
D R A F T — UUCS-96-005
Flexible Multi-Policy Scheduling based on CPU Inheritance

Bryan A. Ford Sai R. Susarla

Department of Computer Science -
University of Utah

Salt Lake City, UT 84112

fluxScs.uta h .edu

http://www.cs.utah.edu/projects/flux/

May 10, 1996

Abstract

Traditional processor scheduling mechanisms in operat
ing systems are fairly rigid, often supporting only one fixed
scheduling policy, or, at most, a few “scheduling classes”
whose implementations are closely tied together in the OS
kernel. This paper presents C PU inheritance scheduling, a
novel processor scheduling framework in which arbitrary
threads can act as schedulers for other threads. Widely dif
ferent scheduling policies can be implemented under the
framework, and many different policies can coexist in a
single system, providing much greater scheduling flexibil
ity. Modular, hierarchical control can be provided over the
processor utilization of arbitrary administrative domains,
such as processes, jobs, users, and groups, and the CPU
resources consumed can be accounted for and attributed
accurately. Applications as well as the OS can imple
ment customized local scheduling policies; the framework
ensures that all the different policies work together logi
cally and predictably. As a side effect, the framework also
cleanly addresses priority inversion by providing a general
ized form of priority inheritance that automatically works
within and among multiple diverse scheduling policies.
CPU inheritance scheduling extends naturally to multipro
cessors, and supports processor management techniques
such as processor affinity [7] and scheduler activations
[1], Experimental results and simulations indicate that this
framework can be provided with negligible overhead in
typical situations, and fairly small (5-10%) performance
degradation even in scheduling-intensive situations.

1 Introduction

Traditional operating systems control the sharing of the
machine’s CPU1 resources among threads using a fixed
scheduling scheme, typically based on priorities. Some
times a few variants on the basic policy are provided, such
as support for fixed-priority (non-degrading) threads [?, ?],
or several “scheduling classes” to which threads with dif
ferent purposes can be assigned (e.g. real-time, interactive,
background). [?]. However, even these variants are gener
ally hard-coded into the system implementation and cannot
easily be adapted to the specific needs of individual appli
cations.

In this paper we develop a novel processor scheduling
framework based on a generalized notion of priority in
heritance. In this framework, known as CPU inheritance
scheduling, arbitrary threads can act as schedulers for other
threads by temporarily donating their CPU time to selected
other threads while waiting on events of interest such as
clock/timer interrupts. The receiving threads can further
donate their CPU time to other threads, and so on, form
ing a logical hierarchy of schedulers, as illustrated in Fig
ure 1. Scheduler threads can be notified when the thread
to which they donated their CPU time no longer needs it
(e.g., because the target thread has blocked), so that they
can reassign their CPU to other target threads. The basic
thread dispatching mechanism necessary to implement this
framework does not have any notion of thread priority, CPU
usage, or clocks and timers; all of these functions, when
needed, are implemented by threads acting as schedulers.

Under this framework, arbitrary scheduling policies can
be implemented by ordinary threads cooperating with each

1 We use the terms CPU and processor synonymously.

1

http://www.cs.utah.edu/projects/flux/

2

scheduling scheme, typically based on priorities [?]. How
ever, the requirements imposed on an operating system’s
scheduler often vary from application to application. For
example, for interactive applications, response time is usu
ally the most critical factor— i.e., how quickly the program
responds to the user’s commands. For batch jobs, through
put is of primary importance but latency is a minor is
sue. For hard real-time applications, meeting application-
specific deadlines is a requirement, while for soft real
time applications, missing a deadline is unfortunate but not
catastrophic. There is no single scheduling scheme that
works well for all applications.

Over the years, the importance of providing a variety
of scheduling policies on a single machine has waxed and
waned, following hardware and application trends. In the
early years of computing, use of the entire machine was
limited to a single user thread; that evolved to multipro
grammed machines with batch job loads, which could still
be handled by a single scheduling policy. The advent of
timesharing on machines still used for batch jobs caused
a need for two scheduling policies. As timesharing gradu
ally gave way to single-user workstations and PCs, a single
scheduling policy was again usually adequate.

Today, we are entering what appears will be a long pe
riod of needing multiple scheduling policies. Multimedia
content drives the need for an additional scheduling policy
on general purpose workstations: soft real-time. Untrusted
executable content (e.g., Java applets) will require policies
which limit resource use while also providing soft real-time
guarantees. Concomitantly, the hard real-time domain is
also making inroads onto general purpose machines, due to
two factors: processors and instruments supporting embed
ded applications are becoming networked, and some cus
tomers, e.g., the military, want the ability to flexibly shift
processing power to the problem of the moment.

Hence, as the diversity of applications increases, oper
ating systems need to support multiple coexisting proces
sor scheduling policies, in order to meet individual appli
cation’s needs as well as to utilize the system’s processor
resources more efficiently.

2.1 Related Work

One relatively simple approach to providing real-time
support in systems with traditional timesharing schedulers,
which has been adopted by many commonly-used sys
tems such as Unix systems, Mach [?], and Windows NT
[?], and has even become part o f the POSIX standard [?],
is support for fixed-priority threads. Although these sys
tems generally still use conventional priority-based time
sharing schedulers, they allow real-time applications to dis
able the normal dynamic priority adjustment mechanisms
on threads that are specifically designated as “real-time

threads,” so that those threads always run at a programmer-
defined priority. By carefully assigning priorities to the
real-time threads in the system and ensuring that all non-
realtime threads execute at lower priority levels, it is possi
ble to obtain real-time processor scheduling behavior suffi
cient for some real-time applications. However, it is well-
known that this approach has serious shortcomings: in
many cases, entirely different non-priority-based schedul
ing policies are needed, such as rate monotonic, earliest-
deadline-first, and benefit-accrual scheduling [?].

Furthermore, even in normal interactive or batch
mode computing, traditional priority-based scheduling
algorithms are showing their age. For example, these
algorithms do not provide a clean way to encapsulate
sets of processes/threads as a single unit and isolate and
control their processor usage relative to the rest of the
system. This lack opens the system to various denial-of-
service attacks, the most well-known being the creation
of a large number of threads which conspire to consume
processor resources and crowd out other activity. These
vulnerabilities generally didn’t cause serious problems in
the past for machines only used by one person, or when
the users of the system fall in one administrative domain
and can “complain to the boss” if someone is misusing the
system. However, as distributed computing becomes more
prevalent and administrative boundaries become increas
ingly blurred, this form of system security is becoming
more important. This is especially true when completely
unknown, untrusted code is to be downloaded and run in a
supposedly secure environment such as that provided by
Java [?] or Omni Ware [?]. Schedulers have been designed
that promise to solve this problem by providing flexible
hierarchical control over CPU usage at different adminis
trative boundaries [2,8]. However, it is not yet clear how
these algorithms will address other needs, such as those of
various types of real-time applications: certainly it seems
unlikely that a single “holy grail” of scheduling algorithms
will be found that suits everyone’s needs.

With the growing diversity of application needs and
scheduling policies, it becomes increasingly desirable for
an operating system to be able to support multiple com
pletely different policies. On multiprocessor systems, one
simple but limited way of doing this is to allow a differ
ent scheduling policy to be selected for each processor [?].
A more general but more controversial approach is to al
low multiple “scheduling classes” to run on a single proces
sor, with a specific scheduling policy associated with each
class. The classes have a strictly ordered priority relation
ship to each other, so the highest-priority class gets all the
CPU time it wants, the next class gets any CPU time left un
used by the first class, etc. Although this approach shows
promise, one drawback is that since the schedulers for the

3

different classes generally don’t communicate or cooperate
with each other closely, only the highest-priority schedul
ing class on a given processor can make any assumptions
about how much CPU time it will have to dispense to the
threads under its control.

An additional problem with existing multi-policy
scheduling mechanisms is that all of them, as far as we
know, still require every scheduling policy to be im
plemented in the kernel and to be fairly closely tied in
with other kernel mechanisms such as threads, context
switching, clocks, and timers.

Finally, most existing systems still suffer from vari
ous priority inversion problems. Priority inversion occurs
when a high-priority thread requesting a service has to wait
arbitrarily long for a low-priority thread to finish being
serviced. With traditional priority-based scheduling algo
rithms, this problem can be addressed with priority inher
itance [3,4], wherein the thread holding up the service is
made to inherit the priority of the highest priority thread
waiting for service. In some cases this approach can be
adapted to other scheduling policies, such as with ticket
transfer in lottery scheduling [8]. However, the problem
of resolving priority inversion between threads of differ
ent scheduling classes using policies with completely dif
ferent and incomparable notions of “priority,” such as be
tween a rate-monotonic realtime thread and a timeshared
lottery scheduling thread, has not been addressed so far.

3 CPU Inheritance Scheduling

This section describes the CPU inheritance scheduling
framework in detail.

3.1 Basic Concepts

In our scheduling model, as in traditional systems, a
thread is a virtual CPU whose purpose is to execute arbi
trary instructions. A thread may or may not have a real CPU
assigned to it at any given instant; a running thread may
be preempted and its CPU reassigned to another thread at
any time, depending on the scheduling policies involved.
(For the purposes of this framework, it is not important
whether these threads are kernel-level or user-level threads,
or whether they run in supervisor or user mode.)

The basic idea of CPU inheritance scheduling is that un
like in traditional systems where threads are scheduled by
some lower-level entity (e.g., a scheduler in the OS kernel
or a user-level threads package), threads are instead sched
uled by other threads. Any thread that has a real CPU avail
able to it at a given instant can donate its CPU temporarily
to another thread of its choosing, instead of using the CPU
itself to execute instructions. This operation is similar to

priority inheritance in conventional systems, except that it
is done explicitly by the donating thread, and no notion of
“priority” is directly involved, only a direct transfer of the
CPU from one thread to another; hence the name “CPU in
heritance.”

A scheduler thread is a thread that spends most of its
time donating whatever CPU resources it may have to other
threads: it essentially distributes its own virtual CPU re
sources among some number of client threads to satisfy
their CPU requirements. The client threads thus inherit
some portion of the scheduler thread’s CPU resources, and
treat that portion as their virtual CPU for use in any way
they please. These client threads can in turn act as sched
uler threads, distributing their virtual CPU time among
their own client threads, and so on, forming a scheduling
hierarchy.

The only threads in the system that inherently have real
CPU time available to them are the set o f root scheduler
threads', all other threads can only ever run if CPU time
is donated to them. There is one root scheduler thread
for each real CPU in the system; each real CPU is perma
nently dedicated to supplying CPU time to its associated
root scheduler thread. The actions of the root scheduler
thread on a given CPU determine the base scheduling pol
icy for that CPU.

3.2 The Dispatcher

In order to implement CPU inheritance scheduling, even
though all high-level scheduling decisions are performed
by threads, a small low-level mechanism is still needed
to implement primitive thread management functions. We
call this low-level mechanism the dispatcher to distinguish
it clearly from high-level schedulers.

The role of the dispatcher is to to handle threads block
ing and unblocking, donating CPU to each other, relin
quishing the CPU, etc., without actually making any real
scheduling decisions. The dispatcher fields events and di
rects them to threads waiting on those events. Events can
be synchronous, such as an explicit wake-up of a sleeping
thread by a running thread, or asynchronous, such an exter
nal interrupt (e.g., I/O or timer).

The dispatcher inherently contains no notion of thread
priorities, CPU usage, or even measured time (e.g., clock
ticks, timers, or CPU cycle counters). In an OS kernel
supporting CPU inheritance scheduling, the dispatcher is
the only scheduling component that must be in the ker
nel; all other scheduling code could in theory run in user
mode threads outside of the kernel (although this “purist”
approach is likely to be impractical for performance rea
sons).

4

3.3 Requesting CPU time 3.5 Voluntary donation

Since no thread (except a root scheduler thread) can
ever run unless some other thread donates CPU time to it,
the first job of a newly-created or newly-woken thread is
to request CPU time from some scheduler. Each thread
has an associated scheduler that has primary responsibil
ity for providing CPU time to the thread. When the thread
becomes ready, the dispatcher makes the thread “sponta
neously” notify its scheduler that it needs to be given CPU
time. The exact form such a notification takes is not im
portant; in our implementation, notifications are simply
IPC messages sent by the dispatcher to Mach-like message
ports.

When a thread wakes up and sends a notification to
its scheduler port, that notification may in turn wake up a
server (scheduler) thread waiting to receive messages on
that port. Waking up that scheduler thread will cause an
other notification to be sent to its scheduler, which may
wake up still another thread, and so on. Thus, waking up
an arbitrary thread can cause a chain of wakeups to propa
gate back through the scheduler hierarchy. Eventually, this
propagation may wake up a scheduler thread that is cur
rently being supplied with CPU time but is donating it to
some other thread. In that case, the thread currently run
ning on that CPU is preempted and control is given back
to the woken scheduler thread immediately; the scheduler
thread can then make a decision to re-run the preempted
client thread, switch to the newly-woken client thread, or
even some run other client thread. Alternatively, the prop
agation of wake-up events may terminate at some point,
for example because a notified scheduler is already awake
(not waiting for messages) but has been preempted. In that
case, the dispatcher knows that the wake-up event is irrel
evant for scheduling purposes at the moment, so the cur
rently running thread is resumed immediately.

3.4 Relinquishing the CPU

At any time, a running thread may block to wait for some
event to occur, such as I/O completion.2 When a thread
blocks, the dispatcher returns control o f the CPU to the
scheduler thread that provided it to the running thread. That
scheduler may then choose another thread to run, or it may
relinquish the CPU to its scheduler, and so on up the line
until some scheduler finds work to do.

2 In our prototype implementation, a thread can only wait on one event
at a time; however, there is nothing in the CPU inheritance scheduling
framework that makes it incompatible with thread models such as that of
Windows NT [?], in which threads can wait on multiple events at once.

Instead of simply blocking, a running thread can instead
voluntarily donate its CPU to another thread while waiting
on an event of interest. This is done in situations where pri
ority inheritance would traditionally be used: for example,
when a thread attempts to obtain a lock that is already held,
it may donate its CPU to the thread holding the lock; sim
ilarly, when a thread makes an RPC to a server thread, the
client thread may donate its CPU time to the server for the
duration of the request. When the event o f interest occurs,
the donation ends and the CPU is given back to the original
thread.

It is possible for a single thread to inherit CPU time in
this way from more than one source at a given time: for
example, a thread holding a lock may inherit CPU time
from several threads waiting on that lock in addition to its
own scheduler. In this case, the effect is that the thread has
the opportunity to run at any time any o f its donor threads
would have been able to run. A thread only “uses” one CPU
source at a time; however, if its current CPU source runs
out (e.g., due to quantum expiration), it will automatically
be switched to another if possible.

3.6 The sch ed u le operation

The call a scheduler thread makes to donate CPU time
to a client thread is simply a special form of voluntary CPU
donation, in which the thread to donate to and the event to
wait for can be specified explicitly. In our implementation,
this s c h e d u le operation takes as parameters a thread to
donate to, a port on which to wait for messages from other
client threads, and a wakeup sensitivity parameter indicat
ing in what situations the scheduler should be woken. The
operation donates the CPU to the specified target thread and
puts the scheduler thread to sleep on the specified port; if
a message arrives on that port, such as a notification that
another client thread has been woken or a message from
a clock device driver indicating that a timer has expired,
then the s c h e d u le operation terminates and control is re
turned to the scheduler thread.

In addition, the s c h e d u le operation may be inter
rupted before a message arrives in some cases, depending
on the behavior of the thread to which the CPU is being
donated and the value of the wakeup sensitivity parame
ter. The wakeup sensitivity level acts as a hint to the dis
patcher allowing it to avoid waking up the scheduler thread
except when necessary; it is only an optimization and is not
required in theory for the system to work. The following
three sensitivity levels seem to be useful in practice:

• W AKEUP_ON_BLOCK: If the thread receiving the
CPU blocks without further donating it, then the

5

CPU so

Figure 3: CPU donation chain

s c h e d u le operation terminates and control is re
turned to the scheduler immediately. For example, in
Figure 3, if scheduler thread S i has donated the CPU
to thread T2 using this wakeup sensitivity setting, but
T2 blocks and can no longer use the CPU, then Si
will receive control again. WAKEUP_ON_BLOCK is the
“most sensitive” setting, and is typically used when
the scheduler has other (e.g., lower-priority) client
threads waiting to run.

• WAKEUP-ON-SWITCH: If the client thread using the
CPU (e.g., T2) blocks, control is not immediately re
turned to its scheduler (Si): the dispatcher behaves
instead as if S i itself blocked, and passes control on
back to its scheduler, So- If T2 is subsequently wo
ken up, then when So again provides the CPU to S i ,
the dispatcher passes control directly back to T2 with
out actually running S i . However, if a different client
of Si, such as Ti, wakes up and sends a notification
to Si's message port, then Si's s c h e d u le opera
tion will be interrupted. This sensitivity level is typ
ically used when a scheduler has only one thread to
run at the moment and doesn’t care when that thread
blocks or unblocks, but it still wants to switch between
client threads manually: for example, the scheduler
may need to start and stop timers when switching be
tween client threads.

• WAKEUP-ON.CONFLICT: As above, if T2 blocks,
the scheduler blocks too. However, in this case, if any
client of scheduler £'i is subsequently woken, such as
T i , the dispatcher passes control directly through to
the woken client thread without waking up the sched
uler thread. The scheduler is only awakened if a sec
ond client thread wakes up while the scheduler is al
ready donating CPU to the first client (e.g., if both Ti
and T2 become runnable at the same time). At this
weakest sensitivity level, the dispatcher is allowed to
switch among client threads freely; the scheduler only
acts as a “conflict resolver,” making a decision when
two client threads become runnable at once.

4 Implementing High-level Schedulers

This section describes how the basic CPU inheritance
scheduling mechanism can be used to implement various
high-level scheduling policies as well as other features such
as CPU usage accounting, processor affinity, and scheduler
activations.

4.1 Single-CPU Schedulers

Figure ?? shows example pseudocode for a simple fixed-
priority FIFO scheduler. The scheduler basically keeps a
prioritized queue of client threads waiting for CPU time,
and successively runs each one using the s c h e d u le oper
ation while waiting for messages to arrive on its port (e.g.,
notifications from newly-woken client threads). When
there are no client threads waiting to be run, the sched
uler uses the ordinary “non-donating” wait-for-message op
eration instead of the s c h e d u le operation, to relinquish
the CPU while waiting for messages. If there is only one
client thread in the scheduler’s queue, the scheduler uses
the WAKEUP_ON_CONFLICT sensitivity level when run
ning it to indicate to the dispatcher that it may switch among
client threads arbitrarily as long as only one client thread at
tempts to use the CPU at a time.

4.2 Timekeeping and Preemption

The simple FIFO scheduler above can be converted to a
round-robin scheduler by introducing some form of clock
or timer. For example, if the scheduler is the root scheduler
on a CPU, then the scheduler might be directly responsible
for servicing clock interrupts. Alternatively, the scheduler
may rely on a separate “timer thread” to notify it when a
periodic timer expires. In any case, a timer expiration or
clock interrupt is indicated to the scheduler by a message
being sent to the scheduler’s port. This message causes
the scheduler to break out of its s c h e d u le operation and
preempt the CPU from whatever client thread was using
it. The scheduler can then move that client to the tail of
the ready queue for its priority and give control to the next
client thread at the same priority.

4.3 Multiprocessor Support

Since the example scheduler above only contains a sin
gle scheduler thread, it can only schedule a single client
thread at once. Therefore, although it can be run on a multi
processor system, it cannot take advantage of multiple pro
cessors simultaneously. For example, a separate instance
of the FIFO scheduler could be run as the root scheduler
on each processor; then, client threads assigned to a given

6

scheduler will effectively be bound to the CPU the sched
uler is associated with. Although in some situations this ar
rangement can be useful, e.g., when each processor is to be
dedicated to aparticular purpose in most cases itis not what
is needed.

In order for a scheduler to provide “real” multiproces
sor scheduling to its clients, where different client threads
can be dynamically assigned to different processors on de
mand, the scheduler must itself be multi-threaded. Assume
for now that the scheduler knows how many processors
are available, and can bind threads to processors. (This is
clearly trivial if the scheduler is run as the root scheduler on
some or all processors; we will show later how this require
ment can be met for non-root schedulers.) The scheduler
creates a separate thread bound to each processor; each of
these scheduler threads then selects and runs client threads
on that processor. The scheduler threads cooperate with
each other using shared variables, e.g., shared run queues
in the case of a multiprocessor FIFO scheduler.

Since the scheduler’s client threads are supposed to be
unaware that they are being scheduled on multiple proces
sors, the scheduler exports only a single port representing
the scheduler as a whole to all of its clients. When a client
thread wakes up and sends a notification to the scheduler
port, the dispatcher arbitrarily wakes up one of the sched
uler threads waiting on that port. (A good general policy is
for the dispatcher to wake up the scheduler thread associ
ated with the CPU on which the wakeup is being done; this
allows the scheduler to be invoked on the local processor
without interfering with other processors unnecessarily.) If
the woken scheduler thread discovers that the newly woken
client should be run on a different processor (e.g., because it
is already running a high-priority client but another sched
uler thread is running a low-priority client), it can interrupt
the other scheduler thread’s s c h e d u le operation by send
ing it a message or “signal”; this corresponds to sending
inter-processor interrupts in traditional systems.

4.3.1 Processor Affinity

Scheduling policies that take processor affinity into consid
eration [5-7], can be implemented by treating each sched
uler thread as a processor and attempting to schedule a
client thread from the same scheduler thread that previously
donated CPU time to that client thread. Of course, this will
only work if the scheduler threads are indeed consistently
run on the same processor. Any processor affinity support
in one scheduling layer will only work well if all the lay
ers below it (between it and the root scheduler) also pay at
tention to processor affinity. A mechanism to ensure this is
described in the next section.

4.3.2 Scheduler Activations

In the common case client threads “communicate” with
their schedulers implicitly through notifications sent by the
dispatcher on behalf of the client threads. However, there
is nothing to prevent client threads from explicitly commu
nicating with their schedulers through some agreed-upon
interface. One particularly useful explicit client/scheduler
interface is a scheduler activations interface []], which al
lows clients to determine initially and later track the num
ber of actual processors available to them, and create or
destroy threads as appropriate in order to make use of all
available processors without creating “extra” threads that
compete with each other uselessly on a single processor.

Furthermore, since scheduler threads are notified by the
dispatcher when a client thread blocks and temporarily can
not use the CPU available to it (e.g., because the thread is
waiting for an I/O request or a page fault to be serviced), the
scheduler can notify the client in such a situation and give
the client an opportunity to create a new thread to make use
of the CPU while the original thread is blocked. For exam
ple, a client can create a pool of “dormant” threads, or “ac
tivations,” which the scheduler knows about but normally
never runs. If a CPU becomes available, e.g., because of
another client thread blocking, the scheduler “activates”
one of these dormant threads on the CPU vacated by the
blocked client thread. Later, when the blocked thread even
tually unblocks and requests CPU time again, the scheduler
preempts one of the currently running client threads and no
tifies the client that it should make one of the active threads
dormant again.

Scheduler activations were originally devised to pro
vide better support for application-specific thread packages
running in a single user mode process. In an OS kernel
that implements CPU inheritance scheduling, extending a
scheduler to provide this support should be quite straight
forward. However, in a multiprocessor system based on
CPU inheritance scheduling, scheduler activations are also
highly useful to allow stacking of first-class schedulers. As
mentioned previously, multiprocessor schedulers need to
know the number of processors available in order to use
the processors efficiently. As long as a base-level scheduler
(e.g., the root scheduler on a set of CPUs) exports a sched
uler activations to its clients, a higher-level multiprocessor
scheduler running as a client of the base-level scheduler can
use the scheduler activations interface to track the number
of processors available and schedule its clients effectively.
(Simple single-threaded schedulers that only make use of
one CPU at a time don’t need scheduler activations and can
be stacked on top of any scheduler.)

7

Most scheduling algorithms require a measurable notion
of time, in order to implement preemptive scheduling. For
most schedulers, a periodic interrupt is sufficient, although
some real-time schedulers may need finer-grained timers
whose periods can be changed between each time quantum.
In CPU inheritance scheduling, the precise nature of the
timing mechanism available to schedulers is not important
to the general framework; all that is needed is some way
for a scheduler thread to be woken up after some amount
of time has elapsed. In our implementation, schedulers
can register timeouts with a central clock interrupt handler;
when a timeout occurs, a message is sent to the appropriate
scheduler’s port, waking up the scheduler. The dispatcher
automatically preempts the running thread if necessary and
passes control back to the scheduler so that it can account
for the elapsed time and possibly switch to a different client
thread.

4.4.1 CPU usage accounting

Besides simply deciding which thread to run next, sched
ulers often must account for CPU resources consumed.
CPU accounting information is used for a variety of pur
poses, such as reporting usage statistics to the user on de
mand, modifying scheduling policy based on CPU usage
(e.g., dynamically adjusting thread priority), or billing a
customer for CPU time consumed for a particular job. As
with scheduling policies, there are many possible CPU ac
counting mechanisms, with different cost/benefit tradeoffs.
The CPU inheritance scheduling framework allows a vari
ety of accounting policies to be implemented by scheduler
threads.

There are two well-known approaches to CPU usage ac
counting: statistical and time stamp-based [?]. With sta
tistical accounting, the scheduler wakes up on every clock
tick, checks the currently running thread, and charges the
entire time quantum to that thread. This method is quite in
expensive in terms of overhead, since the scheduler gen
erally wakes up on every clock tick anyway; however, it
provides limited accuracy. A variation on this method that
provides better accuracy at slightly higher cost is to sam
ple the current thread at random points between clock ticks
[?]. Alternatively, with time stamp-based accounting, the
scheduler reads the current time at every context switch
and charges the difference between the current time and the
time of the last context switch to the thread that was run
ning during that period. This method provides extremely
high accuracy, but also imposes a high cost due to length
ened context switch times, especially on systems on which
reading the current time is an expensive operation.

In the root scheduler in a CPU inheritance hierarchy,

4.4 Timing both of the above methods can be applied directly. To im7
plement statistical accounting, the scheduler simply checks
what thread it ran last upon being woken up by the arrival
of a timeout message. To implement time stamp-based ac
counting, the scheduler reads the current time each time it
schedules a different client thread. The scheduler must use
the WAKEUP_ON_BLOCK sensitivity level in order to ensure
that it can check the time at each thread switch and to ensure
that idle time is not charged to any thread.

For schedulers stacked on top of other schedulers, CPU
usage becomes a little more complicated because the CPU
time supplied to such a scheduler is already “virtual” and
cannot be measured accurately by a wall-clock timer. For
example, in Figure 3, if scheduler S\ measures TVs CPU
usage using a wall-clock timer, then it may mistakenly
charge against T? time actually used by the high-priority
thread To, which S i has no knowledge of because it is
scheduled by the root scheduler So.

In many cases, this inaccuracy caused by stacked sched
ulers may be ignored in practice on the assumption that
high-priority threads and schedulers will consume rela
tively little CPU time. (If this weren’t the case, then the
low-priority scheduler probably would not be able to run
at all!) This assumption corresponds to the one made in
many existing kernels that hardware interrupt handlers con
sume little enough CPU time that they may be ignored for
accounting purposes.

In situations in which this assumption is not valid and
accurate CPU accounting is needed for stacked sched
ulers, virtual CPU time information provided by base-level
schedulers can be used instead of wall-clock time, at some
additional cost due to additional communication between
schedulers. For example, in Figure 3, at each clock tick
(for statistical accounting) or each context switch (for time
stamp-based accounting), scheduler Si could request its
own virtual CPU time usage from So instead of checking
the current wall-clock time. It then uses this virtual time in
formation to maintain usage statistics for its clients, Ti and
t2.

4.4.2 Effects of CPU donation on timing

As mentioned earlier, CPU donation can occur implicitly
as well as explicitly, e.g., to avoid priority inversion when a
high-priority thread attempts to lock a resource already held
by a low-priority thread. For example, in Figure 4, sched
uler So has donated the CPU to high-priority thread To in
preference over low-priority thread T i. However, it turns
out that Ti is holding a resource needed by T0, so T0 implic
itly donates its CPU time to T i. Since this donation merely
extends the scheduling chain, So is unaware that the switch
occurred, and it continues to charge CPU time used to So
instead of S'i which is the thread that is actually using the

8

CPU

TO
(high-priority)

T1
(low-priority)

Figure 4: Implicit CPU donation from high-priority thread
To to low-priority thread T\ to avoid priority inversion dur
ing a resource conflict.

CPU.
While it may seem somewhat nonintuitive at first, in

practice this is precisely the desired behavior; it stems from
the basic rule that with privilege comes responsibility. If
T0 is donating CPU to T\, then T\ is effectively doing
work on behalf of Tq: i.e., finishing its job and unlocking
the resource as quickly as possible so that To can get on
with its other activities. Since this work is being done (at
this point) primarily for the benefit of To, the CPU time
consumed must be charged to T0. Demonstrated another
way, charging T\ rather than To would be incorrect be
cause it would allow the system to be subverted: for ex
ample, if high-priority CPU time is “expensive” and low-
priority CPU time is “cheap,” then To could collude with
Tl to use high-priority CPU time while being charged the
low-priority “rate” simply by arranging for T\ to do all the
actual work while To blocks on a lock perpetually held by
T i. This ability to charge the “proper” thread for CPU us
age even in the presence of priority inheritance is generally
unnatural and difficult to implement in traditional systems,
and therefore is generally not implemented by them [?]; on
the other hand, this feature falls out of the CPU inheritance
framework automatically.

4.5 Threads with Multiple Scheduling Policies

Sometimes it is desirable for a single thread to be asso
ciated with two or more scheduling policies at once. For
example, a thread may normally run in a real-time rate-
monotonic scheduling class; however, if the thread’s quan
tum expires before its work is done, it may be desirable for
the thread to drop down to the normal timesharing class in
stead of simply stopping dead in its tracks.

Support for multiple scheduling policies per thread can
be provided in the CPU inheritance scheduling framework
in two ways. First, the effect can be achieved even in an im
plementation such as ours that only directly supports a sin
gle permanent scheduler association per thread, although
in a somewhat ad-hoc and possibly inefficient way. First,
the thread of interest is created and associated with its “pri
mary” (presumably highest-priority) scheduler. Then, one

additional thread is created for each additional schedul
ing policy desired; these threads then block forever on a
lock held by the first thread so that they perpetually donate
their CPU time to it. The dispatcher will automatically en
sure that the primary thread always uses the highest priority
scheduler available, because whenever the primary thread
becomes runnable and requests CPU time from its sched
uler, the secondary threads will also request CPU time from
their schedulers, and the scheduling algorithms will ensure
that the highest-priority request always “wins.”

In situations in which this solution is not acceptable
for reasons of performance or memory overhead, the dis
patcher could fairly easily be extended to allow multiple
schedulers to be associated with a single thread, so that
when such a thread becomes runnable the dispatcher auto
matically notifies all of the appropriate schedulers.

Although it may at first seem inefficient to notify two or
more schedulers when a single thread awakes, in practice
many of these notifications never actually need to be deliv
ered. For example, if a real-time/timesharing thread wakes
up, finishes all of its work and goes back to sleep again be
fore its real-time scheduling quantum is expired (presum
ably the common case), then the notification posted to the
low-priority timesharing scheduler at wakeup time will be
canceled (removed from the queue) when the thread goes to
sleep again, so the timesharing scheduler effectively never
sees it.

5 Analysis and Experimental Results

We have created a prototype implementation of this
scheduling framework and devised a number of tests to
evaluate its flexibility and performance. The basic ques
tions to be answered are:

• Is the framework practical? Can it perform the same
functions as existing schedulers without unacceptable
performance cost?

• Is the framework useful? Does it provide sufficient ad
ditional flexibility or functionality to justify its use in
practice?

5.1 Test Environment

In order to provide a clean, easily controllable environ
ment, as our initial prototype we implemented a simple
user-level threads package incorporating CPU inheritance
scheduling as its mechanism for scheduling the user-level
threads it provides. The threads package supports com
mon abstractions such as mutexes, condition variables, and
message ports for inter-thread communication and synchro
nization. The package implements separate thread stacks

9

Root Scheduler
Fixed-priority

Real-time Scheduler
Rate-monotonic

Real-time
periodic threads

Lottery
Scheduler

FIFO Scheduler
Non-preemptive

Figure 5: Multilevel scheduling hierarchy used for tests

with s e t jm p/longjm p, and the virtual CPU timer alarm
signal (SIGVTALRM) is used to provide preemption and
simulate clock interrupts. (We used the virtual CPU timer
instead of the wall-clock timer in order to minimize distor
tion of the results due to other activity in the host Unix sys
tem. In a “real” user-level threads package based on this
scheduling framework, intended for practical use, the nor
mal wall-clock timer would probably be used instead.)

Although our prototype is implemented in user space,
the prototype is designed to reflect the structure and exe
cution environment of an actual OS kernel running in priv
ileged mode. For example, the dispatcher itself is pas
sive, nonpreemptible code executed in the context of the
currently running thread: an environment similar to that
of BSD and other traditional kernels. The dispatcher is
cleanly isolated from the rest of the system, and supports
scheduling hierarchies of unlimited depth and complexity.
Our prototype schedulers are also isolated from each other
and from their clients; the various components communi
cate with each other through message-based protocols that
could easily be adapted to operate across protection do
mains using IPC.

O
0.O
aJDE
§<

18

16

14

12
10
8
6
4

2
0

20
Multilevel Scheduling Hierarchy

" ! ! !
Rate rAonotohlc thread 1
Rate monoto'nic threadJP
...... lottery threaeO..-

--
Applet Wvtad'"!

ad2
.....

HTO thread 1
y'F.iFO. thread 2

Ro/mi-robln thread
jfidr.robin. lhread'2.

r*’ —
y

v.

_________ -------------

100 200 300 . 400 500 600 700 800 900
Time (clock ticks)

Cooperating
threads

Figure 6: Behavior of a multilevel scheduling hierarchy

5.2 Scheduling behavior

Our first test demonstrates multiple scheduling policies
stacked on top of each other. For this test we use the
scheduling hierarchy shown in Figure 5, which is designed
to reflect the activity that might be present in a general-
purpose environment. In this environment, the root sched
uler is a nonpreemptive fixed-priority scheduler with a first-
come-first-served policy among threads of same priority.
This scheduler is used to arbitrate between three schedul
ing classes: a real-time rate-monotonic scheduler at the
highest priority, a lottery scheduler providing a timesharing
class, and a simple round-robin scheduler for background
jobs. On top of the lottery scheduler managing the time
sharing class, a second-level scheduler, also implementing
lottery scheduling, manages two threads of a Java applet.
(It is actually possible to collapse adjacent levels of lottery
scheduling while achieving the same effect by using cur
rencies', however, we show two separate schedulers here for
generality.) Finally, an application-specific FIFO scheduler
schedules two cooperating threads in a single application
under the global timesharing scheduler.

Figure 6 shows the scheduling behavior of the threads
simulated in this hierarchy.

5.3 Priority inheritance and priority-driven re
source arbitration

To study how our scheduling mechanism tackles the
priority-inversion problem, we implemented a simple ap
plication in which clients execute two services - one to look
up the IP address of a machine given its name, which in turn
contacts the second service that models a network access
service. We implemented both servers as critical sections
protected by “prioritized” mutex locks. These locks avoid

10

Priority Inheritance Example

Time

Figure 7: Priority inheritance between schedulers

unbounded priority inversion by donating the client’s CPU
to the lock holder while the lock is held. They also grant the
lock in “priority order” by logically waking up all clients
queued for the lock. Whichever client gets CPU first will
succeed in acquiring the lock, while others continue donat
ing CPU to the lock holder.

Figure 7 illustrates an observed execution sequence.
Horizontal lines denote thread execution and vertical lines
denote context switches. The smallest segment of execu
tion denotes one clock period, at which time the root sched
uler wakes up and reschedules. The sequence of events are
as follows. The scheduling hierarchy used is shown in Fig
ure 5.

1. First, the thread FIFO-Tl enters the r e a d .d a ta ser
vice’s critical section by locking its mutex, starts exe
cuting.

2. Next the Roundrobin thread RR.Tl tries to acquire the
above mutex and fails. It donates its CPU to the lock’s
current holder, FIFO-Tl.

3. Next the lottery scheduled thread LS_T1 enters the
first service which in turn tries to enter S2, but
blocks, again donating CPU to FIFO-TO. (we call it
g et_ a v g _ v a l () , or SI).

4. A little after 20 clock ticks, root scheduler runs the
round robin scheduler, which in turn selects to run
RR_T1. However, since RR.Tl has donated its CPU
to the S2 lock holder, FIFO-TO. Hence FIFO-TO gets
CPU directly.

5. When FIFO-TO eventually leaves S2 by unlocking its
mutex, it logically wakes up and dispatches both of
the contenders namely RR.Tl and LS.Tl. The deci
sion to choose RR.Tl is made by their common an-

Thread Level 0 Level 1 Level 2 Level 3
Root 0.216
RM
RM.Tl
RM.T2

0.051
25.465
14.978

LSI
LS.Tl

0.082
23.080

LS2
LS2.T1

0.020
5.882

FIFO
FIFO.Tl

0.001
5.722

RR
RR.Tl
RR.T2

0.056
12.227
12.219

Total 0.216 0.189 87.990 11.604
Percent of time used by schedulers: 0.426
Percent of time not used by schedulers: 99.573

Table 1: CPU consumption by scheduler and worker
threads

cestor scheduler, which is the root. Hence RR.Tl en
ters S2 next. Note that its interleaved execution with
LSI causes its to immediately get back the CPU thru’
LS-T1.

6. When the real-time thread RM.Tl eventually tries to
enter SI, it finds that the holder of SI is LS.T1 and
donates it the CPU. This CPU is utilized by LS_T1
to rapidly finish its work in both S2 as well as S 1, as
RM.Tl is the highest priority thread in the system.

7. One important event not shown in the figure is the fact
thatLS2_Tl tries to enter S 1 before RM_T1, and hence
gets queued up before RM.Tl in the lock’s wait queue.
When LS-T1 unlocks S2’s mutex, it wakes up both
RM_T1 as well as LS2_T1. But due to its high priority,
RM.Tl jumps the queue and enters S 1 before LS2.T1.
This is an example of prioritized granting of lock re
quests, between a lottery scheduled thread and a real
time thread with totally different notions of priority.

5.4 Scheduling overhead

Table 1 shows scheduling overhead in the test above.
The total amount of time spent in each scheduler is shown
in boldface, with the times for the corresponding threads to
the right of their schedulers. It can be seen in the table that
scheduling overhead is quite small compared to the time
spent doing actual work: all of the scheduler threads com
bined consume only about 1% of the total CPU time.

11

In this paper we have presented a novel processor
scheduling framework in which arbitrary threads can act
as schedulers for other threads. Widely different schedul
ing policies can be implemented under the framework,
and many different policies can coexist in a single sys
tem. Modular, hierarchical control can be provided over the
processor utilization of arbitrary administrative domains,
such as processes, jobs, users, and groups, and the CPU
resources consumed can be accounted for and attributed
accurately. Applications as well as the OS can imple
ment customized local scheduling policies; the framework
ensures that all the different policies work together log
ically and predictably. The framework also cleanly ad
dresses priority inversion by providing a generalized form
of priority inheritance that automatically works within and
among multiple diverse scheduling policies. CPU inheri
tance scheduling extends naturally to multiprocessors, and
supports processor management techniques such as proces
sor affinity [7] and scheduler activations [1], Experimen
tal results and simulations indicate that this framework can
be provided with negligible overhead in typical situations,
and fairly small (5-10%) performance degradation even in
scheduling-intensive situations.

6 Conclusion [6] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the
Performance of Cache-Affinity Scheduling in Shared-
Memory Multiprocessors. Journal of Parallel and Dis
tributed Computing, 24:139-151,1995.

[7] R. Vaswani and J. Zahorjan. The Implications of
Cache Affinity on Processor Scheduling for Multipro
grammed, Shared Memory Multiprocessors. In Proc.
of the 13th ACM Symposium on Operating Systems
Principles, pages 26—40, Oct. 1991.

[8] C. A. Waldspurger and W. E. Weihl. Lottery Schedul
ing: Flexible Proportional-Share Resource Manage
ment. In Proc. of the First Symposium on Operat
ing Systems Design and Implementation, pages 1-11,
Monterey, CA, Nov. 1994. USENIX Association.

References

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and
H. M. Levy. Scheduler Activations: Effective Ker
nel Support for the User-Level Management of Paral
lelism. ACM Trans. Comput. Syst., 10(l):53-79, Feb.
1992.

[2] A. C. Bomberger and N. Hardy. The KeyKOS Nanok
ernel Architecture. In Proc. of the USENIX Work
shop on Micro-kernels and Other Kernel Architectures,
pages 95-112, Seattle, WA, Apr. 1992.

[3] S. Davari and L. Sha. Sources of Unbounded Prior
ity Inversions in Real-time Systems and a Comparative
Study of Possible Solutions. ACM Operating Systems
Review, 23(2): 110-120, April 1992.

[4] L. Sha, R. Rajkumar, and J. P. Lehoczky. Prior
ity Inheritance Protocols: An Approach to Real-time
Synchronization. IEEE Transactions on Computers,
39(9): 1175-1185,1990.

[5] M. S. Squillante and E. D. Lazowska. Using Processor-
Cache Affinity Information in Shared-Memory Multi
processor Scheduling. IEEE Transactions on Parallel
and Distributed Systems, 4(2): 131-143,1993.

12

