535 research outputs found

    Transformer-based encoder-encoder architecture for Spoken Term Detection

    Full text link
    The paper presents a method for spoken term detection based on the Transformer architecture. We propose the encoder-encoder architecture employing two BERT-like encoders with additional modifications, including convolutional and upsampling layers, attention masking, and shared parameters. The encoders project a recognized hypothesis and a searched term into a shared embedding space, where the score of the putative hit is computed using the calibrated dot product. In the experiments, we used the Wav2Vec 2.0 speech recognizer, and the proposed system outperformed a baseline method based on deep LSTMs on the English and Czech STD datasets based on USC Shoah Foundation Visual History Archive (MALACH).Comment: Submitted to ICASSP 202

    ALBAYZIN Query-by-example Spoken Term Detection 2016 evaluation

    Full text link
    [EN] Query-by-example Spoken Term Detection (QbE STD) aims to retrieve data from a speech repository given an acoustic (spoken) query containing the term of interest as the input. This paper presents the systems submitted to the ALBAYZIN QbE STD 2016 Evaluation held as a part of the ALBAYZIN 2016 Evaluation Campaign at the IberSPEECH 2016 conference. Special attention was given to the evaluation design so that a thorough post-analysis of the main results could be carried out. Two different Spanish speech databases, which cover different acoustic and language domains, were used in the evaluation: the MAVIR database, which consists of a set of talks from workshops, and the EPIC database, which consists of a set of European Parliament sessions in Spanish. We present the evaluation design, both databases, the evaluation metric, the systems submitted to the evaluation, the results, and a thorough analysis and discussion. Four different research groups participated in the evaluation, and a total of eight template matching-based systems were submitted. We compare the systems submitted to the evaluation and make an in-depth analysis based on some properties of the spoken queries, such as query length, single-word/multi-word queries, and in-language/out-of-language queries.This work was partially supported by Fundacao para a Ciencia e Tecnologia (FCT) under the projects UID/EEA/50008/2013 (pluriannual funding in the scope of the LETSREAD project) and UID/CEC/50021/2013, and Grant SFRH/BD/97187/2013. Jorge Proenca is supported by the SFRH/BD/97204/2013 FCT Grant. This work was also supported by the Galician Government ('Centro singular de investigacion de Galicia' accreditation 2016-2019 ED431G/01 and the research contract GRC2014/024 (Modalidade: Grupos de Referencia Competitiva 2014)), the European Regional Development Fund (ERDF), the projects "DSSL: Redes Profundas y Modelos de Subespacios para Deteccion y Seguimiento de Locutor, Idioma y Enfermedades Degenerativas a partir de la Voz" (TEC2015-68172-C2-1-P) and the TIN2015-64282-R funded by Ministerio de Economia y Competitividad in Spain, the Spanish Government through the project "TraceThem" (TEC2015-65345-P), and AtlantTIC ED431G/04.Tejedor, J.; Toledano, DT.; Lopez-Otero, P.; Docio-Fernandez, L.; Proença, J.; Perdigão, F.; García-Granada, F.... (2018). ALBAYZIN Query-by-example Spoken Term Detection 2016 evaluation. EURASIP Journal on Audio, Speech and Music Processing. 1-25. https://doi.org/10.1186/s13636-018-0125-9S125Jarina, R, Kuba, M, Gubka, R, Chmulik, M, Paralic, M (2013). UNIZA system for the spoken web search task at MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 791–792).Ali, A, & Clements, MA (2013). Spoken web search using and ergodic hidden Markov model of speech. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 861–862).Buzo, A, Cucu, H, Burileanu, C (2014). SpeeD@MediaEval 2014: Spoken term detection with robust multilingual phone recognition. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 721–722).Caranica, A, Buzo, A, Cucu, H, Burileanu, C (2015). SpeeD@MediaEval 2015: Multilingual phone recognition approach to Query By Example STD. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 781–783).Kesiraju, S, Mantena, G, Prahallad, K (2014). IIIT-H system for MediaEval 2014 QUESST. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 761–762).Ma, M, & Rosenberg, A (2015). CUNY systems for the Query-by-Example search on speech task at MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 831–833).Takahashi, J, Hashimoto, T, Konno, R, Sugawara, S, Ouchi, K, Oshima, S, Akyu, T, Itoh, Y (2014). An IWAPU STD system for OOV query terms and spoken queries. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 384–389).Makino, M, & Kai, A (2014). Combining subword and state-level dissimilarity measures for improved spoken term detection in NTCIR-11 SpokenQuery & Doc task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 413–418).Konno, R, Ouchi, K, Obara, M, Shimizu, Y, Chiba, T, Hirota, T, Itoh, Y (2016). An STD system using multiple STD results and multiple rescoring method for NTCIR-12 SpokenQuery & Doc task. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 200–204).Sakamoto, N, Yamamoto, K, Nakagawa, S (2015). Combination of syllable based N-gram search and word search for spoken term detection through spoken queries and IV/OOV classification. In Proc. of ASRU. IEEE, New York, (pp. 200–206).Hou, J, Pham, VT, Leung, C-C, Wang, L, 2, HX, Lv, H, Xie, L, Fu, Z, Ni, C, Xiao, X, Chen, H, Zhang, S, Sun, S, Yuan, Y, Li, P, Nwe, TL, Sivadas, S, Ma, B, Chng, ES, Li, H (2015). The NNI Query-by-Example system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 141–143).Vavrek, J, Viszlay, P, Lojka, M, Pleva, M, Juhar, J, Rusko, M (2015). TUKE at MediaEval 2015 QUESST. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 451–453).Mantena, G, Achanta, S, Prahallad, K (2014). Query-by-example spoken term detection using frequency domain linear prediction and non-segmental dynamic time warping. IEEE/ACM Transactions on Audio, Speech and Language Processing, 22(5), 946–955.Anguera, X, & Ferrarons, M (2013). Memory efficient subsequence DTW for query-by-example spoken term detection. In Proc. of ICME. IEEE, New York, (pp. 1–6).Tulsiani, H, & Rao, P (2015). The IIT-B Query-by-Example system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 341–343).Bouallegue, M, Senay, G, Morchid, M, Matrouf, D, Linares, G, Dufour, R (2013). LIA@MediaEval 2013 spoken web search task: An I-Vector based approach. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 771–772).Rodriguez-Fuentes, LJ, Varona, A, Penagarikano, M, Bordel, G, Diez, M (2013). GTTS systems for the SWS task at MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 831–832).Wang, H, Lee, T, Leung, C-C, Ma, B, Li, H (2013). Using parallel tokenizers with DTW matrix combination for low-resource spoken term detection. In Proc. of ICASSP. IEEE, New York, (pp. 8545–8549).Wang, H, & Lee, T (2013). The CUHK spoken web search system for MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 681–682).Proenca, J, Veiga, A, Perdigão, F (2014). The SPL-IT query by example search on speech system for MediaEval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 741–742).Proenca, J, Veiga, A, Perdigao, F (2015). Query by example search with segmented dynamic time warping for non-exact spoken queries. In Proc. of EUSIPCO. Springer, Berlin, (pp. 1691–1695).Proenca, J, Castela, L, Perdigao, F (2015). The SPL-IT-UC Query by Example search on speech system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 471–473).Proenca, J, & Perdigao, F (2016). Segmented dynamic time warping for spoken Query-by-Example search. In Proc. of Interspeech. ISCA, Baixas, (pp. 750–754).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2015). GTM-UVigo systems for the Query-by-Example search on speech task at MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 521–523).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2015). Phonetic unit selection for cross-lingual Query-by-Example spoken term detection. In Proc. of ASRU. IEEE, New York, (pp. 223–229).Saxena, A, & Yegnanarayana, B (2015). Distinctive feature based representation of speech for Query-by-Example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 3680–3684).Skacel, M, & Szöke, I (2015). BUT QUESST 2015 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 721–723).Chen, H, Leung, C-C, Xie, L, Ma, B, Li, H (2016). Unsupervised bottleneck features for low-resource Query-by-Example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 923–927).Yuan, Y, Leung, C-C, Xie, L, Chen, H, Ma, B, Li, H (2017). Pairwise learning using multi-lingual bottleneck features for low-resource Query-by-Example spoken term detection. In Proc. of ICASSP. IEEE, New York, (pp. 5645–5649).Torbati, AHHN, & Picone, J (2016). A nonparametric Bayesian approach for spoken term detection by example query. In Proc. of Interspeech. ISCA, Baixas, (pp. 928–932).Popli, A, & Kumar, A (2015). Query-by-example spoken term detection using low dimensional posteriorgrams motivated by articulatory classes. In Proc. of MMSP. IEEE, New York, (pp. 1–6).Yang, P, Leung, C-C, Xie, L, Ma, B, Li, H (2014). Intrinsic spectral analysis based on temporal context features for query-by-example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 1722–1726).George, B, Saxena, A, Mantena, G, Prahallad, K, Yegnanarayana, B (2014). Unsupervised query-by-example spoken term detection using bag of acoustic words and non-segmental dynamic time warping. In Proc. of Interspeech. ISCA, Baixas, (pp. 1742–1746).Hazen, TJ, Shen, W, White, CM (2009). Query-by-example spoken term detection using phonetic posteriorgram templates. In Proc. of ASRU. IEEE, New York, (pp. 421–426).Abad, A, Astudillo, RF, Trancoso, I (2013). The L2F spoken web search system for mediaeval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 851–852).Szöke, I, Skácel, M, Burget, L (2014). BUT QUESST 2014 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 621–622).Szöke, I, Burget, L, Grézl, F, Černocký, JH, Ondel, L (2014). Calibration and fusion of query-by-example systems - BUT SWS 2013. In Proc. of ICASSP. IEEE, New York, (pp. 621–622).Abad, A, Rodríguez-Fuentes, LJ, Penagarikano, M, Varona, A, Bordel, G (2013). On the calibration and fusion of heterogeneous spoken term detection systems. In Proc. of Interspeech. ISCA, Baixas, (pp. 20–24).Yang, P, Xu, H, Xiao, X, Xie, L, Leung, C-C, Chen, H, Yu, J, Lv, H, Wang, L, Leow, SJ, Ma, B, Chng, ES, Li, H (2014). The NNI query-by-example system for MediaEval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 691–692).Leung, C-C, Wang, L, Xu, H, Hou, J, Pham, VT, Lv, H, Xie, L, Xiao, X, Ni, C, Ma, B, Chng, ES, Li, H (2016). Toward high-performance language-independent Query-by-Example spoken term detection for MediaEval 2015: Post-evaluation analysis. In Proc. of Interspeech. ISCA, Baixas, (pp. 3703–3707).Xu, H, Hou, J, Xiao, X, Pham, VT, Leung, C-C, Wang, L, Do, VH, Lv, H, Xie, L, Ma, B, Chng, ES, Li, H (2016). Approximate search of audio queries by using DTW with phone time boundary and data augmentation. In Proc. of ICASSP. IEEE, New York, (pp. 6030–6034).Oishi, S, Matsuba, T, Makino, M, Kai, A (2016). Combining state-level and DNN-based acoustic matches for efficient spoken term detection in NTCIR-12 SpokenQuery &Doc-2 task. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 205–210).Oishi, S, Matsuba, T, Makino, M, Kai, A (2016). Combining state-level spotting and posterior-based acoustic match for improved query-by-example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 740–744).Obara, M, Kojima, K, Tanaka, K, Lee, S-w, Itoh, Y (2016). Rescoring by combination of posteriorgram score and subword-matching score for use in Query-by-Example. In Proc. of Interspeech. ISCA, Baixas, (pp. 1918–1922).NIST. The Ninth Text REtrieval Conference (TREC 9). http://trec.nist.gov . Accessed Feb 2018.Anguera, X, Rodriguez-Fuentes, LJ, Szöke, I, Buzo, A, Metze, F (2014). Query by Example Search on Speech at Mediaeval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 351–352).Joho, H, & Kishida, K (2014). Overview of the NTCIR-11 SpokenQuery&Doc Task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 1–7).NIST. Draft KWS16 Keyword Search Evaluation Plan. https://www.nist.gov/sites/default/files/documents/itl/iad/mig/KWS16-evalplan-v04.pdf . Accessed Feb 2018.Anguera, X, Metze, F, Buzo, A, Szöke, I, Rodriguez-Fuentes, LJ (2013). The spoken web search task. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 921–922).Taras, B, & Nadeu, C (2011). Audio segmentation of broadcast news in the Albayzin-2010 evaluation: overview, results, and discussion. EURASIP Journal on Audio, Speech, and Music Processing, 2011(1), 1–10.Zelenák, M, Schulz, H, Hernando, J (2012). Speaker diarization of broadcast news in Albayzin 2010 evaluation campaign. EURASIP Journal on Audio, Speech, and Music Processing, 2012(19), 1–9.Rodríguez-Fuentes, LJ, Penagarikano, M, Varona, A, Díez, M, Bordel, G (2011). The Albayzin 2010 Language Recognition Evaluation. In Proc. of Interspeech. ISCA, Baixas, (pp. 1529–1532).Tejedor, J, Toledano, DT, Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C, Cardenal, A, Echeverry-Correa, JD, Coucheiro-Limeres, A, Olcoz, J, Miguel, A (2015). Spoken term detection ALBAYZIN 2014 evaluation: overview, systems, results, and discussion. EURASIP, Journal on Audio, Speech and Music Processing, 2015(21), 1–27.Tejedor, J, Toledano, DT, Anguera, X, Varona, A, Hurtado, LF, Miguel, A, Colás, J (2013). Query-by-example spoken term detection ALBAYZIN 2012 evaluation: overview, systems, results, and discussion. EURASIP, Journal on Audio, Speech, and Music Processing, 2013(23), 1–17.Tejedor, J, Toledano, DT, Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). Comparison of ALBAYZIN query-by-example spoken term detection 2012 and 2014 evaluations. EURASIP, Journal on Audio, Speech and Music Processing, 2016(1), 1–19.Méndez, F, Docío, L, Arza, M, Campillo, F (2010). The Albayzin 2010 text-to-speech evaluation. In Proc. of FALA. UniversidadeVigo, Vigo, (pp. 317–340).Billa, J, Ma, KW, McDonough, JW, Zavaliagkos, G, Miller, DR, Ross, KN, El-Jaroudi, A (1997). Multilingual speech recognition: the 1996 Byblos Callhome system. In Proc. of Eurospeech. ISCA, Baixas, (pp. 363–366).Killer, M, Stuker, S, Schultz, T (2003). Grapheme based speech recognition. In Proc. of Eurospeech. ISCA, Baixas, (pp. 3141–3144).Burget, L, Schwarz, P, Agarwal, M, Akyazi, P, Feng, K, Ghoshal, A, Glembek, O, Goel, N, Karafiat, M, Povey, D, Rastrow, A, Rose, RC, Thomas, S (2010). Multilingual acoustic modeling for speech recognition based on subspace gaussian mixture models. In Proc. of ICASSP. IEEE, New York, (pp. 4334–4337).Cuayahuitl, H, & Serridge, B (2002). Out-of-vocabulary word modeling and rejection for Spanish keyword spotting systems. In Proc. of MICAI. Springer, Berlin, (pp. 156–165).Tejedor, J (2009). Contributions to keyword spotting and spoken term detection for information retrieval in audio mining. PhD thesis, Universidad Autónoma de Madrid, Madrid, Spain.Tejedor, J, Toledano, DT, Wang, D, King, S, Colás, J (2014). Feature analysis for discriminative confidence estimation in spoken term detection. Computer Speech and Language, 28(5), 1083–1114.Li, J, Wang, X, Xu, B (2014). An empirical study of multilingual and low-resource spoken term detection using deep neural networks. In Proc. of Interspeech. ISCA, Baixas, (pp. 1747–1751).NIST. The Spoken Term Detection (STD) 2006 evaluation plan. http://berlin.csie.ntnu.edu.tw/Courses/Special%20Topics%20in%20Spoken%20Language%20Processing/Lectures2008/SLP2008S-Lecture12-Spoken%20Term%20Detection.pdf . Accessed Feb 2018.Fiscus, JG, Ajot, J, Garofolo, JS, Doddingtion, G (2007). Results of the 2006 spoken term detection evaluation. In Proc. of SSCS. ACM, New York, (pp. 45–50).Martin, A, Doddington, G, Kamm, T, Ordowski, M, Przybocki, M (1997). The DET curve in assessment of detection task performance. In Proc. of Eurospeech. ISCA, Baixas, (pp. 1895–1898).NIST. Evaluation Toolkit (STDEval) software. https://www.nist.gov/itl/iad/mig/tools . Accessed Feb 2018.Union, IT. ITU-T Recommendation P.563: Single-ended method for objective speech quality assessment in narrow-band telephony applications. http://www.itu.int/rec/T-REC-P.563/en . Accessed Feb 2018.Rajput, N, & Metze, F (2011). Spoken web search. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 1–2).Metze, F, Barnard, E, Davel, M, van Heerden, C, Anguera, X, Gravier, G, Rajput, N (2012). The spoken web search task. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 41–42).Szöke, I, Rodriguez-Fuentes, LJ, Buzo, A, Anguera, X, Metze, F, Proenca, J, Lojka, M, Xiong, X (2015). Query by Example Search on Speech at Mediaeval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 81–82).Szöke, I, & Anguera, X (2016). Zero-cost speech recognition task at Mediaeval 2016. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 81–82).Akiba, T, Nishizaki, H, Nanjo, H, Jones, GJF (2014). Overview of the NTCIR-11 spokenquery &doc task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 1–15).Akiba, T, Nishizaki, H, Nanjo, H, Jones, GJF (2016). Overview of the NTCIR-12 spokenquery &doc-2. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 1–13).Schwarz, P (2008). Phoneme recognition based on long temporal context. PhD thesis, FIT, BUT, Brno, Czech Republic.Varona, A, Penagarikano, M, Rodríguez-Fuentes, LJ, Bordel, G (2011). On the use of lattices of time-synchronous cross-decoder phone co-occurrences in a SVM-phonotactic language recognition system. In Proc. of Interspeech. ISCA, Baixas, (pp. 2901–2904).Eyben, F, Wollmer, M, Schuller, B (2010). OpenSMILE—the munich versatile and fast open-source audio feature extractor. In Proc. of ACM Multimedia (MM). ACM, New York, (pp. 1459–1462).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). Finding relevant features for zero-resource query-by-example search on speech. Speech Communication, 84(1), 24–35.Zhang, Y, & Glass, JR (2009). Unsupervised spoken keyword spotting via segmental DTW on Gaussian posteriorgrams. In Proc. of ASRU. IEEE, New York, (pp. 398–403).Povey, D, Ghoshal, A, Boulianne, G, Burget, L, Glembek, O, Goel, N, Hannemann, M, Motlicek, P, Qian, Y, Schwarz, P, Silovsky, J, Stemmer, G, Vesely, K (2011). The KALDI speech recognition toolkit. In Proc. of ASRU. IEEE, New York, (pp. 1–4).Muller, M. (2007). Information retrieval for music and motion. New York: Springer.Szöke, I, Skacel, M, Burget, L (2014). BUT QUESST 2014 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 621–622).Brümmer, N, & van Leeuwen, D (2006). On calibration of language recognition scores. In Proc of the IEEE Odyssey: The speaker and language recognition workshop. IEEE, New York, (pp. 1–8).Brümmer, N, & de Villiers, E. The BOSARIS toolkit user guide: Theory, algorithms and code for binary classifier score processing. Technical report. https://sites.google.com/site/nikobrummer . Accessed Feb 2018.Meinedo, H, & Neto, J (2005). A stream-based audio segmentation, classification and clustering pre-processing system for broadcast news using ANN models. In Proc. of Interspeech. ISCA, Baixas, (pp. 237–240).Morgan, N, & Bourlard, H (1995). An introduction to hybrid HMM/connectionist continuous speech recognition. IEEE Signal Processing Magazine, 12(3), 25–42.Meinedo, H, Abad, A, Pellegrini, T, Trancoso, I, Neto, J (2010). The L2F broadcast news speech recognition system. In Proc. of FALA. UniversidadeVigo, Vigo, (pp. 93–96).Abad, A, Luque, J, Trancoso, I (2011). Parallel transformation network features for speaker recognition. In Proc. of ICASSP. IEEE, New York, (pp. 5300–5303).Diez, M, Varona, A, Penagarikano, M, Rodriguez-Fuentes, LJ, Bordel, G (2012). On the use of phone log-likelihood ratios as features in spoken language recognition. In Proc. of SLT. IEEE, New York, (pp. 274–279).Diez, M, Varona, A, Penagarikano, M, Rodriguez-Fuentes, LJ, Bordel, G (2014). New insight into the use of phone log-likelihood ratios as features for language recognition. In Proc. of Interspeech. ISCA, Baixas, (pp. 1841–1845).Abad, A, Ribeiro, E, Kepler, F, Astudillo, R, Trancoso, I (2016). Exploiting phone log-likelihood ratio features for the detection of the native language of non-native English speakers. In Proc. of Interspeech. ISCA, Baixas, (pp. 2413–2417).Rodríguez-Fuentes, LJ, Varona, A, Peñagarikano, M, Bordel, G, Díez, M (2014). High-performance query-by-example spoken term detection on the SWS 2013 evaluation. In Proc. of ICASSP. IEEE, New York, (pp. 7819–7823).Vesely, K, Ghoshal, A, Burget, L, Povey, D (2013). Sequence-discriminative training of deep neural networks. In Proc. of Interspeech. ISCA, Baixas, (pp. 2345–2349).Ghahremani, P, BabaAli, B, Povey, D, Riedhammer, K, Trmal, J, Khudanpur, S (2014). A pitch extraction algorithm tuned for automatic speech recognition. In Proc. of ICASSP. IEEE, New York, (pp. 2494–2498).Povey, D, Hannemann, M, Boulianne, G, Burget, L, Ghoshal, A, Janda, M, Karafiat, M, Kombrink, S, Motlicek, P, Qian, Y, Riedhammer, K, Vesely, K, Vu, NT (2012). Generating exact lattices in the WFST framework. In Proc. of ICASSP. IEEE, New York, (pp. 4213–4216).Garcia-Mateo, C, Dieguez-Tirado, J, Docio-Fernandez, L, Cardenal-Lopez, A (2004). Transcrigal: A bilingual system for automatic indexing of broadcast news. In Proc. of LREC. ELRA, Paris, (pp. 2061–2064).Stolcke, A (2002). SRILM—an extensible language modeling toolkit. In Proc. of Interspeech. ISCA, Baixas, (pp. 901–904).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). GTM-UVigo systems for Albayzin 2016 search on speech evaluation. In Proc. of Iberspeech. Springer, Berlin, (pp. 65–74).Chen, G, Khudanpur, S, Povey, D, Trmal, J, Yarowsky, D, Yilmaz, O (2013). Quantifying the value of pronunciation lexicons for keyword search in low resource languages. In Proc. of ICASSP. IEEE, New York, (pp. 8560–8564).Pham, VT, Chen, NF, Sivadas, S, Xu, H, Chen, I-F, Ni, C, Chng, ES, Li, H (2014). System and keyword dependent fusion for spoken term detection. In Proc. of SLT. IEEE, New York, (pp. 430–435).Can, D, & Saraclar, M (2011). Lattice indexing for spoken term detection. IEEE Transactions on Audio, Speech and Language Processing, 19(8), 2338–2347.Miller, DRH, K

    Spoken term detection ALBAYZIN 2014 evaluation: overview, systems, results, and discussion

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://dx.doi.org/10.1186/s13636-015-0063-8Spoken term detection (STD) aims at retrieving data from a speech repository given a textual representation of the search term. Nowadays, it is receiving much interest due to the large volume of multimedia information. STD differs from automatic speech recognition (ASR) in that ASR is interested in all the terms/words that appear in the speech data, whereas STD focuses on a selected list of search terms that must be detected within the speech data. This paper presents the systems submitted to the STD ALBAYZIN 2014 evaluation, held as a part of the ALBAYZIN 2014 evaluation campaign within the context of the IberSPEECH 2014 conference. This is the first STD evaluation that deals with Spanish language. The evaluation consists of retrieving the speech files that contain the search terms, indicating their start and end times within the appropriate speech file, along with a score value that reflects the confidence given to the detection of the search term. The evaluation is conducted on a Spanish spontaneous speech database, which comprises a set of talks from workshops and amounts to about 7 h of speech. We present the database, the evaluation metrics, the systems submitted to the evaluation, the results, and a detailed discussion. Four different research groups took part in the evaluation. Evaluation results show reasonable performance for moderate out-of-vocabulary term rate. This paper compares the systems submitted to the evaluation and makes a deep analysis based on some search term properties (term length, in-vocabulary/out-of-vocabulary terms, single-word/multi-word terms, and in-language/foreign terms).This work has been partly supported by project CMC-V2 (TEC2012-37585-C02-01) from the Spanish Ministry of Economy and Competitiveness. This research was also funded by the European Regional Development Fund, the Galician Regional Government (GRC2014/024, “Consolidation of Research Units: AtlantTIC Project” CN2012/160)

    Searching Spontaneous Conversational Speech:Proceedings of ACM SIGIR Workshop (SSCS2008)

    Get PDF

    Sentiment analysis on Twitter

    Get PDF
    In recent years more and more people have been connecting with Social Networks. One of the most used is Twitter. This huge amount of information is attracting the interest of companies. One reason is that this huge source of information can be used to detect public opinion about their brands and thus improve their business values. In order to transform the information present in the Social Networks into knowledge several steps are required. This project aim to describe them and provide tools that are able to perform this task. The first problem is how to retrieve the data. Several ways are available, each one with its own pros and cons. After that it is necessary to study and define proper queries in order to retrieve the information needed. Once the data is retrieved you may need to filter and explore your data. For this task a Topic Model Algorithm ( LDA ) has been studied and analyzed. LDA has shown positive results when it is tuned in the proper way and it is combined with appropriate visualization techniques. The difference between a Topic Model Algorithm and other Clustering/Segmentation techniques is that Topic Models allows each ”document” ( instance ) to belong to more than one topic ( cluster ). LDA doesn’t natively work well on Twitter due to the very short length of the tweets. An investigation in the literature has revealed a solution to this problem. Another problem that is common in clustering is how to validate the Algorithm and how to choose the proper number of topics ( clusters), for this problem several metrics in the literature have been explored. Afterwards, Sentiment Analysis techniques can be applied in order to measure the opinion of the users . The literature presents several approaches and ways to solving this problem. This work is focused in solving the Polarity Detection task, with three classes , so, classify if a tweet express a positive , a negative or a neutral sentiment. Here reach accurate results can be challenging, due to the messy nature of the twitter posts. Several approaches have been tested and compared. The baseline method tested is the use of sentiment dictionaries, after that , since the real sentiment of the twitter posts is not available, a sample has been manually labeled and several Supervised approaches combined with various Feature Selection/Transformation techniques have been tested. Finally, a totally new experimental approach, inspired from the Soft Labeling technique present in the literature, has been defined and tested. This method try to avoid the costly task to manually label a sample in order to validate a model. In the literature this problem is solved for the two-class problem, so by considering only positive and negative tweets. This work try to extend the soft-labeling approach to the three class problem

    Adaptation and Augmentation: Towards Better Rescoring Strategies for Automatic Speech Recognition and Spoken Term Detection

    Full text link
    Selecting the best prediction from a set of candidates is an essential problem for many spoken language processing tasks, including automatic speech recognition (ASR) and spoken keyword spotting (KWS). Generally, the selection is determined by a confidence score assigned to each candidate. Calibrating these confidence scores (i.e., rescoring them) could make better selections and improve the system performance. This dissertation focuses on using tailored language models to rescore ASR hypotheses as well as keyword search results for ASR-based KWS. This dissertation introduces three kinds of rescoring techniques: (1) Freezing most model parameters while fine-tuning the output layer in order to adapt neural network language models (NNLMs) from the written domain to the spoken domain. Experiments on a large-scale Italian corpus show a 30.2% relative reduction in perplexity at the word-cluster level and a 2.3% relative reduction in WER in a state-of-the-art Italian ASR system. (2) Incorporating source application information associated with speech queries. By exploring a range of adaptation model architectures, we achieve a 21.3% relative reduction in perplexity compared to a fine-tuned baseline. Initial experiments using a state-of-the-art Italian ASR system show a 3.0% relative reduction in WER on top of an unadapted 5-gram LM. In addition, human evaluations show significant improvements by using the source application information. (3) Marrying machine learning algorithms (classification and ranking) with a variety of signals to rescore keyword search results in the context of KWS for low-resource languages. These systems, built for the IARPA BABEL Program, enhance search performance in terms of maximum term-weighted value (MTWV) across six different low-resource languages: Vietnamese, Tagalog, Pashto, Turkish, Zulu and Tamil

    Incorporating Weak Statistics for Low-Resource Language Modeling

    Get PDF
    Automatic speech recognition (ASR) requires a strong language model to guide the acoustic model and favor likely utterances. While many tasks enjoy billions of language model training tokens, many domains which require ASR do not have readily available electronic corpora.The only source of useful language modeling data is expensive and time-consuming human transcription of in-domain audio. This dissertation seeks to quickly and inexpensively improve low-resource language modeling for use in automatic speech recognition. This dissertation first considers efficient use of non-professional human labor to best improve system performance, and demonstrate that it is better to collect more data, despite higher transcription error, than to redundantly transcribe data to improve quality. In the process of developing procedures to collect such data, this work also presents an efficient rating scheme to detect poor transcribers without gold standard data. As an alternative to this process, automatic transcripts are generated with an ASR system and explore efficiently combining these low-quality transcripts with a small amount of high quality transcripts. Standard n-gram language models are sensitive to the quality of the highest order n-gram and are unable to exploit accurate weaker statistics. Instead, a log-linear language model is introduced, which elegantly incorporates a variety of background models through MAP adaptation. This work introduces marginal class constraints which effectively capture knowledge of transcriber error and improve performance over n-gram features. Finally, this work constrains the language modeling task to keyword search of words unseen in the training text. While overall system performance is good, these words suffer the most due to a low probability in the language model. Semi-supervised learning effectively extracts likely n-grams containing these new keywords from a large corpus of audio. By using a search metric that favors recall over precision, this method captures over 80% of the potential gain
    • …
    corecore