
STAMINA: STOCHASTIC APPROXIMATE MODEL-CHECKER FOR

INFINITE-STATE ANALYSIS

by

Thakur Neupane

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Engineering

Approved:

Zhen Zhang, Ph.D. Koushik Chakraborty, Ph.D.
Major Professor Committee Member

Chris Winstead, Ph.D. Richard S. Inouye, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/227503649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Copyright c© Thakur Neupane 2019

All Rights Reserved

iii

ABSTRACT

STAMINA: STochastic Approximate Model-checker for INfinite-state Analysis

by

Thakur Neupane, Master of Science

Utah State University, 2019

Major Professor: Zhen Zhang, Ph.D.
Department: Electrical and Computer Engineering

Continuous Time Markov Chains (CTMCs) are one of the most prominent probabilistic

models that are used in performance and dependability analysis of various control and

communication systems, network protocols, queuing and reliability problems, and biological-

systems. Probabilistic model checking has demonstrated significant potential in analyzing

the probabilistic behaviors of complex concurrent systems in various application domains.

Usually model checking involves exhaustive exploration of the system’s state space, which

limits their scalability because of the infamous state explosion problem.

This thesis presents a new infinite state CTMC model checker, STAMINA, with efficient

and scalable model truncation for probabilistic verification. STAMINA uses a novel state

space approximation method to truncate large and possibly infinite-state CTMC models to

finite-state representations that are amenable to existing probabilistic model checkers. It

also uses a new property-based state exploration approach that reduces the size of state

space further without losing the analysis accuracy. Demonstration of our prototype tool

on several benchmark models shows promising results in terms of analysis efficiency and

accuracy, compared with a state-of-the-art infinite-state CTMC model checker.

(55 pages)

iv

PUBLIC ABSTRACT

STAMINA: STochastic Approximate Model-checker for INfinite-state Analysis

Thakur Neupane

Reliable operation of every day use computing system, from simple coffee machines to

complex flight controller system in an aircraft, is necessary to save time, money, and in some

cases lives. System testing can check for the presence of unwanted execution but cannot

guarantee the absence of such. Probabilistic model checking techniques have demonstrated

significant potential in verifying performance and reliability of various systems whose exe-

cution are defined with likelihood. However, its inability to scale limits its applicability in

practice.

This thesis presents a new model checker, STAMINA, with efficient and scalable model

truncation for probabilistic verification. STAMINA uses a novel model reduction technique

generating a finite state representations of large systems that are amenable to existing prob-

abilistic model checking techniques. The proposed method is evaluated on several bench-

mark examples. Comparisons with another state-of-art tool demonstrates both accuracy

and efficiency of the presented method.

v

ACKNOWLEDGMENTS

The work presented in this thesis would not have been possible without the support

of many people who supported me in many ways over the past two years. I take this

opportunity to thank everyone who helped me make this thesis a possibility.

First and foremost, I would like to express my deepest gratitude to my advisor Dr.

Zhen Zhang for his invaluable contribution in this work. He always believed in me and

provided me with every bit of guidance and expertise throughout my graduate program. I

would also like to thank him for introducing me to three wonderful people: Dr. Chris J.

Myers, Dr. Curtis K. Madsen and Dr. Hao Zheng, who would later play inalienable roles

in shaping this research. I’m deeply indebted to Chris for his innovative idea and ingenious

suggestions. I’m extremely grateful to Curtis and Hao for their invaluable insights into the

implementation of idea. Besides my advisor, I would like to thank the rest of the committee

members - Dr. Koushik Chakraborty and Dr. Chris Winstead, for their valuable insights

and comments on this research.

I am grateful to the wonderful faculty and staff of the ECE department. I’d like to

acknowledge the assistance of Tricia Brandenburg, Kathy Phippen and Diane Buist for

handling all the administrative requirements of my degrees allowing me to focus on my

research and study.

If it were not for my family, I would not be the person I am today. I can’t thank them

enough for their unwavering love and support. I am forever indebted to my grandparents,

uncles and aunts for their blessings and support. Being the eldest among my siblings, my

brothers and sisters always looked up at me as their role model; however, my success was

only possible with their love and support.

Most of all, I cannot begin to express my gratitude to my best friend since childhood,

love of my life - Sangita for all of her sacrifice, love and support.

Thakur Neupane

vi

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

ACRONYMS . x

NOTATION . xi

1 INTRODUCTION . 1
1.1 Contributions . 3
1.2 Thesis Outline . 5

2 LITERATURE REVIEW . 6
2.1 Verification of Finite-State Probabilistic Systems 6
2.2 Verification of Infinite-State Probabilistic Systems 8

3 PRELIMINARIES . 10
3.1 Continuous-time Markov Chains and Finite Truncation 10
3.2 Continuous Stochastic Logic . 13
3.3 Model Checking CTMCs Over CSL . 15

3.3.1 Model Checking CSL Time-Bounded Until 15
3.4 The PRISM Model Checker . 16

3.4.1 PRISM Language . 17

4 STATE SPACE APPROXIMATION AND ANALYSIS . 19
4.1 Architecture of STAMINA . 19

4.1.1 Model Checking Framework . 20
4.1.2 State Space Approximation . 22
4.1.3 Property Based State Space Exploration 25

4.2 Proof of the Termination Condition . 25

5 RESULTS . 29
5.1 Case Studies . 29

5.1.1 Genetic Toggle Switch . 30
5.1.2 Grid World Robot Navigation . 31
5.1.3 Jackson Queuing Network . 34
5.1.4 Cyclic Server Polling System . 36

vii

5.1.5 Tandem Queuing Network . 36
5.2 Comparison with INFAMY . 37

6 CONCLUSIONS . 39
6.1 Conclusion . 39
6.2 Future Work . 40

REFERENCES . 41

viii

LIST OF TABLES

Table Page

5.1 Model construction and verification results for grid world robot navigation
system. 35

5.2 Model construction and verification results for Jackson queuing network. . . 36

5.3 Model construction and verification results for cyclic server polling system. 36

5.4 State space and runtime comparison between STAMINA and INFAMY. . . 38

ix

LIST OF FIGURES

Figure Page

3.1 κ-truncation CTMC model. 13

3.2 Simple PRISM model . 17

4.1 Architecture of STAMINA . 20

5.1 A digital circuit representation of the genetic toggle switch. 30

5.2 Effect of κ on verification precision. (a) Time course plot showing the prob-
ability of the genetic toggle switch changing its state from OFF to ON when
κ = 10−3. (b) Time course plot showing the probability of switching when
κ = 10−6. 32

5.3 Effect of κ on verification precision. (a) Time course plot showing the
probability of the genetic toggle switch changing its state erroneously when
κ = 10−3. (b) Time course plot showing the probability of erroneous switch-
ing when κ = 10−6. 33

5.4 Grid world robot navigation. Robot (R) moves from bottom left corner to
top right corner along the direction shown in shaded region (grid size n-by-n).
Janitor (J) can move to any position in entire grid of size Kn-by-Kn. . . . 34

5.5 Time course plot showing the probability of first queue becoming full for
queue capacity c = 4095 and κ = 10−6. Time course plot for queue capacity
c = 2047 shows similar behavior. 37

x

ACRONYMS

AP atomic proposition

BFS breadth-first search

CEGAR counterexample-guided abstraction refinement

CME chemical master equation

CSL continuous stochastic logic

CTMC continuous-time Markov chain

DTMC discrete-time Markov chain

FSP finite-state projection

JQN Jackson queuing network

MC Markov chain

MCM method of conditional moments

MDP Markov decision process

MTBDD multi-terminal binary decision diagram

PCTL probabilistic computation tree logic

POR partial order reduction

PRISM probabilistic symbolic model checker

SG state graph

STAMINA stochastic approximate model-checker for infinite-state analysis

STAR stochastic analysis of biochemical reaction networks

xi

NOTATION

C CTMC model

S set of states

R transition rate matrix

s0 initial state

E(s) exit rate for state s

D DTMC model

P transition probability matrix

G state graph

δ set of state transitions

s
r−→ s′ transition from state s to s′ with rate r

κ̂(s) reachability-value of state s

κ reachability threshold used to truncate the CTMC model

Ccκ CTMC model truncated with parameter κ

sabs abstract state

Φ CSL state formula

ϕ CSL path formula

S∼p steady-state CSL operator

P∼p transient CSL operator

U CSL until operator

X CSL next operator

I time interval [t1, t2]

iS set of states with depth i

iζ sum of reachability values of states iS

ε analysis precision

R≥0 set of non-negative real number

Z>0 set of non-negative integer

CHAPTER 1

INTRODUCTION

Now more than ever, our daily life is becoming heavily dependent on computerized

systems. Such systems range from simple coffee machines to complex airplanes. Reliable

operation of these computer systems is necessary to save time, money, and in some cases

lives. Incorrect operation of a coffee machine or a smart phone causes inconvenience for a

small amount of time, but failure in the software controlling critical systems like flight con-

trollers and medical equipments can have catastrophic consequences. Three cancer patients

died because of the race condition in the control software of Therac-25 radiation machine for

treatment of cancer patients. In another incidence, Ariane 5 rocket lost its inertial reference

system and exploded mid-air costing more than 500 millions US dollars, because of invalid

data conversion from 64-bit floating point to 16-bit integer causing overflow in hardware.

To prevent such dramatic consequences, we have to make sure that every possible execution

scenario of such systems do not lead to failure.

System validation is the process of asserting that a computerized system complies with

its intended functions. System validation techniques can be broadly categorized into two

categories: testing and simulation, and formal verification.

Testing is a basic system validation process in which a real implementation of the

system or its prototype is evaluated for correctness against system specification. However,

considering the complexity of a typical modern day system with tens to thousands of compo-

nents interacting in complex manner, testing those systems with limited input combinations

may check the presence of bugs but not the absence of them. Testing, therefore, cannot

guarantee correctness of critical systems. Simulation, on the other hand, can be used to

investigate the behavior of the system without actually developing it. Simulation, being

similar to testing, is not suitable to exhaustively find subtle system errors.

Formal verification is a process of mathematically proving or disproving the correctness

2

of the system against some formal specification. Given a system model and some specifi-

cation that the system must satisfy, formal verification provides provable guarantees that

the system satisfies the specification. If not, it often generates evidence in the form of a

sequence of events that lead to the failure of system against that particular specification.

For example, consider a mutual exclusion protocol which describes the behavior of two or

more processes sharing access to a common resource. Two most important specifications

to this system are “at most one process can be in the critical section at any time” and “if

multiple processes are trying to enter the critical section, one of them will eventually do

so”. With the help of formal verification, we can guarantee that any correct mutual ex-

clusion protocol satisfies these two requirements. However, in practice, formal verification

sometimes requires human guidance to prove the correctness of a given system.

Model checking is an automated formal verification technique that systematically checks

whether a finite-state model of a system satisfies a formal specification. Because of the

fact that model checking is fully automated, it has drawn a lot of interest in academia

and industry. In a typical model checking process, user often constructs the model of the

system under consideration using some formal model description language, and formalizes

the property to be checked with some property specification language. The model checker

then explicitly explores all the possible states of the system model and checks if the property

is satisfied by the model. If the property is violated, it produces the counter-example,

which is a sequence of states/transitions that, starting from the initial state, leads to a

failure state of the property. Probabilistic model checking refers to a range of techniques

for calculating the probability of the occurrence of certain events during the execution of

probabilistic system. Probabilistic model checkers can answer, for example, “how likely the

main processor in embedded control system fails to cause the shutdown within 5 years?” or

“the probability that an airbag in a car deploys within 0.01s”.

Many real-life hardware and software systems exhibit probabilistic behavior. Markov

Chains (MCs) are commonly used to model probabilistic systems; and Markov decision pro-

cesses (MDPs) are used to describe the nondeterminism of concurrent probabilistic systems.

3

Continuous Time Markov Chains (CTMCs) are extensively used in analyzing the perfor-

mance and reliability of control and communication systems, network protocols, queuing

systems, and biological systems. CTMCs are used in order to quantify the rate of failures

in reliable systems (e.g. embedded control system [1]). Quality of service (QoS) parameters

like performance and availability of queuing networks (e.g. tandem queuing network [2],

Jackson queuing network [3]) are expressed in terms of probability. Recent efforts to under-

stand the behavior of biological processes (e.g. genetic toggle switch [4]) further supports

the need of probabilistic modeling as those systems are inherently probabilistic.

Model checking generally requires explicitly enumerating all the reachable states of a

model. But real-world computing systems are often complex and large, and the size of their

state space grows exponentially with respect to their number of processes and variables.

Therefore it can be computationally intractable to exhaustively enumerate the entire state

space—a problem typically known as state explosion; and probabilistic model checking is no

exception to that. Numerous state representation, reduction, and approximation methods

have been proposed to combat the state explosion problem.

Researchers have proposed techniques like symbolic model checking [5,6], bisimulation

minimization [7–9], probabilistic abstraction-refinement [10–12], symmetry reduction [13,14]

and partial order reduction [15] mainly to analyze discrete-time finite-state probabilistic

systems. However, these techniques do not scale well and are not directly applicable for

systems with infinite states. In order to use techniques developed for finite-state models

to analyze infinite-state models, it is required to manually truncate those during model-

ing. This truncation introduces uncertainty that cannot be quantified during verification.

Automatic truncation based approach [16] has been presented to analyze certain finite and

infinite-state continuous-time probabilistic systems. However, this approach can again show

exponential state growth with respect to the exploration depth.

1.1 Contributions

This thesis presents a new infinite-state CTMC model checker, STAMINA: STochastic

Approximate Model-checker for INfinite-state Analysis, with a novel model truncation tech-

4

nique that handles the state explosion problem. We also propose a novel property-based

state exploration approach that helps to reduce the size of state space further without los-

ing the analysis accuracy. Additionally, to account for the error introduced by the model

truncation, we propose an error estimation method based on an abstract state.

The main contributions of this research include:

• State truncation algorithms: Our state exploration method maintains a probability

estimate, reachability-value, of each path being explored in the state space, and when

the currently explored path probability drops below a specified threshold, it halts

exploration of this path. All transitions exiting this state are redirected to an abstract

state to estimate the truncation error.

• Property-based state exploration method: We have also developed a new property-

based state exploration technique, which identifies the path prefixes that are known

to satisfy or dissatisfy specific path formulas; and shortens them by making the last

state of each prefix absorbing during state exploration.

• The development of a prototype tool: State truncation algorithms and property-based

exploration method are implemented as a prototype tool. Markov chain analysis on

the approximate state space constructed is performed using PRISM’s explicit-state

CTMC model checker engine.

• The evaluation of these methods by their application to case studies from a variety of

fields, including genetic-toggle switch, grid world robot navigation system and models

of queuing networks.

This work has been integrated into the PRISM model checker [17]. STAMINA can be

downloaded freely from https://github.com/formal-verification-research/stamina.

https://github.com/formal-verification-research/stamina

5

1.2 Thesis Outline

The remaining thesis is organized as follows. Chapter 2 describes related work. Chap-

ter 3 provides the background information including the CTMC models and their trun-

cations, probabilistic model checking procedure of CTMC, and the PRISM probabilistic

model checker. In Chapter 4, a methodology for approximating and refining the state space

is presented. It describes the truncation process to construct the sufficient state space

that is enough to analyze CTMC models upto a certain precision. Chapter 5 applies the

presented methods to analyze several CTMC models from different application areas. It

also compares the efficiency and accuracy of STAMINA with a state-of-the-art infinite-state

CTMC model checker. Finally, Chapter 6 concludes this thesis and presents possible future

research directions.

CHAPTER 2

LITERATURE REVIEW

State space explosion has drawn the attention of many researchers in the model check-

ing arena. Over the time, numerous state reduction and approximation algorithms have

been proposed to alleviate this problem. In this chapter we review these major reduction

techniques which enable the analysis of large and infinite-state probabilistic systems. Tech-

niques like symbolic model checking [5, 6], bisimulation minimization [7–9], probabilistic

abstraction-refinement [10–12], symmetry reduction [13,14] and partial order reduction [15]

have been mainly extended to discrete-time, finite-state probabilistic systems. To the best

of our knowledge, only a few tools can analyze infinite-state probabilistic models, namely,

INFAMY: An Infinite-State Markov Model Checker [16], and STAR: STochastic Analysis

of biochemical Reaction networks [18].

2.1 Verification of Finite-State Probabilistic Systems

Symbolic model checking algorithms quickly construct a very compact representation

of extremely large probabilistic models. Parker implemented multi-terminal binary decision

diagrams (MTBDDs) based symbolic model checking for probabilistic systems [6]. MTB-

DDs based model checking is best applied to the MDP models, typically of randomized,

distributed algorithms as they have few distinct probability values. MTBDDs have suc-

cessfully analyzed the shared coin protocol from [19], an MDP model, with more than 7.5

billions states [6]. However, MTBDDs are often inefficient for models with lots of different

and distinct probability/rate values because of the inefficient representation of the solution

vectors. Generally, CTMC models whose state transition rate is a function of state values

contain many distinct rate values. As a result, symbolic model checker can run out of

memory while verifying a typical CTMC model with as few as 73000 states [6].

7

Bisimulation minimization is the process of merging states that are bisimulation equiv-

alent to minimize the resulting state space. Probabilistic bisimilarity is an equivalence

relation for probabilistic labeled transition systems introduced in [20]. In this equivalence

relation, equivalent states have the same label and the same probability to make a tran-

sition into any given equivalence class. In probabilistic setting, bisimulation minimization

can reduce the state space up to a logarithmic scale [7]. However, bisimulation minimization

requires the exploration of the full state space [21–23]. It might not be always possible to

explore the entire state space, if the state space is very large or infinite.

Probabilistic abstraction-refinement is a two step process. Abstraction is a process of

coarsely merging multiple states to achieve better reduction, while ensuring a simulation

relation between the abstract and concrete Markov models. During abstraction, explicit

transition probability on concrete model is replaced by an interval with the maximal and

minimal probabilities for taking the equivalent transition in abstract model. Refinement is

a process of adding more details to the abstract model by partitioning an abstract state

into two or more states. Hermanns et al. extended counterexample-guided abstraction re-

finement (CEGAR) in probabilistic setting [12]. CEGAR algorithm constructs an abstract

model from the given concrete model and model checks the abstract model. If the abstract

model satisfies the property, concrete model also satisfies it. If the abstract model fails the

property, it is not known whether its concrete counterpart fails the property, because the

abstract model introduces additional behaviors. The resulting counterexample is then used

to refine the abstract model. Then the verification repeats until sufficient refinement ob-

tained. Similarly, a theoretical framework to reduce CTMCs using three-valued abstraction

is presented in [10]. However, the accuracy of the abstraction is affected by the partitioning

of the state space. Moreover, refinement of abstraction to improve abstraction process in

case of inconclusive results is not discussed.

Symmetry reduction presented in [13] exploits the component symmetry present in

a model. Symmetry reduction can reduce the state space from MN to N ! where N is

the number of symmetric components and M is the number of states in each component.

8

This method also first builds the full model then reduces to quotient model. Furthermore,

detecting the symmetric components in a given model can be expensive to compute [13].

Partial Order Reduction (POR) is a technique to reduce the size of the state space by

exploring only a subset of all possible interleaving of concurrently executed transitions. POR

is extensively studied for model reduction in non probabilistic context [24–29]. Groesser and

Baier extended and applied the POR technique for MDPs in [15]. To our best knowledge,

POR has not been applied to reduce the CTMC models.

2.2 Verification of Infinite-State Probabilistic Systems

All the works discussed in Section 2.1 deal with the verification of finite-state prob-

abilistic systems. Those techniques, however, cannot directly be applied to infinite-state

probabilistic systems.

Lapin et al. presented STAR tool [18] primarily to analyze biochemical reaction net-

works. It approximates solutions to the chemical master equation (CME) using the method

of conditional moments (MCM) [30] that combines moment-based and state-based repre-

sentations of probability distributions. This hybrid approach represents species with low

concentrations using a discrete stochastic description and numerically integrates a small

master equation using the fourth order Runge-Kutta method over a small time interval [31];

and solves a system of conditional moment equations for higher concentration species, con-

ditioned on the low concentration species. This method has been optimized to drop unlikely

states and add likely states on-the-fly. STAR relies on a well-structured underlying Markov

process with small sensitivity on the transient distribution. Also, it mainly reports state

reachability probabilities, instead of checking a given probabilistic property.

A similar approach to this thesis work is the method presented in INFAMY [16]. IN-

FAMY is a truncation-based approach which explores the model’s state space up to a

certain finite depth k. The k-truncation of a CTMC defined by the truncation depth k

is a CTMC model where all the states with depth, defined as minimal the length of any

finite path starting from the initial state and ending in current state, larger than k is

abstracted to a single state. INFAMY provides dynamic-uniformization-based error estima-

9

tion method [32], including finite state projection (FSP), uniform, and layered to maintain

a small error probability. The error probability computed during the model checking intro-

duced by the truncation depends on the depth of state exploration. In order to maintain

insignificant error probability, higher exploration depth is required which in turn causes the

exponential growth of the truncated state space.

STAMINA does not use the same depth to truncate all the paths in state space as

INFAMY does, but rather terminates each individual path based on its likelihood to con-

tribute to the analysis of the model. It does so by exploring only those states whose path

probability estimate is greater than a threshold. STAMINA also employs a property-based

search to further maintain the manageable state space growth.

CHAPTER 3

PRELIMINARIES

In this chapter, we present the relevant background knowledge for this thesis. Sec-

tion 3.1 and 3.2 present the formal definitions of CTMC and its finite truncation, and

property specification language, namely, continuous stochastic logic (CSL), to describe the

property that can be verified for CTMC models. We briefly describe the CSL model check-

ing procedure in Section 3.3. Finally, Section 3.4 presents introduction to the PRISM

probabilistic model checker and the syntax of the PRISM modeling language.

3.1 Continuous-time Markov Chains and Finite Truncation

The high-level modeling formalism used in this thesis is the CTMC model, which is

defined below.

Definition 1. Let AP be a fixed set of finite set of atomic propositions then a (labeled)

CTMC can be defined as a tuple C = 〈S,R, s0,L〉 where:

– S is a non-empty set of states;

– R : S × S → R≥0 is the transition rate matrix;

– s0 ∈ S is the initial state;

– L : S → 2AP is a labeling function that assigns each state s ∈ S the set L(s) of atomic

propositions that are valid in the state.

Each element R(s, s′) of transition rate matrix R gives the rate of transition happening

between states s and s′, denoted by s
R(s,s′)−−−−→ s′. Typically, in a CTMC model, each state

has more than one enabled transitions. A transition is said to be enabled if R(s, s′) > 0;

and the probability of executing this transition within t time units is determined by the

transition rate R(s, s′), expressed as 1 − e−R(s,s′)t. The CTMC resides in a state s before

11

taking any enabled transition and the delay before such transition occurring from this state

is determined by the exit rate of that state defined by:

E(s)
def
=
∑
s′∈S

R(s, s′)

The actual probability of a transition s
R(s,s′)−−−−→ s′ eventually happening, irrespective of

time, can be defined with the following embedded discrete time Markov chains (DTMC).

Definition 2. The embedded DTMC for a CTMC C = 〈S,R, s0,L〉 is defined as a tuple

D = 〈S,P, s0,L〉 where:

P(s, s′) =


R(s, s′)/E(s) if E(s) 6= 0

1 if E(s) = 0 and s = s′

0 otherwise

If there is an enabled transition from a state s to s′, then s is a direct predecessor of

s′, and s′ is a direct successor of s. The set of all direct successors, generally refered as

successors, for state s can be defined as:

Succ(s)
def
= {s′ ∈ S | R(s, s′) > 0}

Similarly, predecessor state set Pre(s) can be defined as:

Pre(s)
def
= {s′ ∈ S | R(s′, s) > 0}

We define a reachability-value function κ̂ : S → R≥0 for a CTMC model C as follows:

κ̂(s)
def
=

∑
s′∈Pre(s)

(
κ̂(s′) · R(s′, s)

E(s′)

)

Reachability-value of a state s ∈ S estimates the probability of reaching that state,

indicating whether the state search should terminate from that state onwards.

12

Definition 3. Given a truncation parameter κ ∈ [0, 1], referred as reachability thresh-

old, we define a κ-truncation of a CTMC model C = 〈S,R, s0,L〉 as a tuple Ccκ =

〈Scκ,Rcκ, s0,Lcκ〉 where:

– Scκ ⊆ S is a non-empty subset of states which contains all the states whose reachability-

value is greater than κ and an abstract state sabs which abstracts all the states S\Scκ;

– Rcκ : Scκ × Scκ → R≥0 is the transition rate matrix for the truncated state space;

– s0 ∈ Scκ is the initial state;

– Lcκ is a labeling function for the truncated state space.

Finite truncation of state space leads to probability leakage (i.e., cumulative probabili-

ties of reaching states not included in the explored state space) during the CTMC analysis.

To account for probability loss, an abstract state sabs is introduced to abstract all the states

in S\Scκ. The transition rate matrix is restricted to the truncated state space Scκ given

by following expression:

Rcκ(s, s′) =



R(s, s′) if s, s′ ∈ Scκ\sabs∑
s′′∈Succ(s) R(s, s′′) if s ∈ Scκ\sabs, s′ = sabs

1 if s = sabs, s′ = sabs

0 otherwise

The κ-truncation of a CTMC is illustrated in Figure 3.1. If κ = 0.08, the truncated

state set Scκ only contains white-colored states and sabs.

The CTMC model can also be viewed as a State Graph (SG) as defined below:

Definition 4. A SG is a tuple G = 〈SG , δ, s0〉 where

– SG is a non-empty set of states

– δ ⊆ SG ×R× SG is the set of state transitions;

13

s0
Pr = 0.3

s1
Pr = 0.15

s2
Pr = 0.1

s3
Pr = 0.25

s4
Pr = 0.1

s5
Pr = 0.04

s6
Pr = 0.2

s7
Pr = 0.05

sabs

Start

Fig. 3.1: κ-truncation CTMC model.

– s0 ∈ SG is the initial state.

Note that |G| represents the state count of G .

For this thesis, the term SG and truncated CTMC can be used interchangeably. SG is

preferred to make it more consistent with the graph search terminologies. A κ-truncated

CTMC Ccκ can be converted to SG as follows:

SG(Ccκ)
def
= G = 〈SG , δ, s0〉

where,

SG = Scκ, δ = {(s,Rcκ(s, s′), s′) | s, s′ ∈ SG ∧Rcκ(s, s′) > 0}

3.2 Continuous Stochastic Logic

14

Specifications for CTMC model are written using the logic continuous stochastic logic

(CSL) introduced by Aziz et al. in [33] and later refined by Baier et al. in [34].

A CSL property consists of state formulas and path formulas defined using the following

grammar:

Definition 5. Let an atomic proposition a, probability bound p ∈ [0, 1] and ∼ ∈ {<, >, ≤

, ≥}, CSL state formulas are defined as:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P∼p(ϕ) | S∼p(Φ)

and for I an interval of R≥0, CSL path formulas are defined by:

ϕ ::= X Φ | Φ UI Φ

Although formally not defined, operators P and S can return the actual probability

computed if they are the outermost operators and defined in in the form P=?(ϕ) and S=?(Φ).

CSL state formulas are evaluated over states of a CTMC and can be true or false.

Path formulas in CSL always occur inside the P operator and are true or false along a

path of the CTMC. The transient probability operator P∼p(ϕ) asserts that the probability

measure of all paths starting from some initial state and satisfying ϕ meets the probability

expression ∼ p. Similarly, steady-state probability operator S∼p(Φ) assures that the long-

run probability of being in states Φ satisfies the bound ∼ p.

The temporal property Φ UI Ψ asserts that Ψ will be satisfied at some time instant in

the interval I and that at all preceding time instants Φ holds. For t1, t2 ∈ R≥0 and t1 ≤ t2,

interval I can be one of [0, t1], [t1, t2] and [t1,+∞). XΦ asserts that there exists a state s′,

which can be reached by executing a single transition from some initial state, such that s′

satisfies Φ. Note that the formula XΦ does not involve the time interval I.

Below are some examples of CSL formulas:

• P=? [¬shutdown U6T failure] describes “what is the probability that the failure in

system causes shutdown within T time units?”.

15

• S≥0.9 [idle] asserts that in long-run the system stays idle with at least 90% proba-

bility.

• P=? [(P>0.9 [true U61 speedavg]) U610 speedmax] denotes the probability that the

system reaches the maximum speed within 10 time units while periodically maintain-

ing the average speed with a least probability of 0.9.

3.3 Model Checking CTMCs Over CSL

CSL model checking process, proposed in [33, 34], first discretizes the CTMC into an

embedded DTMC, from which many properties of the corresponding CTMC can be de-

duced, for example, checking state reachability properties regardless of how long it takes,

and the expected time objectives. For checking state reachability within some time bound,

the transition rate matrix R is converted to infinitesimal generator matrix Q whose diago-

nal entries are the negated exit rate. However, the positive and negative entries in Q cause

numerical instability during transient analysis because of truncation of the infinite summa-

tion. To avoid such numerical instability, the matrix Q is normalized with respect to the

fastest exit rate, known as the uniformization rate (q), to create uniformized DTMC. This

process of normalization is called uniformization [35,36]. The uniformized DTMC provides

numerically stable representation of transition rate matrix and preserves the state resident

time so that its transient behavior is equal (up to some accuracy) to the corresponding

CTMC.

In this work, we consider time-bounded until CSL property i.e., P∼p(Φ UI Ψ) or

P=?(Φ UI Ψ). In following section we discuss the model checking procedure for such

properties.

3.3.1 Model Checking CSL Time-Bounded Until

All non-nested CSL path formulas ϕ (except those containing the “next” operator)

derive from Φ UI Ψ . The path formula Φ UI Ψ holds if Ψ is satisfied at some time instant

in the interval I and Φ holds at all preceding time instants. The analysis of time-bounded

16

until P∼p(Φ UI Ψ) over a CTMC can be reduced to transient analysis on a transformed

CTMC [34].

Consider a CTMC C = 〈S,R, s0,L〉 and a time-bounded CSL property P∼p(Φ UI Ψ).

For simplicity, we consider a time interval I = [0, t]. A modified CTMC C[φ] is obtained

by making all states satisfying φ absorbing. Absorbing state is created by replacing all the

outgoing transitions from a state with a transition into the same state. The path formula

ϕ = Φ UI Ψ , is satisfied if a Ψ state is reached within time t via some state that satisfies

Φ. As proposed in [34], C can be transformed to C[Ψ] without affecting the satisfiability of

ϕ because the satisfiability can be determined without further expanding this path beyond

the Ψ -state. Similarly, (¬Φ ∧ ¬Ψ)-states can also be made absorbing since ϕ will never be

satisfied once (¬Φ ∧ ¬Ψ)-state is reached regardless the following states along this path.

Therefore, in modified CTMC C[Ψ][¬Φ ∧ ¬Ψ], it is not possible to exit, once entered, any

state satisfying either Ψ or (¬Φ ∧ ¬Ψ). The probability of Φ UI Ψ satisfying in C now

becomes the probability of being in a state that satisfies Ψ at time t in modified CTMC

C[Ψ][¬Φ∧¬Ψ], which is equivalent to C[¬Φ∨Ψ] [34]. Using the fact that model checking C is

equivalent in checking C[¬Φ∨Ψ], one can apply pre-processing steps on C to terminate paths

that satisfy (¬Φ ∨Ψ), which narrows down the state search as described in Section 4.1.3.

3.4 The PRISM Model Checker

PRISM is a probabilistic model checking tool that supports model checking of CSL

over CTMC and of probabilistic computation tree logic (PCTL) over DTMC and MDP. The

tool takes a model description written in the PRISM language and a property specified

using CSL or PCTL. PRISM then constructs the appropriate model, either CTMC, DTMC

or MDP, and explores the set of reachable states of the model. PRISM has four engines

that implements the numerical computation for model checking: MTBDD, sparse, hybrid

and explicit. First three engines constructs the model symbolically and employ different

numerical methods for model checking. The explicit engine, on the other hand, entirely

uses explicit-state data structure for model construction and verification.

17

3.4.1 PRISM Language

In this section we briefly describe the PRISM language. Full details about PRISM and

PRISM language can be found in [17]. A model is described using two main components:

modules and variables. A model is a composition of a number of modules. Each module

contains a number of finite integer variables. A valuation of variable local to a module rep-

resents the state of that module. A global state of the model is a combination of valuations

of all the local variables.

The behavior of each module is described using a finite number of commands. A

command is in the following format:

[] g → λ1 : update1 + λ2 : update2 + · · ·+ λn : updaten

The guard g is a Boolean expression over all the variables. A transition is enabled in

any state if the expression g is evaluated to true in that state and updates the variables

described by updatei. λi is either rate expression for CTMCs or probability values for

DTMCs and MDPs for that transition.

ctmc
const double lambda = 1.0;
const double p = 0.2;
module random walk

m : [0..100] init 0;
[] (m = 0)→ p ∗ lambda : (m′ = m+ 1);
[] (m > 0&m < 100)→ p ∗ lambda : (m′ = m+ 1) + (1− p) ∗ lambda : (m′ = m− 1);
[] (m = 100)→ (1− p) ∗ lambda : (m′ = m− 1);

endmodule

Fig. 3.2: Simple PRISM model

Figure 3.2 shows a simple CTMC model with 101 states. First line declares the model

type. Following the model type are two constant declarations of type double: lambda

whose value is 1.0 and p with value 0.2. This model is composed of a single module named

random walk. It has only one variable m with range 0 to 100, and is initialized to 0. There

18

are 3 commands in the form [] g → u where g is the guard and u is combination of one

or more updates. In PRISM m′ represents the updated value of variable m. Therefore,

command “[] (m = 0) → p ∗ lambda : (m′ = m + 1);” reads as “If variable m has value

equal to 0, m will be incremented by 1 with transition rate p ∗ lambda”. In case of second

command, there are two possible updates. In such scenario, the rate of each transition

being executed is given by the valuation at the current state of their corresponding rate

expression. A CSL property for this CTMC model is “what is the probability that within

10 seconds the system reaches the state with m greater than 10”. The PRISM formula for

this property is P =? [true U <= 10 m > 10].

CHAPTER 4

STATE SPACE APPROXIMATION AND ANALYSIS

In this chapter, we discuss the implementation of STAMINA and the procedure to

construct the approximate, finite state space for a CTMC model. Section 4.1 presents the

architecture of the STAMINA. Implementation of algorithms that approximates, refines

and analyzes the given CTMC model is presented in Section 4.1.1 and 4.1.2. Section 4.1.3

describes the idea behind property-based state space exploration. Finally, the last section

describes the termination proof of the implemented algorithms.

4.1 Architecture of STAMINA

The state approximation methods proposed in this thesis are implemented as a tool,

STAMINA. Probabilistic model checking is usually performed in two phases: model con-

struction and numerical model checking. Model construction is the process of generating

the state space of the system from high level model description. After constructing the

appropriate model from the model description, model checking applies numerical methods

to compute the actual probabilities and verifies the specification. STAMINA implements

several algorithms to construct a finite state space of a CTMC model (currently, state ap-

proximation only applies to CTMC models) from the given finite or infinite state model

description. For CTMC analysis, STAMINA relies on PRISM’s explicit-state CSL model

checker.

The architecture of STAMINA is presented in Figure 4.1.

• State Space Approximation: It constructs the approximate state space, Ccr+1
κ , by

refining the state space constructed in previous iteration r using Algorithms 2 and 3.

• Model Checking Framework: It performs the CTMC analysis on the truncated

CTMC Ccκ using the PRISM’s CSL model checker. PRISM returns the minimum

and maximum probability, [l, u], that the property holds. If the verification result is

20

STAMINA
Model Checking

Framework

State Space
Approximation

PRISM

Model
Description

(CTMC)

Property
Specification

(CSL)κ, ε, κr, N

Ccrκ,
κ, φ

Ccr+1
κ

Ccκ,
P∼p(ϕ)

[l, u]
Algorithm 1 Algorithms 2,3

Fig. 4.1: Architecture of STAMINA

definitive i.e., either p /∈ [l, u] or |u − l| < ε, the process terminates. Otherwise it

triggers another iteration of state space approximation. The iterative process repeats

until the termination condition is satisfied.

The details about each modules are presented in following sections.

4.1.1 Model Checking Framework

Algorithm 1 describes the iterative model checking framework for a given CTMC model

C = 〈S,R, s0,L〉. The reachability-value function κ̂ estimates the probability of reaching a

state s ∈ S. For state exploration purpose we use reachability-value and state probability

interchangeably. It should be noted that this reachability-value/state probability value for

each state is only used during model construction and is omitted for the CTMC analysis.

We define another function γ̂ : S → R≥0, which computes the estimate reachability-value

21

used during following breadth-first search (BFS) iteration in Algorithm 2. To start the state

exploration process, the truncated CTMC model Ccκ is initialized such that it contains only

the initial state s0 in the state set without any transition relation. The single initial state

s0 is assigned a value 1 to the reachability-value which will be used by subsequent state

exploration method.

A truncated CTMC model Ccκ with finite states is generated for a parameter κ (kappa)

from the original infinite-state CTMC model C using Algorithm 2. The model Ccκ is then

model checked against the CSL property P∼p(ϕ), which returns the lower- and upper-

bounds, l and u, respectively, of the probability that the property holds. The probability

accumulated in the abstract state sabs is (u− l). For a defined value of p, if p ∈ (l, u), it is

not known whether the CSL property P∼p(ϕ) holds. On the other hand, if exact probability

is of interest, having a large (u− l) > ε may not generate meaningful verification result.

Algorithm 1: Probabilistic model checking

Input: An CTMC model C = 〈S,R, s0,L〉, CSL property Prop = P∼p(ϕ).

1 κ̂(s0) := 1;
2 Ccκ = 〈Scκ,Rcκ, s0,Lcκ〉, where Scκ = {s0}, Rcκ = ∅;
3 Ccκ ← Construct property agnostic finite truncation of CTMC model C using

Algorithm 2 (Ccκ, null).
4 l, u← Model check Ccκ against CSL property P∼p(ϕ).
5 if p /∈ [l, u] ∨ |u− l| < ε then
6 Exit

7 r := 0;
8 repeat
9 κ := κ/κr;

10 φ← (Φ U Ψ) if ϕ is non-nested until formula; else null.
11 Ccκ ← Refine Ccκ using Algorithm 2 (Ccκ, φ).
12 l, u← Model check Ccκ against CSL property P∼p(ϕ).
13 r := r + 1;

14 until p /∈ [l, u] ∨ |u− l| < ε ∨ r > N ;

If the verification result obtained form property-agnostic step is inconclusive, the finite

truncated model Ccκ is iteratively refined (lines 9 to 14 of Algorithm 1). Algorithm 2 can

also use the CSL property to intelligently expand the state space when the path formula

22

ϕ belongs to non-nested until CSL-class (line 10 of Algorithm 1). The property-based

exploration is described in detail in Section 4.1.3. Note that κ also drops by the reduction

factor κr (line 9) to enable states that were previously ignored due to a low probability

estimate to be included in the current state expansion. The refined CTMC model Ccκ is

then model checked to obtain a new probability bound [l, u]. This process repeats until one

of the following conditions holds: (1) the target probability p falls outside the probability

bound [l, u], (2) the bound is sufficiently small (less than ε), or (3) a maximal number of

iterations N has been reached (line 14).

4.1.2 State Space Approximation

Algorithm 2 constructs the approximated state space for a reachability threshold κ us-

ing finite number of BFS iterations. Given a truncated CTMC model Ccκ = 〈Scκ,Rcκ, s0,Lcκ〉,

the state exploration process starts by adding the initial state s0 to the exploration queue.

For all the states scheduled for exploration, successor states for each state s is generated

by executing all the enabled transitions form state s. A successor state s′ for state s is

generated by firing a transition s
R(s,s′)−−−−→ s′ (line 9). If s′ is a new state (line 10), it is

included in the state set Sk (line 16) only if state s is not absorbing (line 12) and its current

reachability-value κ̂(s) is at least κ (line 13). A state is considered absorbing only during

the property-based exploration i.e., φ 6= null, if it satisfies s |= (¬Φ ∨ Ψ), otherwise all

states are considered non-absorbing (line 12). Property based exploration is described in

Section 4.1.3.

The new state-transition relation (s,R(s, s′), s′) is added to current state-transition

relation δk (line 14) and the estimate reachability-value γ̂(s′) is computed for state s′ in

line 15. The estimate reachability-value γ̂ is not used to update the reachability-value for

other states in current iteration k, and only becomes available at the end of the current

iteration, at which point it is assigned to the current value of κ̂ (line 27). The reachability-

value γ̂(s′) has contributions from all of its predecessor states. For each predecessor state s′′

of s′, its contribution to γ̂(s′) is the product of its current reachability-value κ̂(s′′) and the

probability of transitioning from s′′ to s′, defined as the ratio of transition rate R(s′′, s′),

23

to the exit rate E(s′′) evaluated at state s′′ (line 15). Intuitively, γ̂(s′) path probability

form all of its predecessor states that have been explored till iteration k. Finally, state s′ is

scheduled for exploration if it has not been visited (line 17). If a non-absorbing state has

reachability-value κ̂(s) less than κ, it becomes (partially) terminal state if there exists a

transition s
R(s,s′′)>0−−−−−−→ s′′ such that s′′ /∈ Sk.

For the case where s′ exists in the set Sk (line 20 to 25), the transition relation δk and

the estimate reachability-value γ̂ are updated and state s′ is scheduled for exploration if it

is not in the visited set (line 23). The reachability-value γ̂(s) is updated since there may

exist a path s′′ → s′ such that s′ ∈ Sk (line 22). The reachability-value update is performed

every time a new incoming path is added to a state. It is crucial to have frequent updates

since a new incoming path can add its contribution to the state, potentially bringing the

reachability-value above κ, which in turn changes a terminal state to be non-terminal.

This update, therefore, guarantees to explore a state with many incoming paths whose

accumulative reachability-values are significant, although each individual one might be low

compared to κ. After exploring all the scheduled states, current BFS iteration terminates

by adding all the terminal states, from the set Sk to the exploration queue (line 29).

The subsequent state graphs are then constructed using the same algorithm. Both state

graphs Gk−1 and Gk are constructed based on the same CTMC model C. The difference

is that Gk updates κ̂ values for some explored states in Gk−1, which may expand Gk−1 to

include new states in Gk. This process of expansion and refinement is repeated until the

size of the approximate state graph stabilizes (line 31), at which point an abstract state is

added to this state graph by Algorithm 3. Algorithm 2 terminates by returning the new

truncated CTMC model Ccκ.

When the truncated CTMC model Ccκ is analyzed, it introduces some error in the

probability value of the property under verification, because of leakage the probability (i.e.,

cumulative probabilities of reaching states not included in the explored state space) during

the CTMC analysis. To account for probability loss, an abstract state sabs is created as

the sole successor state for all terminal states on each truncated path, and is added by

24

Algorithm 2: State space approximation/refinement using breadth-first search

Input: Truncated CTMC model Ccκ = 〈Scκ,Rcκ, s0,Lcκ〉, CSL path φ.
Output: Truncated CTMC model C′cκ = 〈S′cκ,R′cκ, s0,L′cκ〉.

1 k := 0;

2 Gk = SG(Ccκ);
3 Enqueue(queue, s0);
4 visited := {s0};
5 repeat
6 k := k + 1;
7 while queue 6= ∅ do
8 s := Dequeue(queue);
9 forall s′ ∈ Succ(s) do

10 if s′ /∈ Sk then
11 κ̂(s′) := 0;
12 if φ = null ∨ s |= ¬(¬Φ ∨Ψ) then
13 if κ̂(s) ≥ κ then
14 δk := δk ∪ {(s,R(s, s′), s′)};
15 γ̂(s′) :=

∑
s′′∈Pre(s′)

(
κ̂(s′′) · R(s′′,s′)

E(s′′)

)
;

16 Sk := Sk ∪ {s′};
17 if s′ /∈ visited then
18 Enqueue(queue, s′);
19 visited := visited ∪ {s′};
20 else
21 δk := δk ∪ {(s,R(s, s′), s′)};
22 γ̂(s′) :=

∑
s′′∈Pre(s′)

(
κ̂(s′′) · R(s′′,s′)

E(s′′)

)
;

23 if s′ /∈ visited then
24 Enqueue(queue, s′);
25 visited := visited ∪ {s′};

26 forall s ∈ Sk do
27 κ̂(s) := γ̂(s);
28 if |Succ(s ∈ Scκ)| < |Succ(s ∈ S)| then
29 Enqueue(queue, s);
30 visited := visited ∪ {s};
31 until |Gk| = |Gk−1| ;

32 Update Gk by adding an an extra abstract state sabs using Algorithm 3.

Algorithm 3 to the state space generated by Algorithm 2. For all states in the global state

set, if transition s
R(s,s′)−−−−→ s′ is not in the transition relation δk, state transition relation

(s,R(s, sabs), sabs) is added to δk, where R(s, sabs) is computed using Definition 3. It is

obvious that all unexplored transitions from such a terminal state s lead to the abstract

25

Algorithm 3: Abstract state update from approximated global state graph.

Input: An approximated global state graph G .
Output: Updated state graph G with an abstract state sabs.

1 SG := SG ∪ {sabs};
2 forall s ∈ SG do
3 forall s′ ∈ Succ(s) do
4 if (s,R(s, s′), s′) /∈ δ then
5 δ := δ ∪ {(s,R(s, sabs), sabs)};

state.

4.1.3 Property Based State Space Exploration

Model checking of non-nested time-bounded until formula, Φ UI Ψ , on CTMC C is

reduced to transient analysis on a transformed CTMC C[¬Φ ∨ Ψ] by making (¬Φ ∨ Ψ)-

states absorbing (refer to Section 3.3). Since the states reachable from (¬Φ ∨ Ψ)-states in

C becomes unreachable in C[¬Φ ∨Ψ], it is sufficient to explore only those states that satisfy

¬(¬Φ ∨ Ψ) ≡ (Φ ∧ ¬Ψ). Our property-guided state space expansion method therefore

identifies those states satisfying (Φ ∧ ¬Ψ) and schedules them for exploration (line 12 in

Algorithm 2).

4.2 Proof of the Termination Condition

The presented algorithms in Section 4.1.2 are guaranteed to terminate under certain

conditions. This section provides a description of the termination conditions for each algo-

rithm, and presents a proof for termination.

To facilitate the following proof, we first define finite paths of a state graph and depth

for breadth-first search. A finite path ρ of a state graph is a sequence s0
R(s0,s1)−−−−−→ s1

R(s1,s2)−−−−−→

. . . sn−1
R(sn−1,sn)−−−−−−−→ sn such that for every 0 6 i < n, (si,R(si, si+1), si+1) ∈ δ holds for

some R(si, si+1) > 0. State sn is reachable in G if sn is reachable from the initial state

through a finite path included in G . We denote the set of all states with depth ı as ıS .

At depth 0, 0S = {s0}. We define one BFS-step from depth ı > 0 as the process of

exploring all immediate successors of the states in ıS to generate new state set ı+1S .

26

Therefore, the depth for a state is determined when it is explored for the first time. Note

that 0S ∩ 1S · · · ı−1S ∩ ıS = ∅.

Termination condition for Algorithm 2 requires that, as both the depth ı and iteration k

increase, the sum of reachability-values for all states of ıSk decreases, with possibly finitely

many iterations where this sum remains constant. This is formulated by Theorem 1 below.

Theorem 1 (Termination of Algorithm 2). Algorithm 2 terminates after a finite number

of iterations with a given κ, where 0 < κ << 1, if the state graph G+1 satisfies the

following condition: for each depth  > 0, there must exist depth 0 6 ı 6  such that

sd
R(sd,sd+1)−−−−−−−→ sd+1

R(sd+1,sd+2)−−−−−−−−→ . . . sd+(m−1)
R(sd+(m−1),sd+m)
−−−−−−−−−−−−→ sd+m is a finite path in G+1,

and sd ∈ ıS+1, sd+(m−1) ∈ S+1, sd+m ∈ 0S+1 ∪ 1S+1 ∪ · · · −1S+1 ∪ S+1, and m ∈

Z>0.

Proof. Initially, S0 = {s0} and κ̂(s0) = 1. At iteration k = 1, during the construction of

G1, each state at depth 1, 1s ∈ 1S1 , is discovered for the first time when s0 is explored.

Therefore, the current reachability-value κ̂(1s) is assigned a 0 (line 11 of Algorithm 2), but

its estimate reachability-value γ̂(1s) gets updated by κ̂(s0), so that 0 < γ̂(1s) 6 1. Each

new state 2s ∈ 2S1 generated from 1S1, is ignored, since κ̂(1s) = 0, which is less than κ,

and 2s /∈ S1 (line 13 to 17 of Algorithm 2).

Then at iteration k = 2, the sum of reachability-values is 1ζ2 =
∑

s∈ 1S2 κ̂(s), where

each κ̂(s) is a fraction of 0ζ1, and 0ζ1 = κ̂(s0) = 1. Therefore, 1ζ2 is solely contributed from

0ζ1. If a self-loop transition {s0,R(s0, s0), s0} exists, then 0ζ1 > 1ζ2; otherwise 0ζ1 = 1ζ2.

Therefore, 0ζ1 > 1ζ2. Similar to the previous iteration, the updated γ̂(2s) will be used in

the next iteration.

In general, state set ıS at depth ı is first obtained in iteration ı by collecting all the

new states, i.e., states whose depth has not been determined, which are expanded from

states in ı−1S . The sum of all reachability-values for states in ıS is calculated at iteration

ı+ 1 by either line 15 or 22 of Algorithm 2. To differentiate the reachability-value function

κ̂ in different iterations, we denote κ̂ı(s) as the reachability-value for state s at iteration ı.

The sum of all reachability-values at iteration ı+ 1 is computed as follows:

27

ıζı+1 =
∑

s′∈ ıSı+1

κ̂ı+1(s′)

=
∑

s′∈ ıSı+1

∑
s′′∈Pre(s′)

(
κ̂(s′′) · R(s′′, s′)

E(s′′)

)

If
⋃

s′∈ ıSı+1 Pre(s′) is equal to all transition firings of every state in ı−1Sı, then

reachability-values for all the states at depth ı − 1 are passed to depth ı, and hence

ıζı+1 = ı−1ζı. On the other hand, if there exists one or more transition firings from

ı−1Sı to depth other than ı, then ıζı+1 < ı−1ζı. Moreover, if certain states from ı−1Sı

are made absorbing by the property-based exploration, it further decreases the accumu-

lated reachability-value for all the states passed from depth ı − 1 to depth ı. Therefore,

ı−1ζı > ıζı+1.

We can, therefore, establish the following conclusion:

1 = 0ζ1 > 1ζ2 > · · · ı−1ζı > ıζı+1 · · · −1ζ > ζ+1

From the termination condition stated in Theorem 1, the slowest termination scenario,

i.e., the maximal number of iterations required to terminate Algorithm 2, is the following:

1 = 0ζ1 = 1ζ2 = · · · = ıζı+1 = · · · = −1ζ > ζ+1 .

The inequality −1ζ > ζ+1 holds only if at least one state in −1S executes a

transition leading to a state in 0S+1 ∪ 1S+1 ∪ · · · −1S+1, but not in S+1. State sd+m

in Theorem 1 is such a state. Additionally, the termination condition requires that at least

ıζı+1 = · · · = −1ζ > ζ+1 holds for every depth . This requirement guarantees that the

sum of reachability-values keeps decreasing, with possibly many (or zero) iterations where

this sum remains unchanged. Therefore, after a finite number ξ of iterations, ξ−1ζξ < κ.

Since ξ−1ζξ is the sum of all individual reachability-values, in the next iteration (ξ + 1),

reachability-value κ̂(ξs) is less than κ for all states in ξSξ+1, and they become terminal

28

states. Hence, |Gξ| = |Gξ+1|.

CHAPTER 5

RESULTS

This chapter presents case studies that are used to evaluate the effectiveness of the

proposed method. In Section 5.1, we present the analysis of several benchmark models from

different application domains. Section 5.2 provides the comparison of our tool STAMINA

with the state-of-art infinite-state probabilistic model checking tool INFAMY [16].

All the experiments presented are performed on a 3.2 GHz AMD Debian Linux PC with

six cores and 64 GB of RAM. Starting value of reachability threshold κ varies for different

case studies. The reduction factor κr is kept constant to 1000, and the maximal number of

iterations N is set to 10. The analysis precision ε set is 10−3. Currently, the property-based

state exploration only supports non-nested bounded-until transient properties and is set

to default on. For other types of properties, it reverts back to the property-agnostic state

expansion with reduced κ.

5.1 Case Studies

This section presents verification results on the following case studies to illustrate the

accuracy and efficiency of STAMINA: a genetic toggle switch from [4], a grid world robot

navigation, a cyclic server polling system, and a tandem queuing network from the PRISM

benchmark suite [37] and a Jackson queuing network from INFAMY case studies [38].

For all tables in this section, column κ reports the reachability threshold used to ter-

minate state generation in STAMINA. The state space size is listed in column |G|. Column

Time(C/A) reports the state space construction (C) and analysis (A) time in seconds.

Since this approach requires two separate CTMC analyses to compute the lower and upper

bound on the probability for the given property, the analysis time (A) is the sum of two

time analysis time. Columns Pmin and Pmax list the lower and upper probability bounds

for the property under verification.

30

5.1.1 Genetic Toggle Switch

Behaviors of synthetic biological systems are governed by a set of chemical reactions act-

ing on a set of chemical species (molecules). These processes typically involve low molecule

counts making the circuit extremely noisy [39]. It is, therefore, necessary to evaluate a

genetic circuit’s behaviors using stochastic analyses.

The analogous electronic representation of the genetic toggle switch circuit presented

in [4] is shown in Figure 5.1. This toggle switch circuit has two inputs and two outputs,

aTc and IPTG, and LacI and TetR respectively. Unlike a digital circuit, the logic levels

of a genetic circuit are represented by the number of chemical species (molecules). The

ON state of this toggle switch is characterized by high TetR (TetR > 40) and low LacI

(LacI < 20) molecular count. Similarly, the OFF state is represented by TetR dropping

below 20 molecules and LacI rising above 40 molecules. Two important properties for a

toggle switch circuit are the response time and the failure rate.

IPTG

aTc

LacI

TetR

Fig. 5.1: A digital circuit representation of the genetic toggle switch.

In order to measure genetic toggle switch’s response time (i.e., the time it takes to

switch from the OFF state to the ON state), it is initialized to OFF state with LacI at 60

and TetR at 0 molecules. Number of IPTG molecules is set to 100 representing the circuit

has just received the set input to switch to the ON state. Input value of 100 molecules is

chosen to ensure that the circuit should switch to the ON state, but any moderately large

value of input could be used. The CSL property, P=? [true U6T (TetR > 40 ∧ LacI < 20)],

31

describes the probability of the circuit switching to the ON state within time T .

Figure 5.2 shows the minimum and maximum probability of switching from OFF state

to ON state within first T seconds after IPTG has been applied for two different values of κ,

10−3 and 10−6. T varies from 0 to 2100 (an approximation of the cell cycle in E. coli [40]).

The probability of switching is significantly inaccurate w.r.t. the precision ε = 10−3 for

the initial value of κ as shown in Figure 5.2a. The κ is then reduced to 10−6 and state

generation switches to the property-guided refinement mode, where a new state space is

generated by refining the previous state graph guided by the property and the model is

analyzed again. In this case the difference between maximum and minimum probability of

switching is decreased significantly shown in Figure 5.2b.

The second set of experiments involves computing the probability that the circuit

changes state from OFF to ON erroneously within T seconds when aTc and IPTG are

set to 0. This behavior occurs if production of LacI erroneously and significantly inhibits

TetR’s production to let TetR degrade away and consequently switch state. The toggle

switch is initialized to OFF state with LacI at 60 and TetR at 0 molecules as in the previous

experiment. The same CSL property is verified.

Figure 5.3 shows the probability of the circuit changing state erroneously within T

seconds for two different values of κ, 10−3 and 10−6. Similar to response rate experiment,

larger κ-value produced imprecise probability bounds as shown in Figure 5.3a. After re-

ducing the κ-value to 10−6, Figure 5.3b shows that the probability of circuit changing state

erroneously within one cell cycle is less than 10%. Generally, smaller value of κ generates

larger state space, but producing more precise verification results.

5.1.2 Grid World Robot Navigation

This case study considers a robot moving in a n-by-n grid world and a janitor moving

in a larger grid Kn-by-Kn, where K is a constant scaling factor that can be used to

significantly scale up the system’s state space as shown in Figure 5.4.

The robot starts from the bottom left corner to reach the top right corner. The

janitor moves around the larger grid randomly. Robot can only move to a grid if that

32

0 300 600 900 1200 1500 1800 2100

Time (s)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y

Minimum Probability Maximum Probability

(a)

0 300 600 900 1200 1500 1800 2100

Time (s)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y

Minimum Probability Maximum Probability

(b)

Fig. 5.2: Effect of κ on verification precision. (a) Time course plot showing the probability
of the genetic toggle switch changing its state from OFF to ON when κ = 10−3. (b) Time
course plot showing the probability of switching when κ = 10−6.

33

0 300 600 900 1200 1500 1800 2100

Time (s)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y

Minimum Probability Maximum Probability

(a)

0 300 600 900 1200 1500 1800 2100

Time (s)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y

Minimum Probability Maximum Probability

(b)

Fig. 5.3: Effect of κ on verification precision. (a) Time course plot showing the probability
of the genetic toggle switch changing its state erroneously when κ = 10−3. (b) Time course
plot showing the probability of erroneous switching when κ = 10−6.

34

J

R

goal

n

n

K · n

K · n

Fig. 5.4: Grid world robot navigation. Robot (R) moves from bottom left corner to top
right corner along the direction shown in shaded region (grid size n-by-n). Janitor (J) can
move to any position in entire grid of size Kn-by-Kn.

place is not occupied by the janitor. The robot also randomly communicates with a base

station. The property of interest is P=? [(P>0.5 [true U67 communicate]) U6100 goal],

the probability that the robot reaches the top right corner within 100 time units while

periodically communicating with the base station.

Table 5.1 provides verification results for K = 1024, 64 and n = 64, 32. For smaller

grid size i.e, 32-by-32, the robot can reach the goal with a high probability of 97.56%.

Whereas for larger values of n = 64 and K = 64, the robot is not able to reach the goal

with considerable probability. Since the property is only dependent on the size of the grid

that the robot is traveling, the verification result did not change even the value of K is

changed for constant n.

5.1.3 Jackson Queuing Network

A Jackson Queuing Network (JQN) consists of N interconnected nodes (queues) with

35

Table 5.1: Model construction and verification results for grid world robot navigation sys-
tem.

n/K κ |G| T (C/A) Pmin Pmax

32/

10−6 20, 059 0.92/3.25 0.000000 0.999999

64

10−9 107, 107 3.22/20.45 0.000000 0.999813
10−12 311, 117 8.56/57.67 0.582066 0.979065
10−15 527, 842 12.58/86.13 0.973985 0.975636
10−18 695, 839 15.50/111.80 0.975613 0.975617

32/

10−6 20, 059 0.92/3.25 0.000000 0.999999

1024

10−9 107, 107 3.31/19.85 0.000000 0.999813
10−12 311, 117 8.65/58.40 0.582066 0.979065
10−15 527, 842 12.59/74.71 0.973985 0.975636
10−18 695, 839 15.49/102.14 0.975613 0.975617

64/

10−6 20, 204 0.89/2.91 0.000000 0.999999

64

10−9 107, 914 3.22/19.77 0.000000 0.999738
10−12 310, 828 9.04/53.56 0.000000 0.937148
10−15 699, 171 19.55/100.71 0.000000 0.310284
10−18 1, 347, 528 37.63/176.84 0.000000 0.008826
10−21 2, 272, 949 64.52/316.18 1.46E-4 1.68E-4

64/

10−6 20, 204 0.94/2.89 0.000000 0.999999

1024

10−9 107, 914 3.27/19.47 0.000000 0.999738
10−12 310, 828 8.84/56.59 0.000000 0.937148
10−15 699, 171 19.88/91.43 0.000000 0.310284
10−18 1, 347, 528 36.65/165.99 0.000000 0.008826
10−21 2, 272, 949 61.98/284.88 1.46E-4 1.68E-4

infinite queue capacity. Initially, all queues are considered empty. Each station is connected

to a single server which distributes the arrived jobs to different stations. Customers arrive

as a Poisson stream with intensity λ for N queues. A customer, upon completing service

at a node i, either leaves the network or enters another node j. We consider the case with

N = 4, 5 with constant λ = 5. The model is taken from [3,16]. We compute the probability

that, within 10 time units, the first queue has more than 3 jobs and the second queue has

more than 5 jobs, given by P=? [true U610 (jobs 1 > 4 ∧ jobs 2 > 6)].

Table 5.2 summarizes the model checking statistics for this JQN model. Model ex-

ploration starts with κ = 10−9. For smaller value of N = 4, the final probability value

is within precision after one property guided refinement. However, for N = 5, the model

exploration continued till κ reached a very small value 10−15 to explore sufficient states to

36

Table 5.2: Model construction and verification results for Jackson queuing network.

N/λ κ |G| T (C/A) Pmin Pmax

4/5
10−9 36, 820 3.36/6.59 0.792071 0.940620
10−12 200, 665 18.28/44.78 0.865409 0.865567

5/5
10−9 21, 087 4.50/8.47 0.305300 0.993958
10−12 360, 685 89.24/108.96 0.801530 0.850927
10−15 2, 539, 456 896.23/878.25 0.819651 0.819705

give sufficiently precise verification result.

5.1.4 Cyclic Server Polling System

This case study is based on a cyclic server attending N stations. We consider the

probability that station one is polled within 10 time units, P=? [true U610 polled]. This

property is checked for N = 12, 16, 20 and Table 5.3 summarizes the results. The probability

of station one being polled within 10 seconds is 1.0 for all configurations. κ = 10−6 is

sufficient to generate enough states to obtain accurate probability.

Table 5.3: Model construction and verification results for cyclic server polling system.

N κ |G| T (C/A) Pmin Pmax
12 10−6 18, 959 2.87/21.18 1.0 1.0

16 10−6 57, 302 18.41/69.98 1.0 1.0

20 10−6 112, 805 30.00/76.60 1.0 1.0

5.1.5 Tandem Queuing Network

A tandem queuing network is the simplest interconnected queuing network of two

queues with one server each [17]. Customers join the first queue and enter the second

queue immediately after completing the service. We consider both queues with capacity c.

Probability that the first queue becomes full in T time units, depicted by the CSL property

P=? [true U6T queue1 full], is plotted in Figure 5.5 for queue capacity c = 4095. Time T

is varied from 0 to 0.5 since values larger than 0.5 generates the probability 1.0. The initial

37

value of κ = 10−6 is sufficient to keep the error probability below the analysis precision

for all time points which is shown by the overlapping minimum and maximum probability

values in the figure.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (s)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y

Minimum Probability Maximum Probability

Fig. 5.5: Time course plot showing the probability of first queue becoming full for queue
capacity c = 4095 and κ = 10−6. Time course plot for queue capacity c = 2047 shows
similar behavior.

5.2 Comparison with INFAMY

This section compares state space and runtime between STAMINA and INFAMY. The

state space size is listed in column G for both STAMINA and INFAMY. Column Time(C/A)

reports the construction and analysis time. For STAMINA, the total construction and

analysis time is the cumulation of runtime for all κ values. We report the runtime with the

fastest configuration for INFAMY. The improvement in state space size, ratio of state count

generated by INFAMY to that of STAMINA (higher is better), and runtime, percentage

improvement in runtime (higher is better), is listed in column |G|(X) and T (%).

The same CSL properties described in Section 5.1 are verified for grid world robot

38

Table 5.4: State space and runtime comparison between STAMINA and INFAMY.

Model Params
STAMINA INFAMY Improvement
|G| T (C/A) |G| T (C/A) |G|(X) T (%)

32/64 696K 41/279 1, 591K 492/18 2.3 37.3
Robot 32/1024 696K 41/258 1, 591K 501/18 2.3 42.4
(n/K) 64/64 2, 273K 135/669 5, 088K 1, 625/53 2.2 52.1

64/1024 2, 273K 132/621 5, 088K 1, 625/53 2.2 55.2

Jackson 4/5 201K 22/51 635K 109/5 3.2 36.1
(N/λ) 5/5 2, 539K 990/996 7, 029K 1668/108 2.8 −11.8

Polling 12 19K 3/21 74K 1/2 3.9 −732.2
(N) 16 57K 18/70 1, 573K 5/54 27.6 −48.2

20 113K 30/77 31, 457K 151/1347 278.4 92.9

Tandem 2047/0.25 33K 1/41 2, 392K 3/38 72.5 −1.4
(c/T) 4095/0.25 66K 1/141 9, 216K 11/265 139.6 48.7

navigation system, Jackson queuing network, cyclic server polling system, and tandem

queuing network using STAMINA and INFAMY. The probability values reported by both

tool are within the same analysis precision ε = 10−3. The size of state space generated, and

model construction and analysis time are compared in Table 5.4.

STAMINA, by selectively exploring the states whose reachability-value is higher than

the given threshold, is able to reduce the state space by a factor of ∼ 278 compared to

the method deployed by INFAMY, which, on the other hand, explores all the states up-

to certain depth. Smaller state space generated by STAMINA contributes to significantly

smaller model construction time for all the examples. For polling server and tandem queuing

network, the advantage of STAMINA in terms of runtime starts to manifest as the size of

model (and hence state size) grows. INFAMY performed better in terms of analysis time

when analyzing Jackson queuing network model with 5 stations despite exploring one-third

of the states in smaller time. This can can be explained by the fact that our method relies

on two separate CTMC analyses to compute the lower and upper bounds on the probability

for each CSL property.

CHAPTER 6

CONCLUSIONS

6.1 Conclusion

We aimed to develop an infinite-state probabilistic model checker. When it comes to

system with infinite state space, truncation is the only viable way to construct its model

that are amenable to current model checking techniques. Manual model truncation during

modeling phase however leads to analysis uncertainty. In a naive way, the model is explored

to a finite depth and the rest of the state space is abstracted to a single state to account

for the error introduced by truncation. In order to maintain the error introduced below a

small precision, higher exploration depth is required, which in turn, causes the exponential

growth of the truncated state space, limiting its scalability.

In this thesis we investigated a different method to truncate the infinite state space to

a finite one. During exploration of a model, we maintained a parameter, reachability-value,

for each of the state explored so far. Reachability-value of a state estimates how likely that

state will contribute to the analysis of the model. Unlike the naive way, all the states with

same exploration depth are not explored. We explore only those states whose reachability-

value is higher than a specified threshold and terminate the path at current state if the

reachability-value is less than the specified threshold. This avoids the exponential growth

of the truncated state space.

The efficiency measures of interest are minimal time and space requirements of model

checking. As demonstrated in the preceding chapters, we have successfully applied our

method on case studies taken from various application domains and compared its perfor-

mance and accuracy with the naive method implemented in INFAMY. We demonstrated

that the size of state space is reduced for all the benchmarks by as much as 278.4 times

compared to INFAMY. This reduction also contributes to significantly smaller model con-

40

struction time for all the benchmarks presented. The over all runtime is also improved for

almost all case studies with large state space. The only case study for which STAMINA has

longer runtime than INFAMY is the Jackson queuing network model with 5 stations. The

dual CTMC analyses to find minimum and maximum probability explains the increased

runtime for this system.

6.2 Future Work

Among numerous possible directions, we discuss few interesting ones to investigate.

Currently, the methods presented in this thesis is only applicable for CTMC models. Se-

mantically DTMCs are very similar to CTMCs. Instead of transition rate in CTMCs,

DTMCs have the actual transition probability. We plan to extend our method to trun-

cate the DTMCs as well. Adding support to another model-class increases the utility of

STAMINA.

Another improvement would be to merge two CTMC analysis into one. Our method

performs two separate CTMC analysis, one excluding and other including the abstract

state, to compute minimum and maximum probability respectively. Instead, it can be

tightly integrated to PRISM; and utilize intermediate information to compute both values

only running one CTMC analysis. As observed in Section 5.2, this can significantly reduce

the overall runtime making STAMINA more efficient.

Finally, the reduction of reachability threshold is done in constant rate dictated by

reduction factor. Aggressive reduction of reachability threshold may explore unnecessary

states and increase the model construction. On the other hand, slow decrease requires

multiple iterations to compute the probability with in the given precision. We plan to

investigate algorithms to determine the reduction factor on-the-fly based on the probability

bound.

41

REFERENCES

[1] J. Muppala, G. Ciardo, and K. Trivedi, “Stochastic reward nets for reliability predic-
tion,” Communications in Reliability, Maintainability and Serviceability, vol. 1, no. 2,
pp. 9–20, July 1994.

[2] H. Hermanns, J. Meyer-Kayser, and M. Siegle, “Multi terminal binary decision dia-
grams to represent and analyse continuous time Markov chains,” in Proc. 3rd Inter-
national Workshop on Numerical Solution of Markov Chains (NSMC’99), B. Plateau,
W. Stewart, and M. Silva, Eds. Prensas Universitarias de Zaragoza, 1999, pp. 188–207.

[3] J. R. Jackson, “Networks of waiting lines,” Oper. Res., vol. 5, no. 4, pp. 518–521,
Aug. 1957. [Online]. Available: http://dx.doi.org/10.1287/opre.5.4.518

[4] C. Madsen, Z. Zhang, N. Roehner, C. Winstead, and C. Myers, “Stochastic model
checking of genetic circuits,” J. Emerg. Technol. Comput. Syst., vol. 11, no. 3, pp.
23:1–23:21, Dec. 2014. [Online]. Available: http://doi.acm.org/10.1145/2644817

[5] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Z. Kwiatkowska, and M. Ryan,
“Symbolic model checking for probabilistic processes,” in Proceedings of the 24th
International Colloquium on Automata, Languages and Programming, ser. ICALP
’97. London, UK, UK: Springer-Verlag, 1997, pp. 430–440. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646251.685846

[6] D. Parker, “Implementation of symbolic model checking for probabilistic systems,”
Ph.D. dissertation, University of Birmingham, 2002.

[7] J.-P. Katoen, T. Kemna, I. Zapreev, and D. N. Jansen, “Bisimulation minimisation
mostly speeds up probabilistic model checking,” in Proceedings of the 13th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, ser. TACAS’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 87–101.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1763507.1763519

[8] K. Fisler and M. Y. Vardi, “Bisimulation and model checking,” in Proceedings
of the 10th IFIP WG 10.5 Advanced Research Working Conference on Correct
Hardware Design and Verification Methods, ser. CHARME ’99. London, UK, UK:
Springer-Verlag, 1999, pp. 338–341. [Online]. Available: http://dl.acm.org/citation.
cfm?id=646704.702028

[9] K. Fisler and M. Y. Vardi, “Bisimulation minimization and symbolic model checking,”
Form. Methods Syst. Des., vol. 21, no. 1, pp. 39–78, Jul. 2002. [Online]. Available:
https://doi.org/10.1023/A:1016091902809

[10] J. P. Katoen, D. Klink, M. Leucker, and V. Wolf, “Three-valued abstraction for
continuous-time markov chains,” in Proceedings of the 19th International Conference on
Computer Aided Verification, ser. CAV’07. Berlin, Heidelberg: Springer-Verlag, 2007,
pp. 311–324. [Online]. Available: http://dl.acm.org/citation.cfm?id=1770351.1770401

http://dx.doi.org/10.1287/opre.5.4.518
http://doi.acm.org/10.1145/2644817
http://dl.acm.org/citation.cfm?id=646251.685846
http://dl.acm.org/citation.cfm?id=1763507.1763519
http://dl.acm.org/citation.cfm?id=646704.702028
http://dl.acm.org/citation.cfm?id=646704.702028
https://doi.org/10.1023/A:1016091902809
http://dl.acm.org/citation.cfm?id=1770351.1770401

42

[11] H. Fecher, M. Leucker, and V. Wolf, “Don’t know in probabilistic systems,” in
Proceedings of the 13th International Conference on Model Checking Software, ser.
SPIN’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 71–88. [Online]. Available:
http://dx.doi.org/10.1007/11691617 5

[12] H. Hermanns, B. Wachter, and L. Zhang, “Probabilistic cegar,” in Proceedings
of the 20th International Conference on Computer Aided Verification, ser. CAV
’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 162–175. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-70545-1 16

[13] M. Kwiatkowska, G. Norman, and D. Parker, “Symmetry reduction for probabilistic
model checking,” in Proceedings of the 18th International Conference on Computer
Aided Verification, ser. CAV’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
234–248. [Online]. Available: http://dx.doi.org/10.1007/11817963 23

[14] A. F. Donaldson and A. Miller, “Symmetry reduction for probabilistic model
checking using generic representatives,” in Proceedings of the 4th International
Conference on Automated Technology for Verification and Analysis, ser. ATVA’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 9–23. [Online]. Available: http:
//dx.doi.org/10.1007/11901914 4

[15] M. Groesser and C. Baier, “Partial order reduction for markov decision processes: A
survey,” in Proceedings of the 4th International Conference on Formal Methods for
Components and Objects, ser. FMCO’05. Berlin, Heidelberg: Springer-Verlag, 2006,
pp. 408–427. [Online]. Available: http://dx.doi.org/10.1007/11804192 19

[16] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “Infamy: An infinite-state
markov model checker,” in Proceedings of the 21st International Conference on
Computer Aided Verification, ser. CAV ’09. Berlin, Heidelberg: Springer-Verlag, 2009,
pp. 641–647. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-02658-4 49

[17] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of probabilistic
real-time systems,” in Proc. 23rd International Conference on Computer Aided Ver-
ification (CAV’11), ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806.
Springer, 2011, pp. 585–591.

[18] M. Lapin, L. Mikeev, and V. Wolf, “Shave: Stochastic hybrid analysis of markov
population models,” in Proceedings of the 14th International Conference on Hybrid
Systems: Computation and Control, ser. HSCC ’11. New York, NY, USA: ACM,
2011, pp. 311–312. [Online]. Available: http://doi.acm.org/10.1145/1967701.1967746

[19] J. Aspnes and M. Herlihy, “Fast randomized consensus using shared memory,”
J. Algorithms, vol. 11, no. 3, pp. 441–461, Sep. 1990. [Online]. Available:
http://dx.doi.org/10.1016/0196-6774(90)90021-6

[20] K. G. Larsen and A. Skou, “Bisimulation through probabilistic testing,”
Inf. Comput., vol. 94, no. 1, pp. 1–28, Sep. 1991. [Online]. Available:
http://dx.doi.org/10.1016/0890-5401(91)90030-6

http://dx.doi.org/10.1007/11691617_5
http://dx.doi.org/10.1007/978-3-540-70545-1_16
http://dx.doi.org/10.1007/11817963_23
http://dx.doi.org/10.1007/11901914_4
http://dx.doi.org/10.1007/11901914_4
http://dx.doi.org/10.1007/11804192_19
http://dx.doi.org/10.1007/978-3-642-02658-4_49
http://doi.acm.org/10.1145/1967701.1967746
http://dx.doi.org/10.1016/0196-6774(90)90021-6
http://dx.doi.org/10.1016/0890-5401(91)90030-6

43

[21] C. Baier, B. Engelen, and M. Majster-Cederbaum, “Deciding bisimilarity and
similarity for probabilistic processes,” J. Comput. Syst. Sci., vol. 60, no. 1, pp.
187–231, Feb. 2000. [Online]. Available: http://dx.doi.org/10.1006/jcss.1999.1683

[22] S. Cattani and R. Segala, “Decision algorithms for probabilistic bisimulation,”
in Proceedings of the 13th International Conference on Concurrency Theory, ser.
CONCUR ’02. Berlin, Heidelberg: Springer-Verlag, 2002, pp. 371–385. [Online].
Available: http://dl.acm.org/citation.cfm?id=646737.701950

[23] N. Kamaleson, “Model reduction techniques for probabilistic verification of markov
chains,” Ph.D. dissertation, University of Birmingham, 2018.

[24] P. Godefroid, “Using partial orders to improve automatic verification methods,” in
Proceedings of the 2Nd International Workshop on Computer Aided Verification, ser.
CAV ’90. Berlin, Heidelberg: Springer-Verlag, 1991, pp. 176–185. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647759.735044

[25] D. Peled, “Combining partial order reductions with on-the-fly model-checking,” in
Computer Aided Verification, D. L. Dill, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1994, pp. 377–390.

[26] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani,
“Partial-order reduction in symbolic state space exploration,” in Proceedings
of the 9th International Conference on Computer Aided Verification, ser. CAV
’97. London, UK, UK: Springer-Verlag, 1997, pp. 340–351. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647766.733599

[27] R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigün, “Static partial order
reduction,” in Tools and Algorithms for the Construction and Analysis of Systems,
B. Steffen, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 345–357.

[28] E. Clarke, O. Grumberg, M. Minea, and D. Peled, “State space reduction
using partial order techniques,” International Journal on Software Tools for
Technology Transfer, vol. 2, no. 3, pp. 279–287, Nov 1999. [Online]. Available:
https://doi.org/10.1007/s100090050035

[29] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for model checking
software,” in Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’05. New York, NY, USA: ACM,
2005, pp. 110–121. [Online]. Available: http://doi.acm.org/10.1145/1040305.1040315

[30] J. Hasenauer, V. Wolf, A. Kazeroonian, and F. J. Theis, “Method of
conditional moments (mcm) for the chemical master equation,” Journal of
Mathematical Biology, vol. 69, no. 3, pp. 687–735, Sep 2014. [Online]. Available:
https://doi.org/10.1007/s00285-013-0711-5

[31] A. Andreychenko, L. Mikeev, D. Spieler, and V. Wolf, “Parameter identification for
markov models of biochemical reactions,” in Computer Aided Verification, G. Gopalakr-
ishnan and S. Qadeer, Eds. Springer Berlin Heidelberg, 2011, pp. 83–98.

http://dx.doi.org/10.1006/jcss.1999.1683
http://dl.acm.org/citation.cfm?id=646737.701950
http://dl.acm.org/citation.cfm?id=647759.735044
http://dl.acm.org/citation.cfm?id=647766.733599
https://doi.org/10.1007/s100090050035
http://doi.acm.org/10.1145/1040305.1040315
https://doi.org/10.1007/s00285-013-0711-5

44

[32] L. Zhang, H. Hermanns, E. M. Hahn, and B. Wachter, “Time-bounded model checking
of infinite-state continuous-time Markov chains,” in ACSD. IEEE, 2008, pp. 98–107.

[33] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Model-checking continuous-time
markov chains,” ACM Trans. Comput. Logic, vol. 1, no. 1, pp. 162–170, Jul. 2000.
[Online]. Available: http://doi.acm.org/10.1145/343369.343402

[34] C. Baier, B. Haverkort, H. Hermanns, and J. . Katoen, “Model-checking algorithms for
continuous-time markov chains,” IEEE Transactions on Software Engineering, vol. 29,
no. 6, pp. 524–541, June 2003.

[35] W. Grassmann, “Transient solutions in markovian queueing systems,” Computers
& Operations Research, vol. 4, no. 1, pp. 47 – 53, 1977. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0305054877900077

[36] D. Gross and D. R. Miller, “The randomization technique as a modeling tool and
solution procedure for transient markov processes,” Oper. Res., vol. 32, no. 2, pp.
343–361, Apr. 1984. [Online]. Available: http://dx.doi.org/10.1287/opre.32.2.343

[37] M. Kwiatkowsa, G. Norman, and D. Parker, “The prism benchmark suite,” in
Quantitative Evaluation of Systems, International Conference on(QEST), vol. 00, 09
2012, pp. 203–204. [Online]. Available: doi.ieeecomputersociety.org/10.1109/QEST.
2012.14

[38] https://depend.cs.uni-saarland.de/tools/infamy/casestudies/.

[39] A. Eldar and M. B. Elowitz, “Functional roles for noise in genetic circuits,”
Nature, vol. 467, no. 7312, pp. 167–173, Sep. 2010. [Online]. Available:
https://doi.org/10.1038/nature09326

[40] H. Zheng, P.-Y. Ho, M. Jiang, B. Tang, W. Liu, D. Li, X. Yu, N. E. Kleckner, A. Amir,
and C. Liu, “Interrogating the escherichia coli cell cycle by cell dimension perturba-
tions,” Proceedings of the National Academy of Sciences, vol. 113, no. 52, pp. 15 000–
15 005, 2016.

http://doi.acm.org/10.1145/343369.343402
http://www.sciencedirect.com/science/article/pii/0305054877900077
http://dx.doi.org/10.1287/opre.32.2.343
doi.ieeecomputersociety.org/10.1109/QEST.2012.14
doi.ieeecomputersociety.org/10.1109/QEST.2012.14
https://doi.org/10.1038/nature09326

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	NOTATION
	INTRODUCTION
	Contributions
	Thesis Outline

	LITERATURE REVIEW
	Verification of Finite-State Probabilistic Systems
	Verification of Infinite-State Probabilistic Systems

	PRELIMINARIES
	Continuous-time Markov Chains and Finite Truncation
	Continuous Stochastic Logic
	Model Checking CTMCs Over CSL
	Model Checking CSL Time-Bounded Until

	The PRISM Model Checker
	PRISM Language

	STATE SPACE APPROXIMATION AND ANALYSIS
	Architecture of STAMINA
	Model Checking Framework
	State Space Approximation
	Property Based State Space Exploration

	Proof of the Termination Condition

	RESULTS
	Case Studies
	Genetic Toggle Switch
	Grid World Robot Navigation
	Jackson Queuing Network
	Cyclic Server Polling System
	Tandem Queuing Network

	Comparison with INFAMY

	CONCLUSIONS
	Conclusion
	Future Work

	REFERENCES

