
Sample Exam Questions
69714 - REAL TIME OPERATING SYSTEM M

MEng in Automation Engineering, University of Bologna

Academic Year 2012-2013

Paolo Torroni

This is a collection of past exam questions. Some of the questions are taken

from the course text books.

1
For the time being, solutions are not provided.

Be aware that “Midterm” and “Final” exams only cover part of the syllabus.

A “Standard” exam instead covers all the syllabus. Exam rules and organization

of the course are summarized in the first set of slides.

2

Licence

The original material in this collection is licensed under a Creative Commons

Attribution-ShareAlike 3.0 Unported License.

3
This is a Free Culture licence.

You are free:

• to Share: to copy, distribute and transmit the work

• to Remix: to adapt the work

• to make commercial use of the work

Under the following conditions:

• Attribution: You must attribute the work in the manner specified by

the author or licensor (but not in any way that suggests that they endorse

you or your use of the work).

• Share Alike: If you alter, transform, or build upon this work, you may

distribute the resulting work only under the same or similar license to this

one.

1
Abraham Silberschatz, Peter B. Galvin, Greg Gagne. Operating System Concepts,

8th or 9th Edition. International Student Version. Wiley 2010 (2013), and Giorgio C. But-

tazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications, 3rd Edition. Springer 2011

2
https://campus.unibo.it/105196

3
http://creativecommons.org/licenses/by-sa/3.0/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Almae Matris Studiorum Campus

https://core.ac.uk/display/11226041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Real-Time Operating Systems M
First Midterm. April 5, 2013

Please, fill in your data in the fields below. E-mail will be
used for communication of the exam results.

Name

Registration No. . . .

E-mail

Part I

Quizzes (2 points)

Mark each of the following statements True or False.
Explain your answer in one sentence (if you wish).

Q1) T

F

After a fork(), the child process and the
parent process have no shared address space.

Explanation (optional):

Q2) T

F

RPCs use a message-based communication
scheme to provide a remote service.

Explanation (optional):

Q3)
T

F

A disadvantage of the M:M threading model is
that developers cannot create as many threads
as necessary, since kernel threads cannot run in
parallel on a multiprocessor.

Explanation (optional):

Q4)
T

F

Ordinary pipes continue to exist even after
the processes have finished communicating and
have terminated.

Explanation (optional):

Part II

Open questions (4 points)

O1) Illustrate the microkernel approach to OS design.
Comment on advantages and disadvantages.

O2) Describe the di↵erences among short-term, medium-

term, and long term scheduling.

O3) There are many possible CPU-scheduling algorithms.
How could we select one particular algorithm for a par-
ticular system? Discuss various evaluation methods.

Part III

Exercise (3 points)

Suppose that processes P1, P2, . . . , P5 arrive for execution
at the times indicated in Table 1. Each process will run for
the amount of time listed, and will be assigned a priority
ranging from 0 (highest) to 10 (lowest). No more
processes will arrive until the last process completes.

In answering the questions, base all decisions on the
information you have at the time the decision must be made.

Table 1: Process arrival/CPU-burst times and priorities.

Process Arrival Time Burst Time Priority
P1 0.0 8 10
P2 0.4 4 2
P3 0.5 1 10
P4 0.8 2 1
P5 1.0 2 5

E1) Draw four Gantt charts that illustrate the execution
of these processes using the following scheduling
algorithms:

E1.1) FCFS;
E1.2) preemptive SJF;
E1.3) preemptive priority (SJF if priority is equal);
E1.4) RR (quantum=2).

E2) What is the turnaround time of each process for
each of these four scheduling algorithms?

E3) What is the waiting time of each process for each of
these four scheduling algorithms?

E4) Which of the algorithms results in the maximum

overall turnaround time (over all processes)?

Part IV

Code analysis (2 points)

The program below uses the Phreads API.

C1) What would be the output from the program at LINE

A, LINE B, and LINE C?

C2) How many processes/threads would be active by the
time LINE B is executed?

Justify your answers. If there are di↵erent possible
answers, explain what the possibilities are.

#include <sys/types.h>

#include <sys/wait.h>

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

int value = 5;

void *runner1(void *param);

void *runner2(void *param);

int main()

{

pthread_t tid1, tid2;

pthread_attr_t attr1, attr2;

pthread_attr_init(&attr1);

pthread_create(&tid1,&attr1,runner1,NULL);

pthread_attr_init(&attr2);

pthread_create(&tid2,&attr2,runner2,NULL);

printf("A: value = %d\n", value); /* LINE A */

pthread_join(tid1,NULL);

pthread_join(tid2,NULL);

return 0;

}

void *runner1(void *param) {

value += 10;

printf("B: value = %d\n", value); /* LINE B */

pthread_exit(0);

}

void *runner2(void *param) {

value += 10;

printf("C: value = %d\n", value); /* LINE C */

pthread_exit(0);

}

Real-Time Operating Systems M
First Midterm. April 5, 2013

Please, fill in your data in the fields below. E-mail will be
used for communication of the exam results.

Name

Registration No. . . .

E-mail

Part I

Quizzes (2 points)

Mark each of the following statements True or False.
Explain your answer in one sentence (if you wish).

Q1) T

F

After a fork(), the child process and the
parent process have no open files in common.

Explanation (optional):

Q2) T

F

A rendezvous can be obtained using a
blocking send() and a blocking receive().

Explanation (optional):

Q3)
T

F

A disadvantage of the many-to-one threading
model is that the entire process will block if a
thread makes a blocking system call.

Explanation (optional):

Q4)
T

F

A wait() system call is used to make a process
wait for an input/output device to become
ready.

Explanation (optional):

Part II

Open questions (4 points)

O1) What is the purpose of interrupts? Explain how
interrupt-driven system operation can be obtained
using dual mode operation and system calls.

O2) Explain scheduling queues.

O3) Describe the di↵erences between direct communica-
tion and indirect communication in message-based
systems.

Part III

Exercise (3 points)

Suppose that processes P1, P2, . . . , P5 arrive for execution
at the times indicated in Table 1. Each process will run for
the amount of time listed, and will be assigned a priority
ranging from 0 (highest) to 10 (lowest). No more
processes will arrive until the last process completes.

In answering the questions, base all decisions on the
information you have at the time the decision must be made.

Table 1: Process arrival/CPU-burst times and priorities.

Process Arrival Time Burst Time Priority
P1 0.0 8 10
P2 0.4 4 2
P3 0.5 1 10
P4 0.8 2 1
P5 1.0 2 5

E1) Draw four Gantt charts that illustrate the execution
of these processes using the following scheduling
algorithms:

E1.1) nonpreemptive SJF;
E1.2) preemptive SJF;
E1.3) preemptive priority (FCFS if priority is equal);
E1.4) RR (quantum=4).

E2) What is the turnaround time of each process for
each of these four scheduling algorithms?

E3) What is the waiting time of each process for each of
these four scheduling algorithms?

E4) Which of the algorithms results in the minimum

average waiting time (over all processes)?

Part IV

Code analysis (2 points)

The program below uses the Phreads API.

C1) What would be the output from the program at LINE

A, LINE B, and LINE C?

C2) How many processes/threads would be active by the
time LINE B is executed?

Justify your answers. If there are di↵erent possible
answers, explain what the possibilities are.

#include <sys/types.h>

#include <sys/wait.h>

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

int value = 5;

void *runner(void *param);

int main()

{

pid_t pid;

pthread_t tid;

pthread_attr_t attr;

printf("A: value = %d\n", value); /* LINE A */

pid = fork();

if (pid == 0) {

pthread_attr_init(&attr);

pthread_create(&tid,&attr,runner,NULL);

pthread_join(tid,NULL);

printf("B: value = %d\n", value); /* LINE B */

return 0;

}

else if (pid > 0) {

wait(NULL);

printf("C: value = %d\n", value); /* LINE C */

return 0;

}

return 0;

}

void *runner(void *param) {

value += 10;

pthread_exit(0);

}

Real-Time Operating Systems M
Second Midterm. May 13, 2013

Please, fill in your data in the fields below. E-mail will be
used for communication of the exam results.

Name

Registration No. . . .

E-mail

Part I

Quizzes (2 points)

Mark each of the following statements True or False.
Explain your answer in one sentence (if you wish).

Q1)
T

F

A process cannot be executed if its logical
address space is bigger than the size of the
physical memory.

Explanation (optional):

Q2) T

F

An inverted page table contains, in each
entry, a page number and a frame number.

Explanation (optional):

Q3) T

F

Paging eliminates internal fragmentation.

Explanation (optional):

Q4) T

F

Deadlock cannot occur among processes that
need at most one (non-shareable) resource each.

Explanation (optional):

Part II

Open questions (3 points)

O1) Why do some operating systems use spinlocks as
a synchronisation mechanism only on multiprocessor
systems and not on single-processor systems?

O2) What is the cause of thrashing? How does the system
detect thrashing? Once it detects thrashing, what can
the system do to eliminate the problem?

O3) Explain how data can be transferred from a device
to the main memory using a direct memory access

(DMA) controller.

Part III

Exercises (3 points)

E1) Consider the following snapshot of a system:

Allocation Max Request

A B C D A B C D A B C D
P1 0 0 1 2 0 0 2 3 0 0 0 1
P2 1 0 0 0 1 2 2 0 0 1 1 0
P3 1 3 5 4 2 3 5 6 1 0 0 0
P4 0 0 0 1 2 2 0 1 2 2 0 0

Available

1 2 2 0

E1.1) Is the system in deadlock?
E1.2) Is the system in a safe state?
E1.3) Can P3’s request be safely granted immediately?
E1.4) If P3’s request is granted immediately, does the

system enter a deadlock?

Be sure to motivate your answers.

E2) Given five memory partitions of 100 KB, 500 KB,
200 KB, 300 KB, and 600 KB (in order), how would
the first-fit, best-fit, and worst-fit algorithms place
processes of 210 KB, 420 KB, 110 KB, and 430 KB (in
order)? Which algorithm makes the most e�cient use
of memory?

E3) Consider the following reference string:

1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 6, 5, 7.

Suppose you have four page frames. How may page
faults occur for the LRU page replacement algorithm?
Is that the minimum possible number of page faults?

Part IV

Code analysis (3 points)

The Cigarette-Smokers Problem is a well-known process
synchronisation problem that can defined as follows:

Consider a system with three smoker pro-
cesses. Each smoker continuously rolls a
cigarette (make_cigarette()) and then smokes
it (smoke()). But to roll a cigarette, the smoker
needs three resources: tobacco, paper, and
matches. One of the smokers has an infinite
amount of paper, another has infinite tobacco,
and the third has infinite matches.
In order to provide a given smoker with the
missing two resources, so he can roll a cigarette,
a number of other processes synchronise with one
another and with the smokers.
At one time, only one smoker can acquire the
missing two resources. Smokers cannot accumu-
late resources for future use. Several smokers can
smoke at the same time, but each can smoke at
most one cigarette at a time.

The following pseudo-code shows a possible solution with
nine processes: three smokers, three pushers, and three
agents. All nine processes execute concurrently.

A1) Show a possible execution that reaches LINE A. Be
sure to indicate which instructions are executed by
which process before LINE A is executed.

A2) Is the mutex semaphore needed? What happens
if we remove all occurrences of wait(mutex) and
signal(mutex) from this solution?

A3) Show how other possible synchronisation issues–in
particular, deadlock and starvation–are solved (or
show what synchronisation issues are unsolved, if any).

/* semaphores and shared global variables */

semaphore agentSem = 1, mutex = 1;

semaphore tobacco = 0, paper = 0, match = 0;

semaphore paper_and_matches = 0,

tobacco_and_matches = 0,

tobacco_and_paper = 0;

Boolean isPaper = FALSE, isTobacco = FALSE,

isMatches = FALSE;

/* smoker with tobacco */

while(TRUE) {

wait(paper_and_matches);

make_cigarette();

signal(agentSem);

smoke(); /* LINE A */

}

/* smoker with paper */

while(TRUE) {

wait(tobacco_and_matches);

make_cigarette();

signal(agentSem);

smoke();

}

/* smoker with matches */

while(TRUE) {

wait(tobacco_and_paper);

make_cigarette();

signal(agentSem);

smoke();

}

/* tobacco agent */

while(TRUE) {

wait(agentSem);

signal(paper);

signal(matches);

}

/* paper agent */

while(TRUE) {

wait(agentSem);

signal(tobacco);

signal(matches);

}

/* matches agent */

while(TRUE) {

wait(agentSem);

signal(tobacco);

signal(paper);

}

/* tobacco pusher */

while(TRUE) {

wait(tobacco);

wait(mutex);

if(isPaper) {

isPaper = FALSE;

signal(tobacco_and_paper);

}

else if(isMatches) {

isMatches = FALSE;

signal(tobacco_and_matches);

}

else isTobacco = TRUE;

signal(mutex);

}

/* paper pusher */

while(TRUE) {

wait(paper);

wait(mutex);

if(isTobacco) {

isTobacco = FALSE;

signal(tobacco_and_paper);

}

else if(isMatches) {

isMatches = FALSE;

signal(paper_and_matches);

}

else isPaper = TRUE;

signal(mutex);

}

/* matches pusher */

while(TRUE) {

wait(matches);

wait(mutex);

if(isPaper) {

isPaper = FALSE;

signal(paper_and_matches);

}

else if(isTobacco) {

isTobacco = FALSE;

signal(tobacco_and_matches);

}

else isMatches = TRUE;

signal(mutex);

}

Real-Time Operating Systems M
Second Midterm. May 13, 2013

Please, fill in your data in the fields below. E-mail will be
used for communication of the exam results.

Name

Registration No. . . .

E-mail

Part I

Quizzes (2 points)

Mark each of the following statements True or False.
Explain your answer in one sentence (if you wish).

Q1) T

F

A hashed page table contains, in each entry,
a pointer to a list.

Explanation (optional):

Q2)
T

F

Deadlock cannot occur among processes that
request (non-shareable) resources only when
they have none.

Explanation (optional):

Q3) T

F

Paging permits pages to be of arbitrary size.

Explanation (optional):

Q4)
T

F

The working-set model is used to prevent
thrashing while at the same time optimising
CPU utilisation.

Explanation (optional):

Part II

Open questions (3 points)

O1) How does the signal() operation on condition
variables associated with monitors di↵er from the
signal() operation defined for semaphores?

O2) Under what circumstances do page faults occur?
Describe the actions taken from the operating system
when a page fault occurs.

O3) Consider a system consisting of four resources of the
same type that are shared by three processes, each
of which needs at most two resources. Show that the
system is deadlock free.

Part III

Exercises (3 points)

E1) Consider the following snapshot of a system:

Allocation Max Request

A B C D A B C D A B C D
P1 0 0 1 2 0 0 2 3 0 0 0 1
P2 1 3 5 4 2 3 5 6 1 0 0 0
P3 1 0 0 0 1 2 2 0 0 1 1 0
P4 0 0 0 1 2 2 0 1 2 2 0 0

Available

1 2 2 0

E1.1) Is the system in deadlock?
E1.2) Is the system in a safe state?
E1.3) Can P2’s request be safely granted immediately?
E1.4) If P2’s request is granted immediately, does the

system enter a deadlock?

Be sure to motivate your answers.

E2) Consider a logical address space of 32 pages with
1,024 words per page, mapped onto a physical

memory of 16 frames. How many bits are required in
the logical address? How many bits are required in the
physical address?

E3) Consider the following reference string:

4, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 9, 7, 8, 9, 5, 6, 5, 7, 5, 6.

Suppose you have four page frames. How may page
faults occur for the LRU page replacement algorithm?
Is that the minimum possible number of page faults?

Part IV

Code analysis (3 points)

The Cigarette-Smokers Problem is a well-known process
synchronisation problem that can defined as follows:

Consider a system with three smoker pro-
cesses. Each smoker continuously rolls a
cigarette (make_cigarette()) and then smokes
it (smoke()). But to roll a cigarette, the smoker
needs three resources: tobacco, paper, and
matches. One of the smokers has an infinite
amount of paper, another has infinite tobacco,
and the third has infinite matches.
In order to provide a given smoker with the
missing two resources, so he can roll a cigarette,
a number of other processes synchronise with one
another and with the smokers.
At one time, only one smoker can acquire the
missing two resources. Smokers cannot accumu-
late resources for future use. Several smokers can
smoke at the same time, but each can smoke at
most one cigarette at a time.

The following pseudo-code shows a possible solution with
nine processes: three smokers, three pushers, and three
agents. All nine processes execute concurrently.

A1) Show a possible execution that reaches LINE A. Be
sure to indicate which instructions are executed by
which process before LINE A is executed.

A2) Is the mutex semaphore needed? What happens
if we remove all occurrences of wait(mutex) and
signal(mutex) from this solution?

A3) Show how other possible synchronisation issues–in
particular, deadlock and starvation–are solved (or
show what synchronisation issues are unsolved, if any).

/* semaphores and shared global variables */

semaphore agentSem = 1, mutex = 1;

semaphore tobacco = 0, paper = 0, match = 0;

semaphore paper_and_matches = 0,

tobacco_and_matches = 0,

tobacco_and_paper = 0;

Boolean isPaper = FALSE, isTobacco = FALSE,

isMatches = FALSE;

/* smoker with tobacco */

while(TRUE) {

wait(paper_and_matches);

make_cigarette();

signal(agentSem);

smoke();

}

/* smoker with paper */

while(TRUE) {

wait(tobacco_and_matches);

make_cigarette();

signal(agentSem);

smoke(); /* LINE A */

}

/* smoker with matches */

while(TRUE) {

wait(tobacco_and_paper);

make_cigarette();

signal(agentSem);

smoke();

}

/* tobacco agent */

while(TRUE) {

wait(agentSem);

signal(paper);

signal(matches);

}

/* paper agent */

while(TRUE) {

wait(agentSem);

signal(tobacco);

signal(matches);

}

/* matches agent */

while(TRUE) {

wait(agentSem);

signal(tobacco);

signal(paper);

}

/* tobacco pusher */

while(TRUE) {

wait(tobacco);

wait(mutex);

if(isPaper) {

isPaper = FALSE;

signal(tobacco_and_paper);

}

else if(isMatches) {

isMatches = FALSE;

signal(tobacco_and_matches);

}

else isTobacco = TRUE;

signal(mutex);

}

/* paper pusher */

while(TRUE) {

wait(paper);

wait(mutex);

if(isTobacco) {

isTobacco = FALSE;

signal(tobacco_and_paper);

}

else if(isMatches) {

isMatches = FALSE;

signal(paper_and_matches);

}

else isPaper = TRUE;

signal(mutex);

}

/* matches pusher */

while(TRUE) {

wait(matches);

wait(mutex);

if(isPaper) {

isPaper = FALSE;

signal(paper_and_matches);

}

else if(isTobacco) {

isTobacco = FALSE;

signal(tobacco_and_matches);

}

else isMatches = TRUE;

signal(mutex);

}

Real-Time Operating Systems M
First+Second Midterm. May 13, 2013

Please, fill in your data in the fields below. E-mail will be
used for communication of the exam results.

Name

Registration No. . . .

E-mail

Part I

Quizzes (4 points)

Mark each of the following statements True or False.
Explain your answer in one sentence (if you wish).

Q1) T

F

A rendezvous can be obtained using a
blocking send() and a blocking receive().

Explanation (optional):

Q2)
T

F

A disadvantage of the M:M threading model

is that developers cannot create as many
threads as necessary, since kernel threads
cannot run in parallel on a multiprocessor.

Explanation (optional):

Q3)
T

F

Immediately after a fork() is executed, the
child process and the parent process have no

shared variables.

Explanation (optional):

Q4)
T

F

Named pipes continue to exist even after the
processes have finished communicating and have
terminated.

Explanation (optional):

Q5) T

F

Paging eliminates internal fragmentation.

Explanation (optional):

Q6) T

F

Deadlock cannot occur among processes that
need at most one (non-shareable) resource each.

Explanation (optional):

Q7)
T

F

The working-set model is used to prevent
thrashing while at the same time optimising
CPU utilisation.

Explanation (optional):

Q8) T

F

A hashed page table contains, in each entry,
a pointer to a list.

Explanation (optional):

Part II

Open questions (7 points)

O1) Illustrate the modular kernel approach to OS design.
Comment on advantages and disadvantages.

O2) There are many possible CPU-scheduling algorithms.
How could we select one particular algorithm for a par-
ticular system? Discuss various evaluation methods.

O3) Under what circumstances do page faults occur?
Describe the actions taken from the operating system
when a page fault occurs.

O4) Explain how data can be transferred from a device
to the main memory using a direct memory access

(DMA) controller.

O5) Consider a system consisting of four resources of the
same type that are shared by three processes, each
of which needs at most two resources. Show that the
system is deadlock free.

Part III

Exercises (6 points)

E1) Suppose that processes P1, P2, . . . , P5 arrive for execu-
tion at the times indicated in Table 1. Each process
will run for the amount of time listed, and will be
assigned a priority ranging from 0 (highest) to 10

(lowest). No more processes will arrive until the last
process completes.

Table 1: Process arrival/CPU-burst times and priorities.

Process Arrival Time Burst Time Priority
P1 0.0 8 7
P2 0.4 4 2
P3 0.5 1 7
P4 0.8 2 1
P5 1.0 2 5

Draw four Gantt charts that illustrate the execution
of these processes using the following scheduling
algorithms:

E1.1) nonpreemptive SJF;
E1.2) preemptive SJF;
E1.3) preemptive priority (FCFS if priority is equal);
E1.4) RR (quantum=4).

In answering the questions, base all decisions on the
information you have at the time the decision must be
made.

E2) Consider the following snapshot of a system:

Allocation Max Request

A B C D A B C D A B C D
P1 0 0 0 1 2 2 0 1 2 2 0 0
P2 0 0 1 2 0 0 2 3 0 0 0 1
P3 1 3 5 4 2 3 5 6 1 0 0 0
P4 1 0 0 0 1 2 2 0 0 1 1 0

Available

1 2 2 0

E1.1) Is the system in deadlock?
E1.2) Is the system in a safe state?
E1.3) Can P3’s request be safely granted immediately?
E1.4) If P3’s request is granted immediately, does the

system enter a deadlock?

Be sure to motivate your answers.

E3) Consider the following reference string:

1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4, 2.

Suppose you have four page frames. How may page
faults occur for the LRU page replacement algorithm?
Is that the minimum possible number of page faults?

Part IV

Code analysis (5 points)

C1) The program below uses the Phreads API.

C1.1) What would be the output from the program at
LINE A, LINE B, and LINE C?

C1.2) How many processes/threads would be active
by the time LINE B is executed?

Be sure to justify your answers.

#include <sys/types.h>

#include <sys/wait.h>

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

int val = 10;

void *runner(void *param);

int main()

{

pid_t pid;

pthread_t tid;

pthread_attr_t attr;

printf("A: value = %d\n", val); /* LINE A */

pid = fork();

if (pid == 0) {

pthread_attr_init(&attr);

pthread_create(&tid,&attr,runner,NULL);

pthread_join(tid,NULL);

printf("B: value = %d\n", val); /* LINE B */

return 0;

}

else if (pid > 0) {

wait(NULL);

printf("C: value = %d\n", val); /* LINE C */

return 0;

}

return 0;

}

void *runner(void *param) {

val += 20;

pthread_exit(0);

}

C2) The Cigarette-Smokers Problem is a well-known
process synchronisation problem, defined as follows:

Consider a system with three smoker pro-
cesses. Each smoker continuously rolls a
cigarette (make_cigarette()) and then
smokes it (smoke()). But to roll a cigarette,
the smoker needs three resources: tobacco,
paper, and matches. One of the smokers

has an infinite amount of paper, another has
infinite tobacco, and the third has infinite
matches.
In order to provide a given smoker with
the missing two resources, so he can roll

a cigarette, a number of other processes
synchronise with one another and with the
smokers.
At one time, only one smoker can acquire
the missing two resources. Smokers cannot
accumulate resources for future use. Several
smokers can smoke at the same time, but
each can smoke at most one cigarette at a
time.

The following pseudo-code shows a possible solution
with nine processes: three smokers, three pushers, and
three agents. All nine processes execute concurrently.

C2.1) Show a possible execution that reaches LINE A.
Be sure to indicate which instructions are
executed by which process before LINE A is
executed.

C2.2) Is the mutex semaphore needed? What happens
if we remove all occurrences of wait(mutex)

and signal(mutex) from this solution?
C2.3) Show how other possible synchronisation issues–

in particular, deadlock and starvation–are
solved (or show what synchronisation issues are
unsolved, if any).

/* semaphores and shared global variables */

semaphore agentSem = 1, mutex = 1;

semaphore tobacco = 0, paper = 0, match = 0;

semaphore paper_and_matches = 0,

tobacco_and_matches = 0,

tobacco_and_paper = 0;

Boolean isPaper = FALSE, isTobacco = FALSE,

isMatches = FALSE;

/* smoker with tobacco */

while(TRUE) {

wait(paper_and_matches);

make_cigarette();

signal(agentSem);

smoke();

}

/* smoker with paper */

while(TRUE) {

wait(tobacco_and_matches);

make_cigarette();

signal(agentSem);

smoke();

}

/* smoker with matches */

while(TRUE) {

wait(tobacco_and_paper);

make_cigarette();

signal(agentSem);

smoke(); /* LINE A */

}

/* tobacco agent */

while(TRUE) {

wait(agentSem);

signal(paper);

signal(matches);

}

/* paper agent */

while(TRUE) {

wait(agentSem);

signal(tobacco);

signal(matches);

}

/* matches agent */

while(TRUE) {

wait(agentSem);

signal(tobacco);

signal(paper);

}

/* tobacco pusher */

while(TRUE) {

wait(tobacco);

wait(mutex);

if(isPaper) {

isPaper = FALSE;

signal(tobacco_and_paper);

}

else if(isMatches) {

isMatches = FALSE;

signal(tobacco_and_matches);

}

else isTobacco = TRUE;

signal(mutex);

}

/* paper pusher */

while(TRUE) {

wait(paper);

wait(mutex);

if(isTobacco) {

isTobacco = FALSE;

signal(tobacco_and_paper);

}

else if(isMatches) {

isMatches = FALSE;

signal(paper_and_matches);

}

else isPaper = TRUE;

signal(mutex);

}

/* matches pusher */

while(TRUE) {

wait(matches);

wait(mutex);

if(isPaper) {

isPaper = FALSE;

signal(paper_and_matches);

}

else if(isTobacco) {

isTobacco = FALSE;

signal(tobacco_and_matches);

}

else isMatches = TRUE;

signal(mutex);

}

Real-Time Operating Systems M
Final Exam. June 12, 2013

Please, fill in your data in the fields below. E-mail will be
used for communication of the exam results.

Name

Registration No. . . .

E-mail

Frequently used formulas and tables

Some of the following formulas and tables may be useful in
solving some of the exercises.
Schedulability Analysis (Extended)

8i = 1, . . . , n
P

h:Ph>Pi

Ch

Th
+

Ci + Bi

Ti
 i(21/i � 1)

8i = 1, . . . , n
Q

h:Ph>Pi

✓
Ch

Th
+ 1

◆ ✓
Ci + Bi

Ti
+ 1

◆
 2

8i = 1, . . . , n
P

h:Ph>Pi

Ch

Th
+

Ci + Bi

Ti
 1

Response Time Analysis (Extended)

8
>>><

>>>:

R(0)
i = Ci + Bi +

i�1P
k=1

Ck

R(s)
i = Ci + Bi + I(s�1)

i = Ci + Bi +
i�1P
k=1

&
R(s�1)

i

Tk

'
Ck

Processor Demand Test

g(0, L) =
nP

i=1

�
L�Di + Ti

Ti

⌫
Ci

L⇤ =
1

1� U

nP
i=1

(Ti �Di)Ui

Tables

n n(21/n � 1)
1 1.000
2 0.828
3 0.780
4 0.757
5 0.743
6 0.735
7 0.279
8 0.724
9 0.721
10 0.718

Part I

Quizzes (2 points)

Mark each of the following statements True or False.
Explain your answer in one sentence (if you wish).

Q1)
T

F

The Stack Resource Policy may stop a task
allowed by the Non-Preemptive Protocol.

Explanation (optional):

Q2)

T

F

Given a set of independent aperiodic tasks,
with arbitrary arrival times, any algorithm that
executes the tasks in order of nondecreasing
relative deadlines is optimal with respect to
minimising the maximum lateness.

Explanation (optional):

Q3)
T

F

Push-through blocking cannot a↵ect a highest-
priority task.

Explanation (optional):

Q4)
T

F

For independent preemptive periodic tasks
under fixed priorities, the critical instant of a
given task occurs when all higher priority tasks
have all di↵erent activation times.

Explanation (optional):

Q5)
T

F

The processor utilization’s least upper bound
Ulub distinguishes between feasible and infeasi-
ble task sets.

Explanation (optional):

Q6)
T

F

EDF is a simpler but more rigid scheduling
algorithm than Timeline scheduling.

Explanation (optional):

Part II

Open questions (3 points)

O1) Discuss the main properties of the Stack Resource
Policy protocol.

O2) Compare advantages and disadvantages of complete
tree-search algorithms (such as Bratley’s) with respect
to heuristic algorithms (such as the one used in the
Spring kernel) for real-time task scheduling.

Part III

Exercises (6 points)

E1) Let �1 = ⌧1, . . . , ⌧6 be a set of preemptable, aperiodic
tasks with precedence constraints, to be executed on a
single-processor machine. Figure 1 shows release time
ai, worst-case computation time Ci, absolute deadline
di, relative to ai, and precedence relations of each task
⌧i in �1.

�1 ⌧1 ⌧2 ⌧3 ⌧4 ⌧5 ⌧6

ai 0 6 4 13 0 10
Ci 5 4 3 4 1 1
di 20 20 19 18 20 18

prec ⌧2 ! ⌧4 ⌧1 ! ⌧5 ⌧4 ! ⌧6

⌧3 ! ⌧4 ⌧5 ! ⌧6

Figure 1: Characteristics of the �1 task set.

Show the minimum lateness schedule for �1, using a
Gantt chart. Be sure to motivate your answer.

E2) Consider a set of periodic tasks �2 = ⌧1, . . . , ⌧4, to be
scheduled on a single-processor machine. Figure 2

shows period Ti and worst-case computation time Ci

of each task ⌧i.

�2 Ti Ci

⌧1 3 1
⌧2 4 1
⌧3 6 1
⌧4 12 2

Figure 2: Characteristics of the �2 task set.

E2.1) Is �2 feasible under fixed priorities?
E2.2) Is �2 feasible under dynamic priorities?

Let us now assume the following relative deadlines for
⌧2, ⌧3, ⌧4: D2 = 2, D3 = 5, D4 = 10, whereas T1 = D1 =
3. Let us call �0

2 this new task set (see Figure 3).

E2.3) Is �0
2 feasible under fixed priorities?

E2.4) Is �0
2 feasible under dynamic priorities?

Be sure to motivate your answer.

�0
2 Ti Ci Di

⌧1 3 1 3
⌧2 4 1 2
⌧3 6 1 5
⌧4 12 2 10

Figure 3: Characteristics of the �0
2 task set.

E3) Consider a task set �3, composed of 5 periodic tasks
⌧1, . . . , ⌧5 that share 4 resources a, b, c, d and execute on
a single-processor machine. �3’s tasks are represented
in Figure 4. Each resource is accessed in mutual
exclusion using the Priority Ceiling Protocol (PCP).

a

a

d

d b c

c

b c

T1

T2

T3

T4

T5

Figure 4: Graphical representation of critical sections in �3.

Figure 5 shows phase �i, period Ti = Di, worst-case
computation time Ci, and a description of the access
windows to the shared resources of each task ⌧i, in
terms of start time t(Rk) and duration �i,Rk of the
critical section for each task ⌧i and each resource Rk.

�3 �i Ti Ci t(a) �i,a t(b) �i,b t(c) �i,c t(d) �i,d

⌧1 8 20 5 1 3
⌧2 6 30 6 1 4 3 1
⌧3 4 40 6 3 1 5 1 1 4
⌧4 2 50 3 1 1
⌧5 0 60 6 1 4 3 1

Figure 5: Characteristics of the �3 task set.

E3.1) Using a Gantt chart, show the schedule under
RM+PCP, from time 0 until completion of the
first instance of ⌧5. Below the Gantt chart, show
how ⌧5’s active priority p5 evolves.

Real-Time Operating Systems M
Final Exam. June 12, 2013

Please, fill in your data in the fields below. E-mail will be
used for communication of the exam results.

Name

Registration No. . . .

E-mail

Frequently used formulas and tables

Some of the following formulas and tables may be useful in
solving some of the exercises.
Schedulability Analysis (Extended)

8i = 1, . . . , n
P

h:Ph>Pi

Ch

Th
+

Ci + Bi

Ti
 i(21/i � 1)

8i = 1, . . . , n
Q

h:Ph>Pi

✓
Ch

Th
+ 1

◆ ✓
Ci + Bi

Ti
+ 1

◆
 2

8i = 1, . . . , n
P

h:Ph>Pi

Ch

Th
+

Ci + Bi

Ti
 1

Response Time Analysis (Extended)

8
>>><

>>>:

R(0)
i = Ci + Bi +

i�1P
k=1

Ck

R(s)
i = Ci + Bi + I(s�1)

i = Ci + Bi +
i�1P
k=1

&
R(s�1)

i

Tk

'
Ck

Processor Demand Test

g(0, L) =
nP

i=1

�
L�Di + Ti

Ti

⌫
Ci

L⇤ =
1

1� U

nP
i=1

(Ti �Di)Ui

Tables

n n(21/n � 1)
1 1.000
2 0.828
3 0.780
4 0.757
5 0.743
6 0.735
7 0.279
8 0.724
9 0.721
10 0.718

Part I

Quizzes (2 points)

Mark each of the following statements True or False.
Explain your answer in one sentence (if you wish).

Q1)
T

F

Under the Priority Ceiling Protocol, a task
can be blocked only before it starts executing,
never once it has started.

Explanation (optional):

Q2)
T

F

For each task set, there exists always one and
only one optimal scheduling algorithm (in the
sense of feasibility).

Explanation (optional):

Q3)
T

F

Preemption generally does not increase the
complexity of a scheduling problem.

Explanation (optional):

Q4)
T

F

For independent preemptive periodic tasks
under fixed priorities, the critical instant of a
given task occurs when all higher priority tasks
have the same activation time as its own.

Explanation (optional):

Q5)
T

F

A task set consisting of three tasks, ⌧1, ⌧2, and
⌧3, with identical period, is RM-feasible if and
only if the total processor utilisation is at most
1.

Explanation (optional):

Q6)
T

F

Priority Inversion is a phenomenon that cannot
occur if tasks are independent.

Explanation (optional):

Part II

Open questions (3 points)

O1) What are the main unsolved problems of the Priority
Inheritance Protocol? Use examples to illustrate the
point.

O2) Compare advantages and disadvantages of RM with
respect to EDF.

Part III

Exercises (6 points)

E1) Let �1 = ⌧1, . . . , ⌧6 be a set of preemptable, aperiodic
tasks with precedence constraints, to be executed on a
single-processor machine. Figure 1 shows release time
ai, worst-case computation time Ci, absolute deadline
di, relative to ai, and precedence relations of each task
⌧i in �1.

�1 ⌧1 ⌧2 ⌧3 ⌧4 ⌧5 ⌧6

ai 0 6 4 13 0 10
Ci 5 4 3 4 1 1
di 20 20 19 18 20 18

prec ⌧2 ! ⌧4 ⌧1 ! ⌧5 ⌧4 ! ⌧6

⌧3 ! ⌧4 ⌧5 ! ⌧6

Figure 1: Characteristics of the �1 task set.

Show the minimum lateness schedule for �1, using a
Gantt chart. Be sure to motivate your answer.

E2) Consider a set of periodic tasks �2 = ⌧1, . . . , ⌧4, to be
scheduled on a single-processor machine. Figure 2

shows period Ti and worst-case computation time Ci

of each task ⌧i.

�2 Ti Ci

⌧1 3 1
⌧2 4 1
⌧3 6 1
⌧4 12 2

Figure 2: Characteristics of the �2 task set.

E2.1) Is �2 feasible under fixed priorities?
E2.2) Is �2 feasible under dynamic priorities?

Let us now assume the following relative deadlines for
⌧2, ⌧3, ⌧4: D2 = 2, D3 = 5, D4 = 10, whereas T1 = D1 =
3. Let us call �0

2 this new task set (see Figure 3).

E2.3) Is �0
2 feasible under fixed priorities?

E2.4) Is �0
2 feasible under dynamic priorities?

Be sure to motivate your answer.

�0
2 Ti Ci Di

⌧1 3 1 3
⌧2 4 1 2
⌧3 6 1 5
⌧4 12 2 10

Figure 3: Characteristics of the �0
2 task set.

E3) Consider a task set �3, composed of 5 periodic tasks
⌧1, . . . , ⌧5 that share 4 resources a, b, c, d and execute on
a single-processor machine. �3’s tasks are represented
in Figure 4. Each resource is accessed in mutual
exclusion using the Stack Resource Policy (SRP).

a

a

d

d b c

c

b c

T1

T2

T3

T4

T5

Figure 4: Graphical representation of critical sections in �3.

Figure 5 shows phase �i, period Ti = Di, worst-case
computation time Ci, and a description of the access
windows to the shared resources of each task ⌧i, in
terms of start time t(Rk) and duration �i,Rk of the
critical section for each task ⌧i and each resource Rk.

�3 �i Ti Ci t(a) �i,a t(b) �i,b t(c) �i,c t(d) �i,d

⌧1 8 20 5 1 3
⌧2 6 30 6 1 4 3 1
⌧3 4 40 6 3 1 5 1 1 4
⌧4 2 50 3 1 1
⌧5 0 60 6 1 4 3 1

Figure 5: Characteristics of the �3 task set.

E3.1) Using a Gantt chart, show the schedule under
EDF+SRP, from time 0 until completion of the
first instance of ⌧5. Below the Gantt chart, show
how the system ceiling ⇧s evolves.

Real-Time Operating Systems M
Standard Exam. June 12, 2013

Please, fill in your data in the fields below. E-mail will be
used for communication of the exam results.

Name

Registration No. . . .

E-mail

Frequently used formulas and tables

Some of the following formulas and tables may be useful in
solving some of the exercises.
Schedulability Analysis (Extended)

8i = 1, . . . , n
P

h:Ph>Pi

Ch

Th
+

Ci + Bi

Ti
 i(21/i � 1)

8i = 1, . . . , n
Q

h:Ph>Pi

✓
Ch

Th
+ 1

◆ ✓
Ci + Bi

Ti
+ 1

◆
 2

8i = 1, . . . , n
P

h:Ph>Pi

Ch

Th
+

Ci + Bi

Ti
 1

Response Time Analysis (Extended)

8
>>><

>>>:

R(0)
i = Ci + Bi +

i�1P
k=1

Ck

R(s)
i = Ci + Bi + I(s�1)

i = Ci + Bi +
i�1P
k=1

&
R(s�1)

i

Tk

'
Ck

Processor Demand Test

g(0, L) =
nP

i=1

�
L�Di + Ti

Ti

⌫
Ci

L⇤ =
1

1� U

nP
i=1

(Ti �Di)Ui

Tables

n n(21/n � 1)
1 1.000
2 0.828
3 0.780
4 0.757
5 0.743
6 0.735
7 0.279
8 0.724
9 0.721
10 0.718

Part I

Quizzes (8 pts)

Mark each of the following statements True or False.
Explain your answer in one sentence (if you wish).

Q1)
T

F

In the indirect communication IPC scheme, a
communication link may be associated with at
most two processes.

Explanation (optional):

Q2) T

F

An advantage of multithreading is an increased
responsiveness in interactive applications.

Explanation (optional):

Q3)
T

F

All named pipes created by a process P are
automatically removed from the file system
after P terminates.

Explanation (optional):

Q4) T

F

Paging eliminates external fragmentation.

Explanation (optional):

Q5)
T

F

Deadlock cannot occur among processes that
need at most two (non-shareable) resources
each.

Explanation (optional):

Q6)
T

F

The working-set model is used to prevent
thrashing while at the same time optimising
CPU utilisation.

Explanation (optional):

Q7)
T

F

For independent preemptive periodic tasks with
fixed priorities, the critical instant of a given
task occurs when all higher priority tasks have
the same activation time as its own.

Explanation (optional):

Q8) T

F

Preemption generally does not increase the
complexity of a scheduling problem.

Explanation (optional):

Q9)
T

F

The processor utilization’s least upper bound
Ulub distinguishes between feasible and infeasi-
ble task sets.

Explanation (optional):

Q10)
T

F

Priority Inversion is a phenomenon that can
occur only when there are tasks sharing
non-preemptible resources.

Explanation (optional):

Q11) T

F

Ceiling blocking cannot a↵ect top-priority tasks.

Explanation (optional):

Q12)
T

F

Under the Priority Ceiling Protocol, a task
can be blocked only before it starts executing,
never once it has started.

Explanation (optional):

Part II

Open questions (10 pts)

O1) Describe the content of a Process Control Block.

O2) Illustrate the Dining Philosophers Problem. Show
a possible solution using semaphores. Discuss three
di↵erent ways to prevent deadlock.

O3) What are the Priority Inheritance Protocol’s main un-
solved problems? Use examples to illustrate the point.

Part III

Exercises (13 pts)

E1) Consider the following reference string:

1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 6, 5, 7.

Suppose you have four page frames. How may page
faults occur for the LRU page replacement algorithm?
Is that the minimum possible number of page faults?
Be sure to motivate your answer.

E2) Let �2 = ⌧1, . . . , ⌧6 be a set of nonpreemptable,
aperiodic and synchronous tasks with precedence
constraints, to be executed on a single-processor
machine. Figure 1 shows worst-case computation
time Ci, absolute deadline di, and precedence relations
of each task ⌧i in �2.

�2 ⌧1 ⌧2 ⌧3 ⌧4 ⌧5 ⌧6

Ci 5 4 3 4 1 1
di 20 20 19 18 20 18

prec ⌧2 ! ⌧4 ⌧1 ! ⌧5 ⌧4 ! ⌧6

⌧3 ! ⌧4 ⌧5 ! ⌧6

Figure 1: Characteristics of the �2 task set.

Show the minimum lateness schedule for �2, using a
Gantt chart.
Be sure to motivate your answer.

E3) Consider a task set �3, composed of 5 periodic tasks
⌧1, . . . , ⌧5 that share 4 resources a, b, c, d and execute on
a single-processor machine. �3’s tasks are represented
in Figure 2. Each resource is accessed in mutual
exclusion using the Priority Ceiling Protocol (PCP).

a

a

d

d b c

c

b c

T1

T2

T3

T4

T5

Figure 2: Graphical representation of critical sections in �3.

Figure 3 shows phase �i, period Ti = Di, worst-case
computation time Ci, and a description of the access
windows to the shared resources of each task ⌧i, in
terms of start time t(Rk) and duration �i,Rk of the
critical section for each task ⌧i and each resource Rk.

�3 �i Ti Ci t(a) �i,a t(b) �i,b t(c) �i,c t(d) �i,d

⌧1 8 20 5 1 3
⌧2 6 30 6 1 4 3 1
⌧3 4 40 6 3 1 5 1 1 4
⌧4 2 50 3 1 1
⌧5 0 60 6 1 4 3 1

Figure 3: Characteristics of the �3 task set.

E3.1) What is the worst-case blocking time Bi for
each task ⌧i 2 �3?

E3.2) Is �3 feasible with RM+PCP?
E3.3) Using a Gantt chart, show the schedule under

RM+PCP, from time 0 until completion of the
first instance of ⌧5. Below the Gantt chart, show
how ⌧5’s active priority p5 evolves.

Be sure to motivate your answer.

