181 research outputs found

    Performance evaluation of VoIP and web services in HSDPA

    Get PDF
    During the last years, the mobile communications market in the western developed countries has reached a standstill, with a market penetration higher than 100% in most countries such as, Spain 115%, United Kingdom 120% and Italy with more than 150%. So the network operators have focused their strategy in moving into a new market still developing, the data, that could help the operators to increase their saturated income. The solution mostly adopted by the operators is to offer the mobile broadband offering flat rate schemes to the customers for a monthly fee. The mobile broadband appeals to wide range of users, such as corporate users and especially to students which give them the liberty to access internet across different locations such as university, cafe or shared accommodation. That creates a set of challenges to the operators having to improve their network in order to cope with this huge new demand for high-speed data, to successfully satisfy these requirements, Third Generation networks must support high user data rates, especially on the downlink direction of the communication path due to its heavier load. For these reason, the 3GPP standardized in Release 5 the technology HSDPA (High Speed Downlink Packet Access). The HSDPA provides a cost effective solution to provide high-speed data to the customers specially focused to increase the overall cell capacity thanks to the fact that the resources are shared among the users. This project has consisted on the design of a HSDPA simulator and on the evaluation of the performance of VoIP and web browsing traffic in HSDPA. The idea of this project started on an industrial placement in Orange UK, in the department of Access Network. Between other tasks the CQI (Channel Quality Information) were modelled using samples taken from the live network. In order to do a more theoretical analysis and make use of the CQI modelling, after the placement, the design of the complete simulator has been made under the direction of Professor Ferran Casadevall. The objective of this project is then to simulate an HSDPA cell in different conditions, specially focused in different cell loading conditions such as: · Different number of users, up to 100 users per cell. · Different traffic profiles, choosing between VoIP and web users. Once the simulations have been carried out, the results have been analysed in detail, offering figures and facts of how the throughput and the traffic delay changes with different load conditions. As both the VoIP and web traffic have different thresholds of maximum delay defined by international entities, the simulations could be used to asses to define, the maximum number of HSPDA users in cell. This will help to capacity planners to decide the rollout strategy, based on the simulation results. This project has been developed with the tool Matlab. This tool has been chosen because it allows an effective code development and at the same time it is very useful to produce graphics and to compute difficult numerical calculations

    THROUGHPUT OPTIMIZATION AND ENERGY EFFICIENCY OF THE DOWNLINK IN THE LTE SYSTEM

    Get PDF
    Nowadays, the usage of smart phones is very popular. More and more people access the Internet with their smart phones. This demands higher data rates from the mobile network operators. Every year the number of users and the amount of information is increasing dramatically. The wireless technology should ensure high data rates to be able to compete with the wire-based technology. The main advantage of the wireless system is the ability for user to be mobile. The 4G LTE system made it possible to gain very high peak data rates. The purpose of this thesis was to investigate the improvement of the system performance for the downlink based on different antenna configurations and different scheduling algorithms. Moreover, the fairness between the users using different schedulers has been analyzed and evaluated. Furthermore, the energy efficiency of the scheduling algorithms in the downlink of LTE systems has been considered. Some important parts of the LTE system are described in the theoretical part of this thesis.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Multi-user MIMO beamforming:implementation, verification in L1 capacity, and performance testing

    Get PDF
    Abstract. A certain piece of technology takes a lot of effort, research, and testing to reach the productisation phase. Radio features are implemented in layer 1 (L1) before moving to the hardware implementation phase, where their functioning is tested and verified. The target of the thesis is to implement and verify beamforming based multi-user multiple-input multiple-output (MU-MIMO) in L1 capacity and performance testing (PET) environment. The L1 testing environment mainly focuses on 4G and 5G stand-alone (SA) cases, while the focus of this thesis work is only on 5G SA technology, which features beamforming and MU-MIMO. Beamforming and MU-MIMO have been tested in an end-to-end system but not specifically in L1. The L1 testing provides a deeper analysis of beamforming and MU-MIMO in L1 and aids in problem identification at an early productisation phase, saving both time and money. L1 PET has multiple components that work together for L1 data transmission in both uplink (UL) and downlink (DL) directions and handle the verification of the transmitted data. The main components that play a key role in the implementation of multi-user MIMO beamforming concern frame design setup, message setup for UL and DL using correct channels and interfaces, transmission of the generated data in UL and DL, and message capturing at L1 end (whether correct messages are transmitted or not). For verification purposes, methods such as analysing plots from L1 log results based on comparison with radio specifications are used to determine whether the generated test output is correct or not. Finally, performance metrics, such as error vector magnitude (EVM), UE per transmission time interval (TTI), number of layers per UE, channel quality indicator (CQI), physical resource block (PRB) count, and throughput, are evaluated to assess the capacity and performance correctness of the implemented test setup

    Influence of Intercell Interference on HSDPA Indoor Networks

    Get PDF
    Nowadays the high demand of data based services has become one of the key issues in the telecommunications sphere. Mobile cellular networks are thus willing to provide the necessary capacity that this growth demands. While new third generation specifications keep on improving the HSPA and HSPA+ features, a parallel trend trying to provide enough indoor capacity is taking place. The performance of indoor dedicated systems is highly dependent on the interference present in the network. In this Thesis, the impact of intercell interference on indoor networks is studied. For that purpose, two different measurement campaigns were accomplished in Tampere University of Technology's Tietotalo building. The first of them was held in two small rooms, where picocells and distributed antenna systems (DAS) solutions were tested. The second campaign took place inside a large lecture hall representing an indoor open area, and here diverse picocell layouts were deployed. Analysis took into account interference indicators like signal-to-interference ratio and Ec/N0, and link adaptation parameters like CQI, modulation usage and transport block size. This Thesis provides guidelines for indoor planning. It demonstrates that in small rooms, given a fixed number of cells per room, picocells and DAS solutions show similar performance, so picocells are a better option since they require fewer components such as antennas. High-density cell layouts provide higher system TP, but the maximum system TP achievable is dramatically limited by interference. This Thesis also proofs that, in open areas, multicell layouts can give only a marginal increase in system TP with respect to one-cell layouts, and thus multicell configurations are not always needed to be deployed. High-interference regions need to be identified and cleverly located since they degrade the overall system performance and users in those areas experience unbearable low data rates. /Kir1

    Measurement and Optimization of LTE Performance

    Get PDF
    4G Long Term Evolution (LTE) mobile system is the fourth generation communication system adopted worldwide to provide high-speed data connections and high-quality voice calls. Given the recent deployment by mobile service providers, unlike GSM and UMTS, LTE can be still considered to be in its early stages and therefore many topics still raise great interest among the international scientific research community: network performance assessment, network optimization, selective scheduling, interference management and coexistence with other communication systems in the unlicensed band, methods to evaluate human exposure to electromagnetic radiation are, as a matter of fact, still open issues. In this work techniques adopted to increase LTE radio performances are investigated. One of the most wide-spread solutions proposed by the standard is to implement MIMO techniques and within a few years, to overcome the scarcity of spectrum, LTE network operators will offload data traffic by accessing the unlicensed 5 GHz frequency. Our Research deals with an evaluation of 3GPP standard in a real test best scenario to evaluate network behavior and performance

    Terminal LTE flexível

    Get PDF
    Mstrado em Engenharia Eletrónica e TelecomunicaçõesAs redes móveis estão em constante evolução. A geração atual (4G) de redes celulares de banda larga e representada pelo standard Long Term Evolution (LTE), definido pela 3rd Generation Partnership Project (3GPP). Existe uma elevada procura/uso da rede LTE, com um aumento exponencial do número de dispositivos móveis a requerer uma ligação à Internet de alto débito. Isto pode conduzir à sobrelotação do espetro, levando a que o sinal tenha que ser reforçado e a cobertura melhorada em locais específicos, tal como em grandes conferências, festivais e eventos desportivos. Por outro lado, seria uma vantagem importante se os utilizadores pudessem continuar a usar os seus equipamentos e terminais em situações onde o acesso a redes 4G é inexistente, tais como a bordo de um navio, eventos esporádicos em localizações remotas ou em cenários de catástrofe, em que as infraestruturas que permitem as telecomunicações foram danificadas e a cobertura temporária de rede pode ser decisiva em processos de salvamento. Assim sendo, existe uma motivação clara por trás do desenvolvimento de uma infraestrutura celular totalmente reconfigurável e que preencha as características mencionadas anteriormente. Uma possível abordagem consiste numa plataforma de rádio definido por software (SDR), de código aberto, que implementa o standard LTE e corre em processadores de uso geral (GPPs), tornando possível construir uma rede completa investindo somente em hardware - computadores e front-ends de radiofrequência (RF). Após comparação e análise de várias plataformas LTE de código aberto foi selecionado o OpenAirInterface (OAI) da EURECOM, que disponibiliza uma implementação compatível com a Release 8.6 da 3GPP (com parte das funcionalidades da Release 10). O principal objectivo desta dissertação é a implementação de um User Equipment (UE) flexível, usando plataformas SDR de código aberto que corram num computador de placa única (SBC) compacto e de baixa potência, integrado com um front-end de RF - Universal Software Radio Peripheral (USRP). A transmissão de dados em tempo real usando os modos de duplexagem Time Division Duplex (TDD) e Frequency Division Duplex (FDD) é suportada e a reconfiguração de certos parâmetros é permitida, nomeadamente a frequência portadora, a largura de banda e o número de Resource Blocks (RBs) usados. Além disso, é possível partilhar os dados móveis LTE com utilizadores que estejam próximos, semelhante ao que acontece com um hotspot de Wi-Fi. O processo de implementação é descrito, incluindo todos os passos necessários para o seu desenvolvimento, englobando o port do UE de um computador para um SBC. Finalmente, a performance da rede é analisada, discutindo os valores de débitos obtidos.Mobile networks are constantly evolving. 4G is the current generation of broadband cellular network technology and is represented by the Long Term Evolution (LTE) standard, de ned by 3rd Generation Partnership Project (3GPP). There's a high demand for LTE at the moment, with the number of mobile devices requiring an high-speed Internet connection increasing exponentially. This may overcrowd the spectrum on the existing deployments and the signal needs to be reinforced and coverage improved in speci c sites, such as large conferences, festivals and sport events. On the other hand, it would be an important advantage if users could continue to use their equipment and terminals in situations where cellular networks aren't usually available, such as on board of a cruise ship, sporadic events in remote locations, or in catastrophe scenarios in which the telecommunication infrastructure was damaged and the rapid deployment of a temporary network can save lives. In all of these situations, the availability of exible and easily deployable cellular base stations and user terminals operating on standard or custom bands would be very desirable. Thus, there is a clear motivation for the development of a fully recon gurable cellular infrastructure solution that ful lls these requirements. A possible approach is an open-source, low-cost and low maintenance Software-De ned Radio (SDR) software platform that implements the LTE standard and runs on General Purpose Processors (GPPs), making it possible to build an entire network while only spending money on the hardware itself - computers and Radio-Frequency (RF) front-ends. After comparison and analysis of several open-source LTE SDR platforms, the EURECOM's OpenAirInterface (OAI) was chosen, providing a 3GPP standard-compliant implementation of Release 8.6 (with a subset of Release 10 functionalities). The main goal of this dissertation is the implementation of a exible opensource LTE User Equipment (UE) software radio platform on a compact and low-power Single Board Computer (SBC) device, integrated with an RF hardware front-end - Universal Software Radio Peripheral (USRP). It supports real-time Time Division Duplex (TDD) and Frequency Division Duplex (FDD) LTE modes and the recon guration of several parameters, namely the carrier frequency, bandwidth and the number of LTE Resource Blocks (RB) used. It can also share its LTE mobile data with nearby users, similarly to a Wi-Fi hotspot. The implementation is described through its several developing steps, including the porting of the UE from a regular computer to a SBC. The performance of the network is then analysed based on measured results of throughput

    An Enhanced Feedback-Base Downlink Packet Scheduling Algorithm for Mobile TV in WIMAX Networks

    Get PDF
    With high speed access network technology like WIMAX, there is the need for efficient management of radio resources where the throughput and Qos requirements for Multicasting Broadcasting Services (MBS) for example TV are to be met. An enhanced feedback-base downlink Packet scheduling algorithm that can be used in IEEE 802.16d/e networks for mobile TV “one way traffic”(MBS) is needed to support many users utilizing multiuser diversity of the broadband of WIMAX systems where a group of users(good/worst channels) share allocated resources (bandwidth). This paper proposes a WIMAX framework feedback-base (like a channel-awareness) downlink packet scheduling algorithm for Mobile TV traffics in IEEE806.16, in which network Physical Timing Slots (PSs) resource blocks are allocated in a dynamic way to mobile TV subscribers based on the Channel State information (CSI) feedback, and then considering users with worst channels with the aim of improving system throughput while system coverage is being guaranteed. The algorithm was examined by changing the PSs bandwidth allocation of the users and different number of users of a cell. Simulation results show our proposed algorithm performed better than other algorithms (blind algorithms) in terms of improvement in system throughput performance. Doi: 10.12777/ijse.5.1.55-62 [How to cite this article: Oyewale, J. and , Juan, L.X.. (2013). An Enhanced Feedback-Base Downlink Packet Scheduling Algorithm for Mobile TV in WIMAX Networks. International Journal of Science and Engineering, 5(1),55-62. Doi: 10.12777/ijse.5.1.55-62

    Dense wireless network design and evaluation – an aircraft cabin use case

    Get PDF
    One of the key requirements of fifth generation (5G) systems is having a connection to mobile networks without interruption at anytime and anywhere, which is also known as seamless connectivity. Nowadays, fourth generation (4G) systems, Long Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A), are mature enough to provide connectivity to most terrestrial mobile users. However, for airborne mobile users, there is no connection that exists without interruption. According to the regulations, mobile connectivity for aircraft passengers can only be established when the altitude of the aircraft is above 3000 m. Along with demands to have mobile connectivity during a flight and the seamless connectivity requirement of 5G systems, there is a notable interest in providing in-flight wireless services during all phases of a flight. In this thesis, many issues related to the deployment and operation of the onboard systems have been investigated. A measurement and modelling procedure to investigate radio frequency (RF) propagation inside an aircraft is proposed in this thesis. Unlike in existing studies for in-cabin channel characterization, the proposed procedure takes into account the deployment of a multi-cell onboard system. The proposed model is verified through another set of measurements where reference signal received power (RSRP) levels inside the aircraft are measured. The results show that the proposed model closely matches the in-cabin RSRP measurements. Moreover, in order to enforce the distance between a user and an interfering resource, cell sectorization is employed in the multi-cell onboard system deployment. The proposed propagation model is used to find an optimum antenna orientation that minimizes the interference level among the neighbouring evolved nodeBs (eNBs). Once the optimum antenna deployment is obtained, comprehensive downlink performance evaluations of the multi-cell, multi-user onboard LTE-A system is carried out. Techniques that are proposed for LTE-A systems, namely enhanced inter-cell interference coordination (eICIC) and carrier aggregation (CA), are employed in the system analysis. Different numbers of eNBs, antenna mounting positions and scheduling policies are examined. A scheduling algorithm that provides a good tradeoff between fairness and system throughput is proposed. The results show that the downlink performance of the proposed onboard LTE-A system achieves not only 75% of the theoretical limits of the overall system throughput but also fair user data rate performance, irrespective of a passenger’s seat location. In order to provide the seamless connectivity requirement of 5G systems, compatibility between the proposed onboard system deployment and the already deployed terrestrial networks is investigated. Simulation based analyses are carried out to investigate power leakage from the onboard systems while the aircraft is in the parked position on the apron. According to the regulations, the onboard system should not increase the noise level of the already deployed terrestrial system by 1 dB. Results show that the proposed onboard communication system can be operated while the aircraft is in the parked position on the apron without exceeding the 1 dB increase in the noise level of the already deployed terrestrial 4G network. Furthermore, handover parameters are obtained for different transmission power levels of both the terrestrial and onboard systems to make the transition from one system to another without interruption while a passenger boards or leaves the aircraft. Simulation and measurement based analyses show that when the RSRP level of the terrestrial system is below -65 dBm around the aircraft, a boarding passenger can be smoothly handed over to the onboard system and vice versa. Moreover, in order to trigger the handover process without interfering with the data transmission, a broadcast control channel (BCCH) power boosting feature is proposed for the in-cabin eNBs. Results show that employing the BCCH power boosting feature helps to trigger the handover process as soon as the passengers step on board the aircraft

    Performance analysis of interference measurement methods for link adaptation in 5G New Radio

    Get PDF
    5G New Radio (NR) is coming faster than expected with early deployments which take place early 2019. It is more than a new mobile generation that offers higher data rates compared to previous generations, although it’s still the main driver. It will enable many new use cases and deployment scenarios that can be put into three main categories: enhanced mobile broad band (eMBB), ultra-reliable low latency communications (URLLC) and massive machine type communications (mMTC). 5G NR aims to further increase frequency resources utilization and efficiency. Cell edge users usually suffer from high levels of interference known as inter-cell interference. This phenomenon results in lower performance for the cell edge users and inefficient utilization of radio resources. Link adaptation techniques aim to increase cell edge performance by exploiting varying channel conditions and interference level at user equipment (UE). In this thesis channel state information (CSI) is studied as an essential part of link adaptation process. Channel quality indicator (CQI) is the main component of CSI reports from UE that gives recommendations about the next transmission modulation order and code rate. The accuracy of reported CQI depends on the accuracy of channel and interference measurements. In this thesis two different interference measurement methods based on two reference signals are studied: CSI interference measurement (CSI-IM) and non-zero power CSI reference signal (NZP CSI-RS). In this thesis performance with different configurable factors, different channel models and UE speeds are considered. Overall system overhead is also studied to give recommendation about the configuration of lower system overhead. Simulation results has shown that CSI-IM based interference measurement is more efficient compared to NZP CSI-RS method and operates well in different channel scenarios and different UE speed. While NZP CS-RS shows sensitivity to frequency selective channels and in higher user mobility cases. On the other hand, from overall system overhead perspective, CSI-IM based configuration is the best solution
    corecore