379 research outputs found

    A uniformization-based algorithm for model checking the CSL until operator on labeled queueing networks

    Get PDF
    We present a model checking procedure for the CSL until operator on the CTMCs that underlie Jackson queueing networks. The key issue lies in the fact that the underlying CTMC is infinite in as many dimension as there are queues in the JQN. We need to compute the transient state probabilities for all goal states and for all possible starting states. However, for these transient probabilities no computational procedures are readily available. The contribution of this paper is the proposal of a new uniformization-based approach to compute the transient state probabilities. Furthermore, we show how the highly structured state space of JQNs allows us to compute the possible infinite satisfaction set for until formulas. A case study on an e-business site shows the feasibility of our approach

    Formal analysis techniques for gossiping protocols

    Get PDF
    We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    STAMINA: Stochastic Approximate Model-Checker for Infinite-State Analysis

    Get PDF
    Reliable operation of every day use computing system, from simple coffee machines to complex flight controller system in an aircraft, is necessary to save time, money, and in some cases lives. System testing can check for the presence of unwanted execution but cannot guarantee the absence of such. Probabilistic model checking techniques have demonstrated significant potential in verifying performance and reliability of various systems whose execution are defined with likelihood. However, its inability to scale limits its applicability in practice. This thesis presents a new model checker, STAMINA, with efficient and scalable model truncation for probabilistic verification. STAMINA uses a novel model reduction technique generating a finite state representations of large systems that are amenable to existing probabilistic model checking techniques. The proposed method is evaluated on several benchmark examples. Comparisons with another state-of-art tool demonstrates both accuracy and efficiency of the presented method

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    Learning deterministic probabilistic automata from a model checking perspective

    Get PDF
    Probabilistic automata models play an important role in the formal design and analysis of hard- and software systems. In this area of applications, one is often interested in formal model-checking procedures for verifying critical system properties. Since adequate system models are often difficult to design manually, we are interested in learning models from observed system behaviors. To this end we adopt techniques for learning finite probabilistic automata, notably the Alergia algorithm. In this paper we show how to extend the basic algorithm to also learn automata models for both reactive and timed systems. A key question of our investigation is to what extent one can expect a learned model to be a good approximation for the kind of probabilistic properties one wants to verify by model checking. We establish theoretical convergence properties for the learning algorithm as well as for probability estimates of system properties expressed in linear time temporal logic and linear continuous stochastic logic. We empirically compare the learning algorithm with statistical model checking and demonstrate the feasibility of the approach for practical system verification
    corecore