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Abstract Probabilistic automata models play an important role in the formal
design and analysis of hard- and software systems. In this area of applications, one
is often interested in formal model-checking procedures for verifying critical system
properties. Since adequate system models are often difficult to design manually,
we are interested in learning models from observed system behaviors. To this
end we adopt techniques for learning finite probabilistic automata, notably the
Alergia algorithm. In this paper we show how to extend the basic algorithm to
also learn automata models for both reactive and timed systems. A key question
of our investigation is to what extent one can expect a learned model to be a
good approximation for the kind of probabilistic properties one wants to verify by
model checking. We establish theoretical convergence properties for the learning
algorithm as well as for probability estimates of system properties expressed in
linear time temporal logic and linear continuous stochastic logic. We empirically
compare the learning algorithm with statistical model checking and demonstrate
the feasibility of the approach for practical system verification.

Keywords probabilistic model checking · probabilistic automata learning

1 Introduction

Grammatical inference (GI) (Higuera, 2010), also known as grammar induction or
grammar learning, is concerned with learning language specifications in the form of
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grammars or automata from data consisting of strings over some alphabet. Start-
ing with Angluin’s seminal work (Angluin, 1987), methods have been developed
for learning deterministic, non-deterministic and probabilistic grammars and au-
tomata. The learning techniques in GI have been applied in many areas, such as
speech recognition, software development, pattern recognition, and computational
biology. In this paper we adapt the learning techniques in the GI area to learn
models for model checking.

Model Checking is a verification technique for determining whether a sys-
tem model complies with a specification provided in a formal language (Baier
and Katoen, 2008). In the simplest case, system models are given by finite
non-deterministic or probabilistic automata, but model-checking techniques have
also been developed for more sophisticated system models, e.g., timed au-
tomata (Laroussinie et al, 1995; Bouyer et al, 2011, 2008). Powerful software tools
that are available for model checking include UPPAAL (Behrmann et al, 2011)
and PRISM (Kwiatkowska et al, 2011).

Traditionally, models used in model-checking are manually constructed, either
in the development phase as system designs, or for existing hard- or software sys-
tems from known specifications and documentation. This procedure can be both
time-consuming and error-prone, especially for systems lacking updated and de-
tailed documentation, such as legacy software, 3rd party components, and black-
box systems. These difficulties are generally considered a hindrance for adopting
otherwise powerful model checking techniques, and have led to an increased inter-
est in methods for data-driven model learning (or specification mining) for formal
verification (Ammons et al, 2002; Sen et al, 2004a; Mao et al, 2011, 2012).

In this paper we investigate methods for learning deterministic probabilistic
finite automata (DPFA) from data consisting of previously observed system be-
haviors, i.e., sample executions. The probabilistic models considered in this paper
include labeled Markov decision processes (MDPs) and continuous-time labeled
Markov chains (CTMCs), where the former model class also covers labeled Markov
chains (LMCs) as a special case. Labeled Markov decision processes can be used to
model reactive systems, where input actions are chosen non-deterministically and
the resulting output for a given input action is determined probabilistically. Non-
determinism can model the free and unpredictable choices from an environment or
the concurrency between components in a system. MDPs and by extension LMCs
are discrete-time models, where each transition takes a universal discrete time unit.
CTMCs, on the other hand, are real-time models, where the time delays between
transitions are determined probabilistically. We show how methods for learning
deterministic probabilistic finite automata (DPFA) (Carrasco and Oncina, 1994,
1999; Higuera, 2010) can be adapted for learning the above three model classes
and pose the results within a model checking context. We give consistency results
for the learning algorithms, and we analyze both theoretically and experimentally
how the convergence of the learned models relates to the convergence of system
properties expressed in linear time logics.

We also compare the accuracy of model checking learned models with the
accuracy of a statistical model checking approach, where probabilities of query
properties are directly estimated from the empirical frequencies in the data. Our
results here demonstrate a smoothing effect of model learning which can prevent
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overfitting, but may in some cases also lead to less accurate results compared
to statistical model checking. Our results also indicate a significant advantage of
model learning over statistical model checking for the amortized time complexity
over multiple queries.

1.1 Related Work

Work on learning finite automata models can first be divided into two broad
categories: active learning following Angluin’s L∗ algorithm (Angluin, 1987), and
passive learning based on a state-merging procedure.

Active learning is based on the assumption that there exists a teacher or an
oracle that answers membership and equivalence queries. Originally developed by
Angluin (1987) for learning deterministic finite automata, L∗ has been generalized
in many different ways that also include extensions to learning automata models
with inputs and outputs, as well as probabilistic automata: in (Bollig et al, 2010),
L∗ is exploited to learn communicating finite-state machines by using a given set
of positive and negative message sequence charts to answer the membership and
equivalence queries. In (Niese, 2003), L∗ is adapted to learn deterministic Mealy
machines. This work is further extended to learn deterministic I/O automata by
placing a transducer between the teacher and the Mealy machine learner (Aarts
and Vaandrager, 2010). In (Grinchtein et al, 2005, 2006), L∗ is adapted to learn
deterministic event-recording automata which is a subclass of real-time automata.

To learn probabilistic automata models, modified versions of L∗ have been pro-
posed in which a membership query now asks for the probability of a given word
in the target model (Tzeng, 1992; de Higuera and Oncina, 2004; Feng et al, 2011).
In (Komuravelli et al, 2012), L∗ combined with a stochastic state-space parti-
tioning algorithm makes it possible to learn nondeterministic labeled probabilistic
transition systems from tree samples. Exact oracles for (classical or probabilistic)
membership and equivalence queries are usually not available in practice and have
to be approximated. For deterministic finite automata this has been implemented
using a conformance testing sub-routine (Raffelt and Steffen, 2006).

Passive learning methods that only require data consisting of observed system
behaviors have been developed for probabilistic automata models (Carrasco and
Oncina, 1994; Ron et al, 1996). These approaches are based on iteratively merging
candidate states. Different approaches differ with respect to the strategy accord-
ing to which candidate states are generated, and the criteria used for deciding
whether to merge states. In algorithms following the paradigm of the Alergia al-
gorithm (Carrasco and Oncina, 1994), first a maximal, tree-shaped automaton is
constructed, and iteratively reduced by recursive merge operations. The learning
paradigm introduced by Ron et al (1996), on the other hand, starts with a mini-
mal automaton and successively refines it by expanding existing states with new
candidate states. More important than these architectural differences, however,
are differences in the criteria used for state merging. The most common approach
is to use a statistical test for the equivalence of the distributions defined at the
nodes (Carrasco and Oncina, 1994; de la Higuera and Thollard, 2000). For basic
probabilistic automata only tests for the equivalence of binomial distributions are
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required, for which the use of the Hoeffding test is usually suggested. For timed
automata models, this has been extended in (Sen et al, 2004a) to also test the
equivalence of two exponential distributions defining the delay times at the states.
Thollard et al (2000) provide the minimum divergence inference algorithm to con-
trol state merging: two nodes should be merged if the loss of the likelihood can be
compensated by the reduced complexity of the resulting model. Ron et al (1998)
base the state merging decision on the existence of a distinguishing string, i.e. a
string for which the difference of probability at the two candidate states exceeds
a certain threshold. The state merging algorithms have been extended to learn
stochastic transducers (Oncina et al, 1993) and timed automata (Verwer, 2010).

In a number of papers the convergence properties of learning algorithms have
been studied. Carrasco and Oncina (1994), de la Higuera and Thollard (2000) and
Sen et al (2004a) give learning in the limit results, i.e., the unknown automaton
is correctly identified in the limit of large sample sizes. Quantitative bounds on
the speed of convergence in the form of PAC learnability results are given in (Ron
et al, 1996; Clark and Thollard, 2004; Castro and Gavaldà, 2008).

The use of grammatical inference techniques for model construction in a ver-
ification context has been proposed in several papers (Cobleigh et al, 2003; Gi-
annakopoulou and Păsăreanu, 2005; Leucker, 2007; Singh et al, 2010; Feng et al,
2011). These papers focus on active learning using variants of L∗, and only (Feng
et al, 2011) considers the probabilistic case.

Statistical model checking (SMC) (Sen et al, 2004b; Legay et al, 2010) or
approximate model-checking (Hérault et al, 2004) has a similar objective as model
learning for verification. Instead of constructing a model from sample executions,
one directly checks the empirical probabilities of properties in the data. Since the
sample executions can only be finite strings, this approach is limited with respect
to checking probabilities for unbounded properties.

1.2 Contribution and Outline

Our work follows the Alergia paradigm and is closely linked to previous
work (Carrasco and Oncina, 1994; Sen et al, 2004a). We here do not introduce
any major algorithmic novelties, but give an integrated account of learning sys-
tem models that can also represent input/output behaviors and time delays. The
novel aspect of this paper is a theoretical and experimental analysis of the feasi-
bility of using the learned model for formal verification of temporal logic proper-
ties. We present theoretical results that based on the convergence properties for
Alergia-like algorithms establish the convergence also of probability estimates for
system properties of interest. An extensive empirical evaluation provides insight
into the workings of the algorithm and demonstrates the feasibility of the learn-
ing approach for verification applications in practice. The evaluation also includes
a detailed comparison of the learning approach with statistical model checking,
considering both accuracy results and the time and space complexity for perform-
ing model checking. Finally, we provide a new detailed proof of the fundamental
convergence results. While generally following the lines of argument pioneered in
(Carrasco and Oncina, 1994; de la Higuera and Thollard, 2000; Sen et al, 2004a),
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our new proof contains the following improvements: it is cast in a very general
framework, and accommodates in a uniform manner different classes of automata
models, including input/output and timed automata. It is presented in a modular
form that clearly identifies separate conditions for the algorithmic structure of the
state merging procedure, for the statistical tests used for state-merging decisons,
and for the data-generating process. The structure of the proof thereby facilitates
the application of the convergence result to new learning scenarios. Since this gen-
eral convergence analysis is somewhat independent from the rest of this paper, it
is placed in a self-contained appendix.

The paper is structured as follows: Section 2 presents background material.
Section 3 describes the adapted Alergia algorithm for learning system models,
and Section 4 analyzes the consistency and convergence properties of the learning
algorithm. Section 5 provides empirical results on the behavior of the learning
algorithm and demonstrates the use of the algorithm in a model checking context.
The last section concludes the paper and outlines directions for future research.
The appendix contains our general convergence analysis. This paper is an extended
version of (Mao et al, 2011) and (Mao et al, 2012).

2 Preliminaries

2.1 Strings

We start by introducing the notion of strings that will be used throughout the
paper.

– Given a finite alphabet Σ, we use Σ∗ and Σω to denote the set of all finite and
infinite strings over Σ, respectively.

– Given a infinite string s = σ0σ1 . . . ∈ Σω starting with the symbol σ0, s[j . . .] =
σjσj+1σj+2 . . . is the suffix of s starting with the (j + 1)st symbol σj and
σ0σ1 . . . σj ∈ Σ∗ is the prefix of s.

– Given an input alphabet Σin and an output alphabet Σout, an infinite
I/O string is denoted as π = σ0α1σ1 . . . ∈ Σout × (Σin × Σout)ω, and
σ0α1σ1 . . . αnσn ∈ Σout × (Σin × Σout)∗ is the prefix of s with 2n + 1 alter-
nating I/O symbols.

– Given a finite string s = σ0σ1 . . . σn, we use prefix(s) = {σ0 . . . σj |0 ≤ j ≤
n} to denote the set of all prefixes of string s. For a finite I/O string π =
σ0α1σ1 . . . αnσn, prefix(π) = {σ0α1σ1 . . . αjσj |0 ≤ j ≤ n}. Given a set of finite
strings S, prefix(S) denotes all prefixes of strings in S.

– A timed string ρ = σ0t0σ1t1 . . . includes the time delay ti ∈ R>0 between the
observation of two consecutive symbols σi and σi+1 in the string. Given a timed
string ρ, ρ[n] = σn is the (n + 1)th symbol of ρ, ρ[n . . .] = σntnσn+1tn+1 . . . is
the suffix starting from the (n + 1)th symbol, ρ〈n〉 = tn is the time spent
between observing the symbols σn and σn+1, and ρ@t is the suffix starting
at time t ∈ R>0, i.e., ρ@t = ρ[n . . .], where n is the smallest index such that∑n
i=0 ρ 〈i〉 ≥ t. The skeleton of ρ, denoted S(ρ), is the string σ0σ1 . . . ∈ Σω.
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2.2 Stochastic System Models

We begin with the definition of the basic (D)MC model, which quantifies transi-
tions with probabilities. We next extend (D)MCs to DMDPs by introducing input
actions, where each input action on a state defines a probability distribution over
successor states. In both DMCs and DMDPs, the time spent in each state is given
by a universal discrete time unit. We lift this assumption in DCTMCs by modeling
the transition times using a probabilistic model.

Definition 1 (MC) A labeled Markov chain (MC) is a tupleMc = 〈Q,Σout, I, δ, L〉,
where

– Q is a finite set of states,
– Σout is a finite alphabet,
– I : Q→ [0, 1] is an initial probability distribution over Q such that

∑
q∈Q I(q) =

1,
– δ : Q×Q→ [0, 1] is the transition probability function such that for all q ∈ Q,∑

q′∈Q δ(q, q
′) = 1, and

– L : Q→ Σout is a labeling function.

Definition 2 (DMC) A labeled Markov chain is deterministic (DMC), if

– there exists a start state qs ∈ Q with I(qs) = 1, and
– for all q ∈ Q and σ ∈ Σout: there exists at most one q′ ∈ Q with L(q′) = σ for

which δ(q, q′) > 0.

Since the possible successor states in a DMC are uniquely labeled, we some-
times abuse notation and write δ(q, σ) for δ(q, q′) where L(q′) = σ.

Each state in the Mc represents a configuration of the system being modeled,
and each transition represents the movement from one system configuration to
another (quantified by a probability). An (infinite) path inMc is a string of states:
h = q0q1 . . . ∈ Qω where qi ∈ Q and δ(qi, qi+1) > 0, for all i ∈ N. The trace for
h, denoted trace(h), is a sequence of state labels s = σ0σ1 . . . ∈ (Σout)ω, where
σi = L(qi) for all i ∈ N. Given a finite path h = q0q1 . . . qn, the cylinder set of h,
denoted Cyl (q0q1 . . . qn), is defined as the set of infinite paths with the prefix h.
The probability of the cylinder set is given by

PMc(Cyl (q0q1 . . . qn)) = I(q0) ·
n∏
i=1

δ(qi−1, qi).

For any trace s in a DMC, there exists at most one path h such that trace(h) = s,
hence the definition above readily extends to cylinder sets for strings. If the MC is
non-deterministic, there may exist more than one path with trace s in which case
the probability of Cyl (s) is given by

PMc(Cyl (s)) =
∑

h:trace(h)=s

PMc(Cyl (h)).
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The probabilities assigned to cylinder sets induce a unique probability distribu-
tion on (Σout)ω (equipped with the σ-algebra generated by the cylinder sets)(Baier
and Katoen, 2008). We denote this distribution also with PMc . Moreover, we de-
note by PMc,q the distribution obtained by (re)defining q ∈ Q as the unique start

state.

Note that our definition of (D)MCs differs from other versions of probabilistic
automata, such as (Rabin, 1963; Segala, 1996): we assume states to be labeled,
whereas the more common automaton model puts the labels on the transitions.
Both types of models are equivalent, but a translation of a transition-labeled au-
tomaton to a state-labeled automaton may increase the number of states by a
factor of | Σout |. Despite the increase in model size, we still adopt (D)MCs as
system models due to the model checking tools and algorithms already developed
for this model class.

The MC is a purely probabilistic model, i.e., in a certain state, the proba-
bility of reaching a specific state in the next step is known. Deterministic la-
beled Markov decision processes (DMDPs) extend DMCs with non-determinism,
which can be used to model reactive systems where input actions are chosen non-
deterministically and the resulting output for a given input action is determined
probabilistically.

Definition 3 (DMDP) A deterministic labeled Markov decision process (DMDP) is
a tuple Mp = 〈Q,Σin, Σout, qs, δ, L〉, where

– Q, I, and L are the same as for DMCs,
– Σin is a finite alphabet of input actions,
– Σout is a finite alphabet of output symbols,
– the transition probability function is defined as δ : Q × Σin × Q → [0, 1], such

that for all q ∈ Q and all α ∈ Σin,
∑
q′∈Q δ(q, α, q

′) = 1, and

– for all q ∈ Q, α ∈ Σin, and σ ∈ Σout, there exists at most one q′ ∈ Q with
L(q′) = σ ∈ Σout and δ(q, α, q′) > 0.

The last condition in the definition above together with the existence of a
unique initial state qs makes the behavior of the model deterministic conditioned
on the (non-deterministically chosen) input actions. Analogously to DMCs, we will
sometimes abuse notation and write δ(q, α, σ) instead of δ(q, α, q′) where L(q′) = σ.
A path in a DMDP Mp is an alternating sequence of states qi ∈ Q and input
symbols αi ∈ Σin, denoted as q0α1q1α2q2 . . .. The trace of a path in a DMDP is
defined analogously to the notion of trace in MCs. That is, the trace of a path
q0α1q1α2q2 . . . is an alternating sequence of input symbols and state labels π =
σ0α1σ1α2σ2 . . . ∈ Σout × (Σin × Σout)ω, where σi = L(qi). To reason about the
probability of a set of paths in the DMDP, a scheduler (also known as an adversary

or a strategy) is introduced to resolve the non-deterministic choices on the input
actions.

Definition 4 (Scheduler) Let Mp be a DMDP and Q+ be the set of state se-
quences of non-zero length. A scheduler for Mp is a function S : Q+×Σin → [0, 1]
such that for all q = q0q1 . . . qn ∈ Q+,

∑
α∈Σin S(q, α) = 1. A scheduler is said to

be deterministic if for all q ∈ Q+ there exists an α ∈ Σin for which S(q, α) = 1.



8 H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, et al.

The scheduler specifies an action for each state based on the path history for
that state. It is said to be fair if in any state q all input actions can be chosen with
non-zero probability. If a scheduler S only depends on the current state we say
that S is memoryless. An Mp together with a scheduler S induce a probability
distribution defined by the cylinder set of all finite path fragments in Mp. For a
cylinder set Cyl (q0α1q1 . . . αnqn) the probability is defined as

PMp,S(Cyl (q0α1q1 . . . αnqn)) = I(q0) ·
n∏
i=1

S(q0 . . . qi−1, αi)δ(qi−1, αi, qi).

Similarly to DMCs, the probability distribution defined above induces a prob-
ability distribution over cylinder sets of I/O strings, and hence a distribution over
infinite I/O sequences.

Example 1 The graphical model of a three-state DMDP Mp is shown in Fig. 1
(a), where Σin = {α, β} and Σout = {A,B}. From the initial state qs (double
circled) labeled with symbol A, the actions α and β are chosen nondeterministically.
Consider now the two memoryless schedulers S1 and S2 given by S1(q) = β, and
S2(q) = α if q = qs and S2(q) = β otherwise. The schedulers induce the DMCs
in Figure (b) and (c), where for the string s = AAAA we have PMc

S1
(AAAA) = 1,

and PMc
S2

(AAAA) = 4/9.

q1 q2
α:1/3

α:1
(a)

β:1

(c)

α:2/3
β:1

β:1

qs qs
q1

q2

1/3

2/3

1

1

qs

(b)

1

{A} {A} {A}

{A}

{A}{B}

{B}

α:1

Fig. 1: (a) A DMDP Mp. (b) The DMC Mc
S1

induced by the scheduler S1. (c)
The DMC Mc

S2
induced by the scheduler S2.

Both DMCs and DMDPs are discrete-time models, i.e., each transition takes
a universal discrete time unit. The labeled deterministic continuous-time Markov
chain (DCTMC) is a time-extension of the DMC, which models the amount of
time the system stays in a specific state before making a transition to one of its
successor states (Sen et al, 2004a; Chen et al, 2009).

Definition 5 (DCTMC) A deterministic labeled continuous-time Markov chain

(DCTMC) is a tuple Mt = 〈Q,Σout, qs, δ, R, L, 〉, where:

– Q,Σout, qs, δ, L are defined as for DMCs;
– R : Q→ R≥0 is the exit rate function.

In a DCTMC, the probability of making a transition from state q to one of its

successor states q′ within t time units is given by δ(q, q′) ·
(

1− e−R(q)·t
)

, where
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(1 − e−R(q)·t) is the cumulative distribution of an exponential function with rate
parameter R(q).

Example 2 Consider the DMC Mc and the DCTMC Mt shown in Fig. 2. Both
models have three states with initial state qs (double circled) and Σout = {A,B}.
From qs, the probability of taking one of its two transitions are 1/3 and 2/3,
respectively. Compared with Mc in (a), the DCTMC Mt in (b) has exit-rates
associated with the states, e.g., 0.9 on qs. In Mt, the probability of leaving the
initial state and moving to state q2 within t time units is calculated as 2/3 · (1 −
e0.9·t).

qsq1 q2
1/3 2/3

1

1

(a) (b)

qsq1 q2
1/3 2/3

1

1

0.90.2 0.3

{A} {B}{A} {A} {A} {B}

Fig. 2: (a) A DLMC Mc and (b) a structurally identical DCTMC Mt modeling
the amount of time between state transitions.

A timed path h in a DCTMC is an alternating sequence of states and time stamps
q0t0q1t1q2 . . ., where ti ∈ R>0 denotes the amount of time spent in state qi before
going to qi+1. By adopting the notation for timed strings we let h[n] = qn and
h〈n〉 = tn.

Let Cyl (q0, I0, . . . , qk−1, Ik, qk) denote the cylinder set containing all paths with
h〈i〉 ∈ Ii and h[i] = qi, for i < k. The probability of Cyl (q0, I0, . . . , qk−1, Ik, qk) is
then defined inductively as follows (for k ≥ 1) (Baier et al, 2003):

PMt(Cyl (q0, I0, . . . , qk−1, Ik, qk))

= PMt(Cyl (q0, I0, . . . , qk−1)) · δ(qk−1, qk) · (e−R(qk−1) inf(Ik) − e−R(qk−1) sup(Ik)).

Following the definition of cylinder sets for DMCs, we can directly extend the
definition above to probability distributions over cylinder sets for timed strings.

2.3 Probabilistic Specification Languages

As will be detailed in Section 3, the proposed learning algorithms assume that data
appears in the form of sequences of linearly ordered observations of the system in
question. When learning system models, we therefore only look for models that
preserve linear-time properties, which include safety properties (something bad
will never happen) and liveness properties (something good will always happen).

Linear-time temporal logic (LTL) (Pnueli, 1977) is a logical formalism used for
specifying system properties from a linear time perspective. The property specified
by an LTL formula does not only depend on the current state, but can also relate
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to future states. The basic ingredients of an LTL formula are atomic propositions
(state labels σ ∈ Σout), the Boolean connectors conjunction (∧) and negation (¬),
and two basic temporal modalities © (next) and U (until) (Baier and Katoen,
2008).

Definition 6 (LTL) Linear-time temporal logic (LTL) over Σout is defined by the
following syntax

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2, where a ∈ Σout.

Definition 7 (LTL Semantics) Let ϕ be an LTL formula over Σout. For s =
σ0σ1 . . . ∈ (Σout)ω, the LTL semantics of ϕ are as follows:

– s |= true

– s |= a iff a = σ0

– s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

– s |= ¬ ϕ iff s 2 ϕ
– s |= © ϕ iff s[1 . . .] |= ϕ

– s |= ϕ1Uϕ2 iff ∃j ≥ 0. s[j . . .] |= ϕ2 and s[i . . .] |= ϕ1, for all 0 ≤ i < j

For better readability, we also use the derived temporal operators � (always) and
♦ (eventually) given by ♦ϕ = (trueUϕ) (the model will eventually satisfy property
ϕ) and �ϕ = ¬(♦¬ϕ) (property ϕ always holds).

Model checking an MC Mc wrt. a LTL formula ϕ means to compute the total
probability of the traces inMc which satisfy ϕ, i.e., PMc({s | s |= ϕ, s ∈ (Σout)ω}).

Example 3 The LTL formula AUB requires that a state q labeled with B will
eventually be reached, and all states visited before q should all be labeled with
A. For the DMC Mc in Figure 2 (a), only paths starting with qsq2 satisfy
the LTL formula. Model checking Mc wrt. AUB therefore amounts to comput-
ing the probability of all paths starting with qsq2, i.e., PMc(Cyl(qsq2)) = 2/3.
The LTL formula ♦�A, read as eventually forever A, requires that after a cer-
tain point only states labeled with A will be visited. Paths starting from q1
satisfy �A and paths eventually reaching q1 satisfy ♦�A. Model checking Mc

wrt. ♦�A can therefore be similarly reduced to the calculation of the probability
PMc( ∪

i∈[0,∞)
Cyl(qs(q2q

s)iq1)) = 1/3 + 2/3 · 1/3 + (2/3)2 · 1/3 + . . . = 1.

The quantitative analysis of a DMDP Mp against a specification ϕ amounts
to establishing the lower and upper bounds that can be guaranteed when ranging
over all possible schedulers. This corresponds to computing

Pmax
Mp (ϕ) = sup

S
PMp,S(ϕ) and Pmin

Mp (ϕ) = inf
S
PMp,S(ϕ),

where the infimum and supremum are taken over all possible schedulers for Mp.

Continuous stochastic logic (CSL) (Baier et al, 2003) is a general branching-
time temporal logic proposed for CTMCs that allows for a recursive combination
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of state and path formulas. However, as discussed in the beginning of the section,
we only consider linear time properties of system models and we therefore define
a linear sub-class of CSL, called sub-CSL, in which at most one temporal operator
is allowed.

Definition 8 (sub-CSL) A sub-CSL formula ϕ is defined as follows:

ϕ ::= Φ | Φ1UIΦ2 | ♦IΦ | �IΦ,

where Φ is a propositional logic formula defined as Φ ::= true | a | Φ1∧Φ2 | ¬Φ a ∈
Σout, and I is an interval in Q≥0.

Definition 9 (Semantics for sub-CSL) Let ϕ be a sub-CSL formula over Σout.
The semantics of ϕ over a timed trace ρ = σ0t0σ1t1 . . . over Σout is as follows

– ρ |= Φ1UIΦ2, iff ∃t ∈ I. (ρ@t |= Φ2 ∧ ∀t′ < t, ρ@t′ |= Φ1)
– ρ |= ♦IΦ, iff ∃t ∈ I. (ρ@t |= Φ)
– ρ |= �IΦ, iff ∀t ∈ I. (ρ@t |= Φ)

The semantics for the Boolean connectives are defined as for LTL.

Model checking a CTMCMt wrt. a sub-CSL formula ϕ amounts to computing
the probability of the timed traces which satisfy ϕ, i.e., PMt(ϕ) = PMt({ρ | ρ |= ϕ}).

Example 4 The sub-CSL formula ϕ = A U[1.5,2.3] B requires that a state q labeled
with B will be reached within the time interval [1.5, 2.3] and that all states visited
before q are labeled with A. For instance, the path qs 1.8 q2, generated by the
DCTMC Mt in Figure 2 (b), satisfies ϕ. Model checking Mt against ϕ amounts
to calculating PMt(Cyl(qs, [1.5, 2.3], q2)) = 2/3 · (e−0.9×1.5 − e−0.9×2.3) ≈ 0.0444.

3 Learning Stochastic Models

In what follows we consider methods for automatically learning stochastic system
models, as defined in Section 2, from data. The proposed algorithms are based on
the Alergia algorithm (Carrasco and Oncina, 1994; Higuera, 2010) and adapted
to a verification context. The Alergia algorithm starts with the construction of a
frequency prefix tree acceptor (FPTA), which serves as a representation of the data.
The basic idea of the learning algorithm is to approximate the generating model
by merging together nodes in the FPTA which correspond to the same state in the
generating model. Two nodes are merged after they pass a compatibility test based
on the statistical information associated with the nodes. Both the compatibility test
and the state merge are conducted recursively over all successor nodes.

In this section, we first present the original FPTA for strings, which only con-
tain output symbols, and then extend it to handle I/O strings and timed strings.
Afterwards, we discuss the general procedure of the Alergia algorithm. At the
end, we customize the compatibility tests and merge operations for learning dif-
ferent types of system models.



12 H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, et al.

3.1 Data Representation

An FPTA T represents a set of strings S over Σout in a tree structure, where
each node is labeled by a symbol σ ∈ Σout and each path from the root to a
node qs corresponds to a string s ∈ prefix(S). Since a string s uniquely identifies
a node in T and vice versa, we will sometimes use the symbol qs for states and s

for strings interchangeably. Each node qs is associated with a transition frequency

function f(qs, σ), which encodes the number of strings with prefix sσ in S; we define
f(s, ·) =

∑
σ∈Σout f(s, σ). The successor state of qs given σ is denoted succ(s, σ) =

sσ, and the set of all successor states of qs is denoted succs(s). By normalizing the
transition frequency functions f(s, σ) by f(s, ·) we obtain the transition probability

functions δ(s, σ). Fig. 3 (a) shows an FPTA constructed from observation sequences
generated by the DMC in Fig. 2 (b). The root of the tree is labeled with the symbol
A and associated with the frequencies f(A,B) = 15 and f(A,A) = 7. The frequency
functions indicate that in the dataset there are 15 strings with prefix AB, 7 strings
with prefix AA and there are 22 strings with prefix A, i.e., f(A, ·) = 22.
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Fig. 3: Examples of frequency prefix tree acceptors.

The I/O frequency prefix tree acceptor (IOFPTA) is an extension of the FPTA
for representing a set of I/O strings Sio. In addition to the output symbols σ ∈ Σout

attached to the nodes, each edge is labeled with an input action α ∈ Σin. Similar
to FPTAs, a string from the root to a node qπ corresponds to an I/O string
π ∈ prefix(Sio). A transition frequency function f(π, α, σ) is associated with the node
qπ, to encode the number of strings with the prefix πασ in Sio. As for FPTAs,
we let f(π, α, ·) =

∑
σ∈Σout f(π, α, σ). By normalizing the transition frequency

functions we obtain the transition probability functions δ(π, α, σ) for the IOFPTA.
Fig. 3 (b) shows an IOFPTA constructed from I/O strings obtained from the
DMDP in Fig. 1 (a).

A timed frequency prefix tree acceptor (TFPTA) represents a set of timed strings
St. A TFPTA is structurally identical to an FPTA and can be obtained from the
skeleton of St. Thus, the path from the root to a node qs in an TFPTA corresponds
to a prefix of the skeleton of a timed string in St, i.e., s ∈ prefix(S(St)). The
transition frequency function associated with a node qs is defined as for FPTAs by
only considering the skeleton of St. In addition to the transition frequency function,
each node qs is also associated with an average empirical exit time t̂(s) (which is
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approximately the inverse of the exit-rate):

t̂(s) =
1

f(s, ·)
·
∑

ρ∈X
ρ〈|s|〉,

where X = {ρ | s ∈ prefix(S(ρ)), ρ ∈ St} and |s| is the number of symbols in the
string s. Figure 3 (c) illustrates an TFPTA constructed from strings sampled from
the DCTMC in Figure. 2. Each node in the tree is associated with an average exit
time, i.e., the time spent in the state before observing the next symbol. With the
symbol A occurring 22 times as prefix of a string, we get an average exit time of
1.2 time units for the root node and the estimation of the exit rate is therefore
1

1.2 ≈ 0.83.

3.2 Alergia

In this section we first sketch the main flow of the Alergia algorithm for learning
DMCs as a modified version of the algorithm presented in (Carrasco and Oncina,
1994; Higuera, 2010). Afterwards we adapt the general learning algorithm to the
different stochastic system models considered in this paper.

The Alergia algorithm is initialized by creating two identical FPTAs T and
A as representations of the dataset S (line 2 of Algorithm 1). The FPTA T is kept
as a data representation from which relevant statistics are retrieved during the
execution of the algorithm. The FPTA A is iteratively transformed by merging
nodes that have passed a statistical compatibility test. Observe that an FPTA
(with normalized transition functions) is a DMC, and so is any model obtained by
iteratively merging nodes. Similar properties hold for IOFPTAs and TFPTAs.

All compatibility tests are based on T to ensure the statistical validity of the
compatibility tests that are performed. In some accounts of the Alergia algorithm
it is suggested to join samples associated with different nodes of the original FPTA
when the nodes are merged (Carrasco and Oncina, 1994), and to base subsequent
tests on these joined samples. While intuitively beneficial, since more data becomes
available for testing, this latter approach invalidates some statistical arguments for
the overall consistency of the algorithm: if S1 and S2 are two sets of samples that
each are drawn by independent sampling from the same distribution, then the
union S1 ∪ S2 no longer is a set of independent samples, if the union is performed
conditional on the fact that S1 and S2 have passed a statistical test of compatibility.
Since the assumption of independent sampling underlies all statistical tests we are
using, such a join, therefore, makes a theoretical analysis of the resulting procedure
very challenging. In order to maintain a strong match between the algorithmic
solution, and the theoretical analysis we can provide, we generally do not join the
associated samples when merging nodes. However, we have also conducted a few
experiments comparing the performance of the algorithm with and without joining
of the samples. It turned out that the differences in the constructed models and
the runtime were only minor (cf. Section 5.1).

Following the terminology of Higuera (2010), Algorithm 1 maintains two sets
of nodes: RED nodes, which have already been determined as representative nodes
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and will be included in the final output model, and BLUE nodes which are sched-
uled for testing. Initially, RED contains only the initial node qsA while BLUE

contains the immediate successor nodes of the initial node. When performing the
outer loop of the algorithm, the lexicographically minimal node qb in BLUE will
be chosen. If there exists a node qr in RED which is compatible with qb, then qb
and its successor nodes are merged to qr and the corresponding successor nodes
of qr, respectively (line 10). If qb is not compatible with any state in RED, it
will be included in RED (line 15). At the end of each iteration, BLUE will be
updated with the immediate successor nodes of RED that are not contained in
RED (line 17). After merging all compatible nodes in the tree, the frequencies in
A are normalized (line 18 of Algorithm 1).

In order to adapt the Alergia algorithm to the different model classes pre-
sented in Section 2, we only need to tailor the compatibility test (line 9) and the
merge operator (line 10) to each specific model class. In the following section, the
required model-specific compatibility tests and merge operators are presented.

Algorithm 1 Alergia

Input: : A set S of strings and a parameter ε > 0.
Output: : A probabilistic model A.
1: T ← FPTA(S)
2: A← T
3: RED← {qsA}
4: BLUE← {q | q ∈ succs(qr), qr ∈ RED}
5: while BLUE 6= ∅ do
6: qb ← lexicographically minimal q ∈ BLUE
7: merged← false
8: for qr ∈ RED & !merged /* qr in lexicographic order */ do
9: if Compatibility(T, qr, qb, ε) then

10: Merge(A, qr, qb)
11: merged← true
12: end if
13: end for
14: if !merged then
15: RED← RED ∪ {qb}
16: end if
17: BLUE← {q | q /∈ RED, q ∈ succs(qr), qr ∈ RED}
18: end while

A← Normalize(A);
19: return A

3.3 Local Compatibility Test and Merge

Formally, two nodes qr and qb in an FPTA T are said to be ε-compatible (ε > 0), if
the following properties are satisfied:

1. L(qr) = L(qb),
2. LocalCompatible(qr, qb, ε) is TRUE, and
3. the successor nodes of qr and qb are pair-wise ε-compatible.
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Algorithm 2 Compatibility test

Input: : FPTA T , nodes qr and qb, and ε > 0
Output: : true if qr and qb are compatible
1: if L(qr) 6= L(qb) then
2: return false
3: end if
4: if !LocalCompatible(qr, qb, ε) then
5: return false
6: end if
7: for all σ ∈ Σout do
8: q′r ← succ(qr, σ)
9: q′b ← succ(qb, σ)

10: if !Compatibility(T, q′r, q
′
b, ε) then

11: return false
12: end if
13: end for
14: return true

Algorithm 2 illustrates the compatibility test. Condition (1) requires the two
nodes to have the same label (line 1). Condition (2) is model-specific and defines
the local compatibility test for qr and qb (line 4). The last condition requires the
compatibility to be recursively satisfied for every pair of successor nodes of qr and
qb (line 10). Note that only pairs of successor nodes reached by the same output
symbol (as well as the same input symbol in the IOFPTA case) are tested. For
example, q′r and q′b are being tested only if q′r = succ(qr, σ) and q′b = succ(qb, σ) (in
an IOFPTA, q′r and q′b are determined as q′r = succ(qr, α, σ) and q′b = succ(qb, α, σ)).

The compatibility test depends on a parameter ε that controls the severity of
the LocalCompatible tests, which are defined so that smaller values of ε will make
LocalCompatible return false less often. In most cases, ε directly translates to the
significance level of a statistical test that is the core of the LocalCompatible test.

In the following sections, we start by specifying the local compatibility test and
merge procedure for FPTAs, and afterwards extend the specifications to IOFPTAs
and TFPTAs. For FPTAs and IOFPTAs, the local compatibility test depends only
on the local transition frequency functions, whereas for TFPTAs we also need to
take the estimated exit rates into account. Analogous considerations apply for the
merge procedure.

3.3.1 Local Compatibility Test and Merge in FPTAs

Given two nodes qr and qb in an FPTA, their local compatibility requires that
the difference between the next symbol distributions defined at two nodes
is bounded. Specifically, we check for local compatibility (Line 4 in Algo-
rithm 2) by employing the Hoeffding test (see Algorithm 3) realized by the call
Hoeffding(f(qr, σ), f(qr, ·), f(qb, σ), f(qb, ·), ε), for all σ ∈ Σout. Line 4 of Algorithm 3
is a statistical test for the identity of the transition probabilities at the states qr
and qb to their σ-successors (Carrasco and Oncina, 1999). The actual statistical
level of significance of this test is given by 2ε rather than ε itself. However, for the
asymptotic consistency analysis that we will be concerned with in Section 4 and
Appendix A the constant factor 2 is immaterial, and we will a little loosely refer
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to ε as the significance level of the Hoeffding compatibility test. Also observe that
the feasible range of the ε parameter is (0, 2]. At ε = 2 line 4 will always return
false.

Algorithm 3 Hoeffding

Input: : f1, n1, f2, n2, ε ∈ (0, 2]
Output: : true if f1/n1 and f2/n2 are sufficiently close
1: if n1 == 0 or n2 == 0 then
2: return true
3: end if

4: return | f1
n1
− f2
n2
| < (

√
1
n1

+
√

1
n2

) ·
√

1
2

ln 2
ε

If two nodes qr and qb are compatible, qb is merged to qr. The merge proce-
dure (line 10 of Algorithm 1) follows the same steps as described in (Higuera,
2010). Firstly, the (unique) transition leading to qb from its predecessor node
q′ (fA(q′, qb) > 0) is re-directed to qr by setting fA(q′, qr) ← fA(q′, qb) and
fA(q′, qb) = 0. Secondly, the successor nodes of qb are recursively folded to the
corresponding successor nodes of qr and the associated frequencies are updated.
The complete merge procedure is illustrated in Fig. 4.
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Fig. 4: Merge node qb (shadowed) to node qr (shadowed and double circled) in
the FPTA. (a) The transition from q′ to qb is redirected to qr. (b) Node qb and
its two outgoing transitions are folded to qr and the frequencies are updated:
f(qr, B) = f(qr, B)+f(qb, B) = 25 and f(qr, C) = f(qr, C)+f(qb, C) = 11. (c) The
resulting FPTA obtained after recursively folding the successor nodes of qr and qb.

3.3.2 Local Compatibility test and merge in IOFPTAs

In an IOFPTA, the transition frequency function on node q, f(qr, α, q
′), is also

conditioned on the input action α. Thus, in order to adapt the local compatibility
test to IOFPTAs, we compare the transition probability distribution defined for
each input action. Specifically, given two nodes qr and qb, the Hoeffding test, real-
ized by the procedure call Hoeffding(f(qr, α, σ), f(qr, α, ·), f(qb, α, σ), f(qb, α, ·), ε), is
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conducted for all σ ∈ Σout conditioned on α ∈ Σin. Similarly, the test is performed
iteratively for all input actions at two given nodes.

The merge procedure for two compatible nodes in IOFPTA is similar to the
one in FPTAs. An example is shown in Fig. 5. Observe that the frequencies are
aggregated along the different input actions.
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Fig. 5: Node qb is merged to node qr in the IOFPTA. (a) The transition from q′

to qb is redirected to qr. (b) Successor nodes of qb are locally folded along input
actions to qr. (c) The IOFPTA resulting from recursively folding the subtrees
rooted at qr and qb.

3.3.3 Local Compatibility Test and Merge in TFPTAs

The nodes in a TFPTA are associated with transition frequency functions and exit-
rates encoding the local transition times. We therefore define two nodes qr and
qb in a TFPTA to be compatible if the transition probability distributions over
their successor nodes as well as their exit-rates are compatible. The compatibility
of transition distributions for two nodes are, as for MCs, tested by the Hoeffding
test (Algorithm 3). The compatibility test of the exit rates follows the procedure
described in (Sen et al, 2004a), which is essentially the F -test originally introduced
in (Cox, 1953). The test is based on the ratio t̂r/t̂b of the average empirical time
delays at qr and qb. The precise test criterion is given in Algorithm 4.

Algorithm 4 F-test

Input: : t̂r, nr, t̂b, nb, ε ∈ (0, 1]
Output: : true if t̂r and t̂b are sufficiently close
1: if nr ≤ 1 or nb ≤ 2 then
2: return true
3: end if
4: µ = nb

nb−1

5: σ =

√
(nb)2(nr+nb−1)

nr(nb−1)2(nb−2)

6: γ1 = µ− σ√
ε
, γ2 = µ+ σ√

ε

7: return t̂r
t̂b
∈ [γ1, γ2]
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4 Consistency and Convergence Analysis

In this section we investigate theoretical convergence results for Alergia learn-
ing. These results consist of two components: first, we establish that in the large
sample limit the learning algorithm will correctly identify the structure of a data
generating model (modulo equivalence of the states). This component is related
to previous convergence results (Carrasco and Oncina, 1999; de la Higuera and
Thollard, 2000; Sen et al, 2004a), and we provide the main technical results in
Appendix A. The second component is to establish that identification of the struc-
ture together with convergence of the estimates for the probabilistic parameters of
the models (transition probabilities and exit rates) guarantees convergence of the
probabilities for model properties expressed in our formal specification languages.

Our analysis, thus, focuses on exact identification in the limit, and thereby
differs from probably approximately correct (PAC) learning results, such as presented
in (Ron et al, 1996; Clark and Thollard, 2004). PAC learning results are stronger
than identification in the limit results in that they provide bounds on the sample
complexity required to learn a good approximation of the true model. However,
a PAC learnability analysis first requires the specification of a suitable metric
to measure the quality of approximation. Existing PAC learning approaches for
probabilistic automata are based on a semantics for the automata as defining a
probability distribution over Σ∗. In that case, the Kullback-Leibler divergence
between the distributions defined by the true and the approximate model is a
canonical measure of approximation error.

Being interested in the probability of LTL properties, we, on the other hand,
have to see automata as defining distributions on Σω. The Kullback-Leibler di-
vergence between the distributions defined on Σω is not a suitable measure for
approximation quality, since it will almost always be infinite (even in the case
where the approximate model is structurally identical to the true one, and differs
with respect to transition probabilities only by an arbitrarily small ε > 0). Within
the verification literature, various versions of the bisimulation distance are a popu-
lar measure for approximate equivalence between system models (Desharnais et al,
1999; van Breugel and Worrell, 2005). However, it turns out that these metrics suf-
fer from the same problem as the Kullback-Leibler distance, and fail to measure ap-
proximation quality as a smooth function of ε-errors in the estimates of transition
probabilities. These and other candidate measures for approximate equivalence of
automata defining distributions on Σω are investigated in detail in (Jaeger et al,
2014). A number of counterexamples and impossibility results derived in (Jaeger
et al, 2014) indicate that there exist fundamental obstacles to defining measures
for approximation error that simultaneously satisfy the two desiderata: (a) to pro-
vide a basis on which PAC learnability results could be derived, and (b) small
approximation errors between models should also entail bounds on the differences
between the probabilities of LTL properties in the models (a desideratum called
“LTL continuity” in (Jaeger et al, 2014)).

For the analysis of the identification of the structure, we now begin by for-
mally defining the relevant equivalence relation of states. In the following, for any
automaton M and state q of M, we denote with (M, q) the automaton obtained
by (re-)defining q as the start state of M.
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Definition 10 Let M be a DLMC or DCTMC. States q, q′ of M are equivalent,
written q ∼ q′, if P (M,q) = P (M,q′). States q, q′ of a DMDP M are equivalent,
if for all schedulers S of (M, q) there exists a scheduler S′ of (M, q′), such that
P (M,q),S = P (M,q′),S′ , and vice-versa.

When q ∼ q′, then also δ(q, α, σ) ∼ δ(q′, α, σ) for all (α, σ) ∈ Σin × Σout.
Therefore, δ is also well-defined on (Q/ ∼)×Σin × (Q/ ∼), and we thereby obtain
the quotient automaton M/ ∼ whose states are the ∼-equivalence classes of M.

Next, we formally define the structure of an automaton.

Definition 11 Let M be a DLMC, DMDP, or DCTMC. The structure of M is
defined as M̂ := 〈Q,Σin, Σout, qs, δ̂, L〉, where δ̂ ⊆ Q × Σin × Q is the transition
relation defined by (q, α, q′) ∈ δ̂ ⇔ δ(q, α, q′) > 0.

For DLMCs and DCTMCs the Σin component should be regarded as vacuous
in the preceding definition.

The first component of the convergence result will be the identification in the

limit of M̂/∼. Before we can state that result, however, we have to consider the
question of how training data for the learner is assumed to be generated. Since our
automaton models are generative models for infinite sequences, one cannot simply
assume that the training data consists of sampled runs of an automaton. All we can
observe (and all that Alergia will accept) are finite initial segments of such runs.
Thus, in the data-generation process, one has to assume that there is an external
process that decides at what point the generation of a sequence is terminated.
Furthermore, in the case of DMDP learning, an external scheduler is required to
generate inputs. Both these external components must satisfy certain conditions,
so that the generated data is rich enough to contain sufficiently many sampled
transitions from all states and under all inputs. At the same time, the significance
level ε for Alergia must be chosen so that certain correctness guarantees for the
compatibility tests performed during the execution of the algorithm are obtained.
The sampling mechanism for finite sequences and the choice of significance levels
for the compatibility tests are interrelated. The details of this relationship are
elaborated in Appendix A. For the present section, we only consider the case
where data is generated as follows:

– The length of the observed sequence is randomly determined by a geometric
distribution with parameter λ. This is equivalent to generating strings with an
automaton where at each state the generating process terminates with proba-
bility λ.

– Inputs are generated by a scheduler that always chooses inputs uniformly at
random.

We refer to this procedure as geometric sampling. It defines a probability dis-
tribution P s on (Σ∗)ω, where depending on the underlying automaton, Σ is Σout

(for DLMCs), Σin ×Σout (for DMDPs), or Σout ×R>0 (for DCTMCs).

Theorem 1 Let M be a DLMC or DMDP. Let S ∈ (Σ∗)ω be generated by geometric

sampling. Let εN = 1/Nr for some r > 2, and letMN be the model learned by Alergia
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from the first N strings in S using significance level εN in the compatibility tests. Then

P s(M̂N = M̂/∼ for almost all N) = 1. (1)

Let M be a DCTMC, and S as above. There exist values εN with 1/N ≤ εN ≤ 1/
√
N ,

such that for MN the model learned by Alergia from the first N strings in S using

significance level εN :

lim
N→∞

P s(M̂N = M̂/∼) = 1. (2)

(2) also holds when M is a DLMC or DMDP, and εN = 1/Nr for some r ≥ 1.

The Theorem is a consequence of Theorem 4 and Lemmas 3 and 4 in Ap-
pendix A. The second part of the Theorem does not provide a complete descrip-
tion of the required sequence of significance levels εN , because the exact εN values
(obtained in the proof of Lemma 4) are defined in terms of the expected values
of the size of the IOFPTA constructed from a sample of size N , and we can only
bound this expected value, but do not have a closed-form expression as a function
of N .

The reason we obtain somewhat stronger convergence guarantees for DLMCs
and DMDPs than for DCTMCs lies in the fact that we have stronger results on
the power of the Hoeffding test, than the F-test (cf. Appendix A.5). It is an open
problem whether almost sure convergence actually also holds for DCTMCs with
the currently used F-test, or whether it could be obtained with a different, more
powerful test for the compatibility of exponential distributions.

We are now ready to turn to the second component of our consistency analysis:
ultimately, we are interested in whether the probabilities of properties expressed
in the formal specification languages LTL and sub-CSL computed on the learned
models converge to the probabilities defined by the true model. By Theorem 1 we
know that the learned model will eventually have the correct structure, and the
laws of large numbers also guarantee that the estimates of the transition proba-
bility and exit rate parameters will converge to the correct values. This, however,
in general will not be enough to guarantee the convergence of the probabilities of
complex system properties. As the following two Theorems show, however, we do
obtain such a guarantee for properties expressed in LTL and sub-CSL. Since the
sub-CSL case here is simpler, we consider it first.

Theorem 2 Let M be a DCTMC. Let MN as in Theorem 1. For all sub-CSL prop-

erties ϕ, and all δ > 0 then:

lim
N→∞

P s(|PMN
(ϕ)− PM(ϕ) |> δ) = 0.

Proof By Theorem 1 we have that the probability that MN and M/∼ have dif-
ferent structures is negligible in the limit. Conditional on MN and M/∼ having
the same structure, we also have by the law of large numbers that the parameters
of MN converge to the parameters of M/∼. It is therefore sufficient to show that
then also PMN

(ϕ) converges to PM/∼(ϕ) = PM(ϕ).

All properties ϕ expressible in sub-CSL are finite-horizon in the sense that
there exists a fixed time limit t, such that whether a timed trace ρ = σ0t0σ1t1 . . .
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satisfies ϕ only depends on the prefix ρ[0 : k], where k is such that t0 + · · ·+ tk > t.
For a purely propositional formula Φ this is t = 0, and for a formula containing a
temporal operator with subscript I, t is the upper bound Iu of I. The set of traces
satisfying ϕ, therefore, can be represented as a countable disjoint union of sets of
paths that are slightly generalized forms of cylinder sets. For example, the set of
paths satisfying Φ1UIΦ2 is the union over all paths of the form q0t0 . . . qk−1tk−1qktk
where q0, . . . , qk−1 satisfy Φ1, qk satisfies Φ2, and t0 + · · ·+ tk ∈ I. The probabilities
of such slightly generalized cylinder sets are a continuous function of the transition
probability and exit rate parameters of MN , and therefore the convergence of
these parameters guarantees the convergence of the probabilities of the generalized
cylinder sets, and thereby the convergence of the probability of ϕ. ut

We now state the corresponding results for LTL and DMDPs, which subsumes
the case of LTL and DLMCs

Theorem 3 Let M be a DMDP, and MN as in Theorem 1 using significance levels

εN = 1/Nr. If r > 2, then for all LTL properties ϕ:

P s( lim
N→∞

Pmax
MN

(ϕ) = Pmax
M (ϕ)) = P s( lim

N→∞
Pmin
MN

(ϕ) = Pmin
M (ϕ)) = 1. (3)

If r ≥ 1, then for all δ > 0:

lim
N→∞

P s(|Pmax
MN

(ϕ)−Pmax
M (ϕ) |> δ) = lim

N→∞
P s(|Pmin

MN
(ϕ)−Pmin

M (ϕ) |> δ) = 0 (4)

The following is a slightly generalized version of the proof that was given for
DLMCs in (Mao et al, 2011).

Proof Using the automata-theoretic approach to verification (Vardi, 1985; Cour-
coubetis and Yannakakis, 1995; Vardi, 1999) (Baier and Katoen, 2008, Section
10.6.4), the probabilities Pmax

MN
(ϕ) and Pmax

M (ϕ) can be identified with maximum
reachability probabilities in the respective products of MN and M with a Rabin
automaton B representing φ. The maximum here is with respect to all possible
memoryless schedulers on the product MDPs. Since M and M/∼ are equivalent
with respect to LTL properties, one can consider the product of M/ ∼ with B

instead, which then by Theorem 1 for the case r > 2 will for almost all N have the
same structure as the product ofMN with B. Maximum reachability probabilities
in the product MDPs are a continuous function of the transition probability pa-
rameters on the interior of the parameter space, i.e., for sequences of parameters
pN → p where p 6= 0, 1. Since MN and M/∼ agree on all 0/1-valued parameters,
and for all others the parameters of MN converge to those of M/ ∼, one also
obtains Pmax

MN
(ϕ)→ Pmax

M (ϕ). The argument for Pmin is analogous by considering
minimum reachability instead of maximum reachability. The proof for the case
r ≥ 1 is identical, using the weaker convergence guarantee of Theorem 1 for this
case. ut

Theorem 3 makes a strictly stronger statement for the choice of significance
levels εN = 1/Nr with r > 2. However, all statements are strictly asymptotic,
and these very small εN -values may lead to significantly under-estimate the size
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of the generating model when learning from a given limited dataset. In practice,
therefore, one may prefer the weaker guarantees obtained for εN = 1/N in exchange
for a lower risk of learning an over-simplified model.

An important observation is that Theorems 2 and 3 are pointwise for each ϕ,
and not uniform for the whole languages sub-CSL and LTL, respectively. Thus,
it is not the case that in the limit we will learn a model that simultaneously
approximates the probabilities of all properties φ to within a fixed error bound δ.
In other words, the sample size N required to obtain a good approximation can be
different for different φ. This is inevitable, due to the fact that both the languages
sub-CSL and LTL contain formulas of unbounded complexity.

To illustrate this point, consider an LMC model M for a sequence of coin
tosses: the model has two states labeled H and T , respectively, and transition
probabilities of 1/2 between all the states. LetMN be a learned approximation of
M. The transition probabilities in MN will deviate slightly from the true values
1/2. For example, assume that the transitions in MN have value 1/2 + δ for the
transitions leading into H, and 1/2 − δ for the transitions leading into T . Then
one can construct LTL formulas φ, such that | PM(φ) − PMN

(φ) | is arbitrarily
close to 1. To do so, observe that according to M the relative frequency of the
symbol H in long execution traces converges to 1/2, whereas according to MN it
converges to 1/2 + δ. For any k > 0 we can express with an LTL formula φk that
the frequency of H in the first k steps is at least 1/2 + δ/2 by just enumerating all
sequences of length k that satisfy this condition. Then, as k → ∞, PM(φk) → 0
and PMN

(φk)→ 1.

5 Experiments

In order to validate the proposed algorithm we have conducted two case studies
on learning stochastic system models. Since a DMC can be seen as a DMDP
having only a single input action, we only report results for DMDPs and DCTMCs.
For each case study, we generated observation sequences (I/O strings and timed
strings) from known system models, and compared the generating models and the
learned models based on relevant system properties expressed by PLTL formulas.
All experiments were performed on a standard laptop with a 2.4GHz CPU.

5.1 Experiments with MDPs

For analyzing the behavior of the learning algorithm with respect to MDPs we
consider a modified version of the slot machine model given by Jansen (2002).
Our model represents a slot machine with three reels that are marked with two
different symbols “bar” and “apple”, as well as a separate initial symbol “blank”.
Starting with an initial configuration in which all reels show the “blank” symbol,
the player can for a given number r of rounds select and spin one of the reels. A
wheel that has been spun will randomly display either “bar” or “apple”, where the
probability of obtaining a “bar” is 0.7 in the first round, and gradually decreases
as 0.7(r−k+1)/r for the kth round. The player receives a reward of 10 if the final
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configuration of the reels shows 3 bars, and a reward of 2 if the final configuration
shows 2 bars. Instead of spinning a reel, the player can also choose to push a ’stop’
button. In that case, with probability 0.5 the game will end, and the player receives
the prize corresponding to the current configuration of the reels. With probability
0.5, the player will earn 2 extra rounds. Thus, choosing the ’stop’ option can be
beneficial when the current configuration already gives a reward (but at the risk
that it will change into something less favorable when instead of terminating the
game is extended by 2 rounds), or when with the remaining available rounds the
current configuration is unlikely to change into a reward configuration (then at
the risk that the game ends immediately with the current poor configuration).

This model is formalized as a DMDP whose states are defined by the configu-
ration of the reels, the number of spins already performed sp (up to the maximum
of r), and a Boolean end variable indicating whether the game is terminated. The
granting of 2 extra spins is (approximately) implemented by decreasing by 2 the
sp counter, down to a minimum of 0 (otherwise this would lead to an infinite
state space). Input actions are spini (i = 1, 2, 3) and stop. The output alphabet
is Σout = {blank, bar, apple}3 ∪ {Pr0,Pr2,Pr10,end}. States with sp < r are labeled
with the symbol from {blank, bar, apple}3 representing the current reel configura-
tion. When the number of available spins has been exhausted, then the next input
(regardless of which input is chosen) leads to a state displaying the prize won as one
of {Pr0,Pr2,Pr10}. Finally, one additional input leads to a terminal state labeled
with end. States labeled with {Pr0,Pr2,Pr10} have an associated reward of 0, 2,
and 10, respectively. We have implemented this DMDP in PRISM (Kwiatkowska
et al, 2011), and experimented with two versions of the model given by r = 3,
and r = 5. These models have 103 (r = 3) and 161 (r = 5) reachable states,
respectively.

The model generates traces that with probability 1 are finite, in the sense that
after finitely many steps the trace ends in an infinite sequence of end symbols.
However, there is no fixed bound on the number of initial non-end symbols. We
sample observation sequences from the models using a uniform random selection
of input actions at each point. Sampling of one sequence is terminated when the
end symbol appears. The length distribution of strings sampled in this manner is
dominated by a geometric distribution with parameter λ = 0.25 ·0.5 (the probabil-
ity that the random scheduler chooses the stop input, and the game terminates on
that input). The convergence in probability (2) of Theorem 1 then also is ensured
under this sampling regime (the consistency properties of the Hoeffding test in
relation to the expected sample string lengths as described by Definition 20 and
Definition 21 (iii) are unaffected when the length distribution of sampled strings
is reduced; the data support condition of Definition 21 (ii) still is true for all ’rel-
evant’ states of the IOFPTA, i.e., all states that are not just copies of the unique
end state).

In the following, we characterize the size of data sets in terms of the total
number N of observation symbols, rather than the number of sequences (as a
better measure of the ’raw size’ of the data). For sufficiently large samples, the
ratio between the number of sequences and the number of symbols is very nearly
constant, so that letting εN = c/N also satisfies the conditions to obtain (4) in
Theorem 3 when N is the number of symbols. In our experiments we set c = 10.000,
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because that leads to ε20.000 = 0.5 for our smallest datasize N = 20.000. Since the
use of this εN sequence only is motivated by the theoretical convergence in the limit
guarantees, and these guarantees do not provide any optimality guarantees for the
limited sample sizes we consider, we also consider the alternative sequence where
εN = 0.5, for all N . This also serves the purpose of investigating the robustness of
the learning results with respect to the choice of the εN .

We evaluate the learned models based on how well they approximate properties
of the generating model. We consider properties of the form Pmax(φ) for different
LTL formulas φ, and use the following accuracy measure for the evaluation: when
p and p̄ are the probabilities in the true and learned models, respectively, then we
use the Kullback-Leibler distance

KL(p, p̄) = p log
p

p̄
+ (1− p) log

1− p
1− p̄ (5)

to measure the error of p̄. The error, then, depends on the ratio p/p̄ rather than
the difference p− p̄. The inclusion of the term (1−p) log 1−p

1−p̄ evaluates the estimate

of Pmax(φ) also as an estimate for the dual Pmin(¬φ) = 1− Pmax(φ). KL(p, p̄) is
infinite when p 6= p̄ ∈ {0, 1}, i.e. when the learned value p̄ represents an incor-
rect assumption of deterministic behavior. On the other hand p̄ 6= p ∈ {0, 1}, i.e.,
incorrectly modeling deterministic behavior as probabilistic, incurs only a finite
KL error. This asymmetric view is reasonable in many situations, because esti-
mating 0,1-values by non-extreme probabilities usually means erring on the safe
side, whereas incorrectly inferring 0,1-values can lead to incorrect assumptions of
critical safety properties, for example.

We compare the models learned by IOalergia with the models given by the
initially constructed I/O frequency prefix tree acceptors (with the frequencies nor-
malized to probabilities, so that the IOFPTA is itself a valid DMDP). These initial
tree-models are just a somewhat compact representation of the original data, and
model checking performed on the trees can be seen as statistical model checking for
DMDPs. Based on the tree-model representation of the data, we can use the model
checking functionality of the PRISM tool to also perform statistical model check-
ing. However, it turned out that the PRISM model checking algorithms, which are
optimized for models specified in a modular, structured way, do not perform so
well on the tree models, which are given by an unstructured state-level represen-
tation. Thus, even though PRISM is known to be able to operate on models of
tens of millions of states, we were only able to run PRISM on tree models of up
to around 60.000 states.

Figure 6 shows how for the r = 3 and r = 5 models the number of states in
the constructed IOFPTAs and learned models develops as a function of the data
size. The plots are in log-log scale, with the number of data symbols (divided by
1000) on the x-axis, and the number of states of the trees and learned models
on the left, respectively right, y-axes. The red lines (box symbols) show a linear
growth of the IOFPTA in log-log space. These lines have a near-perfect fit with the
functions 550N0.65 (r = 3), and 550N0.8 (r = 5). These fits experimentally verify
the sub-linear growth of IOFPTAs, which is theoretically obtained from Lemma 2
(appendix).
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Fig. 6: Growth of tree and model size. Top: r = 3, bottom: r = 5.

When learning with fixed ε = 0.5, the learned model sizes also show an approx-
imately linear behavior in log-log space, which translates to a growth of (approx-
imately) the orders N0.27 (r = 3), and N0.4 (r = 5). Learning with εN = 10000/N
at first under-estimates the true model size. The models learned for the largest N
values are very close in size to the generating model. However, the experimental
range for N would need to be extended considerably further in order to ascertain
that here we already see the asymptotic convergence to the true model.

We evaluate the accuracy of the learned model based on a test suite of 61 LTL
properties. The complete list of properties is given in Appendix B. As mentioned
above, using PRISM model checking on the IOFPTAs as a surrogate for statistical
model checking does not scale to very large tree models. Therefore, the results here
are limited to a maximum of N = 1m for r = 3, and N = 320k for r = 5 (at these
tree sizes, a model-checking run for all 61 properties took several hours, vs. a few
seconds for model checking the model learned from the IOFPTA).
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Table 1: Number of test properties with KL(p, p̄) =∞.

r = 20k 40k 80k 160k 320k 640k 1m
3 12;4 9;0 7;0 6;0 3;0 2;0 2;0
5 14;8 11;0 10;0 6;0 2;0 ?;0 ?;0
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Fig. 7: KL errors.

We first consider for how many of the test properties an error KL(p, p̄) =
∞ is obtained, i.e., the learned value p̄ is an erroneous deterministic 0/1-value.
These numbers are given in Table 1. An entry k; l in this table means that for
k test properties the IOFPTA gave an infinite KL-value, and for l properties
this was the case for the learned model. It emerges a clear picture that the learned
model is much less likely to return erroneous deterministic values. This is a natural
consequence of a model-smoothing effect resulting from the state-merging process,
and illustrates that model learning can alleviate overfitting problems occurring
in statistical model-checking. The most problematic queries for IOFPTA-model
checking were the low-probability queries 56-61, where the true probabilities are
in the range 0.03-0.002, and IOFPTA-model checking returned the value 0. The
values obtained from the learned models, on the other hand, approximated the
true values rather well, and had KL-errors in the range 0.001-0.01.

The smoothing effect in the learned models can also have the less desirable
consequence of leading to non-extreme estimates for probabilities that in the gen-
erating model are actually 0/1-valued. This was observed for property 16, which
for r = 5 has max-probability 1 in the generating model. Here IOFPTA model
checking returned the correct result, wheras the probabilities in the learned mod-
els were in the range 0.95-0.99 even for large data sizes. Similarly, some of the
properties that have zero probability in the r = 3 model, had probabilities in the
range 0.01-0.001 in the learned models.
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Figure 7 illustrates the KL-errors for all 61 properties for small datasets (N =
40k), and the largest datasets for which model checking the IOFPTA tree was
feasible (N = 1m for r = 3, and N = 320k for r = 5). In these plots the x-axes
index the test properties. The properties are here sorted according to increasing
values of the KL-errors obtained from the trees. Thus, the indexing differs from
the numbering given in Table 5, and also the ordering of the properties differs in
the four plots of Figure 7. The y-axes show the KL-errors in log-scale. Infinite
KL-values are represented by the value 10.0, and zero values by 10−6.

At the right end of each plot appear the properties that gave KL = ∞ from
IOFPTA model-checking. The errors obtained for the same properties from the
learned models are in the same range as the errors for other properties. On the
left ends of the plots appear properties with actual probability zero, which give
zero error from the tree, but nonzero estimates, and hence nonzero errors from the
learned models.

For the r = 5 model the properties appearing at indices 42-49 (N = 40k),
respectively 52-59 (N = 320k) are properties 17-24 of Table 5, which are all of the
form Pmax(¬♦<kend) for different values of k, i.e., they represent the maximum
probability of the game lasting at least k steps, for various values of k. For both
the tree and the learned models the estimates for these probabilities were quite
inaccurate. Figure 8 on the right shows the actual probability values obtained for
the Pmax(¬♦<9end) query for r = 5. For the datasizes N = 40k and N = 320k
depicted in Figure 7, the estimates are above 0.9 for all trees and models, whereas
the true value is 0.5. The left plot in Figure 8 shows the results for the same query
in the r = 3 case.
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Fig. 10: Average KL errors.
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Fig. 11: Average KL error at N = 106 as function of ε.

Figure 9 shows the probabilities returned for the queries Pmax♦Pr10 and
Pmax♦Pr2. These are queries for which the corresponding KL-errors lie in the
middle ranges of the KL-errors seen in Figure 7.

Figure 10 shows the average KL-errors obtained as a function of the data
size. The average here is taken over all test properties excluding the properties
Pmax(¬♦<kend) (whose high values would otherwise mask the development of
KL-errors for the remaining properties). Furthermore, for each data size, only
properties are included for which all models return non-infinite errors.

To obtain a more complete picture on the influence of the ε parameter, we also
vary ε over the whole feasible range from 0 to 2 for the fixed data size N = 106.
Figure 11 shows the sizes and average KL-errors for the learned models. The
different ε-values we used are listed on the x-axis simply on equi-distant marks.
The ε-values we otherwise used for N = 106 are 0.5 and 0.01, which both are
in the middle of the range of values considered here. Even at the extreme end
ε = 2 the learned models are significantly smaller than the original IOFPTA’s
(which have sizes 47,564 and 134,693 for r = 3 and r = 5, respectively). This
is because even though the Hoeffding test proper will always reject when ε = 2,
we still obtain positive compatibility results, and hence merges of nodes, due to
the base test in line 1 of our Hoeffding compatibility test (Algorithm 3). The
minimal model size is 31 nodes, corresponding to exactly one node for each output
symbol. This minimal size is reached at ε = 10−60 and ε = 10−10 for r = 3 and
r = 5, respectively. The average KL errors are shown in Figure 11 separately for
the “hard” test properties Pmax(¬♦<kend), and the remaining “easy” properties.
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Furthermore, to obtain readable plots, the KL-errors for the hard properties have
been scaled by a factor of 0.1.

Figure 11 indicates that better results are obtained when ε is chosen so large
that the size of the learned model is somewhat larger than the size of the true
model. This would also have to be expected, since a model that over-estimates
the true number of states can be trace-equivalent to the true model, whereas a
model with fewer states than the true model usually can not. For the ’easy’ test
properties we obtain a fairly clear picture of optimal ε-values in the range 0.5-1.5,
corresponding to models that are in the range of 1× to 10× the size of the true
model. The picture for the ’hard’ properties is less clear and rather different for
r = 3, where the most accurate models are learned for a range of small ε-values,
and r = 5, where the error decreases nearly monotonically as ε increases. Overall,
the results show that IOalergia learning is quite robust with respect to the precise
choice of the ε value.

Summarizing our observations, we can reach a number of conclusions: the dif-
ferences in the accuracy of estimated probabilities are quite significant for different
models of similar size (r = 3 with 103 states; r = 5 with 161 states), and for differ-
ent queries Pmax(¬♦<kend) and Pmax♦PrX of similar syntactic form and complex-
ity. Thus, neither the size of the true model, nor the complexity of the query alone
will be good predictors for the accuracy of max-probability estimates obtained ei-
ther by statistical model checking, or by model learning. In spite of very different
convergence speeds, we observed convergence of the estimated max-probabilities
to the true values for all test properties.

When comparing statistical model checking against model learning, no clear
winner emerges in terms of the accuracy of estimated probabilities. The main dif-
ference lies in a smoothing effect of the learning process that eliminates extreme
0/1 empirical probabilities. This can allow the learned model to successfully gen-
eralize from the data, and return accurate estimates for low-probability properties
that are not seen in the data, and for which statistical model checking returns zero
probabilities. On the other hand, it can also lead to over-generalization, where true
probability zero properties are given non-zero values in the learned model. Here it
should be emphasized that in our experiments we have not tried to exploit another
generalization capability of model learning, which is the ability to generalize from
observations of finite initial trace segments to infinite behaviors. Traces in our slot
machine model are finite with probability 1, and our data only contained traces
of completed runs. This gives ideal conditions for statistical model checking, since
empirical probabilities in the data correspond to actual model probabilities.

Comparing the results obtained from models learned with fixed ε = 0.5, and
decreasing ε = 10000/N we observe in Figures 8-10 for smaller data sizes a slight
advantage for ε = 0.5. This is explained by Figure 6, which shows that under the
ε = 10000/N regime the learned model stays smaller than the true model for the
whole range of data sizes, approaching the true size only at the very end. The
ε = 0.5 models, on the other hand, soon become somewhat larger than the true
model. As also indicated by Figure 11, moderate over-approximations of the true
model tend to lead to smaller KL errors.
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Fig. 12: Time for model learning (r = 3)

Table 2: Accuracies of pure vs. count-aggregating IOalergia(r = 3)

Model Size Average KL-error
IOFPTA 47564 0.012
ε = 0.5 133 0.0048
ε = 0.5, count aggregate 706 0.0062
ε = 0.01 80 0.013
ε = 0.01, count aggregate 161 0.0056

In terms of space, model learning obviously leads to very significant savings
(Figure 6). As mentioned above, we cannot make a meaningful comparison for
the time complexity of statistical model checking vs. model learning, since we are
using a very inefficient approach for performing the former. Figure 12 shows the
computation time for IOalergialearning for the case r = 3 and ε = 0.5. The
overall time is divided into the construction time for the IOFPTA, and the time
for the IOalergianode-merging process. We observe that both times are linear
in the datasize. For Alergia, the theoretical worst-case complexity is cubic in
the size of the IOFPTA, but the linear behavior we here observe is consistent
with what is reported as the typical behavior of Alergia in practice. Moreover,
we see that the times for the tree construction and the node merging phases of
the learning procedure are of the same order of magnitude. Since even a highly
optimized statistical model checking procedure will not be much faster than the
IOFPTA construction, we can conclude that the time for model learning is of
the same order of magnitude as a single run of statistical model checking, with
significant savings for the amortized cost of checking multiple properties.

As discussed in Section 3.2, in our IOalergia implementation we do not aggre-
gate frequency counts when merging nodes, and we perform the compatibility tests
always based on the counts in the original IOFPTA. For comparison we also tested
a version of the algorithm in which counts are aggregated. The main observation
we made was that for a given ε-value, models learned using aggregated counts were
larger than models learned without count aggregation. Thus, aggregating counts
leads to more rejections in the compatibility tests. This can be explained by the
fact that the Hoeffding test will always accept compatibility when the two counts
n1, n2 are very small (cf. Algorithm 3), e.g. both are at most 2, or one is equal to
1, and the other less than 10. Since counts at the leaves of the IOFPTA (or nodes
very close to the leaves) will usually have very low counts, this means that in the
original IOFPTA most pairs of leaves will be tested as compatible. However, after
merging the counts of two or three leaves, this will more often no longer be the
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case. The accuracy of models learned with count-aggregation was not higher than
the accuracy of models learned without aggregation, but with ε-settings that lead
to models of approximately equal size. Table 2 shows some detailed results for the
r = 3 model learned from data of size N = 1m. For the two ε-values that also have
been used in the previous experiments for N = 1m, the table shows the sizes of
the learned models, with and without count aggregation. For comparison also the
IOFPTA is included in the table. The average KL-error shown in the last column
of the table is the average error over all 61 test properties (for r = 3, N = 1m
the errors for the difficult properties 17-24 are not such clear outliers that their
inclusion in the average dominates the results). For the IOFPTA the KL-error is
averaged over all properties except two for which the error is infinite. The table
indicates that the accuracy depends more on the size of the learned model (best
results being obtained when slightly over-estimating the true size) than on whether
learning is with or without count aggregation.

5.2 Experiments for CTMCs

For CMTCs, we consider a case study adapted from Haverkort et al (2000), where
two sub-clusters of workstations are connected through a backbone. Each sub-
cluster has N workstations, and the data from a workstation is sent to the back-
bone by a switch connected to the workstation’s sub-cluster. The topology of the
system is shown in Fig. 13. Each component in the system can break down and
any broken component can be repaired. The average failure-free running time of
the workstations, switches, and backbone is 2 hours, 5 hours, and 10 hours, respec-
tively; the average time required for repairing one of these components is 1 hour,
2 hours, and 4 hours. There are two types of Quality of Service (QoS) associated
with the system:

– minimum: at least 3N/4 workstations are operational and connected via switches
and the backbone,

– premium: at least N workstations are operational and connected via switches
and the backbone.

Note that if the premium requirement is met, then so is the minimum requirement.
We specify CTMCs for this system with a varying number of workstations. The
summary statistics for the models in terms of the number of states and transitions
are listed in Table 3.

Table 3: Summary statistics of the CTMC models for the workstation cluster case
study.

N 4 8 10

|Q | 200 648 968

|Tran | 1240 4248 6424

When generating data from the specified models, the observation sequences
correspond to timed strings that alternate between observable symbols and time
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Fig. 13: The topology of a workstation cluster (Haverkort et al, 2000).

values. Following the sampling procedure outlined in Section 4, we generated ob-
servation sequences from different system configurations with 4, 8, and 10 worksta-
tions in each sub-cluster. The average length of these observation sequences is 50.
We also assume that each component is operational initially. For the present case
study, the most important property is the amount of time for which the minimum
and premium QoS requirements are satisfied. These two properties are expressed
by the sub-CSL formulas

P =?[♦≤t !“minimum”] P =?[♦≤t !“premium”],

where t is a real number.

For the experimental results reported below, we used α = 0.5 for the com-
patibility tests employed in the learning algorithms. The choice of having a fixed
α-value is based on the experimental results for the slot machine model (see Sec-
tion 5.1), which showed that the learning algorithms are fairly robust wrt. the
particular choice of α-value.

As shown in Fig. 14, the two QoS properties above are generally well approxi-
mated by the learned models although (as expected) the quality of the approxima-
tions decreases as the complexity of the generating models increases. All models
are learned using 40000 symbols, and all probabilities have been computed using
PRISM. For comparison, we have also included the results obtained by directly
using the timed frequency prefix tree acceptors (TFPTAs) for performing model
checking. As can be seen from the figure, when the prediction horizon starts to
increase the properties are no longer well-approximated by the TFPTA-models.
Summary information about the models learned for various data sizes and system
configurations are given in the first five columns in Table 4; |S| is the number of
symbols in the dataset (×103); |Seq| is the number of sequences in the dataset;
|TFPTA| is the number of nodes in the TFPTA; ‘Time’ is the learning time (in
seconds), including the time for constructing the TFPTA, and |Q| is the number
of states in the learned model.

In addition to the two properties above, we have measured the quality of the
learned models by randomly generating sets of sub-CSL formulas Φ using a stochas-
tic context-free grammar. Each formula is restricted to a maximum length of 20.
For the temporal operators we uniformly sample a time value t from [0, 20] and
defined the time intervals as [0, t]. In order to avoid testing on tautologies or other
formulas with little discriminative value, we constructed a baseline model B with
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Fig. 14: The results of checking the properties P =?[♦≤t !“minimum”] and P =
?[♦≤t !“premium”] in the learned models, timed frequency prefix tree acceptor, and
the generating models with t ∈ [0.5, 6].

one state for each symbol in the alphabet and with uniform transitions probabil-
ities. For each generated formula ϕ ∈ Φ we then tested whether the formula was
able to discriminate between the learned model A, the generating model M , and
the baseline model B. If ϕ was not able to discriminate between these three models
(i.e., PA(ϕ) = PM (ϕ) = PB(ϕ)), then ϕ was removed from Φ. We finally evalu-
ated the learned models by comparing the mean absolute difference in probability
(calculated using PRISM) over the generated formulas for the models M and A:

DA =
1

|Φ|
∑

ϕ∈Φ
|PM (ϕ)− PA(ϕ)|. (6)

The mean absolute difference between M and B is calculated analogously.

The results of the experiments are listed in columns DA and DTA in Table 4,
where column DTA lists the results obtained by performing model checking using the
TFPTA-model. For models with 4, 8, and 10 workstations in each sub-cluster we
ended up with 677, 637, and 635 random formulas, respectively, after the elimina-
tion of non-discriminative formulas. The results are further illustrated in Fig. 15,
where we also see that the difference (measured using the randomly generated
formulas) between the learned model and the generating model decreases as the
amount of data increases. Each data point is the mean value based on eight exper-
iments with different randomly generated data sets. For comparison, the absolute
mean difference between the baseline models and the generating models are 0.424,
0.350, and 0.293, for N = 4, N = 8, and N = 10, respectively.

6 Conclusion

In this paper we have proposed a framework for learning probabilistic system mod-
els based on observed system behaviors. Specifically, we have considered system
models in the form of deterministic Markov decision processes and continuous
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Table 4: Experimental results for the workstation cluster.

|S|(×103) |Seq| |TFPTA| Time |Q| DA DTA

N
=

4
1 15 478 0.78 125 0.0389 0.0612

4 45 1889 1.44 182 0.0294 0.0568

10 107 4659 2.67 197 0.0197 0.0447

40 402 18429 9.16 213 0.0149 0.0374

N
=

8

1 15 473 0.39 179 0.0398 0.0530

4 45 1878 1.31 333 0.0286 0.0700

10 107 4622 2.99 458 0.0202 0.0489

40 402 18208 11.72 578 0.0141 0.0454

N
=

1
0

1 6 493 1.00 196 0.1082 0.1786

4 30 1916 1.56 400 0.0789 0.1790

10 98 4632 4.09 584 0.0585 0.1575

40 406 18128 15.77 794 0.0531 0.1638
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Fig. 15: The quality of learned models measured in terms of randomly generated
formulas.

time Markov chains, where the former model class includes standard deterministic
Markov chains as a special case. The learning framework is presented within a
model checking context and is based on an adapted version of the Alergia al-
gorithm (Carrasco and Oncina, 1994) for learning finite probabilistic automata
models.

We have shown that in the large sample limit the learning algorithm will cor-
rectly identify the model structure as well as the probability parameters of the
model. We position the learning results within a model checking context by show-
ing that for the learned models the probabilities of model properties expressed in
the formal specification languages LTL and sub-CSL will converge to the proba-
bilities given by the true models.
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The learning framework is empirically analyzed based on two use-cases covering
Markov decision process and continuous time Markov chains. The use cases are
analyzed wrt. the structure of the learned system models as well as relevant LTL
and sub-CSL definable properties. The results show that for both model classes
the learning algorithm is able to produce models that provide accurate estimates
of the probabilities of the specified LTL and sub-CSL properties. The results have
also been compared to the estimates obtained by statistical model checking, but
with the analysis limited to properties testable by statistical model checking. Thus,
we do not exploit the generalization capabilities of model learning for reasoning
about unbounded system properties. The comparison shows that in terms of LTL-
accuracy, there is no clear winner between the two approaches; the main differences
in the results are caused by the smoothing effect of model learning. On the other
hand, in terms of space and time complexity we see a significant difference in favor
of model learning. For the sub-CSL properties, both the accuracy and complexity
results are significantly better than those obtained by statistical model checking, in
particular for sub-CSL properties defined over longer time horizons. These results
are further complemented by accuracy estimates for randomly generated sub-CSL
formulas, demonstrating that the learned models also provide accurate probability
estimates of more general model properties.

The theoretical learning results presented in the paper focus on learning in
the limit rather than on probably approximately correct (PAC) learning results.
Extending the results to PAC learning would require an error measure for the
model classes in question, which, in turn, would entail defining a suitable measure
for probability distributions over Σω. Candidate error measures have been inves-
tigated by Jaeger et al (2014) who show that there are fundamental difficulties in
defining measures that on the one hand support PAC learnability results and on
the other hand satisfy natural continuity properties.

In addition to the results reported in the paper, we have conducted preliminary
experiments on learning deterministic MDP approximations based on observations
generated by non-deterministic system models. The results showed that the learned
(deterministic) models are not sufficiently expressive to capture all relevant non-
deterministic system properties. Based on these results, we wish as part of future
work to consider learning methods for non-deterministic model classes. We expect,
however, that the learning methods will be significantly different from the methods
proposed in the current paper as, e.g., the assumption about a deterministic system
behavior is key for the FPTA-based data representation.

The current paper is a significantly extended version of (Mao et al, 2011)
and (Mao et al, 2012). We have subsequently adapted the results in (Mao et al,
2012) to support active learning scenarios, where one guides the interaction with
the system under analysis in order to reduce the amount of data required for es-
tablishing an accurate system model (Chen and Nielsen, 2012). Furthermore, the
learning algorithm has also been extended for learning and verifying properties of
systems endowed with a relational structure (Mao and Jaeger, 2012). Generally,
these learning results assume access to multiple observation sequences of the sys-
tem in question. For systems that are hard (or even impossible) to restart, this
requirement will rarely hold. In (Chen et al, 2012) we have therefore considered
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methods for investigating system properties by learning system models based on
a single observation sequence.

A Consistency of Alergia-style Learning

A.1 Overview

In this appendix we give a detailed and general proof on the consistency of Alergia-
like algorithms for learning finite stochastic automata. Our proof follows the same
main lines of arguments as previous proofs presented in Carrasco and Oncina
(1999); de la Higuera and Thollard (2000); Sen et al (2004a). However, we extend
and improve on these existing works in several ways.

First, we provide results that are formulated on the basis of a very general
automaton model, and thereby provide a uniform treatment of consistency for the
basic Alergia algorithm, as well as for extensions such as DLMDPs ad DCTMCs
as introduced in Section 2. Also, the general stochastic reactive automaton model

introduced below easily accommodates models both with non-zero termination
probabilities, i.e., defining probability distributions on Σ∗, and models without
termination probabilities, i.e., defining probability distributions on Σω.

Second, in our proof we aim to make the statistical part of the argument more
rigorous and self-contained: all previous consistency proofs – and also the one
we propose in the following – depend on arguments about the error probabilities
of the compatibility tests performed by the algorithm. The problem here is that
the concrete tests performed depend on the structure of the specific FPTA, and
thereby are dependent on the data. However, a test that would have a certain
significance level if it was fixed prior to the observation of the data, may not have
the same correctness guarantees if the fact that it is performed depends on the
sampled data itself. A trivial example may illustrate the point: suppose we want
to test the hypothesis that a coin is fair based on the empirical frequency h̄ of
heads in a sample of 100 tosses. For this we can find p, q > 0 with p < q such
that Pfair(h̄ 6∈ [1/2− p, 1/2 + q]) = Pfair(h̄ 6∈ [1/2− q, 1/2 + p]) = 0.05. Thus, reject
if h̄ 6∈ [1/2 − p, 1/2 + q] and reject if h̄ 6∈ [1/2 − p, 1/2 + q] are both tests for the
hypothesis P (h) = 1/2 at significance level 0.05. However, if we perform the first
test whenever h̄ ≤ 1/2, and the second if h̄ > 1/2, then the resulting test no longer
has a 0.05 significance level. Of course, in Alergia, the execution of tests and the
data sample are not connected in such an inadmissible way as in this example. In
order to correctly account for this fact in the consistency proof, we largely separate
the statistical argument from the concrete execution runs of the algorithm, and, in
effect, always consider all the statistical tests that could be performed given some
possible data sample.

The separation of the statistical from the algorithmic aspect also is part of the
third goal of our consistency proof, which is to obtain a modular argument that
clearly identifies three main components that lead to consistency:
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– algorithmic component: conditions on the procedure by which nodes in the
initial FPTA are tested for compatibility and merged. This will lead only to a
very simple and loose constraint on the algorithmic procedure.

– data component: conditions on the sampling process for the data from which
the automaton is learned.

– statistical component: conditions on the statistical tests used to decide node
compatibility

This modular structure of the results facilitates their application to new or
modified versions of existing algorithms.

A.2 Stochastic reactive automata model

We define a general stochastic automaton model of which LMDPs and CTMCs are
special cases. We then also provide a general concept for deterministic stochastic
automata, of which DLMDPs and DCTMCs are special cases. Our model is reac-
tive, in the sense that it takes inputs, and its stochastic behavior is conditioned on
those inputs. All probabilistic aspects of the automaton are encoded by random
variables associated with each state.

Definition 12 A stochastic reactive finite automaton (SRFA)

A = (Q, qs,X, Σin, succ, obs)

is given by

– A finite set of states Q containing a designated start state qs.

– Each state q ∈ Q is labeled with random variables X
(q)
1 , . . . , X

(q)
n , where each

X
(q)
i takes values in some sample space Ωi (the same for all q), according to

some parametric model Θi (the same for all q).
– A finite input alphabet Σin.
– A successor function succ : Q×Σin ×

∏n
i=1Ωi → Q

– An observation function obs : Σin ×
∏n
i=1Ωi → P{1, . . . , n}.

We denote
∏n
i=1Ωi with Ω, and (ω1, . . . , ωn) with ω. obs(σ,ω) contains the

indices of the random variables that are observed when the input is σ, and the

ω are the sampled values of (X
(q)
1 , . . . , X

(q)
n ). We can then define the observation

space

Obs := {(σ, (ωi)i∈obs(σ,ω)) | σ ∈ Σ
in,ω ∈ Ω)}

Given an input string π ∈ (Σin)ω, a SRFA defines a probability distribution
over the space of state-observation sequences (Q×Obs)ω by assuming that the ran-
dom variables X(q) are independent at each state q, so that their joint distribution
defines distributions for the successor state and the next observation.

By a slight abuse of notation, we also use obs(σ,ω) to denote (σ, (ωi)i∈obs(σ,ω)).
We use o to denote elements of Obs.



38 H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, et al.

Definition 13 A stochastic automaton is finite-branching deterministic (called
DSRFA), if there exists an equivalence relation ≡ on Obs, so that

– ≡ partitions Obs into finitely many equivalence classes
– obs(σ,ω) ≡ obs(σ′,ω′)⇒ ∀q : succ(q, σ,ω) = succ(q, σ′,ω′)

The equivalence class of o ∈ Obs, is denoted [o], and [Obs] is the set of all
equivalence classes. In finite-branching deterministic automata we can also denote
succ(q, σ,ω) as succ(q,o), or succ(q, [o]).

Example 5 We show how DLMDPs as described in Definition 3 can be represented
as a DSRFA. We assume there also is an alphabet Σout of observable output
symbols. On a given input σi ∈ Σin the automaton makes a random transition to
a state labeled with σo ∈ Σout, so that the successor state is uniquely determined
by the (σi, σo) pair.

To represent this as a DSRFA, we assume that each state is labeled by random
variables Xσi (σi ∈ Σin) with values in Σout. Xσi represents the conditional distri-
bution over the next output symbol, given input σi. Given input σi ∈ Σin one ob-

serves the value of the relevant variable Xσi , i.e., obs(σi, (X
(q)
σ )σ∈Σin) = (σi, X

(q)
σi ).

Then succ(q, σi, (X
(q)
σ )σ∈Σin) is the unique q′ ∈ Q defined by q, σi, X

(q)
σi . In this

case, the equivalence class [o] is just the singleton o.

To expand this to DCTMCs, one may add a real-valued delay variable XT , e.g.
with an exponential distribution. Assuming that the delay time is always observed,

then obs(σi, XT , (X
(q)
σ )σ∈Σin) = (σi, XT , X

(q)
σi ). Furthermore (σi, XT , X

(q)
σi ) ≡

(σi
′
, X ′T , X

(q)
σi

′
) iff σi = σi

′
, and X

(q)
σi = X

(q)
σi

′
.

For random variables X,Y we write X ≈ Y if X and Y have the same distri-
bution.

Definition 14 Two states q, q′ ∈ Q are said to be locally compatible, written q ∼l q′,
if X

(q)
i ≈ X

(q′)
i for i = 1, . . . , n. They are said to be globally compatible, written

q ∼ q′, if q ∼l q′, and succ(q, ō) ∼l succ(q′, ō) for all ō ∈ Obs∗.

The relation q ∼ q′ is an equivalence relation on Q. The automaton obtained
by factoring A over this equivalence relation is denoted A/ ∼.

A.3 Computation Prefix Tree

For a finite-branching deterministic automaton A, we can define the computation
prefix tree:

Definition 15 The computation prefix tree (CPT) for A is the infinite rooted
tree in which every node v has one successor succ(v, [o]) for each equivalence class
[o] ∈ [Obs].



Learning Deterministic Probabilistic Automata for Model Checking 39

Each node v in the CPT can be labeled with a state q(v) ∈ Q: the root is
labeled with qs, and the [o]-successor of a node labeled with q is labeled with
succ(q,o). For a finite computation (sequence of observations) ō = o1, . . . ,ok one
inductively defines the node v ∈ T reached by ō: For k = 0 the node reached by ō is
the root. For k ≥ 1 the node reached by o1, . . . ,ok is the [ok]-successor of the node
reached by o1, . . . ,ok−1. Each node v is reached by a unique observation sequence,
denoted ō(v).

Without loss of generality, we from now on assume that all states in A are
reachable by some computation, so that every state q ∈ Q also appears as a node
label in the CPT.

Definition 16 Let A be a DSFA with |Q| = m and T its CPT. A kernel of T is
any initial part K of T that contains for each state q ∈ Q a node v(q) labeled with
q. If K is a kernel, then K+1 is the union of K with all [o]-successors ([o] ∈ [Obs])
of nodes in K. The critical region of K is the extension of K by the set of all nodes
v ∈ T reachable from K by a path of length at most m2.

In most accounts of Alergia-like learning algorithms, it is assumed that an
initial part of the CPT is constructed from the data. We take an essentially equiv-
alent, but conceptually slightly different view, and let the data only increment
empirical count variables at the nodes of the full, infinite tree. This, in particular,
serves the purpose to consider sets of tests independently from particular data
samples, i.e., our analysis will be based on always considering all possible com-
patibility tests between nodes of the full CPT that would be performed given any
sample.

Let v be a node in T . For each i = 1, . . . , n we associate with v an empirical

distribution variable X̂
(v)
i whose values are multisets of values from Ωi (for finite

Ωi such a multiset is just given by an integer count for each value in Ωi).

For j = 1, . . . , N let ō(j) = o
(j)
1 , . . . ,o

(j)
k(j) be an observed computation of length

k(j). The sample (ō(j))j defines the empirical distributions at a node v ∈ T that

is reached by observation sequence ō(v) of length k as follows: the multiset X̂
(v)
i

is the union of all ωi that are observed in those o
(j)
k+1 for j such that k(j) ≥ k+ 1,

and o
(j)
1 , . . . ,o

(j)
k = ō(v).

A.4 State Merging in the CPT

Alergia-like algorithms merge nodes of the CPT based on compatibility tests be-
tween pairs of nodes. The following definition introduces a binary relation repre-
senting the outcome of such tests.

Definition 17 A compatibility test relation on T is a binary symmetric and reflexive
relation ∼t between the nodes of T . Furthermore, we define v ∼∗t v′ iff v ∼t v′, and
for all ō ∈ Obs∗: succ(v, ō) ∼t succ(v′, ō).
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Based on recursively applied compatibility tests, Alergia-like algorithms actu-
ally compute the ∼∗t relation, and merge pairs of nodes v, v′ (and their successors)
for which v ∼∗t v′. At each stage in the algorithm, an equivalence relation on T

describes the equivalence classes of merged nodes. In the following, we define equiv-
alence relations ∼tc

i that describe the equivalence classes of merged nodes after i
iterations of the algorithm. For this we assume a fixed (but arbitrary) enumeration
of the nodes of T :

T = v1, v2, v3, . . .

Definition 18 For i = 1, 2, . . . we define for v, v′ ∈ T : v ∼i v′ iff there exist j, h ≤ i
and ō ∈ Obs∗, such that vj ∼∗t vh, v = succ(vj , ō), and v′ = succ(vh, ō). Let ∼tc

i be
the transitive closure of ∼i.

The following lemma stipulates sufficient conditions on ∼t for the algorithm to
terminate with the correctly identified equivalence classes of A/ ∼.

Lemma 1 Let k ≥ 1 be such that K+1 = {v1, . . . , vk} for some kernel K of T . Let C

be the critical region for K. Assume that ∼t satisfies the following two conditions:

(i) for all v, v′ in C: v ∼t v′ iff q(v) ∼l q(v′) (correct test results on C)

(ii) for all j, h ≤ k, and all ō ∈ Obs∗: if q(succ(vj , ō)) ∼l q(succ(vh, ō)), then

succ(vj , ō) ∼t succ(vh, ō) (no false rejections in relevant tests)

Then for all v, v′ ∈ T : v ∼tc
k v′ ⇔ q(v) ∼ q(v′).

Proof First assume that v ∼tc
k v′. It is sufficient to consider the case where v ∼k v′:

if in that case q(v) ∼ q(v′), this will also be true in the general case v ∼tc
k v′, since

∼ itself is a transitive relation.

Assume, then, that v ∼k v′, and let vj , vh ∈ K for v, v′ as given by Defini-
tion 18. It is sufficient to show that q(vj) ∼ q(vh). Assume q(vj) 6∼ q(vh). Then
q(vj) 6∼l q(vh), or for some computation sequence ō: succ(q(vj), ō) 6∼l succ(q(vh), ō).
The length of ō can be bounded by m2, since any pair of states reachable from
q(vj), q(vh) is reachable within at most m2 steps. Thus, succ(vj , ō), succ(vh, ō) ∈ C,
and by (i), succ(vj , ō) 6∼t succ(vh, ō), so that vj 66∼∗t vh, a contradiction.

For the converse direction, we first note that the statement is true for v, v′ ∈
K+1, because then q(v) ∼ q(v′) implies v ∼∗t v′ by (i) and (ii), and therefore also
v ∼k v′.

For the general case we proceed as follows: we show that for every v ∈ T

there exists vK ∈ K with v ∼tc
k vK . Then, for v, v′ ∈ T with q(v) ∼ q(v′) we

obtain v ∼tc
k vK , v′ ∼tc

k v′K . By the first part of the proof, then q(v) ∼ q(vK), and
q(v′) ∼ q(v′K), and hence also q(vK) ∼ q(v′K), and v ∼tc

k v′.

Assume that there exists v ∈ T \K+1 for which no vK exists. Let v be such a
counterexample that is minimal in the sense that v = succ(v0,o), v0 ∈ K+1 \K,
and | o | (i.e., the distance of v to K+1) is minimal. For v0 there exists v1 ∈ K

with q(v0) ∼ q(v1), and therefore v0 ∼∗t v1. Let v′ = succ(v1,o). Then v ∼k v′. The
distance of v′ to K+1 is less than |o |, and therefore v′ ∼tc

k vK for some vK ∈ K.
Thus, also v ∼tc

k vK , a contradiction. ut
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Definition 18 reflects a quite high-level description of an iterative state-merging
procedure that abstracts from several implementation details present in our version
of the Alergia algorithm as described in Section 3. For instance, the definition of
∼i does not take into account that in our algorithm we test the compatibility of
a node qb (corresponding to the next node vi considered in the enumeration of T
according to Definition 18) with candidate nodes qr (corresponding to the nodes
v1, . . . , vi−1 in our enumeration) in lexicographic order of qr, and that once one
such compatibility is found, no further compatibilities of qb with other nodes qr
are tested. Due to these differences between the procedural merge strategies in
concrete implementations, and the abstract merge relations ∼i, it is not the case
that in all cases the final equivalence classes over states computed by the algorithm
coincide with the limit of ∼tc

i as i→∞. However, these two equivalence relations
will be the same if condition (i) of Lemma 1 holds: in that case, the test relation ∼t
is guaranteed to be an equivalence relation on C, and implementation details that
influence which representatives of an equivalence class are used for compatibility
testing do not affect the outcome.

The only necessary procedural aspect we have to require of an implementation
in order to guarantee that under the conditions of Lemma 1 the computed equiva-
lence relation coincides with ∼tc

k is that nodes of the CPT are processed in a fixed
order, which is not influenced by the data sample.

We will now investigate conditions under which it is ensured that ∼t will satisfy
the conditions of Lemma 1 if ∼t is defined by statistical tests of the relation ∼l.
This will be a purely statistical question without any reference to algorithmic
procedures.

A.5 Statistical Tests

We assume that the relation ∼t is defined by statistical tests ∼t,i for the local

equivalences X
(q(v))
i ≈ X(q(v′))

i as ∼t= ∩ni=1 ∼t,i.

According to the terminology and notation introduced in Definition 12, a ran-
dom variable X has a distribution on a state space Ω characterized by a parameter
θ ∈ Θ. In the following, we denote this distribution by Pθ. By a slight abuse of
notation, we also use Pθ to denote the distributions induced on ΩN (N ≥ 1) and
Ω∞ by independent random sampling from Pθ. Furthermore, Pθ1×θ2 denotes the
sampling distribution for two independent samples according to Pθ1 and Pθ2 , re-
spectively. For an infinite sample sequence ω ∈ Ω∞ we denote by ω(N) the initial
sequence of N samples.

Definition 19 A two-sample test for equivalence for the parametric family {Pθ |
θ ∈ Θ} is a mapping

R>0 ×
⋃
N∈N

ΩN ×
⋃
N∈N

ΩN → {accept, reject}

such that for all θ ∈ Θ:

Pθ×θ({(ω1,ω2) ∈ ΩN1 ×ΩN2 | T (ε,ω1,ω2) = reject}) < ε. (7)
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Furthermore, we require that for all ε > 0

T (ε,ω1,ω2) = accept (8)

if |ω1 |= 0 or |ω2 |= 0.

In the following we use Ω(f(N)) and O(f(N)) in the usual complexity-theoretic
sense to denote the classes of functions that grow at least, respectively at most, as
fast as f(N). Note, in particular, that Ω now appears with two distinct meanings:
as a function class, and as a sample space.

Definition 20 Let h : N → R be non-decreasing. A two-sample test T is strongly

h-consistent, if there exists a sequence (εN )N with

(i-a)
∑
N h(N)εN <∞

(ii-a) for all θ1, θ2 ∈ Θ, θ1 6= θ2, and for all g1, g2 ∈ Ω(N):

Pθ1×θ2({(ω1,ω2) ∈ Ω∞ ×Ω∞ |
T (εN ,ω1(g1(N)),ω2(g2(N))) = accept for infinitely many N}) = 0. (9)

T is called weakly h-consistent, if instead of (i-a) and (ii-a) only the following holds

(i-b) for all δ > 0, there exists N0 ∈ N, such that for all N ≥ N0: h(N)εN ≤ δ.
(ii-b) for all θ1, θ2 ∈ Θ, θ1 6= θ2, for all g1, g2 ∈ Ω(N):

lim
N
Pθ1×θ2({(ω1,ω2) ∈ Ω∞ ×Ω∞ | T (εN ,ω1(g1(N)),ω2(g2(N))) = accept) = 0.

The following definitions introduces the conditions we have to impose on data
generation procedures to ensure consistency.

Definition 21 Let ō∞ = ō(1), ō(2), . . . , ō(N), . . . be an infinite sequence of finite
observation sequences, where each ō(N) is independently sampled from some sam-
pling distribution P sN

1. We denote with P s the sampling distribution for ō∞, and

with X̂
(v)
i,N the empirical distribution defined as in Section A.3 from the first N

elements of ō∞. Let h : N→ R as in Definition 20. We say that P s is h-admissible

if

(i) for all v,N, i: the elements of X̂
(v)
i,N are an iid sample from P (X

q(v)
i ).

(ii) for all v, i: P s(|X̂(v)
i,N | = Ω(N)) = 1 (at least linear increase of sample sizes for

all empirical node distributions)

(iii) E(|{v | ∃i : |X̂(v)
i,N | > 0}|) = O(h(N)) (in expectation, the increase of the

number of nodes with non-empty samples is at most h(N)).

1 Note that the ō(N) can not be assumed to be identically distributed, since the input
sequences will be different in different samples
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Theorem 4 Let P s be an h-admissible sample distribution. For i = 1, . . . , n let Ti be

an h-consistent two-sample test for equivalence for the parametric family {Pθ | θ ∈ Θi}
with associated sequence (εi,N ).

For N > 1, i ∈ {1, . . . , n} we define

v ∼(N)
t,i v′ :⇔ T (εi,N , X̂

(v)
i,N , X̂

(v′)
i,N ) = accept (10)

Furthermore, define

v ∼(N)
t v′ :⇔ ∀i : v ∼(N)

t,i v′.

If T is strongly h-consistent, then

P s(∼(N)
t almost always satisfies (i) and (ii) in Lemma 1) = 1. (11)

If T is weakly h-consistent, then for all δ > 0 exists N0 ∈ N, such that for all N ≥ N0:

P s(∼(N)
t satisfies (i) and (ii) in Lemma 1) ≥ 1− δ. (12)

Proof We first observe that we may assume that all Ti satisfy Definition 20 with
the same sequence εN , because replacing εi,N with εN := maxi εi,N preserves the
validity of conditions (i) and (ii) in Definition 20.

We now first show that ∼(N)
t a.a. satisfies (i). Let v, v′ ∈ C, and assume, first,

that q(v) ∼l q(v′). Then θi = θ′i for all i, and thus

P s(T (εN , X̂
(v)
i,N , X̂

(v′)
i,N ) = reject) ≤ εN .

If (i-a) holds, then by the Borel-Cantelli lemma (here only using
∑
N εN <∞)

P s(v ∼(N)
t,i v′ a.a.) = 1

for all i, and therefore also

P s(v ∼(N)
t v′ a.a.) = 1. (13)

If (i-b) holds, then for a given δ and sufficiently large N :

P s(v ∼(N)
t,i v′) ≥ 1− δ/(4n |C |2),

and therefore

P s(for all v, v′ ∈ C : q(v) ∼l q(v′)⇒ v ∼t v′) > 1− δ/4. (14)

Conversely, assume q(v) 6∼l q(v′). Let i ∈ {1, . . . , n} be such that θi 6= θ′i. As-
sume that T is strongly consistent. Then, by Definition 20 (ii-a) and Definition 21
(ii):

P s(T (εN , X̂
(v)
i,N , X̂

(v′)
i,N ) = reject a.a.) = 1,

and therefore
P s(v 6∼(N)

t v′ a.a.) = 1. (15)

(13) and (15) together imply that P s(∼(N)
t

almost always satisfies (i) in Lemma 1) = 1.
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If T is only weakly consistent, then by Definition 20 (ii-b) and Definition 21
(ii), for all δ and all sufficiently large N :

P s(T (εN , X̂
(v)
i,N , X̂

(v′)
i,N ) = reject) ≤ δ/(4n |C |2),

and therefore

P s(for all v, v′ ∈ C : q(v) ∼l q(v′)⇐ v ∼t v′) > 1− δ/4. (16)

(14) and (16) together imply that P s(∼(N)
t satisfies (i) in Lemma 1) ≥ 1− δ/2.

We now turn to showing condition (ii) of Lemma 1. For this we consider the

probability that (ii) does not hold for ∼(N)
t . In the following, when we write a union

or summation over pairs v, v′ this is always shorthand for union or summation over
the set

{v, v′ | q(v) ∼l q(v′),∃vj , vh ∈ K, ō ∈ Obs∗ : v = succ(vj , ō), v′ = succ(vh, ō)}

Using (7) and (8) we can write:

P s(∪v,v′{v 6∼
(N)
t v′}) ≤

∑
v,v′

n∑
i=1

P s(v 6∼(N)
t,i v′)

=
∑
v,v′

n∑
i=1

P s(v 6∼(N)
t,i v′, |X̂(v)

i,N | > 0)

=
∑
v,v′

n∑
i=1

P s(v 6∼(N)
t,i v′ | |X̂(v)

i,N | > 0)P s(|X̂(v)
i,N | > 0)

≤ εN
∑
v,v′

n∑
i=1

P s(|X̂(v)
i,N | > 0) (17)

For any given v there exist at most |K| different v′ for which the pair v, v′ is

included in the sum. Also writing P s(|X̂(v)
i,N | > 0}) as E(1|X̂(v)

i,N |>0
) with 1e the

indicator function of event e, we can therefore further bound (17):

≤ εN |K|
∑
v∈T

n∑
i=1

P s(|X̂(v)
i,N | > 0)

= εN |K|
∑
v∈T

n∑
i=1

E(1|X̂(v)
i,N |>0

) = εN |K|E(
∑
v∈T

n∑
i=1

1|X̂(v)
i,N |>0

)

≤ εN |K|nE(
∑
v∈T

1∃i:|X̂(v)
i,N |>0

) = O(h(N)εN ), (18)

where the last equality is due to Definition 21 (iii).

If Definition 20 (i-a) holds, it follows with the Borel-Cantelli Lemma that

P s(∼(N)
t infinitely often violates Lemma 1 (ii)) = 0.

ut
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If Definition 20 (i-b) holds, then for sufficiently large N

P s(∼(N)
t violates Lemma 1 (ii)) ≤ δ/2. (19)

We conclude this section by showing that the Hoeffding test for the equiva-
lence of binomial distributions, and the F -test for the equivalence for exponential
distributions are strongly and weakly h-consistent, respectively, for

hgeoλ (N) := E(|{v | ∃i : |X̂(v)
i,N | > 0}|),

where the expectation is with respect to the sampling procedure described in
Section 4, i.e. with a geometric distribution with parameter λ for the length of the
sample sequences ō(j).

Lemma 2 limN hgeoλ (N)/N = 0

Proof Let VN := |{v | ∃i : |X̂(v)
i,N | > 0}| and V +

N := VN − VN−1, i.e., V +
N is the

number of nodes v ∈ T that are reached for the first time in the Nth sample. Then
E(VN ) =

∑N
k=1E(V +

k ), and the lemma can be proven by showing that E(V +
k )→ 0

as k →∞. We can write

E(V +
k ) = E(V +

k | V
+
k > 0)P s(V +

k > 0).

For all k: E(V +
k | V

+
k > 0) = (1− λ)/λ. This is because the geometric distribution

represents a memoryless sampling procedure for the length of an observation se-
quence ō, so that conditional on ō having reached a first new node v, the expected
length of the remaining string is still the prior expectation (1 − λ)/λ. It is thus
sufficient to show that P s(V +

k > 0)→ 0 for k →∞. For this let Al,k be the event
that all nodes v ∈ T at depth ≤ l are included in Vk. Then, because of Definition 21
(ii), we have that for all fixed l: P s(Al,k) → 1 for k → ∞. Thus, for all l and all
δ > 0 there exists k0 such that for all k ≥ k0: P s(V +

k > 0) ≤ P s(V +
k > 0 | Al,k) + δ.

With P s(V +
k > 0 | Al,k) ≤ (1− λ)l then P s(V +

k > 0)→ 0 follows. ut

Lemma 3 The Hoeffding test defined by Algorithm 3 is strongly hgeoλ -consistent.

Proof We first note that the Hoeffding test is indeed a two-sample test in the
sense of Definition 19 (Carrasco and Oncina, 1999). To show strong consistency,
let εN := 1/Nr for some r > 2. Then (i-a) of Definition 20 is satisfied, because
according to Lemma 2 hgeoλ (N)εN < 1/Nr−1 in the limit N →∞.

To show (ii-a), let θ1 > θ2 be parameters of the binomial distribution,
and g1, g2 ∈ Ω(N). In this case, ωi(gi(N)) are samples from Ω = {0, 1} of
size gi(N). Let fi denote the number of occurrences of 1 in ωi(gi(N)), and
T (εN ,ω1(g1(N)),ω2(g2(N))) = accept iff

|f1/g1(N)− f2/g2(N) |< (
√

1/g1(N) +
√

1/g2(N))
√

1/2 ln(2/εN ). (20)

By the strong law of large numbers, Pθ1×θ2(limN→∞ | f1/g1(N) − f2/g2(N) |→
θ1 − θ2) = 1. The right-hand side of (20) is of the order O(

√
lnN/N), and, thus,



46 H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, et al.

goes to zero as N → ∞. It follows that with probability 1, (20) only holds for
finitely many N .

We note that similarly we obtain that the Hoeffding test is weakly hgeoλ -
consistent for sequences εN := 1/Nr with r > 1. ut

Lemma 4 The F -test defined by Algorithm 4 is weakly hgeoλ -consistent.

Proof For the F -test, the data ωi(gi(N)) consists of samples from Ω = R following
exponential distributions with parameters θi. Let g1, g2 ∈ Ω(N). In the following,
we denote Ni := gi(N) (i = 1, 2).

Let θ̂i :=
∑Ni

l=1 ωl/Ni. Then (θ̂1/θ̂2)(θ2/θ1) (approximately) follows an

F (2N1, 2N2)-distribution with mean µ = N2
N2−1 and standard deviation

σ =

√
N2

2 (N1 +N2 − 1)

N1(N2 − 1)2(N2 − 2)
(21)

(Cox, 1953; Gehan and Thomas, 1969), and

Pθ1×θ2(θ̂1/θ̂2 ∈ [µ− σ
√
εN

, µ+
σ
√
εN

]) =

PF (2N1,2N2)([(µ−
σ
√
εN

)
θ1
θ2
, (µ+

σ
√
εN

)
θ1
θ2

]). (22)

The F -test is constructed by an application of Chebyshev’s inequality for the
F (2N1, 2N2)-distribution, and thereby is seen to be a two-sample test in the sense
of Definition 19.

To show weak consistency, let εN = 1/
√
Nhgeoλ (N). With Lemma 2 then

hgeoλ (N)εN =
√
hgeoλ (N)/N → 0, so that Definition 20 (i-b) is satisfied.

Now assume θ1 6= θ2. With Lemma 2 we obtain σ/
√
εN = O((hgeoλ (N)/N)1/4)→

0. With µ→ 1 this means that the interval [(µ− σ√
εN

) θ2θ1 , (µ+ σ√
εN

) θ2θ1 ] is bounded

away from 1 as N →∞, and that the right-hand side of (22) goes to zero. ut

B MDP Test Properties

LTL test properties used in the Experiments of Section 5.1. The properties are
given in PRISM syntax. For conciseness, blank, apple, bar are represented by 0,1,2,
respectively.
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Table 5: List of test properties for slot machine model

Query Answer
r = 3 r = 5

1. Pmax=? [F ”Pr10” ] 2.16E-001 4.04E-001
2. Pmax=? [F ”Pr2” ] 4.48E-001 7.40E-001
3. Pmax=? [F ”Pr0” ] 1.00 1.00
4. Pmax=? [ X ( X ( ”100”)) ] 5.33E-001 4.58E-001
5. Pmax=? [ X ( X ( ”200”)) ] 4.90E-001 5.60E-001
6. Pmax=? [ X ( X ( ”110”)) ] 1.60E-001 1.32E-001
7. Pmax=? [ X ( X ( ”120”)) ] 3.73E-001 3.08E-001
8. Pmax=? [ X ( X ( ”220”)) ] 3.27E-001 3.92E-001
9. Pmax=? [ X ( X ( X ( ”111”)) ) ] 1.23E-001 7.66E-002
10. Pmax=? [ X ( X ( X ( ”122”)) ) ] 2.50E-001 2.27E-001
11. Pmax=? [ X ( X ( X ( ”112”)) ) ] 2.86E-001 1.79E-001
12. Pmax=? [ X ( X ( X ( ”222”)) ) ] 7.62E-002 1.65E-001
13. Pmax=? [ X ( X ( X ( ”Pr0”))) ] 5.00E-001 5.00E-001
14. Pmax=? [ X ( X ( X ( ”Pr2”))) ] 0.00 0.00
15. Pmax=? [ X ( X ( X ( ”Pr10”))) ] 0.00 0.00
16. Pmax=? [ ! (F<7 (”End”)) ] 5.00E-001 1.00
17. Pmax=? [ ! (F<8 (”End”)) ] 2.50E-001 5.00E-001
18. Pmax=? [ ! (F<9 (”End”)) ] 2.50E-001 5.00E-001
19. Pmax=? [ ! (F<10 (”End”)) ] 1.25E-001 2.50E-001
20. Pmax=? [ ! (F<11 (”End”)) ] 1.25E-001 2.50E-001
21. Pmax=? [ ! (F<12 (”End”)) ] 6.25E-002 1.25E-001
22. Pmax=? [ ! (F<13 (”End”)) ] 6.25E-002 1.25E-001
23. Pmax=? [ ! (F<14 (”End”)) ] 3.13E-002 6.25E-002
24. Pmax=? [ ! (F<15 (”End”)) ] 3.13E-002 6.25E-002
25. Pmax=? [ X ( X ( ”100”)) & (F ”Pr10”) ] 5.25E-002 9.18E-002
26. Pmax=? [ X ( X ( ”100”)) & (F ”Pr2”) ] 1.28E-001 1.92E-001
27. Pmax=? [ X ( X ( ”100”)) & (F ”Pr0”) ] 5.33E-001 4.58E-001
28. Pmax=? [ X ( X ( ”200”)) & (F ”Pr10”) ] 2.02E-001 3.05E-001
29. Pmax=? [ X ( X ( ”200”)) & (F ”Pr2”) ] 3.22E-001 4.43E-001
30. Pmax=? [ X ( X ( ”200”)) & (F ”Pr0”) ] 4.90E-001 5.60E-001
31. Pmax=? [ X ( X ( ”110”)) & (F ”Pr10”) ] 8.63E-003 1.33E-002
32. Pmax=? [ X ( X ( ”110”)) & (F ”Pr2”) ] 2.10E-002 3.42E-002
33. Pmax=? [ X ( X ( ”110”)) & (F ”Pr0”) ] 1.60E-001 1.32E-001
34. Pmax=? [ X ( X ( ”210”)) & (F ”Pr10”) ] 4.89E-002 7.97E-002
35. Pmax=? [ X ( X ( ”210”)) & (F ”Pr2”) ] 1.19E-001 2.08E-001
36. Pmax=? [ X ( X ( ”210”)) & (F ”Pr0”) ] 3.73E-001 3.08E-001
37. Pmax=? [ X ( X ( ”220”)) & (F ”Pr10”) ] 1.04E-001 2.64E-001
38. Pmax=? [ X ( X ( ”220”)) & (F ”Pr2”) ] 2.50E-001 3.86E-001
39. Pmax=? [ X ( X ( ”220”)) & (F ”Pr0”) ] 3.27E-001 3.92E-001
40. Pmax=? [ X ( X ( X ( ”222”)) ) & (F ”Pr10”) ] 7.62E-002 1.65E-001
41. Pmax=? [ X ( X ( X ( ”222”)) ) & (F ”Pr2”) ] 0.00 1.58E-001
42. Pmax=? [ X ( X ( X ( ”222”)) ) & (F ”Pr0”) ] 0.00 1.19E-001
43. Pmax=? [ X ( X ( X ( ”221”)) ) & (F ”Pr10”) ] 0.00 9.95E-002
44. Pmax=? [ X ( X ( X ( ”221”)) ) & (F ”Pr2”) ] 2.50E-001 2.27E-001
45. Pmax=? [ X ( X ( X ( ”221”)) ) & (F ”Pr0”) ] 0.00 2.18E-001
46. Pmax=? [ X ( X ( X ( ”211”)) ) & (F ”Pr10”) ] 0.00 2.31E-002
47. Pmax=? [ X ( X ( X ( ”211”)) ) & (F ”Pr2”) ] 0.00 7.82E-002
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57. Pmax=? [ X ( X ( ”110”)) & (X ( X ( X ( ”111”)) )) & (F ”Pr0”) ] 4.27E-002 9.50E-002
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