
/

SOFTWARE ENGINEERING LABORATORY
ADA PERFORMANCE STUDY-RESULTS AND IMPLICATIONS

Eric W. Booth

Computer Sciences Corporation
Lanham-Seabrook, Maryland

(301) 794-1277

7

Michael E. Stark

NASA/Goddard Space Flight Center
Greenbelt, Maryland

(301) 286-5048

SLIMMARY

The Ada Language Reference Manual (LRM) (Reference 1) states:

"Ada was designed with three overriding concerns: program reliability and maintenance,
programming as a human activity, and efficiency."

Initial implementations of Ada compilers and development environments tended to favor the first two
concerns over the concern for efficiency. Similarly, initial (non-real-time, non-embedded) applications
development using Ada as the programming language tended to favor maintainability, readability, and
reusability.

As software systems become more sophisticated the need to predict, measure, and control the run time
performance of systems in the Flight Dynamics Division (FDD) is a growing concern. The transition to
Aria introduces performance issues that were previously nonexistent. More-over, this transition is often
accompanied by the transition to object-oriented development (OOD), which has performance implications,
independent of the programming language, that must be considered. To better understand the implications
of new design and implementation approaches, the Software Engineering Laboratory (SEL) conducted an
Aria performance study.

The SEL is an organization sponsored by the National Aeronautics and Space Administration/Goddard
Space Flight Center (NASMGSFC) to investigate the effectiveness of software engineering technologies
applied to the development of applications software. The SEL was created in 1977 and has three

• organizational members: NASA/GSFC, Systems Development Branch; The University of Maryland,
Computer Sciences Department; and Computer Sciences Corporation, Systems Development Operation.

The goals of the SEL are (1) to understand the software development process in the GSFC
environments; (2) to measure the effect of various methodologies, tools, and models on this process; and
(3) to identify and then to apply successful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing
series of reports that includes the Ada Performance Study Report (Reference 2).

This paper describes the background of Aria in the FDD, the objectives and scope of the Aria
Performance Study, the measurement approach used, the performance tests performed, the major test
results, and the implications for future FDD Ada development efforts.

100057_lL

6-19

PRECEDING t._G.E i._...;,_< ,.,_. _:!t.Mi--_:_

https://ntrs.nasa.gov/search.jsp?R=19930007983 2020-03-17T09:31:41+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42809604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

APPROACH TO MEASUREMENT

To measure the run-time performance of design alternatives and language features, two fundamental

approaches were used. The first approach measured the run-time improvement of existing systems after
an alternative had been incorporated into a baseline version of the system. The second approach used the
ACM SIGAda PIWG test suite and added tests specific to the flight dynamics environment.

Overview

Benchmark programs are commonly used to evaluate the performance of design alternatives and
language features. Such benchmark programs include (1) sample applications such as sorting programs
or, as in the FDD, simulators, (2) programs to measure the overhead associated with a design alternative

or language feature, and (3) synthetic benchmarks designed to measure the time needed to execute a
representative mix of statements (e.g., Whetstone, Dhrystone) (Reference 6). The first approach used by
this study falls into the first benchmark category, and the second approach falls into the last two.

To measure the overhead of a design alternative or language feature, the dual-loop approach is used to
subtract the overhead associated with control statements that aid in performing the measurement. This

approach uses a control loop and a test loop; the test loop contains everything contained in the control loop
and the alternative being measured. A major factor in designing a dual-loop benchmark is compiler
optimization. It is critical that the code generated by the compiler for both loops be identical except for the
quantity being measured (Reference 7). In addition, it is necessary to ensure that the statement or
sequence of statements being tested does not get optimized away.

Although the dual-loop approach can be used for synthetic benchmarks and applications, this technique
is not required if the run time of the program is long in comparison to the system clock resolution
(Reference 7). Instead, the CPU time can be sampled at the beginning of the program and again after a
number of iterations of the program. The time for the benchmark/application is then (CPU_Stop -
CPU_Start)/Number_Iterations. The same measurement can be achieved by submitting the test program to
run as a batch job and obtaining the CPU time from the batch log file. This CPU time can then be divided
by the number of times the sequence of statements being measured is executed in the main control loop of

the test program.

It is important to understand the run-time environment in which the benchmarks are run when
interpreting test results. VMS checks the timer queues once per second, which can affect measurement
accuracy. Under VMS, the Ada run-time system is bundled with the release of the operating system and
installed as a shareable executable image. Consequently, DEC Ada performance is directly dependent on
the installed version of VMS. There is also a degree of uncertainty when using CPU timers provided in
time-shared systems like VMS. In the presence of other jobs, CPU timers charge ticks to the running
process when the wall clock is updated. It is therefore possible for time to be charged to active processes
inaccurately because context switches can occur at any time. Finally, it cannot be assumed that running
benchmarks for a hosted system in batch during low usage (such as, at 11 pro) guarantees standalone
conditions (References 7 and 8). Therefore, the FD benchmarks to test individual design alternatives were
run on the weekend to minimize these effects.

10005788t

6-20

THE FIRST APPROACH -- SIMULATOR

Several of the design alternatives examined by this study were tested and analyzed in the context of
two FDD simulators. Alternatives were chosen to be implemented in the context of these simulators for
the following reasons:

1. They were simulator-specific, e.g., different ways of implementing the scheduler.

2. They could be implemented in an isolated part of the simulator where their impact could easily be
measured using the VAX PCA.

3. They could be implemented in an isolated part of the simulator and still have a measurable effect on
the time required for a 20-minute simulation run.

Baselined versions of the simulators were used to test each of the design alternatives. CPU times were
obtained for 20-minute simulation runs of the baselined versions from the log files created by batch runs.
PCA was used to obtain a profile of the simulators. These profiles showed what percentage of the CPU
time was spent in each Aria package of the simulator. The VAX manual Guide to VAX Performance and
Coverage Analyzer (Reference 9) contains more information on PCA.

Design alternatives were incorporated into the baselined versions of the simulators. New CPU times
were obtained for 20-minute simulation runs from the log files created by batch runs and new profiles
obtained using PCA. The following two figures show the accounting information contained in a batch log
file and a sample of PCA output. From these two pieces of information, the impact of each design
alternative was assessed.

Sample PCA Output

VAX Performance and Coverage Analyzer

CPU Sampling Data (11219 data points total)
m.m

Bucket Name

PROGRAM_ADDRESS \

UTILITIES_ .

S IMULAT ION_SCHEDULE

SEARCH_STR ING

S PACECRAFT_ATT I TUDE

DATABASE_MANAGER

ADDING_UTILITIES .

EARTH_SENSOR .

UT IL I T IES_LONG_

DATABASE_TY PES_

S PACECRAFT_WHEELS

AOCS_PROCESSOR

S PACECRAFT_EPHEMER I

ENV IRONMENTAL_TORQU 1

THRUSTERS

GEOMAGNET IC_F IELD

DEBUG_COLLECTOR

MAGNETOMETER .

SADA

SOLAR_SYSTEM •

+ + + + + + + + + + +

6-21

Sample Batch Log File Accounting Information

Accounting information:

Buffered I/O count: 109 Peak working set size: 4096

Direct I/O count: 1132 Peak page file size: 15304

Page faults: 11766 Mounted volumes: 0

Charged CPU time: 0 00:06:45.08 Elapsed time: 0 00:09:02.47

THE SECOND APPROACH -- PIWG

Design alternatives not isolated to a particular part of either of the simulators were tested using the
PIWG structure of measurements. The PIWG structure of measurements is based on the concept of a

control loop and a test loop. The test loop contains everything in the control loop and one alternative to be
measured. The CPU time is sampled before the execution of each loop and after many iterations of each

loop. If the test loop time duration is not considered stable, the process is repeated with a greater number
of iterations; this is accomplished through an outer loop surrounding the test and control loops. To be
considered stable, the test loop time duration must be greater than a predefmed minimum time. If this
condition is met, the test loop time duration is compared against the control loop time duration, and the
number of iterations is compared against a predefmed minimum number of iterations. If the test loop time

is greater than the control loop time or the minimum number of iterations has been exceeded, the results are
considered stable, and the CPU time for the design alternative is calculated. The time for the alternative is
the difference between the amount of CPU time taken for the control loop and the amount of CPU time

taken for the test loop, divided by the total number of iterations performed. Collecting control loop and
test loop CPU times, calculating design alternative times, and testing for stability were done using PIWG's

Iteration package in the test drivers for this study.

All test drivers used in this study were called three times from a main driver routine so that the CPU
time for a given design alternative could be averaged for more accuracy. All results were averaged and
recorded using PIWG's I/O package and report generator procedure. The following is a sample PIWG

report.

Sample PIWG Report

Test Name:

CPU Time:

Wall Time:

Generic_A

117.2 microseconds

117.2 microseconds

Test Description:

Use of generic matrix

- Generic package for

processing
3x3 matrix

Class Name: Matrix - Gen

Iteration Count: 128

Number of samples: 3

Test Name:

CPU Time:

Wall Time:

Generic_C

117.2 microseconds

117.2 microseconds

Test Description:

Use of generic matrix processing

- NonGeneric package for 3x3 matrix

Class Name: Matrix - Gen

Iteration Count: 128

Number of samples: 3

6-22

TEST OVERVIEW

Ten test groups were developed. Each test group represented a design or implementation issue
relevant to current FDD applications. The test groups were chosen as a result of an in-depth analysis of
several PCA runs with two FDD simulators. If a certain design alternative or language feature appeared to
consume a relatively large portion of central processing unit (CPU) time or memory, it was analyzed,
measured, and quantified in this study. The design alternatives or language features consuming a
relatively small portion of CPU time or memory were not studied further. Therefore, the test groups
presented here are intended to be a representative sampling, rather than an exhaustive sampling, of current
design and implementation approaches. The test groups are presented in two categories: design-oriented
tests and implementation-oriented tests.

Design-OrientedTests

Following is a brief description of the purpose of each design test group performed on the Ada

performance study.

Group 1: Scheduling. This test group contained three tests that addressed the run-time cost of various
scheduling alternatives. This test compared a event-driven design against a time-driven design and a hard-
coded design. The event-driven design maintains a prioritized (sorted) queue of event identifiers that
specifies the time-step and next simulation event. The time-driven design iterates over an array of event
identifiers for each fixed time-step. The hard-coded design contains the event (procedure) calls in the
source code. With the event-driven design the user may vary the order and frequency of each event. In
the time-driven design the user may only vary the order of the event. In the hard-coded design there are

not options available to the user. The implications of the different approaches were analyzed and
contrasted. The results of this test group provided the applications designers with information necessary
to make trade-off decisions among flexibility, accuracy, and performance.

Group 2: Unconstrained Structures. Leaving data structures unconstrained allows greater user
flexibility and enhances future reusability. However, the additional run-time code that may be generated
can impose a significant run-time and memory overhead. This group measured the expense of
unconstrained records and arrays and proposed viable alternatives.

Group 3: Initialization and Elaboration. This test group addressed initialization of static and dynamic
data using various combinations of elaboration-time and execution-time alternatives. This test group was
relevant for applications requiting minimal initialization time.

Group 4: Generic Units. The benefits of using generic units are reduced source-code size,
encapsulation, information hiding, decoupling, and increased reuse (Reference 10). However, many Ada
compilers implement this language feature poorly. This test group addressed the options available with the
compiler implementation and how well these options were implemented.

Group 5: Conditional Compilation. The ability to include additional "debug code" in the delivered
system adds to the system size and imposes a run-time penalty even if it is never used. The test group
analyzed the current approach and proposed flexible alternatives for future systems. The results of this test
group can have applications beyond "debug code" elimination.

Group 6: Object-Oriented Programming. Two of the fundamental principles of object-oriented
programming (OOP) are polymorphism and inheritance. Ada does not directly support these principles.
However, the designer may simulate the effect of inheritance and polymorphism through the use of variant

100057118L

6-23

records and enumeration types. These OOP principles, whether direct or indirect, incur certain run-time

overhead and problems (Reference 11).

Implementation-Oriented Tests

Following is a brief descripton of the purpose of each implementation test group performed on the

Ada performance study.

Group 7: Matrix Storage. The most basic, and perhaps the most common, mathematical expressions
in flight dynamics applications involve matrix manipulations. This group addressed row-major versus
column-major algorithms to quantify the performance implications.

Group 8: Logical Operators. The Ada LRM clearly defines the behavior of logical expression
evaluation. The Ada Style Guide (Reference 12) recommends avoiding the short-circuit forms of logical

operators for performance reasons. The implications of this recommendation in the flight dynamics
environment were measured and analyzed.

Group 9: Pragma lnline. Flight dynamics simulators contain a large number of procedure and
function calls to simple call-throughs and selectors. The overhead of making these calls can slow the
performance of any simulator. This test measured the use of pmgnm INLINE as an alternative to calling
a routine.

Group 10: String-to-Enumeration Conversion. Current flight dynamics simulators contain a central
logical data base. The physical data are distributed throughout the simulator in the appropriate packages.
The logical data base provides keys (strings) that map into the physical data. The logical data base
converts these strings to the appropriate enumeration type to retrieve the corresponding data. This test
assessed the performance implications of this approach.

Test Documentation

Each performance test in this report is described in this section in the following format:

Purpose. Each test was designed with a specific design or implementation alternative in mind. The
rationale for the choice of the alternatives tested results from analysis of existing Ada systems developed in
the FDD.

Method. Some tests were performed as changes to an existing system, while other tests were

performed by creating new, special-purpose software. The basis for each method was one of two
approaches: DEC's PCA measurement tool or the PIWG structure of measurements. The details of the
method(s) used for each test are described.

Results. The result of executing a test is some combination of CPU time and object code size. Most
tests were designed to measure the CPU run time in microseconds (las). In some cases the object code

size in bytes is relevant. The data resulting from each test run are provided.

Analysis. In many cases, detailed analy.sis of the test results is necessary to understand _the
implications for future projects. The analysis performed is summarized, and the implications are

highlighted.

1000671181.

6-24

RESULTS

As a result of this performance study, more accurate estimation of run-time performance for future
FDD simulators is possible. Assuming future dynamics simulators are similar in function to GOAl)A, a
more accurate performance estimation is possible given the following information:

1. The run-time performance for a typical run of the GOADA simulator is 6 minutes, 45 seconds for a
20-minute simulation. This yields a 1:3 simulation time to real-time ratio.

2. The performance profile generated by PCA of a typical GOADA run shows the distribution of the
CPU run time resource throughout the simulator.

3. The measured results of this study that lead to more efficient design and implementation
alternatives.

The following table combines the results of the Ada Performance Study with the PCA performance
profile of GOADA. Each row of the table is measured against the baseline of 6 minutes and 45 seconds of
CPU time to perform a 20 minuter simulation.

Impact of Measured Performance Results on Dynamics Simulators

Alternative

1. Looping scheduler

2. Bypass logical data base
i

3. Conditional compile debug code

GOADA

10.7%

14.5%

2.1%

Study Results

2.2%

1.8%

0.0%

Difference

8.5%

12.7%

2.1%

4. Use static data structures 45.0% 13.0% 32.0%

5.3%

22.3%

5. Optimized utility packages

Total Percentages

26.6%

98.9%

21.3%

76.6%

The first row of the table shows the performance difference between the baseline scheduler in GOADA
and the looping scheduler alternative (see test group 1, scheduling). Another option is to use the "hard-
coded" approach for the scheduler. However, the hard-coded approach sacrifices all flexibility in the

• interest of performance. For this reason, the more flexible "looping" alternative is recommended.

The second row highlights the difference between accessing the logical data base and accessing the
physical data directly (see test group 10, string-to-enumeration conversion). This striking improvement
came from removing one string-to-enumeration type conversion from the main simulation loop. The third
row recommends the conditionally compiled debug code (see test group 5, conditional compilation). The
fourth row is the estimated result of using a static record structure instead of a dynamic structure in all
simulator packages (see test group 2, unconstrained structures).

The fifth row is based on the result of comparing GOADA's baseline matrix multiply function to the
optimized matrix multiply function (Reference 13). Since the FDD deals with mainly three dimensions, an
optimized set of utilities can be developed on that basis. The fully optimized version required less than
one-fifth of the CPU time required for the baseline version.

1O00571181.

6-25

As this table shows, a dynamics simulator that is similar to GOADA and is implemented with the
results of this study would consume 76.6 percent less CPU than the current version, more than

quadrupling the speed. This would yield an upper bound estimate of 95 seconds to perform a 20-minute
simulation run, or approximately a 1:13 simulation-time-to-real-time ratio.

This estimate is an upper bound for three reasons. First, this study examined a representative, rather
than an exhaustive, list of design and implementation alternatives. That is, only those alternatives that held

the most promise of a large performance difference were studied. There may be many other alternatives
that offer only minor gains. However, the combined performance gain of all may be significant.

Second, coding optimizations to GOADA, or any simulator, were not studied. The goal of the study
was to identify those design and implementation alternatives that lead to optimal systems. Line-by-line
micro-optimizations on a simulator only provide information on final efficiency and lack the needed
information on how to systematically predict and achieve that level of efficiency.

Finally, the DEC Ada 1.5-44 compiler is a relatively error-free first attempt at an Ada compilation

system. The next generation of Ada compilers, which includes DEC Aria 2.0, axe now available. These
second-generation compilation system includes improvements to the optimizer and code-generator. For
example, simply compiling GOADA using DEC Aria 2.0 improved the simulator's performance by 7.4%.

CONCLUSIONS

The following statements summarize the results of the Ada Performance Study:

• Design and implementation decisions that favored fidelity over efficiency were the largest contributor
to poor run-time performance. The design should continually be reevaluated against evolving user
requirements and specifications.

•Ada simulators in the FDD can be designed and implemented to achieve run times comparable to
those of existing FDD FORTRAN simulators. Inefficient systems indicate problems in the system
design or the compiler being used.

• Current Ada compilation systems still have inconvenient features that may contribute to poor
performance. Organizations using Ada should use available performance-analysis tools to assess

their compilation systems.

Design changes are much more expensive than coding changes during final system testing. Often due
to schedule and budget constraints, design changes are impossible. Therefore the important implication of
the Ada performance study results is that new technology (in this case Ada and OOD) requires

performance prototyping and benchmarking early in the design phase even in seemingly simple or
straightforward cases.

The Ada Performance Study Report (Reference 2) contains a detailed analysis of each alternative
studied and summarizes the results of this analysis with specific performance recommendations for future
OOD/Ada development efforts in the FDD. Different application domains may be able to apply these
results and recommendations. However, this does not preclude the necessity for application domain

specific prototyping and benchmarking to determine the application specific performance issues.

100_71mL

6-26

REFERENCES

l.

0

+

.

5

+

.

+

11.

Ada Programming Language, American National Standards Institute/Military Standard 1815A,
1983 (ANSI/MK,-STD- 1815A- 1983)

Goddard Space Flight Center, SEL-91-003, Software Engineering Laboratory Ada Performance
Study Report, E. Booth and M. Stark, July 1991

Goddard Space Flight Center, SEL-88-003, Evolution of Ada Technology in the Flight Dynamics
Area: Design Phase Analysis, K. Quimby, et al., prepared by Computer Sciences Corporation,
December 1988

Goddard Space Flight Center, FDD/552-90/010, Software Engineering Laboratory (SEL) Study of
the System and Acceptance Test Phases of Four Telemetry Simulator Projects, D. Cover, prepared
by Computer Sciences Corporation, September 1990

Goddard Space Flight Center, SEL-89-005, Lessons Learned in the Transition to Ada from
FORTRAN at NASA/Goddard, C. Brophy, University of Maryland, November 1989

Clapp, R., and T. Mudge, Rationale, Chapter 1 - Introduction, Ada Performance Issues, Ada
Letters, A Special Issue, Association of Computing Machinery, New York, NY, ISBN 0-89791-
354-x, vol. 10, no. 3, Winter 1990

Clapp, R., and T. Mudge, Rationale, Chapter 3 - The Time Problem, Ada Performance Issues,
Ada Letters, A Special Issue, Association of Computing Machinery, New York, NY, ISBN 0-
89791-354-x, vol. 10, no. 3, Winter 1990

Gaumer, D. and D. Roy, Results, Reporting Test Results, Ada Performance Issues, Ada Letters,
A Special Issue, Association of Computing Machinery, New York, NY, ISBN 0-89791-354-x,
vol. 10, no. 3, Winter 1990

Digital Equipment Corporation, Guide to VAX Performance and Coverage Analyzer, June 1989

Goddard Space Flight Center, FDD/552-90/045, Extreme Ultraviolet Explorer (EUVE) Telemetry
Simulator (EUVETELS) Software Development History, E. Booth and R. Luczak, prepared by
Computer Sciences Corporation, 1990

Booch, G., Object Oriented Design, The Benjamin/Cummings Publishing Company, Inc.,
Redwood City, CA, ISBN 0-8053-0091-0, 1991

Goddard Space Flight Center, SEL-87-006, Ada Style Guide, E. Seidewitz et al., June 1986

Burley, R., "Some Data from Ada Performance Study" internal FDD memorandum, September
1990

100_7881.

6-27

