38 research outputs found

    Methods of visualisation

    Get PDF

    Realistic visualisation of cultural heritage objects

    Get PDF
    This research investigation used digital photography in a hemispherical dome, enabling a set of 64 photographic images of an object to be captured in perfect pixel register, with each image illuminated from a different direction. This representation turns out to be much richer than a single 2D image, because it contains information at each point about both the 3D shape of the surface (gradient and local curvature) and the directionality of reflectance (gloss and specularity). Thereby it enables not only interactive visualisation through viewer software, giving the illusion of 3D, but also the reconstruction of an actual 3D surface and highly realistic rendering of a wide range of materials. The following seven outcomes of the research are claimed as novel and therefore as representing contributions to knowledge in the field: A method for determining the geometry of an illumination dome; An adaptive method for finding surface normals by bounded regression; Generating 3D surfaces from photometric stereo; Relationship between surface normals and specular angles; Modelling surface specularity by a modified Lorentzian function; Determining the optimal wavelengths of colour laser scanners; Characterising colour devices by synthetic reflectance spectra

    Cognitive Buildings

    Get PDF
    Cognitive building is a pioneering topic envisioning the future of our built environment. The concept of "cognitive" provides a paradigm shift that steps from the static concept of the building as a container of human activities towards the modernist vision of "machine Ă  habiter" of Le Corbusier, where the technological content adds the capability of learning from users' behavior and environmental variables to adapt itself to achieve major goals such as user comfort, energy-saving, flexible functionality, high durability, and good maintainability. The concept is based on digital frameworks and IoT networks towards the concept of a smart city

    The development of methods for the reproduction in continuous tone of digitally printed colour artworks

    Get PDF
    Advances in printing technologies in the late 19th century led to the development of half-toning techniques enabling the economical reproduction of photographic images in print. Whilst undoubtedly successful in low cost high volume image reproduction, half-toning representations are less faithful in detail when compared to continuous tone photomechanical methods in use at that time. This thesis asks the question: can the creative application of 21st century digital fabrication technologies enable the qualities of continuous tone imaging to be regained? In the 21st-century, printmaking may be seen as the interchange of ideas, experimental practice and interdisciplinary thinking. Printmaking has always been a means of combining modern technology and methods with existing traditional and commercial imaging processes. Technological advancement in print however does not always provide a finer quality of print. Qualities often attributed to pre-digital continuous tone printing can be lost in the transition to a digital half tone print workflow. This research project examines a near obsolete 19th century print process, the continuous tone Woodburytype, developed to address the issue of permanence in photography. Through a methodological approach analyses of the Woodburytype an empirical reconstruction of the process provides a comprehensive critique of its method. The Woodburytype’s surface qualities are not found in other photomechanical printing methods capable of rendering finely detailed photographic images. Its method of image translation results in the printed tonal range being directly proportional to the deposition thickness of the printing ink, however it never successfully developed into a colour process. By examining and evaluating digital imaging technology this study identifies, current computer aided design and manufacturing techniques and extends upon known models of Woodburytype printing through the development of this deposition height quality enabling a new digital polychromatic colour printing process
    corecore