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Abstract

We investigate a non-coherent detection technique based on phase-locked loop (PLL) for
wireless communication applications, with an emphasis on Digital Enhanced Cordless Tele-
phone (DECT) system. Performance of the PLL receiver in additive white Gaussian noise
(AWGN)'and interference-limited environments is simulated and compared to that of the
"traditional" non-coherent receivers: limiter-discriminator detector (LD) and differential
detector (DD). PLL receiver design, including the selection of PLL parameters and post-
detection filtering, is also studied. The results indicate that a well-designed PLL receiver is
a better candidate for DECT system than either LD or DD receiver.
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Chapter 1

INTRODUCTION

1.1 Motivation

Continuous Phase Modulation (CPM) describes a class of digital frequency modulation

(FM) techniques, which is widely used in mobile radio communications. One particular

CPM scheme of interest is Gaussian Minimum Shift Keying (GMSK) modulation introduced

by Murota and Hirade in [23]. GMSK is implemented in many wireless applications, includ-

ing Global System for Mobile (GSM) and Digital Enhanced Cordless Telephone (DECT)

systems [11].

The focus of this thesis is a non-coherent detection technique based on phase-locked loop

(PLL) for GMSK modulation. Other non-coherent detection techniques, commonly used

in mobile radio systems, are limiter-discriminator detection (LD) and differential detection

(DD). The performance of both receivers for CPM has been studied extensively in additive

white Gaussian noise (AWGN) environment [25] - [32]. On the other hand, no analytical

results on the performance of PLL-based detection have been reported because of non-linear

characteristics of PLL. Most implementations of the PLL receiver have, therefore, relied on

empirical studies [6].

The goal of this thesis is to investigate the performance of the PLL receiver and to

provide the design guidelines for wireless communication systems with an emphasis on the

DECT framework. Receiver design includes the selection of PLL parameters and post-

detection filtering. The major portion of this study is carried out by computer simulations

and is supported by analysis based on the linearized PLL model. Error performance of the

PLL receiver is compared with that of the limiter-discriminator and differential detector



receivers. The study includes the performance in AWGN environment and interference-

limited environment resulting from cochannel and adjacent channel interference.

The rest of this chapter contains the summary of the characteristics of CPM and intro-

duces GMSK and its closely related modulation scheme, Minimum Shift Keying (MSK). An

overview of non-coherent digital FM receivers is also given, together with the comparison

between non-coherent and coherent detection techniques. Furthermore, we also include an

overview of the DECT standard.

In Chapter 2, the detailed description of non-coherent receivers is presented. For LD and

DD detection, we highlight the derivation of theoretical performance presented in [26, 29, 30]

and the effects of pre-detection and post-detection filtering. For PLL-based detection, we

first provide the background on PLL including a linearized model and specific details of a

second-order PLL, and subsequently summarize the major characteristics of PLL detector.

For each receiver, the complex baseband model which will be used in simulation is described.

In Chapter 3, we first describe the simulation setup, including timing normalization and

implementation of the pre-detection and post-detection filters. Using a noise-free signal, we

illustrate the three detection techniques. Major part of the chapter is devoted to simulation

results of the PLL receiver in AWGN and interference-limited environments. Performance

of the PLL receiver is compared to that of the LD and DD receivers. Furthermore, the

selection of PLL and post-detection filter parameters is described.

Finally, in Chapter 4, we discuss future works and provide conclusion.



1.2 Continuous Phase Modulation

Continuous phase modulation (CPM) is a class of modulation schemes in which the trans-

mitted signal, s(t), has a general form

s(t) = A cos(27rfct + 0(t) + 0o) (1.1)

where A is the carrier amplitude, fc is the carrier frequency, and O(t) is the transmitted

phase. The constant 0o represents a carrier-phase shift due to transmission delay and is

generally assumed to be uniformly distributed between [-7r, 7r].

For all CPM signals, the transmitted phase, 0(t), is continuous. Its derivative 0'(t), the

instantaneous frequency, is described by

n

0'(t) = 27rh E aig(t - iT), nT < t < (n + 1)T (1.2)
i=-oo

where T is a symbol period, and {ai} is an M-ary input sequence. The parameter h is

known in digital FM literature as a modulation index, and g(t) is called a frequency pulse.

Each symbol in the sequence is chosen from an alphabet set {1l, ±3,..., I(M - 1)}.

The pulse g(t) is positive in a time interval [0, LT] and 0 otherwise, where L is a positive

integer. In addition, it is normalized such that

oLT 1

/ g(r)dT = L g(T)dT =- (1.3)
-oo o 2

Therefore, we obtain

n

0'(t) = 2r7h Z aig(t - iT), nT < t < (n + 1)T (1.4)
i=n-L+1

which indicates that each symbol ai effects 0'(t) for L consecutive symbol periods. CPM

schemes with L = 1 are known as full response CPM. For other values of L, they are called

partial response CPM.

Integrating (1.4) from -oo to t yields

n-L n

O(t) = h 1 ai + 27h aiq(t - iT), nT < t < (n + )T (1.5)
i=-oo i=n-L+1



where q(t) is a phase pulse defined by

tt<o
qM = g()d g()d, 0 t < LT (1.6)

1 t > LT.

From (1.5), the expression for 0(t) can be viewed as a sum of two parts. The first part

represents the phase accumulation of all symbols up to an_L, and the second is a function

of the L most recent symbols. Because 0(t) depends on the entire history of the input

sequence, CPM is a modulation scheme with memory. This is a significant distinction from

other digital modulation schemes such as pulse amplitude modulation (PAM), frequency

shift keying (FSK), and phase shift keying (PSK), where the phase over different signaling

periods is statistically independent [15].

By carefully choosing g(t), h, L and M, we can generate a variety of CPM signals. Two

CPM schemes of interest are discussed in the next two sections.

1.2.1 Minimum shift keying (MSK) modulation

Minimum shift keying (MSK) is a binary CPM scheme with the modulation index of I and

a rectangular pulse g(t) defined by

Ot(t) = 2t(1.7)
0, otherwise.

Figure 1-1 displays g(t) and the corresponding q(t). From (1.1) and (1.5), an MSK signal

can be expressed as

n-1 (t nT)
SMSK(t) = A cos(2,rfct + . :ai + ran 2T + ), nT < t < (n + 1)T. (1.8)

2=--00

It is also possible to view MSK as a special kind of FSK modulation known as continuous-

phase frequency shift keying (CPFSK). CPFSK describes a family of CPM schemes in which

g(t) is defined by (1.7), and h is arbitrary. MSK is, therefore, a CPFSK scheme with h = .



T

Figure 1-1: Frequency and phase pulses of MSK modulation.

From (1.8), we can write

n-1

SMSK(t) = Acos(27(fc +anfd). t+(- ai 2 r +)
z=--'-Co

nT < t < (n + 1)T (1.9)

where fd, the peak frequency deviation, is equal to - T In FSK context, it is the

minimum peak frequency deviation which allows a pair of binary FSK signals to be or-

thogonal. This explains the term "minimum" in MSK [22]. Furthermore, unlike a general
n-1

FSK modulation, the term ( -, 2 ) is necessary in SMSK(t) to ensure phase2 2
-- 00

continuity.

By expanding the cosine term in (1.8), we can express SMSK(t) as

SMSK(t) = A -ai(t) cos( T) cos(27rfct + 0,) - aQ(t) sin( ) sin(2r fct + Oo) (1.10)

where ai(t) and aQ(t) are functions of {ci}

n-1

ai(t) = cos(1  - ),
i=-oo00

aQ(t) = n-ai(t),

nT < t < (n + 1)T

nT < t < (n + 1)T.

Equation (1.10) provides another interpretation of MSK as a special type of offset quadra-

ture phase shift keying (OQPSK) modulation. In OQPSK, the bit transition of the quadra-

ture signal, Q(t), is shifted by the bit period, Tb = T/2, from the transition of the in-phase

1



m( t) FM s( t) m( t) (t) PM s(t)

Modulator dt Modulator

(i) (ii)

Figure 1-2: MSK modulator implemented according to CPFSK interpretation.

signal, I(t). For nTb t < (n + 1)Tb, an OQPSK signal is described by

A [a, cos(27rfct + 0o) - aQ_1 sin(27rfct + 0o)], for n evennt) n -(1.11)

A [a, cos(21rfct + 0o) - aQ sin(27rfct + 0o)], for n odd

where ai and ac are the nth in-phase (even) and quadrature (odd) input bits respectively

[2]. It is apparent that (1.10) is a special case of (1.11) where the rectangular pulse is

replaced by the sinusoidal pulses: cos(Th) and sin(-).

Since MSK can be considered either as CPFSK or OQPSK modulation, MSK modula-

tion can be implemented by either approach. Relying on the CPFSK description, we can

generate MSK signal using a regular FM transmitter where the input signal, m(t), is a

rectangular non-return-to-zero (NRZ) waveform with an amplitude ±-L (Figure 1-2 (i)).

The modulation index of 1 is achieved by setting fd = . An MSK signal can also be

generated using phase modulation as illustrated in Figure 1-2 (ii). Note that the entire

history of the phase is needed in order to derive 0(t).

Following a discussion on OQPSK, the implementation of an MSK modulator is shown

in Figure 1-3. The original bit sequence is divided into two streams of the in-phase (even)

and quadrature (odd) bits. The waveforms ai(t) and aQ(t) are calculated and multiplied

by the sinusoidal terms as described in (1.10). The output is obtained by combining the

in-phase and quadrature signals.

MSK modulation has many desirable properties. Like other CPM schemes, it has a

constant envelope and, therefore, can avoid the use of linear power amplifier which is difficult

and expensive to implement at high frequency [12]. This gives an advantage over linear

modulation such as QPSK or QAM which requires linear amplifiers for good performance.

Furthermore, MSK also allows non-coherent detection which is not available in QPSK.



Rt
cos( )2T

s( t)

s t
sin( )

2T

Figure 1-3: MSK modulator implemented according to OQPSK interpretation.

Despite the advantages, MSK is not suitable for mobile radio communications because of

its high out-of-band radiation [12, 23]. Nevertheless, we have referred to MSK modulation

in detail because we feel that it is necessary for the development of this thesis. In the next

section, we present GMSK modulation.

1.2.2 Gaussian minimum shift keying (GMSK) modulation

Introduced by Murota and Hirade in [23], Gaussian minimum shift keying (GMSK) is a

modulation scheme closely related to MSK. Historically it was designed for mobile radio

communications to achieve smaller sidelobes and better spectral compactness than MSK

[23]. Shown in Figure 1-4, better spectral efficiency in GMSK is obtained by filtering an

input signal, m(t), with a Gaussian lowpass filter. The impulse response, h(t), of the

Gaussian lowpass filter is described by

h(t) = B -xp [-2(27rBtt)2/ln2] (1.12)

where Bt is the 3dB bandwidth of the filter [30]. In this study, we are interested in GMSK

modulation with BtT = 0.5 because it is employed in DECT systems.

GMSK is also a partial response binary CPM in which h = and

g(t) = [h(t) * REC(t)]2T



m(t) Gaussian FM s(t)

LPF Modulator

(i)

rn(t) Gaussian 0 (t) PM s(t)

LPF dt Modulator

(ii)

Figure 1-4: GMSK modulator implemented according to CPFSK modulation.

1 t-T t
= [Q(27Bb )- Q(27Bb (1.13)
2T V _2n2) 1.3

where * denotes the convolution operation, REC(t) is a rectangular pulse of duration T,

and Q(x) is the error function defined by [15]

00  1 72

Q() = e 2 dT.

In practice, the pulse g(t) is truncated to an interval [0, LTT]. The truncation is done

symmetrically around t = LTT/2, and the new pulse is re-normalized according to (1.3).

Also, note that the truncation period LT depends on the parameter Bt. For BtT = 0.5, we

find that setting LT equal to 4 is appropriate.

Plots of g(t) and q(t) for several GMSK schemes are shown in Figure 1-5. Note that

the closed-form expression for q(t) does not exist. Instead, its numerical values are found

by integrating g(t) according to (1.6). From the figure, we observe that the shapes of

g(t) and q(t) depend on the Bt value. Using smaller Bt results in a more spread-out g(t)

and, therefore, higher intersymbol interference (ISI) in the modulation. In other words,

the narrower the pre-modulation filter bandwidth is, the higher the level of dependence of

GMSK signal on adjacent bits will be. Lastly, we can view MSK as a GMSK modulation

with Bt = oo.

In the next section, superior spectral characteristics of GMSK over MSK are displayed.

Because of its constant envelope, non-coherent detectability, and high spectral efficiency,



0.5 * 0.5
oBtT = 0.5 oBtT = 0.5
XBtT = 0.4 , xBtT = 0.4

0.4 +BT = 0.3 / \ 0.4 +BT = 0.3

0.3.............../ -................ .. 0.3.0 .4 '0 .4 .......mBT = 0.25 mBT = 0.

0.2 0.

nT nT

Figure 1-5: Frequency and phase pulses of GMSK signals.

GMSK is widely used in mobile radio communications. Its applications include GSM and

DECT systems. Some of the recent Personal Communication System (PCS) standards also

employ GMSK modulation [13].

1.2.3 Power spectra of MSK and GMSK signals

In general, the calculation of power spectral density (PSD) of CPM signals is complicated

because of the memory in 0(t) [15]. Closed-form expressions are only available for some

CPM schemes. For example, an expression for M-ary CPFSK is given in [2]. For MSK, it

can be simplified to [15]
32E, cos(2irfT) 2

S1p(f) = 2 _1- 16f 2T2  (1.14)

where Es is the energy per symbol, and Sp(f) denotes the power spectrum of the complex

baseband signal of MSK (t).

For other modulation schemes including GMSK, there are several numerical methods

which compute spectral density by time-averaging over an ensemble of transmitted input

sequences. Some of these methods are discussed in [2]. In this study, we compute power

spectra of GMSK by simulating GMSK signals and applying Welch's averaged periodogram

method with Hanning window. This method is discussed in [17]. Figure 1-6 displays

spectra of MSK and GMSK signals with BtT = 0.3 and 0.5. The spectrum of the MSK

signal is plotted using (1.14). For all signals, the input bits are assumed equiprobable and

g(t) q(t)
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- MSK
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10 ....... ........ GMSK (BtT = 0.3)
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-20
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Figure 1-6: Power spectra of MSK and GMSK (BtT = 0.3 and 0.5).

statistically independent.

From Figure 1-6, both GMSK spectra have smaller sidelobes than MSK. In general,

because of higher correlation between symbols, a partial response CPM has better spectral

characteristics than a full response modulation. In [23], the fractional power ratios of MSK

and GMSK signals are given. The 99% total power bandwidth is 1.2R for MSK, R for

GMSK with BtT = 0.5, and 0.9R for GMSK with BtT = 0.3 [23]. The parameter R

represents the symbol rate - a reciprocal of T.

1.3 Overview of Non-coherent Digital FM Receivers

1.3.1 System model

In this study, we consider the following structure of non-coherent digital FM receiver shown

in Figure 1-7. The receiver consists of a pre-detection filter, a digital FM demodulator, a

post-detection filter, a sampler, and a slicer. A transmitted signal, s(t), is corrupted by an

additive white Gaussian noise (AWGN) denoted by n(t). In Chapter 4, we add interference



Figure 1-7: Block diagram of a digital FM receiver.

signals typical for wireless systems.

The pre-detection filter is implemented in practice by an Intermediate Frequency (IF)

analog filter with a center of passband located at fc. Its impulse response is denoted by

hlF(t), and the corresponding frequency response is HIF(f). Its role is to reduce an out-of-

band noise, while passing s(t) with little distortion. A filtered signal, r(t), is demodulated

using various detection techniques. Limiter-discriminator detection (LD), differential de-

tection (DD), and PLL-based detection (PLD) are three non-coherent detection methods

of interest.

A demodulated signal, denoted by p(t), is then passed through the post-detection filter.

The main function of this filter is to attenuate the output noise which increases due to

spectral-shaping caused by a demodulator. A filtered signal, w(t), is sampled every T

seconds. In this model, we assume that the receiver samples at instants which maximize

eye opening of the receiver's noise-free output.

The slicer compares those samples to its threshold and makes a symbol-by-symbol de-

cision. For binary digital FM schemes, the threshold is usually set to zero. However, there

are some cases when a non-zero threshold leads to a better performance. One example is

the two-bit differential detection discussed in [30].

1.3.2 Effects of pre-detection filtering

In AWGN environment, the output of the pre-detection filter is

r(t) = [s(t) + n(t)] * hlF(t). (1.15)

For CPM signals, we can show that

s(t) * hIF(t) = Aa(t) cos(27rfct + p(t)) (1.16)



where the time-varying amplitude, a(t), and the filtered phase, p(t), are

a(t) = /(hr(t) * cos(t))2  (hr(t) * sin(t))2  (1.17)

(sin 0 (t) * hr(t)
pw(t) = arctan( ). (1.18)

cos t (t) * hr (t)

In addition, the complex baseband equivalent equation of (1.16) is

Sip(t) * hr(t) = Aa(t)ej1(t). (1.19)

The term hr(t) in (1.17), (1.18), and (1.19) represents the impulse response of the

lowpass equivalent of hIF(t). We assume that hr(t) is real and even. Using properties of

Fourier transforms [17], we can derive a relationship between Hr(f), the frequency response

of hr(t), and HIF(f)

HIF(f) = Hr(f - fe) + Hr(f + fc). (1.20)

We now discuss the effects of the pre-detection filter on n(t). The noise considered is

a zero-mean AWGN with power spectral density Sn(f) = No/2. An output noise of the

pre-detection filter is denoted by 7(t), where

r(t) = n(t) * hIF(t). (1.21)

Because of the linear time-invariant property of hr(t), the filtered noise, q(t), also has a

Gaussian distribution. Its power spectral density and variance are

S,(f) = oIHF(f)12 (1.22)
2

0 2 S, ( f)df

N o
_ No HIF(f)12df

2 0o
No 00

_ No .2 I Hr(f) 2 d

= 2NoBrn (1.23)



where Brn is the baseband noise-equivalent bandwidth of hr (t) defined by

1 00
Brn = J IHr(f)12df. (1.24)

Writing r(t) in the quadrature form, we obtain

r1(t) = r(t) cos 2rfct - 7, (t) sin 2irfct (1.25)

where r,(t) and rls(t) are the real and imaginary part of the complex baseband noise 7lp (t).

The two waveforms, rc(t) and q,(t), are independent jointly Gaussian random processes [15]

with

02 = 2 =2
ie 1 "7

Combining (1.16) and (1.21), the output of the pre-detection filter is

r(t) = Aa(t) cos(27rfct + [(t)) + 7(t) (1.26)

= Re{(Aa(t)ej(t) + r(t))ej2 7rfct}.

Thus, its complex baseband signal is given by

rip(t) = Aa(t)eiP(t) + r1p(t). (1.27)

1.3.3 Carrier-to-noise ratio

Carrier-to-noise ratio (CNR) or signal-to-noise ratio (SNR) is a ratio between the signal

power and the noise power. Two CNRs of interest are the ratios of signal and noise power

measured before and after hlF(t).

By definition of average signal power [9], it is easy to show that

A
2

ASr= (1.28)
2

A 2 a2 (t)
S (1.29)

where Sr and Sp are the average signal power before and after the filter respectively.

Due to ergodicity of AWGN, average noise power is approximately its variance. Thus



we have already derived the filtered noise power in (1.23). Equivalent expression for the

noise power before the filter is

a2  = 2f- - df = 2NoBn (1.30)

where Bn is the lowpass equivalent bandwidth of AWGN n(t).

Therefore, the two CNRs are

A 2/2
Pr= 2 (1.31)2NoB,

p(t) = a2 (t) 2/2 (1.32)
2NoBrn

where we denote the CNR before and after hIF(t) by Pr and p(t) respectively. Note that

p(t) is time-varying due to a(t).

Furthermore, by using (1.28) and a relationship between power and energy per symbol,

i.e. Sr = E/IT, we can show that

Es = A 2T/2. (1.33)

Therefore, we can also write the two CNRs in term of Es

E,/T
Pr = (1.34)

2NoBn

a2 (t)E/T
p(t) = (1.35)2NoBrn

1.3.4 Effects of post-detection filtering

As we mentioned earlier, the main function of the post-detection filter is to attenuate the

out-of-band noise while distorting the transmitted signal as small as possible. In classical

detection theory, the filter is assumed to be an ideal lowpass filter.

In practice, however, non-ideal filter is implemented. This leads to an increase in inter-

symbol interference (ISI), unless the filter satisfies the Nyquist condition [15]. The effects

of the post-detection filter depend on pre-detection filter, type of modulation, and demod-

ulation technique. We must, therefore, be careful with the design of post-detection filter

along with other components of the receivers. The effects of post-detection filter on each

receiver will be discussed when we introduce that particular detection technique.
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Figure 1-8: Block diagram of a typical coherent receiver.

1.4 Comparison of Coherent and Non-coherent Detection

In coherent detection, the demodulator shown in Figure 1-8 downconverts the filtered sig-

nal, r(t), to two baseband signals: the in-phase I(t) and the quadrature Q(t). Further

demodulation is then performed on I(t) and Q(t). Since the information about f, and 0o

is required for the downconversion, a coherent receiver must, therefore, estimates both 0o

and fc from the received signal. Any mismatch between the estimates and the actual values

degrades the receiver performance.

On the other hand, non-coherent detection techniques do not need to recover 0o. In-

stead, 0o is assumed to be uniformly distributed between [-i,w]. Non-coherent detection

techniques always perform worse than those employing coherent methods since they do not

utilize the phase information. However, in some applications where 0o rapidly changes,

phase recovery is complicated and costly to implement. Therefore, non-coherent detection

techniques are more favorable in terms of receiver's complexity and implementation cost in

those scenarios.

1.5 Digital Enhanced Cordless Telephone (DECT) Stan-

dard

The DECT standard is developed by European Telecommunications Standard Institute

(ETSI) with aims to cover a wide range of wireless services from an indoor cordless telephone



to public access systems. DECT is a multi-carrier, time-division multiple access (TDMA)

system with channel rate of 1.152 Mbit/sec. Ten frequency carriers are operated in the

allocated frequency band from 1,880 MHz to 1,900 MHz with a frequency spacing of 1.728

MHz. In each carrier, TDMA frames of 10 ms are generated where each frame is divided

into 24 time slots for uplink and downlink transmission.

The DECT system employs Gaussian Frequency Shift Keying (GFSK) modulation with

nominal frequency deviation of 288 KHz. GFSK is GMSK modulation which allows the

modulation index to vary in a small range. The normalized bandwidth of the Gaussian filter

is BtT = 0.5. In general equalization is not used in DECT receiver. Several implementations

of DECT receivers are presented in [33]. The so-called basic DECT receiver is generally

based on non-coherent detection using limiter-discriminator.



Chapter 2

NON-COHERENT GMSK

RECEIVERS

2.1 Limiter-discriminator Detection

Limiter-discriminator (LD) detection or frequency discriminator detection is widely used

in both analog and digital FM systems. Its application includes mobile and satellite com-

munications. Some of the early studies on LD detection of digital FM have been done by

Roberts [1], Rice [20], and Mazo and Saltz [21].

The structure of an LD receiver shown in Figure 2-1 consists of two parts: a limiter

and a discriminator. The limiter provides constant amplitude of the received signal. The

discriminator first extracts the phase from its input and then differentiates the phase wave-

form. Phase differentiation is essential in the demodulation because the input signal, m(t),

is related to the instantaneous frequency of the transmitted signal, 0'(t), according to (1.2).

In the figure, we denote the extracted phase by Oi(t). The output of the discriminator

is

di(t)
p(t) = d(2.1)

where the constant c is used for amplitude normalization. Assuming that the Laplace

transforms of Oi (t) and p(t) exist, we can derive the transfer function between the extracted

phase and the output of the detector

HLD(S) = P(s) (2.2)Oi (s)
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Figure 2-1: Structure of an LD receiver.

where P(s) and Oi(s) are the Laplace transforms of p(t) and Oi(t) respectively.

From (2.2), the relationship between the power spectrum of Oi(t) and p(t) is

Sp(f) = (27rc) 2f 2 . (2.3)
So, (f)

That is, the power spectrum increases as a quadratic function. This effect, called the

quadratic-shaping effect, degrades the performance of the LD detection when the transmit-

ted signal is corrupted by noise and interference because the out-of-band spectrum increases

largely. Therefore, a post-detection filter is needed to reduce the unwanted spectrum.

2.1.1 Theoretical performance of LD receiver in AWGN

Theory on the error performance of LD detection in AWGN environment has been presented

by Pawula in [26]. This links to an earlier work on click noise theory for analog FM by

Rice [20]. By using results from [28], Simon and Wang have later provided a more exact

calculation in [29]. The following is the summary of the error performance of the LD

detection.

Recall that the complex baseband waveform output of the pre-detection filter is intro-

duced in (1.27)

rip(t) = Aa(t)ej (t) + qlp(t).

We rewrite it as

rip(t) = Aa(t)xF(t)ejA(t) (2.4)



where a complex waveform I(t) is defined by

(t) 1 + (t)e-(t)
Aa(t)

(2.5)

Simplifying the expression of rip(t) in (2.4), we obtain

rip(t) = Aa(t)l(t) ej (t (t) + (t)) (2.6)

where the magnitude and the phase of T(t) are denoted by IW(t)l and 0(t) respectively.

From (2.6), the filtered IF signal is

r(t) = Aa( t) IF(t)j cos(27rfct + pi(t) + 0(t)). (2.7)

The limiter's output has a constant amplitude and is given by

A cos(27rfct + p(t) + 0 (t)). (2.8)

Thus, the demodulated signal, which is a derivative of the phase in (2.8), is equal to

p(t) = Pi'(t) + '(t). (2.9)

Further investigating on 0(t), we find that

= arg {1 + rp(t)e-J1(t) 
}

+ Aa(t)

= arg Aa(t) + ,p(t)e - ji(t)}

= arg {Aa(t) + ,c(t) cos p(t) + rls(t) sin p(t) (2.10)

+ j[ ns(t) cos I(t) - 77c(t)sinp (t) ] }

where we use the notation arg(x) to represent the phase of x.

From (2.10), we can write 0 (t) as the sum of two components

(t) = v(t) + L(t).

V(t)

(2.11)



The first term, v(t), is the principal value of 0(t) defined as

v(t) = arctan( ) mod 2r (2.12)
A a(t) + (t)

where

((t) = 77 (t)cos M(t) - qc(t)sin p(t) (2.13)

X(t) = qc(t) cosp (t) + 7s(t)sin/(t). (2.14)

The second term, Q(t), is a step waveform where each jump is approximately equal to +27.

Note that the range of v(t) is [-7, 7], while 0(t) can take on any values. From (2.11), we

can rewrite (2.9) as

p(t) = A'(t) + v'(t) + P'(t). (2.15)

Continuous noise The noise v(t) in (2.11) is called the continuous noise component of

/(t). Its probability density function (pdf) is given by [26]

p(v) = dx exp[-(x 2 + p(t) - 2x cos(v))], for vi < 7r (2.16)

where p(t) is the CNR after pre-detection filtering defined in Section 1.3.3.

Click noise The term L'(t), which is referred to as 'click noise' in FM literature, is a

sequence of impulse-like spikes. A spike with positive (negative) area is called a positive

(negative) click. A positive (negative) click occurs when A -a(t) + x(t) < 0, and ((t) changes

its sign from positive (negative) to negative (positive) in (2.12). To simplify the calculation,

we define a positive and a negative click in terms of Dirac delta function of area 27 and

-2r respectively. That is, we define

e'(t) = E 2r6(t - t+) - 1 2r6(t - t-) (2.17)

where t + and t- are time instants that positive and negative clicks occur.

Integrate-and-dump filter For the LD detection, the most popular post-detection filter

is an integrate-and-dump filter (I&D), which integrates the demodulated output p(t) over



one symbol period and dumps the result to the decision device. The output of the filter is

w(t) = (2.18)

From eq. (14) and (15) of [26], w(t) can be written as

w(t) = p(t) - p(t - T) + [v(t) - v(t - T)] mod 27r + 2rN(t, t - T) (2.19)

= Ap(t) + Av(t) + 2wN(t, t - T) (2.20)

where we define Ap(t) = p(t) - pt(t - T) and N(t, t - T) be a number of clicks in a time

interval [t - T, t]. The function [v(t) - v(t - T)] mod 27, denoted by Av(t), is a continuous

random variable over [-w, 7r]. At any time instant, the pdf of w(t) for a particular input

sequence is a convolution of the pdf of Av + Apt and the probability mass function (pmf)

of 21rN(t, t - T) as shown in Fig. 3 of [29].

Calculation of error probability Decision rule for the LD detection is the following.

First, w(t) is sampled at time instants which maximize eye opening. We denote the sampled

w(t) by w. If w > 0, the receiver decides that a positive bit is sent. Otherwise, it declares

the output to be a negative bit. Assuming that each bit is equiprobable, we obtain an

average probability of bit error

1 1
Pe = 2 Pr({w < 0}| a positive bit sent) + 2 Pr({w > 0}| a negative bit sent) (2.21)

where the average for both terms is taken over all possible data sequences [30].

For GMSK modulation, it has been suggested that taking an average over 5 input bits

(two bits before and after the target bit) is sufficient for the modulation with BtT > 0.2

[30]. Furthermore,

Pr({w < 0} a positive bit sent) = Pr({w > 0}f a negative bit sent).



Therefore, we simplify (2.21) to

Pe = Pr({w < 0}I a positive bit sent)

= i6ZPr({w < 0} ak).
k

The average is taken over 16 possible 5-bit sequences where each has 1 as the target bit

[30].

From the pdf of w, denoted by fw(wo), it can be shown that, for each ak,

0Pr({w < 0} ak) = f, (wo ak)dwo

= Pr(N = 0) Pr({-ir < Av < -A}Iak)

+ Pr(N = i)
i=1

where Pr(N = i) is the probability mass function of N(t, t - T) [26].

If the CNR is large and a positive bit is sent, the number of negative clicks will dominate

over positive clicks [26]. Thus, positive clicks can be ignored, and the term N(t, t - T) can

be regarded as the number of negative clicks in the time interval [t - T, t]. The number

N(t-T, t) is commonly assumed to be a discrete Poisson random variable with a distribution

(2.22)

1
Pr(N = k) = ~e-Nk, k = 0,1,2,...

where N is the average number of clicks in the interval [t - T, t]. The expression for N is

given in [26]

N = t'(t ) e-p(r)dr.
-- t-T 2Ir

(2.24)

In [30], Simon and Wang apply the result from [28] and suggest that

Pr({-7r < Av < -Ap}lak)
/ exp U-Vsin x-W cos (AP)cosx

Wsin (Ap) /2 exp 1-rcosx x

47r -/2 U - Vsinx - Wcos(Ap)cos dx
[ U-Vsinx+Wcosx

rsin (Ap) 7r/2 exp 1+rcos(A)cos x

+ 47 -r/2 1 + rcos(A)cos d (2.

(2.23)

25)



O Phase Phase

Extraction Unwrap

Figure 2-2: Simulation block diagram of an LD receiver.

where U,V, and W are functions of p(t)

U = (p(t) +p(t - T))

V = (p(t) -p(t - T))

W = p(t)p(t - T)

and r is the normalized noise correlation factor defined by

E[77(t)?(t - T)] F_ -1 {HIF(f) 2}S= 2 (2.26)a 2  a2

77 7

Substituting (2.24) and (2.25) into (2.22) yields

Pr({w < O} Ck) = eN Pr({-r < Av < -A/}lck) + {I - eN}. (2.27)

The bit error probability of the LD detection with I&D is then computed by taking the

average of (2.27) over 16 possible bit sequences.

2.1.2 Simulation model

Figure 2-2 displays a complex baseband simulation block diagram of an LD receiver. A

baseband GMSK signal and an AWGN are first filtered by hr[k], a discrete-time lowpass

equivalent filter of hr(t). The limiter, in the complex baseband representation, fixes the

norm of each received sample to 1. The phase is then extracted from the limited signal

and unwrapped by a simple algorithm described in [17]. It has been shown in [14] that

this phase unwrapping algorithm improves the performance of the LD detector. Finally,

the derivative of the unwrapped phase is taken and passed through the post-detection filter

and the decision device.
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Figure 2-3: Magnitude response of a differentiator.

Phase extraction and phase unwrapping algorithm Phase extraction is done by

using a standard arctan function provided in most simulation programs. The output is a

principal value of the discrete-time phase, denoted by 0[n], where -r < 0[n] < 7r.

We then apply the phase unwrapping algorithm to 0[n]. Described in [17], this algorithm

corrects phase jumps which are greater than r in absolute value by adding or subtracting

2r to 0[n] in the opposite direction to the phase jumps. It first computes the difference

between the successive phase samples: Ao[n] = 0[n] - 0[n - 1]. If JA0[n] > 7r, 0[n] is

unwrapped by

0u[n] = 0[n] - 21r sign(Aq[n]) + 0,,[n - 1] - 0[n - 1]

where ,[n] represents the unwrapped phase. Otherwise, the unwrapping algorithm does

not add a ±27 step:

u [n] = 0[n] + qu[n - 1] - 0[n - 1].
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Figure 2-4: Block diagram of a DD receiver.

Implementation of a differentiator In this study, differentiation is done by taking a

difference between two successive samples. Its transfer function is

Hd(z) = 1 - z - 1

It is implemented by a 2-tap FIR filter with the magnitude response displayed in Figure 2-3.

Another possible implementation is by using an FIR filter designed with the Park-

McClellan algorithm. Example of this filter has been compared to the simple 2-tap differ-

entiator in [14]; it has been found that both provide the same performance. Since the use of

the FIR filter increases computational complexity, we consider only the 2-tap differentiator

in our study.

2.2 Differential Detection

Differential detection (DD) was first introduced as a demodulation technique for PSK [31].

It is later used as an alternative to the LD detection in digital FM. Its performance for MSK

modulation has been compared to that of the LD detector in [29]. In [30], DD detection of

GMSK is investigated [30]. Other studies on DD detection include [25], [31], and [32].

Differential detector first computes a phase difference between the received signal and

its delayed version. The delay amount is usually an integer multiple of T, the symbol

period. In this study, we emphasize on DD detection with one-bit delay discussed in [29]

and [30]. The structure of this receiver is shown in Figure 2-4. Note that the delay branch

is phase-shifted by 7r/2. Phase comparison is usually done by multiplying the two branches.

The output of the DD detector is then filtered by h1p(t) to remove second harmonic terms.



Finally, the slicer makes a symbol-by-symbol decision on the filtered output.

It is interesting to point out that the purpose of the post-detection filter in this receiver

is to eliminate the second harmonic term, not the out-of-band noise as in LD detection.

We will describe the role of hlp(t) for DD receiver in the next section. Furthermore, in

Chapter 3, we confirm this observation by simulating DD receivers with and without htp(t)

and comparing the results.

2.2.1 Theoretical performance of DD receiver in AWGN

From Figure 2-4, the output of the differential detector denoted by p(t) is a product of the

filtered signal r(t) and its one-bit delay version with the 7r/2 shifted phase. By using the

expression for r(t) in (2.7), we obtain

p(t) = Aa(t)jl (t)j cos(27rfct + p(t) + )(t)) x

Aa(t - T)|F'(t - T)j cos(2rfc(t - T) + pL(t - T) + O(t - T) + 7r/2)

= A 2a(t)a(t - T) I(t)T(t - T)I sin(21rfcT + Api(t) + A (t)) (2.28)

where Ap(t) is defined in (2.20) and AV(t) = V(t) - V(t - T). Note that we achieve (2.28)

by applying a trigonometric identity

sin(B) cos(A) = (sin(A + B) - sin(A - B))/2 (2.29)

and ignoring the second harmonic term. Furthermore, it is assumed that fc satisfies the

following property

fcT = k

where k is a positive integer [29]. We can simplify (2.28) to

p(t) = A2a(t)a(t - T) I(t)I I'I(t - T)I sin(Ajp(t) + A (t)). (2.30)

Simon and Wang do not specify the type of post-detection filter in [29]. Their assumption

is that the filter gets rid of the second harmonic term entirely and leaves the detector's

output unchanged. In other words, the output of the receiver denoted by w(t) is exactly

p(t) in (2.30).



Similar to the LD receiver, the DD receiver samples w(t) at maximum eye opening

instants. The decision rule for this receiver is that a positive bit is sent if sin(AP + AO) > 0

and a negative bit otherwise. Using the same method of averaging over 16 possible input

sequences, we obtain the expression for the error probability for the DD detection

Pe = Pr({sin(Ap + AO) < 0}l a positive bit sent)

+ 1 Pr({sin(Ap + AO) > 0}I a negative bit sent)

= Pr({sin(Ap + Ai) < 0}1 a positive bit sent)

= l6 Pr({sin(Ap + AO) < 0}| ak).
k

For each ak, we write O(t) in terms of the continuous and click components

Pr({sin(Ap + AO) < 0}| ak) = Pr({sin(Ap + Av + 27rN(t, t - T)) < 0}O ak)

= Pr({sin(Ap + Av) < 0} OIk)

= Pr({-r < Av < -Apj} ak) +

Pr({r - Ap < Av < }I ak). (2.31)

Comparing the expression of the error probability of the LD detection in (2.27) with that

in (2.31), we notice that the continuous component of (2.27) is identical to the first term

of (2.31). In addition, there is no click noise effect in DD because of the sine function.

However, (2.31) has the second continuous noise component which is not a part of (2.27).

The probability in (2.31) is equal to [29]

W sin (An) fr/ 2 exp [- U-Vsin x-W cos (A)cos x]

Pr({sin(A + A) < 0} Ok) = W sin (Ap) i -rcosx dx
47 -. /2 U- Vsin X - Wcos(AP)cos x

[r exp U-Vsin x+W cos (Ap)cos x

+ sin (A/)/2 1exp 1 +rcos x

+ 4r -7r/2 U - Vsinx + Wcos(A/,)cos

where U,V,W, and r are defined in (2.25). A simpler expression is also given in [29]:

Pr({sin(Ap + AO) < 0}| ak) = a2 2 2 [rexp[-(a - cosO)] dO (2.33)
27r Jo a - , cos 0
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Figure 2-5: Simulation block diagram of a DD receiver.
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Figure 2-6: Equivalent simulation block diagram of a DD receiver.

where

a = (U-rWcosAp)/1-r 2

2.2.2 Simulation model

Simulation block diagram of a DD receiver is shown in Figure 2-5. Similar to the LD

receiver, the complete system is modeled using complex baseband representation. The 7/2

phase shifting in Figure 2-4 is done by taking the complex conjugate of the one-bit delayed

version. The imaginary part of the product gives the exact expression as in (2.30). Since the

baseband representation ignores all second harmonic terms, there is no need to include the

post-detection filter. It is included in Figure 2-5 because we will compare the performance

of the DD receiver with and without h1p(t).

2.2.3 Relationship between DD and LD detection

There is an interesting relationship between the LD detection with I&D and the DD de-

tection. The first technique decides that a positive bit is sent if (Ap + AV) > 0, while

the second checks whether sin (Ay + AV) > 0. Therefore, DD output can be obtained by



applying the sine function to the output of LD with I&D. Figure 2-6 shows the equivalent

block diagram of the DD receiver written in the similar fashion to that of the LD receiver.

2.3 PLL-based Detection

Phase-locked loop (PLL) has been widely used in many communication applications, includ-

ing timing and frequency synchronization, phase extraction, low-power signal reception, and

FM demodulation [5]. In analog FM applications, a PLL receiver outperforms a traditional

receiver based on LD and, therefore, has been extensively used [6, 10]. Studies of the

PLL-based detection of analog and digital FM are given in [4, 5, 6].

2.3.1 Structure of PLL

A PLL consists of three elements: a phase detector, a loop filter, and a voltage-controlled

oscillator (VCO). From Figure 2-7, the phase detector produces an output proportional to

a difference between the input signal's phase and the VCO signal's phase. This output,

called a phase error, is passed through the loop filter whose transfer function is denoted by

F(s). The filtered phase error signal is then applied as a VCO's control input. The VCO

generates a sinusoidal signal whose phase is proportional to the integral of its control input.

To complete the loop, the VCO output is then fed back to the phase detector.

By using the filtered phase error as the input, the VCO changes its frequency in a

direction that reduces the phase error. When the error becomes very small and the frequency

of the VCO is equal to the average frequency of the input, the loop is "in lock" [6]. Thus,

PLL allows the VCO's frequency to track the frequency of the input signal. This frequency

tracking ability is one of the most important features of PLL.

We now describe the concept of PLL mathematically. Adapting notations from [6], we

denote the input signal's phase by i(t) and the VCO output's phase by 0(t). The VCO

output signal, vo(t), is a sinusoidal waveform

vo(t) = - sin(2fict + 0(t))

where fe, a carrier frequency of vo(t), is called the quiescent frequency in [4].
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Figure 2-7: Basic structure of a PLL.

The phase detector is generally implemented using a multiplier. Its output, vd(t), is

vd (t) = C. r(t) . vo(t)

= CAa(t) cos(27rfct + Oi(t)) x - sin(27rfct + 0(t))

= Aa(t)[sin(27r(f, - fe)t + Oi(t) - 0(t)) - sin(27r(fe + fc)t + Oi(t) + 9(t))]
2

= KdAa(t)[sin(27r(f, - fc)t + Oi(t) - 9(t))] (2.34)

where C is a constant of the multiplier, and Kd = ! is called a phase detector gain. In

(2.34), we are interested in the frequency-difference term only and, therefore, ignore the

frequency-sum term. In practice, this is done by using a lowpass filter [6].

In this study, we assume that the phase is always in lock. By setting fc = Ic in (2.34),

we obtain

Vd(t) = KdAa(t) sin(Oi(t) - 0(t)). (2.35)

The loop filter is a linear time-invariant filter implemented by using lumped circuit

elements and operational amplifiers. The transfer function, F(s), is usually a ratio of

polynomials

F(s) = V(s) (2.36)
Vd(S)

ann + + a s + ao(237)
b,sm ... + bis + bo



Oi(t) +

Figure 2-8: Equivalent structure of a PLL.

where V,(s) and Vd(s) represent the Laplace transforms of vc(t) and vd(t) respectively. This

transfer function corresponds to the filter's input-output relation in the form of differential

equation

dmvc(t) dve(t) dnvd(t) dvd(t)bm dtm + + b + bovc(t) = an dn + + a + aovd(t). (2.38)

Shown in Figure 2-7, the output of the loop filter, denoted by v,(t), is fed to the VCO

as a control input. Thus, the relationship between vc(t) and 0(t) is

0(t) = Kov(T)dT (2.39)

where Ko is the VCO gain.

From (2.35), (2.38), and (2.39), we can write an equivalent model of PLL shown in

Figure 2-8. In this model, the phase detection is done by subtracting 0(t) from Oi(t), instead

of multiplying r(t) with vo(t). The VCO is implemented by using an integrator according to

(2.39). Note that the demodulator input, r(t), is not directly used in this model. Instead,

the phase of r(t) is the input, and the amplitude of r(t) appears in Figure 2-8 as an additional

gain factor. In this model, the loop filter remains unchanged.

In summary, we have outlined the basic structure of a PLL and described its main

components. The equivalent block diagram is shown in Figure 2-8. We should emphasize

again that this model is based on the assumption that the loop is in lock. If not, the term

27r(fc - fc)t would not be equal to 0, and we could not use (2.35) to simplify the calculation.



2.3.2 Linearized model

Because of the sine function in (2.35), PLL is a non-linear device. Its analysis in the

presence of noise is, therefore, very difficult. In many applications, a linearized model of

PLL is implemented instead. This model closely approximates the actual PLL when the

phase error, O(t) - 0(t), is small.

Considering the case when the amplitude, A - a(t), is equal to a constant A, and the

phase error is small, we can modify (2.35) to

Vd(t) = KdA (0i(t) - 0(t)) (2.40)

since sin(0) 0, for small 0.

Further assuming that the Laplace transforms of Oi(t), 0(t), v,(t), and vd(t) exist, we

can write (2.39) and (2.40) in terms of their transforms

0(s) = KV(s) (2.41)

Vd(s) = KdA (Oi(s) - b(s)). (2.42)

From (2.36), (2.41), and (2.42), the transfer function between 0(s) and Oi(s) is

0(s) AKF(s)
H(s)= () AKF(s) (2.43)

i(s) s + AKF(s)

where K represents the overall gain defined by

K = KoKd.

This function is known in control theory as the closed-loop transfer function. Later, we will

use it to describe the PLL-based detection.

2.3.3 Second-order PLL

Most characteristics of PLL such as frequency tracking, phase and frequency acquisition,

and loop's stability depend on the loop filter. When F(s) is a constant, the loop is called

a first-order PLL because its closed-loop transfer function has 1 pole. A second-order loop

then corresponds to a PLL with a 2-poles transfer function. Because of its simple design and
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Figure 2-9: Two loop filter implementations for a second-order PLL.

good performance, the second-order PLL is widely used in most applications [6]. Higher-

order loops are more complicated and do not necessarily provide improved performance. In

this study, we consider only the second-order PLL.

The loop filter for the second-order PLL has a general form of

cs + d
F(s) = s + d (2.44)

as + b

Figure 2-9 shows two types of the loop filter: a passive and an active. The passive loop

filter consists only of lumped circuit elements and has the transfer function

sR 2C + 1
Fp(s) = s(RI + R 2)C + 1

On the other hand, an active loop filter requires a high-gain amplifier and lumped elements.

Its transfer function is

sCR2 +1Fa () =
sCRI

where the gain G in Figure 2-9 is assumed to be high.

It is known that a PLL with an active loop filter has better tracking capability than that

with a passive filter [6]. However, a more expensive and complicated circuit is needed. A

PLL with a passive filter is easier to implement and performs fairly well in many applications.

In this study, we consider a passive-filter PLL where the product of the overall loop gain,



K, and the amplitude of the input signal, A, is much greater than 1/R 2C. That is,

1
AK >

R 2 C"

A PLL that satisfies this condition is called a high-gain loop [6].

By substituting Fp(s) into (2.43) and using the high-gain condition, we obtain

AK(sR 2 C+1

H(s) = (RI+R)C (2.45)
2 AKR2C AK

S+ (RI+R 2 )C + (RITR 2 )C

In practice, the second-order PLL is specified in terms of loop parameters instead of circuit

elements. Three loop parameters are the overall loop gain K, a damping factor (, and a

natural frequency wn. Both ( and wn are well-known parameters in second-order systems.

In the context of high-gain PLL, they are related to the lumped circuit elements by

AK
wn (2.46)

n (R1 + R2)C

S= R2C Wn. (2.47)
2

Therefore, the closed-loop transfer function of the high-gain second-order PLL is

2Cwns + w2
H(s)= + n (2.48)

s2 + 2(wns + wn

In Figure 2-10, examples of the closed-loop transfer functions are plotted as a function

of (. The horizontal axis is the frequency, normalized according to 2if /wn. From the

plots, these transfer functions have lowpass characteristics. The lower the ( is, the steeper

the attenuation becomes. Furthermore, every loop response has a peak above 0 dB near

f = wn/27r, and a loop with small ( has a high peak. Following the terminology in second-

order linear systems, we refer to a PLL with ( < 1 as an underdamped loop. In second-order

linear systems, the system is underdamped when the transfer function has complex poles.

This is equivalent to C < 1 in (2.48). More details on second-order linear systems are given

in [18].

We should note that the discussion on transfer functions of second-order PLL assumes

the linearized model. For an actual PLL, the transfer functions do not exist because of the
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Figure 2-10: Closed-loop transfer function of a high-gain second order PLL.

sine function in (2.35). Nevertheless, we use the linearized model in this study to simplify

our analysis. The only exception is in simulation where we implement a non-linear PLL.

2.3.4 PLL demodulator

As mentioned in Section 2.3.1, 9(t) is approximately Oi(t) when the loop is locked. Therefore,

a derivative of 9(t), v,(t), should follow the instantaneous frequency of the input signal.

Consequently, it can be used as a demodulated output of both analog and digital FM.

Detection technique based on phase-locked loop is known as PLL demodulation.

The structure of a PLL demodulator (PLD), shown in Figure 2-11, consists of a limiter

and a PLL. The demodulated signal is taken from the output of the loop filter. We include

the limiter so that the PLL input has a constant amplitude. As a result, the closed-loop

transfer function of the linearized PLL is time-invariant. Without the limiter, H(s) would

be time-varying due to the time-varying gain (see Figure 2-8).

From (2.36), (2.41), and (2.42), we can derive the transfer function of the PLL demod-

ulator:

HPLD(S) P(s) sH(s) (2.49)01(s) = Ko
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Figure 2-11: Structure of a PLL receiver.

where P(s) is the Laplace transform of p(t), Ko is the VCO gain factor, and H(s) is the

closed-loop transfer function in (2.48).

Equation (2.49) provides another interpretation of the PLD detection. Comparing be-

tween HLD(S) in (2.2) and HPLD(S), we can view the PLD detection as the LD detection

followed by an additional filter whose transfer function is proportional to H(s). Because

of its lowpass characteristic, H(s) reduces the quadratic-shaping effect of the differentiator

discussed in Section 2.1. Therefore, the high frequency out-of-band noise does not increase

in the PLD detection as much as in the LD detection.

Figure 2-12 displays the transfer functions of the PLL demodulators compared to HLD (s)

in (2.2). The constant c in HLD(s) and Ko in HPLD(s) are set such that the amplitudes

of both demodulated outputs are equal. The frequency is normalized to the bit rate R.

From the figure, the magnitude responses of the PLDs are higher than that of the LD at

frequency below R because of the peak above 0 dB of the closed-loop transfer functions

in Figure 2-10. At higher frequency, however, the responses of all three PLDs are smaller.

At f = 2.5R, the difference between the responses of the LD and the PLD with ( = 1

and F3dB = R is 10 dB. This reduction in high frequency noise-shaping is the key to the

performance improvement of the PLD detection over the LD detection.

We have mentioned in the previous section that we usually specify the second-order

PLL by K, (, and wn. In this study, instead of w,, we specify the PLL receiver by the

closed-loop 3dB bandwidth, F3dB, defined as a frequency such that

IH(j2rF3dB)12 = 12

We should note that there is no particular reason to choose F3dB parameter over wn. We
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Figure 2-12: Transfer function of a PLD detector compared to a LD detector

use F3dB simply because it reinforces the interpretation of the PLD detection previously

discussed.

Lastly, for the high-gain second-order loop, the expression of F3dB in terms of w" is

given by [6]

F3dB = [2 2 + 1 + (22+ ) 2 + 1] . (2.50)

2.3.5 Simulation model

The complex baseband model of the high-gain second-order PLL receiver is shown in Fig-

ure 2-13. The phase detector is modeled as a complex multiplier. We take the imaginary

part of the product to obtain the sine function of the phase error as described in (2.35). The

received signal's amplitude is fixed because of the limiter. The loop's discrete-time filter

response F(z) is obtained from the passive loop filter, Fp(s), by the bilinear transform

F(z) = Fp(s) 2 (1-z-l)
(1+z

-
1)

The integration in (2.39) is implemented in discrete time by Forward Euler formula [8],

x--x LD
- PLC
- - PLC
- PLC

- P = 0.4 , F3 dB = R
) - = 0.7, F3dB = R

)= 1, F3dB= R

.. " . ."

............... ....... ........
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Figure 2-13: Simulation block diagram of a PLL receiver.

where the input-output (x[n]-y[n]) relation is

y[n] = Atx[n - 1] + y[n - 1]. (2.51)

The parameter At is the sampling period of the discrete-time system. Finally, the expo-

nential function after the integrator generates a complex baseband VCO output which is

fed back to the phase detector.

2.4 Summary

We have described fundamental concepts of the three non-coherent receivers, including their

simulation models. For the DD detection and the LD detection with I&D filter, the error

performance in AWGN environment has been analyzed in [26, 29, 30]. We summarize the

analysis in Section 2.1.1 and Section 2.2.1.

For the PLD detection, we consider only a high-gain second-order PLL. The background

on PLL including the linearized model and the second-order loop is presented. By comparing

HPLD() to HLD(S), we can view the linearized PLD detection as the LD detection combined

with an additional lowpass filter. This property leads to the reduction in spectral-shaping

and, therefore, better error performance.



Chapter 3

PERFORMANCE OF

PLL-BASED GMSK RECEIVER

3.1 Simulation Outline

In Figure 3-1, we illustrate a complex baseband simulation block diagram of GMSK mod-

ulation and demodulation. The modulator generates the noise-free signal stk] from the

random input bit sequence. Each bit is equiprobable and independent from one another.

Decision timing is determined by plotting the eye diagram of the demodulated noise-free

output.

We simulate this communication system in two scenarios. First, we concentrate on

the AWGN environment where the transmitted signal is corrupted by an AWGN. Second,

we concentrate on the interference-limited environment where cochannel interference and

adjacent channel interference are added to the transmitted signal. The output of the pre-

detection filter, demodulator, and the post-detection filter are denoted by r[k], p[k], and

Random GMSK s[ k] Pre-detection Demod- Post-detection
SModulator 

+ Filter ulator Filter

bitsinpr[k] p[k] w[k]

noise + interference

Figure 3-1: Simulation block diagram of GMSK modulation and demodulation.



w[k] respectively.

Before presenting simulation results, we discuss simulation parameters and implemen-

tation of the pre-detection and post-detection filters.

3.1.1 Timing normalization

In this study, simulations are done on discrete-time samples of continuous-time signals

defined as

x[n] = x(nAt)

where At is the sampling period. For simplicity, the sampling frequency denoted by F,

- a reciprocal of At - is normalized to 1. The bit rate and the bit period are denoted

by R and T. A parameter n, = -, which represents the number of samples in one bit

period, is chosen to be an integer. For all simulations, we select n, = 8 to provide accurate

representation of continuous-time systems. In summary, the timing normalization is

R T 8

T= = 8.

3.1.2 Relationship between CNR and Eb/No

For all binary digital transmissions, probability of bit error or bit error rate (BER) is a

common performance criteria. In detection theory, the BER in AWGN environment is

computed as a function of the ratio between the energy per bit, Eb, and the noise power

spectral density, No. Performance comparison between different systems is usually done by

considering the required Eb/No to achieve the certain BER. While the error probability is

defined as a function of Eb/No, simulation results usually display it as a function of CNR.

We now derive the relationship between EbINo and CNR.

From (1.34), the relationship between the CNR before the pre-detection filter, Pr, and

E, is
EsIT

2NoBn



Since Eb = Es for GMSK and all binary CPMs, we obtain

Eb/T Eb/No
Pr = 2NoB - 2TB (3.1)

2NoBn 2TBn

This connection between Eb/No and Pr is necessary for deriving the relationship between

the simulated BER and Eb/No.

3.1.3 Monte Carlo method for calculating BER

The simulation of the BER in this study is based on the Monte Carlo approach where the

BER is estimated by the ratio between the number of errors and the total number of bits

sent. The simulated BER is a random variable whose mean approaches its true value, when

a number of input bits sent is large [8].

The range of BERs of interest is from 10-2 to 10- 4 , with an emphasis at 10- 3 . For

large BERs from 10-2 to 2 .10 - 3 , the number of input bits are set such that 80 - 400 errors

occur. However, only 40 - 60 errors are simulated for lower BERs due to the large number

of bits needed. Assuming that errors are independent, we can show that, by the Gaussian

approximation, simulating 40 errors produces a 95% confidence interval [.73Pe, 1.36Pe] where

Pe is an estimated BER [8]. This means that there is a probability of 0.95 that the true value

of BER falls in this interval. With 400 errors, the 95% confidence interval is [.9Pe, 1.1Pe].

3.1.4 Pre-detection filter

For pre-detection filtering, we choose a family of Gaussian filters described in Section 1.2.2.

Similarly, it has been used in [26, 29, 30]. The impulse and frequency response of the

lowpass equivalent filter are

hr(t) = V Brexp -2(27rBr )2/In 2 (3.2)
ln 2

Hr (f) = exp -In( 2f 2)/B] (3.3)

where Br is the 3dB bandwidth of hr (t). In practice, it is more common to specify a

Gaussian pre-detection filter by its IF 3dB bandwidth, denoted by BIF, where BIF = 2Br.

In this study, hr (t) is implemented as an FIR filter. The discrete-time impulse response

is obtained by sampling hr (t) with the rate F, and then truncating the number of samples
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Figure 3-2: Impulse and frequency response of a 31-tap Gaussian pre-detection filter with

BIF = 1.1R.

to (LT - n, - 1). The integer LT is selected to be large enough such that the truncated

filter still has a Gaussian-shape frequency response. We find that LT = 4 is sufficient for

BIF > 0.5R. A Gaussian filter with BIF = 1.1R and LT = 4 is shown in Figure 3-2. Note

that the number of taps for this filter is 31 because n, is equal to 8.

3.1.5 Post-detection filter

Three different types of lowpass filters are implemented for post-detection filtering: a Gaus-

sian, a rectangular, and an integrate-and-dump.

Gaussian filter This Gaussian filter is implemented similar to the pre-detection filter.

Again, the parameter LT is equal to 4. We represent the lowpass 3dB bandwidth of h1p(t)

by B1,. Two filters used in this study are those with Blp of 0.45R denoted by GAUS45 and

0.7R denoted by GAUS70. Figure 3-3 displays a 31-tap GAUS70 filter.

Rectangular (REC) filter We design an FIR rectangular filter using the Parks-McClellan

algorithm. The peak error is chosen to be less than 10- 3 in both passband and stopband.
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Figure 3-3: Impulse and frequency response of a 31-tap Gaussian filter with Blp = 0.7R
(GAUS70).

The stopband attenuation is approximately 60 dB. We select the transition band to be

between 0.2R and 0.8R. The filter length is 6ns + 1 which results in a group delay of 3n,

samples. Figure 3-4 shows the impulse and frequency response of a 49-tap rectangular filter.

Integrate-and-dump (I&D) filter Integrate-and-dump filter is used extensively in the

LD detection because of its simple design and good performance. The impulse response of

the I&D filter is

1, O<t<T
hI&D(t) =

0, otherwise

where the amplitude is scaled so that the magnitude response at DC is 1. The discrete-time

I&D filter is obtained by sampling hI&D(t). Figure 3-5 displays an impulse and frequency

response of the I&D filter.

Magnitude responses of post-detection filters Magnitude responses of the four filters

are shown in Figure 3-6. The frequency is normalized as suggested in section 3.1.1. From

Figure 3-6, the REC filter has the sharpest transition while the GAUS70 has the flattest.
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Figure 3-7: Magnitude responses of GAUS45, GAUS70, REC, and I&D filters in a finer
scale.



The magnitude response of the GAUS45 filter lies between the two curves. The I&D filter

has nulls at integer multiples of the symbol rate R.

Finally, Figure 3-6 is displayed in a finer scale in Figure 3-7. The responses of I&D and

GAUS45 are the same until f is approximately 0.0625 (0.5R). As a result, the 3dB band-

widths of the two filters are almost identical. The REC filter has the smallest bandwidth

while the GAUS70 has the largest.

3.2 Illustration of Non-coherent GMSK Demodulation

We now present examples of GMSK demodulation using the three non-coherent methods.

For simplicity, we assume that the received signal is noise-free. Two post-detection filters

considered are GAUS70 (Figure 3-3) and REC (Figure 3-4). A sequence of random input

bits with equally likely probability is displayed in the top part of Figure 3-8. The phase

waveforms before and after the Gaussian pre-detection filter are shown in the bottom of

Figure 3-8. From the figure, 0[k] increases by roughly ir/2 when the input bit is positive

and decreases by the same amount when the input bit is negative. In addition, 0[k] differs

from p[k] only when the input bit reverses its sign. The difference between O[k] and P[k] at

other time is very small.

For the LD receiver, the output of the discriminator, p[k] - [k - 1], and the post-

detection filtered outputs are displayed in the top and bottom part of Figure 3-9. Similar

plots are shown in Figure 3-10 for the DD receiver. Outputs of three PLL receivers are

displayed in Figure 3-11, 3-12, and 3-13.

The demodulated waveforms of all three PLL receivers display overshoots which do

not occur in the outputs of the LD and DD receivers. Furthermore, the output of the

PLL receiver with ( = 0.4 oscillates before it reaches a steady-state. We note that both

overshoots and ringings are common characteristics of second-order linear systems. Because

the PLL receiver is a non-linear system which can be approximated by a linear system, we

therefore observe these characteristics in the demodulated outputs.

3.3 Performance in AWGN

We are interested in the comparative performance of the PLD detection versus the LD and

DD detection in AWGN environment. To simplify the problem, the 31-tap FIR Gaussian
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Figure 3-10: Output of a DD receiver.

Output of the PLL with C = .4 and FdB = 1.2R

20 40 60 80 100 120 140 160 180 200

Output after post-detection filters

I I I I I I I\. .. ................ .. r~ ...'ECn-ll~

........ .... ...... .....

60 80 100 120 140 160 180 200
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Figure 3-12: Output of a PLL receiver (( = 0.7 and F3dB = R).
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filter with BIF = 1.1R (Figure 3-2) is chosen for pre-detection filtering. This particular

choice of BIF is known to be the optimal value for differential detection of GMSK with

BtT = 0.5 at Pe = 10-3 [30]. Furthermore, a typical noise bandwidth of this filter is on

the same order as that of a surface acoustic wave (SAW) filter used in DECT receivers.

Our goal is to find a set of PLL receivers that perform better than the DD receiver, given

the best condition for the latter. Also, we note that the optimal value of BIF for the LD

detection is not presented in literature.

It is true that this particular choice of pre-detection filter is unlikely to be the optimal

pre-detection filter for PLL detection. In fact, the optimal pre-detection filter may depend

on PLL parameters, post-detection filter, and error probability level. Given the number of

parameters involved, the task of finding the optimal receiver by simulation is formidable.

Therefore, we proceed by selecting BIF to the value typical in practice.

We start by first simulating error probabilities of the LD and DD receivers and confirm

our results with those from [26], [29], and [30]. PLL receivers with various values of ( and

F3dB are then simulated. For post-detection, we consider GAUS70, GAUS45, and REC

filters. Unless specified otherwise, we compare all error performances at Pe = 10-3, which

is the target BER for DECT receiver [19].

3.3.1 LD receiver

The performance of LD detection with several post-detection filters is shown in Figure 3-

14. The theoretical result, displayed in the solid line, is obtained from (2.27) by evaluating

(2.24) and (2.25) numerically. The simulated BER of the LD detector with I&D agrees well

with the theoretical result. The LD detector with REC performs the same as the LD with

I&D at low Eb/No, while the LD with GAUS45 performs slightly worse. At Pe = 2 10- 3 ,

the receiver with GAUS70 performs worse than the LD with I&D by 1.3 dB. This is due

to a slow roll-off of the GAUS70 filter illustrated in Figure 3-6. Lastly, we note that the

detection without post-detection filtering results in a 3 dB loss relative to the theoretical

performance of the receiver with I&D. We do not include its plot in the figure.

3.3.2 DD receiver

Figure 3-15 shows the performance of DD receivers with various post-detection filters. The

simulated BERs of the DD with GAUS45, GAUS70, REC, and no post-detection filter
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Figure 3-14: Performance of LD receivers in AWGN environment.

(NONE) are compared to that obtained from evaluating (2.32). The performance of the

DD with NONE and GAUS70 is close to the theoretical result. The performance loss of the

receiver with GAUS45 is 1 dB, while the loss of that with REC is 2 dB.

This result agrees with our observation in Section 2.2. The role of post-detection filter

in differential detection is to get rid of the second harmonic term. In complex baseband

representation, this term is zero. Therefore, inserting an extra filter at the output introduces

more ISI. The receivers with narrow-bandwidth filters, thus, do not perform as well as those

with broader filters or without any filter. Because of its sharpest attenuation, the REC filter

gives the worst performance.

3.3.3 PLL receiver

For each post-detection filter, PLL receivers with ( from 0.4 to 2 and F3dB from 0.6R

to 1.2R are simulated at Eb/No = 11 dB. We then select those receivers of interest and

simulate their error probabilities for the whole range of Eb/No. The results are described

in this section.
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Figure 3-15: Performance of DD receivers in AWGN environment.

* Receiver with GAUS70 filter The performance of PLL receivers with GAUS70

is shown in Figure 3-16. Compared to the theoretical result of differential detection in

Figure 3-15, these PLL receivers perform worse. The best performance (in ,'s), obtained

with ( = 1 and F3dB = 0.6R, is still worse than that of the DD detection by roughly 0.5 dB.

Again, the poor performance of these receivers is a result of the slow roll-off characteristic

of GAUS70. Recall that the LD receiver with GAUS70 also performs worse than that

with I&D by 1.3 dB. This finding suggests the use of post-detection filter with a narrower

bandwidth.

* Receiver with GAUS45 filter The performance of PLL receivers with GAUS45 is

simulated and plotted in Figure 3-17. Both receivers with ( = 0.7, F3dB = R and ( = 1,

F3dB = R perform better than the DD receiver by 0.3 dB. It is interesting that as GAUS70

is replaced by GAUS45, the improvement in performance of each receiver is different. The

PLL receiver with ( = 0.7 and F3dB = R gains 1.5 dB, while the PLL with 4 = 1 and

F3dB = R gains 0.9 dB.
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Figure 3-18: Performance of PLL receivers with REC in AWGN environment.

* Receiver with REC filter Figure 3-18 displays the performance of PLL receivers

with the rectangular (REC) post-detection filter. At low Eb/No, the BERs are roughly

the same for all four receivers. The difference becomes noticeable when Eb/No > 10 dB.

The best result requiring Eb/No of 11.7 dB at Pe = 10-3 is observed with ( = 0.4 and

F3dB = 1.2R. Its gain over the LD with I&D and the DD receivers is 1.2 dB. The receiver

with ( = 0.7 and F3dB = R is better than both the LD and DD receivers by 0.7 dB. The

receiver with C = 1 and F3dB = R performs slightly better, while the last receiver with

= 1 and F3dB = 0.8R performs worse by 0.5 dB.

From Figure 3-16 to 3-18, the error performance of the PLL receivers depends on post-

detection filtering. The performance of the receivers with the same PLL parameters changes

when a different post-detection filter is used. For example, the improvement of 1 dB at

Pe = 2 - 10- 3 is achieved when we replace the GAUS45 filter with the REC filter in the

receiver with C = 0.7 and F3dB = R. In the next section, we study the effects of ( and

F3dB on the error performance of PLL receivers with both Gaussian and rectangular post-

detection filters.
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Effects of ( and F3dB on PLL detection In this study, error probabilities of receivers

with the same F3dB are simulated for different ( at Eb/No = 11 dB, and vice versa. Due

to the poor performance of the PLL receivers with GAUS70, only those with GAUS45 and

REC are considered.

* Receiver with GAUS45 In Figure 3-19, the error probabilities of the PLL receivers

are plotted as a function of (. Three loop bandwidths are chosen: 0.8R (*'s), R (+'s), and

1.2R (o's). From the figure, all receivers with ( = 0.4 perform poorly. For each F3dB, the

error probabilities of receivers also fluctuate when ( < 1. The difference in performance,

however, reduces as we increase (. The performances at ( = 2 are almost identical for all

three values of F3dB.

Furthermore, we note that the optimal value of ( differs for each F3dB. While ( = 1 is

best for the receivers with F3dB = R, the best performance for the receiver with F3dB = 0.8R

is obtained when ( = 0.6. For F3dB = 1.2R, the receiver with ( = 2 provides the minimum

error probability.

We now investigate the effects of F3dB on the error performance. Shown in Figure 3-20

as a function of normalized F3dBT, the performances of receivers with ( = 2 are the same

for all values of F3dB. In addition, all receivers with small ( and F3dB > R perform poorly.

The best performance for the PLL detection with GAUS45 is obtained with I = 1 and

F3dB = R.

* Receiver with REC In Figure 3-21, the effects of C on PLL receivers with REC

are displayed in the same fashion as Figure 3-19. Similar to the GAUS45 case, we observe

a fluctuation of BERs for each F3dB at low (. However, unlike the receiver with GAUS45,

the receivers with low ( perform well, especially when F3dB > R. In fact, the best result is

obtained with ( = 0.4 and F3dB = 1.2R.

In Figure 3-22, the effects of F3dB are somewhat opposite from the GAUS45 case. The

receivers with F3dB = 1.2R perform better than those with F3dB of 0.8R. Those with

F3dB = 0.8R perform poorly for all values of C. Also, it is interesting that the performances

at F3dB = 1.2R are in order, from the receiver with the smallest ( to the largest (. However,

the opposite result holds for the receivers with GAUS45.
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Result analysis From the results, the simulated BERs of the PLL receivers depend

strongly on ( and F3dB. In general, the effects of ( and F3dB on the performance vary,

depending on post-detection filters. However, there are also some similarities. We explain

these similarities using the linearized PLL model.

First, Figure 3-19 and 3-21 show that the BERs of the receivers with GAUS45 and REC

fluctuate as a function of (, when ( < 1. This is because of the underdamping characteristics

of the PLL. From Figure 2-12, the transfer function HPLD(S) of an underdamped PLL has

a very high peak, and its magnitude response varies significantly as a function of (. Since

the characteristics of the demodulated output depend on the shape of this transfer function,

the error probability of the receiver with ( < 1, therefore, fluctuates as we change (.

Second, for the receivers with ( > 1, there is only a small difference in the BERs

for distinct values of F3dB. For example, the BER curves of the receiver with ( = 2 in

Figure 3-20 and 3-22 are relatively flat and independent of F3dB. This is because, when

( > 1 and F3dB is between 0.6R and 1.2R, HPLD() are almost the same for f below R.

After combining with a narrow-band post-detection filter such as GAUS45 or REC, the

performance of the PLL receivers with ( > 1 is, therefore, less dependent on F3dB.

Summary We simulate error probabilities of PLL receivers in AWGN environment with

different ( and F3dB for three post-detection filters: GAUS45, GAUS70, and REC. The

PLL receivers with GAUS70 perform poorly, while the receivers with GAUS45 perform

slightly better than the LD and DD receivers. Using the rectangular filter (Figure 3-4), the

PLL receivers provide the best performance. The best result obtained with C = 0.4 and

F3dB = 1.2R is better than that of the LD and DD receivers by 1.2 dB.

We then study the effects of ( and F3dB on the error performance of PLD detection

with GAUS45 and REC. From Figure 3-19 - 3-22, we conclude that the simulated BERs

depend strongly on ( and F3dB, and the effects of ( and F3dB on the PLD detection with

different post-detection filtering vary. Choosing the right combination of ( and F3dB for each

particular post-detection filter is, therefore, crucial to achieve a good error performance.



3.4 Performance in Interference-limited Environments

3.4.1 Cochannel and adjacent channel interference

Up to this point, we have assumed that AWGN is the only source of channel's degradation.

In reality, however, communication systems also operate in the presence of other interference

sources. The interferer can be another type of signal sharing the same spectrum, or the

same type coming from other users. In cellular systems, interference is a consequence of

the frequency reuse concept where the same channel is reused in non-neighboring cells.

Another example is Cellular Digital Packet Data (CDPD) system which shares spectrum

with Advanced Mobile Phone System (AMPS).

There are two types of interferences. Cochannel interference (CCI) represents an in-

terference which resides in the same channel as the desired signal, while adjacent channel

interference (ACI) corresponds to an interference occupying nearby channels. General ex-

pression of the received signal in the presence of interference and AWGN is

m I

r(t) = Acos(2rfct + 0(t) + Oo + sci(t)+ 1SA (t) + (t) (3.4)
i=1 j=1

where sc (t) and SA, (t) are CCI and ACI interfering signals. When all interferers are CPM

signals, we obtain

m

r(t) = Acos((2ft t) ) c(2r(fc + Afi)(t - Ti) + i(t - T) + i)+n(t) (3.5)
i=1

in which we denote the amplitude and the phase shift of each interference by Ti and 0i

respectively. The ratio of the signal power and the interference power is called the carrier-

to-interference ratio (CIR). The phase of the interference, i (t), is defined similarly to 0(t) in

(1.5). The terms Ti and Afi represent a time delay and a difference in the carrier frequency

between the ith interferer and the desired signal. In CCI, Afi is equal to 0.

Performance of non-coherent CPM receivers in the presence of ACI and CCI is discussed

in [34, 35, 36]. LD detection of GMSK with no fading has been analyzed in the context of

spectral efficiency in [34]. Wickert and Jacobsmeyer have investigated the performance of

GMSK receiver based on LD in flat fading Rayleigh channel [35]. In [36], Korn has studied

error probability of partial-response CPM with the LD and DD detection in frequency-



selective Rayleigh fading channel and has found that, at high CNR (above 20 dB), the LD

detector performs better than both the one-bit and two-bit DD detectors in the presence

of CCI. However, we note that all three studies are done without post-detection filtering.

Therefore, their results can not be directly compared to ours.

3.4.2 Simulation results

We investigate, in this study, the performance of PLL receivers in the presence of only one

interferer. The simulations are done within the DECT framework. Both the desired and

the interfering signal employ GMSK modulation with BtT = 0.5. The two input sequences

are independent from each other, and each bit is equiprobable. The interference phase shift

02 is uniformly distributed in [-ir, r], while the delay ri is between [0, T]. In addition, Af

in ACI simulations is set to 1.5R - a frequency spacing of DECT.

All simulations are done on static channels with no multipath fading. An AWGN with

CNR = 20 dB is included; this is the ratio measured after the pre-detection filter. In the

DECT standard, the required CIR to achieve Pe = 10- 3 in a single channel, corrupted by

AWGN with CNR = 20 dB, must be less than 9 dB [191. That is, the ratio between the

signal and the cochannel interference power to achieve Pe = 10-3 is less than 9 dB.

Three PLL receivers considered in this study are

PLL1 ( = 0. 4 , F3dB = 1.2R

PLL2 ( = 0.7, F3dB= R

PLL3 = 1, F3dB = R.

These are the receivers which perform well in AWGN. Pre-detection filter is the Gaussian

filter with BIF = 1.1R. Post-detection filters are GAUS45, GAUS70, and REC. The LD

receiver with I&D and the DD receiver with NONE are also simulated.

CCI The comparative performance of LD, DD, and PLL receivers as a function of CIR is

shown in Figure 3-23. The best performance is by the PLL3 with GAUS45 requiring CIR

= 7.5 dB at Pe = 10-3. The PLL1 with REC comes next, followed by the LD and DD

receivers. The LD with I&D requires 8 dB, while the DD with NONE and the PLL2 with

GAUS45 require roughly 8.2 dB.

Figure 3-24 to 3-26 illustrate the performance of each demodulator with different post-
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Figure 3-23: Performance in CCI environment.

the same, with the latter being worse at high CIRs. The LD receiver with REC, however,

performs poorly. Note that the three receivers perform roughly the same in AWGN. In the

DECT context, both the LD with I&D and GAUS45 satisfy the requirement previously

mentioned.

For DD, only the DD with NONE satisfies the criteria. Despite similar performance

in AWGN, the DD with GAUS70 performs worse than the DD with NONE by 1 dB in

this test. Furthermore, all the DD receivers with narrow-bandwidth filters perform poorly

similar to the AWGN case.

For the PLL2 and PLL3, the GAUS45 post-detection filter provides the best results,

while the PLL1 requires the REC filter. All receivers with GAUS70 perform poorly; there-

fore, their results are not included. Note that the gap in performance between the receivers

with GAUS45 and REC depends on the PLL parameters. The gap is 1 dB for PLL2 and 2

dB for PLL3.

In summary, both the PLL3 (( = 1, F3dB = R) with GAUS45 and PLL1 (( = 0.4, F3dB -

1.2R) with REC provide improved performance over all LD and DD receivers. Six receivers
1.2R) with REC provide improved performance over all LD and DD receivers. Six receivers
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Figure 3-24: Performance of LD and DD receivers in CCI environment.

which satisfy the DECT requirement are PLL1 with REC, PLL2 with GAUS45, PLL3 with

GAUS45, LD with I&D, LD with GAUS45, and DD with NONE. In the ACI study, we

emphasize on these receivers.

ACI The comparative performance of the six receivers is shown in Figure 3-27 as a func-

tion of CIR. The best performance is by the PLL3 with GAUS45, requiring CNR = 5 dB

at Pe = 10-3. The PLL2 with GAUS45 achieves the same performance at high CNR. The

PLL1 with REC performs better than the LD with GAUS45 when CIR > 5 dB. Both the

DD with NONE and the LD with I&D perform worse than the PLL3 with GAUS45 by 6

dB.

The drastic difference in performance between the LD with I&D and the LD with

GAUS45 can be explained by spectral characteristics of the receivers. When the desired

signal is corrupted by ACI, its spectral density increases at frequencies near Af. This

increase also occurs in the spectrum of the phase, although the exact expression is not

known. In the LD detection, the high frequency spectrum of the phase is boosted by the

discriminator. To achieve a good performance, the post-detection filter must attenuate the

unwanted spectrum as much as possible. By looking at the magnitude response of the I&D
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Table 3.1: Comparative performance of LD, DD, and PLL receivers in AWGN, CCI, and
ACI tests.

comparison, we use the theoretical BER of the LD with I&D in the AWGN test and the

simulated BERs in the CCI and ACI tests.

From the table, the PLL receivers outperform LD and DD receivers in all cases except

one (the PLL2 with GAUS45 in CCI test). The main improvement is in the ACI test where

the PLL receivers outperform both the DD and LD with I&D receivers by 5-6 dB. The

PLL3 with GAUS45 provides the best performance in both CCI and ACI tests, while the

PLL1 with REC performs best in AWGN.

Therefore, both the PLL1 with REC and the PLL3 with GAUS45 are more attractive

candidates for DECT receiver than the traditional LD and DD.

Advantages of PLL receivers We conclude this chapter by summarizing two advantages

of using the PLL receiver for GMSK demodulation over the LD and DD receivers.

The first advantage is the improved performance of the PLL receiver - especially in the

presence of ACI. In mobile radio applications, this leads to a larger cell coverage and power

savings. Furthermore, its great performance in the ACI environment provides a possible

relaxation of filtering requirements in a receiver front-end.

Secondly, the PLL receiver provides more flexibility to accommodate different operating

conditions. By adjusting the loop parameters, one can obtain a good performance for any

particular scenario. In practice, reconfiguration of these loop parameters is done easily by

changing passive circuit elements of the loop filter. The PLD detection technique, therefore,

provides two additional parameters for optimization, while the LD and DD detection do

not have this option.

Receiver AWGN CCI ACI

PLL1 (( = 0. 4 , F3dB = 1.2R) with REC 1.19 0.2 5.29
PLL2 (( = 0. 7 , F3dB = R) with GAUS45 0.32 -0.15 6.0
PLL3 ( = 1, F3dB = R) with GAUS45 0.31 0.52 6.1
DD with NONE -0.08 -0.23 0
LD with I&D
LD with GAUS45 -0.5 -0.26 4.52



Chapter 4

CONCLUSIONS

We have investigated the performance of PLL receiver for GMSK modulation in AWGN

and interference-limited environments. From the simulation results, we have observed that

the receiver's error performance depends strongly on both the PLL parameters and the

post-detection filter. In AWGN environment, the PLL receivers, using the rectangular filter

(Figure 3-4), perform well; the largest gain over the theoretical performance of LD and DD

detection is 1.2 dB. On the other hand, the performance using the Gaussian post-detection

filter (Blp = 0.45R) is best in the interference-limited environment. The performance

improvement in ACI environment compared to the DD receiver and the LD receiver with

an integrate-and-dump filter is up to 6 dB.

In mobile radio communications, this improvement could lead to a larger cell design

and the power saving of the mobile unit. The implementation costs could, therefore, be

reduced. Furthermore, easy reconfiguration of the PLL receiver provides flexibility in dif-

ferent operating conditions. These advantages make the PLL receiver a good candidate for

GMSK demodulation in mobile radio applications.

Future works Possible extensions of the work presented in this thesis span different areas.

First, the effect of the pre-detection filter should be investigated to address practical issues

of receiver implementation. We are interested in performance comparison between receivers

using different pre-detection filters, for example, the Gaussian filters with various BIF and

the SAW filter. Moreover, we suggest that the test should be done on several post-detection

filters, including the Gaussian and rectangular filters.

Second, transient behaviors of the receiver should be studied. In this thesis, we have



assumed that the loop is always in lock, and therefore equation (2.34) can be reduced to

(2.35). In practice, however, the PLL can only be locked in limited conditions, due to its

non-ideal components. For example, the VCO has a maximum input limit, and the phase

detector is only linear in a certain region [6]. The PLL receiver, therefore, requires some

time to track the transmitted carrier frequency. Backgrounds on transient responses, linear,

and non-linear tracking are given in [4] and [6].

Third, the performance in multipath fading channel should be studied. For mobile radio

communications, Rayleigh fading channel is generally assumed. Although the analysis of

the error performance is complicated, its simulation could be done by extending from our

setup to include time-dispersion and amplitude fading.

Lastly, the results should be verified by empirical studies. In the DECT framework,

Analog Devices has produced a transceiver, AD6411, based on the PLD detection. The

damping and the loop bandwidth parameters can be adjusted easily because the loop filter

is implemented externally by simple lumped circuits. It is interesting to see the comparison

between the simulation and the experimental results. Furthermore, the experimental results

of the PLL receivers could be compared with those of the LD or DD receivers. For example,

Tjhung et al. conducted an experiment on the LD detection of CPFSK signals in Rayleigh

fading channel [37].
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