1,601 research outputs found

    Feature-based generation of pervasive systems architectures utilizing software product line concepts

    Get PDF
    As the need for pervasive systems tends to increase and to dominate the computing discipline, software engineering approaches must evolve at a similar pace to facilitate the construction of such systems in an efficient manner. In this thesis, we provide a vision of a framework that will help in the construction of software product lines for pervasive systems by devising an approach to automatically generate architectures for this domain. Using this framework, designers of pervasive systems will be able to select a set of desired system features, and the framework will automatically generate architectures that support the presence of these features. Our approach will not compromise the quality of the architecture especially as we have verified that by comparing the generated architectures to those manually designed by human architects. As an initial step, and in order to determine the most commonly required features that comprise the widely most known pervasive systems, we surveyed more than fifty existing architectures for pervasive systems in various domains. We captured the most essential features along with the commonalities and variabilities between them. The features were categorized according to the domain and the environment that they target. Those categories are: General pervasive systems, domain-specific, privacy, bridging, fault-tolerance and context-awareness. We coupled the identified features with well-designed components, and connected the components based on the initial features selected by a system designer to generate an architecture. We evaluated our generated architectures against architectures designed by human architects. When metrics such as coupling, cohesion, complexity, reusability, adaptability, modularity, modifiability, packing density, and average interaction density were used to test our framework, our generated architectures were found comparable, if not better than the human generated architectures

    Automatically Discovering Hidden Transformation Chaining Constraints

    Get PDF
    Model transformations operate on models conforming to precisely defined metamodels. Consequently, it often seems relatively easy to chain them: the output of a transformation may be given as input to a second one if metamodels match. However, this simple rule has some obvious limitations. For instance, a transformation may only use a subset of a metamodel. Therefore, chaining transformations appropriately requires more information. We present here an approach that automatically discovers more detailed information about actual chaining constraints by statically analyzing transformations. The objective is to provide developers who decide to chain transformations with more data on which to base their choices. This approach has been successfully applied to the case of a library of endogenous transformations. They all have the same source and target metamodel but have some hidden chaining constraints. In such a case, the simple metamodel matching rule given above does not provide any useful information

    Control of sectioned on-chip communication

    Get PDF

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Hardware acceleration of the trace transform for vision applications

    Get PDF
    Computer Vision is a rapidly developing field in which machines process visual data to extract meaningful information. Digitised images in their pixels and bits serve no purpose of their own. It is only by interpreting the data, and extracting higher level information that a scene can be understood. The algorithms that enable this process are often complex, and data-intensive, limiting the processing rate when implemented in software. Hardware-accelerated implementations provide a significant performance boost that can enable real- time processing. The Trace Transform is a newly proposed algorithm that has been proven effective in image categorisation and recognition tasks. It is flexibly defined allowing the mathematical details to be tailored to the target application. However, it is highly computationally intensive, which limits its applications. Modern heterogeneous FPGAs provide an ideal platform for accelerating the Trace transform for real-time performance, while also allowing an element of flexibility, which highly suits the generality of the Trace transform. This thesis details the implementation of an extensible Trace transform architecture for vision applications, before extending this architecture to a full flexible platform suited to the exploration of Trace transform applications. As part of the work presented, a general set of architectures for large-windowed median and weighted median filters are presented as required for a number of Trace transform implementations. Finally an acceleration of Pseudo 2-Dimensional Hidden Markov Model decoding, usable in a person detection system, is presented. Such a system can be used to extract frames of interest from a video sequence, to be subsequently processed by the Trace transform. All these architectures emphasise the need for considered, platform-driven design in achieving maximum performance through hardware acceleration

    A computer-aided design for digital filter implementation

    Get PDF
    Imperial Users onl
    corecore