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Abstract

CSLTA is a stochastic temporal logic for continuous-time Markov chains (CTMCs), which includes the more known
CSL. CSLTA properties are defined through single-clock Deterministic Timed Automata (DTAs). The model checking
of CSLTA amounts, in the worst-case, to the computation of the steady-state probability of a non-ergodic Markov
Regenerative Process (MRgP) in the size of |CTMC|×|DTA|. Various MRgP solution techniques are available in
the literature, and we shall use the Component Method, that computes the steady state distribution of a non-ergodic
MRgP by recognizing that, in a MRgP, certain components may actually be solved at a lower cost (same cost as
that of a CTMC solution). Unfortunately the technique still requires the construction of the whole MRgP. This
paper applies the Component Method to devise various CSLTA model checking algorithms, forward and backward.
The Component Method can be applied to the MRgP constructed from the CTMC and the DTA, which is a rather
straightforward application of the method, or to the MRgP constructed from the CTMC and the region graph of the
DTA, a construction that accounts for timed reachability in the DTA and that allows, in most cases, a significant
reduction in the considered MRgP states. In both cases the whole MRgP is built. The primary result of this paper is
instead to devise a model-checking algorithm in which the component identification is based only on the region graph
of the DTA. The MRgP components are generated “on-the-fly”, when needed, starting from the components of the
region graph; they are then solved with the cheapest available solution method. Once a component has been solved it
is discarded, therefore the whole MRgP is never constructed nor solved. The on-the-fly algorithm is “adaptive”: the
time and space depend on the formula, and, when the DTA actually expresses a CSL property, the algorithm reduces,
seaming-less, to that of standard CSL model checking algorithms.

Keywords: Stochastic Model Checking, stochastic model checking tools, CSLTA, stochastic logic, Markov
Regenerative Process (MRgP), MRgP component method, path properties, timed automata, Flexible Manufacturing
Systems, CLUE protocol.

1. Introduction

Model-checking of Markov chains is an answer to two different needs in performance evaluation: to gain con-
fidence that we are modelling the right behaviour, and to be able to express and compute performance indices for a
subset of model behaviours. In this context “behaviours” are model executions expressed in terms of state sequences
and/or event properties. If we consider a simple model of a manufacturing system with two machines, an example of
the first type is to check whether it is true that a manufactured piece may experience a breakdown in both machines
and still be delivered as a completed piece, while an example of the second type is to compute the probability that a
piece will face a breakdown in both machines and still be completed before time T . Temporal logics like CTL [1]
and LTL [2] provide a language to express properties about model executions, while stochastic logics like CSL [3]
allows to express assertions about the probability of timed executions when the model is a Continuous Time Markov
Chain (CTMC). In a performance evaluation context a stochastic logic like CSL can be used to provide also qualitative
answers, when the check of the presence of certain model executions is reduced to the assessment of a probability
greater than zero for those executions.
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In CSL model executions model execution requirements – reviewer1 (typically called “paths”) are specified by
two operators: timed neXt and timed Until. From a computational point of view the model checking of a CSL property
for a CTMCM requires to solve one or more CTMCsMi derived fromM by making certain states absorbing. The
solution is the computation of the probability distribution of the states at a specific time instant t, or in steady state,
depending on the formula. CSL has been extended in several ways that include action names (name of the events in
paths) and path properties specified using regular expressions leading to asCSL [4], or rewards, leading to CSRL [5].
Note that asCSL can specify rather complex path behaviour, but this complexity cannot involve the timed behaviour.
GCSRL [6] is an extension of CSRL to model check CTMC generated from Generalized Stochastic Petri nets (GSPN)
[7] taking into account both stochastic and immediate events. CSL model checking is included in the tool Prism [8]
that has a widespread acceptance in the research community, and that has found interest and application in several
industrial contexts. CSL can be verified using MRMC [9], a successor of the tool E`MC2 [10]. Reward measures
associated to paths can be computed in the recently released tool Storm [11], in the tool Marcie [12] as well as in
Prism. In all cases the model checking of a formula is reduced to the solution (in transient or steady-state) of a set of
CTMCs.

The logic CSLTA [13] is an extension of CSL to include more complex requirements on timed paths, that are
specified through a single clock Deterministic Timed Automaton (DTA). The use of a DTA in CSLTA allows to specify
paths in terms of state propositions and action names associated with the state changes of the CTMC, but, in contrast to
the various forms of CSL listed above, also the timed behaviour of portions of the paths can be specified. For example
a CSLTA path property could specify that an action a should happen before time t1, followed by an action b happening
before time t2 (either absolute or relative to the time of event a). In CSL we can only specify that action a should
happen before time t1 and in asCSL we can specify that action a should happen before action b and that b should
happen before time t. CSLTA model checking is included in the MC4CSLTA tool [14] and was part of the CoDeMoC
tool [15], which is currently not available. Statistical model checking (model checking through simulation) of CSLTA

is provided by the tool Cosmos [16].
It was shown in [13] that model checking of CSLTA can be reduced to the computation of the absorption probability

of a Markov Regenerative Process (MRgP) with absorbing states, in particular to the computation of the absorption
probability of the accepting state >. If nesting of the CSLTA operators is allowed the cost is that of the solution of one
MRgP per DTA included in the formula. Since a MRgP solution technique is in general much more expensive than
a CTMC one, it is clear that the increased power of CSLTA over CSL comes at a price. The objective of this paper is
to devise a set of CSLTA model checking algorithms that are efficient and adaptive to the formula: formulas that are
also expressible in CSL should only require CTMC solutions, while formulas that have no equivalents in CSL should
be treated in an efficient way by adapting the cost of the solution to the “complexity” of the formula. The proposed
solution is based on the Component Method for non-ergodic MRgP solution given in [17].

1.1. Paper contribution
Figure 1 summarizes the different algorithms for model checking a CSLTA formula specified by a DTA A, for

a Markov chain M. The 12 algorithms are listed on the right of Figure 1. They are split in two main categorizes:
the algorithms that use a forward approach, to determine if a given state satisfies a formula, and the ones that use a
backward approach, to compute the states that, when considered as initial CTMC state, satisfy the formula. Another
distinction is based on the applied solution approach: whether the whole MRP is solved as a single monolithic process
(Full approach) or using a component-based solution (Comp approach). We also distinguish whether the MRgP is
generated by using theM×A construction defined in the original CSLTA paper [13] or theM×Z one, where Z , for
the time being, can be thought of as the region graph of the timed automaton A. This difference is indicated by the
presence of a superscript A or Z . The 4 algorithms on the two bottom rows of the table are based on the “on-the-fly”
approach discussed above. All of them are built starting from Z , so the superscript is omitted. All algorithms have
been implemented in the MC4CSLTA [14] tool and will be experimentally compared in Section 7.

We can summarize the paper contribution by following Figure 1. The top flow represents the model checking as
defined in the original paper [13]: the synchronized processM×A combines exponential transitions from the CTMC
M and fixed duration transitions from the DTA A, resulting in a MRgP R, which is then solved with a forward or
backward approach, leading to FullAfwd and FullAbwd. In both cases the major limitation lies in in the steady-state solution
ofR to compute the probability of the accepting > state. SinceR has absorbing states, we can apply the Component
Method defined in [17]: R is decomposed into multiple, smaller components {Ri} coupled with a precedence relation
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that identifies a directed acyclic graph (DAG) of components. This process enjoys the advantage of solving smaller
components, which is easier than solving a single large instance since solution complexity is non-linear, and, more
importantly, it has been observed that for certain component types the solution reduces to a transient solution of a
CTMC. This approach still requires us to build the full MRgP R, to then solve it one component at a time. The first
two flows in Figure 1 mainly describe existing work (although the application of the component method with in -
reviewer1 a backward approach is new), and will be briefly summarized in this paper for notational consistency.

FullAfwd FullAbwd

CompA
fwd CompA

bwd

FullZfwd FullZbwd

CompZ
fwd CompZ

bwd

OTFfwd OTFbwd

OTFbwd + compOTFfwd + comp

Identify
components.

Region graph Z

CTMC M

DTA A ⇥

⇥

Sequence of synchronized
processes M⇥ Zj

⇥Region graph
valid partition {Zj}.

MRGP R
Synchronized process

M⇥A

Synchronized process
M⇥ Z

Identify 
components.

MRGP R

Forward solution:
s0 |= P(A)

Backward solution:
SAT(M |= P(A))

Identify
components

of each sub-process

Identify 
components.

Valid MRGP partition {Ri}.

Valid MRGP partition {Ri}.

MRGP set {Rj}

Sub-process valid partition {Ri}j .

TABLE OF METHODS:

Figure 1: Solution workflow.

In [18] and in [19], it was observed that the same MRgP R is produced by computing first the region graph
Z = G(A) of A, which makes explicit the timed reachability of the automaton locations, and by then taking the
synchronized product M×Z . This solution workflow corresponds to the third flow, leading to the two algorithms
FullZfwd and FullZbwd. Again, the Component Method can be applied, as described by the fourth flow, leading the two
algorithms CompZfwd and CompZbwd. Here the formalization of an adequate Z andM×Z and the application of the
Component Method toM×Z represents a new contribution, as it is new the state space reduction that we have devised
to better exploit the information available in Z (not represented in the figure for simplicity).

Finally the last two flows represents the main contribution of the paper, that stems from the observation that the
component structure ofR, and the order in which the components are considered by the Component Method, is mainly
determined by the structure of the region graph Z . The methods in the last two flows of Figure 1 therefore compute
first the set {Zj}Jj=1 of the J components of Z , and an associated DAG structure. Each component Zj is then used
for the synchronized product with the CTMC M, to produce a MRgP component Rj : the single components are
generated and solved only when required by the precedence relation of the DAG and they can be immediately deleted
afterward. Again the technique is applied using both forward and backward approaches, leading to algorithmsOTFfwd
and OTFbwd, respectively. These two techniques are what we term altogether “on-the-fly” model checking of CSLTA.
Finally the last flow stems from the observation that, since each component Rj is actually a non-ergodic MRgP, it is
possible to re-apply the Component Method on each component, to further increase the efficiency. These variations
are named OTFfwd+comp and OTFbwd+comp.

1.2. Paper outline

The paper develops as follows: Section 2 defines the necessary background on the MRgP Component Method
and on the definition of CSLTA and of its model checking procedure. Section 3 discusses the application of the MRgP
Component Method to CSLTA model checking (Comp methods of Figure 1). Section 4 formalizes the use of a region
graph to optimize the model checking process (methods with Z superscript in Figure 1), to pave the way to the
presentation of the on-the-fly model checking of CSLTA formulas (OTF methods of Figure 1), presented in Section
5. Section 6 compares, in a theoretical framework, the OTF approach with the other component approaches, while
Section 7 is devoted to the assessment of the 12 algorithms on a set of numerical experiments, for different Markov
chains and different types of properties. A short introduction to the MC4CSLTA tool used for the experiments and a
comparison with Prism and Storm on CSL formulas is also provided. Section 8 reviews the literature and Section 9
concludes the paper and outlines future possible extensions.
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2. Preliminaries

The material of this section is taken from the literature. It is reported here to make the paper self-contained, to
provide a unified language and notation for the reader, and to introduce a running example. Readers familiar with the
topics can simply go through the definitions and/or the examples.

2.1. MRgP and the Component Method

The definition of a MRgP in terms of its continuous time stochastic process X(t) can be found in [20]: for
this paper we only recall the MRgP representation. MRgPs arise in many contexts in performance evaluation, for
example it is the stochastic process underlying Deterministic Stochastic Petri Nets (DSPNs) [21] and Non-Markovian
Stochastic Petri Nets [22] when at most one general transition is enabled in any state.

In our context, a MRgP is represented as a discrete event system (like in [23]) with a finite state space, where
in each state a general event g is taken from a set G. As time flows, the age of g being enabled is kept, until either
g fires (∆ event), or a Markovian transition, concurrent with g, fires. Markovian events may actually disable g (Q̄,
preemptive event), clearing its age, or keep g running with its accumulated age (Q, non-preemptive event).

Definition 1 (MRgP). A representation of a Markov Regenerative Process (MRgP) stochastic process is a tuple
R = 〈S, G,Γ,Q, Q̄,∆〉 where S is a finite set of states, G = {g1 . . . gm} is a set of general events, Γ : S → G ∪ E
is a function that assigns to each state the single general event enabled in that state, if any, or E if only Markovian
events can take place. Q : S × S → R≥0 is the non-preemptive transition rates function (rate of non-preemptive
Markovian events), Q̄ : S × S → R≥0 is the preemptive transition rates function (rate of preemptive Markovian
events), ∆ : S × S → R[0..1] is the branching probability distribution (probability of reaching a state after the firing
of a general event).

The firing of a non-preemptive Markovian event does not affect the enabling of general transitions. The firing of a
preemptive event in state s resets the age memory of the general event Γ(s) enabled in s. A state s is absorbing iff
∀ s′ ∈ S it holds that s 6= s′ ⇒ Q(s, s′) = 0 ∧ Q̄(s, s′) = 0 ∧∆(s, s′) = 0.

s1

s2

s3

s4

s5

s6
0.5

enable g1z }| {
do not enable
general eventsz }| {

1.0

0.8

1.0

0.20.3 1.4

0.6

1.1
� transition.

Q transition.

Q̄ transition.

Figure 2: A sample MRgP with 6 states.

Example 1 (MRgP). Figure 2 depicts an example of a MRgP with 6 states (S = {s1, s2, s3, s4, s5, s6}), a single
general event g1 enabled in s1, s2, and s3 (Γ(s1) = Γ(s2) = Γ(s3) = g1), and matrices Q, Q̄ and ∆ depicted with
different graphic styles for the edges. Transition rates and branching probabilities are written close to each arc.

The steady-state solution of a MRgP can be computed using either standard techniques, that require the construc-
tion of the embedded DTMC P, that accounts for the transition probabilities among regeneration points, or using the
matrix free technique proposed in [24]. The latter is significantly more efficient in space, and usually also in time. The
work in [17] shows that a non-ergodic MRgP can be solved using the Component Method, which is the basis for our
on-the-fly technique and that we therefore recall in the following. If the MRgP is non-ergodic, it is possible to identify
a partition {Si}1≤i≤n of the MRgP states that induces a directed acyclic graph (DAG) among the Sj components. In
this case we assume, without loss of generality, that the embedded DTMC P has k transient components Ti, n − k
recurrent components Ri. For this paper we assume that the Rn component is just a single absorbing state >. All
other entries in P are zero. By rearranging the numbering of the components to account for the DAG structure, matrix
P can then be expressed in reducible normal form (RNF):
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P =




T1 F1
. . . ...

Tk Fk

Rk+1 . . .
Rn−1

>




(1)

The component method allows to compute the steady-state probability of all recurrent components, but in this
paper we are only interested in the probability of the > state, π>. Let µi be the vector of outgoing probabilities [25]
from the states of Si, which means that for each s′ ∈ (S \Si) the value µi(s

′) is the one-jump probability of reaching
s′ after leaving the states of Si. Since we are only concerned with the probability of reaching the> state, and given that
the (n − k) recurrent subclasses have a zero probability of reaching >, the general formula in [17] can be simplified
as follows.

Definition 2 (Outgoing probability for Si and probability of > state). Given a non-ergodic MRgPR of embedded
DTMC P, as defined above, we define the vectors µi and π> as:

µi =
(
αi +

∑

h<i

(Ii · µh)
)
· (I−Ti)

−1 · Fi, i ≤ k

π> = α> +

k∑

h=1

(I> · µh)

(2)

where αi is the initial probability vector for the states in Si, i.e. αi = Ii ·α, and Ii is the identity matrix where rows
corresponding to S \ Si states are set to zero.

The probability of reaching the> state is then given by the sum of all the outgoing probabilities from the transient
subclasses, and each of these outgoing probabilities µi may depend on the µh vectors, h < i. If we want to compute
instead the probability of reaching > from any given state s of a component Si (backward approach), we can fix a
reward 1 to the> state and compute the expected reward vector ξi. The value ξi(s) is then the probability of reaching
> when s is considered as initial state.

Definition 3. Given a non-ergodic MRgP R of embedded DTMC P, as defined above, the vector of state rewards ξi
is computed as:

ξi = (I−Ti)
−1 ·

n∑

h=i+1

(Fi · ξh) i ≤ k (3)

with ξn = ξ> = 1 and ξi = 0, k < i < n.

Given a DAG of components, the Component Methods takes the component in the topological order induced by
the DAG and repetitively applies Eq. 2 to compute the probability of reaching the > state from a given initial state, or
Eq. 3 to compute the probability, for each state, of reaching >. The computation of the outgoing probability vector
and of the vector of state rewards may require a steady state or a transient solution of a CTMC or a complete MRgP
solution, depending on the component characteristics.

2.2. MRgP matrix-free solution
The solution techniques for MRgP used in this paper are of the matrix-free type. The standard solution of a

MRgP requires us to build and store a DTMC (the stochastic process observed at regeneration points) and to solve
it. Even if the MRgP representation is sparse, typically that of the embedded chain is not, moreover each row in the
DTMC may correspond to the transient solution of a CTMC (the subordinated process), which makes the standard
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MRgP solution impractical for more than a few thousands states. In [24] a matrix-free approach has been devised, in
which the DTMC is never explicitly computed and stored. This allows us to solve much larger MRgPs (hundreds of
thousands of states). The work in [26] extends the matrix-free approach to the case of non-ergodic MRgP (like the
ones generated by CSLTA model checking). Later work [17] shows that a non-ergodic MRgP can be solved by taking
one component at a time, while still preserving the matrix-free approach. Note that in [26] and [17], following the
notational choice of the seminal work in [24] for matrix-free solution, Markov Regenerative processes are indicated
with the acronym MRP. Since in previous work, see for example [27], MRgP was used and MRP was reserved to
refer to Markov Renewal Processes, we prefer in this paper to stick to the original definition, to avoid propagation of
a double definition of the same acronym.

2.3. The logic CSLTA.
CSLTA defines properties to be verified on ASMC (continuous-time Markov chain with actions and state labels)

Properties are expressed through Deterministic Timed Automata (DTA). The cross-productM×A of an ASMCM
with a DTAA is the MRgP whose solution is at the basis of CSLTA model checking. These three elements are recalled
in the following, through their definition, and illustrated by the running example of Figure 3.

(B) A simple DTA A.

Ċ = {0, ↵, �}
C = {[0,↵), [↵,�), [�,1)}

(A) The ASMC M
with four states.

s2, l0, [0,↵)

s1, l0, [0,↵) s1, l0, [↵,�)

s2, l0, [↵,�)

s1, l0, [�,1)

s4, l1, [↵,�)

s2, l0, [�,1)

s2, l1, [↵,�)

s1, l1, [↵,�)

s4, l1, [�,1)

s2, l1, [�,1)

s1, l1, [�,1)>

?

s1

s2

s3

s4

Initial
states

s4, l1, [0,↵)

s3, l1, [0,↵) s2, l1, [0,↵)

s1, l1, [0,↵)

M; :CTMC move matched by DTA without clock reset.
Mx :CTMC move matched by DTA with clock reset.
G :Clock boundary.

M? :Rejected CTMC move.

(D) Synch. product M⇥A.

s1

s2

a

�1

�2

�1

s3

s4

Inner edge.
Boundary edge.

S1

S2 S3 S4

(C) The region set C
of the DTA A.

b

b

b

c c

Figure 3: An example of: (A) an ASMCM, (B) a DTA A and (C) its region set, (D) the MRgP of the synchronized
processM×A. ASMC and MRgP rates are omitted.

Definition 4 (ASMC representation). A continuous time Markov chain with state and action labels is represented
by a tupleM = 〈S,Act ,AP , lab,R〉, where S is a finite set of states, Act is a finite set of action names, AP is a
finite set of atomic propositions, lab : S → 2AP is a state-labeling function that assigns to each state a set of atomic

propositions, R ⊆ S ×Act × S → R≥0 is a rate function. If λ = R(s, a, s′) ∧ λ > 0, we write s
a,λ−−→ s′.

Example 2 (ASMC example). Figure 3(A) is the representation of an ASMCM . It comprises 4 states s1, s2, s3, and
s4; Φ1 and Φ2 are atomic propositions associated to states. Act = {a, b, c} and AP = {Φ1,Φ2}. Each transition
is labeled with its action. For instance, the transition from s2 to s4 triggers an a action.

Definition 4 is based on rate matrices, to allow self-loops in state s for action a, when R(s, a, s) > 0. A state s
is then called absorbing if R(s, a, s′) = 0 for all possible (a, s′), with s′ 6= s. An infinite path in a ASMCM is a
sequence: σ = s0

a0,t0−−−→ s1
a1,t1−−−→ s2

a2,t2−−−→ . . . with sk ∈ S, ak ∈ Act , tk ∈ R>0 and R(sk, ak, sk+1) > 0, for

all k ∈ N. A finite path of length l is a sequence: σ = s0
a0,t0−−−→ s1

a1,t1−−−→ s2
a2,t2−−−→ . . .

al−1,tl−1−−−−−−→ sl such that sl is
absorbing and R(si, ai, si+1) > 0 for all i < l. From now on whenever we write CTMC we refer to ASMC.

CSLTA properties are defined through DTAs and, as in [13], we consider DTA with a single clock x.

Definition 5 (DTA). A single-clock Deterministic Timed Automaton is defined by a tuple A = 〈L,ΛA, L0, LF ,AP ,
Inner, Boundary〉 where L is a finite set of locations, ΛA : L → BAP is a function that assigns to each location a
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boolean expression over the set of atomic propositions AP , L0 ⊆ L is the set of initial locations, LF ⊆ L is the set
of final locations, Inner ⊆ L× InC× 2Act×

{
∅, {x}

}
×L is the set of inner edges, and Boundary ⊆ L× BoundC×

{]}×
{
∅, {x}

}
×L is the set of boundary edges, where the inner constraints InC take the form α ≤ x < β and the

boundary constraints BoundC, take the form x = α.

We shall use the notations l ĉ,A,r B l′ to denote the inner edge (l, ĉ, A, r, l′), and l
δk,],r

B l′ to denote the

boundary edge (l, δk, ], r, l
′), respectively. With respect to standard timed automata, there are no location invariants,

while the requirement of determinism pertains to the use of the timed automaton as a recognizers of CTMC paths:
there should be a unique way to accept a CTMC path, if not non-determinism will come into play in the underlying
stochastic process. A precise definition of DTA determinism can be found in [13, Def. 2.3]. In this paper we assume
that a DTA deterministically recognizes a CTMC path. Inner edges, which are labeled by a clock interval and a set
of actions, are triggered by CTMC actions. Boundary edges, which are labeled by a clock constant and the special
symbol ], are triggered as soon as the clock reaches the boundary. Both edges have a reset set which is either the
empty set (no clock reset), or {x} (clock is reset to 0 when the edge is taken).

The DTA reads the transitions of the CTMC, therefore edges are labeled with a condition over the actions of the
CTMC (for example {a} indicates action a and Act \ {a, b} means any action but a or b). A DTA can enter and stay
in a location l only if Λ(l), evaluated over the atomic proposition of the current CTMC state, is satisfied. Moreover
Boundary edges are urgent and have priority over Inner edges. A DTA accepts all CTMC timed paths that take the
DTA to a final location. A formal definition of acceptance can be found in [13, sect. 2.3].

Example 3 (DTA example). Figure 3(B) shows a DTA with three locations: l0, l1, and l2. There is a single initial
location, l0, and a single final location l2. The DTA is equipped with its clock x; an edge of the DTA can be taken
only when the clock expression associated to the edge is true. The clock is reset if {x} is indicated on the arc. In the
graphical representation of the DTA the edge has a two-levels inscription. Taking as an example the self-loop edge
over l0, the upper inscription is the condition over the CTMC actions (any action but a), while the lower inscription is
a condition over the clock (x > 0) and a clock reset ({x}). The arc from l0 to l1 is an Inner edge with an associated
clock reset, and it may be taken only when the value of x is in between α and β, and the CTMC performs a transition
labeled with action a. The arc from l1 to l2 is a boundary edge with no associated clock reset, and can be taken only
when the clock is equal to α. By definition there is no CTMC action associated to boundary edges. Locations have an
associated boolean expression: in the example (Φ1∧¬Φ2), true and Φ2 are associated to l0, l1, and l2, respectively.

This DTA accepts the CTMC timed paths with the following structure: any prefix not including action a (the prefix
is accepted by the self loop on the initial location l0) which passes exclusively over (Φ1 ∧ ¬Φ2)-states, followed by
an a-labeled transition that happens between α and β time units since the last clock reset, followed by a path that
finds the CTMC in a Φ2-state exactly α time units after the last clock reset.

Definition 6 (CSLTA). A CSLTA property over a set AP of atomic propositions is defined as

Φ ::= p | ¬Φ | Φ ∧ Φ | P./λ(A) | S./λ(Φ)

where p ∈ AP , ./ ∈{≤, <,>,≥}, and A is a DTA.

A state s of a CTMC M satisfies P./λ(A) (written (M, s) |= P./α(A)) if the probability of the set of paths
stemming from s, accepted by the DTA A, is ./ λ. The S./λ is a steady-state property: since its satisfaction only
requires the steady-state solution of CTMCs, we do not consider this operator in the rest of the paper. A formal
definition of acceptance can be found in [13, Def. 2.9]. The computation of P./λ(A) is reduced in [13] to the
computation of π(>), the probability of reaching the accepting state > in the cross-product of M with A, called
M×A, that identifies all and only the timed paths ofM that are accepted by A.

2.4. CSLTA model checking

The construction of the synchronized processM×A is heavily dependent on the Inner and Boundary constraints
on the DTA clock x The constraints on the clock induce a partitioning of the time interval [0,∞).
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Definition 7 (Region set). Given a finite set of positive real constants Ċ = {δ0=0, δ1, . . . , δm}, with δk < δk+1 for
all 0 ≤ k < m, the region set C induced by Ċ is defined as C = {[δk, δk+1) | 0 ≤ k < m} ∪ {[δm,∞)}. Each
interval c = [δk, δk+1) ∈ C is a region.

When the constants in Ċ are those appearing on the DTA A, including 0 if not already present, then Def. 7 is a
simplified version of the standard region definition (see for example [28]) for single-clock automata (as used in [29]
and [19]).

Example 4 (Region set example). The clock of the DTA in Figure 3(B) is compared against three possible values:
0, α, β with α ≤ β, giving rise to the region set of Figure 3(C).

Any clock interval of type [δj , δh), with j ≤ h can be considered as ĉ, the union of the regions [δk, δk+1), j ≤ k <
h. Since an inner constraint c has the form δj ≤ x < δh, with j < h, we can write inner constraints as clock intervals
(union of regions), therefore the inner edge (l, δj ≤ x < δh, A, r, l

′) is re-written as (l, ĉ, A, r, l′), where ĉ is the union
of the clock regions of the time interval [δj , δh). Given a region [δk, δk+1), we denote with [δk, δk+1)[r := 0] the
region after the reset r, that is [δk, δk+1) if r = ∅, or [0, δ1) if r = {x}.

The synchronized productM×A is a MRgP whose states are triplets 〈s, l, c〉 of a CTMC state s, a DTA location
l, and a clock region c, plus two special absorbing states > and ⊥. Let S be the set of MRgP states. The product is
built by two rules. Type (G) accounts for the situation in which the Markov chain does not move and the time elapses:
by letting the time elapse the system can reach a system boundary, where a boundary edge of the DTA may be taken:
this is accounted by the definition of the closure function. Type (M) accounts for the effect of a CTMC transition
that may not be accepted by the DTA (rule M⊥), or that is accepted by an edge with a reset (rule Mx) or without
(rule M∅). The definition is slightly complicated by the fact that even rules that do not necessarily include a clock
reset, like M∅ or M⊥ may actually preempt a clock if the reached state is > or ⊥ and if there is a clock active. The
construction makes use of two functions: fin : S → S ∪ {>} to check whether we have reached a final state in the
DTA, and therefore the MRgP has reached the > state; And closure : S → S ∪ {>} to perform a transitive closure
over boundary edges, that are taken, when possible, as soon as a region is entered (boundary edges are urgent in DTA).
Remember that we assume that the DTA deterministically recognizes the CTMC paths (as in [13, Def. 2.3]), which
also implies that initial locations.... . In this paper we assume that a DTA deterministically recognizes a CTMC path.

Definition 8 (Synchronized productM×A). The synchronized product of a CTMCM with a DTA A of region set
C, built on the constants Ċ = {δ0 = 0, δ1, . . . , δm} of A, is an MRgPR = 〈S, G,Γ,Q, Q̄,∆〉 where

• S ⊆ (S × L× C) ∪ {>,⊥}. We indicate with 〈s, l, c〉 a generic state in S × L× C.
• The setG has one event gk, k ≥ 1 of deterministic duration (δk−δk−1) for each finite clock region [δk−1, δk) ∈
C.

• Let Γ(s, l, c) be defined as gk if c = [δk−1, δk), 1 ≤ k ≤ m, and E otherwise.
• Let fin(s, l, c) be > if l ∈ LF , and 〈s, l, c〉 otherwise.
• Let closure(s, l, c), with c = [δk, δk+1), be defined recursively to closure(s, l′, c[r := 0]) if there is in A a

Boundary edge l
δk,],r

B l′ with s |= Λ(l′); otherwise closure(s, l, c) = fin(s, l, c).

• The tuples 〈s, l, c〉 ∈ S and the matrices Q, Q̄,∆ are defined through the following rules:

– For each s ∈ S, if there is an initial location l0 ∈ L with s |= Λ(l0), then closure(s, l0, c0) ∈ S.
– (G: let time elapse). Given 〈s, l, c〉 with c = [δk−1, δk), k ≤ m, then closure

(
s, l, [δk, δk+1))

)
∈ S and

∆(〈s, l, c〉, closure
(
s, l, [δk, δk+1)

)
= 1 (and we assume δm+1 =∞).

– (M: CTMC transition). Given 〈s, l, c〉 ∈ S and the CTMC transition s
a,λ−−→ s′, then:

∗ (M∅) if ∃l ĉ,A,∅ B l′ with c ∈ ĉ ∧ a ∈ A ∧ s′ |= Λ(l′), then fin(s′, l′, c) ∈ S and Q and Q̄ are

modified as follows:

{
Q[〈s, l, c〉,fin(s′, l′, c)] = λ if Γ(〈s, l, c〉) = E or fin(s′, l′, c) 6= >
Q̄[〈s, l, c〉,>] = λ if Γ(〈s, l, c〉) 6= E and fin(s′, l′, c) = >

∗ (Mx) if ∃l ĉ,A,{x}
B l′ with c ∈ ĉ ∧ a ∈ A ∧ s′ |= Λ(l′), then closure(s′, l′, [0, δ1)) ∈ S and Q and

Q̄ are modified as follows:

{
Q[〈s, l, c〉, closure(s′, l′, [0, δ1))] = λ if c = [δm,∞)

Q̄[〈s, l, c〉, closure(s′, l′, [0, δ1))] = λ if c 6= [δm,∞)
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∗ (M⊥) otherwise (no edge in A matches the CTMC transition), and Q and Q̄ are modified as follows:{
Q[〈s, l, c〉,⊥] = λ if c = [δm,∞)

Q̄[〈s, l, c〉,⊥] = λ if c 6= [δm,∞)

Example 5 (Example of a synchronized product M×A). Figure 3(D) shows the M×A construction for our
running example. Transition rates and branching probabilities are omitted, for clarity. The boxes with dotted lines
represent the MRgP components used by the component-method. The MRgP is constructed considering all possible
initial states, in this case s1 and s2 which are the only CTMC states that satisfy the (Φ1 ∧ ¬Φ2) condition of l0. The
MRgP has two general events: g1, deterministic of duration α and g2, deterministic of duration β−α, Γ(〈s, l, c〉) = g1
if c = [0, α), Γ(〈s, l, c〉) = g2 if c = [α, β), and Γ(〈s, l, c〉) = E otherwise. From the MRgP graph it is easy to identify
the paths that lead to the > and ⊥ states. For example, from 〈s1, l0, [α, β)〉 if we let the time elapse the MRgP moves
to 〈s1, l0, [β,∞)〉. If the CTMC moves from s1 to s3 then the MRgP moves to⊥, since s3 does not satisfy (Φ1∧¬Φ2)
and the DTA does not accept this transition in location l0. If the CTMC moves from s1 to s2, which is a Φ1-state, then
the DTA accepts the transition through the self-loop over l0, as a consequence the clock is reset and the MRgP moves
to 〈s2, l0, [0, α)〉. Note that the > state is reached from 〈s3, l1, [0, α)〉 through the boundary DTA edge from l1 to l2,
when the x = α constraint is satisfied.

2.5. Forward and backward MRgP solution for CSLTA model checking

Model-checking of a property ϕ = P./λ(A) for a CTMCM may come in two flavors: to determine if a state s of
the CTMC (typically the initial one) satisfies ϕ, written as s |= ϕ, or to compute the satisfiability set Sat(ϕ), the set
of the CTMC states that satisfy the formula (Sat(ϕ) = {s ∈ S | s |= ϕ}). This distinction leads to:

• Forward approach: s |= ϕ: compute the long run probability distribution π of all MRgP states, given a fixed
initial distribution π0 with π0(s) = 1. Property is satisfied if π(>) ./ p.

• Backward approach: compute the probability vector ξ that each state, considered as initial, will reach the fixed
target state >, i.e. ξ(s) = limt→∞ Pr{X(t) = > | X(0) = s}, with X(t) the MRgP state at time t. Sat(ϕ) is
then the set of all states for which ξ(s) ./ p

3. Component method for CSLTA

This section illustrates the structure of the MRgPM×A and revisits the forward Component Method in a more
formal setting than that provided in [17], to make it in a form suitable for the on-the-fly extension of next section. The
method is also extended to work backward. We start by analyzing theM×A structure to see if it is suitable for the
Component Method.

TheM×A structure. The MRgPM×A has one deterministic event gk per clock region and its state space S can be
partitioned accordingly into m + 3 sets: m sets Sgk , the set SE of states in the last clock region [δm,∞) in which
no general event is enabled, and the two absorbing states > and ⊥. The structure of the MRgP matrices is shown in
Figure 4, in gray the portions of the Q, Q̄, and ∆ matrices that can be non-zero. For each gray portion it is indicated
the identifier of the correspondingM×A rule of Definition 8; For readability M∗ indicates the contribution of both
Mx and M∅ rules, Sgk is shortened into gk and SE into E.

According to theM×A construction (G) rules contribute only to ∆: a transition caused by a let time elapse event
followed by a boundary edge with an associated clock reset takes the MRgP back to the first time region (where g1
is enabled), and this is represented by the sub-matrices Gx in the Figure, while all other transitions caused by a “let
time elapse” event are indicated as G∅. Rows for states in SE are zero (no general event enabled in SE states) and
column to ⊥ is also zero (⊥ can be reached only by a rejected CTMC transition).

Accepted CTMC moves without clock reset (M∅ rule) contribute to the diagonal blocks of Q (M∅ events do not
change the current region ). Accepted CTMC with clock reset (Mx rule) contribute to the Sg1 column of Q̄, when the
MRgP is in a finite region (Sgk states), or of Q, when the MRgP is in the infinite region [δm,∞) (SE states).
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Figure 4: MRgP matrices generated by theM×A synchronized product.

Any accepted CTMC transition, with or without clock reset (Mx and M∅ rules) may lead to> and the contribution
goes into either Q or Q̄, as in the previous case. Similarly, rejected CTMC moves (M⊥ rule) contribute to the ⊥
column of either Q or Q̄.

The MRgP M×A has indeed some peculiarities: since general events represents the time elapsing, they are in
causal relationship (the firing of gk causes gk+1 to be enabled, or g1 if there is a a clock reset); moreover a Markovian
event never newly enables a general event, other than g1, while it may disable it due to a clock reset. To apply the
Component Method toM×A, the state space S needs to be partitioned into a DAG of components Si. It is immediate
to observe from Figure 4 that, despite the regular structure of the Q, Q̄, and ∆ matrices, the partition of states into
Sgk sets does not lead to a DAG of components, since the sum of the three matrices is not in RNF. Therefore, there is
a need for computing a DAG of components ofM×A, as in the general MRgP case, illustrated in the following.

Solution ofM×A with the Component Method. Equation (2) and (3) assumes that the embedded Markov chain P
of the MRgP is available. When the components are generated in a matrix-free setting, hence P is not available,
the Component Method requires some additional care. Indeed if we consider µi and ξi of Equation (2) and (3), we
can observe that the matrices Ti and Fi refer only to the states of the i-th component itself, and that all these states
correspond to regeneration points of the MRgP. In the matrix-free approach, the computation of µi and ξi is based
on Q, Q̄, and ∆. To compute the outgoing probability of a component, the process must reach a regeneration point.
Therefore the computation should take into account an augmented set (as in [17]). The augmented set includes the set
itself and all states reachable from the component until a regeneration point is reached. All events leading to an SE
state correspond to a regeneration point, while events leading to an Sgk state correspond to a regeneration point only
if they disable a previously enabled general event (contribution of the event is in the Q̄ and ∆ matrices). To precisely
define the components used by the algorithm, we introduce the additional notion of frontier set (not present in [17]),
which is the set of states reached at the next regeneration point.

Definition 9 (Augmented set of a MRgP subset). Let Si ⊆ S be a set of states of a MRgPR, and suppose s ∗→Q s′

denotes that there exists a path between s and s′ made by Q transitions only. The augmented set Ŝi of Si is defined
as the largest set such that:

Ŝi = Si ∪
{
s′ ∈ S \ Si

∣∣ ∃s ∈ Si : Γ(s) 6= E ∧ s
∗→Q s′

}

Definition 10 (Frontier of a MRgP subset). Let Si ⊆ S be a set of states of a MRgPR. The frontier of Si is defined
as the largest set such that :

frontier(Si) =
{
s′ 6∈ Si

∣∣ ∃ s ∈ Ŝi : (Γ(s) = E ∧Q(s, s′) 6= 0)∨
(
Γ(s) 6= E ∧

(
Q̄(s, s′) 6= 0 ∨∆(s, s′) 6= 0

))} (4)

Example 6 (Augmented set and frontier examples). Figure 5 shows a component Si = {s1, s2} with its augmented
set Ŝi = {s1, s2, s3} and its frontier set frontier(Si) = {s3, s4, s5}. State s3 is both in the augmented set and in the
frontier of Si: s3 ∈ Ŝi (there is a Q transition from s1 to s3) and s3 ∈ frontier(Si) (there is a Q̄ transition from s2 to
s3), therefore s3 can be a non-regenerative state (if entered from s1) or a regenerative state (if entered from s2). In the
Qi, Q̄i and ∆i matrices state s3 is duplicated and the non-regenerative s3 state is indicated with s′3. Transition rates
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Figure 5: An example of an augmented set and frontier of a component.

are split appropriately: transition from s1 with rate λ leads to s3 in Q, since it is non-preemptive, while transition
from s2 with rate ρ leads to s′3 in Q̄ , since it is preemptive. The self-loop over state s3 reaches state s′3 in Q̄, since it
is preemptive (note that there is no self-loop anymore in the component matrices). The 0 term is the zero matrix.

We can then define an MRgP component as:

Definition 11 (MRgP component). Given a set of states Si of an MRgPR, the MRgP componentRi = (Si, Gi,Γi,Qi,

Q̄i,∆i) is defined as the projection of Q, Q̄, and ∆ over the set of states in Ŝi ∪ frontier(Si) and by setting to zero
the rows of states in frontier(Si) (thus making these states absorbing). Gi is the restriction of G to the general events
enabled in Si and Γi(s) = Γ(s) if s 6∈ frontier(Si), and E otherwise.

Algorithm 1 defines the forward component-based model checking procedure that computes the probability of
eventually reaching the success state >. It corresponds to the method named CompAfwd in Figure 1. The MRgPM×A
is computed first, as well as a DAG of components Ri. Components are taken one at a time, in forward topological
order, that is to say: a component is considered in step k only if all components of the states in any path from the
initial states to the component itself have already been taken into account in the previous k− 1 steps. We assume that
Ri components follow the same order, so that the index i of the component coincides with the index k of the step.
For each component the probability µi of the frontier states is computed, assuming an initial probability which is the
result of the previous steps. At each step the probability µi for the frontier states is added to the current probability
vector (vector at step i, π(i)) and the initial probability of the component is subtracted from the current vector (as it
has been “pushed down” to the frontier states by the computation at step i).

Algorithm 1 Pseudocode of the component-based forward model checking method.

function MODELCHECK-COMPAFWD(s0 : initial state)
Construct the synchronized processR =M×A, starting from 〈s0, l0, 0〉.
Let π(0) be the vector with π(0)[〈s0, l0, 0〉] = 1.
Build a set of components {Ri} ofR that form a DAG.
for each componentRi inR taken in forward topological order do

Let Îi be the filtering matrix of Ŝi
Compute (with Equation(2)) the probability µi outgoing Ŝi and reaching frontier(Si)
π(i) ← (I− Îi) · π(i−1) + µi

end for
return π(k)[>]

end function

Example 7 (Algorithm 1). In the MRgP of Figure 3(D), the dotted lines identify 4 components (plus > and ⊥),
numbered in forward topological order. If s1 is the initial state considered, at the first step Algorithm 1 considers
component S1 and computes the probability of reaching the frontier states (either ⊥ or the state in S2). At the next
step S2 is considered, taking as initial probability that assigned to the frontier states in the previous step. The solution
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at time α of the component assigns a non-null probability to >, as well as to the other frontier states of S2 (which
include all the states of S3). The algorithm then considers S3 and S4 in sequence. These two components do not
bring any probability to the > state, but the procedure defined in Algorithm 1 is not aware of it and therefore two
(non-useful) component solutions are performed.

Algorithm 2 defines the backward Component Method CompAbwd that computes the Sat set for the formula P./(A).
Components are taken in backward topological order: a component is considered in step i only if all components on
any path from the component itself to the terminal components (components with no outgoing transitions) have already
been taken into account. Again we assume that the index of each component indicates the correct topological order,
and we therefore use a single index i. ξi is the state reward vector for component i as defined by Equation (3), and
the reward vector is updated by adding them to the full reward vector r.

Algorithm 2 Pseudocode of the component-based backward model checking method.

function MODELCHECK-COMPABWD( )
ConstructR =M×A, starting from the set of initial states {〈s, l, 0〉 | s ∈ S, l ∈ L0, s |= Λ(l)}.
Build a set of components {Ri} ofR that form a DAG.
r(k) : S → R . sparse vector of per-state acceptance probabilities
r(k)[>]← 1
for eachRi inR, taken in backward topological order do

Compute (with Equation (3)), the reward vector ξ(i) for Ŝi states, starting from the rewards r(i−1)

r(i−1) ← r(i) + ξ(i)

end for
Each r(0)[s] is the probability of eventually reaching > from s, for all s ∈ S.
return r(0)

end function

Example 8 (Algorithm 2.). With reference to the MRgP of Figure 3(D), the backward algorithm considers the same
components as the forward one, but in the opposite order: S4, S3, S2, S1. It starts with a reward of 1 for the > state,
and then computes the reward for the component states, based on the reward of the component frontier states. Since
for S4 the reward on the frontier states (⊥) is 0, the computation can be skipped. Same for S3. The method proceeds
by solving component S2 and component S1, to assign a reward to the two possible initial states s1 and s2.

4. Model checking based on region graph

The M×A construction takes into account, at the same time, time constraints expressed by the DTA and the
acceptance of CTMC moves by the DTA. The works in [18] and [19] propose to build first the region graph of the
automaton and then to build the MRgP as cross-product of the CTMC with that region graph. The region graph con-
struction accounts for timed reachability and the successive product accounts for DTA acceptance of CTMC moves.
This construction allows to devise a procedure that avoids the construction of non useful states (state that do not con-
tribute to the probability of the > state) and it will the starting point for the on-the-fly model checking algorithm of
Section 5.

The region graph G(A) of A is constructed by combining the set of locations L with the set of regions C of
Definition 7. This construction is the classical one for timed automata, simplified by the presence of a single clock.
The set of z-states1 Z is then subset of L × C states reachable from an initial location l0 with clock x = 0. The
transition relation among z-states features three types of edges: inner edges that account for an inner edge in A; Time
elapse edges that account for the passage of time between two successive clock values; And Reach next boundary
edges that account for a boundary edge in A.

1In region graphs literature the term “state” is usually adopted, but since we use region graph states and CTMC states to compute MRgP states,
we use the term “z-states” to avoid confusion.
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Definition 12 (Region graph). Given a DTA A = 〈L,ΛA, L0, LF ,AP , Inner,Boundary〉 of region set C built
on the constants Ċ = {δ0 = 0, δ1, . . . , δm}, the Region Graph G(A) is defined by the tuple Z = G(A) =
〈Z,Λ, Z0, ZF ,AP ,→I ,→e,→B〉 where Z ⊆ L × C is a finite set of z-states, Λ : Z → BAP assigns to each z-
state a boolean expression over the set AP of atomic propositions, Z0 ⊆ L0 × [0, δ1) is the set of initial z-states,
ZF ⊆ LF × C is the set of final z-states; the transition relation between regions is defined by the set of inner edges
→I ⊆ Z × 2Act × {∅, x} × Z, the set of time-elapse edges→e ⊆ Z × Z, and the set of reach next boundary edges
→B ⊆ Z × Z, where:

• Λ(〈l, [δk, δk+1〉) = ΛA(l);
• Z0 = {〈l0, [0, δ1)〉 | l0 ∈ L0};
• (inner edge) Given z = 〈l, [δk, δk+1)〉 ∈ Z and the DTA inner edge l ĉ, A, r B l′, where [δk, δk+1) ∈ ĉ, then
z′ = 〈l′, [δk, δk+1)[r := 0]〉2 ∈ Z and (z,A, r, z′) ∈ →I ;

• (time-elapse edge) Given z = 〈l, [δk−1, δk)〉 ∈ Z, k ≤ m, then z′ = 〈l, [δk, δk+1)}〉 ∈ Z and (z, z′) ∈ →e;

• (reach next boundary edge) Given z = 〈l, [δk, δk+1)〉 ∈ Z, and the DTA boundary edge l
x=δk, ], r

B l′,

then z′ = 〈l′, [δk, δk+1)[r := 0]〉, z′ ∈ Z and (z, z′) ∈ →B;

This definition is actually an extension of the region graph for CSLTA defined in [19] to include boundary edges,
and of that in [18] to eliminate “point regions” (regions [δk, δk]), to avoid the creation of states of the MRgP that
are entered and exited in zero time. Note that the region graph here defined is semantically close to the classical
construction for timed automata, but its representation is slightly different, to ease the subsequentM×Z construction.
Inner edges of the region graph contain the explicit indication of the reset, to distinguish whether an inner edge that
starts and ends in the first region includes a reset or not; Time elapse edges are distinct from boundary edges; Boundary
edges can only be triggered at the beginning of the region interval, while time elapse edges are taken at the end of the
region interval.
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Figure 6: The region graph Z = G(A) and the MRgPM×Z for the DTA A and the CTMCM of Figure 3.

Example 9 (Region graph). Figure 6(A) shows the region graph of the DTA of Figure 3(B). z-states are organized
into rows, each row corresponds to a location of the DTA, and transitions from left to right correspond to the elapsing
of time. Final z-states are graphically identified by a double border. Transition back to z0 are due to the self-loop
over location l0, transition from z1 to z3 is due the DTA edge from l0 to l1. The transition from z4 to z6 is an example
of how boundary edges are taken as soon as the region is entered: the →B transition leading to z6 can be taken if
x = α, while the→e transition leading to z5 is taken when the clock reaches β, the end of the region.

The synchronized product M×Z is a MRgP whose states are pairs 〈s, z〉 of a CTMC state s and a z-state z,
plus two special absorbing states > and ⊥. The construction follows the same structure as theM×A construction of
definition 8. In the definition if z = 〈l, c〉, then region(z) = c.

2 Remember that [δk, δk+1)[r := 0] is [δk, δk+1) if r = ∅ and [0, δ1) if r = {x}. Moreover, for uniformity, δk+1 = ∞ )
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Definition 13 (Synchronized productM×Z). The synchronized product of a CTMCM and a region graph Z =
G(A) is the smallest MRgPR = 〈S, G,Γ,Q, Q̄,∆〉 defined by:

• S ⊆ (S × Z) ∪ {>,⊥}. We indicate with 〈s, z〉 a generic state in S × Z.
• The set G of general events has one deterministic event gk for each region [δk−1, δk) ∈ C of finite duration, i.e.

1 ≤ k ≤ m with m = |C|.
• Let Γ(s, z) be defined as gk if region(z) = [δk−1, δk) and k ≤ m and E otherwise.
• Let fin : (S × Z) × (S × Z) ∪ {>} be a function defined as fin(s, z) = > if z ∈ ZF , and fin(s, z) = 〈s, z〉

otherwise.
• Let closure : (S × Z) × (S × Z) ∪ {>} be defined recursively over boundary edges as closure(s, z) =

closure(s, z′) iff exists (z, z′) ∈ →B with s |= Λ(z′); and as closure(s, z) = fin(s, z) otherwise.
• The tuples 〈s, z〉 ∈ S and the matrices Q, Q̄,∆ are defined through the following rules:

1. For each s ∈ S, if there is an initial location z0 ∈ Z with s |= Λ(z0), then closure(s, z0) ∈ S.
2. (G: time elapse) Given 〈s, z〉 and 〈z, z′〉 ∈ →e, then closure(s, z′) ∈ S and ∆[〈s, z〉, closure(s, z′)]=1

3. (M: CTMC transition. Given 〈s, z〉 ∈ S and the CTMC transition s
a,λ−−→ s′, then:

– (M∅) if ∃(z,A,∅, z′) ∈ →I with a ∈ A ∧ s′ |= Λ(z′), then fin(s′, z′) ∈ S and Q and Q̄ are defined

as follows:

{
Q[〈s, z〉,fin(s′, z′)] = λ if Γ(〈s, z〉) = E or fin(s′, z′) 6= >
Q̄[〈s, z〉,>] = λ if Γ(〈s, z〉) 6= E and fin(s′, z) = >

– (Mx) if ∃(z,A, {x}, z′) ∈ →I with a ∈ A ∧ s′ |= Λ(z′), then closure(s′, z′) ∈ S and Q and Q̄ are

defined as follows:

{
Q̄[〈s, z〉, closure(s′, z0)] = λ if region(z) has finite duration.
Q[〈s, z〉, closure(s′, z0)] = λ otherwise.

– (M⊥) if @(z,A, r, z′) ∈ →I with a ∈ A ∧ s′ |= Λ(z′) (no edge in Z matches the CTMC transition),

and Q and Q̄ are defined as follows:

{
Q̄[〈s, z〉,⊥] = λ if region(z) = [δk−1, δk) and k ≤ m
Q[〈s, z〉,⊥] = λ otherwise.

Example 10 (Example of a synchronized product M×Z). Figure 6(B) shows the synchronized product M×Z
for the example of Figure 3. The graphical notation for the edges is the same as in Figure 3(D) and the definition
and naming of the z-states is given in Figure 6(A). Note that only s1 and s2 give rise to initial states, since Λ(z0) =
(Φ1 ∧ ¬Φ2) and only s1 and s2 satisfy that condition. Let us consider an example of application of each one of
the rules above. The transition from 〈s1, z0〉 to 〈s1, z1〉 is produced by rule G: the Markov chain state is the same,
the location is the same (l0) but the clock region of z1 is the next region of that in z0. The transition from 〈s2, z1〉
to 〈s4, z3〉 is produced by rule Mx: the Markov chain transition of label a from s2 to s4 is accepted by the DTA
edge from l0 to l1, which is also labelled a, moreover z1 is in the [α, β) region, so that the clock constraint on the
DTA edge is satisfied; since the edge has an associated clock reset, the MRgP moves from region(z1) = [α, β) to
region(z3) = [0, α). The transition from 〈s4, z3〉 to 〈s2, z3〉 is produced by rule M∅: the Markov chain transition
from s4 to s2 is accepted by the self loop on z3. The transition from 〈s1, z0〉 to ⊥ is produced by rule M⊥ when the
CTMC moves from s1 to s3, since s3 is a Φ2-state and neither the self loop over z0 can accept this transition, nor the
edge from z0 to z1 can. The > state can be reached through the application of the closure and fin functions: in the
MRgP example there is a time-elapse transition from 〈s3, z3〉 when x = α that expands as:

〈s3, z3〉 G−−→ closure(s3, z4)→ closure(s3, z6)→ fin(s3, z6)→ > (5)

since z6 ∈ ZF , and s3 |= Λ(z6). Hence, the time-elapse transition from 〈s3, z3〉 goes directly to >.

The MRgPM×Z of Figure 6(B) and the MRgPM×A of Figure 3(D) identify the same MRgP process, up to
the obvious mapping 〈s, l, c〉 → 〈s, z〉, as indeed stated by the next theorem. Since the two MRgPs are identical, the
model checking of a CSLTA formula can be based on any of the two.

Theorem 1. The MRgPs represented byM×A andM×Z identify the same process.
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Proof. The proof is reported in Appendix B, since it is rather mechanical, moreover the possibility of using a region
graph (instead of the DTA) to compute the MRgP was already proven in [19], based on the proofs in [29] (although
the DTA used in [19] has some differences, the structure of the proof is the same).

The full MRgP solution of M×Z are called FullZfwd and FullZbwd (see Figure 1). The Component Method can
obviously be applied also to the MRgP M×Z , leading to a variation of Algorithm 1 and 2 that considers as basic
MRgPM×Z instead ofM×A: they are named CompZfwd and CompZbwd, respectively.

4.1. Reduction based on non-useful z-states.

Consider the synchronized product of Figure 6(B): no states in partitions S3 and S4 are visited by any path leading
to >. Nevertheless they are computed, stored and are included in the MRgP matrices used in the solution process.
These states can be removed and all the ingoing transitions are redirected to ⊥. This elimination can be done after
the full MRgP has been built, thus removing all states that, by combination of the conditions on the DTA and by the
structure of the Markov chain, are not in any path to >. With reference to the example in Figure 6(B), it corresponds
to removing the states in S3 and S4.

Reducing the number of states to be considered by the solution process may save a significant amount of com-
putation time for the numerical solutions. For example, in the MRgP of Figure 6(B), we save the cost of solving the
MRgP components built on S3 and S4. Nevertheless, the amount of memory required to generate the state space is the
same. Since the structure of the MRgP is strongly influenced by the structure of the region graph Z , we can exploit
this dependency to devise a modification of theM×Z construction that only generates useful MRgP states. With
reference to the same example, we can observe that a MRgP state generated from the z-state z5 will never lead to >.
We could therefore envision to simply discard z5 before theM×Z construction, but this solution is too simplistic.
Consider the z-state z4: from Figure 6(B) it is immediate to observe that there is no MRgP state 〈s, z4〉 that can lead
to >, for any choice of s, but the z-state z4 of Figure 6(A) is nevertheless used in theM×Z construction, as part of
the computation of the closure function for 〈s3, z3〉, as illustrated by the computation in Eq. 5. This example suggests
that theM×Z construction should considered z4 only for the computation of closure, and not for the generation of
states of the form 〈s, z4〉. TheM×Z construction is therefore modified so as to consider a tagging of the z-states:
tag NK (not keep) is assigned to z if no MRgP state 〈s, z〉 can lead to >, all other z-states are tagged K (keep). The
tagging is then used to avoid the construction of all MRgP states with a NK z-state. This is achieved by modifying
appropriately the fin function of theM×Z construction of Definition 13, so as to discard the state while maintaining
the transitions required for the correct computation of the probability of reaching >.

Definition 14 (z-states tagging). Given a region graph Z , we define the function tag(z) : Z → {K,NK} as

• tag(z) = K (Keep state) if either z ∈ ZF , or if there is at least one path from z to z′, with z′ ∈ ZF that
includes at least an edge of type inner or time-elapse (→I or→e).

• tag(z) = NK (do Not Keep state) otherwise: either there is no path to an accepting z-state or the path consists
only of boundary edges.

The function fin , that is used in definition 13 to identify the MRgP transitions that go to >, is changed so as to
force a transition to ⊥ when we get to a z-state tagged NK . The definition of fin(s, z) as: > if z ∈ ZF , or 〈s, z〉
otherwise, is therefore changed to:

fin(s, z) =





> if z ∈ ZF .
⊥ if tag(z) = NK .

〈s, z〉 otherwise.
(6)

With this change, fin(s, z) may evaluate also to ⊥, therefore also line (3) of the M×Z construction of defini-
tion 13 should change: whenever a CTMC transition leads to ⊥, the contribution should go to Q̄, as it is the case
when fin(s, z) evaluates to >. It is important to remark that non useful MRgP states are not deleted, but simply
aggregated into the ⊥ state, to ensure that the solution algorithms “sees” all transitions required to correctly compute
the probability that the next states, at least for all next states that are on a path to >.
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Example 11 (Example of a reducedM×Z). Figure 7 shows the result of the modifiedM×Z construction for the
same DTA and CTMC used for the example reported in Figure 6. The z-states z4 and z5 are tagged as NK , therefore
edges departing from 〈sh, z3〉, h ∈ {1, 2, 4}, that in theM×Z of Figure 6 go into states 〈sh, z4〉 now reach directly
⊥.

s2, z0

s1, z0 s1, z1

s2, z1 s2, z2

s1, z2

s4, z3

s3, z3s2, z3

s1, z3

>
?

s1

Initial
states

s2

s3

s4

S1 S2

Figure 7:M×Z process of Figure 6(B) considering reachability of the final locations on the Region Graph.

Of course, z-states tagging does not guarantee that the resultingM×Z will have include states that lead to >: a
z-state could have an edge that reaches a final location, but the CTMCMmay never activate that edge. We now prove
that the modification in the fin function does not alter the probability of reaching state >.

Theorem 2. Given a MRgPM×Z , letM×Zred be the MRgP generated with the modified function fin of Equation
6. Given an initial state 〈s, z〉, the probability of reaching > from 〈s, z〉 in M×Z is equal to the probability of
reaching > from the same state 〈s, z〉 inM×Zred.

Proof. We need to prove that (1)M×Zred includes all and only the states that inM×Z go to >, and that (2) the
transitions out of these states are maintained, including the ones that are part of paths that do not lead to >, as they
are required for the correct computation of the probability of reaching >.
(1). If 〈s, z〉 is a state ofM×Z that leads to > then 〈s, z〉 is a state ofM×Zred. Assume the above is not true, then
there exists 〈s, z〉 inM×Z that leads to> and 〈s, z〉 is not a state ofM×Zred. If there is a path inM×Z from 〈s, z〉
to>, then in the region graph Z there is a path from z to z′, with z′ ∈ ZF . Moreover, due to the closure function (that
does the transitive closure over boundary edges), and its use in Rules (2) and (3) of Definition 13, the path from 〈s, z〉
to> (1.a) is either made by boundary-edges only or (1.b) it contains at least an Inner or a time-elapse edge. Case (1.a)
has no difference betweenM×Z andM×Zred, since it is just a recursive evaluation of closure up to a final location.
Case (1.b) implies that tag(z) = K since there is at least an inner or a time-elapse edge. Therefore, the same rule that
adds 〈s, z〉 toM×Z would add 〈s, z〉 also toM×Zred since the constructionM×Zred may replace states with ⊥
only when tag(z) = NK . The “only-if” case is trivial since the modification of function fin may restrict the number
of states considered, but does not add any state.
(2). If a state 〈s, z〉 is a state of M×Z that leads to > (and that, according to the previous point, is also part of
M×Zred) then we consider the following situations:

(2.a). If 〈s, z〉 Q,Q̄,∆−−−−→ 〈s′, z′〉 is a transition inM×Z , and both 〈s, z〉 and 〈s′, z′〉 are on a path to >, then
Q,Q̄,∆−−−−→

〈s′, z′〉 is a transition inM×Zred. This statement is true since tag(z) = tag(z′) = K and therefore the algorithms
for buildingM×Z andM×Zred behave the same.

(2.b). If 〈s, z〉 Q,Q̄,∆−−−−→ 〈s′, z′〉 is a transition inM×Z , with 〈s, z〉 on a path to > and 〈s′, z′〉 in no path to >, with

tag(z′) = NK , then 〈s, z〉 Q,Q̄,∆−−−−→ ⊥ is a transition inM×Zred. This statement is true since theM×Z construction
evaluates closure(〈s′, z′〉) as fin(〈s′, z′〉). Since tag(z′) = NK the function evaluates to ⊥.

(2.c). If 〈s, z〉 Q,Q̄,∆−−−−→ 〈s′, z′〉 is a transition inM×Z , with 〈s, z〉 on a path to > and 〈s′, z′〉 in no path to >, with

tag(z′) = K, then 〈s, z〉 Q,Q̄,∆−−−−→ 〈s′, z′〉 is a transition inM×Zred. As in case (a), since tag(z′) = K the transition

〈s, z〉 Q,Q̄,∆−−−−→ 〈s′, z′〉 is added also in theM×ZRed construction.
Points 2.a to 2.c imply that all transitions out of a state 〈s, z〉 ofM×Z are maintained inM×Zred if 〈s, z〉 is a

state that leads to >. Note that a transition which is in Q ofM×Z may end-up in Q̄ ofM×Zred (see the comment
following Equation 6), but this does not alter probability distribution of successor states, for those states on paths
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leading to >. The combination of point (1) and (2) above allows us to conclude that the portions of Q, Q̄, and ∆ that
are used in the computation of probability of eventually reaching > inM×Z andM×ZRed are the same.

The idea of removing non-useful states based on the region graph was first presented in [18]: a region graph
is built and it is then reduced to remove non-tangible z-states and z-states that, under no conditions, can reach >.
This reduction led to a new form of region graph in which conditions move from z-states to edges among z-states,
thus requiring a new definition of the MRgPM×Z . The construction based on Definition 14 and Equation 6 allows
instead to use the same M×Z construction while producing a reduced MRgP. As we shall see in Section 7, this
reduction is crucial to allow CSLTA model checking based on OTF to attain the same memory performances as CSL
model-checkers on CSL formulas.

5. On-the-fly model checking of CSLTA.

Starting from the observation that the structure of the MRgP is strongly influenced by the structure of the DTA, or
better, by its region graph, we propose to build the MRgP components based on Z components, leading to an on-the-
fly construction of the synchronized processM×Z that allows us to construct and solve one component at a time, thus
reducing the memory consumption of the model checker. The method, identified as case OTF in Figure 1, works with
a valid partition {Zj}1≤j≤J of the states Z of the region graph. For each region graph component Zj , the method
computes the synchronized productM×Zj , and then performs the numerical computation. Unlike Algorithms 1 and
2, there is not a global view of the entire state space of the synchronized process M×Z . As a consequence, the
forward on-the-fly method is different from the backward on-the-fly method, as we shall discuss in Section 7.3.

The first step is to define the region graph components.

Definition 15. A region graph component Zj is a subset of the set of z-states Z of the region graph Z .

It is convenient to distinguish inner edges →I that have an associated clock reset (→Ix ) from those with no
associated clock reset (→I∅ ). Same distinction for→B .

In the Component Method, for each component Si it is necessary to compute its augmented set Ŝi and its frontier
set frontier(Si): analogous constructions are required for the region graph components. Recalling that the augmented
set is built based on transitions that are in Q (accepted CTMC moves without a clock reset), and that these moves are
accepted by I∅ edges of the DTA, we have the following definition.

Definition 16 (Augmented set of a region graph component). Let Zj ⊆ Z be a set of z-states of the region graph Z
and let us indicate with z ∗→I∅ z

′ that there exists a path between z and z′ made only of→I∅ edges. The augmented
set Ẑj of Zj is defined as the largest set such that:

Ẑj = Zj ∪
{
z′ ∈ Z \ Zj

∣∣ ∃z ∈ Zj : region(z) 6= [δm,∞) ∧ z
∗→I∅ z

′}

Note that the augmented set is the set itself if the component is entirely in the [δm,∞) region. Recalling that the
frontier function for an MRgP components Si is defined (Definition 10) based on Q transitions when Γ(Si) = E and
on Q̄ and ∆ when Γ(Si) 6= E, and that Q̄ and ∆ transitions are generated by the presence of Ix and let time elapse
edges in the region graph, we can define the frontier function of a region graph component as follows.

Definition 17 (Frontier of a region graph component). Let Zj ⊆ Z be a set of z-states of a region graph Z . The
forward frontier of Zj is defined as the largest set of z-states such that:

frontier(Zj) =
{
z′
∣∣ z′ 6∈ Zj ∧ ∃ z ∈ Ẑj :

(
region(z) = [δm,∞) ∧ z →I∅ z

′)} ∪
{

atbound(z′)
∣∣ z′ 6∈ Zj ∧ ∃ z ∈ Ẑj :

(
region(z) 6= [δm,∞) ∧ (z →Ix z

′ ∨ z →e z
′)
)} (7)

where atbound(z′) is defined recursively as:

atbound(z) = {z} ∪
{

atbound(z′)
∣∣ ∃ z′ 6∈ Zj : z →B z′

}
(8)
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Example 12 (Frontier of a region graph component). In the region graph of Figure 6(A), the frontier of Z1 is z3, while
the one of Z2 includes both z4 and z6, with the latter region included by the atbound function due to edge z4 →B∅ z6.

Similarly to Def. 10, the frontier of a region graph component is not necessarily disjoint from its augmented set,
since the same z-state z ∈ Ẑj could be reached by both an inner edge and a time elapse edge (or an edge with a clock
reset) from Ẑj states, making it both a member of the augmented set and of the frontier set. As for the MRgP case, if
a state is part of both the augmented set and the frontier, then it is duplicated. Based on the above definition, we can
now introduce the notion of the region graph Zj generated by the z-states of a region graph component Zj .

Definition 18 (Region graph Zj of component Zj). Given a set of z-states Zj ⊆ Z, the component region graph Zj
is defined as the projection of Z over the z-states Ẑj ∪ frontier(Zj). Edges→I ,→e,→B are defined as the edges
of Z that have a source z-state in the set Ẑj . All edges that have a source in frontier(Zj) are removed, but for the
boundary ones →B (these are the edges used by the atbound function to build the frontier itself). The set of final
z-states is ZF ∩

(
Ẑj ∪ frontier(Zj)

)
, where ZF is the the set of final z-states of Z . The region set C of Zj remains

the same of Z .

Example 13 (Region graph Zj of a component Zj). As an example of region graph of a component we can take the
region graph generated by Z2 which includes z3 and its self loop, the time-elapse edge from z3 to z4, the z-state z4,
the boundary edge from z4 to z6 and z6 itself.

Note that not all frontier z-states are made fully absorbing, as the→B are retained, to ensure a proper evaluation
of the closure function in theM×Zj construction.

Definition 19 (Synchronized productM×Zj from a set S0 of initial states). Since each Zj is a region graph, the
cross productM×Zj(S0) is defined following the rules of Definition 13 using S0 as initial states.

5.1. On the fly algorithm, forward

Algorithm 3 defines the on-the-fly forward model checking procedure that uses the Component Method with the
M×Zj components. EachM×Zj component is generated only when it is required by the computation and it is then
deleted afterwards. Each component needs to be generated only once. Components are considered, and generated, in
forward topological order: a component is considered in step k only if all components of the states from any paths
from the initial components to the component itself have already taken into account in the previous k − 1 steps.

Algorithm 3 Pseudocode of the forward on-the-fly model checking method.
function MODELCHECK-OTFFWD({Zj} components of Z , s0 : initial state)

π(0) : S × Z → R . sparse vector of state probabilities
π(0)[〈s0, l0, 0〉]← 1
Identify a set {Zj} of components of the states of Z and build the corresponding {Zj} as per definition 18.
for each Zj , taken in forward topological order do

Hj = all the tuples 〈s, z〉 with π(j−1)[〈s, z〉] 6= 0 ∧ z ∈ Zj
if Hj 6= ∅ then

Let IHj
be the filtering matrix of Hj

ConstructM×Zj(Hj) as per definition 19. Let IHj
· π(j−1) be the initial distribution.

Compute the probability µi outgoingM×Zj and reaching states 〈s, z〉 ∈ frontier(M×Zj).
π(j) ← (I− IHj ) · π(j−1) + µi

end if
end for
return π(K)[>]

end function
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Figure 8: Components generated by the MODELCHECK-OTFFWD (above) and MODELCHECK-OTFBWD (below) al-
gorithm on the example of Figure 6.

Example 14 (Execution of Algorithm 3). Figure 8, upper part, depicts, in the order, the four components generated
and solved by Algorithm 3. The first component corresponds to M×Z1, where Z1 is the region graph generated
from the component Z1 in Figure 6 according to Definition 18. The augmented set of Z1 is the set itself, the frontier
is z3, therefore the frontier of the MRgP component M×Z1 are the states 〈s4, z3〉 and ⊥ that receive, according
to the steady-state solution of the component, the probability initially accumulated in the initial state 〈s1, z0〉. The
second component isM×Z2, whose frontier states are built starting from frontier(Z2) = {z4, z6}. The component
is depicted in Figure 8(2), and the gray states are the frontier ones. The initial probability of the component, that
derives from the solution of the component in Figure 8(1), is all concentrated in 〈s4, z3〉 and it gets distributed to >
and to the other frontier states. Note that > is generated from the z-state z6. The algorithm then proceeds in building
and solving the third and fourth component (Figure 8(3) and (4)), but none of the two solutions adds probability to >.

To prove the correctness of Algorithm 3 we first need to show that {M×Zj}1≤j≤J is an acyclic set of components.

Theorem 3. If {Zj}{1≤J} is an acyclic set of components of Z , then the set {M×Zj}{1≤J} is an acyclic set of
components of the MRgPM×Z .

Proof. By contradiction, assume that there existsM×Zi andM×Zk (i 6= k) with a cyclic path in the MRgP from
M×Zi to M×Zk and vice-versa. Since ⊥ and > are absorbing states, they cannot be part of a cyclic path so
let’s assume, without loss of generality, that the cyclic path does not include ⊥ and > and it is determined by two
transitions: a transition eik from a state 〈si, zi〉 of M×Zi to state 〈sk, zk〉 of M×Zk, and a transition eki from
〈s′k, z′k〉 ofM×Zk to 〈s′i, z′i〉 ofM×Zi. Since zi (and z′i) are in a different components than zk (and z′k) then zi 6= zk
(and z′i 6= z′k). Therefore the transitions eik and eki could be present in the MRgP only if in the region graph there
were at least an edge from zi to zk and from z′k to z′i, but this will imply that {Zj} is not an acyclic set of components,
which violates the hypothesis.

Using Theorem 3 we can then prove the correctness of Algorithm 3.

Theorem 4. Algorithm 3 correctly computes the probability of eventually reaching the > state of a MRgPM×Z

Proof. Since the Component Method was already shown to be correct [17], we only need to show that 1) we are using
a set of components which is acyclic and that it is a partition of the state space, and that 2) the input and output states
of the components are correctly built and used by the on-the-fly technique.

Theorem 3 proves point 1, since we know that the set of components is acyclic and that the components are a
partition of the state space, since {Zj} is a partition of the region graph Z . Note that the {Zj} z-states constitute a
partition, while the {Ẑj} do not, exactly as for the MRgP components.
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To prove point 2 we only need to show that, for each component, the correct set of states in the augmented set and
in the frontier is identified. The MRgP componentM×Zj considered in each iteration of the algorithm is built as the
synchronized product ofM and Zj , where, according to Def. 18, the construction of the region graph Zj is based on
the Zj states, and on the states of Ẑj and frontier(Zj).

Correct Augmented set: Def. 9 states that the augmented set of a MRgP component includes all states reachable
from the component through a path of one or more exponential events that do not preempt a general event. Ẑj includes
all z-states reachable through a →I∅ edge from a z-state in Zj , which are exactly the edges that accepts Markovian
moves that do not preempt a general event. Since the construction ofM×Zj is based on the region graph Zj , which
includes the augmented set and the frontier of Zj , then M×Zj will include all the states of the MRgP component
augmented set.

Correct Frontier Set: according to Def. 10, the frontier in a MRgP component is the set of states reachable in one
step from the augmented set of the component (through a Q, Q̄, or ∆ entry). If the whole MRgP is built, determining
the frontier is a trivial task, but since in Algorithm 3 the full MRgP is not available, we need to be sure thatZj includes
all the z-states that, in the synchronized productM×Zj , will allow to correctly reach all frontier states, which can
be done by inspecting all the rules of the M×Z construction in Def. 13. The only non trivial part is the closure
construction, in which the end state of a transition that preempts the clock or that lets the time elapse is determined
by following the longest path through boundary edges, which may pass through different regions. This is mimicked,
in the definition of frontier(Zj), by including in the frontier the set of z′ z-states identified by the atbound function,
which are all the z-states potentially reachable through a path of boundary edges. The reason while this is required
is better explained through an example. Assume that in the region graph there is a path z →e z

′ →B · · · →B z′′, and
that z ∈ Ẑj and z′, . . . , z′′ 6∈ Ẑj . From a state 〈s, z〉 in the synchronized product we may end up, through the closure
computation, to either 〈s, z〉 or any of 〈s, z′〉, . . . , 〈s, z′′〉, depending on the state propositions associated to s and the
state proposition expressions on z, z′, . . . , z′′. Before the actual construction ofM×Zj takes place we do not know
in advance the properties of any possible state s combined with z. Therefore all the z-states {z′, . . . , z′′} have to be
considered as potentially reachable z-states in the component frontier from the time-elapse edge z →e z

′.

Note that in the proof we do not assume that the Component Method and the on-the-fly method work with the
same set of components, as indeed this is not true as shown in Section 6.

5.2. On the fly algorithm, backward

Pseudocode of Algorithm 4 describes the backward on-the-fly model checking method. The structure of the
procedure is similar to Algorithm 2 and the component construction is similar to that of Algorithm 3, with three
main distinctions: 1) subsets are evaluated in the opposite order of the forward case, from the > state to the initial
components; 2) computation follows the backward formula of Equation (3); and 3) obviously the construction of
the synchronized process M×Zj for a component Zj is forward, but, for the backward on-the-fly algorithm, this
construction does not know the set of initial states (the Hj sets of states with non-null probability of Algorithm 3)
since, in backward, they are not known. The construction is therefore based on a set of potential initial states: the set
S0 of all states 〈s, z〉, in which s |= Λ(z). Working with potential states may have performance implications, as will
be discussed in Sections 7.3 and 7. In any case, the number of MRgP states is bound by |S| · |Ẑj |, for every subset Zj .

Example 15 (Execution of Algorithm 4). Figure 8, bottom part, depicts, in the order, the components built and solved
by the backward on-the-fly algorithm. The first component is built from Z4, but since the reward of the frontier states
(⊥) is null the component is built but the solution is skipped. The second component is built from Z3, and again no
solution is computed since all states have a null reward. The third component is built from Z2: > is initially assigned
a reward of 1, all the other states get 0. The computation then assigns a non-null reward to all states, and leaves
unchanged the rewards of the frontier states (> and⊥). For the fourth component (the one built from Z1), the frontier
has only 〈s4, z3〉, and therefore its reward is used in the backward computation for the fourth component. At the
end the computed reward vector contains, for each state, the probability of eventually reaching >. Note that OTF
backward builds larger components than OTF forward (compare components in Figure 8(6) and (7) with those in 8(4)
and (3)), but it may solve a smaller number of components, since when the input reward is null the solution is skipped.

The correctness of the backward on-the-fly algorithm is proved by the following theorem:
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Algorithm 4 Pseudocode of the backward on-the-fly model checking method.
function MODELCHECK-OTFBWD({Zj} components of Z)

r(j) : S × Z → R . sparse vector of per-state acceptance probabilities
r(j)[>]← 1
Identify a DAG of {Zj} components of the states of Z and build the corresponding {Zj} as per definition 18.
for each {Zj} of Z in backward topological order do

Construct, as per definition 19,M×Zj(S0), where S0 = 〈s, z〉 : z ∈ Zj ∧ s |= Λ(z).
Compute the reward vector ξ(j) forM×Zj states, starting from the frontier rewards r(j), if r(j) 6= 0.
r(j+1) ← ξ(j) + r(j)

end for
r(K)[s] contains Prob{s reaches >}, for all s ∈ S.
return r(K)

end function

Theorem 5. Algorithm 4 correctly computes, for all states inM×Z , the probability of reaching the > state.

Proof. The proof takes advantage of what has already been proven for the forward case. Indeed it was already shown
that theM×Zj construction correctly computes the augmented set and the frontier states of the component. The only
issue is whether the use of a potential state space may impair the computation. Assume the full state space S has been
computed a-priori, and let Sj be the set of states 〈s, z〉 such that z ∈ Zj . Since s |= Λ(z) is only a necessary condition
for 〈s, z〉 to be a reachable state, clearly the algorithm considers a set of initial states which is a superset of all the
states in Sj that have a transition incoming from a 〈s′, z′〉 state with z′ 6∈ Zj . Consequently, the states of M×Zj
are a superset of Sj . To prove that the presence inM×Zj of a state 〈s, z〉 6∈ Sj does not alter the computation, we
can observe that the algorithm, when computing the reward vector ξ(j) forM×Zj states (starting from the frontier
rewards r(j)), can indeed assign a reward also to states that are not reachable from any initial state of the MRgP. This
reward may contribute to the reward of other non-reachable states, but clearly the reward of an unreachable state 〈s, z〉
cannot contribute to the backward computation of the reward of a reachable state (which will impair the algorithm
correctness), since this will imply that 〈s, z〉 is reachable.

5.3. Reduction based on non-useful z-states

The same optimization proposed in Section 4.1 for theM×Z construction can be applied to eachM×Zj process
used by the OTF technique. For the forward case theM×Zj construction is modified to a (M×Zj)Red one, as was
done for theM×Z construction, to account for tagged z-states as per Equation 6. This implies that all MRgP states
〈s, z〉 in which tag(z) = NK are mapped to ⊥ through the closure and fin functions.

Example 16 (Modified execution of Algorithm 3.). When the optimization is in place only the first two components of
Figure 8, upper part, are built and solved. Indeed the second component starts with a non-null probability in 〈s4, z3〉
and this probability ends-up in > and in ⊥, since tag(z4) = NK . As a consequence the vector H3 of the initial
states of component Z3 is empty and theM×Z3(H3) component is not built. The same situation holds for H4 and
M×Z4(H4).

In addition, since the initial set S0 is defined with the fin function, its content may be different in Algorithm 4
when considering (M×Zj(S0))Red instead of (M×Zj(S0)).

Example 17 (Modified execution of Algorithm 4.). When the optimization is in place the backward OTF solution for
our running example (Figure 8, bottom part) does not buildM×Z4 since the set S0 only includes states of z-state z4,
and tag(z4) = NK , therefore S0 reduces to ∅. Same forM×Z3.

5.4. Number of generated states: forward vs backward, component vs OTF

There is one intrinsic difference between the forward and backward solution: backward provides the Sat-set of
the CSLTA formula, while forward concentrate on satisfaction of the initial CTMC state. The MRgP construction
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starts therefore from a single state for the forward approach, and from a set of potential initial states in the backward
one. For the component method the solution approach, whether forward or backward, has no impact on the number of
generated states, as the state space construction is always forward and, indeed, when the set of potential initial states
reduces to the initial state of the forward case, the two Algorithms 1 and 2 generate the same number of states. A
similar consideration applies when the two algorithms are modified to account for non useful z-states based on the
M×ZRed construction.

OTF forward also builds the state space forward (as for the forward and backward component method): the fact
that components are generated one at a time reduces the amount of total required memory, but does not reduce the
number of visited states. OTF backward is instead very different: components are generated backward, based, for
each component, on a set of potential initial states that are identified as all states that satisfy the Λ condition. If some
of these potential states reach > but are not reachable from any initial state of the MRgP, then the difference in terms
of number of generated states may be significant, as we shall see in one example of Section 7.

6. Reasoning about components: a modified Component Method and a modified OTF technique

Although any acyclic set of components ensures that P is in RNF as per Equation (1), the work in [17] provides
evidence that the choice of the components can heavily influence the Component Method performance. Following [30]
we consider three component classes, based on the cost of computing the component outgoing probability (component
solution for short). A components is of class CE if no state of the component enables a general event: the component
is a CTMC and the computation of the outgoing probabilities amounts to computing the steady-state solution of the
frontier states. A component is of class Cgk if the only general event is gk and the firing of the general event or
its preemption leads to a state of another component: the computation of the outgoing probabilities was shown to be
reducible to a transient solution at time δk of a CTMC generated from the component. In all other cases the component
is of class CM , and the computation of the outgoing probabilities requires the (matrix-free) solution of a MRgP.

Example 18 (Component classification and solution costs). The MRgP of Figure 3(D) has 4 components. Com-
ponent S1 is of class CM and the probability of reaching the frontier states (either ⊥ or the state in S2) is computed
through a (matrix-free) steady-state solution of MRgPR1. S2 is of class Cg1 , since all blue and red arcs (clock bound-
aries and CTMC moves matched by a DTA edge with a clock reset) lead to states out of S2. The outgoing probability
computation corresponds to the solution at time α of the component (which is a CTMC transient solution). S3 is of
class Cg2 and the outgoing probability computation corresponds to the solution at time β−α of the component (which
is again a CTMC transient solution). S4 is of class CE , since there is no clock boundary, and its outgoing probability
computation requires a CTMC steady state solution.

The experiments in [17] suggest that working with the smallest components or with very large components may
lead to inefficiency, and therefore the paper defines an optimality criteria for component aggregation, recalled in the
following definitions. The paper identifies an heuristic for the construction of an optimal partition, while an optimal
solution based on linear integer programming is given in [30].

Definition 20 (Uniform component). A MRgP component Si of class C (C being either CE , CM or Cgk , 1 ≤ k < m)
is uniform iff the set Si is not decomposable into an acyclic group of sub-components of classes different from C.

Definition 21 (MRgP valid partition). A set of components of a MRgP is a valid partition iff (1) the set of components
forms a partition of the state space; (2) the components are in acyclic relation; and (3) each component is uniform.

Acyclicity ensures that the partition leads to matrices in RNF form, that can be used for the Component Method.
Component uniformity ensures convenience, i.e. aggregation does not change the complexity of the required solution.

Definition 22 (MRgP component optimization problem). The MRgP component optimization problem consists in
finding a valid partition of the MRgP with the smallest cardinality.

Example 19 (Optimal partitioning). Figure 9 illustrates four examples of component choice for the same MRgP. The
enabled general events are indicated on top, and the three different transition types are depicted with different arrow
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Figure 9: Different component identification for the same MRgP.

styles. Components are shown as dotted rectangles of states, and have a Si label. Case (A) shows a MRgP partition
that is not acyclic, since there is a transition from component S1 to component S2 (s2 → s3), and a transition from S2
to S1 (s5 → s4). This partition is not suitable for the Component Method. Case (B) shows an acyclic MRgP partition,
suitable for the Component Method. S1 is of class CM , since preemption of g1 (Q̄ transition ) and firing of g1 (∆
transition) lead to states inside the partition. S1 could be further decomposed into an acyclic set of components, (made
by states {s1} and {s2, s3}) of class Cg1 , meaning that S1 is non-uniform. In case (C) the considered components
are the strongly-connected-components of the MRgP graph. The partition is acyclic and uniform: S1,S2 and S3 are
of type Cg1 , while S4, S5 and S6 are CE . In this case the components form a DAG, they can be solved with the
cheapest solution technique, but the Component Method may require the solution of many small components, with
the associated overhead. Indeed the partition is non-optimal according to Definition 22. Finally, case (D) has three
components: S1 and S2 of type Cg1 and S3 of type CE . Note that if S1 and S2 are merged in a single component, this
component will be of CM type (due to the transitions out of s1). Partition (D) depicts an optimal MRgP partition.

The original definition of the three component classes given in [30](Sec.2), can be simplified when the MRgP is
aM×A orM×Z , based on the observation that clock resets always lead to states of Sg1 , and that the firing of gk
without clock reset enables gk+1.

Definition 23. A component Sj is classified in exactly one of the following m+ 2 classes:

[Class CE] If Γ(Sj) = {E}.
[Class Cgk ] 1 < k ≤ m, if Γ(Sj) = {gk},
[Class Cg1 ] If Γ(Sj) = {g1} ∧ Q̄i · Ii = 0. (the single general event g1 is enabled and Q̄ transitions exit from Sj).
[Class CM ] Otherwise

Algorithms 1 and 2 can be modified to work with an optimal set of components, that is to say components com-
puted by the MRgP component optimization problem of Def. 21. Computing an optimal partition is not possible in
OTF, since the full state space is not available, but, again, we can observe that the structure of the M×Z MRP is
strongly influenced by the structure of Z and we can therefore envision to define a classification for the components
of the region graph, based on what could be the complexity of the resulting MRgP componentsRj =M×Zj .
Definition 24. A component Zj of the region graph Z is classified in exactly one of the following m+ 2 classes:

[Class DE] iff, ∀〈l, c〉 ∈ Zj , c = [δm,∞).
[Class Dgk ] with 1 < k ≤ m, iff, ∀〈l, c〉 ∈ Zj , c = [δk−1, δk).
[Class Dg1 ] iff ∀〈l, c〉 ∈ Zj : c = [0, δ1) and does not exists an edge (l, c) →Ix (l′, c) and does not exists a path

(l, c)→e (l, next(c))
∗→B∅ (l′, next(c))→Bx (l′′, c)

[Class DM ] otherwise.

The definition of Dg1 is slightly complex (as for the Cg1 case), since it is necessary to exclude the presence in Zj
of a reset edge in the component, either by an inner edge or by a time-elapse edge followed by a path of boundary
edges that goes back to the same Zj component.
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Example 20 (Components of Z). The dotted rectangles in Figure 6(A) identify an acyclic set of components of Z .
Component Z1 = {z0, z1, z2} is of class DM , Z2 = {z3} is of class Dg1 , Z3 = {z4} is of class Dg2 and Z4 = {z5}
is of class DE . Final z-states (like z6) can be considered as a separate component since they are absorbing. Note that
{z0, z1, z2} have to be in the same component to ensure acyclicity.

The definition of uniform, valid, and optimal partition can be extended to the Z components.

Definition 25 (Uniform region graph component). A region graph component Zj of class D (with D being either
DE , DM , Dg1 or Dgk , k > 1) is uniform iff it is not decomposable into an acyclic group of sub-components of classes
different from D.

Definition 26 (Region graph valid partition). A partition {Zj}1≤j≤J of Z is a valid partition iff (1) the J components
are in an acyclic relation; and (2) each component Zj is uniform.

Definition 27 (Region graph component optimization problem). The region graph component optimization problem
consists in finding a valid partition {Zj} of the set of z-states of Z with the smallest cardinality.

The above problem is solved, using the technique presented in [30], as in the case of the MRgP component
optimization problem of Definition 22.

Example 21 (Optimal components of Z). The components of Z identified by the dotted rectangles in Figure 6(A)
constitute an optimal set of components of Z . As observed before {z0, z1, z2} have to be in the same component to
ensure acyclicity, and all the other z-states go into separate partition elements to ensure uniformity.

Algorithms 3 and 4 can then be modified to work with an optimal set of components of Z , according to the
definition above. Note that the size of Z is typically much smaller than that ofM×Z and therefore the computation
of an optimal set of components is usually feasible (for example by reducing the optimization to the solution of the
ILP problem presented in [30] for MRgP), while forM×A in most cases only a sub-optimal partition can be found,
based on the heuristic for MRgP defined in [17]. A natural question then arises: the components {M×Zj}1≤j≤J ,
generated from an optimal set of components {Zj}1≤j≤J are an optimal set of component for the MRgPM×Z? As
we shall see this is not true, and therefore we propose next a modified OTF technique.

6.1. A modified OTF solution

Let us consider the three examples of Figure 10: in the first column there is a region graph Z , with the optimal set
of Zj components identified by dotted lines, while the CTMCM is depicted at the top of the figure. In the second
and third columns there are the MRgPM×Z built by the OTF and by the Component Method, respectively. We have
chosen the example so that the M×Z states are the same for the two techniques, but the components considered,
identified again by the dotted line, are not the same, either in number or in type. The three region graphs have two
z-states z0 and z1, both in the first clock region [0, α), and they differ only in the edges connecting z0 and z1.
Case A: the region graph has a single component Z1 of type DM , since there is a reset edge from z1 to z0. Conse-
quently the OTF algorithm builds a single MRgP component, as shown in the second column, which is of type Cg1 ,
since the reset edge z1 →Ix z0, accepting action b, is never triggered by the CTMC. Same construction is performed
by the Component Method. Case A shows that the region graph component Z1 of class DM can produce a MRgP
component which is not necessarily of class CM , which suggest that, after a M×Zj component generation, it is
necessary to assess its class to choose the simplest applicable solution technique.
Case B: the region graph has two components Z1 and Z2, both of type Dg1 . Since there are two components, OTF
builds first thecomponent M×Z1, solves it, and then it builds M×Z2 and solves it. Both components are of type
Cg1 . The Component Method builds the components after having built the full state space, which allows to identify
an optimal partition with a single component of type Cg1 , as illustrated in the third column. In this second case, OTF
fails to identify the optimal aggregation, because, although the reset edge z0 →Ix z1 is never triggered by M, its
presence in Z separates Z1 from Z2 in the region graph partition. This shows that an optimal region graph partition
does not necessarily result in a optimalM×Z partition.
Case C: the region graph has a single component Z1 of type DM . Since there is a single component, OTF builds a
single MRgP componentM×Z1 and, due to the clock reset associated to the a and b labelled edges, it classifies it
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Figure 10: Relationships between {M×Zj}1≤j≤J and the MRgP components {Ri}1≤i≤I ofR =M×Z .

as CM . The component based technique is instead able to recognize that in the MRgP there is no cycle, since the
b labeled edge of Z is never used in the M×Z construction (M has no transitions labelled b) and identifies two
components of class (Cg1 ).

The three cases above represents rather different situations: case A tells us that OTF should classifies ex-novo
each component, without relying on the classification of the region graph component class. Case B shows that, due to
the local view of region graph partition, OTF algorithms may miss optimizations based on components aggregation.
Case C shows that OTF again may miss optimizations based on components dis-aggregation, due to loops existing in
Z but not inM×Z . Clearly the inefficiency incurred in case B cannot be easily corrected while the inefficiency of
case C can be avoided. This inefficiency stems from the presence of a non-uniform OTF component of class CM , and,
by applying the Component Method on each OTF componentM×Zj of class CM allows us to derive a sub-partition
of the component, which is uniform by definition.

Algorithm 5 shows the modified OTF for the forward case: in bold is the addition with respect to Algorithm 3.
Note that the component is already built, therefore the Component Method is applicable.

Algorithm 5 Pseudocode of the refined forward on-the-fly model checking method.
function MODELCHECK-OTFFWD+COMP({Zj} components of Z , s0 : initial state)

π(0) : S × Z → R . sparse vector of state probabilities
π(0)[〈s0, l0, 0〉]← 1
Identify the set {Zj} of optimal components of Z , taken in topological order.
for each subset Zj in Z do

Hj = all the tuples 〈s, z〉 with π(j−1)[〈s, z〉] 6= 0 ∧ z ∈ Zj
Let IHj

be the filtering matrix of Hj

ConstructM×Zj considering Hj as initial states and IHj · π(j−1) as initial distribution.
Compute the probability µi outgoingM×Zj and

reaching states 〈s, z〉 ∈ frontier(M×Zj), using Algorithm 1 ifM×Zj is of type CM
π(j) ← (I− IHj

) · π(j−1) + µi
end for
return π(K)[>]

end function

Algorithm 6 shows the modified OTF for the backward case, where, again, the new part is reported in bold. In this
case the algorithm to use is the backward Component Method.
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Algorithm 6 Pseudocode of the refined backward on-the-fly model checking method.
function MODELCHECK-OTFBWD+COMP({Zj} components of Z)

r(j) : S × Z → R . sparse vector of per-state acceptance probabilities
r(j)[>]← 1
for each {Zj} of Z in backward topological order do

Construct the synchronized processM×Zj , assuming as initial states all 〈s, z〉 : s |= Λ(z).
Compute the reward vector ξ(j) forM×Zj states, starting from

the frontier rewards r(j), using Algorithm 2 ifM×Zj is of type CM
r(j+1) ← ξ(j) + r(j)

end for
r(K)[s] contains Prob{s reaches >}, for all s ∈ S.
return r(K)

end function

7. Numerical results and model checking tool

To test the impact of the various model checking methods described in this paper, we have developed an extended
version of the MC4CSLTA tool [14]. The tool is part of the GreatSPN framework [31], and is integrated in its graphical
user interface. CTMCs are constructed from Petri net models (specifically from GSPN [32]), and DTAs are drawn
directly in the GUI. DTAs are defined in a parametric manner: when the user requires to model check a GSPN N for
a given DTAA, the DTA is instantiated by associating a specific marking expression ofN to each atomic proposition
of A, and a transition name of N to each action name of A. From the GUI is it also possible to play a joint “token-
game”: starting from an initial marking the user interactively selects a transition of the GSPN to be fired and the
interface displays the new marking (on the GSPN) and the edge that accept that firing (in the DTA), if any.

A virtual machine with the tool pre-installed and all the model data needed to reproduce the results can be found
at http://www.di.unito.it/˜greatspn/VBox/GreatSPN-8.0.ova, as a VirtualBox image. Instructions are
found in the Desktop/CSLTA directory. The data presented in this paper have been computed on the Occam ma-
chine [33], having 128GB of free memory, fixing a time limit of 1 hour for each algorithm run. The tool implements
the model checking algorithms of table of Figure 1.

This section is meant to experimentally answer the following questions:

Q1. z-states tagging. What is the impact of building the MRgP based on the tagged region graphM×ZRed, instead
of the standardM×A construction initially proposed for CSLTA?

Q2. Forward vs Backward. What differences may arise in performing forward or backward model checking of CSLTA?
Is the state space different? Are the considered components different?

Q3. Component vs Full. Is the Component Method (Comp) beneficial over the standard MRgP solution (Full) in all
cases?

Q4. OTF. Does the On-The-Fly (OTF) method reduce the treated state space? Is it advantageous in general?
Q5. OTF+Comp Is the recursive refinement of the OTF method (OTF+Comp) of Section 6.1 useful?
Q6. OTF on CSL. Is the performance of a CSLTA model checker based on OTF comparable to that of a state-of-the-art

CSL model checker on CSL formulas?

The tests consists of two models and various CSLTA DTAs to asses the first 5 questions, and a model and two
different CSL Until queries for comparison with the CSL model checker of Prism [8] and Storm [11]. Each DTA
corresponds to a CSLTA property and the results of its model checking are reported in the same format: an upper
table that contains the info on the generated states, components, and their types and a middle and lower tables that
report, respectively, the solution time and the memory occupation for all algorithms presented in this paper, using the
MC4CSLTA model checker. All data is reported for both forward and backward. Solution times include the time to
verify the CSLTA properties, excluding the time to load the CTMC and the DTA from the external files, and including
the solution of the MRgPs. The reported memory is the whole memory allocated by the process, in MBytes. Partitions
are computed using the method described in [17].
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TERM=noterm DSPN-Tool-Release -load compact_FMS -mpar N 8 -epsilon 1.0E-7 -i -gmres \ 
   -dta-path "/Users/elvio/Desktop/SVN-Unito/CSLTA-Journal/imgs/" -dta multiple_compl.dta \ 
   -bind " t1=5,t2=10,t3=15 | ew4=ew4 | Fail=#SpareBroken>0 || #M3ko>0 " $@ \ 
   -fmc -bmc \ 
   -scc -fmc -bmc \ 
   -noscc -zdta -fmc -bmc \ 
   -scc -fmc -bmc \ 
   -on-the-fly -fmc –bmc 
 
s*L*C -> MxA (A,B)    s*z -> MxZ (C,D) 
togliere frontiere dalle componenti on-the-fly 
scambiare memory occupation e solution time 
 
   Forward Backward 
         

N  |Z| states 
components 

states 
components max 

size 
components 

states 
components 

states 
components max 

size 
components 

CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM 
10 42636 15 222682 1 3 0 75384 0 3 0 55672 0 3 0 223122 1 3 0 75494 0 3 0 55794 0 3 0 
20 519211 15 2685182 1 3 0 899734 0 3 0 671297 0 3 0 2686022 1 3 0 899944 0 3 0 671519 0 3 0 
30 2388736 15 12303482 1 3 0 4107034 0 3 0 3075872 0 3 0 12304722 1 3 0 4107344 0 3 0 3076194 0 3 0 

ISolution time (in seconds) for the 10 methodologies: 
N 

    

 

    

 

10 8.13 3.69 3.08 1.57 0.94 8.99 4.18 4.15 1.82 1.11 
20 119.22 49.10 47.27 24.63 13.55 70.70 50.70 48.91 24.32 15.48 
30 468.71 188.64 159.43 78.76 46.94 276.48 195.29 120.03 83.17 46.63 

IMemory occupation (in MBytes): 
N 

    

 

    

 

10 198.18 159.87 58.75 73.11 47.16 182.45 119.46 59.12 56.80 50.14 
20 2353.62 1934.27 1040.09 930.75 563.28 2465.85 1600.22 872.36 837.68 601.64 
30 10819.30 8841.74 4806.00 4333.68 2632.25 11357.54 7322.23 4974.15 4269.90 2794.29 

 
 
  

M⇥A M⇥ZRed OTF M⇥A M⇥ZRed OTF

|M|

FullAfwd CompA
fwd FullZfwd CompZ

fwd OTFfwd FullAbwd CompA
bwd FullZbwd CompZ

bwd OTFbwd

FullAfwd CompA
fwd FullZfwd CompZ

fwd OTFfwd FullAbwd CompA
bwd FullZbwd CompZ

bwd OTFbwd

Table 1: Performance result of the DTA 11(a) on the FMS model.

7.1. Flexible Manufacturing System model

The first test is on a Flexible Manufacturing System (FMS) model, taken from [34]. The model represents a
system where N pallets are treated in a sequence of four machines, that can break down. The model is parametric in
the number N of circulating pallets, and it is ergodic. The Petri net model can be found in Appendix A and on the
provided virtual machine. Figure 11 shows three DTAs that define three CSLTA path properties for the FMS model.
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Figure 11: DTA used for the performance test on the FMS model.

Results for FMS, first DTA. DTA(a) accepts the set of paths where the event ew4 (completion on the M4 machine)
happens three times in a row without encountering a failure, and each occurrence happens before a given time bound
(t1, t2 and t3) elapses. The clock is never reset. Its model checking will therefore compute the probability that
Machine M4 terminates three pieces in a row in within the three given time bounds.

Table 1 presents the model checking results for different values ofN . The structure of this table is common for the
whole set of results. The upper table reports, in the order: the parameter on which the test is performed, the number
|M| of CTMC states, the number of clock regions |Z|, information for theM×A andM×ZRed construction (state,
number and types of components), and, for OTF, the size of the largest component and the number and types of
components. All techniques are reported for the two cases: forward (columns on the left) and backward (columns on
the right). The central and the lower tables report the solution time and the memory occupation for MC4CSLTA tool,

27



for the 5 × 2 (forward and backward) solution techniques summarized in Figure 1. For all algorithms based on the
region graph (OTF and algorithms that useM×Z) , the optimization based on the tagging of the z-states is in place.
From the upper table in Table 1 we can observe that the region graph has 15 states, |M|, the number of states in the
CTMC being verified, goes from a few thousands to more than two millions, and that the MRgP built on theM×A
is about 5 times as large as |M|. From this table we can answer the 5 questions as follows.

Q1 - z-states tagging can be observed by comparing the states of the columns labelledM×A against those labelled
M×Z and the solution times and memory occupation of the columns marked with a superscript A with the columns
of equal name but superscript Z . z-states tagging in this model has a visible impact: |M×Z| (the number of states
in the MRgP generated fromM×Z) is one third of |M×A|: inM×A there are many states that do not lead to >,
since it is possible to remain in locations l0, l1 and l2 beyond the time limits t1, t2 and t3 specified on the DTA edges.
z-states tagging allows us to reduce also the number of components:M×A has 4 components (one CE and three Cg ,
each one of size 3 075 872), while M×Z has only three components of size 3 075 872, 687 444 and 343 718. Not
surprisingly, the reduction in the number of components and in the number of states per component is matched by a
reduction in solution time both with forward (compare the column marked FullAfwd with that marked FullZfwd), and with
backward techniques (columns FullAbwd and FullZbwd); similar reduction is obtained for the Comp methods.

Q2 - Forward vs Backward. The difference is rather limited: there is a small difference between the state space
generated from the single, given initial state, as does the forward technique, and the state space generated by consid-
ering all possible feasible initial states (as does the backward technique). The difference is small for all three state
space generation techniques (M×A,M×Z , and OTF) and it does not significantly influence the solution time and
the memory occupation. Observe that FullAfwd has larger solution time than FullAbwd (almost the double for N = 30),
despite the fact that a single iteration in backward is more expensive than a forward one. The better performance of
backward is due to the fact that the backward MRgP solution requires less iterations than the forward case, for all
techniques.

Q3 - Comp vs Full. Comp performs better than Full in both the forwards and backwards techniques, and indepen-
dently of the state space construction (superscriptA orZ). This means that the time spent for building the components
is negligible with respect to the advantage of solving four (or three) smaller components instead of a single large one
as in Full. It may appear somehow counter-intuitive that Comp performs better than Full also in terms of memory
occupation, but this due to the fact that working with the full MRgP requires larger solution vectors than working with
components. Moreover the effect is amplified by the use of the GMRES [35] algorithm for the computation of the
steady-state solution, for which we retain 30 vectors for the Krylov subspace.

Q4 - OTF. Both OTFfwd and OTFbwd build the same number of components as the corresponding Comp methods,
and of the same type. As reported above a single component counts for 75% of the full state space and this is certainly
not a very good condition for OTF, that works better when there are components of similar size: nevertheless OTF
performs significantly better than Comp both in memory (as expected) and in time. Since Comp and OTF, for this
model, solve the same components, this reduction in time is related to the component identification and construction:
OTF computes the components of the region graph Z , which has only 15 states, for any value of N , while Comp
computes the components of the whole state space (which for N = 30 has more than 4 millions states).

Q5 - OTF + Comp. does not apply since there is no CM component (there is no clock reset in the DTA).

Results for FMS, second DTA. The DTA of Figure 11(b) accepts all executions with K contiguous loads on machine
M1 that respect a given inter-event time constraint. Indeed DTA (b) counts K occurrences of the load event (a new
pallet enters the M1 machine) and at the k-th occurrence, the load event must happen before a time bound 10 × k,
with the clock being reset at every event occurrence. When a load event occurs and the counter k is less than K, the
DTA stays in location l0 and increments the counter (k++). If the counter reachesK and a new load event is observed,
the DTA moves to the final location l1. The DTA is here represented in a compact manner: in the tool increasing K
linearly increases the number of locations, and this example has been chosen to study the behaviour of the algorithms
for an increasing number of z-states and components.

Table 2 reports the results for this DTA for different event counts K. The table follows the same structure as the
previous example, except for the missing column of the CTMC states which is constant in all runs (180336 states).
These results allows us to investigate the questions Q1, Q2, Q3, and Q4.

Q1 - z-states tagging. The impact in percentage is more limited than in the previous example, nevertheless the
absolute difference |M×A| − |M×Z| can grow rather big (more than 16 millions states for K = 25). Note the

28



 
 

Esperimento 2: 
 
 
Data for N=15, CTMC states =180336, build time: 12s 

  Forward Backward 
        

K |Z| states 
components 

states 
components max 

size 
components 

states 
components 

states 
components max 

size 
components 

CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM 
5 30 21920 1 15 0 16316 0 15 0 2227 0 15 0 5410082 1 15 0 2705042 0 15 0 180338 0 15 0 

10 110 857518 1 55 0 673455 0 55 0 29637 0 55 0 19836962 1 55 0 9918482 0 55 0 180338 0 55 0 
15 240 8144546 1 120 0 6521294 0 120 0 140472 0 120 0 43280642 1 120 0 21640322 0 120 0 180338 0 120 0 
20 420 29624786 1 210 0 22751374 0 210 0 180338 0 210 0 - - - - 37870562 0 210 0 180338 0 210 0 
25 650 60121986 1 325 0 43490014 0 325 0 180338 0 325 0 - - - - 58609202 0 325 0 180338 0 325 0 

ISolution time (in seconds) for the 10 methodologies: 
K 

    

 

    

 

5 1.42 0.40 1.19 0.34 0.28 1616.45 103.00 734.60 62.15 49.11 
10 388.98 20.26 400.95 16.52 10.03 - 572.70 - 351.39 268.88 
15 - 173.10 - 136.06 81.98 - 1109.98 - 596.26 454.54 
20 - 732.39 - 597.03 332.31 - - - 1161.76 784.28 
25 - 1457.20 - 1169.44 565.82 - - - 1807.00 1120.04 

IMemory occupation (in MBytes): 
K 

    

      
5 35.71 29.09 35.16 28.38 24.50 5542.26 3482.73 3293.44 2357.66 355.88 

10 937.61 648.30 786.16 574.22 39.90 - 12868.47 - 8621.42 806.00 
15 - 6379.68 - 5704.39 150.43 - 28184.15 - 18796.57 1537.07 
20 - 22723.17 - 19802.47 221.62 - - - 32895.46 2554.07 
25 - 44993.45 - 37818.35 229.37 - - - 50909.42 3855.65 

 
  

M⇥A M⇥ZRed OTF M⇥A M⇥ZRed OTF

FullAfwd CompA
fwd FullZfwd CompZ

fwd OTFfwd FullAbwd CompA
bwd FullZbwd CompZ

bwd OTFbwd

FullAfwd CompA
fwd FullZfwd CompZ

fwd OTFfwd FullAbwd CompA
bwd FullZbwd CompZ

bwd OTFbwd

Table 2: Performance result of the DTA 11(b) on the FMS model.

impact on the size of the solvable models for the backward case: Comp based on A can solve up to K = 5, while
Comp based on Z can solve up to K = 25.

Q2 - Forward vs Backward. The difference in this case is significant, especially for small values ofK. For instance
with K = 5, |M×A| built by the backward techniques is more than 200 times larger than that built by the forward
techniques. When all CTMC states are considered as initial states (as in backward), the synchronized process may
trigger many combinations of 〈s, z〉 pairs that are not reachable from s0. Indeed the DTA observes sequences of load
events, which are just a specific sequence when starting from a single state s0, but it is close to the full cross-product
of S and Z when considering all initial states, because most S×Z combinations happen to be reachable.

Q3 - Component vs Full. These MRgPs have a large number of components. An analysis of the size of the
components reveals that, in forward, the size of the biggest component increases with K, up to |M|, in backward it
is fixed, and equal to |M|, while in Full it keeps growing with K. These are favourable conditions for Comp, that
indeed outperforms Full both in the forwards and backwards techniques in time and space. In Comp the state space
is partitioned into multiple components of Cg class (up to 325 components for the K = 25 case), which are more
efficiently solved than the whole MRgP (as done by Full). The table shows that, for K > 10, only the methods that
exploit components, like Comp and OTF, can model check the property in less than the imposed time limit of 1 hour.

Q4 - OTF. OTF is here clearly superior to both Full and Comp. In time there is a factor of about 2 between OTF
and Comp (less in backward), which is possibly due to the difference between computing the components for the full
state space or only for the z-states of the region graph. In memory OTF shows very good performance: in particular
OTF forward has a memory consumption of less than 0.3 GB against the 37GB of Comp. In this example OTFfwd is
significantly more efficient in memory than OTFbwd, despite the fact that they build, for large K, the same number of
components, of the same size (although in reverse order). This happens because of the way the vectors π and r are
managed in Algorithms 3 and 4. Vector π is multiplied by (I−Hj), which removes entries at every iteration. Vector
r instead accumulates the reward of every encountered state. This difference is visible only in this case, since each
component represents a small percentage of the state space.

Results for FMS, third DTA. The DTA in Figure 11(c) is similar to that in (b), but when machine M3 fails (condition
Brk is #M3ko 6= 0) the DTA goes and stays in location l′0, going back to location l0 only when the repair is completed.
After a repair the clock is reset. Table 3 reports the results of the model checking. Since the DTA may do a clock
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Esperimento 2 bis 
 
Data for N=5, CTMC states=4361 
  Forward Backward 
          

K |Z| states 
components 

states 
components max 

size 
components components 

states 
components 

states 
components max 

size 
components components 

CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM 
3 24 34894 2 6 2 34894 2 6 2 17446 0 0 3 8 9 2 52334 2 6 3 52334 2 6 3 17446 0 0 3 8 9 3 
4 40 65422 2 10 3 65422 2 10 3 21807 0 0 4 11 16 3 87222 2 10 4 87222 2 10 4 21807 0 0 4 11 16 4 
5 60 104672 2 15 4 104672 2 15 4 26168 0 0 5 14 25 4 130832 2 15 5 130832 2 15 5 26168 0 0 5 14 25 5 

ISolution time (in seconds) for the 10 methodologies: 

K 
    

 

 

    

 
 

3 14.76 17.71 14.76 17.66 18.16 17.86 82.24 60.70 79.38 60.62 57.43 56.33 
4 59.65 37.42 70.90 37.45 38.16 38.77 240.54 118.45 240.27 119.58 116.62 116.17 
5 145.47 66.61 147.23 68.91 72.08 71.99 455.44 197.67 408.20 213.63 212.70 197.98 

IMemory occupation (in MBytes): 

K 
    

 

 

    

 
 

3 38.28 28.06 38.32 28.10 29.08 32.20 62.73 38.42 59.52 38.38 27.95 32.58 
4 72.72 47.59 72.79 47.59 34.26 40.43 104.24 62.24 105.69 62.24 36.66 42.52 
5 113.75 74.51 113.84 74.51 40.94 47.07 165.86 91.80 168.00 91.87 43.90 50.89 

 
 
 
 
 
Gli state in CE nel caso OTF+Comp sono probabilmente le frontiere delle componenti  

M⇥A M⇥ZRed OTF OTF+comp M⇥A M⇥ZRed OTF OTF+comp

FullAfwd CompA
fwd FullZfwd CompZ

fwd OTFfwd
OTFfwd

+comp FullAbwd CompA
bwd FullZbwd CompZ

bwd OTFbwd
OTFbwd

+comp

FullAfwd CompA
fwd FullZfwd CompZ

fwd OTFfwd
OTFfwd

+comp FullAbwd CompA
bwd FullZbwd CompZ

bwd OTFbwd
OTFbwd

+comp

same as M⇥A same as M⇥A

Table 3: Performance result of the DTA 11(c) on the FMS model.

reset, there are components of class CM .
Q1 is not significant, since bothM×A andM×Z build the same MRgP and Q3 answer is consistent with what

observed in the previous models (Comp performing better than Full).
Q2 Forward vs Backward. The state spaces for the forwards and backwards techniques are different in size (as

in the previous examples), but in this case also the number of identified components is different: M×Z backward
has one component more thatM×Z forward, while OTF builds the same number of components in the forwards and
backwards techniques.

Q4 OTF. OTF builds K components of type CM . Taking as reference K = 5 forward (backward is the same),
OTF builds 5 CM components, while Comp identifies 2 CE , 15 Cg , and 4 CM . The analysis of the structure of the
components (not reported in the tables) reveals that OTF builds a single CM component which corresponds to the
union of the CE and Cg components used by Comp: we are indeed in the situation illustrated by case C of Figure 10.
Despite this poor construction of the components, the memory requirements of OTF are always better than that of
Comp and Full, and the solution times are aligned with that of Comp.

Q5 OTF + Comp. The presence of components of class CM allows us to investigate whether OTF refined, in
which Comp is applied to the solution of each CM component, is able to build a better component set of components
than OTF alone. Results are reported in the columns labelled “OTF + comp”). Taking as reference the forward
case, for K = 5, OTF refined creates 14 CE , 25 Cg , and 4 CM components, while Comp onM×Z works with 2
CE , 15 Cg and 4 CM . This is an instance of the situation identified as Case B in Figure 10: OTF, having only a
local knowledge, is not able to aggregate components that should be aggregated. Nevertheless the CM components
identified by OTF+Comp are exactly the same as those identified by CompZfwd. The additional work to build the
components of each Ri is balanced by the advantage of having to consider one CM (expensive) component less,
which leads to time and memory performances of OTF+Comp that are similar to those of plain OTF.

7.2. CLUE protocol model

The second test model is a Stochastic Petri net of the CLUE application protocol [36]. CLUE is an application
protocol for the negotiation of a telepresence session between multiple participants. After a session establishment
phase, the participants exchange messages upon a data channel in the form of XML descriptors. Each participant acts
both as a Media Provider (MP) and as a Media Consumer (MC). Network errors may happen at any time, and the
protocol allows at most R retry attempts, before terminating with a failure. The Petri net model, parametric in R, can
be found in Appendix A and on the provided virtual machine. The parameter R is the number of retries the client (or
server) is allowed to do before failing. Figure 12 shows the test DTAs used for the CLUE model. DTA(b) is actually
a CSL Until property.
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Figure 12: DTA used for the performance test on the CLUE protocol model.4) Esperimenti modello CLUE – confRespWithReset 
 
 
   Forward Backward 
           

R  |Z| states 
components 

states 
components max 

size 
components components 

states 
components 

states 
components max 

size 
components components 

CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM 
5 58854 5 74250 1 0 1 74250 1 0 1 74250 0 0 1 1 0 1 117710 2 1 1 117710 2 1 1 117710 0 0 1 2 1 1 
7 597553 5 751608 1 0 1 751608 1 0 1 751608 0 0 1 1 0 1 1195108 2 1 1 1195108 2 1 1 1195108 0 0 1 2 1 1 
9 3651781 5 4629084 1 0 1 4629084 1 0 1 4629084 0 0 1 1 0 1 7303564 2 1 1 7303564 2 1 1 7303564 0 0 1 2 1 1 

ISolution time (in seconds) for the 10 methodologies: 

R 
    

 

 

    

 
 

5 4.78 3.94 4.84 4.46 4.50 4.00 9.15 6.38 9.47 6.41 9.42 6.37 
7 86.43 73.07 88.01 66.35 82.72 60.92 186.49 102.18 188.11 91.35 181.16 86.10 
9 558.09 473.82 563.96 471.08 546.18 466.51 1156.24 685.77 1150.02 693.42 1210.30 691.55 

IMemory occupation (in MBytes): 

R 
    

 

 

    

 
 

5 56.58 72.58 56.62 72.62 72.71 85.63 85.78 75.37 85.83 77.38 86.30 77.30 
7 704.57 845.84 709.49 841.08 701.71 837.16 1070.62 994.05 1073.47 999.80 827.78 758.59 
9 4363.45 5099.11 4351.79 5095.48 4312.89 5029.86 6582.77 6094.85 6577.33 6087.29 5006.41 4635.64 

 
 
 
 
 
  

M⇥A M⇥ZRed OTF OTF+comp M⇥A M⇥ZRed OTF OTF+comp

|M|

FullAfwd CompA
fwd FullZfwd CompZ

fwd OTFfwd
OTFfwd

+comp FullAbwd CompA
bwd FullZbwd CompZ

bwd OTFbwd
OTFbwd

+comp

FullAfwd CompA
fwd FullZfwd CompZ

fwd OTFfwd
OTFfwd

+comp FullAbwd CompA
bwd FullZbwd CompZ

bwd OTFbwd
OTFbwd

+comp

same as M⇥A same as M⇥A

Table 4: Performance result of the DTA 12(a) on the CLUE model.

Results for CLUE, first DTA. DTA 12(a) accepts a path that stays in a ¬Term (not yet terminated) state and observes
a confRespRecv event (a configuration response message received) before time α without observing the error event
errConfRecv (unrecoverable protocol error). However, if the system moves to a Term state (which happens if more
thanR retry occurs), the automaton moves to location l1 and waits the CTMC to reach a ¬Term state, before resetting
the clock and restart. This property allows us to compute the probability of observing a configuration error, ignoring
multiple retries.

Table 4 reports the performance results of DTA 12(a), varying the retry value R, to investigate how the Comp and
OTF methods behave in presence of very few components. SinceM×A andM×Z have the same size, Q1 is not
relevant.

Q2 Forward vs Backward. The state spaces differ (backward case is 60% bigger than forward case). CompAfwd,
CompZfwd, and OTF-refined detect exactly the same component: one of class CM with 4 629 084 states. In backward
all algorithms detect a single large CM component of 7 303 564 states. This difference is reflected also on the time
and memory results, with backward requiring more memory and time than forward.

Q3 Component vs Full. Forward techniques uses only two components and the results show that there is still an
advantage in time, that comes at the price of a limited increase of memory occupation, indicating that Comp can be
used also in presence of only two components. In backward there are four components, and Comp performs better
than Full.

Q4 OTF. The component construction for Z observes a loop with reset between l0 and l1 that results in the con-
struction of a single DM component that includes all z-states with location l0 or l1, and of the degenerate component
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3) Esperimenti modello CLUE – Until 
 
 

   
   Forward Backward 
         

R  |Z| states 
components 

states 
components max 

size 
components 

states 
components 

states 
components max 

size 
components 

CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM CE Cg CM 
3 2209 6 6536 1 2 0 4373 0 2 0 2210 0 2 0 6536 1 2 0 4373 0 2 0 2210 0 2 0 
5 58854 6 174015 1 2 0 116435 0 2 0 58855 0 2 0 174015 1 2 0 116435 0 2 0 58855 0 2 0 
7 597553 6 1766430 1 2 0 1181992 0 2 0 597554 0 2 0 1766430 1 2 0 1181992 0 2 0 597554 0 2 0 

ISolution time (in seconds) for the 10 methodologies: 
R 

    

 

    

 

3 0.24 0.14 0.22 0.19 0.09 0.22 0.14 0.21 0.14 0.09 
5 14.03 4.55 11.14 3.71 2.26 9.10 4.78 8.34 4.05 2.15 
7 224.38 59.14 176.89 52.65 31.23 105.78 65.75 142.57 55.84 30.49 

IMemory occupation (in MBytes): 
R 

    

 

    

 

3 7.59 9.70 7.63 8.54 5.99 7.82 8.08 6.78 7.56 6.11 
5 114.98 170.59 83.74 137.56 55.00 131.80 135.78 83.99 117.53 59.35 
7 1662.38 1805.73 1274.24 1462.70 547.56 1644.29 1437.92 1075.88 1256.88 592.12 

 
 

  

↵=10, �=20, �1 = Terminated=0, �2 = mcEstablished=1 ^ mpEstablished=1

M⇥A M⇥ZRed OTF M⇥A M⇥ZRed OTF

|M|

FullAfwd CompA
fwd FullZfwd CompZ

fwd OTFfwd FullAbwd CompA
bwd FullZbwd CompZ

bwd OTFbwd

FullAfwd CompA
fwd FullZfwd CompZ

fwd OTFfwd FullAbwd CompA
bwd FullZbwd CompZ

bwd OTFbwd

same as forward

Table 5: Performance result of the DTA 12(b) on the CLUE model.

with the single > state (with l2)3. Therefore, OTF generates one large (non-uniform) component, both in forward and
backward, since it is based on the single DM component of the region graph. However, in the product of l1 withM
the edge l1 → l0 is never present for those states in which the total number of retries has been exceeded, and therefore
Comp correctly identifies that these states constitute a separate CE component. This allows Comp to perform better
than OTF, although the differences are rather small. Note that the performances of OTF match those of Full, which
is not surprising considering that OTF is working with a single component. In backward the situation is even worse:
OTF works with a single CM component, while Comp identifies 2 CE , 1 Cg , and 1 CM . The cost in time and memory
is as for Full, but it is significantly worse than Comp, that takes advantage of the identification of 4 components.

Q5 OTF + Comp. The refinement step allows to build the same components as Comp, thus obtaining the same
performances of Comp in time and memory, showing that, even in the extreme situation of very few components, OTF
can be successfully applied, thanks to the refinement option that allows to correct situations in which there are very
large DM components in the region graph that do not lead to very large CM components in the MRgP.

Results for CLUE, second DTA. DTA 12(b) implements the semantic of the time-interval until operator Φ1 U [α,β] Φ2

of CSL, as in [3]. The automaton stays in location l0 up to time α, accepting any CTMC action. At time x = α
the automaton moves with a boundary edge either to location lok (if the condition Φ2 already holds), or to location
l1. In location l1, the automaton may still accept a CTMC transition that goes to a Φ2-state before time β, or a
CTMC transition that stays in a Φ1 state. Any other behavior is rejected. Table 5 reports the performance results
of DTA 12(b) on the CLUE model, for different retry values R.The atomic propositions Φ1 and Φ2 appearing in
DTA 12(b) are reported above the table.

DTA 12(b) represents a CSL time-interval Until that computes the probability of both parts in the protocol estab-
lishing the connection in the time interval [10, 20] without any retry. Since DTA 12(b) represents a CSL time-interval
Until, we know that the formula can be checked by a CSL model checker by computing the transient solution of two
CTMCs of a size at most |M|. We recall that solving in transientM is equivalent to solving a Cg component of size
equal to |M|. Since backward and forward see the same number of states and since no CM component is present,
despite the presence of reset edges, Q2 and Q5 are not relevant.

Q1 z-states tagging. Tagging reduces the number of states, from about 3 × |M| to 2 × |M| (from to 1766 430
states to 1181 992 for R = 7), as the tagging allows us to tag as NK the z-state 〈l1, (β,∞)〉 in which the DTA is in
location l1 and x > β, since there is no path that leads to the accepting location lok. This avoids the generation of

3Note that > component is never reported in the tables, as it is never treated as a component, but only as a frontier state
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the MRgP states in which the DTA is in location l1 and x > β, that are as many as the M states that satisfies the
Φ1 condition. Methods based onM×A see a “useless” CE component, which is not generated withM×Z or OTF
techniques.

Q3 Component vs Full. FullAfwd solves a single MRgP of size almost three times as large as |M|, while CompAfwd
solves two Cg and one CE components, each one of size almost |M|, requiring two CTMCs transient solutions and
a steady state one. Similar behaviour in backward, and when the computation is based onM×Z . These differences
positively reflects on the solution times.

Q4 OTF. This example clearly identifies the advantage of combining the location tagging with the on-the-fly
generation of the components. OTF identifies exactly the same components as Comp, but since OTF builds them one
at a time based on the partition of Z , its memory occupancy is significantly smaller than Comp and Full. Moreover
the solution time is reduced with respect to both Full and Comp. Hence, OTF is capable of reducing the treated state
space without impairing the performance (and actually improving it).

Q6 - OTF on CSL. OTF builds and solves two Cg components. Each component, of size at most |M|, is built,
solved and then discarded. So the OTF complexity matches, in time and space, that of standard CSL model checking
algorithms, which was one of the motivations for the development of the OTF technique.

7.3. Comparison with Prism and Storm CSL model checkers

While question Q6 has already been investigated in the previous example, showing that OTF builds the same
CTMCs and applies the same solution algorithms as standard CSL model checkers, it is still to be determined whether
the performance of the OTF implementation matches that of a model checker specifically developed for CSL. Table 6
shows a comparison of MC4CSLTA with two CSL model checking tools: Prism [8], which is well-known and very
popular in research and industries, and Storm [11], a recently developed tool. We have considered a model from the
Prism distribution, which can be uploaded4 by both Storm (original Prism model) and GreatSPN (CTMC generated
by Prism). Other CSL model checkers exist, like [12], which however do not share this specific format, moreover our
goal is not to “benchmark” CSL model checkers, but only to better understand how the techniques presented in this
paper behave on CSL formulas.

The model considered is the cell cycle control in eukaryotes [37], which represents a chemical reaction network
of several proteins. The goal of the tested query is to determine if the quantity of the cyclin protein is sufficient after
a certain amount of time. We test two bounded Until queries: (case A) Until(α, α) and (case B) a timed interval one,
Until(α, β). The formulas are specified in CSLTA using DTAs: case B uses the DTA in Figure 12(b), while the DTA
of case A is obtained by removing location l1.

Table 6 reports the performance of the three tools for the two tested queries. Each of the two tables report on top
the query in CSL and in CSLTA and on the first three columns the model parameter N and the CTMC size (states
and transitions). Prism has been tested using both the sparse and the hybrid engine. Note that in Prism the Sat set is
computed, using a backward technique. Storm has been tested using the default configuration. The MC4CSLTA tool is
tested in FullZbwd, CompZbwd and OTFbwd modes. The most comparable techniques are the sparse engine of Prism, the
default Storm engine and the OTFbwd method. Each table reports also the total number of components in the CSLTA

region graphs, and the size of each individual component. Both the CompZbwd and OTFbwd methods observe the same
components.

OTFbwd and the sparse engine of Prism have similar time performance, which is not surprising, since they execute
similar tasks on the same CTMC. For the first query, Prism performs transient analysis on one CTMC, as MC4CSLTA.
Storm shows remarkably good numerical solution times, which are probably doe to the use of highly optimized linear
algebra libraries that take advantage of the CPU SIMD instructions. MC4CSLTA determines that the region graph of
the interval Until DTA has one component of type Dg1 , which includes a single z-state, and one of type DE . The
DE component includes only states tagged NK and therefore they are not part of theM×Z product (neither of the
M×Zi product built by OTF). This results in MC4CSLTA identifying a single component of type Cg1 , which is solved
for time 10 using transient analysis.

4We thank the Storm team for support in importing the Prism model into Storm
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Benchmark con Prism 
 
FIRST QUERY: 
CSL Until with a single time interval: 

CSL: P=? [ true U[10,10] cyclin_bound=N ] � 
CSLTA: PROB=? until_AA (10 | | True, (#cyclin_bound=N))  

SECOND QUERY: 
CSL Until with (t, t’) time interval: 

CSL: P=? [ true U[10,20] cyclin_bound=N ] � 
CSLTA: PROB=? until_AB (10, 20 | | True, (#cyclin_bound=N)) 
 
 
test_prism.pdf 
 
 
(A)  CSL query (Prism/Storm):    P=? [ true U[10,10] cyclin_bound=N ].  
 CSLTA query (MC4CSLTA):  PROB=? until_AA (10 | | True, (#cyclin_bound=N)) 
   Prism Storm MC4CSLTA 
   Sparse Hybrid Sparse    Components Size 

N States Trns Time Memory Time Memory Time Memory Time Memory Time Memory Time Memory CE Cg CM  
2 4666 18342 0.0 114.9 0.0 114.8 0.0 221.0 0.1 10.5 0.1 9.4 0.1 9.3 0 1 0 4666 
3 57667 305502 0.2 119.3 0.5 122.3 0.1 230.2 1.7 59.6 0.6 47.0 0.6 47.6 0 1 0 57667 
4 431101 2742012 3.3 173.9 6.7 172.5 1.2 295.1 21.1 424.8 7.3 350.2 6.7 352.8 0 1 0 431101 
5 2326666 16778785 30.0 336.4 63.3 285.7 9.7 999.4 170.1 2312.6 56.0 2033.7 52.1 2082.3 0 1 0 2326666 
 
(B)  CSL query (Prism/Storm):    P=? [ true U[10,20] cyclin_bound=N ].  
 CSLTA query (MC4CSLTA): PROB=? until_AB (10, 20 | | True, (#cyclin_bound=N)) 
   Prism Storm MC4CSLTA 
   Sparse Hybrid Sparse 

   Components Size 
N States Trns Time Memory Time Memory Time Memory Time Memory Time Memory Time Memory CE Cg CM   
2 4666 18342 0.0 114.3 0.0 110.9 0.0 221.1 0.2 11.8 0.1 11.5 0.1 10.2 0 2 0 4666 3855 
3 57667 305502 0.5 123.4 0.9 120.5 0.2 231.5 4.7 85.6 1.3 81.8 1.0 59.7 0 2 0 57667 51479 
4 431101 2742012 6.5 177.4 12.8 169.1 2.1 295.4 50.5 803.3 15.1 654.4 10.7 462.0 0 2 0 431101 399016 
5 2326666 16778785 58.9 352.2 119.8 300.3 17.3 1063.5 427.4 4569.2 115.2 4123.6 84.2 2589.4 0 2 0 2326666 2198758 
 

 

Stati interni, frontiera, dimensione/tipo componenti, nnz 

FullZbwd CompZ
bwd OTFbwd

|S1|

FullZbwd CompZ
bwd OTFbwd

|S1| |S2|

Table 6: Comparison with Prism and Storm on CSL Until queries.

For the second query Prism and Storm perform the transient analysis of two CTMCs. Referring to the DTA of
Figure 12(b) the region graph of the time-interval Until has 6 z-states that are partitioned into three components: two
of class Dg with, respectively, the single z-states 〈l0, [0, α)〉 and 〈l1, [α, β)〉 and one of class DE with the remaining
four z-states, that are all tagged as NK . OTF therefore computes and solves two Cg components, resulting in two
transient analysis. Therefore, in both cases MC4CSLTA performs the same solution steps as Prism, but these steps
depend on the input DTA and do not use any a-priori knowledge on the formula: indeed OTF adapts its behaviour to
the formula being checked. The relative value of the solution times for the three tools follows the same pattern as for
the previous formula.

Memory occupation of the CSLTA model checker is significantly higher than CSL ones: about 7 times more than
Prism and 2.5 times more Storm in the worst case. This difference in memory can be due to a combination of factors:
CSL model checkers do not need to compute frontiers, thus avoiding a number of intermediate data structures, and the
prototype code of MC4CSLTA makes use of standard data structures that may not be the best choice (i.e. using C++
STL containers like map for the state space/spare vectors instead of more compact data structures).

7.4. Results summary

Q1 - z-states tagging. Results show that it is always worth applying this technique. Since time and memory are
always lower when there is a reduction in the MRgP size, but even when there is no reduction (as for the third FMS
case and the first CLUE one) the additional cost is negligible.

Q2 - Forward vs Backward. Differences can be rather large here, which is not surprising considering that backward
computes the set of states that satisfies a CSLTA formula, while forward only checks if the initial state satisfies the
formula. Forward is not an option when formulas are nested, that is to say a location is labelled with another CSLTA

formula: a case that is not part of our test set, since formulas tend to be rather artificial, but nested CSLTA is supported
by the MC4CSLTA tool. Obviously when the objective is to test a given single state, forward should be preferred.

Q3 - Comp vs Full. Comp is always quicker than Full, both forward and backward. In memory we have observed
for Comp at most a 10% increase in memory over Full, but there are also cases, like the second and the third FMS
case, in which memory of Comp is significantly better than Full, due to the reduced size of the iteration vectors. The
gain is particularly significant when the number of components is large and components are balanced in size, but
Comp can be successfully used also in presence of very few components, as for the CLUE models.

Q4 and Q5 - OTF and OTF+Comp. OTF is always superior to the other techniques when the number of compo-
nents is not too small and their size is well balanced. When this is not the case, in particular when it is not the case
with respect to Comp, we have always observed that it is worth to try to use OTF+Comp. One source of efficiency of
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OTF w.r.t. Comp is the computation of the components, that OTF builds on the region graph while Comp builds them
on the whole MRgP. The region graphs of our examples have at most 60 states, while MRgP size goes into millions.

Q6 - CSL. It was already shown in [17] that the component method builds the same CTMCs as do model checkers
of CSL. Our experiments show that also OTF is able to build and solve the same CTMCs as standard CSL model
checkers. In particular we have observed that MC4CSLTA is able to have performance in time comparable to that of
PRISM (no more than two times slower), while there is a significantly worse performance in terms of memory (up to
10 times bigger).

8. Related work

This paper builds on previous works for CSL and CSLTA model checking and MRgP solution, that we shall here
review. CSL was first defined in [3], where CSL model checking was shown to be decidable. In the original definition
of CSL, paths could be specified as a sequence of timed Until formulae (nested LTL Until), a feature that has been
limited in the definition of CSL given in [38] where timed Until formulae cannot be nested, and steady-state operators
have been added. This is the most widely used form of CSL, and is the one we have used as reference in this paper.
This limitation allows one to model check a CSL formula using well-known CTMC solution algorithms (either in
transient or in steady-state). In particular the work in [38] shows that the computation of the probability of the paths
of a CTMC that satisfy a timed Until Φ1 U

[t,t′] Φ2 for a CTMCM reduces to solving two CTMCs derived fromM,
the first one is solved at time t and its solution is the initial distribution for the second one, solved at time t′ − t.

Algorithms for forward and backward model checking of CTMCs have been discussed in [39] and [25]. The
backward solution is actually a rephrasing in the CSL context of the computation of absorbing probabilities in non-
ergodic Markov chains [20]. An extension for backward solution of non-ergodic MRgPs has been provided in [26],
which is what we have used in this paper.

In CSL paths are specified in terms of state propositions of the CTMC. The logic asCSL [40] and [4] specifies path
properties as regular expressions of state propositions and actions names of the so-called “continuous-time Markov
chain with actions and state labels (ASMC)”. A path expression is translated into an automaton (untimed), and the
model checking is based on the analysis of the CTMC that results from the cross-product of the ASMC with the
automaton, to reduce the asCSL model checking problem to the CSL one.

CSLTA [13] also specifies path properties through automata but, unlike asCSL where the time requirement is
associated to the whole expression, in CSLTA the time is specified in the automaton itself and can thus specify time
requirements also for sub-paths. This allows the analyser more freedom, as shown in the examples of Section 7, but
the cross-product generated by a CSLTA formula requires a MRgP solution instead of a CTMC one.

In this paper we generically refer to CSLTA, meaning the original definition in [13]. Unfortunately the successive
extension to multiple-clocks of CSLTA in [15] does not immediately reduce to the original definition of CSLTA when
a single clock is considered, so does the work in [19] that considers only single clock DTAs and infinite CTMCs
and that takes as starting point the CSLTA definition of [15]. The difference is that in the DTA definition in [13] it is
possible to associate an expression over CTMC state propositions to the DTA locations, while in [15] the expression
over CTMC state propositions are associated to the DTA edges. This lead to a slightly different acceptance criteria for
timed paths. So, while it is proved that CSLTA is more powerful than CSL and asCSL [13], we do not know of a proof
for the relationship between the original definition of CSLTA and that in [15] when limited to a single clock. This is
indeed an interesting research question, but it is out of the scope for this paper, that concentrates on model checking
algorithms for single clock CSLTA and their relationship to CSL model checking, and not on language comparison.

Other works on CSLTA model-checking consider a two-steps approach in the construction of the stochastic process.
The work in [15] uses an intermediate structure (called DMTA) which is a cross product of the CTMC with the
locations of the timed automaton, to get rid of CTMC states and DTA locations that do not match. DMTA are a sort
of timed automaton with rate extensions, and from DMTA the underlying stochastic process is built based on the
region graph of the DMTA. In the 1-clock case, the stochastic process is then specified by a set of linear equations
that identify the MRgP. When the DTA allows multiple-clocks the stochastic process is not a MRgP any longer, but
a Piece-wise Deterministic Markov Process and the solution technique is more complicated and expensive. Although
the equations are built by partitioning the region graph, the solution considers the full system of equations of all the
region graph partitions, and cannot be computed by taking each region in isolation.
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The works in [18] and [19] also use a two-steps approach, but they generate first the region graph of the DTA
and then use it in a cross-product withM, similarly to what is done in this paper for algorithms with Z superscript.
In [18] this choice is meant to avoid the construction of non-useful parts of the MRgP. A comparison with [18] has
been provided at the end of Section 4. The work in [19] introduces a technique for the model-checking of CSLTA for
DTAs that do not include boundary edges and for CTMCs with an unlimited number of states. There is no backward
approach proposed in [19], presumably because of the requirement to work also with infinite state spaces. The method
uses the region graph to partition the infinite MRgP into subsets of states (called “columns” in the paper), one per
clock region. We can therefore see the work in [19] as similar to a component method in which the components are
identified by the clock regions. As already discussed with respect to the MRgP structure of Figure 4 this structure
of components does not form a DAG and indeed the technique only computes an approximate solution, but this is
certainly adequate considering that the goal is the model-checking of infinite CTMCs.

The model-checking algorithm in [19] proceeds iteratevely over all regions. Since the CTMC is infinite, the MRgP
states associated to a given clock region are built while “moving” the probability from a state to its successors: if a
new state with a probability above a threshold is encountered, that state is retained and used for successive generation
of the state space. The computation of the probability for a region is basically a modified uniformization (to deal with
the on-the-fly generation of states) that computes the probability that should go to the states in the next region or that
should go back to the states of the initial region (due to clock resets). Therefore also the iteration over all regions
should be iterated. The iteration terminates when the probability of transient states goes below a certain level. Note
that the same technique is applied to all regions, also to the last one that typically requires a steady state solution (and
therefore the uniformization may be very expensive). Again, this is caused by the need to deal with infinite CTMCs.
Moreover the solution remains approximate even on finite CTMCs, since clock resets are treated by repeating the
solution multiple times until the remaining probability is below a threshold. This work shares with the OTF technique
of Algorithm 3 the idea of generating state spaces only when needed, but the technique is iterative and therefore, in
presence of clock resets, each component can be visited more than once, and the components cannot be discarded
once used in a computation, which are instead two peculiar aspects of OTF. Another difference is that in OTF the
structure of the components is determined by a specific algorithm and it is not pre-defined as the set of the states in
the same clock region. As it was shown in the experimental part (for example for the case reported in Table 2), the
number of components can be much higher than the number of regions, as inside a region we can identify a DAG of
components, which may save solution time (components are smaller) and memory (components are discarded once
used).

Finally, no numerical comparison has been provided in the previous section with the technique in [19], since it is
an approximate solution, nor with the technique of [15], since, obviously, multiple clock CSLTA model checking has
a much higher complexity than that of plain CSLTA, and comparison will be unfair.

9. Conclusion and future work

This paper presents a new model-checking algorithm called OTF for the stochastic logic CSLTA that exploits
the region graph construction of the automaton to devise a solution in which the MRgP is built and solved “on the
fly”: the MRgP is built component by component, and each component is built, solved with the cheapest possible
technique, and then discarded, with a clear advantage in both time and space. OTF is defined to work both in forward
and backward, and it exploit a matrix-free approach to avoid the expensive construction of the embedded Markov
chain. OTF builds on the Component Method for MRgP, that has been reviewed and re-defined in some parts to make
its definition suitable for the proof of correctness of OTF. The region graph is also exploited to limit the number of
non-useful states that are constructed and solved thanks to a new definition of the MRgP construction based on the
region graph.

OTF, algorithms that build the whole MRgP based on the region graphs, and algorithm that build directly the
MRgP, as in the original model checking algorithm of CSLTA, for a total of 12 algorithms, have been implemented
in the MC4CSLTA tool, to ease the experimental comparison. MC4CSLTA is part of the GreatSPN framework. In
GreatSPN the CTMC is derived from a graphical specification of a GSPN, and the tool has been extended to provide a
graphical support for DTAs specification, and the possibility of playing a joint “token game” to experiment with path
acceptance. All the nets and the DTAs drawings of this paper have been made with GreatSPN.
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Theory and experiments suggests that OTF (possibly with additional component refinement) could be a good
default choice for the model checking of the CSLTA logic, as it may save a significant amount of memory. It may
also save solution time in the identification of the components: computing an optimal set of components can be very
expensive, as it requires the solution of an ILP problem in the size of the number of states, therefore it is usually
much cheaper to build the components of the (usually) small region graph instead of the (usually) large MRgP. We
have also observed that the overhead of OTF is small enough even in those unfavourable cases in which the number
of components is very small (even only one or two).

The paper also shows that CSLTA model checking based on OTF has the capability of adapting to the actual
complexity of the property expressed by the DTA: this allows to show that OTF computes and solves exactly the same
CTMCs as do standard CSL model checking algorithms when the formula is a CSL. With respect to a CSL model
checker like Prism or Storm, the use of a OTF in MC4CSLTA allows to deal also with CSL formulas that include both
state properties and action names (like in asCSL).

As part of future work we plan to improve OTF along two ways: to devise a modified version that stops as soon as
the property is verified and to perform a better analysis of memory occupation to understand if there are inefficiency
in memory allocation that can be removed. We also plan to exploit Kronecker-based approaches. Kronecker-based
matrix-free solution of MRgP has been introduced in [41]. It allows to compute the steady-state probability of an
ergodic MRgP without ever building and storing the Q, Q̄, and ∆ matrices, but only a (much more compact) Kro-
necker expression of them. We have to face two problems here: MRgPs stemming from model checking are typically
non-ergodic and the computation of the outgoing probability vectors require the computation of transient CTMC so-
lutions. At the moment, an efficient way for computing a Kronecker based transient solutions of a non-ergodic CTMC
is not available.

Another interesting line of research to pursue is to investigate whether the approach in [19] and OTF can be
combined. In particular we can envision to use the approximate solution technique of [19] to solve large MRgP
components of CM type. In the opposite direction we can investigate whether the definition of components at the
region graph level can be exploited to provide better performance or better precision to the approximate technique,
that, in its current status, uses the clock regions to identify components.
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Appendix A. Petri nets of the test models

The FMS model used for the first set of tests in Section 7 is depicted in Figure A.13, taken from [34]. The model
represents a system where N pallets are treated in a sequence of four machines, M1 . . .M4. Each machine can treat
one pallet at a time. Machine 2 and 3 are subject to breakages, and a repairman continuously checks the machine for
repairs. Machine 2 has a set of spare parts that can be used to replace the broken parts, without losing work time.
Machine 3 instead always requires a stop to do the repair. The model is parametric in the number N of circulating
pallets, and is ergodic.

Four sequential machines Failure/Repair system for M2 and M3

N

Pallets

load

M1bu®

sw1

M1on M1

ew1

M2bu®

sw2

M2on M2

ew2

M3bu®

sw3

M3on M3

int3

M4bu®

sw4

M4on M4

ew4

M3bOn

ew3

hNi

M2go failM2

repM2
Spares

SpareBrokenrepSpares SpareRepairing

repSpareE

ReadygoIdle

goReady

Idle ended

goReady2

M3go

failM3 M3ko repM3 M3repairing

repM3E

repM3!M2

Figure A.13: Petri net of the Flexible Manufacturing System with four machines and the repairing net.

Figure A.14 depicts the Petri net used for the second set of tests in Section 7. It is a model of the CLUE proto-
col [36], a communication protocol of the application layer designed by the CLUE working group at IETF. CLUE
is an application protocol for the negotiation of a telepresence session between multiple participants. After a ses-
sion establishment phase, the participants exchange messages on a data channel in the form of XML descriptors. In
particular, parties have to exchange a configuration (CONF) descriptor to adapt their media streams. Each partici-
pant acts both as a Media Provider (MP) and as a Media Consumer (MC). Network errors may happen at any time,
and the protocol allows at most R retry attempts, before terminating with failure. The communication is completed
when, after having exchanged the CONF message with success, both the MP and MC are in the established states (i.e.
telepresence sessions may start).

Appendix B. Proof of theorem 1

We now prove Theorem 1 that asserts thatM×A andM×Z represent the same MRgP process.

Proof. The proof consists in showing that the set of initial states is the same, and that for each transition inM×A
there is one of the same type inM×Z and viceversa. Moreover the set of final states is the same.
We start by defining the obvious correspondence between M×A and M×Z states: 〈s, l, c〉, with c = (δk, δk+1)
inM×A corresponds to a state 〈s, z〉 with z = (l, [δk, δk+1)) and viceversa. As a consequence two corresponding
states have the same value of the Γ function.

The fin function assigns > to a 〈s, l, c〉 ofM×A if l ∈ LF , while inM×Z this is conditioned to z ∈ ZF , but
since ZF is defined based on LF then fin assigns > to corresponding states.

We also need to show that closure(s, l, c) = 〈s′, l′, c′〉 iff closure(s, z) = 〈s′, z′〉 with z = (l, c) and z′ =
(l′, c′). Moreover closure(s, l, c) = fin(s, l, c) iff closure(s, z) = fin(s, z). Let’s consider the right implication.

Assume c = [δk, δk+1). According to its definition, if there is a Boundary edge l
δk,],r

B l′, with s |= Λ(l′), then

closure(s, l, c) = closure(s, l′, c[r := 0]). But if there is such an edge then (for the last rule of the region graph
construction), there is an edge from z to z′, with z′ = 〈l′, c[r := 0]〉. The viceversa follows the same reasoning.
If such an edge does not exists in A, then it does not exist the corresponding one in Z , and viceversa, and closures
end-up in fin(s, l, c) and fin(s, z), that have been already shown to be corresponding states.

Since they have an isomorphic representation they correspond to the same Markov Regenerative Process, and
therefore the probability of reaching the > state is the same
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Figure A.14: Petri net of the CLUE IETF protocol.
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