4,224 research outputs found

    Flexible multi-policy scheduling based on CPU inheritance

    Get PDF
    Journal ArticleTraditional processor scheduling mechanisms in operating systems are fairly rigid, often supporting only one fixed scheduling policy, or, at most, a few "scheduling classes" whose implementations are closely tied together in the OS kernel. This paper presents CPU inheritance scheduling, a novel processor scheduling framework in which arbitrary threads can act as schedulers for other threads. Widely different scheduling policies can be implemented under the framework, and many different policies can coexist in a single system, providing much greater scheduling flexibility. Modular, hierarchical control can be provided over the processor utilization of arbitrary administrative domains, such as processes, jobs, users, and groups, and the CPU resources consumed can be accounted for and attributed accurately. Applications as well as the OS can implement customized local scheduling policies; the framework ensures that all the different policies work together logically and predictably. As a side effect, the framework also cleanly addresses priority inversion by providing a generalized form of priority inheritance that automatically works within and among multiple diverse scheduling policies. CPU inheritance scheduling extends naturally to multiprocessors, and supports processor management techniques such as processor affinity [7] and scheduler activations [1]. Experimental results and simulations indicate that this framework can be provided with negligible overhead in typical situations, and fairly small (5-10%) performance degradation even in scheduling-intensive situations

    A distributed Real-Time Java system based on CSP

    Get PDF
    CSP is a fundamental concept for developing software for distributed real time systems. The CSP paradigm constitutes a natural addition to object orientation and offers higher order multithreading constructs. The CSP channel concept that has been implemented in Java deals with single- and multi-processor environments and also takes care of the real time priority scheduling requirements. For this, the notion of priority and scheduling has been carefully examined and as a result it was reasoned that priority scheduling should be attached to the communicating channels rather than to the processes. In association with channels, a priority based parallel construct is developed for composing processes: hiding threads and priority indexing from the user. This approach simplifies the use of priorities for the object oriented paradigm. Moreover, in the proposed system, the notion of scheduling is no longer connected to the operating system but has become part of the application instead

    Mixed-Criticality Scheduling with I/O

    Full text link
    This paper addresses the problem of scheduling tasks with different criticality levels in the presence of I/O requests. In mixed-criticality scheduling, higher criticality tasks are given precedence over those of lower criticality when it is impossible to guarantee the schedulability of all tasks. While mixed-criticality scheduling has gained attention in recent years, most approaches typically assume a periodic task model. This assumption does not always hold in practice, especially for real-time and embedded systems that perform I/O. For example, many tasks block on I/O requests until devices signal their completion via interrupts; both the arrival of interrupts and the waking of blocked tasks can be aperiodic. In our prior work, we developed a scheduling technique in the Quest real-time operating system, which integrates the time-budgeted management of I/O operations with Sporadic Server scheduling of tasks. This paper extends our previous scheduling approach with support for mixed-criticality tasks and I/O requests on the same processing core. Results show the effective schedulability of different task sets in the presence of I/O requests is superior in our approach compared to traditional methods that manage I/O using techniques such as Sporadic Servers.Comment: Second version has replaced simulation experiments with real machine experiments, third version fixed minor error in Equation 5 (missing a plus sign

    Predictable migration and communication in the Quest-V multikernal

    Full text link
    Quest-V is a system we have been developing from the ground up, with objectives focusing on safety, predictability and efficiency. It is designed to work on emerging multicore processors with hardware virtualization support. Quest-V is implemented as a ``distributed system on a chip'' and comprises multiple sandbox kernels. Sandbox kernels are isolated from one another in separate regions of physical memory, having access to a subset of processing cores and I/O devices. This partitioning prevents system failures in one sandbox affecting the operation of other sandboxes. Shared memory channels managed by system monitors enable inter-sandbox communication. The distributed nature of Quest-V means each sandbox has a separate physical clock, with all event timings being managed by per-core local timers. Each sandbox is responsible for its own scheduling and I/O management, without requiring intervention of a hypervisor. In this paper, we formulate bounds on inter-sandbox communication in the absence of a global scheduler or global system clock. We also describe how address space migration between sandboxes can be guaranteed without violating service constraints. Experimental results on a working system show the conditions under which Quest-V performs real-time communication and migration.National Science Foundation (1117025

    Challenges Using Linux as a Real-Time Operating System

    Get PDF
    Human-in-the-loop (HITL) simulation groups at NASA and the Air Force Research Lab have been using Linux as a real-time operating system (RTOS) for over a decade. More recently, SpaceX has revealed that it is using Linux as an RTOS for its Falcon launch vehicles and Dragon capsules. As Linux makes its way from ground facilities to flight critical systems, it is necessary to recognize that the real-time capabilities in Linux are cobbled onto a kernel architecture designed for general purpose computing. The Linux kernel contain numerous design decisions that favor throughput over determinism and latency. These decisions often require workarounds in the application or customization of the kernel to restore a high probability that Linux will achieve deadlines

    Sample exam questions.

    Get PDF
    All original material in this collection is distributed under a Free Culture license. You are free to share, remix, and make commercial use of the work, under the Attribution and Share Alike conditions

    A comprehensive approach in performance evaluation for modernreal-time operating systems

    Get PDF
    In real-time computing the accurate characterization of the performance and determinism that a particular real-time operating system/hardware combination can provide for real-time applications is essential. This issue is not properly addressed by existing performance metrics mainly due to the lack of completeness and generalization. In this paper we present a set of comprehensive, easy-to-implement and useful metrics covering three basic real-time operating system features: response to external events, intertask synchronization and resource sharing, and intertask data transferring. The evaluation of real-time operating systems using a set of fine-grained metrics is fundamental to guarantee that we can reach the required determinism in real-world applications.Publicad

    Software Engineering Laboratory Ada performance study: Results and implications

    Get PDF
    The SEL is an organization sponsored by NASA/GSFC to investigate the effectiveness of software engineering technologies applied to the development of applications software. The SEL was created in 1977 and has three organizational members: NASA/GSFC, Systems Development Branch; The University of Maryland, Computer Sciences Department; and Computer Sciences Corporation, Systems Development Operation. The goals of the SEL are as follows: (1) to understand the software development process in the GSFC environments; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include the Ada Performance Study Report. This paper describes the background of Ada in the Flight Dynamics Division (FDD), the objectives and scope of the Ada Performance Study, the measurement approach used, the performance tests performed, the major test results, and the implications for future FDD Ada development efforts

    A Test Suite for High-Performance Parallel Java

    Get PDF
    The Java programming language has a number of features that make it attractive for writing high-quality, portable parallel programs. A pure object formulation, strong typing and the exception model make programs easier to create, debug, and maintain. The elegant threading provides a simple route to parallelism on shared-memory machines. Anticipating great improvements in numerical performance, this paper presents a suite of simple programs that indicate how a pure Java Navier-Stokes solver might perform. The suite includes a parallel Euler solver. We present results from a 32-processor Hewlett-Packard machine and a 4-processor Sun server. While speedup is excellent on both machines, indicating a high-quality thread scheduler, the single-processor performance needs much improvement
    • 

    corecore