds of features. In the feature matching stage, the large tolerance which Maximally Stable

Extremal Regions (MSER) [66] features provide towards changes in viewpoint is leveraged and

combined with SIFT [8] in a two-step matching procedure. The special structure of homographies

mapping scene planes to images leads to a very efficient 2-point RANSAC when matching MSER
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Figure 2.9: Taxonomy of methods for the extraction of information on 3D shape. From [67].

features corresponding to a virtual, larger FoV and leading to more features being extracted and

matched. A feature based representation of the scene is created and updated using a very simple

yet effective strategy based on the visibility and the uniqueness of features, Figure.

2.2 3D Data Extraction

The extraction of moving targets’ 3D information in sport events is essential to acquire some tech-

nical and tactical information. To obtain that data, besides of an accurate camera calibration, an

adequate choice of 3D scene reconstruction from a set of multiple images must also be scrutinized.

The 3D data extraction methods can be represented by the taxonomy [67] presented in Figure 2.9.

The first division is between active and passive methods. In the active form, suitable light

sources are used as the internal vector of information and are controlled, as part of the strategy to

retrieve 3D information. Active lighting incorporates some form of temporal or spatial modulation

of the illumination. From a computational point of view, active methods tend to be less demanding,

since active illumination simplifies some of the steps in the 3D acquiring process. On the other

hand, in passive methods, the reflectance of the object and the illumination of the scene are used to

derive the shape information, thus no active lighting device is necessary since light is not controlled

or only with respect to image quality. Normally, passive techniques work with any ambient light

available.

The second distinction is between the number of observed viewpoints we have from the scene,

defining them as single-view or multi-view systems. On the former, the system works only from a

single viewpoint. On the latter, several viewpoints and/or controlled illumination source positions

are involved. For this type of systems to work well, every different components, such as cameras,

often have to be positioned far enough from each other, resulting in a wide baseline (distance

between two or more lenses).
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Figure 2.10: Epipolar geometry: The point P, the optical centers O and O’ of the two cameras,
and the two images p and p’ of P all lie in the same plane. Here, as in the other figures of this
chapter, cameras are represented by their pinholes and a virtual image plane located in front of the
pinhole. This is to simplify the drawings; the geometric and algebraic arguments presented in the
rest of this chapter hold just as well for physical image planes located behind the corresponding
pinholes. From [68].

As previously said in section 1.2, considering that the main objective is to infer the 3D position

of a small-size moving object that suffers from sudden changes of movement and occlusions, an

active method would need a controlled light source to point to the object continuously during the

3D extraction, which is not considered feasible. Thus, only passive methods will be accounted

for this analysis. The differences between number of viewpoints on passive methods will now be

discussed with more detail.

Focusing on multiple views, the most common in CV is to use two different views to compare

images and acquire relative depth about a scene. Such framework is mentioned as stereo vision.

The principle behind stereo-based 3D reconstruction is that, given the two projections of the same

point in the world onto the two images, its 3D position is found as the intersection of the two

projection rays [67]. Stereo vision involves two processes: the fusion of features observed by

two eyes and the reconstruction of their 3D inverse image. The inverse image of matching points

may be found at the intersection of the rays passing through these points and the associated pupil

centers [68]. Repeating such process for several points yields the 3D shape and configuration of

the objects in the scene.

The matching pairs of correspondence points are constrained to lie on corresponding epipolar

lines in the two images, thus this geometric epipolar constraint associated with a pair of cameras

will be essential to control the demanding stereo fusion process. Considering that images p and

p’ of a point P observed by two cameras with optical centers O and O’, those five points will

all belong to the epipolar plane defined by the two intersecting rays OP and O’P, as shown in

Figure 2.10. In particular, the point p’ lies on the line l’ where this plane and the retina π ′ of

the second camera intersect. The line l’ is the epipolar line associated with the point p, and it

passes through the point e’ where the baseline joining the optical centers O and O’ intersects π ′.

Likewise, the point p lies on the epipolar line l associated with the point p’, and this line passes
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through the intersection e of the baseline with the plane π .

Given a calibrated stereo rig and two matching image points p and p’, in an ideal scenario it is

straightforward to reconstruct the corresponding scene point by intersecting the two rays R = Op

and R’ = O’p’. However, the rays R and R’ practically never actually intersect due to calibration

and feature localization errors. This method, referred as triangulation, requires the equations of

the rays and, hence, complete knowledge of the cameras: their relative positions and orientations,

but also internal settings like the focal length [67].

Usually, passive stereo uses two synchronized cameras. Two images of a static scene could

also be taken in sequence by placing the same camera in two different positions. This method is

named structure-from-motion or SfM. If images are taken over short time intervals, it will be eas-

ier to find correspondences by tracking feature points over time. Once such strategy is considered,

more than two images can be taken while moving the camera and, thus, estimating 3D structures

from the sequence of 2D images. The goal of stereo passive methods is to recover the 3D geomet-

rical structure of a scene from two images of it. A 3D Euclidean reconstruction can be achieved if

the intrinsic and extrinsic camera parameters are known, i.e. are fully calibrated. Although if the

baseline distance is unknown, the reconstruction degenerates to a 3D metric reconstruction. If the

calibration matrices of the cameras are unknown, the scene structure can only be recovered up to a

3D affine transformation. Lastly, if no information about the camera setup is available, then only

a projective 3D reconstruction is possible.

The shape-from-silhouettes approach is another multiple view passive method that uses fore-

ground-background segmentation to reconstruct 3D objects by carving out voxels in space [69, 70],

or by reconstructing 3D meshes directly [71].

As stated before, the existing 3D reconstruction methods of sports scenes and objects can be

divided into single camera and multiple camera usage. Regarding single camera, Kim et al. [72]

estimate the ball’s height with reference to human’s height which is not reasonable in many sports.

In their algorithm, they manually determine two objects perpendicular to the ground and calibrate

the camera’s projection on the ground. Furthermore, these two objects need to have similar scene

depth. By exploiting triangle relationship, the ball height is computed. Reid et al. [73] evaluate

the 3D position of a ball by a geometric constraint, which makes use of shadows on the known

ground plane. However, it has difficulty to automatically detect the shadow in image.

Liu et al. [74] propose an algorithm to predict the ball’s 3D information from monocular view

with an improved method that predict the ball’s flying plane through virtual shadow computing.

Virtual shadow can be defined as objects’ projective points on the playing field plane. It categorizes

two classes for ball’s positions. The first is considered as ball on the ground, and it is trivial to

compute their positions on the playing field from image through the transform between image

plane and the field plane. The second is considered as the ball flying through the air, where it will

have a jumping-off point and a falling point to be estimated through an optimal parabola.

By introducing some dynamic equations, Ohno et al. [4] and Yamada et al. [75] evaluate the

ball position fitting a physical model of ball movement in the 3D space. They assume that the ball

motion is determined by the gravity and the air friction. These equations depend of an unsolved
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Figure 2.11: Estimated 3D ball trajectory compared with ground-truth and two 2D trajectories.
From [77].

initial ball’s speed, which are difficult to acquire solely from images. Ribnick et al. [76] developed

a theoretical analysis of a linear solution and established the minimum conditions for the existence

of a unique solution. They asserted the need of at least three image samples to solve the ball motion

problem, since there are six unknown and independent parameters, 3D position and velocity, as

each image measurement provides at most two constraints on the system. Shen et al. [10] continue

the work in [4, 76] to propose a monocular 3D reconstruction method based on those two methods.

However, they address that those cannot be directly used in the ball trajectory estimation in sports

due to the model drifting problem and solve it by mixing the physical and the geometrical model

of the ball. The model drifting problem can be defined as the drift of the estimated ball trajectory

from the trajectory along the direction perpendicular to the camera image plane.

Considering multiple cameras, in [78] 2D ball is detected by template matching and tracked

using epipolar line constraints between four cameras. They consider the virtual viewpoint image

from the upper direction of the soccer field. The ball position from the virtual viewpoint can be

estimated by finding the intersection of epipolar lines corresponding to where the ball positions

between the cameras. According to the ball position from the virtual viewpoint, the number of the

candidate cameras is limited. When the ball is close to one side in the virtual viewpoint image,

candidate cameras are limited to two cameras on the same side as the ball’s position. Kim et

al. [79] generate a feature matching of the lines tracked on the playing field and, by building small

mosaics combined with several frames of a broadcast video stream, acquire the ball’s 3D position.

When two synchronized videos are available, the ball’s position can be computed through the

multiple view geometry relationship.

Ren et al. [80, 81, 77] (see Figure 2.11) employ eight stationary cameras placed along the stand

to cover the field in a soccer match. In their system, these cameras are calibrated to the ground-

plane coordinate system in advance. Thus the players’ positions can be determined through the

homography between image and the playing field in monocular view. Two methods are described

for detecting that the ball has left the ground plane, and is following a 3D trajectory. The first uses

triangulation of multiple sources of data to estimate a 3D position; the second uses an analysis of
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the trajectory from one or more data source to infer that the ball has left the ground. To estimate

the flying ball’s position in the air, it needs at least two cameras to use the epipolar geometry

constraint. The use of more cameras allow to never miss an object in case of occlusion in some

views. In case the ball is only detected from a single view, hints about its height are extracted from

the shape of its trajectory. In case of frames where no observations are available, ball’s position is

estimated by polynomial interpolation to generate a continuous 3D ball trajectory in all frames.

Ishii et al. [82] claim that 3D position can be easily calculated by a wide baseline stereo

method, after ball’s 2D position from both cameras is estimated. The ball is represented by a 3D

model and a deterministic method is used to estimate the ball’s 3D position. Also, they resort to a

Kalman filter to compensate the ball-missing frames.

Aksay et al. [6] and Kumar et al. [83] use the dataset from the ACM Challenge 2010 [84].

This dataset includes nine stream videos of a tennis match scenario with eight of the nine cameras

placed in different positions around a tennis court and one placed above the court. Along with that,

some chessboard images and 3D locations of few known objects in the scene were included for

camera calibration. Both authors calculate 3D ball’s position using a simple triangulation method

of the 2D points in each camera. Also using the same dataset but resorting to a different approach,

Kelly et al. [85] used a volumetric intersection technique to compute the visual hull of the 3D

object (players and ball), which is based on the shape-from-silhouette method [86]. The visual

hull is obtained by the intersection of planes from all cameras. If a 3D point is simultaneously

captured by all cameras of a section for a specific plane, then that point belongs to the visual hull.

The 3D mesh is subsequently calculated using the marching cubes algorithm [87]. Although not

being able to verify ground-truth data about some reprojection errors that could occur, the authors

claimed that good results were achieved.

2.3 Market Solutions

One of the first commercially available multicamera systems based on 3D information on CV was

developed for tracking cricket balls in 3D. Its name is Hawk-Eye [88] and was first used in 2001,

subsequently applied to tennis officiating. The system is now deployed with a number of high-

speed synchronized cameras viewing the tennis court and mounted on the underside of the roof,

Figure 2.12. Because the cameras are static, they are easier to be accurately calibrated in advance

resulting in short shutter times and higher frame rates used. The system first identifies possible

balls in each camera image and then candidates for balls are linked with tracks across multiple

frames. Afterwards, plausible tracks are then matched between multiple cameras to generate a

trajectory in 3D. The Hawk-eye technology has gaining much reputation and has since been used

in official refereeing for several important competitions, such as the 2015 Rugby World Cup.

The GoalControl system [90] was used for the 2014 World Cup in Brazil [5] and, likewise

Hawk-Eye, it is a certified Goal-Line Technology (GLT) technology installation from Fédération

Internationale de Football Association (FIFA). This system works with 14 high-speed cameras

(Figure 2.13), 7 per goal, around the pitch and positioned at the stadium roof. The cameras are
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Figure 2.12: The Hawk-Eye technology. From [89].

connected to an image processing computer system which tracks the movement of all objects on

the pitch and filters out the players, referees and all disturbing objects. The remaining object will

be the ball and the system learns its 3D position with a precision of a few millimeters. When the

ball passes the goal line, the system sends a vibration and optical signal to the officials’ watch.

Besides, all camera images of goal and near-goal events are stored and can be used for TV replay

anytime.

ChyronHego [92] has a broadcast graphics solutions for real-time 3D tracking of objects in

sports, including players, referees and the ball. The image tracking system uses two super high-

definition (HD) cameras and image processing technology to deliver live tracking of all moving

objects, achieving a maximum delay of just three frames. The camera units use stereo methods to

ensure that the entire playing surface is filmed from several angles. Their software analyses every

image to extract 3D positions for each object achieving tracking in real-time.

The Playfulvision system [93] is a automatic video analysis technology. It can provide video-

based analytics and statistics for different sports, including volleyball, tennis and equestrian. In

its professional version, six cameras are placed around the field or court and are connected to

a computer. It can detect the position of the players and the 3D position of the ball at real-

time, recognizing different players based on the number of the shirts (volleyball scenario). It

was developed at the CV Laboratory in Swiss Federal Institute of Technology in Lausanne.

Developed by the Fraunhofer Institute for Integrated Circuits IIS, the GoalRef system [94] is

also licensed by FIFA and differs from the previous ones because it is a radio-based sensing system

that uses low-frequency magnetic fields to detect if a goal has been scored. Two low-frequency

magnetic fields are used, with one magnetic field created in the goal area and the other one created

in and around the ball, whenever it approaches the goal. Then, the software monitors the condition

of the magnetic field in the goal and detects if there is a change due to the passage of the coils

of the ball over the goal line. At the end, the result is transmitted via wireless to the referee’s
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Figure 2.13: Example of a high-speed camera used in GoalControl system. From [91].

wristwatch and a message is displayed in real time.

2.4 Summary

In recent years, 3D acquisition systems are attaining irrefutable interest in 3D reconstruction of

sport scenes, not only for technical and tactical assessment but also for TV visual graphics. Two

major issues dominate the problem of acquiring and extracting 3D information about objects in a

dynamic scene: camera calibration and 3D extraction.

Once there is an enormous interest in 3D reconstruction of sport events, a number of different

methods to calibrate single and multiple cameras are proposed by many authors. One can use

intersecting points on lines of the playing field, vanishing points on the scene, use feature detec-

tion in texture or homogeneous planar scenes and, even, use calibration objects to get the results

needed. With this process completed, many authors claimed that, considering an ideal scenario,

using geometric constraints from the scene, one can achieve 3D data from a point from that scene

and, thus, reconstruct in 3D an object given.

In spite of many achieved academic work regarding these issues, they present many challenges.

In multicamera setups, cameras can be separated by wide baselines. These provides a hard issue in

order to extract multiple view correspondences. Wide baselines are used to provide fewer cameras

but to guarantee that every part of the scene is captured. When calibrating in these setups, features

in the scene can change their appearance significantly between viewpoints, making trustworthy

feature matching between cameras difficult. To establish correspondences between views, the

wide baselines can be tackled in a two-step procedure that benefits both from the invariance of

MSER features and the descriptiveness of SIFT features. In other cases of multicamera systems,

no information regarding the calibration methods were given since they were provisioned with

calibrated datasets in advance, also as considering problems of synchronized images which were

considered solved from the beginning.

Regarding mono-vision systems, many authors utilize broadcast images of sport events, a sit-

uation where only one camera stays in an initial fixed position but suffers from image translations
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throughout coverage. It is common, in these situations, to use a 3D line model of a standard play-

ing field to calibrate cameras. Relating image lines and model lines leads to a set of 2D-to-3D line

correspondences with existing approaches dealing with each camera separately, depending on the

known appearance and geometry of the playing field. Additionally, single camera usage lack the

multi-view constraints, which reduce the relative error between cameras.



Chapter 3

Methodology

The development of a camera solution capable of identifying and reconstructing the 3D position

of an object in a context of a sports game was the main objective of the present thesis. A set

of multiple cameras was used to capture a ball in a basketball field, comprising several camera

locations and diverse ball movement sequences inside a 3D playing field frame.

3.1 Dataset Preparing

To prepare the dataset, an image acquisition protocol was developed considering all stages of

camera calibration and different static and dynamic ball scenarios. To acquire the dataset, four

cameras were defined as the adequate number to provide good and differentiated test results. They

were denominated as IP1, IP2, IP3 and IP4 for differentiation issues.

A Personal Computer (PC) was linked to a network switch with all cameras connected via

networking cables and with correctly defined Internet Protocol (IP) addresses. The cameras were

in the same network as the PC by establishing the first three octets of the IP addresses as the same.

For the image acquisition, the Real-Time Videos Streaming Protocol (RTSP) were used to stream

the video data and record it on the PC data storage.

The playing field where the image acquisition was performed, had the dimensions of a bas-

ketball field, with a total of 15.1×14 meters (Figure 3.1a). To allow a full capture of the chosen

world frame, only the right half of the basketball field was considered (Figure 3.1b). The field was

illuminated with a natural and consistent light providing good information from all of the captured

field. The walls and the floor of the pavilion were white contributing for a good manual detection

of the markers’ points and the ball, specially when they were far away from the cameras.

All four cameras used on the image acquirement process were placed on the stands on one

side of the basketball field to ensure the capture of the right half of it, as seen in Figure 3.2.

Cameras IP1 and IP4 were placed facing the bottom right and bottom left corners of the chosen

world reference frame respectively, and with a sufficient focus to capture the entire half court.

Cameras IP2 and IP3 were placed in the middle of the other two cameras and close to one another,

so that a stereo-vision system could be portrayed. On Figure 3.3, the view from all of the four

23
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(a)

(b)

Figure 3.1: (a) Court field measurements (in meters). The choosing field reference was the right
half of a basketball field. Red dots indicate chosen ground-truth positions. (b) World reference
frame (in meters). The center origin of the world coordinate system is the upper left corner of the
right side of the field, illustrated by the red lines. The xy-plane orientation constrained a z-axis
positive value for positive heights.

cameras is detailed. The definition of the camera’s image resolution depended on their personal

features and were chosen to obtain the maximum potential of the image acquirement. Not only

that, the designation of the frame rate and video codec was equal to guarantee conformity between

cameras. The parameters are defined on the list below:

• Resolution (in pixels): 1920×1080 (IP2 and IP3) and 1280×720 (IP1 and IP4);

• Video Codec: H.264;

• Frame Rate (fps): 30 frames per second;
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Figure 3.2: Placement of the 4 cameras around the field by the order IP4, IP2, IP3 and IP1 from
left to right. Red dots’ numbers represent the order followed during the acquisition protocol for
the positioning of the ball.

Each camera had the auto-focus disabled in order to maintain the same calibration parameters

throughout the image acquiring, since a change on the image focus would change the values of the

intrinsic parameters. The 3D object used for the image acquisition was a basketball (ball) with a

recognizable size and color in contrast with the playing field and was not occluded to allow for an

easy manual detection on all image frames.

Initially before any image acquisition, the measurements of the field lines and ground-truth

points were taken. Considering the number of cameras used and to guarantee a good flexibility on

their placement, only the right half of the basketball court was considered as the world reference

frame. As seen in Figure 3.1a, 12 points on the ground court were chosen to allow a construction

of a real world coordinate system totally covering the right half of the field. The upper left corner

of the considered 3D field was acknowledge as the center origin of the world coordinate system,

as illustrated on Figure 3.1b. The choice of considering that xy-plane orientation constrained a

positive z-axis as the height of the field due to the Right Hand Coordinate System (RHS) which

guarantees positive values for ball positions above the ground (z = 0m).

A detailed description of the different steps that were followed during the image acquisition

can be found on Table 3.1.

On step 1, the calibration was performed on each camera individually. On step 2, camera

pose and orientation were determined using markers placed on positions 1, 3, 4, 6, 10 and 12 (see
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(a)

(b)

(c)

(d)

Figure 3.3: View of the cameras located on the stands of the pavilion. They were pointed to the
basketball court in such a way as to guarantee full capture of the world reference system. (a) View
of camera IP1. (b) View of camera IP4. (c) View of camera IP2. (d) View of camera IP3.
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Table 3.1: Steps performed on image acquirement, for each camera

Steps Description
1 Capture calibration data by moving a planar black and white chessboard pattern.
2 Capture calibration data using markers placed on different positions of the field.
3 Record a static ball in different positions for different heights.

3.1 Static ball for z = 0m.
3.2 Static ball for z = 1m.
3.3 Static ball for z = 2m.
3.4 Static ball for z = 3m.

4 Record different continuous movements.
4.1 Record a ball in continuous movement for z = 0m.
4.2 Capture a dribbling ball movement.
4.3 Record a ball in a free continuous movement.

Figure 3.2) so that it would mark down the frontiers of the field as the world coordinate frame and

provide depth as a calibration object.

To ensure strong ground-truth data on steps 3.2, 3.3, and 3.4, i.e. when the ball is not positioned

on the ground, a thread with a mass attached in one end and the ball attached to the other end

was used. The mass is placed on the ground on each marked position and the ball’s height was

measured on the thread. Accordingly, a stepladder was used and the ball was held with both hands

with the thread perpendicular to the field plane (see Figure 3.4).

On steps 4.1, 4.2 and 4.3, when the ball was moving continuously, camera synchronization was

performed using an electronic flash device, as shown in Figure 3.5. This procedure provided for the

initial instant t = 0s, for all cameras since all four cameras had an equal frame rate, subsequently

frames after the initial instant were therefore synchronized.

3.2 Camera Calibration

As mentioned in chapter 2, camera systems are usually described by the standard pinhole camera

model as a representation of the image projection process [9], as depicted in Figure 3.6. An image

2D point can be defined as m = [u,v]T and a 3D world point as M = [X ,Y,Z]T . Considering

homogeneous vectors, they can be represented as m = [u,v,1]T and M = [X ,Y,Z,1]T , respectively.

In the pinhole model, the 2D image projected point into the image plane, m, of the 3D real world

point, M, can be determined as

m = K
[

R
∣∣∣ t]M (3.1)
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Figure 3.4: One view of camera IP4. A line thread was used to validate the measurements of the
ball coordinates in 3D space, for heights above the ground plane.

Figure 3.5: One view of camera IP4. An electronic flash device produced a bright light allowing
to synchronize all cameras for the ball in continuous motion sequences.

or
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where R and t are the 3× 3 rotation matrix and the 3× 1 translation vector, which relate the

world coordinate system to the camera reference frame (extrinsic parameters), and K is the 3×3
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Figure 3.6: Pinhole camera geometry. The camera center C is the origin of a Euclidean coordinate
system, the principal point p is the intersection between the image plane and the camera axis, and
the focal length f is the distance from the pinhole camera to the image plane. From [9].

intrinsic camera matrix. The intrinsic camera matrix K is responsible for transforming 3D camera

coordinates to 2D homogeneous image coordinates and contains the intrinsic parameters focal

length ( fx and fy) and principal point (px and py). Each one of these parameters represent a

geometric feature of the pinhole camera, with the focal length symbolizing the distance from the

camera to the image plane and the principal point representing the center point of the image plane.

Once the internal camera matrix is estimated, it remains the same as long as the focal length and

the image resolution does not change. Considering that K transforms the image coordinate system

into a camera coordinate system, a new expression can be constructed by

m = K
[

I
∣∣∣0]mcam (3.3)

where mcam is defined to emphasize the projected point in camera coordinates, with the camera

assumed as the origin of this coordinate system [9].

However, points in 3D space are expressed in terms of a world coordinate frame. As expressed

before, R and t represent the extrinsic parameters which designate the coordinate system transfor-

mations from 3D world coordinates to 3D camera coordinates. The rotation-translation matrix

[R|t] is called the matrix of extrinsic parameters and translate world coordinates of a point M to

the camera coordinate system, where t defines the position of the world coordinate system origin

expressed in the camera coordinate system. They define

P = K
[

R
∣∣∣ t] (3.4)

where P is the 3×4 camera projection matrix and represents the mapping from the image coor-

dinate frame to the world coordinate system by

m = PM. (3.5)

Considering equation 3.3, the camera coordinate frame and the world coordinate frame are
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Figure 3.7: The Euclidean transformation between the world and camera coordinate frames.
From [9].

related via a rotation and a translation [9], as illustrated in Figure 3.7. As a result, mcam = R(M−
C), with C representing the coordinates of the camera centre in the world coordinate frame. Then,

this equation may be written as

mcam =

R −RC

0 1




X

Y

Z

1

= KR
[

I
∣∣∣−C

]
M (3.6)

where M is in a world coordinate frame. If t =−RC, the transformation of mcam = RM+ t can be

defined as x

y

z

 =

r11 r12 r13

r21 r22 r23

r31 r32 r33


X

Y

Z

+
tx

ty
tz

 . (3.7)

Expressing x′ = x/z and y′ = y/z, the image coordinates are given asu = fxx′+ px

v = fyy′+ py

. (3.8)

As a consequence of some restrictions in the lens manufacturing process, straight lines in the

world imaged through real lenses normally become curved on the image plane [95]. This is called

the lens distortion, which can be radial and tangential. The radial distortion happens because the

lens of the camera projects the points in the scene according to their distance from the origin of the

image plane. For radial distortions, the distortion is practically zero on the center of the image and

increases as it approaches the frontiers of the image plane [96], as depicted in Figure 3.8. Since
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Figure 3.8: Radial distortion. A camera lens distorts the location of pixels near the edges of
the image plane. Image rays farther from the center of the lens are bent compared to rays that
pass closer to the center, accordingly curving the sides of a projected square object, for example.
From [96].

each lens element is radially symmetric, almost all of the lens distortion is radially symmetric [95].

The tangential distortion occurs due to manufacturing defects, from the lens not being exactly

parallel to the imaging screen [96].

The lens distortion should be taken into account as a nonlinear intrinsic parameter, however it

cannot be included in the linear camera model described by the intrinsic camera matrix. Therefore,

the above model can be extended as

xd = x′
1+ k1r2 + k2r4 + k3r6

1+ k4r2 + k5r4 + k6r6 +2p1x′y′+ p2(r2 +2x′2) (3.9)

yd = y′
1+ k1r2 + k2r4 + k3r6

1+ k4r2 + k5r4 + k6r6 + p1(r2 +2y′2)+2p2x′y′ (3.10)

where r2 = x′2 + y′2, ud and vd are the undistorted image points in pixel units, k1, k2, k3, k4, k5,

and k6 are the radial distortion coefficients and, p1 and p2 are the tangential distortion coefficients.

Considering the relationship between the distorted and the undistorted image points [21], thenud = fxxd + px

vd = fyyd + py

. (3.11)

The distortion coefficients depend solely on the lens of the camera, so they can be used for different

image resolutions on the same camera.

3.2.1 Intrinsic Calibration

The camera calibration process followed in this dissertation uses multiple views of a planar black

and white chessboard pattern and was first introduced by Zhang [21]. This method calibrates

cameras by solving a homogeneous linear system that creates homographic relationships between
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several perspective views of the calibration pattern, assuming that it lies on the plane Z = 0. Con-

sidered a variant of the auto-calibration, it computes the camera parameters using the pattern’s

motion relative to a planar calibration object. This causes the calibration method to be more flexi-

ble, once the camera and the pattern can be moved freely and many images can be taken without

measurements of the pattern’s position. As said before in section 2.1, the responsiveness of the

calibration algorithm to measurement errors can be improved by expanding the number of black

and white squares on the chessboard, thus increasing the number of corners to be extracted from

the pattern.

Zhang’s camera calibration method is a two step process where a linear algebraic approxima-

tion is succeeded by a non linear searching [21]. The multiple view approach from it becomes

more practical since it is simpler to capture numerous views of a calibration pattern than to use the

motion of the camera to capture a static calibration scene e.g SfM, the difficulty to construct a 3D

object to use as the calibration rig e.g. Tsai’s method, or resorting to a 1D object that needs to be

synchronously captured by all cameras.

Through Zhang [97, 21], m and M are related by a 3× 3 matrix H = [h1 h2 h3] = K[r1 r2 t]

denominated homography, where

u

v

 = H

X

Y

1

=
[
r1 r2 t

]X

Y

1

 (3.12)

considering Z = 0. Knowing that r1 and r2 are orthonormal,

hT
1 K−T K−1h2 = 0 (3.13)

hT
1 K−T K−1h1 = hT

2 K−T K−1h2, (3.14)

which are the two fundamental constraints on the intrinsic parameters, given one homography.

Through the closed-form solution called Singular Value Decomposition (SVD) [98], let

B = KT K−1 =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 (3.15)

that can be defined by a six-dimension vector

b =
[
B11 B12 B22 B12 B23 B33

]T
. (3.16)

Assuming ith column vector of H to be hi = [hi1,hi2,hi3]
T , then

hT
i Bh j = vT

i jb. (3.17)

For each homography and assuming the two basic constraints 3.13 and 3.14, two homogeneous
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Figure 3.9: One frame example from three of the four installed cameras, displaying the used
calibration pattern. To produce better results, the pattern was rotated and moved with several
orientations in front of the cameras so that several frames with different pattern positions could
be identified, thus detecting the corners from the black and white chessboard with differentiated
poses.

equations proceed as  vT
12

(v11− v22)
T

b = 0, (3.18)

with vi j = [hi1h j1,hi1h j2+hi2h j1,hi2h j2,hi3h j1+hi1h j3,hi3h j2+hi2h j3,hi3h j3]
T . If n images of the

model plane are observed, by piling up n equations such as the previous, then V b = 0, where V is

a 2n×6 matrix. In order to obtain a single solution, at least three images are necessary (n >= 3).

The closed-form solution is given by the eigenvector [99] of V TV associated with the smallest

eigenvalue. Once b is estimated, all intrinsic camera parameters can be computed.

However, the solution was obtained by minimizing a not physically meaningful algebraic dis-

tance. Through a maximum likelihood inference such as the LM algorithm [57], a refinement of

the intrinsic parameters was done. Assuming n images of the planar pattern and m image points

corrupted by independent and identically distributed noise on the pattern plane, a maximum like-

lihood estimate was obtained by minimizing the distance:

n

∑
i=1

m

∑
j=1

∥∥mi j−m(K,Ri, ti,M j)
∥∥2 (3.19)

where m(K,Ri, ti,M j) is the projection of point+ M j in a calibration image i, according to equa-

tion 3.12.

The calibration procedure started by moving a checkerboard pattern in front of each camera

individually, as seen in Figure 3.9. Only the images where the corners of the chessboard pattern
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Figure 3.10: One frame example from camera IP4, displaying a colored grid covering the planar
pattern found corners.

were all correctly identifiable were considered as valid. The process of identifying and validating

the calibration images followed a defined frame skip value to allow a sufficient interval for the

calibration pattern to change its orientation and avoid redundancies. In planar patterns with shapes

in a rectangular form such as chessboards, an accurate calculation of the coordinates of corners is

required. For that, a geometry-based corner detection algorithm was used to measure differential

geometry features of corners and find an estimate of corners’ coordinates [96]. In order to make

the process more visual, the output of the corner detection algorithm was displayed by overlay-

ing a colored visible grid to notify that all the chessboard corners were found, as illustrated in

Figure 3.10.

To improve the accuracy of the coordinates from the black and white chessboard corners, it

was used an iterative sub-pixel refinement method [96] to extract more exact corner positions

since a more real-valued resolution was needed instead of the approximations to integer pixel

values previously obtained. The calculation of the sub-pixel location used the mathematical fact

that a dot-product between a vector and a orthogonal vector is equal to 0, a circumstance that

happens on corner locations. The method iterated from a starting point value and continues until

the termination criterion were reached. It was decided empirically to compute a maximum number

of iterations of 30 and the desired accuracy of the sub-pixel values at which the iterative algorithm

stopped was 0.1 pixels.

To provide a qualitative measure of accuracy, reprojection errors for each pattern view were

calculated, i.e. the distance between a pattern point detected in a calibration image frame, and

the corresponding projection into the same image. This provided a useful assertion of the average

reprojection error in each calibration chessboard image. Using this information, image frames

with a reprojection error above a certain value were excluded from the calibration procedure and

a recalibration of the camera was processed considering only the calibration image frames with a

reprojection error below the defined maximum acceptable reprojection error.
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(a) (b)

(c) (d)

Figure 3.11: Six markers were placed around right-half of the field to allow for a correct estimation
of the camera’s locations and orientations to the same world reference. In each marker, points were
labeled with colored duct tape and spaced with 0.4 meters in height. (a) View of camera IP1. (b)
View of camera IP2. (c) View of camera IP3. (d) View of camera IP4.

The calibration process returned 8 distortion coefficients following a rational model of the lens

distortion computation [100], equations 3.9 and 3.10.

3.2.2 Extrinsic Calibration

The extrinsic parameters obtained during the intrinsic parameters calibration step were related to

each i-th view of the pattern. This means that all cameras had multiple values of R and t regarding

the calibration object motion during the calibration process and these values only represent a

transformation from the camera coordinate system to the world coordinate frame defined on the

pattern calibration.

So, to ensure that the R and t values were computed for the same world coordinates defined on

the court field, six markers with a height of 1.6 meters were placed on positions 1, 3, 4, 6, 10 and

12 of the field, considered the world reference frame. Points were labeled with colored duct tape

in each marker and spaced with 0.4 meters in height, thus establishing five points for each one

to be used as a calibration object point with a total of 30 points, as illustrated in Figure 3.11. To

improve the accuracy, the midpoints of the center line (position 2) and the base line (position 11)

of the basketball field, representing the width lines of the world frame, were also considered, thus

increasing the total points used to 32. Hence, the field can be considered a calibration object be-

cause the extrinsic parameters were obtained from known 3D world points existent on the markers
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and were viewed in the same 3D location by every camera, thus guaranteeing that every position

of camera centers and camera’s headings are all according to the same world reference frame.

This problem of obtaining the position and orientation of a camera given its intrinsic param-

eters and a set of n correspondences between 3D points and their 2D projections is called the

Perspective-n-Point (PnP) [101]. The assumption made in the PnP is that the camera is already

calibrated, which defines that all of the intrinsic parameters are already estimated. The formula-

tion of the PnP problem can be explained as follows: given a set of correspondences between 3D

points in a world reference frame and their 2D projections onto the image plane, PnP attempts to

estimate the pose (R and t) of the camera with respect to the world and the focal length f and to

transfer the world coordinates to the camera coordinates frame. Four PnP solver methods were

studied: the Iterative PnP, the EPNP [102], the P3P [103] and the RANSAC PnP method [101].

However, P3P was not considered because it needs exactly four point correspondences to solve

the PnP problem. Though four correspondences can be acceptable to estimate the pose, it was

advantageous to analyze larger number of point sets so that some redundancy could be introduced

and the sensitivity to noise diminished. Since it were considered n points, the remaining three

approaches that solve the problem of computing camera pose were analyzed and compared.

The PnP methods received as parameters both the camera matrix and the distortion coefficients

that were already computed, the real 3D object points from the markers and the pixel positions of

each point projected on the image of the camera. Therefore, correspondences between 3D and

2D points granted the camera pose from each different PnP solver. Then, using the previously

estimated intrinsic parameters and distortion coefficients and the estimated rotation matrix and

translation vector from the PnP solvers implemented, a projection of the 3D world points onto the

image plane was done (see equation 3.2). To prove that the estimated extrinsic parameters were

accurate, an intersection must occur or, at least, the points projected must appear closer to the

correspondent image points given before.

The PnP problem solvers can be classified as non-iterative or iterative methods. Most of the

non-iterative methods start with an estimation of the 3D points position regarding the camera

coordinate system by solving them for the points depth [102]. After, it will be easy to retrieve

camera’s position and orientation as the Euclidean motion aligns these positions on the given

coordinates in the world coordinate system [102]. Non-iterative methods can be efficient, but their

limitation lie on instability in the presence of noise, especially when n ≤ 5. As said, the stability

of the non-iterative methods can be improved by introducing redundant points as supplementary

information. If redundant points are unavailable, accurate results can be achieved by introducing

iterative schemes based on the minimization of non-linear cost functions.

3.2.2.1 Efficient PNP Method

The Efficient PNP method (EPNP) [102] consists of a non-iterative solution and is considered

by its authors to have lower computational cost than other non-iterative methods, and as fast as

iterative ones with only a slight loss of accuracy. Differently than most approaches, that attempt to
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solve for the depths of the reference points in the camera coordinate system, the EPNP coordinates

are given as a weighted sum of four non-coplanar virtual control points.

Defining n points whose 3D coordinates are known in the world coordinate system, pi with

i = 1, ...,n; and 4 control points, c j with j = 1,2,3,4; the weighted sum of the control points is

pi =
4

∑
j=1

αi jc j, (3.20)

with αi j as the homogeneous barycentric coordinates.

In theory, the control points could be chosen arbitrarily but, in practice, the accuracy increases

if one is selected as the centroid of the reference points and the rest to form a basis aligned with

the principle directions of the data. This can be considered as conditioning the linear system of

equations by normalizing the point coordinates in a similar way as the classic DLT algorithm [9].

Given this formulation, the coordinates of the control points in the camera reference frame are the

unknowns of the PnP problem.

Let K be the camera internal calibration matrix and ui the the 2D projections of the pi reference

points, then

wi

ui

vi

1

=
4

∑
j=1

αi jc jK pi = K (3.21)

with c j in a camera coordinate system. The unknown parameters of this linear system are the 12

control point coordinates, and two linear equations for each reference point will appear defining

the coordinates of the control points in the camera reference frame as the unknowns of the PnP

problem.

3.2.2.2 Iterative PnP Method

Considering an iterative approach, the Iterative PnP method used was based on the DLT method

followed by an iterative LM optimization since it estimates the camera pose through the sum of the

squared distances between the observed 2D projections and the projected 3D points that minimize

the reprojection error.

This method can be divided into planar and non-planar structure cases. On non-planar structure

cases, it uses the DLT method to compute the extrinsic parameters. On planar structure cases,

where all the points lie on the same plane, a homography (see equation 3.12) is used to get the

extrinsic parameters. On both cases, it is used an LM optimization to refine the estimations that

were referenced. In this dissertation, it was followed the non-planar structure. First, it determined

the projection matrix P by solving a linear equations system defined by n 2D projection points, mi,
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from n 3D world points, Mi: 
P11Xi+P12Yi+P13Zi+P14
P31Xi+P32Yi+P33Zi+P34

= ui

P21Xi+P22Yi+P23Zi+P24
P31Xi+P32Yi+P33Zi+P34

= vi

(3.22)

where Pi j are the elements of the projective matrix P. Through the SVD, a solution was found

using a linear system in the form of Ap = 0, with p as a vector composed by the coefficients Pi j.

Only then, it extracted the camera pose using the equation 3.2. Considering that pixel loca-

tions suffer from an independent and identically distributed noise, a refinement was done using an

iterative LM optimization, already described in section 3.2.1. Empirically, the maximum number

of iterations defined was 20.

3.2.2.3 RANSAC PnP Method

The RANSAC method [101] is a non-deterministic iterative method that estimates parameters

from observed data producing an approximate result as the number of iterations increase. It can

be used along with a PnP method to produce a solution robust to outliers in a set of n point

correspondences, considering incorrect matches (outliers) are eliminated to estimate the camera

pose with a certain probability of obtaining a good solution. The PnP method implemented along

with the RANSAC algorithm was the EPNP, described in section 3.2.2.1.

First, the RANSAC PnP method chose five random 2D-3D correspondences differently for

each iteration. Then, it calculated cameras’ poses using these five correspondences through an

EPNP solution and the reprojection error for each reprojection of the 3D point and their original

2D projection. Considering an initial specified threshold, an estimation would be considered an

inlier if the reprojection error was less than the threshold value. Alternatively, it would be con-

sidered an outlier. The threshold value represented the maximum allowed distance between the

2D observed and computed point projections in pixel units. As mentioned, five different sets of

2D-3D correspondences are randomly selected for each iteration, so this process of reducing the

influence of outliers resulting from inaccurate correspondences was repeated for each iteration of

the RANSAC method until it reached a maximum number of iterations or a maximum number of

inliers. The maximum number of iterations and inliers were defined as 100 and the inlier threshold

value used by the RANSAC method was defined as 8 pixels. All values were chosen empirically.

3.3 Triangulation

After the calibration stage and retrieval of the intrinsic and extrinsic parameters of the all the

cameras involved, a 3D reconstruction of the target object - the ball - was the next step. This was

possible through triangulation by calculating a point in 3D space given its projections onto two

views and resorting to the camera matrices of those views.
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The problem of determining a point’s 3D position from a set of corresponding image locations

and known camera positions is defined as triangulation. Assuming that both extrinsic and intrinsic

camera parameters are known exactly, i.e. both camera matrices; or at least with great accuracy

compared with a pair of matching points in two images or views [9], two rays can be easily

reconstructed from the corresponding projected points with the intersection of those rays assuring

the knowledge of their 3D position [9].

Considering that a 3D world point M is visible in two different views from the scene, P and P′

are two known camera projection matrices and, m and m′ define projections of the point M in the

two images, the two rays in space corresponding to the two image points can be computed [104].

As stated before, the triangulation problem is to encounter the intersection of these two rays in

space. Apparently, this may arise as an irrelevant issue once we consider that the intersection of

these two lines in space will always be perfect. Unfortunately, due to the presence of noise and

errors in the measured image points m and m′, the projected rays can not be guaranteed to cross

each other.

This implies that there will not exist a point M which accurately meets m = PM, m′ = P′M;

causing the image points to not satisfy the epipolar constraint m′T Fm = 0, as seen in Figure 3.12,

with F as the Fundamental matrix [9]. As mentioned before in section 2.2, the epipolar geometry is

defined as the ideal geometry relation between the 3D points and their projections onto the images

from two cameras pointed to a 3D scene in different positions. This is a problem that triangulation

can solve by estimating M using the projected points m and m′, and the camera matrices P and P′.

Assuming τ as a triangulation method used to compute a 3D space point M, we can write

M = τ(m,m′,P,P′). (3.23)

Thus, there have been proposed a few different techniques and methods to achieve better so-

lutions for 3D reconstruction [104]. Three of those triangulation methods were evaluated to solve

this 3D reconstruction problem: the Midpoint Method, the Linear Least-Square (LS) Method and

the Iterative Linear-LS Method.

3.3.1 Midpoint Method

The Midpoint Method [105, 106] is the most intuitive method to achieve an acceptable 3D recon-

struction and is based on a simple linear geometry problem. Its objective is to achieve the midpoint

of the perpendicular between the two back-projected rays, as seen in Figure 3.13.

Knowing both 3× 4 projective camera matrices, P and P′, from the two cameras, we can

decompose camera’s internal parameters, K and K′; the rotation matrices, R and R′; and the trans-

lation vectors, t and t ′. Afterwards, the back-projected rays need to be determined. These will

be vectors with initial point on the camera centers, p and p′, and crossing the projected points on

each image plane, m and m′, with end point on the infinity.
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Figure 3.12: (a) Rays back-projected from measured points m and m′ are skew in 3D space. (b)
The epipolar geometry for m, m′. The measured points do not satisfy the epipolar constraint. The
epipolar line l′ = Fm is the image of the ray through m, and l = FT m′ is the image of the ray
through m′. Considering rays can not intersect, m′ does not lie on l′, and m does not lie on l.
From [9].

Considering equation 3.2, multiplying the image point m by the inverse of the intrinsic matrix

K will partially transform the point from image coordinates to camera coordinates

K−1

u

v

1

=

α

β

1

=

x/z

y/z

1

 . (3.24)

This conveys that the 3D coordinates of the object cannot be retrieved because the value z is not

known yet. However, the coordinates must be situated on a line from the object to the camera

origin that passes through the imaging screen. By knowing that the image plane is at distance f ,

where f is the focal length of the camera, a ray that passes through the object can be defined as

r =

0

0

0

+
 f α

f β

f

 . (3.25)

After the back-projected ray is calculated, a line between the nearest points of each ray is esti-

mated and its midpoint will be the estimated 3D point M. Defining a and a′ as the points that are
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Figure 3.13: Midpoint method triangulation. In a Euclidean frame, the midpoint M of the perpen-
dicular defined by a and a′ and between rays r and r′ can be used to give an estimate of the 3D
point. Each ray is defined by the camera center p and p′ and the projected image point m and m′

of the same 3D point. From [105].

connected by the line, its midpoint can be defined as

M = p+1/2(a−a′). (3.26)

Although this approach seems practical and attractive, it only applies in a Euclidean coordinate

frame where distance and perpendicularity can be measured [106].

3.3.2 Linear Least-Squares Method

The Linear Least-Squares Method [104] is the most common method for 3D reconstruction. Con-

sidering m = s(u,v,1)T in equation 3.5, where (u,v) are the observed point coordinates and s is an

unknown scale factor. Designating pT
i as the i-th row of the matrix P, the equation may be written

as 
su = p1M

sv = p2M

s = p3M

(3.27)

Eliminating s using the third equation,upT
3 M = pT

1 M

vpT
3 M = pT

2 M
(3.28)
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From two views, we obtain a total of 4 linear equations in the coordinates of the m, which may be

written in the form Am = 0 for a suitable 4×4 matrix, A. This can be composed in

A =


upT

3 − pT
1

vpT
3 − pT

2

u′p′T3 − p′T1
v′p′T3 − p′T2

 . (3.29)

The solution can be determined only up to scale and a non-zero solution for M is needed [9].

The Linear Least-Squares method assumes that the solution point M is not at infinity, otherwise

M = (X ,Y,Z,1) could not be assumed [104]. By designating that set of homogeneous equations,

Am = 0 is reduced to a set of four inhomogeneous equations in three unknowns. The least-squares

solution to these inhomogeneous equations can be found using two different methods: the method

of pseudo-inverses [9] or the SVD [98] with the latter as the one chosen in this dissertation. Two

different implementations of the Linear LS method were used and a comparison on the 3D esti-

mation accuracy was done.

3.3.3 Iterative Linear Least-Squares Method

The Iterative Linear Least-Squares Method [104] has the purpose to strive against some inaccu-

racies presented by the Linear Least-Squares method since the value being minimized ||Am|| has

no geometric meaning. Taking this into account, the idea of the iterative method is to change the

weights of matrix A flexibly so that the weighted equations can give an image coordinate measure

of a geometric error function.

Considering that the point M will not exactly satisfy the system in equation 3.28, an error

ε = upT
3 M− pT

1 M (3.30)

will exist. However, the value that needs to be minimized is the difference between the projection

of M and the measured image coordinate u corresponding to pT
1 /pT

3 , determining a new error

minimization

ε
′ = ε/pT

3 M = u− pT
1 M/pT

3 M. (3.31)

If the equations 3.28 are weighted by 1/pT
3 M, the resulting error will minimized. For the second

camera, the weight will be the same 1/pT
3 M. Since the M value is an undetermined value that

will only be known after the equations are solved, an iterative procedure will happen to adapt the

weights by setting w0 = w′0 = 1 and solving the system of equations to find a solution M0. The

result of M0 will be precisely the same obtained from the previous Linear Least-Square method

and, having found it, the weights can be computed.

The iteration was repeated various times, multiplying the equations 3.28 in each i-th step by

1/p3Mi−1 or 1/p′3Mi−1, where Mi−1 represents the solution found in the preceding iteration. The
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errors, for each equation in 3.28, in image measurements are:

εi = u− pT
1 Mi/pT

3 Mi (3.32)

and

ε
′
i = u′− p′T1 Mi/p′T3 Mi. (3.33)

The iterations converge to a specific M value after the changes in the weight become insignificant.

Empirically, it was defined ε = 0.005 as the threshold value of the weight that would not modify

the estimations from the iterative process. Not only that, the number of maximum iterations was

defined as 10 at most [104].
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Chapter 4

Results and Discussion

In this Chapter, the results of the methodologies previously described in Chapter 3 are evaluated

and discussed. Moreover, the whole testing sequence is described with emphasis on the choices

made throughout. As mentioned before, the proposed solution was divided into three phases. The

first consisted on computing the intrinsic and distortion calibration parameters for a setting of

cameras. The second summed up as a 3D-2D correspondence of points to estimate camera poses.

The third and final one had the purpose of obtaining 3D information from an object by using and

intersecting information from two cameras with relation to the same viewed scene.

The testing sequences were performed on a pavilion with a basketball field, where several

image sequences were captured using four different cameras with different positions to allow full

feasibility for the testing and evaluation process.

4.1 Intrinsic Calibration

As previously mentioned in Section 3.2.1, Zhang’s calibration method was used for each camera

individually to estimate its intrinsic parameters and distortion coefficients. For that, several cali-

bration images of the chessboard planar pattern were taken under different orientations by moving

it closer to the camera and inside its field of view. The process of taking such images followed up

a skip frame value of 20. The chessboard used for this procedure was a black and white pattern

with a size of 9×6 squares of 5.4cm, as presented on Figure 4.1. The values obtained for cameras

IP1 and IP4 (see Figure 3.2) are expressed on Tables 4.1 and 4.2.

As mentioned before, the principal point describes the value of the image center and is repre-

sented by the center width (px) and the center height (py). Concerning that the image resolution

defines the maximum number of pixels for each axis of the image coordinate frame, the val-

ues of the center width and height must be approximately half of these. As cameras IP1 and

IP4 have the same image resolution, 1280× 720, the values of their image center width and

height will be roughly similar too. Accordingly, 1280/2 = 640 ' 639.03 ' 640.14 pixels and

720/2 = 360 ' 356.85 ' 361.99 pixels which are an indication of coherence on the values esti-

mated. Not only that, the values estimated for focal width and focal length must also denote one

45
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Figure 4.1: The calibration pattern used was a 9×6 chessboard pattern, with a square size of 5.4
centimeters. The calibration pattern was moved around the camera’s field of view, exploring as
much as different orientations to improve the intrinsic parameters estimation.

Table 4.1: Camera IP1 intrinsic parameters obtained using 41 frames.

Value Unit
Image Width 1280 pixels
Image Height 720 pixels
Focal Width ( fx) 1394.75 pixels
Focal Height ( fy) 1437.88 pixels
Center Width (px) 639.03 pixels
Center Height (py) 356.85 pixels
Avg. Reprojection Error 0.491 pixels

Table 4.2: Camera IP4 intrinsic parameters obtained using 100 frames.

Value Unit
Image Width 1280 pixels
Image Height 720 pixels
Focal Width ( fx) 1176.09 pixels
Focal Height ( fy) 1175.60 pixels
Center Width (px) 640.14 pixels
Center Height (py) 361.99 pixels
Avg. Reprojection Error 0.445 pixels

important property called aspect ratio, fx/ fy. Verifying for both cameras, fx/ fy = 0.97 for IP1 and

fx/ fy = 1.00042 for IP4, the values are nearly 1 which dictate that the pixels are square [97] and

validate the results obtained.

However, there were some issues regarding the calibration of the other two cameras, IP2 and

IP3. The former had a problem during the video capture of the chessboard pattern and it was elim-
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inated from any experiments regarding the image acquiring that was carried out. The latter was

considered successful until the stage of calibrating camera’s extrinsic parameters. As mentioned

before, a calibration image was considered valid when the chessboard was correctly found and the

average reprojection error of the pattern points was below a certain value (0.5 pixels). Despite its

average error manifested values similar to the ones presented in cameras IP1 and IP4, after a full

analysis of the images considered as valid frames, it was verified that the chessboard was solely

moved around a portion of the image and it did not reach the edges of the camera’s image. This

had implications because this camera presented greater radial distortion than the others, which

increase on the edges of the image.

Not only that, but since there was a calculation of the reprojection error for each frame and an

elimination of the images with a reprojection error below 0.5 pixels, some of the valid frames that

remained for the recalibration process were virtually similar, since the chessboard’s orientation

and position appeared to be practically the same. Thus, this resulted in some redundancy in the

pattern’s pose estimation which did not grant variability on the calibration of the camera’s focal

length and lens distortion. To overcome this challenge, two other calibration procedures were

done adjusting the skip frame values. For the 2nd calibration, the skip frame value was altered to 5

frames. For the 3rd calibration, the skip frame value was defined as 1 frame, allowing the method

to utilize every frame of the calibration video capture and make the maximum use of it. Also,

the value of the highest reprojection error accepted for each frame was changed to 0.55 pixels to

prevent that a large number of frames could be eliminated and increased the number of frames

with an adequate error. In Table 4.3, the estimated values for the three calibration procedures on

camera IP3 are displayed.

Table 4.3: Camera IP3 intrinsic parameters obtained with 38, 92 and 203 frames (from left to
right).

1st 2nd 3rd Unit
Image Width 1920 1920 1920 pixels
Image Height 1080 1080 1080 pixels
Focal Width ( fx) 1195.05 3516.18 1178.76 pixels
Focal Height ( fy) 1187.95 3356.99 1174.55 pixels
Center Width(px) 943.02 986.49 955.20 pixels
Center Height (py) 526.97 530.83 542.18 pixels
Avg. Reprojection Error 0.4521 0.4516 0.5035 pixels

Looking into the obtained results, a conclusion regarding the best estimation of the intrinsic

parameter of camera IP3 could not be formulated since the average reprojection error was influ-

enced by a change on the maximum acceptable error for each calibration procedure and a low

average value does not suggest better estimations produced. Not only that, the focal length and the

principal point estimations seemed reasonable for each calibration, except for the exaggerate focal

length on the 2nd one which can indicate that this procedure has the worst estimations. Nonethe-

less, all camera calibration procedures were considered for the next phase where a decision about

which one achieved the most accurate intrinsic parameters estimation of camera IP3.
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The distortion coefficients values, presented on Table 4.4, had the important purpose of image

distortion removal, which was a critical step before the triangulation process. To verify if the

tabulated estimations were acceptable, a distortion elimination of the image plane for each camera

was performed and the two images were compared using the field lines as references. Carrying out

a comparison on these two images, the lines slightly curved on the images with distortion should

appear rectilinear on the undistorted images. However, as shown in Figure 4.2, image distortion

from camera IP3 could not be successfully removed which could constrain some estimations of

this particular camera on the following steps, as opposed to camera IP4 that successfully corrects

its lens distortion (Figure 4.3).

Table 4.4: Obtained distortion coefficients for the three cameras IP1, IP3 and IP4. For the latter,
the coefficients regard the three implemented calibration procedures. k1, k2, k3 and k4 are the
radial distortion parameters; p1 and p2 are the tangential distortion parameters (equations 3.9
and 3.10).

IP1 IP4 IP3 (1st) IP3 (2nd) IP3 (3rd)
k1 -0.2212 -0.1418 -0.1534 0.0163 -0.0211
k2 3.3711 -1.1966 0.6430 -11.8167 -0.6699
k3 32.0545 1.1676 0.0142 59.9473 13.2406
k4 0.2420 0.2321 0.2443 -0.0491 0.4789
k5 2.5907 -1.2092 0.6055 8.7850 -1.7970
k6 38.3855 0.4841 0.1505 19.3059 17.1218
p1 -0.0091 0.0024 0.0108 0.1151 0.0067
p2 0.0065 -0.0023 0.0011 -0.0025 0.0002

Although an explicit interpretation of the estimated distortion coefficients can be done by

removing the lens distortion from images and checking if curved lines are corrected, some con-

clusions can be attained by observing the values listed on Table 4.4. However, some conclusions

about the estimated values can be drawn. Although it is normal for some cameras to present some

distortion values slightly higher than others, specially considering the greater difference of lens

distortion between camera IP3 and cameras IP1 and IP4, it is not common to have much higher

values on particular distortion coefficient parameters since they absorb calibration errors. Some

of these values created an alarm concerning the accuracy from the calibration process, such as k3

and k6 of camera IP1 and the two latter calibration procedures from camera IP3.

4.2 Extrinsic Calibration

After the assessment of the intrinsic and distortion coefficients for all cameras, an estimation of the

pose of the calibrated cameras was performed through a PnP solution, as referenced in Chapter 3.3.

Altogether, 32 points were defined in the basketball field as the value n (Section 3.2.2) for

the 3D-2D point correspondences and retrieved the extrinsic parameters for all cameras. Some

points were not noticeable in all cameras thus defining lesser n points for cases of cameras IP1

and IP3. After the estimation of the rotation matrix (R) and translation vector (t) of each camera,
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(a)

(b)

Figure 4.2: One view from camera IP3. (a) Original image (with distortion). (b) The same image
after lens distortion removal. It is noticeable that the handrail continues to appear curve.

those values were used to project 3D points to each camera’s image plane (see equation 3.14)

and allowed a viable error comparison. The error was calculated using the 2D Euclidean distance

between the image points manually extracted x= (xx,xy) and their image projection xp= (xpx,xpy)
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(a)

(b)

Figure 4.3: One view from camera IP4. (a) Original image (with distortion). (b) The same image
after lens distortion removal. It is noticeable that the stands and the midcourt line do not appear
curve any longer.

calculated considering the extrinsic parameters, R and t, obtained through PnP,

d(x,xp) =
√
(xx− xpx)2 +(xy− xpy)2. (4.1)

Tables 4.5 and 4.6 show the error calculation of the extrinsic parameters for cameras IP1 and IP4
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obtained with the three PnP solvers considered in this dissertation, and described in section 3.2.2.

The data suggests that the PnP results on camera IP4 are slightly better than the ones on camera

(a) (b)

Figure 4.4: One view of camera IP4. (a) 6 markers, with 5 different heights labelled with red duct
tape, distributed around the basketball field. Those points, plus two others from the baseline and
the center line, formed the 32 3D world points used to estimate the pose of the camera, a value
that depended on the number of points observable from each camera. (b) White dots represent the
projected points estimated using the Iterative solution; they must coincide with the image of the
3D world points defined on the markers and on the field.

Table 4.5: Error estimation for the obtained extrinsic parameters of camera IP1, considering the
Iterative, EPNP and RANSAC PnP solutions, and n = 24 image points.

Iterative PnP Efficient PNP RANSAC PnP Unit
Avg. Reprojection Error (d) 5.9 7 5.9 pixels
Std. Deviation (σ ) 4 4.6 7.8 pixels

Table 4.6: Error estimation for the obtained extrinsic parameters of camera IP4, considering the
Iterative, EPNP and RANSAC PnP solutions, and n = 32 image points.

Iterative PnP Efficient PNP RANSAC PnP Unit
Avg. Reprojection Error (d) 1.2 1.7 1.2 pixels
Std. Deviation (σ ) 0.7 1 0.7 pixels

IP1. A closer look indicates that the PnP solution estimated with the iterative and RANSAC

methods achieved similar results on both cameras, with the EPNP achieving the worst average

errors.

Extending the evaluation to a spatial issue, every projected points on the image plane of camera

IP4 were almost equal to its 3D correspondence regardless of the field position. An example of the

use of the estimated camera pose to project the 3D points on the image plane and compare it to the

original image, is shown on Figure 4.4. They both illustrate the arrangement of the markers around

the basketball field that allow for a considerable number of 3D-2D point correspondences to be

used for the PnP solver with the latter exemplifying the projection of the calculated image points

xp, producing a visual comparison against the actual 3D points on the imaging screen. On camera

IP1, the average Euclidean distance of the projected points is spatially conditioned since for each
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method there were some points with a great projection while others appeared rather off of the

original marked position, as seen in Figure 4.5. A comparison made between each PnP solution for

camera IP1 and its projected points on the image, showed that the points from markers on positions

1, 3, 4 and 10 had a diminished error on all images; on the other hand, points from markers on

positions 6 and 12 possessed a larger variation between PnP solutions. For instance, the projected

points from the marker on position 6 were corrected on the RANSAC solution contrasting to the

points from the marker on position 12 that suffered a wrongful alteration.

The difference between the two cameras suggest that the accuracy of the intrinsic parameters

calibration on camera IP1 is lower. Since the projection of points on camera IP1 is erroneous to a

greater extent on a specific space of the basketball field, this can be an evidence of an imprecise

calibration of the distortion coefficients, particularly in the upper right area of the image plane. It

could be solved using the motion of the chessboard correctly on that area of the imaging screen to

retrieve more reliable values from the distortion coefficients. Since new image acquiring was not

feasible, a recalibration of the intrinsic parameters was performed by resorting to every frame of

the calibration video. However, the calibration procedure only found a few more valid frames, and

an enhancement was impractical to reach.

As previously stated, the intrinsic parameters calibration for camera IP3 was considered suc-

cessful on the first attempt. However, the average Euclidean distances for the 1st calibration dis-

played some discrepancies in certain field areas. It was then decided that the calibration procedure

should become more error-free and new values for the intrinsic parameters and distortion coeffi-

cients were computed. Altogether, two more calibrations were performed. Those intrinsic param-

eters estimated were employed to evaluate the sharpness of the extrinsic parameters calibration.

On Table 4.7, values of the average Euclidean distances from the 3D-2D point correspondences

to their projection considering the estimated R and t for each PnP solution and their standard

deviations are presented.

Table 4.7: Error estimation for the obtained extrinsic parameters of camera IP3 1st, 2nd and 3rd

calibration procedure, considering the Iterative, EPNP and RANSAC PnP solutions, and n = 26
image points.

1st calibration Iterative PnP Efficient PNP RANSAC PnP Unit
Avg. Reprojection Error (d) 7.4 21.6 10.8 pixels
Std. Deviation (σ ) 3.5 6.7 14.3 pixels
2nd calibration Iterative PnP Efficient PNP RANSAC PnP Unit
Avg. Reprojection Error (d) 68.2 77.7 91.6 pixels
Std. Deviation (σ ) 46.5 38.6 90.6 pixels
3rd calibration Iterative PnP Efficient PNP RANSAC PnP Unit
Avg. Reprojection Error (d) 8.9 16.6 11.1 pixels
Std. Deviation (σ ) 3.5 6.4 14 pixels

Analyzing the average error of the three calibration procedures, the results suggest that the 2nd

one obtained the most inaccurate parameters. By observing Figure 4.6 and the values obtained

on the intrinsic parameters calibration, the estimation of the focal length is excessively high as
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(a)

(b)

(c)

Figure 4.5: One view of camera IP1. White dots represent the projected points estimated using the
estimated PnP solution for the camera pose. The projected points must coincide with the image
of the 24 3D world points defined on the markers and on the field. (a) Iterative PnP solution. (b)
Efficient PnP solution. (c) RANSAC PnP solution.
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opposed to the other two calibrations of camera IP3. Considering that, these values were deemed

as defective and removed from the experiments. On the other hand, both the 1st and the 3rd

(a)

(b)

(c)

Figure 4.6: One view from camera IP3. (a) Iterative PnP solution for 1st calibration procedure.
(b) Iterative PnP solution for 2nd calibration procedure, with estimated values for focal length
deeming erratic projections of the 3D world points from the markers. (c) Iterative PnP solution for
3rd calibration procedure.
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calibration presented very similar results. Since no major differences could be detected during this

phase in terms of error on the estimation of the camera pose, both calibrations were considered

for the remaining experiments. To understand the rotation and translation values of each camera,

Figure 4.7 presents a 3D mathematical representation of the obtained poses for cameras IP1, IP4

and IP3 (3rd calibration procedure).

(a)

(b)

Figure 4.7: 3D graphic of the pose of the cameras using the estimated values for the extrinsic
parameters. (a) Front perspective of the cameras’ position and orientation. (b) Back perspective
of the cameras’ position and orientation. Blue lines represent cameras coordinate axis, red lines
represent their image screen resolution, the black dashed line represents the basketball field and
the green line represents the origin of the world coordinate frame. The graphic axes units are in
meters.
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4.3 Triangulation

At this point, different estimations were examined to reach a possible solution of determining the

ball in a defined 3D space given its projection onto two camera images. Initially, the ball was

considered as static to provide ground-truth data. By changing the ball from different positions on

planes z = (0,1,2,3)m in the world coordinate system, a perspective depth of the designated 3D

field was scrutinized. Also, a variation on the ball height would allow to evaluate if there would

exist an error fluctuation on each dimension. The ball projection point onto each camera image was

manually extracted. The 2D coordinate on the image frame was delineated as the center of the ball.

Let the perimeter of the ball be P= 2πr, with r as the ray of the ball. As P= 75cm, its ray r = 12cm

= 0.12m and the value defined as the static ball height, z = (0,1,2,3)+ r = (0,1,2,3)+0.12 m.

Three cameras were considered for the triangulation problem: IP1, IP4 and IP3 with two

different calibrations, as mentioned in Section 4.2. Knowing that, five pairs of cameras were

selected as testing solutions: IP1-IP4, IP1-IP3 with the 1st IP3 calibration procedure, IP1-IP3 with

the 3rd IP3 calibration procedure, IP4-IP3 with the 1st IP3 calibration procedure, and IP4-IP3 with

the 3rd IP3 calibration procedure.

4.3.1 Static Ball

4.3.1.1 Linear-LS Method

To avoid a considerable number of testing, a decision regarding the correct estimated calibration

parameters was made. To that end, a first triangulation experiment using a Linear-LS triangulation

method, described in Section 3.3.2, was performed using these five combination of camera pairs

with different PNP solutions obtained for camera IP3 (Iterative PnP and RANSAC PnP). Values

of the average 3D Euclidean distance for each estimated position of the static ball and its standard

deviation are in Tables 4.8, 4.9, 4.10, 4.11 and 4.12. The 3D Euclidean distance is calculated

considering the difference between the real 3D world point and the estimated 3D world point:

d(X ,Xe) =
√
(Xx−Xex)2 +(Xy−Xey)2 +(Xz−Xez)2 (4.2)

with Xe as the estimated 3D object world coordinates.

A closer look at the obtained results indicates that the 3rd calibration procedure of camera

IP3 delivers higher accuracy on the estimated 3D point instead of the 1st one. For example, for

z = (1,2)m and considering the estimated camera pose from the iterative PnP method, the 1st

calibration procedure had an erratic behaviour. Exceptionally, the 3rd one presented slightly worst

estimations on z = 3m. The reason supporting that occurrence is the number of positions evaluated

for that height for all cameras, since only five positions were tested during image acquisition. As

the number of positions was low, the average Euclidean distance does not converge to a value that

could be considered an approximation of the error to the real 3D space location. Considering that,

the 1st calibration procedure obtained worst calibration parameters for a generality of 3D points

from the field, as it can be stated on estimations for z = 0m. It was assumed for the remainder of



4.3 Triangulation 57

Table 4.8: Average, Maximum and Minimum errors for the Linear-LS method performance on
camera pair IP1-IP3, considering IP3 1st calibration procedure and the Iterative PnP and RANSAC
PnP solutions.

Iterative Minimum d Maximum d Average Std. Deviation Unit
PnP (Position) (Position) d σ

z = 0m 5.8 (1) 66.9 (11) 26.9 18.9 cm
z = 1m 61.6 (1) 1713 (12) 655.4 483.2 cm
z = 2m 44.1 (2) 1692.4 (12) 636.4 478 cm
z = 3m 28 (1) 166.1 (3) 82.4 53.5 cm
All points 5.8 (1) 1713 (12) 391.1 472.9 cm
RANSAC Minimum d Maximum d Average Std. Deviation Unit
PnP (Position) (Position) d σ

z = 0m 5.3 (8) 55.6 (12) 25.4 17.4 cm
z = 1m 17.9 (1) 1495.2 (12) 624.8 414.4 cm
z = 2m 77.8 (1) 1467.3 (12) 607.4 405.2 cm
z = 3m 31.2 (5) 211 (12) 109.7 67.2 cm
All points 5.3 (8) 1495.2 (12) 376.2 421.4 cm

Table 4.9: Average, Maximum and Minimum errors for the Linear-LS method performance on
camera pair IP4-IP3, considering IP3 1st calibration procedure and the Iterative PnP and RANSAC
PnP solutions.

Iterative Minimum d Maximum d Average Std. Deviation Unit
PnP (Position) (Position) d σ

z = 0m 5.5 (1) 113.9 (12) 30.7 27.4 cm
z = 1m 63.3 (1) 821.8 (12) 399.2 220.6 cm
z = 2m 49.9 (1) 843.3 (12) 380.2 229.6 cm
z = 3m 18.7 (1) 140.8 (12) 63.9 48.6 cm
All points 5.5 (1) 843.3 (12) 242 244.8 cm
RANSAC Minimum d Maximum d Average Std. Deviation Unit
PnP (Position) (Position) d σ

z = 0m 3.8 (4) 58.3 (3) 15.4 16.2 cm
z = 1m 82.5 (1) 843.5 (3) 454.8 246 cm
z = 2m 75.2 (2) 834.9 (12) 414.9 218.7 cm
z = 3m 17.4 (12) 52.9 (5) 40.4 14.4 cm
All points 3.8 (4) 843.5 (3) 260.8 270.9 cm

the experiments, that the most accurate calibration procedure for camera IP3, and the one used for

other triangulation testings, was the 3rd calibration procedure.

Results obtained for camera pair IP1-IP4 had better approximations to the real value of the

3D location of the world object. The extrinsic parameters used in this experiment were the ones

obtained on the Iterative PnP solution, since it demonstrated to have better results. The testing of

this camera pair was performed to check the validity of the triangulation method, and a graphic

representation of all the estimations of the ball’s 3D position was produced and is illustrated in

Figure 4.8. However, the second Linear-LS method tested, described in Section 3.3.2, granted
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Table 4.10: Average, Maximum and Minimum errors for the Linear-LS method performance on
camera pair IP1-IP3, considering IP3 3rd calibration procedure and the Iterative PnP and RANSAC
PnP solutions.

Iterative Minimum d Maximum d Average Std. Deviation Unit
PnP (Position) (Position) d σ

z = 0m 6.3 (1) 65.9 (11) 27.3 19.9 cm
z = 1m 4.5 (1) 64.6 (11) 31.7 16.9 cm
z = 2m 7.7 (1) 88.1 (11) 47.6 27.6 cm
z = 3m 14.3 (1) 167.9 (3) 86.6 55.1 cm
All points 6.3 (1) 167.9 (3) 40.7 32.6 cm
RANSAC Minimum d Maximum d Average Std. Deviation Unit
PnP (Position) (Position) d σ

z = 0m 4.9 (8) 56.5 (12) 22.9 14.5 cm
z = 1m 10.8 (1) 95.9 (12) 34.6 23.2 cm
z = 2m 17.4 (2) 139.8 (12) 51.3 36.6 cm
z = 3m 52.4 (1) 249.1 (12) 129.6 78.4 cm
All points 4.9 (8) 249.1 (12) 45.8 46.9 cm

Table 4.11: Average, Maximum and Minimum errors for the Linear-LS method performance on
camera pair IP4-IP3, considering IP3 3rd calibration procedure and the Iterative PnP and RANSAC
PnP solutions.

Iterative Minimum d Maximum d Average Std. Deviation Unit
PnP (Position) (Position) d σ

z = 0m 6.3 (9) 118.3 (12) 31 29.9 cm
z = 1m 3.9 (3) 126.8 (12) 37.4 34.3 cm
z = 2m 8.9 (3) 128.4 (12) 47.6 37.7 cm
z = 3m 15.1 (3) 126.2 (12) 65.6 47.7 cm
All points 6.3 (9) 128.4 (12) 41.3 37.2 cm
RANSAC Minimum d Maximum d Average Std. Deviation Unit
PnP (Position) (Position) d σ

z = 0m 5.3 (8) 55.6 (12) 25.4 17.4 cm
z = 1m 8.8 (1) 59.7 (11) 32.2 19.9 cm
z = 2m 14.9 (12) 94.3 (7) 49.4 31.6 cm
z = 3m 12.2 (3) 94.9 (5) 50.4 30 cm
All points 5.3 (8) 94.9 (5) 34.9 26.4 cm

better results (Table 4.13) and was considered the best implementation of the Linear-LS method.

A graphic 3D representation was also produced to allow a good visual comparison between both

Linear-LS methods, as shown in Figure 4.9.

The disparity on estimation values where camera IP3 is used can be explained due to the

divergent PnP solutions obtained previously, producing some well-triangulated positions instead

of others for the same pair of cameras. As explained on the preceding subsection, one camera

pose for IP3 combined with the "stable" camera pose from IP1 or IP4 achieve better triangulation

values for a specific subset of points but can also generate worst values for other subset. Yet, other
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Figure 4.8: Graphic representation of the estimated ball 3D location for 36 different points on
the defined 12 positions on the basketball field (heights of 0m, 1m and 2m). The estimation was
performed with the 1st Linear-LS method on the camera pair IP1-IP4, considering the Iterative
PnP solution for both cameras. Red dots represent the estimated ball, and blue crosses represent
the real location of the ball’s center.

Table 4.12: Average, Maximum and Minimum errors for the Linear-LS method performance on
camera pair IP1-IP4, considering the Iterative PnP solution for both cameras.

Minimum d Maximum d Average Std. Deviation Unit
(Position) (Position) d σ

z = 0m 1.8 (8) 34.1 (12) 12.6 9.4 cm
z = 1m 2.8 (1) 37.5 (12) 15.9 11.2 cm
z = 2m 4.8 (2) 57.9 (12) 21.2 13.7 cm
z = 3m 10.3 (1) 76.7 (12) 30.5 27.4 cm
All points 1.8 (8) 76.7 (12) 17.4 14.5 cm

Table 4.13: Average, Maximum and Minimum errors for the 2nd implementation of the Linear-
LS method performance on camera pair IP1-IP4, considering the Iterative PnP solution for both
cameras.

Minimum d Maximum d Average Std. Deviation Unit
(Position) (Position) d σ

z = 0m 1.5 (4) 25.3 (12) 8.6 6.4 cm
z = 1m 1.7 (3) 26.1 (12) 11.9 7.1 cm
z = 2m 3.2 (2) 29.2 (12) 12.5 7.8 cm
z = 3m 5.9 (3) 32.2 (12) 13.2 11 cm
All points 1.5 (4) 32.2 (12) 11.14 7.83 cm

camera pose for IP3 matched with the same camera pose IP1 or IP4 achieve worst triangulation

values for a subset that formerly delivered good results and vice versa. Since no conclusion could

be attained respecting a best solution for camera IP3 pose estimation from different PnP solutions,
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Figure 4.9: Graphic representation of the estimated ball 3D location for 36 different points on
the defined 12 positions on the basketball field (heights of 0m, 1m and 2m). The estimation was
performed with the 2nd Linear-LS method on the camera pair IP1-IP4, considering the Iterative
PnP solution for both cameras. Red dots represent the estimated ball, and blue crosses represent
the real location of the ball’s center.

those were still examined on the following 3D reconstruction methods.

4.3.1.2 Midpoint Method

The implemented Midpoint method, described in Section 3.3.1, was tested and its results were

compared with the values obtained with the Linear-LS method for the pair IP1-IP4, since they were

producing the best results. As seen on Table 4.14, values for the average Euclidean distance of the

estimated 3D point and its standard deviation were also computed. A graphic 3D representation

was also produced to verify the average error of each estimated ball position for camera pair IP1-

IP4, as depicted in Figure 4.10.

Table 4.14: Average, Maximum and Minimum errors for the Midpoint method performance on
camera pair IP1-IP4, considering the Iterative PnP solution for both cameras.

Minimum d Maximum d Average Std. Deviation Unit
(Position) (Position) d σ

z = 0m 1.5 (4) 25.2 (12) 8.6 6.5 cm
z = 1m 1.8 (3) 25.8 (12) 11.8 7 cm
z = 2m 3.2 (2) 28.8 (12) 12.5 7.7 cm
z = 3m 4.6 (3) 31.5 (12) 12.7 10.9 cm
All points 1.5 (4) 31.5 (12) 11.07 7.74 cm

The Midpoint method presented good estimations for the 3D position of the ball despite being

considered an easy and simple geometric method compared to the Linear-Ls method that behaves

poorly for projective or affine transformations [104]. However, its accuracy was slightly better
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Figure 4.10: Graphic representation of the estimated ball 3D location for 36 different points on
the defined 12 positions on the basketball field (heights of 0m, 1m and 2m). The estimation was
performed with the Midpoint method on the camera pair IP1-IP4, considering the Midpoint PnP
solution for both cameras. Red dots represent the estimated ball, and blue crosses represent the
real location of the ball’s center.

than the Linear-LS method which indicates that the perpendicular solution performs sufficiently

well for perspective projections knowing an approximate calibration of the cameras.

Uncertainties concerning camera IP3 led to exploit the Midpoint method as a deciding factor of

which PnP solution could be the best approximation for the IP3 camera pose. An error evaluation

using the Midpoint solution for this camera is shown in Tables 4.15 and 4.16.

Table 4.15: Average, Maximum and Minimum errors for the Midpoint method performance on
camera pair IP1-IP3, considering IP3 3rd calibration procedure and the Iterative and RANSAC
PnP solutions.

Iterative Minimum d Maximum d Average Std. Deviation Unit
PnP (Position) (Position) d σ

z = 0m 6.9 (8) 29.1 (12) 16.4 10.2 cm
z = 1m 7.2 (1) 29.9(12) 20.7 12.4 cm
z = 2m 5.2 (8) 28 (12) 21.6 11.4 cm
z = 3m 5.4 (3) 30.8 (12) 20.8 9.62 cm
All points 5.2 (8) 30.8 (12) 19.6 11.4 cm
RANSAC Minimum d Maximum d Average Std. Deviation Unit
PnP (Position) (Position) d σ

z = 0m 1.9 (4) 33.9 (7) 15.9 9.8 cm
z = 1m 8.5 (8) 42.3 (1) 22.1 10.6 cm
z = 2m 10.4 (4) 41 (1) 23 10.2 cm
z = 3m 5.7 (3) 57.9 (1) 28.8 19.8 cm
All points 1.9 (4) 57.9 (1) 21.1 12.3 cm

Observing the average Euclidean distances of the estimated 3D locations of the ball to the real

3D point on both pairs IP1-IP3 and IP4-IP3, the RANSAC PnP solution presents better results for
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Table 4.16: Average, Maximum and Minimum errors for the Midpoint method performance on
camera pair IP4-IP3, considering IP3 3rd calibration procedure and the Iterative and RANSAC
PnP solutions.

Iterative Minimum d Maximum d Average Std. Deviation Unit
PnP (Position) (Position) d σ

z = 0m 4.6 (11) 69.5 (7) 24.1 20.2 cm
z = 1m 8.3 (3) 72.3 (7) 26.6 19.6 cm
z = 2m 5.7 (8) 78.7 (7) 30.2 20.9 cm
z = 3m 16.4 (3) 50.4 (12) 32.9 12.9 cm
All points 4.6 (11) 78.7 (7) 27.5 19.8 cm
RANSAC Minimum d Maximum d Average Std. Deviation Unit
PnP (Position) (Position) d σ

z = 0m 2.9 (2) 55.6 (7) 17.4 14.5 cm
z = 1m 8.7 (8) 57.1 (7) 22.5 13.9 cm
z = 2m 10.8 (4) 62.3 (7) 25.2 14.8 cm
z = 3m 14.8 (3) 41.4 (1) 23.6 10.5 cm
All points 2.9 (2) 62.3 (7) 21.8 14.4 cm

both combinations, while the iterative PnP solution has a similar result for pair IP1-IP3 but worst

results for pair IP3-IP4. Therefore, the extrinsic parameters considered as the best approximation

for the camera IP3 pose was the RANSAC PnP estimations and used for the iterative triangulation

method.

4.3.1.3 Iterative Linear-LS Method

For the Iterative Linear-Ls method, two Linear-LS methods were previously compared as possible

approaches to be used iteratively. The 2nd Linear-LS method proved to have a better behaviour

than the 1st Linear-LS method. Thus, the 2nd implementation was used to obtain results through

several iterations with error minimization procedures. The average error for the Euclidean distance

estimation for each height of the ball for the possible camera pair combinations and using the

RANSAC PnP solution for camera IP3 are depicted in table 4.17, and are graphically visible in

Figure 4.11.

Concerning camera IP3 pose estimation, it was confirmed that this camera has inaccurate pose

estimations and both pairs IP1-IP3 and IP4-IP3 could not reach great values, compared to camera

pair IP1-IP4. Hence, camera IP3 was not considered for the next stage.

Focusing solely on camera pair IP1-IP4, the Iterative Linear-LS method had a slight increase

in the average Euclidean distance error compared to the non-iterative Linear-LS method and to the

Midpoint method. Generally, it was verified that the Midpoint method performed slightly better

than all other 3D reconstruction techniques by reaching an average error of 11.07 cm. Nonetheless,

both the iterative Linear-LS and non-iterative Linear-LS produce great results with 11.7 cm and

11.14 cm of average error, respectively.
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Table 4.17: Average, Maximum and Minimum errors for the Iterative Linear-LS method per-
formance on camera pairs IP1-IP3 and IP3-IP4, considering IP3 3rd calibration procedure and
RANSAC PnP solution, and the Iterative PnP solution for cameras IP1 and IP4.

IP1-IP3 Minimum d Maximum d Average Std. Deviation Unit
(Position) (Position) d σ

z = 0m 2.3 (4) 35.2 (1) 16.4 10.4 cm
z = 1m 8.3 (8) 42.5 (1) 22.2 10.7 cm
z = 2m 11.2 (8) 41.2 (1) 23.4 9.9 cm
z = 3m 2.9 (3) 61.9 (1) 29.9 22.1 cm
All points 2.3 (4) 61.9 (1) 21.5 12.8 cm
IP4-IP3 Minimum d Maximum d Average Std. Deviation Unit

(Position) (Position) d σ

z = 0m 2.9 (2) 56.3 (7) 17.7 14.8 cm
z = 1m 8.8 (2) 57.1 (7) 22.8 13.9 cm
z = 2m 11.6 (4) 62.9 (7) 25.8 14.8 cm
z = 3m 15.4 (3) 42.2 (1) 24.4 10.5 cm
All points 2.9 (2) 62.9 (7) 22.2 14.5 cm

Table 4.18: Average, Maximum and Minimum errors for the Iterative Linear-LS method perfor-
mance on camera pair IP1-IP4, considering the Iterative PnP solution for both cameras.

Minimum d Maximum d Average Std. Deviation Unit
(Position) (Position) d σ

z = 0m 1.5 (4) 25.7 (12) 8.9 6.6 cm
z = 1m 0.6 (3) 26.4 (12) 12.4 7.4 cm
z = 2m 4.7 (2) 29.7 (12) 13.2 8.1 cm
z = 3m 5.5 (3) 33.1 (12) 14.3 10.9 cm
All points 1.5 (4) 33.1 (12) 11.7 8.1 cm

4.3.2 Ball in Motion

After evaluating the static ball sequences, testings for the ball in motion sequences were per-

formed. As mentioned before, in Chapter 3, the ball was captured in three different motion scenar-

ios. The first sequence consisted on movement along the field’s plane z= 0m with starting point on

the upper right corner of the basketball court. The second sequence resided on arbitrary dribbling

of the ball, with up and down movements. On the third sequence, the ball was thrown against the

court’s ground with some initial velocity and left completely on its own trajectory throughout the

rest of the movement, solely depending on the gravity force from that moment on.

To be able to triangulate a 3D point in Euclidean space it is necessary that two cameras could

relate the projection of the same point on their image planes. The static ball sequences prevented

this issue to be a problem once the ball was stable and the 3D point coincided in each camera,

independently of any video synchronization. However, on sequences with ball motion it was

mandatory some type of synchrony between cameras to allow accuracy on calculations of the

triangulation methods. That challenge was surpassed with an electronic flash device. When the
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Figure 4.11: Graphic representation of the estimated ball 3D location for 36 different points on
the defined 12 positions on the basketball field (heights of 0m, 1m and 2m). The estimation
was performed with the Iterative Linear-LS method on the camera pair IP1-IP4, considering the
Iterative PnP solution for both cameras. Red dots represent the estimated ball, and blue crosses
represent the real location of the ball’s center.

electronic flash was triggered, it achieved its peak intensity rapidly and then faded away at a

slow rate. The intensity rise was far quickly than the slow decline, and the period of time the

flash is at least 1/10 of its maximum intensity could be used to quantify its duration. Assuming

that the electronic flash device has a typical duration of 3 to 4ms of at least 1/10 of maximum

intensity and that videos had an approximate frame rate of 30 fps (3.3ms per frame), the flash was

visible on one frame for each camera in case it was captured. Although frames from different

cameras could not detect the flash at the same intensity value, this was still considered a good

synchronization procedure because cameras would never have a time synchronization difference

of more than 33.3ms. For each video the starting frame was determined as the following frame of

the one where a flash was visible.

An example of the flash captured by each camera is presented on Figures 4.12a, 4.12b and

4.12c. Both IP1 and IP4 cameras can detect the flash with high intensity on one frame, while

camera IP3 captures the moment when the flash intensity is rather low. Nonetheless, this frame

can still be considered as the synchronization frame because it was the one that presented a smaller

time distance to the synchronization frames of other cameras.

Concerning all sequences, only camera IP1-IP4 was considered for the testing experiments.

Figure 4.14 shows six continuous frames of the ball’s path on the ground plane and Figure 4.13

depicts a 3D graphic description of the estimated 3D position of the ball. Establishing a com-

parison between Figures 4.13 and 4.14, it is visible that the camera pair IP1-IP4 produces a great

estimation of the trajectory of the ball.

On the second sequence, a flash was not detected for camera IP4. Testing this sequence was

important to estimate the 3D position of the ball considering human intervention on ball’s trajec-



4.3 Triangulation 65

(a)

(b)

(c)

Figure 4.12: Frames that successfully captured the bright light produced from the electronic flash
device and allow to synchronize all three cameras. (a) Flash captured on camera IP1. (b) Flash
captured on camera IP3, slightly visible on the ceiling from the pavilion. (c) Flash captured on
camera IP4.

tory. In spite of that, it could be more useful to examine ball’s trajectory on a free movement

sequence where gravity does most of the work. Since the third sequence presents the previously

detailed example, the second sequence was removed from testing experiments.

Regarding the third ball in motion sequence, a good example of an almost imperceptible flash

was found and happened on camera IP1. As shown in Figures 4.15a and 4.15b, the flash was



66 Results and Discussion

Figure 4.13: Graphic representation of the estimated ball 3D location for the first ball in motion
sequence. The estimation was performed with the Midpoint method on the camera pair IP1-IP4,
considering the Iterative PnP solution for both cameras. Red dots represent the estimated ball on
each 20 frames. The trajectory was defined as starting in the upper right corner of half of the field
and travelling on the ground to meet the midcourt line.

(a) (b)

(c) (d)

Figure 4.14: Four scenes of the same view from camera IP3 on the first ball in motion sequence.
The real trajectory of the ball happened solely on the ground, with starting point on the upper right
corner of the field and ending point on the midcourt line.
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slightly detected on the top of the image and was only noticeable due to the skip between frames

on the continuous video since the camera captured the flash when it had a very low light intensity.

(a)

(b)

Figure 4.15: Video capture from camera IP1 of consecutive frames where the electronic flash
device is triggered (a) Preceding frame, no light is captured. (b) Following frame, end tail of the
flash is captured on the top of the image (red box) and is used as the synchronization frame.

After synchronizing both cameras, an estimation of the ball’s trajectory was produced and is

illustrated on Figure 4.16. The initial trajectory of the ball was defined as starting on a person’s

hand and sent against the ground plane with some velocity. This allowed the ball to start a free

movement that only depended on the gravity and producing a parabolic trajectory, as depicted in

Figure 4.17. Comparing Figures 4.16 and 4.17, the trajectory estimation produced by camera IP1-

IP4 had a behaviour that changed continuously with the ball’s trajectory on the field. At first, the

3D location of the ball is correctly produced and the defined trajectory is well calculated. That can
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Figure 4.16: Graphic representation of the estimated ball 3D location for the third ball in motion
sequence. The estimation was performed with the Midpoint method on the camera pair IP1-IP4,
considering the Iterative PnP solution for both cameras. Red dots represent the estimated ball on
each 5 frames. The ball started its motion by being thrown with some velocity into the ground.

(a) (b)

(c) (d)

Figure 4.17: Four scenes of the same view from camera IP3 on the third ball in motion sequence.
The real trajectory of the ball started by being thrown against the ground and described a parabola
for each time it hit the ground.

be verified throughout the moment that the ball leaves the person’s hands, the moment it touches

the floor for the fist time and the first parabolic motion it generates. However, as soon as the ball

gets closer to the camera IP1 and farther from the camera IP4, the trajectory estimation tends to de-
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teriorate itself. This is another evidence that the camera IP1 was not correctly calibrated compared

to camera IP4 and that resulted on worsening the estimations of the triangulation methods.

However, conclusions could not be assumed concerning the actual best location of cameras

and its responsibility on the 3D position estimations for the ball due to the calibration quality of

camera IP3 not being as accurate as the calibration of the other two cameras. This prevented a fair

comparison between all camera pairs, allowing IP1-IP4 to outperform all.

Regardless of uncertainty on the values obtained for some of the intrinsic parameters for cam-

era IP3, culminating on doubts on the accuracy of the extrinsic parameters estimated, results can

be considered promising since the average error was around 20 to 30 cm. One of the main reasons

for that distrust is the exaggerate image distortion that the IP3 camera lens introduces to its image,

comparing it to the other two cameras. This could have led to erroneous image distortion removal,

if the calibration parameters estimations were not precise enough.

4.4 Summary

The objective of the present dissertation was to develop a camera system capable of identifying

and reconstructing the 3D position of an object in a context of a sports game. The first step was to

retrieve cameras intrinsic parameters and lens distortion coefficients. This was obtained through a

calibration procedure using multiple views of a planar black and white chessboard pattern. Since

there were some disparities on the values obtained for one camera, a computation of the repro-

jection error for each calibration image followed by a recalibration procedure excluding frames

above a certain error value was performed.

The next step was to estimate the extrinsic parameters from cameras, i.e., cameras pose. Dif-

ferent PnP solvers were studied and used to compute those parameters using six markers placed

around the game field that served as sources of points from the 3D world frame. Not only that,

the estimations of the camera intrinsic matrix and distortion coefficients previously obtained were

essential to remove distortion from images and project the estimated 3D points on the image plane

according to the estimations of the cameras locations and orientations.

The ultimate step was to reconstruct the 3D object using two cameras. For ground-truth data,

the ball was captured on some defined positions around the field on a static motion. Then, through

triangulation methods and testing several camera pairs combinations, the estimated 3D coordinates

were compared to the real 3D ball position. Results showed that a considerably accurate estimation

of the ball 3D position can be obtained if accurate estimations from the calibration procedures were

retrieved.

Considering continuous movement, an electronic flash device was used to produce a bright

light that allowed a synchrony between cameras, considering the flash only appeared for a single

frame of the image acquirement which determined an instant t = 0 for each camera.
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Chapter 5

Conclusions and Future Work

5.1 Final Discussion

This dissertation proposes a solution to compute the 3D data position of a ball during a sports

event in a large space and using off-the-shelf cameras. At an image processing step, the solution

incorporated two stages: camera calibration and 3D reconstruction to obtain 3D information of an

object given its detection.

Dataset was acquired on a basketball court with static cameras placed on one side of the field,

on a higher level and oriented to it. Measurements of the field were taken and a world reference

frame was constructed based on them. Also, positions around the field were chosen accordingly to

allow ground-truth data that were used as quantitative comparisons with the estimations obtained

from the testing sequences using the ball. Initially, the ball was placed static on each position.

Then, a change in height was made for the same positions to create depth on the dataset acquired.

Lastly, some continuous ball movements highly usual in sports games were captured.

On recent literature, many methods propose calibration procedures that only calibrate for sin-

gle cameras or for several cameras oriented to the same planar calibration object. However, since

a sports field can be characterized as a large world frame and cameras need to be related to that

world coordinate system, labeled markers were placed on the field to produce a rich set of 3D

points of that reference world frame. For this purpose, the camera calibration process was divided

in two different stages: intrinsic calibration and extrinsic calibration.

The intrinsic calibration stage required the use of a planar calibration pattern and was per-

formed on each camera individually, producing estimations of the intrinsic parameters and the

distortion coefficients. It was developed an iterative methodology, where an evaluation of the cal-

ibration process was made on each iteration through the reprojection error, excluding frames with

great error. Also, it has been found important to assess the threshold value, as well as the num-

ber of frames considered for the calibration process and the variability of the calibration pattern

motion. Therefore, it is advised that a prosperous set of calibration images are carefully taken

before any calibration procedure can be done. Reprojection errors and image distortion removal

processes were a good visual reference for the accuracy of the different estimations obtained for
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the same camera. However, solely on the next stage was possible to create certainties regarding a

comparison on the accuracy of estimations for the same camera.

The extrinsic calibration procedure was possible by creating 2D image correspondences of

the produced set of 3D points from the labeled markers placed on the field to reach camera pose

estimations. Three methods were evaluated and tested through a projection of points on camera

images using the estimated poses for each camera. The computation of the extrinsic parameters

proved to be directly influenced by the previously estimated intrinsic parameters because they de-

fine the image plane characteristics where the points were projected on. Thus, further evaluation

concerning the accuracy of the intrinsic calibration stage was now achievable. Since it was not ac-

quired a wide variety of 3D orientations of the pattern on a camera that had a larger lens distortion

comparably to the others, it proved to be difficult to improve the results of the initial calibration

stages and influenced the consequent estimations. The Iterative PnP was the method that displayed

consistently lower errors on the projected points.

The final step was to obtain the 3D position of the ball through triangulation. Taking advantage

on the sequences captured, the static ball granted ground-truth data while providing an equal loca-

tion of the ball independently from the time instant for all cameras. Several triangulation methods

were implemented and evaluated with all possible combinations of camera pairs. Camera pairs

with more accurate calibration results obtained lower errors for all tested triangulation methods,

with the Midpoint method presenting slightly better results than the others. Results were promis-

ing since the error measurement was on the order of 11 cm and considering a field space volume of

634 m3 (height of 3m). Concerning the ball in motion sequences, the video synchronization step

using an electronic flash device proved to be a simple method to guarantee an approximation in

time instant for all cameras and allow a 3D reconstruction of the ball. However, the light produced

by the device had a shorter period of time where it could be perceptible compared to the time

instant between frames, resulting in some situations where the flash was not captured by a camera.

This could be overcome by triggering several flashes evenly spaced in time.

Given these evaluations, the calibration procedure established itself as the most laborious step

and susceptible to influence all of the following obtained estimations. It can also be considered has

the foundation of the process of retrieving 3D information of the ball. To avoid inconsistencies,

a carefully produced recalibration method proved to provide better results on the computation

of an object location in a world reference frame. Concerning the use of the playing field as a

calibration object, a marker-based extrinsic calibration proved to be useful when multiple and

distinct cameras are placed wide apart from each other and a large 3D space field is used as the

world frame. Finally, different variations of the triangulation method were tested, obtaining good

estimations for the world 3D ball position.

5.2 Future Work

Despite the potential of the obtained results, the present work is still preliminary and a lot of

developments and improvements are yet to be accomplished.
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Considering the estimations obtained for the 3D object, a study of the projection errors on

the 3D spatial field could be made. This would produce a process capable of improving a 3D

object extraction by predicting which triangulation method or camera pair would suit better for

the consequent position.

Regarding the ball motion in 3D space, some new captures could be made. This would allow

for a better understanding of the process of synchrony between cameras and the effect that different

frame rates could provide for situations where the ball’s velocity is greater. Also, solutions could

be obtained at a video processing sequence since an estimation of the 3D position of the ball

would be achievable not only through triangulation processes but also using the available time

information, through estimations of the probable 3D position, e.g. using Kalman filters or others,

or through inference on the type of trajectory, e.g. linear, parabolic, etc.

Considering the influence of the camera calibration process, new methods to accurately es-

timate cameras parameters could be tested, e.g. using the field lines of the playing field, etc.

Focusing on the placement of the cameras, a higher number of cameras could be used to assess the

influence that the location and orientation of a camera has on extracting 3D information. For this

purpose, different camera poses could be tested that would create a wider range of camera pair

combinations and enable a comparison between several possibilities.

As triangulation methods is concerned, some different techniques should be tested as to eval-

uate if more accurate values could be obtained. Not only that, if a higher number of cameras were

to be used, the possibility of integrating more cameras to triangulate the 3D object would also

be a considerable improvement. This would help to determine if the number of cameras used to

reconstruct a 3D object would increase the accuracy on the estimation computed or if the initial

calibration step could be relaxed or simplified with the extra image information.

Finally, considering that the scenario tested was simplified and only a ball was used on the

sequences produced, a real scenario could be applied to the experiments. In a legitimate game, it

would be necessary to introduce automatic tracking techniques to detect the ball and interacting

them with estimations of the ball’s 3D position, considering cases of its occlusion (players and

obstacles) or erratic detections (similar colors and shapes of other elements on the game and on

the field).
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