75 research outputs found

    Iterative receivers and multichannel equalisation for time division multiple access systems

    Get PDF
    The thesis introduces receiver algorithms improving the performance of TDMA mobile radio systems. Particularly, we consider receivers utilising side information, which can be obtained from the error control coding or by having a priori knowledge of interference sources. Iterative methods can be applied in the former case and interference suppression techniques in the latter. Convolutional coding adds redundant information into the signal and thereby protects messages transmitted over a radio channel. In the coded systems the receiver is usually comprised of separate channel estimation, detection and channel decoding tasks due to complexity restrictions. This suboptimal solution suffers from performance degradation compared to the optimal solution achieved by optimising the joint probability of information bits, transmitted symbols and channel impulse response. Conventional receiver utilises estimated channel state information in the detection and detected symbols in the channel decoding to finally obtain information bits. However, the channel decoder provides also extrinsic information on the bit probabilities, which is independent of the received information at the equaliser input. Therefore it is beneficial to re-perform channel estimation and detection using this new extrinsic information together with the original input signal. We apply iterative receiver techniques mainly to Enhanced General Packet Radio System (EGPRS) using GMSK modulation for iterative channel estimation and 8-PSK modulation for iterative detection scheme. Typical gain for iterative detection is around 2 dB and for iterative channel estimation around 1 dB. Furthermore, we suggest two iteration rounds as a reasonable complexity/performance trade-off. To obtain further complexity reduction we introduce the soft trellis decoding technique that reduces the decoder complexity significantly in the iterative schemes. Cochannel interference (CCI) originates from the nearby cells that are reusing the same transmission frequency. In this thesis we consider CCI suppression by joint detection (JD) technique, which detects simultaneously desired and interfering signals. Because of the complexity limitations we only consider JD for two binary modulated signals. Therefore it is important to find the dominant interfering signal (DI) to achieve the best performance. In the presence of one strong DI, the JD provides major improvement in the receiver performance. The JD requires joint channel estimation (JCE) for the two signals. However, the JCE makes the implementation of the JD more difficult, since it requires synchronised network and unique training sequences with low cross-correlation for the two signals.reviewe

    Software radio architecture with smart antennas: a tutorial on algorithms and complexity

    Full text link

    Detection of signals by the digital integrate-and-dump filter with offset sampling

    Get PDF
    The Integrate and Dump Filter (IDF) is used as a matched filter for the detection of signals in additive white Gaussian noise. The performance of the digital integrate and dump filter is evaluated. The case considered is when symbol times are known and the sampling clock is free running at a constant rate, i.e., the sampling clock is not phase locked to the symbol clock. Degradations in the output signal to noise ratio of the digital implementation due to sampling rate, sampling offset, and finite bandwidth, resulting from the anti-aliasing low pass prefilter, are computed and compared with those of the analog counterpart. It is shown that the digital IDF performs within 0.6 dB of the ideal analog IDF whenever the prefilter bandwidth exceeds four times the symbol rate and when sampling is performed at the Nyquist rate. The loss can be reduced to 0.3 dB by doubling the sampling rate, where 0.2 dB loss results from finite bandwidth and 0.1 dB results from the digital IDF

    Performance evaluation of spread spectrum system with cochannel interference through a nonlinear channel

    Get PDF
    This thesis deals with the problem of more than one subscriber transmitting data signals through a common satellite repeater using code division multiplexing to separate the signals. We are concerned with the problem of amplifying two DS spread spectrum signals, both QPSK or BPSK modulated, in a common device in which limiting occurs. One signal is considered the signal we desire to receive, and the other, having the same nominal carrier frequency with a small random offset, is considered to be a cochannel interferer. The case of a cochannel interferer on the uplink and downlink in QPSK signalling and BPSK signalling systems is analyzed in detail. This is an important practical problem in code division multiple access satellite communication systems, which usually contain limiting in the satellite amplifier, often in the form of a saturated traveling wave tube amplifier. The satellite repeater is modeled using a bandpass hard limiter. The inverse Fourier transform method, which is applicable to the analysis of PN spread spectrum systems is applied to calculate the output of the bandpass hard limiter. The limiter output plus AWGN is taken to be the input of a correlation receiver for which we calculate the probability of error as function of the signal to noise and, signal to interference ratios. From these results we can determine the effect on error performance due to the inclusion of a bandpass limiter in the transmission path. The assumptions made in deriving the theoretical performance of the system have been checked by simulating the entire system using the BOSS software package. The results of the simulation show good agreement with the theoretical calculations within 1 to 2 dB in SNR. In addition by means of simulation we were able to explore some features of the system that could not be addressed analytically, such as the effect of unbalanced codes on system performance

    Terrain analysis using radar shape-from-shading

    Get PDF
    This paper develops a maximum a posteriori (MAP) probability estimation framework for shape-from-shading (SFS) from synthetic aperture radar (SAR) images. The aim is to use this method to reconstruct surface topography from a single radar image of relatively complex terrain. Our MAP framework makes explicit how the recovery of local surface orientation depends on the whereabouts of terrain edge features and the available radar reflectance information. To apply the resulting process to real world radar data, we require probabilistic models for the appearance of terrain features and the relationship between the orientation of surface normals and the radar reflectance. We show that the SAR data can be modeled using a Rayleigh-Bessel distribution and use this distribution to develop a maximum likelihood algorithm for detecting and labeling terrain edge features. Moreover, we show how robust statistics can be used to estimate the characteristic parameters of this distribution. We also develop an empirical model for the SAR reflectance function. Using the reflectance model, we perform Lambertian correction so that a conventional SFS algorithm can be applied to the radar data. The initial surface normal direction is constrained to point in the direction of the nearest ridge or ravine feature. Each surface normal must fall within a conical envelope whose axis is in the direction of the radar illuminant. The extent of the envelope depends on the corrected radar reflectance and the variance of the radar signal statistics. We explore various ways of smoothing the field of surface normals using robust statistics. Finally, we show how to reconstruct the terrain surface from the smoothed field of surface normal vectors. The proposed algorithm is applied to various SAR data sets containing relatively complex terrain structure

    Phase-locked loop digital FM receiver for wireless communications

    Get PDF
    Thesis (S.B. and M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 77-79).by Thunyachate Ekvetchavit.S.B.and M.Eng

    On-chip cross-talk analysis for multiple RF front ends of a wireless gigabit LAN system

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (leaves 169-173).In the Wireless-Gigabit-Local-Area-Network (WiGLAN) project, we proposes a system architecture that adopts multiple antennas [1, 2, 3, 4] to control the trade-off between data rate and transmission quality [5, 6] through Space-Time Coding (STC) [7, 8, 9] and Orthogonal Frequency Division Multiplexing (OFDM). However, along the multiple RF front-ends, there are multiple nodes that signal cross-talk can occur. Such signal cross-talk occurring on a silicon chip becomes more and more significant as the integration level and operating radio frequency rise, seriously degrading the system performance, the data rate and transmission quality. Most of the literature about on-chip crosstalk suppression have been focusing on adopting various process-technology techniques, such as using guard ring structures to separate the parallel RF front ends or inserting a ground plane to shield the cross-talk. In this study, we will take a different approach. We will investigate the effects of on-chip cross-talk upon the operations of the coding and modulation schemes adopted in the WiGLAN system and explore methods, other than those mentioned, to counteract them.by Jie De Jacky Liang.S.M
    corecore