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There is only one basic way of dealing with complexity: divide and conquer.
A problem that can be separated into two sub-problems is more

than half solved by that separation. This simple principle

can be applied in an amazing variety of ways.

Bjarne Stroustrup, The C*+Programming Language.






Adventure

At End Of Road

You are standing at the end of a road before a small brick
building. Around you is a forest. A small stream flows out
of the building and down a gully.

>

UCH an adventure it’s been. In June 2004 we stood in Leuven on a
S parking lot, in front of a large brick building, IMEC’s offices. Offer-
ing our services for their research effort, they agreed, and we plunged
right into the Colossal Cave. In this Cave, one finds horrors and de-
lights. Disorientation strikes easily. Gremlins, bugs and gnomes hide
around the corner, then come out and throw spanners in the works.
Dwarfs steal research results from the unwary. There are dead ends,
deep gorges, cul-de-sacs, low hands and knees passages, complex junc-
tions.

You are in a maze of twisting little passages, all different
You are in a little maze of twisty passages, all different.
You are in a twisting maze of little passages, all different

You will find breath-taking views and campfires, where adventur-
ers huddle at night. Doubt gnawing their insides, they unfold maps,
murmur songs that speak of thirst for exploration, of past papers well-
received. They will tell you stories about past heroes finding treasure
in the Cave and retreating to distant shores. The place may be eerie
sometimes, but the environment is international, magazines and fast
printers abound, and one can learn a lot. My own quest was intermit-
tent, eventful and at times hair-raising. I would dig for hours, come
up for air only once and then, wander on the parking lot, and think
about the strange landscape below. In Ghent, in my bathroom, in the
morning, I would still muse on the riddles of the Cave.



Today I salute and thank my partners in exploration, whom I met
in the Cave: Jin, Miguel, Hua, Florian, Praveen, Murali, Sven, Arnout,
Hao. Antonis Papanikolaou, my daily supervisor at IMEC, gradually
learned to support my confused explanations and separate the funda-
mental from the drivel. Donald Knuth stated that premature optimiza-
tion is the root of all evil. Francky Catthoor provided the philosophical
framework and never failed to keep on reading and listening. My col-
leagues at Hogeschool Gent, department head Marc Vanhaelst and our
group’s chairman, Jan Beyens, gave great moral support throughout
my travails. Lif, my wife, brightened the other hours of my life, and
supported one more student in the household. My children Aline and
Evert made it worth it. Mieke Geusens and Jan Heyrman, sister-in-law
and brother, generously provided food, lodging, stimulating conversa-
tion and good company in Leuven. Jan by the way taught me useful
model railway layout when I was six. Peter Veelaert showed where
algorithms pay off. Pol Marchal explained how to write a scientific pa-
per. Stuart Feldman, a lesser god from the Bell Labs UNIX development
group, wrote make(1) , and enabled experimentation of the sort done
in this work. Wilfried Philips ensured overall sanity. If all was clear,
he was never grumpy. Otherwise, he preferred to be clear. William
Saphire cleared subtle matters of hyphenation. The examination com-
mittee helped improving scope, overall structure and conciseness. St.
Christopher suspended traffic jams between Gent and Leuven for the
duration.

Special thanks go to people who contributed by publishing their
code: Fokko du Cloux from Atlas, Wong Shao Voon from Singapore,
Dick Grunwald from University of Colorado at Boulder, A. Dharwad-
ker, and David Eppstein from University of California, Irvine. I am in-
debted to them, and sending them a complimentary copy of this thesis.
I will make sure to publish my code in turn.

Now here we are after this long journey, “down there and back up
again”. It was an ancient initiation ritual. It was the companionship
that counted, and the chance I got at mining a diamond.

Kris.

Ghent, October 2009.

> You're at end of road again.
> You have achieved the rating: "Experienced Adventurer".



Summary

0Cs, a form of very large-scale integration (VLSI) technology, are to-
day prevalent in embedded applications. With the ever-decreasing
size of IC features, the International Technology Roadmap for Semi-
conductors predicts that chips with a billion transistors will be cost-
effective soon. Made up from programmable processors, SoC architec-
tures are increasingly seen as the best choice to make use of this com-
plexity, since they leverage established design techniques and existing
sets of Intellectual Property (IP). They are simple enough to be de-
signed by teams of limited size, in a time short enough for products to
be profitable in the market.

In integrated circuits, latency and chip area were formerly the main
cost factors deciding the merit of a product. The deep sub-micron
(DSM) domain, the present stage of scaling, causes power consump-
tion to become an extra limitation. Thus power savings are presently
studied in all research organizations. In SoCs, power tends to be dissi-
pated by interconnections, rather than by the transistors used for actual
information processing. Also, in response to higher demands for band-
width and reliability, communication architectures are becoming more
complex themselves. Interconnection, therefore, is a crucial aspect of
future SoC design.

Energy-efficient Sectioned Communication (EESC) is a new method-
ology for on-chip communication. Some existing techniques, called bus
segmentation or splitting, are similar but have a coarser granularity in
space and in time. EESC was developed over recent years by IMEC (the
Inter-university Micro-electronics Center of Belgium) to combat prob-
lems of power consumption by interconnects in the DSM domain. It
complements a panoply of other measures taken in the semiconduc-
tor industry, operating at various architectural levels. EESC involves
both the physical and the upper (“platform”) level. Beside focusing
on powet, it aims to be the best compromise for communication over



medium distances: the wiring inside the tiles that make up a SoC. The
high level of activity of information processing inside such tiles makes
this type of communication an important contributor to overall costs.
Over medium distances, EESC is an improvement over another con-
cept, the network-on-chip (NoC), which is a good compromise for long-
distance communication.

Sectioned on-chip communication reduces power consumption by
switching off sections of wire at all times when they are not being used.
Since communications patterns inside a SoC tile change so fast, to con-
trol them is in itself a daunting task. Control of EESC was not stud-
ied before: it is the subject of this thesis. We show that such control
can originate from the program itself, and re-use decisions made once
at compile time by the compiler’s scheduler. This avoids unnecessary
costs for control circuitry continuously making the same decisions as
they recur at run time.

Apart from advocating the principle of programmed control, we
establish a novel theory to analyze and design the control circuitry for
on-chip networks. If sectioned communication is to be used in the DSM
domain and beyond, design engineers must become familiar with our
framework and it must be incorporated in automated design software.
Also we must convince users that our concepts will work for all topo-
logies and not fail for the large networks of the future. In other words,
our approach must be scalable with the number of terminal circuits in-
volved in intra-tile communication.

Our goal is to design a small control plane, one that will be fast
enough, and consume little area and power. Optimization for size is
our main concern throughout design and analysis. Size of control cir-
cuitry relates directly to the size of the state space of the object un-
der control. For a communication network, this space can be very
large, unless a description of state can be found that has no redun-
dancy. Our theory establishes a minimal state space description for
on-chip networks. When the demands on the communication architec-
ture are well specified, this minimal state space is much smaller than
the full combinatorial state space of the network. For a given instruc-
tion set architecture of the SoC, the states actually used in operation
are called useful states. Useful-state space is determined by a process
called Useful-state Analysis (USA), focusing on the allocation of swit-
ches to paths through the communication architecture. In a sense, the
switches are resources and the paths are jobs. USA is a job allocation
problem taking account of path concurrency. The result of this analy-



sis relates network control codes to desired states of the network under
control. Since the useful-state space is minimal, the encoding, termed
useful-state encoding (USE) is minimum-redundancy in a topological
sense.

Given these useful-state codes the task of the control plane becomes
to convey codes to the network in an optimal way. A design pattern for
control circuitry emerges, which we apply to the main domain at IMEC:
embedded SoCs for data-intensive applications. The design pattern al-
lows us to distinguish the cost elements of control.

The thesis proposes new methods for the analysis, design and vali-
dation of the control plane. It contains examples of key components of
the control plane, as well as some original algorithms we developed to
design them. The theory of USA and our design framework are used
in a number of cases, allowing us to demonstrate that communication
architectures can be ranked as to their suitability for EESC by two fig-
ures of merit: Useful-encoding Efficiency (UEE) and Intrinsic Sectioning
Gain (ISG). Also, that two overall use classes must be distinguished:
architectures having fixed bandwidth, for instance shared-media, and
variable-bandwidth architectures. From the use cases, rules of thumb
are deduced, and a conclusion is reached on the scalability of control
with many terminals. The thesis ends with an overview of our design
framework and a proposal for future work, aiming to either extend the
borders of scalability, or the range of communication distance where
EESC can be applied.

The work has led to five papers, delivered at three conferences and
two symposia, and to a presentation at the System C User’s Group,
published on the Internet. An overview paper was accepted by the
journal IEEE Transactions on VLSI Systems and awaits publication.
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Samenvatting

N ingebedde toepassingen zijn system-on-chips (SoCs) vandaag de
meest toegepaste vorm van VLSI-technologie. Gezien de voortschrij-
dende miniaturisatie van geintegreerde circuits, voorspelt de interna-
tionale technologie-roadmap voor halfgeleiders (ITRS) dat het binnen-
kort kostenefficiént zal zijn om chips met een miljard transistors te pro-
duceren. Meer en meer aanziet men SoC architecturen als de beste
keuze om gebruik te maken van deze mate van complexiteit. Als samen-
bouw van programmeerbare processoren laten zij toe gekende ontwerp-
technieken en bestaande blokken van Intellectual Property (IP) te her-
bruiken, terwijl ze toch eenvoudig genoeg blijven om door kleine teams
ontworpen te worden, en dit snel genoeg opdat de ontwerpen winst-
gevend zouden zijn in de markt.

Latentie en oppervlakte op de chip waren tot op heden de kosten-
factoren die de kwaliteit van een geintegreerd circuit het sterkst bein-
vloedden. In het diepe submikron (DSM) domein, waarheen de scaleer-
baarheid van technologie ons heeft gevoerd, krijgen begrenzingen op-
gelegd door vermogenverbruik echter steeds meer invloed. Om die re-
den wordt in alle onderzoeksinstellingen opzoekingswerk gedaan naar
vermogensbesparingen. In SoCs wordt vermogen gedissipeerd door
draadverbindingen, eerder dan door de transistoren die de informatie
verwerken. Omdat hogere eisen worden gesteld aan bandbreedte en
betrouwbaarheid, worden anderzijds ook de communicatie-architec-
turen zelf steeds complexer. Het aspect van de interconnectie is voor
toekomstige ontwerpen van SoCs dus cruciaal.

Gesectioneerde energie-efficiéente communicatie (EESC, “Energy-ef-
ficient Sectioned Communication”) is een nieuwe methode voor on-
chip communicatie. Er bestaan andere gelijkaardige technieken, zoals
bussegmentatie of bus-splitting, die echter een grovere granulariteit
in tijd en ruimte vertonen. EESC werd de laatste jaren ontwikkeld
door IMEC, het Interuniversitaire Micro-elektronicacentrum, om ver-



viii

mogensverliezen door interconnecties in het DSM domein te bestrij-
den. EESC is complementair aan andere maatregelen die overal in de
halfgeleiderindustrie worden genomen en die werken op verscheidene
architecturale niveaus. EESC zelf is werkzaam op fysisch zowel als op
een hoger niveau, namelijk dat van het platform. De methode beoogt
niet alleen vermogensbesparing, maar wil ook het beste compromis
uitmaken voor communicatie op middellange afstand: dit wil zeggen,
voor bedrading binnenin de tegels van een SoC. De activiteitsgraad van
de informatieverwerking binnen deze tegels ligt hoog. Dat betekent dat
de bedrading een belangrijke bijdrage levert tot de totale kost. EESC is,
over middellange afstand, beter dan een ander concept, network-on-
chips (NoCs), welke dan weer voor lange afstanden, tussen verschil-
lende tegels, een goed compromis vormen.

Gesectioneerde on-chip communicatie bespaart vermogen door de
secties van draden op alle ogenblikken dat zij niet in gebruik zijn af te
schakelen. Het is een uitdagende taak de communicatiepatronen bin-
nen de tegel van een SoC aan te sturen, omdat de patronen zo snel
veranderen. Tot op heden was er nog geen studie van de aansturing
van EESC ondernomen: het werd het onderwerp van dit doctoraat. Wij
tonen aan dat de aansturing kan voortkomen uit het programma zelf,
en hergebruik maken van beslissingen door de scheduler bij het com-
pileren. Dit vermijdt het oplopen van weerkerende kosten voor bestur-
ingscircuits die voortdurend at run time dezelfde beslissingen maken.

Los van dit principe van aansturing door het programma, stellen we
in dit proefschrift een oorspronkelijke raamwerk, een theorie, voorop
voor het analyseren en ontwerpen van de sturing van on-chip netwer-
ken. Willen we gesectioneerde communicatie invoeren in het DSM
domein en nog verder, dan moeten ontwerpingenieurs vertrouwd raken
met ons raamwerk en dient het opgenomen te worden in software voor
geautomatiseerd ontwerp. Evenzo moeten gebruikers ervan overtuigd
worden dat onze concepten blijven werken voor alle topologieén, en
voor de grote netwerken die in de toekomst kunnen worden verwacht.
Met andere woorden moet onze benadering scaleerbaar zijn met het
aantal terminals dat binnen een tegel aan de communicatie deelneemt.

Ons opzet is een klein aansturingsvlak te maken, dat snel genoeg
zal zijn en weinig oppervlakte of vermogen gebruiken. Onze belang-
rijkste zorg doorheen ontwerp en analyse is optimalisatie voor kleine
afmetingen. De afmetingen van een sturingscircuit staan in rechtstreeks
verband met die van de toestandsruimte van het object dat wordt bestu-
urd. Bij een communicatienetwerk kan zulke toestandsruimte erg groot



zijn, tenzij we er in slagen een redundantie-vrije beschrijving van de
toestand te vinden. Onze theorie stelt een minimale beschrijving van de
toestandsruimte van on-chip netwerken voorop. Worden de vereisten
gesteld aan de communicatie-architectuur correct geformuleerd, dan
is deze toestandsruimte kleiner dan de complete combinatorische toe-
standsruimte van het netwerk. Voor een gegeven instructieset-archi-
tectuur van de SoC noemen wij de toestanden die effectief in werking
gebruikt worden, de nuttige toestanden. De nuttige toestandsruimte kan
worden vastgesteld door nuttige-toestandsanalyse (USA, “Useful-state Anal-
ysis”). Deze procedure spitst zich toe op het toewijzen van schake-
laars aan paden doorheen de communicatie-architectuur. In zekere zin
zijn de schakelaars resources en de paden jobs: USA is een probleem
van job-allocation, dat rekening houdt met het gelijktijdig bestaan van
paden. Het eindproduct van dit vraagstuk, een padverzamelingstabel
genaamd (PSLT, “path-set lookup table”), brengt codes in verband met
gewenste toestanden van het gestuurde netwerk. Omdat de nuttige
toestandsruimte minimaal is, is de resulterende codering, die we nut-
tige toestandscodering (USE, “useful-state encoding”) noemen, minimaal
redundant in topologische zin.

Gegeven deze aanstuurcodes wordt de opdracht van het aanstur-
ingsvlak de codes op optimale wijze over te brengen naar de schake-
laars. Er ontstaat een ontwerppatroon voor de sturingscircuits, dat
we toepassen op het belangrijkste domein van IMEC: embedded SoCs
voor data-intensieve toepassingen. Het ontwerppatroon laat toe alle
elementen van de kosten van aansturing te onderscheiden.

Het proefschrift stelt verder een nieuwe aanpak voor van de ana-
lyse, het ontwerp en de validatie van het aansturingsvlak. Naast enige
oorspronkelijke algoritmes, ontwikkeld om essentiéle onderdelen te kun-
nen ontwerpen, bevat het voorbeelden van die onderdelen. De USA-
theorie en het raamwerk voor ontwerp worden gebruikt in een aan-
tal toepassingen. Dit laat ons toe aan te tonen dat communicatie-ar-
chitecturen kunnen gerangschikt worden met betrekking tot hun ges-
chiktheid voor EESC, door middel van twee indicatoren: rendement van
nuttige codering (UEE, “useful-encoding efficiency”) en intrinsieke winst
door sectionering (ISG, “Intrinsic Sectioning Gain”). Verder kan een on-
derscheid gemaakt worden tussen twee gevallen van gebruik: architec-
turen met vaste bandbreedte, bijvoorbeeld gedeelde media, en archi-
tecturen met variabele bandbreedte . Uit deze toepassingen kunnen we
vuistregels afleiden, naast een besluit over de scaleerbaarheid met vele
terminals. Het proefschrift eindigt met een overzicht van ons raamw-



erk voor ontwerp en een voorstel voor verder onderzoek. Dit laatste
zou zich kunnen richten op twee onderscheidbare gebieden: enerzijds
zouden de grenzen van de scaleerbaarheid kunnen verlegd worden, of
anderzijds zou het afstandsbereik van de communicatie waarover men
EESC kan toepassen kunnen worden uitgebreid.

In het kader van dit werk werden vijf artikels gepubliceerd, voorge-
bracht op drie conferenties en twee symposia, en een presentatie ge-
geven voor de System C User’s Group en gepubliceerd op het Inter-
net. Een overzichtsartikel werd geaccepteerd door het tijdschrift IEEE
Transactions on very large-scale integration (VLSI) Systems en wacht op
publicatie.
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Chapter 1

Introduction

We're like penguins with the ice melting around them.
We keep on doing the same things.

G. Daniel Hutcheson, on power consumption by interconnects.

In this introductory chapter we situate the research presented in
this PhD thesis. We describe the problem of power consumed by
on-chip wire interconnection; a methodology, EESC, intended to
address this problem; the related problem of interconnect reliabil-
ity degradation; and the importance of control in EESC.

We will relate our research to the program of IMEC'’s technology-
aware design (TAD) group, highlight our own contributions and
those of others in the group, and finally preview the material to
come.

N the deep sub-micron (DSM) domain, wires dissipate more power
I than transistors. Energy-efficient Sectioned Communication (EESC)!
is a form of bus segmentation that reduces the power loss from on-
chip interconnects, by switching off the supply voltage from inactive
drivers, instruction-cycle by instruction-cycle. How EESC must be con-
trolled, however, was not clear at the beginning of this research. It
was anticipated that control strategies could easily run into scalability
problems for large or complex networks. Our work intends to provide

! Another term for the same concept, Power Gating for Wires (PGW), is more con-
cise, indicating at the same time how it is done, and stressing the aspect of control. It
was used in [62]. In this work, we do not use it. The term EESC, describing the design
methodology by its intention, is more common at TAD.
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Figure 1.1: Trends in feature length. A feature, which characterizes a technol-
ogy node, is the physical or printed length of an MPU gate, or the half-pitch
of a memory cell. (Source: ITRS)

a framework for optimal control plane design, and to study and im-
prove the limits that scalability imposes. To do so, we first explain the
urgency of the problem of excessive power consumption in the DSM, its
particular importance for wire interconnects within system-on-chips,
and the nature of the (initial) misgivings about its control.

1.1 On-chip Communication and EESC

1.1.1 Energy Consumption in the Deep Sub-micron Domain

In the semiconductor industry, miniaturization is expressed in terms
of lengths of features that characterize a generation of technology (a
“node”). Driven by economic opportunity, and guided by the Inter-
national Technology Roadmap for Semiconductors (ITRS) [67], the
feature lengths of new technology nodes have decreased over the last
forty years at a rate of approximately 0.71 per 2.5 year, as shown in
Fig. 1.1. It is the intention of the industry to continue this advance.
Between individual market segments, the front of this advance is
uneven, depending on the prevailing market dynamics. At present,
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technologies for cutting-edge processor cores and high-density static
random-access memory (SRAM) employ 32 and 45 nm nodes. Recent
field-programmable gate arrays (FPGAs) (Stratix IV, Virtex 5). achieve
feature lengths of 40 and 65 nm. New system-on-chips (SoCs) and
application-specific integrated circuits (ASICs), which may be low-
power, embedded, or small-volume, lag somewhat in the adoption of
new nodes. These integrated circuits (ICs) are being implemented in a
range from 70 nm up to 360 nm, and more. Some high-volume markets
for low-power consumer SoCs, like mobile telephony digital baseband
receivers, are presently reaching 45 nm nodes in production [21]. Re-
search efforts, of course, have always anticipated the introduction of
nodes by a number of years.

For the ITRS plan, excessive energy consumption is a relatively new
and growing problem. This was illustrated by the emergence in 2004
of a power wall in CMOS microprocessor design, forcing a major re-
vision on the roadmaps for main-line microprocessing. According to
Flynn [35], the essence of the power-wall problem is the cubic trade-
off between time and power, where T2 x P is constant over technology.
This forces designers to use relatively cheap area to offset the expensive
power required by high clock rates. The problem is in no way limited
to the microprocessor market.

Horowitz [65] formulates the trade-off in the following way: one
can (i) trade speed for power, either by voltage scaling, or transistor siz-
ing. This does not by itself decrease power consumption. Technology
scaling does save power for local wires and gates, but is hampered by
the fact that the threshold voltage for CMOS devices does not scale
along with the supply voltage. This introduces new power losses by
leakage. (ii) Additionally, one can make sure that idle circuitry does not
use any power, either from static losses or from unnecessary transitions.
For this, it must be possible to switch circuits off selectively. Systems
must be divided in a heterogeneous fashion, so that in some phases of
operation the functionality of some blocks can be deactivated. Accord-
ing to Horowitz, the most significant power reductions using this strat-
egy can be obtained by examining the problem at the system level. (iii)
One can also exploit parallelism where it is available at small enough
cost. (iv) With creative insight, one can implement the computation
tasks in a more efficient way.

Since strategy (i) is in the realm of physical design, and strategy
(iv) is for the algorithm designer or software architect, the hardware
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Figure 1.2: Photograph of a tile-based SoC.

system designer’s workspace is defined by the axes of strategies (ii)-
(iii): heterogeneity and parallelism, at different hierarchical levels, with
all granularities suitable to the design. Those two approaches offer the
best opportunities to address the energy consumption problem, as we
encounter it in the design of intra-tile communication for SoCs.

1.1.2 Intra-tile Communication

The worsening of the trade-offs from technological progress, and the
strategies employed to rebalance them, are common to all fields of ap-
plication, including the field of programmable embedded SoCs (Fig. 1.2),
which have been our concern at the Inter-university Micro-electronics
Center (IMEC). SoCs are combinations of heterogeneous hardware
blocks, operating in parallel to a high degree. The blocks are managed
by sophisticated microprocessors, themselves running under control of
dedicated software. We call the parts of SoCs under control of a single
program a “tile”.

From the above, we see why the problem of power consumption
places an extra burden on the intra-tile communication architecture.
A typical intra-tile network is shown in Fig. 1.3. Because of the de-
mands of heterogeneity and maximal parallelism, the data rate to be
transferred within a tile is high. The internal communication network
should provide large enough bandwidth at low power. This must be
achieved using the same principles cited above: heterogeneity, and par-
allelism in communication.

For interconnects a specific physical scaling problem exists. The

delay of global wires scales badly in proportion to the delay of local
wires and gates, as is shown in Fig. 1.4. This implies an increase in line
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Figure 1.3: The synchronous network inside a processor tile (within the
dashed box) connects memories and functional units internal to a tile.

driver power for medium and long-distance communication. Conse-
quently, low-power interconnects have in recent years become a major
challenge to the industry. Designers have been forced to rethink many
aspects of their craft, as seen from a number of surveys on this mat-
ter [23, 26, 37, 53, 54, 75, 105]. Many remedies are already applied to-
day [7, 12, 98]. To be effective, such a remedy must approach the prob-
lem at once at diverse levels: structural (like, for instance, 3D chips),
modeling (diagonal wires), procedural (fault tolerant communication),
circuit-level (low voltage signaling), architectural (communication ar-
chitecture selection, bus isolation), and system-level (power manage-
ment, voltage scaling). None of these remedies are particular to a spe-
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Figure 1.4: Scaling properties of global wire delays vs. delay of local wires and
gates. (Source: ITRS)

cific technology node or application field. Taken together, they form
an array of related design techniques developed by the semiconductor
industry to address the problem of low-power on-chip communication.

Interconnect reliability degradation in SoCs An additional problem
in SoC interconnects, touched upon in this thesis, is again caused by
technology scaling. Although tremendous improvements in chip relia-
bility have been achieved, complementary metal-oxide semiconductor
(CMOS) materials have been pushed to their limits. Due to the bad
scaling characteristics of interconnects, illustrated in Fig. 1.4, copper
which has better RC properties now replaces aluminum. Use of cop-
per wires, and their insulators which typically use low-+ dielectrics,
expose reliability problems that will be exacerbated by scaling. The
physical phenomena causing these are called Electron Migration (EM)
and Time-Dependent Dielectric Breakdown (TDDB) [52]. These factors
of reliability degradation introduce a “wear-out” mechanism into sce-
narios of failure to be taken in account. Thus special measures must
be taken to ensure survivability of on-chip communication in future
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Figure 1.6: Principle of wire sectioning by switches.

technology nodes. One such possible measure is the re-routing of com-
munication paths over the lifetime of a chip.

1.1.3 Energy-efficient Sectioned Communication

EESC is a promising approach to remedy the problem of energy con-
sumption by interconnects. In EESC, we exploit deactivation of sub-
circuits in the form of wire sectioning. The physical basis of EESC is
heterogeneity: the partitioning of similar resources in parts that can
be controlled separately. It divides wires in sections and refrains from
driving the wire sections during cycles when this is not necessary for
the purpose of information processing. The sectioning is performed by
switches that incorporate line drivers. A typical such switch is shown
in Fig. 1.5: it is a six-way three-terminal (6W3T) switch. It contains
six tri-state buffers. The alternative (3 pass transistors) has an ‘on’-
resistance that is too high to be practical [90].

We illustrate the effect of EESC in Fig. 1.6. With wire sectioning,
when the 3 sections between t0 and t1 are driven during a particular
cycle, the sections leading off to 2, t3 and t4 are not driven. This saves
the energy required to change their voltage. If additionally the short
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sections between t0 and t1 are at once the shortest and the most ac-
tive ones over the duration of the program, the energy-saving effect is
stronger. We call this power-aware placement.

The concept of EESC involves at once a style of interconnection, that
can be compared with other styles like network-on-chips (NoCs) and
shared media, a design framework, including macro-based layout and
activity-aware floor-planning, and a preference for programmed con-
trol over hardware control. Besides consuming little energy, on-chip
communication must scale well with the number of channels and ter-
minals involved in communication, display low latency and little wire
congestion, and suit automatic design procedures, like floor-planning,
well. For all these criteria, the EESC concept, as it turns out, scores
very reasonably. Nowhere is it perfect. EESC is intended to be the best
compromise for intra-tile communication systems over the medium-
distance in the DSM domain.

Accounts of EESC as a methodology for power conservation have
been made by IMEC’s Technology-aware Design (TAD) group in var-
ious publications [46, 47, 48, 49, 91, 116] and two PhD theses [50, 92].
High savings were achieved in energy conservation through resource
partitioning, block ordering and energy-aware floor planning. On aver-
age, EESC can decrease communication energy consumption by a fac-
tor of 2.9, when compared to a shared-media bus approach without sec-
tioning [50]. This impressive performance can be seen as the result of
applying heterogeneity with high granularity, based on decisions made
at a high level (programmed control), with little overhead, on an archi-
tecture that was partitioned well.

1.1.4 The Problem of Control

Previous work by TAD studied interconnects in the data plane.? In [92],
it was recognized that controlling EESC poses scalability problems, but
these were not yet addressed. This thesis, focusing on the control plane,
will fill in what was hitherto a gap in our mastership over EESC, ad-
dressing its problems of control, and confirming its feasibility, which

In telecommunications, functions associated with providing services in networks
are commonly split in data, control and management planes. The data plane is associ-
ated with end-to-end transport of data. Functions of control and management plane,
in the conventional sense, refer to distributed and centralized control information re-
spectively. We follow the less rigid usage of not making this last distinction and calling
both “control”.
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depends much on the method of control: the switches in Fig. 1.6 have
to be driven by the proper control signals.

When this work started, it was not known (i) from where the control
bits for the sectioning switches should originate: fetched by value from
memory, or generated from the program’s control flow in some way;
(ii) which cost elements dominate the control process; (iii) whether con-
trol information can be processed with advantage for distribution over
the surface of the processor; (iv) whether temporal re-use can be used
profitably for control of EESC; and (v) whether it is possible in all cir-
cumstances to generate correct control information. Also, the energy
requirements for control can conceivably undo the gain from section-
ing. This must be avoided. Finally, even if the energy balance of costs
versus savings is favorable for small and simple networks, the method
of control might scale badly to very large or complex networks. Thus,
the main challenge is to establish a framework achieving control at low
cost, for a range of communication architectures that might ultimately
become large and complex. This particular aspect had not yet been re-
searched at IMEC, and became the subject of this thesis.

1.2 Contributions and Publications

In this section, we highlight the various contributions made to this
body of work by individual persons, at IMEC and elsewhere, includ-
ing the author.

Origins Bus segmentation® has a long lineage [11, 5, 77]. It has been
applied for resource conservation at every scale of computing: for inter-
rack connections in supercomputing, where the concept originated, to
inter-board, on-board and on-chip level. Presently we use it for wires
less than a millimeter long.

EESC was conceived at IMEC [89] by derivation from earlier work
on segmented buses, e.g. J. Y. Chen’s [27]. What makes control for EESC
demanding is not the mere fact of sectioning but its high granularity, in
space and in time. Said otherwise, what distinguishes EESC from other
forms of bus segmentation are the short length and the high number of

*In literature, bus segmentation is also called “bus isolation” or “bus splitting”. In
this thesis, we want to avoid using the term “bus”, which has become ill-defined, so
we use henceforward the term sectioned communication.
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sections, and the frequent reconfiguration.

H. Zhang [124] published a seminal paper on on-chip communica-
tion, applied to digital signal processor (DSP) chips. He proposed some
sectioned interconnect architectures suitable for exploitation of hetero-
geneity and parallelism, both for local and global connections. Zhang's
paper discusses hierarchical networks, multiple buses, and elements
of power-aware placement. Many other papers [6, 27, 66, 70, 79] on
on-chip segmented buses address energy-related issues, and advocate
the savings that can be obtained from sectioned hierarchical topologies.
The topic of how to control these structures is not explored yet. For con-
trol, their authors often rely on various forms of arbitration. Contrary to
this view we think that, in the context of intra-tile SoC communication,
such an approach involves unnecessary overheads, and will elaborate
on this view in Chapter 3.

1.2.1 Contributions at IMEC

Since the evolution of our thinking makes for an interesting story, espe-
cially for a future implementer, we mention the contributions in histor-
ical fashion. The principle of EESC emanates from IMEC’s unified de-
sign flow for low-power data-dominated multi-media and telecom ap-
plications [24]. It was developed by a TAD team including Miguel Mi-
randa, Antonis Papanikolaou, Hua Wang and Jin Guo, who performed
the work in the data plane, including power-aware placement. Antonis
Papanikolaou, my daily supervisor at IMEC, and myself decided on
the first strategies for exploration of control and the methodology for
experimentation.

Statistical studies on application drivers yielded an insight in bit
activities in the control plane, and on the prospect of clustering the
control plane by proximity of switches. Florian Starzer did power-
aware floorplanning for these applications, using the Data Access and
Storage Management for Embedded Programmable Processors (DTSE)
methodology [25]. Scheduling and profiling were performed with
IMEC’s ATOMIUM Low Power Design Tool, while I myself developed
a program named Segmented Bus Analysis (SBA) for profile analysis.
Results, published in [56, 57], showed (i) that transport energies of con-
trol were reasonably low for small fixed-bandwidth communication
architectures, and (ii) that clustering the control plane by proximity
of the switches was much less required than clustering by bus. Some
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disadvantages of the method of analysis showed up. With SBA, a mar-
gin of error exists in attributing cycles in the communication system to
basic blocks in a program. Also, overlong execution times are required
for profiling and analysis.

Finding it difficult to separate run-time concerns from compile-
and design-time considerations, and to distinguish between the roles
of designer, compiler, instruction set, program, and processor at dif-
ferent points in time, we developed the paradigm of an idealized
“communication-aware” processor. This paradigm is novel even if
maybe not revolutionary. It helped us to settle questions, doubts and
arguments. Using this paradigm, we made a detailed study of a single-
issue microprocessor with a memory hierarchy and loop buffers, ca-
pable of running simple applications. This platform was an archety-
pal communication-aware processor. Physical models for the wiring
were from Banerjee[13]. The memories were modeled with CACTI,
an existing model for memory access time, area, and power [22]. Hao
Zhang did the power-aware floorplanning. Grunwald [43] provided
a transaction-level model of a DLX processor. I wrote the register-
transfer level (RTL)-level model of EESC and the System C simulator.
As a result, we had a detailed, full and working representation of all
aspects of EESC, including compiler and processor functionality. This
ensured that we were not overlooking any cost element. The work
was published in [59] and the method of simulation presented in a lec-
ture [61]. Gradually, I developed new ideas on the relative importance
of loop buffers and instruction set architecture, on the scaling behav-
ior for large and complex topologies, the opportunities of topological
analysis and on useful-state analysis. This involved a paradigm shift
from software-assisted to program-controlled operation, and enabled
an optimal control plane to emerge. The need for a special-purpose
compiler disappeared, and attention shifted away from shared-media
“buses” towards irregular topologies.

Loop buffers Initially, it was thought that the control information for
the control plane would be read by value from instruction memory. In
that case, they would form part of a ‘communication instruction’, to be
fetched for each transfer. Loop buffers, which play a role in low-power
instruction memory organization (as described in [68]), were thought
to have a specific role in the EESC control plane.

Gradually I realized that loop buffers must be employed with one of
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two purposes in mind: to reduce instruction fetch energies (I called this
“fetch loop buffering”) or to reduce power dissipation from transport-
ing control information (which I called “transport loop buffering”). It
was found that the two purposes cannot be combined in a single loop
buffer, since the decoding circuits of the processor get in the way. If
both purposes were to be implemented, one would need two sets of
loop buffers.

Fetch loop buffering is orthogonal to the issue of EESC. As for trans-
port loop buffering, it can only reduce vestigial control transport en-
ergy in the processor, after fetch loop buffering has done its work. This
was found unnecessary, since experiments showed that: (i) per control
wire, control transport energy is not higher than data transport energy.
As long as the number of control wires is small, control transport en-
ergy will not dominate. (ii) Memory access for transport loop buffering
turns out to have an unacceptable energy cost overhead; and (iii) gen-
erating control bits with a path decoder is in comparison almost free.
The concept of control processing with loop buffers, which had been
central to our thinking, lost its primacy.

Instruction Set Architecture At first, it was assumed that “software
control” by itself meant a responsibility for the compiler to calculate
control bits. Since no compiler designers were part of our team, this
posed a problem. Gradually we realized that the compiler does not
always have special tasks in connection with control of EESC: what
we will call “transfer-awareness” is already part of the instruction
set architecture (ISA). Scheduling is already done by a compiler.
Communication- or topology-awareness (these concepts will be de-
fined later) have their merits, but only if they are already part of the
ISA. Hence, the ISA is the medium of communication between the
designer of the control plane and the writer of the compiler. We could
thus still do programmed control in the absence of any special-purpose
compiler, if only for fixed-bandwidth communication architectures.
For variable-bandwidth scheduling, a theory (useful-state analysis, de-
scribed in Chapter 4) had to be developed before any compiler could
be built.

Large and complex topologies Shifting our attention to more com-
plex communication architectures, we became aware that the problem
of scalability was not necessarily linked to topological complexity but
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rather to size of the network, in terms of number of switches. The trans-
port energy in the control plane was not by itself so much of a problem
as was the bitwidth of the control plane: this width represents a cost in
chip area, for simple as well as for complex topologies.

Topological analysis Our early methodology centered on lengths of
wire sections and transition activities on the wires of the communi-
cation system. These are cumbersome to analyze because they result
from extensive interaction between research concerns (optimization of
the communication network), design activities (chip layout), compila-
tion (ISA and control decisions to be made), run-time activity (physical
phenomena) and post run-time analysis (profiling, which then couples
back to design).

It was realized that many aspects of the data plane could be decou-
pled from control plane design. A baseline gain could be aimed for by
design of the topology, making abstraction of geometry, activities and
schedules. In this approach, the topology is seen as determined from
data-plane design work. The control plane then follows a design frame-
work described in this thesis, which is optimal in the absence of data
about geometry, activities or schedules. It guarantees a certain gain
from EESC, that can be improved upon by better statistical analysis,
but is in the first place an achievement of topological analysis itself.

Useful-state Analysis Regarding the scaling with large topologies,
we realized that we could reduce control plane width by a minimal-
redundancy representation of the communication network to be con-
trolled. This would lead to a reduction of both control fetch energy
and transport energy. Wire congestion would also be reduced. We
developed a theory of network control that had the advantage of be-
ing general. Finding this theory (of useful-state encoding) was surpris-
ing since it is powerful in reducing the size of control circuitry and yet
not to our knowledge described elsewhere in literature. It his original
work, arrived at by myself with hints and suggestions of my promotors;
Grover [41] and Panconesi [88] provided inspiration for the algorithms,
further developed by Peter Veelaert (who inspired the FAR algorithm)
and me.

Having separated statistical and topological analysis, and devel-

oped Useful-state Analysis (USA), we applied these in a second opti-
mization to the control plane that we already had developed for [59].
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We could now also analyze the scalability of more complex systems,
avoiding time-consuming placement and profiling and resulting in a
publication [62].

The design pattern emerging ultimately differed substantially from
our early ideas. USA emerged late in the day, thus we did not do the
combined statistical /topological analyses that it enables. Even so, the
limits of scalability of EESC have been pushed up appreciably during
this work, as the use cases in Chapter 8 will show.

Design support software Analyzing larger communication architec-
tures led us to realize the limitations of early rapid-prototyping soft-
ware and develop a second generation of design support tools, with
better performance and applicability over a larger range of problems.

1.2.2 Publications

The work led to the following publications:

1. [56] K. Heyrman, A. Papanikolaou, F. Catthoor, P. Veelaert, W.
Philips, “Energy costs of transporting switch control bits for a
segmented bus”, Proc. 16th Annual Wsh. on Circuits, Systems
and Signal Processing (ProRisc 2005), pp 359-364, Nov 2005.

2. [57] K. Heyrman, A. Papanikolaou, F. Catthoor, P. Veelaert, K.
Debosschere, W. Philips, “Energy consumption for transport of
control information on a segmented software-controlled commu-
nication architecture”, 2nd Intl. Workshop on Applied Reconfig-
urable Computing (ARC 2006), LNCS 3985, p. 52-58, Mar 2006.

3. [58] K. Heyrman, A. Papanikolaou, F. Catthoor, P. Veelaert, W.
Philips, “Network control, topology and transfer scheduling for
synchronous system-on-chip communication”, Architecture and
Compilers for Embedded Systems (ACES) 2006, Ghent Univer-
sity, pp. 42-45, Oct 2006.

4. [59] K. Heyrman, A. Papanikolaou, F. Catthoor, P. Veelaert, W.
Philips, “Using a linear sectioned bus and a communication pro-
cessor to reduce energy costs in synchronous on-chip communi-
cation”, Intl. Symp. on System-on-Chip (SOC 2007), p. 117-120,
Jan 2008.
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5. [60] K. Heyrman, “Using SystemC for the power simulator of an
on-chip sectioned bus”, http://www-ti.informatik.uni-tue \
-bingen.de/  ~systemc/Documents/Presentation-SM07-UP2 -
heyrman.pdf , European System C Users Group Special Meeting
(ESCUG-SM), Nov 2007, Tampere, Finland.

6. [61] K. Heyrman, A. Papanikolaou, F. Catthoor, P. Veelaert, W.
Philips, “Control of low-power synchronous on-chip communica-
tion”, Advanced Computer Architecture and Compilers for Em-
bedded Systems (ACACES 2007), pp 29-32, Jul 2007.

7. [62] K. Heyrman, A. Papanikolaou, F. Catthoor, P. Veelaert, W.
Philips, “Power gating for wires”, IEEE Trans. on VLSI Systems,
(accepted for publication).

1.3 Overview

In this introductory chapter, we have discussed the problems of increas-
ing energy consumption caused in interconnects by technology scaling,
specifically for embedded SoCs.

The remainder of this work is organized as follows: Chapter 2 stud-
ies the landscape, of on-chip communication, focusing on control, and
the niche that EESC occupies.

Chapter 3 lays out strategies for optimization of control: it pro-
vides a physical model for wire sectioning, exposes the consequences
of programmed control, surveys the nature of communicating entities
on chips, and provides the principles that guide optimization. It also
discusses architectures where our concept of control over EESC fits in,
or where similar concepts are advocated.

The core of our work is contained in Chapters 4- 6. Chapters 4 for-
mulates a theory of useful-state encoding (USE) to obtain minimal-size
encoding of control information, and Chapter 5 contains the algorithms
developed for control of EESC, and their implementation. Chapter 6,
which applies USE, following the principle of programmed control, to
a design framework for intra-tile communication, wherein the cost fac-
tors of control are identified.

Chapter 7 discusses past and future methods of using our frame-
work for analysis, simulation and design. Chapter 8 contains use cases
of these methods, for different types of communication architecture,
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and Chapter 9 presents the conclusions of our doctorate work and sug-
gests future avenues of research.

For the benefit of users of our design framework, Appendix A de-
scribes design support tools for the control plane while Appendix B
contains circuit diagrams and sample HDL code for components of the
control plane. A concise index, mainly intended for retrieval of origi-
nal definitions, is provided at the end of this work,



Chapter 2

On-Chip Communication

I'faith, there’s time for nought but bold resolves!
John Barth, The Sot-Weed Factor.

Having situated the purpose of our research, we now take a closer
look at on-chip communication, concentrating on features rele-
vant to control.

Then we will study some alternative solutions, and interpret com-
parisons that have been made between rival approaches, From this
comparison, we obtain objectives for control over EESC.

ASED on literature, the following overview discusses existing philoso-
B phies for control of on-chip communication. In order to properly
relate different sorts of on-chip network to our type of intra-tile com-
munication, we will review the established taxonomy of interconnec-
tion engineering. We then discuss individual control methods relevant
to on-chip communication. These include some we will not apply, like
arbitrated buses and NoCs but that must be contrasted against our
solution. We will then present some comparisons between rival design
solutions, exposing fundamental differences in control methodology.
This will lead in the next chapter to our own principle: programmed
control of EESC.
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2.1 Taxonomy

In our study, we survey networks where the granularity of control is
similar to ours. A tendency exists, in the nomenclature of communica-
tion systems for aspects of implementation to denominate the whole.
This can lead to other aspects being overlooked. We ourselves want
to discriminate, in each publication, what the implications for control
are. The following classification of communication networks shows
that networks can differ in many ways. It was proposed in [83], and
reworked in [31] and [69]. Requirements for control are influenced by
all aspects mentioned below.

¢ On-chip networks are not single-commodity transport networks.!
Individual transfers between terminals interact, making our con-
trol problem a multi-commodity flow problem [2].

e All networks are reconfigurable, or they would be just a set of ded-
icated connections. We call a network frequently reconfigurable if
the volume of reconfiguration control information is not negligi-
ble w.r.t. the volume of transported information. Since the high
volume of control information is expensive, the fine grain of re-
configurability with EESC causes us to make this distinction.

e In interconnection engineering, networks have traditionally been
classified according to operating mode (synchronous or asyn-
chronous)? and to localization of control (centralized, decentral-
ized or distributed, i.e. with multiple centers of control). Since a
tile is controlled by a single program, intra-tile architectures nor-
mally implement synchronous communication.> Programmed
control is conceptually centralized, even if it is physically dis-
tributed over the tile. Many architectures of interest today (like
the Internet, multicomputer, multiprocessor and some chip-level

1Some networks transport a single commodity, like oil or water, from sources to
sinks, in some optimal fashion. In contrast, communication networks treat transfers
between each pair of terminals as a distinct commodity, making the networks multi-
commodity.

’The distinction between synchronous and asynchronous refers to events occurring
at both ends of the links. If they are not locked to the same clock, some form of hand-
shaking is required, and the operating mode is asynchronous.

® Asynchronous and self-timed stored-program processors are feasible [86] but not
part of the SoC mainstream.
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multiprocessor (CMP) networks), implement asynchronous net-
working with distributed control [29, 31]. The main distinction,
then, between our context and the main body of contemporary
interconnection engineering is that our control can (and will) be
synchronous and centralized.

e The distinction between circuit-oriented and buffered networks is
also very basic. In circuit-oriented networks, a direct circuit com-
pletes a path between inputs and outputs. As a result, data can be
transferred directly from input to output at high rate, depending
solely on the characteristics of the path in-between. In packet-
oriented networks, buffers are added to the circuits. The mode
of operation is “store and forward”. Data can be memorized at
the network vertices for later transmission. This decouples the
allocation of adjacent links, possibly allowing more efficient flow
control. However, control now needs to allocate buffers as well as
link capacity. In on-chip communication, buffered networks are
called NoCs.* EESC will be circuit-oriented.

e Many classifications have been performed on the basis of the un-
derlying topology. Some topologies are quite general (linear, grid®,
torus, ring, hypercube, tree), some are specialized (De Bruijn net-
work, star graph, K-ring, butterfly, octagon...). Some are regular
(they can be decomposed into orthogonal dimensions, like grids,
tori and hypercubes); some cannot, being irreqular. Since the topic
is extensive and the choice between different topologies really a
data-plane issue [87], we have in our work successfully decou-
pled issues of control from issues of topology. Consequently, we
can handle any topology class with our concept of control.

e Distinction is often made between three modes of resource shar-
ing: shared-media networks, direct networks and indirect networks.
Shared-media networks share all (or some critical) resources of a
communication resource set. Direct networks (also called “point-
to-point”) use one resource per link. Indirect networks interpose
several intermediate resources between source and destination.
Hybrid direct/indirect networks have also been described. These

“The unwritten assumption is that NoCs are always buffered and packet-oriented.
This is part of industry usage.

*Many authors use the term mesh for our grid. Following the example of [41], we
will reserve the term mesh network for any network that contains closed paths.



22

On-Chip Communication

o0

02

i0 il i2 i3

Figure 2.1: A logical direct (“point-to-point”) network may physically be di-
rect (multiplexers).

comprise hierarchical and multiple networks. The criterion of re-
source sharing depends much on what the resource is. It could be
as small as a transistor switch, or as complex as a router.

To qualify the distinction between resource sharing modes, the
following observation must be made about the layer of resources
where it is applied. In multi-layer networking, a difference is of-
ten observed between the high-level connection topology, called
the logical network, and the actual physical connections, the mate-
rial layout of the net, making up the physical network. A logically
direct network (point-to-point), can be physically direct or indi-
rect. For instance, a logical “point-to-point” can be implemented
by a set of multiplexers (Fig. 2.1), which is physically direct, but
also as a physical crossbar which is physically indirect. (Fig. 2.2).
Control is of course different in both cases. In practice, the terms
of “point-to-point”, “network of multiplexers” and “crossbar” are
often used interchangeably. We will do the same, using the quote
marks to indicate the relativity of the distinction. In our theory, in
Chapter 4, we will treat the distinction between logical and phys-
ical connections by discriminating between the logical set of trans-
fers between terminals, and the physical network topology between
terminals and resources.

In older literature [20], distinction is often made between single-
and multi-stage networks. If a “stage” is seen as a direct or “cross-
bar” network, then multi-stage networks consist of a cascade of
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Figure 2.2: The same logically direct (“point-to-point”) network may also
physically be indirect (“crossbar”).
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Figure 2.3: A multi-stage topology consists of a cascade of “crossbars”.

crossbars (Fig. 2.3). The purpose of multi-stage networks is to
improve scalability over that of full crossbars, at the expense of
latency. Since we make abstraction of topology, the distinction is
not essential to us.

e Variations exist in the ability of networks to establish new con-
nections, and various terms have evolved to describe them: non-
blocking (in the strict sense or in the wide sense), rearrangeable, block-
ing. (For a good classification, see [20].) The latter, for instance,
means that connection sets exist that will prevent some additional
connections from being established between unused ports, even
with rearrangement of the existing connections. The reason for
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the variety in terminology is that the criterion not only involves
network topology, but also use and scheduling policy of com-
munication resources. The property of being blocking or non-
blocking therefore belongs to a communication architecture as
a whole, and not to the network topology alone. We will call
the property of a communication architecture that corresponds
to the “blocking” or “non-blocking” criterion, which is difficult
to define for the physical network, the property of a communi-
cation architecture of respectively having “variable” and “fixed”
bandwidth. This is an important property for communication ar-
chitectures, but its rigorous definition will have to wait for the
mathematical definition of a communication architecture, given
in Chapter 4 (Section 4.4). The reason why we need a new def-
inition is that with centralized control, the scheduling entity (a
compiler, in our case) schedules transfers collectively. This is not
the common case: most networks found in literature are sched-
uled under distributed control.

With centralized control, the issues of deadlock and starvation,
prevalent in many network classifications, are not our concern.
With collective scheduling, not avoiding them is simply a design
error.

What does concern us, if only for the purpose of comparison, are
issues of resource contention. Arbitration, which resolves resource
contention, can be based on priority, tokens, or other mechanisms
and protocols. With centralized control, the issue does not arise
any more after scheduling.

The control plane is influenced by the type of payload that the net-
work carries. Payload may be of message type, where each item is
self-contained and unrelated to other messages, or of stream type,
where each is part of a sequence that must be delivered in order.
This distinction influences optimal arbitration and routing. EESC,
operating within the tiles of SoCs, is concerned mainly with mes-
sage payloads.

In packet-oriented architectures, the size of the payload may be
fixed or variable. Packets are atomic units in the sense that suffi-
cient buffering must be provided to either transfer a packet in its
entirety or delay transmission until buffer space becomes avail-
able. Packets can be subdivided in logical and physical message flow
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control units® (flits and phits). In contrast, inside a stored-program
processor, the size of the payload, if variable, is still fixed in incre-
ments of subword (usually byte) size, and limited to word size.

e The payload can also be of addressed type, when each item is asso-
ciated with an address that implicitly positions the data in a space
(for instance, a memory space or a register file). This has conse-
quences for control (for instance, addressing may play a part in
terminal selection logic) that will be explored in Section 6.1.

o Collective communication schemes have been identified, sometimes
classified in terms of multiple one-to-one, one-to-all, all-to-one
and all-to-all communication, or of broadcast, scatter/gather,
collection and dissemination. In intra-tile communication, sim-
ple forms of collective communication will need to be accom-
modated. We will use the terms broadcasting for all-to-all and
narrowcasting for all-to-some communication.

We have chosen not to mention some other common categoriza-
tions, most of which pertain to packet-oriented networks. By now,
the reader will be aware that comparisons between communication
systems must be made prudently, especially with regards to operat-
ing mode (synchronous or asynchronous), localization of control and
circuit- or packet-orientation.

2.2 Methods of Control

Despite our intention to use programmed control, which is unlike the
control over HDL-generated multiplexer networks, “crossbars”, arbi-
trated shared systems and NoCs, we must briefly discuss how those
are controlled, if only to mark the differences with our work.

Synthesized communication logic In circuits generated from Hard-
ware Description Language (HDL) descriptions, signal wires are often
declared as persistent and dedicated communication resources. Since
such resources are not reconfigurable, the design does not yield a “net-
work” in our sense. In HDL-based designs, alternatively, existence

®A flow control unit refers to that portion of a packet whose transfer can be syn-
chronized.
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of multiplexers can be inferred from circuit descriptions using native
grammar. Multiplexers can also be introduced by HDL compilers in
the mapping phase of synthesis. For instance, some logical wires can be
multiplexed into single physical wires using a technique termed virtual
wiring [10]. Multiplexers, then, are the network resource of choice for
synthesized circuits that are manually coded. In comparison to EESC,
control over multiplexers is relatively simple, and amenable to pro-
grammed control as well. But for efficient resource usage, multiplexers

are inferior and not scalable.

Since ordinary multiplexers’ are not optimal for low-power, spe-

cialized Intellectual Property (IP) blocks are often used to achieve low-
power on-chip communication. Four types of IP can be distinguished:
(i) very large-scale integration (VLSI) versions of “crossbars”, (ii) single
or multiple shared-media architectures, commonly called “buses”, (iii)
NoC architectures, and (iv) our own solution, RTL-level components
for programmed control of EESC. The latter have been defined as parts
of our simulator, and are described in Section B.1. In this section we
concentrate on alternatives to EESC.

VLSI “crossbars” [32] describes versions of the classic multiplexer-
based “crossbar” (cfr. Fig. 2.1) that take advantage of optimizations and
design choices possible in VLSI. The problems of the scalability of large
“crossbars” have often been highlighted [31]. Y. Zhang [123], in an in-
fluential paper, compares interconnection fabrics between functional
units, of two types: point-to-point (“crossbar”) and multiple shared-
media (“bus”). His model is suited for intra-tile communication: the
network is synchronous, and the author forgoes arbitration. Calculat-
ing power and delay (both for perfectly scheduled and for randomly
generated data sets), the author concludes that “crossbars” have an ad-
vantage when the number of terminals is small and good scheduling
has been achieved. A penalty in area always exists: the basic scaling
law for size in function of the number of terminals N is O(N?), and
can only be improved (e.g., to O(NNlog V), see [31]) by increasing la-
tency. Large VLSI crossbars, then, are not an option for intra-tile SoC
communication, although controlling them is simple.

"Multiplexers with output disable can be used for sectioned communication, see
Section 4.1. Scalability problems remain.
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Arbitrated “buses®” Many designers of low-power on-chip commu-
nication will turn to a set of related IP that provides an inventory of
bus components. Some of these sets are commercial: CoreConnect
from IBM, Advanced Microcontroller Bus Architecture (AMBA) from
Advanced RISC Machines (ARM), or STBus from ST Microelectronics
(STM). Some originate from industry consortia (OCP-IP from OCP In-
ternational Partnership), or are open-source (Wishbone from open-
cores.org ). All of them are conceptually committed to arbitrated
control.

An example design featuring an arbitrated-bus communication sys-
tem, based on commercial IP fabric, is found in [71]. The design uses
the AMBA IP set which provides three different kinds of bus archi-
tecture for different applications: the peripheral bus (APM), system
bus (ASM) and high-speed bus (AHM). None of these sets are geared
specifically to sectioned communication. Some form of coarse-grain
sectioning can be achieved by combining such buses. In [71], Advanced
High-performance Bus (AHB), the fastest sub-architecture, was used
for intra-processor communication. A system featuring AHB typically
consists of master modules (e.g. processors), slave modules (e.g. mem-
ory and communication modules), and an AMBA interconnection core.

The standard AHB implementation provides fast communication be-
tween several master and slave modules; it is capable of pipelined op-
erations, burst transfers and split transactions. The physical connection
between master and slave is realized by multiplexers. A central arbiter
grants the masters access to the bus and a decoder selects the active
slave. Only one master is allowed to access slaves at any time, thus the
standard AHB is ill-suited for multiple instruction-issue processors.

The switched version of AHB, named multi-layer AHB by ARM, is a
different realization of the architecture and allows multiple concurrent
transfers between several pairs of masters and slaves. The interconnec-
tion core for the multi-layer AHB is very different from standard AHB:
instead of one decoder, there has to be one decoder for each bus master.
The central arbiter of standard AHB is replaced by an arbiter for each
slave, preventing more than one master from accessing the same slave
at the same time. A module can be master, slave or master and slave
at the same time. In the last role, the module is capable of performing

8Many authors consider it an defining property of a bus to connect masters and
slaves, and to feature arbitration units and bus protocols. For the remainder of this
chapter, we will join them in this usage.
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Figure 2.4: Multi-layer AHB “crossbar” with 2 masters and 4 slaves.
(Source: [71]

master accesses like DMA, beside being accessed as a slave.

From a block diagram of a multi-layer AHB-based system, shown in
Fig. 2.4, we can judge the inherent overhead of the arbitration system.
Arbiters are needed for every slave, and encoders for every master. The
need for synchronization of arbitration slows down multi-layer AHB in
comparison to standard AHB: e.g. for random-access read transfers, the
transfer rate is effectively halved [76]. In contrast to EESC, this need for
arbitration will prove a disadvantage.

Networks-on-chips From 2001 onwards, a new paradigm for SoC
communication was developed [16, 19, 28]. The motivation for NoCs
was presented in [28] as follows: SoC communication takes place over
the surface of chips with diminishing feature sizes. With this scaling,
ever more terminals communicate, over distances that become compa-
rable in size (with wire sizes and repeaters taken into account) to the
wavelength of clock frequencies. Existing network design techniques
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Source: [31].

scale badly with the number of terminals, but buffered networks have
inherent advantages in run-time scheduling over circuit-oriented net-
works. The authors of [28] thus advocate to design general-purpose
long-distance on-chip networks, well-engineered, with controlled elec-
trical parameters, so that low power and high-speed operation is guar-
anteed. These optimal wiring resources can then be shared between
many functions.

The authors of [16, 28] stress that the overhead in area for a terminal
with router box is limited to the order of 6-10% of the area of a terminal.
The fact that links are segmented between routers amounts to a form of
wire sectioning. Fig. 2.5 shows a generic model of a NoC router box.
Routers contain first-in first-out (FIFO) buffers and a link controller
per in- and output, and a central switch controlled by a routing-and-
arbitration unit. If an output link is requested by an input link con-
troller but is busy, the incoming message remains in the input buffer,
to be routed again after the output link is freed and the input link
successfully arbitrates for the output link. NoCs use circuit- or packet-
switching’, to minimize the latency caused by store-and forward buffer-

or other types of switching, such as virtual cut-through, wormhole or mad-
postman [31]. Circuit- and packet-switching are not each others opposite: distinguish-
ing between the two does not distinguish between NoCs and EESC. Rather, both
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ing. The networks route packets over virtual channels. Virtual-channel
flow control improves latency and throughput by allowing messages
to share a physical link. Tools for stochastic study of communication
patterns have been imported from distributed Internet and multipro-
cessor networks to quantify the scalability of NoCs. Multilayer proto-
cols, fashioned after the ISO 7-level model, allow communication ser-
vices with different quality of service (QoS) to be defined, or reliable
communication to be implemented even in the presence of datagram
dropping and misrouting. The services can discriminate for instance
between payloads, according to stream or message or other type.

Resources are allocated by run-time arbitration, unless they can be
pre-scheduled. Although NoCs have certainly been used for intra-tile
networks, we can see in the scheduling process an inversion of nor-
mality. Intra-tile, most traffic is pre-determined by the program. Some
I/0O and memory operations are handled by exception routines (cache
and page misses, buffer under/overflows, interrupts). In NoCs, it is
exactly some of this exceptional traffic that can be pre-scheduled (i.e.
streams) while the normal traffic (memory references, i.e. messages), is
scheduled 'dynamically’, i.e. as an exception.

NoC routing To contrast routing in NoCs to our own methodology,
it is instructive to sketch the way that routing decisions like the one
shown in Fig. 2.6 are made. The figure shows two paths between two
pairs of terminals. The paths shown happen not to share nodes (router
resources) but, since the nodes of Fig. 2.6 are store-and-forward, they
could well do so, as long as the nodes are not shared in the same cycle
of operation. The paths are realized over multiple cycles, with buffering
in-between. Paths can be established by a controller at the source node
prior to packet injection (source routing) or determined in a distributed
manner while the packet travels across the network (distributed rout-
ing). Source routing requires the inclusion of complete route informa-
tion in the packet header. Distributed routing can have a more compact
header, since only the destination must be encoded in the header.

Routing algorithms abound [29, 31]; they are commonly imple-
mented by consulting a routing table (table lookup) or by executing a
routing algorithm. If the topology is regular, the routing algorithm
can be run in hardware, using a finite-state machine. Networks with

circuit- and packet-switching, in addition to all other types of switching, are funda-
mental design choices for NoCs.
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Figure 2.6: NoC routing example on a two-dimensional grid.

irregular topologies, using either source or distributed routing, must
have a lookup table at each node. Table sizes increase (in principle)
with network size. Routing algorithms may supply a single path for
each transfer (deterministic routing) or, alternatively, consider network
state while making a decision (adaptive routing). The latter is in practice
compatible only with distributed routing.

From this (very brief) review, it comes across that scheduling and
routing in NoC is essentially a run-time process, so that its costs are
continuously recurrent. Our form of programmed control will incur
these costs at compile time, as much as possible.

2.3 Comparisons of SoC Communication

Comparisons of different sorts of SoC interconnection systems have
been the subject of a number of papers [4, 76, 81, 102, 103, 123]. This
section presents four of those, exposing strengths and weaknesses of
different control methodologies. Such a comparison can be difficult to
interpret, partly because some aspects of communication control cut
straight across the space of exploration. To avoid silent assumptions
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and unwarranted conclusions, we will use the categories from Sec-
tion 2.1.

Lahtinen [76] makes a comparison of two interconnection architec-
tures with arbitration, and studies the way area, bandwidth and la-
tency scale with the number of terminals. His two implementations
are: (i) a single shared-media network with multiplexers, and (ii) a
physically indirect, logically direct network with 2 “buses”, built from
12WA4T (12-way, 4-terminal) switches, not dissimilar to the sort of net-
works we consider in our work. Both are built from STM IP. The net-
work is intended for synchronous communication. The arbitration is
accomplished with a simple non-interruptive priority algorithm [45],
where ownership is given to the master with the highest priority, but if
an agent starts a transfer, it cannot be interrupted by a higher-priority
master. According to Lahtinen, arbitration is the most complex process
in either implementation and can take up a lot of time. It is not desir-
able to let the arbitration limit the global clock cycle, and thus it must
be allowed to take several clock cycles. The arbitration is constant-time
for (i) but for (ii) scales badly with more terminals, because of the set-
up time of the switches and the need to keep track (with this arbitration
protocol) of ongoing transmissions .

Maikeld [81] compares four interconnection IP fabrics between
functional units, in the context of Transport-triggered Architectures
(TTAs). TTAs are synchronous, intra-tile, and scheduled at com-
pile time [64]. The four fabrics are (i) a medium shared by tri-state
buffers, (ii)) a medium shared by means of an AND/OR structure, (iii)
a medium shared by means of a multiplexer, (iv) a indirect network
called by the author a “segmented multiplexer bus.” We will call it
a “distributed multiplexer architecture,” as done in the Wishbone IP
set [120], where such a structure is also used. The delay and power
consumption of the fabrics, in function of the number of functional
units (terminals), are compared. In his conclusion, Mékeld indicates
that fabric (ii) seems to offer the best alternative in scalability of delay
and power consumption, while (iv) has the highest delay (because of
cascaded multiplexers), but that its strength may lie in the possibility of
realizing multiple transfers at once, on a single “bus”. We, for our own
purposes, note that (i) TTAs use, or indeed need, no form of arbitration;
(ii) none of the fabrics offers sectioned communication in our sense, but
that all of them could be modified to do so; (iii) scheduling in TTAs is
not topology-aware (see also below, Section 3.2.4).
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Angiolini [4] compares three asynchronous multi-processor inter-
connection architectures (not intra-tile), each with 30 IP cores (10 mas-
ters, 5 traffic generators, 15 slaves). The three configurations are (i)
a single-layer (“shared-bus”) AMBA AHB configuration (ii)) a multi-
layer AHB with 5 “layers”, i.e. shared-media subnetworks, and (iii)
an xpipes [108] NoC with a 3x5 grid topology. Two stream-oriented
benchmarks were considered. The first one is highly parallel, with
cores operating independently of each other. The second one performs
heavy inter-core synchronization, since it modeled a producer/con-
sumer pipeline. In the results, alternative (i) is found to be clearly un-
suitable because of poor performance. No decisive advantage is found
for either alternative (i) or (iii).

The NoC concept is found by Angiolini to have the advantages of
virtually unlimited scalability and the ability to be deployed in arbi-
trary topologies. Its downside is the overhead due to packetization
affecting area, power and latency. Indeed, in the view of Angiolini, the
real metric to assess the speed of an interconnect is the latency from
request to completion of an transaction.

With the cores in the system running at a 400 MHz clock frequency
(and the NoC at maximum frequency of 885 MHz), both architectures
(ii) and (iii) show the weakness of high latency, varying between 5 and
10 CPU cycles. The latency is different for single reads/writes and
stream transfers.

The AMBA protocol is especially weak for consecutive single
writes, since a master must wait for the previous write request to
finish and then apply for rearbitration, before issuing the new write.
The NoC can take advantage of stream transfers, where the packetiz-
ing overhead is only paid once and congestion becomes the key limiter.
Angiolini strongly suggests that NoCs can and should take advantage
of stream transfers. We ourselves conclude that this level of latency is
due to arbitration in both cases, and inadmissible in intra-tile networks.

Ryu [102] makes a detailed comparison of five multiprocessor SoC
interconnection architectures, each employing 4 PowerPC cores and
a scratchpad hierarchy of SRAM memories, based on industry IP, all
of them using run-time arbitration. The network is asynchronous. The
throughputs for two data-intensive pipelined application programs
(OFDM and MPEG?2) are compared. We will not go into the specific
configurations of each architecture, but would like to stress the fact that
different designs, when optimized for the specifics of each IP set, force
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very different topologies and memory partitioning on the architec-
ture. Even so, differences in throughput are slight for one application
(OFDM) and marked for another (MPEG2). Performance differences
between arbitration protocols can be observed but not attributed to
specific properties of application programs. We conclude that the per-
formance of arbitration in industrial IP interconnection fabrics is diffi-
cult to quantify, and that optimal topology is tightly linked to processor
features.

2.4 Conclusions

Concluding this tour of the state of the art of on-chip communication,
we remember that hand-crafted HDL descriptions of on-chip commu-
nication at best yield multiplexer architectures without sectioning. At
worst, they result in dedicated signal wiring. Both have problems of
scalability. VLSI “crossbars” also have this problem, and can only be
used for a small number of terminals. Arbitrated buses and NoCs alle-
viate the problems of scalability with number of terminals. Both solve
the problem of resource contention by means of run-time arbitration.
Methods of arbitration can vary much and are difficult to compare.
Arbitration consumes considerable chip area and time. In particular,
it causes latency of several CPU clock cycles, which can be avoided
in program-controlled circuits. NoCs are better for stream-type than
for message-type payloads, since they feature stream-oriented services
that need less arbitration. In most stored-program processors message-
type payloads are common while streams are the exception.

To arrive at a motivation for programmed control, we can build on
these conclusions as follows. NoCs are packet-oriented and “store and
forward”. Buffered networks have an extra dimension in optimiza-
tion. Over the long-distance, NoCs must ultimately perform better
than EESC would in a similar configuration, since NoCs scale well with
many terminals. In comparison, EESC cannot work over multiple-cycle
domains, thus bus frequency must be lowered if EESC is to be used.
But for medium distance, with a limited number of terminals, within
a program-controlled tile, the circuit-orientation of EESC can perform
better than a NoC, since it avoids serious overheads in area and latency.

Arbitrated buses have some inherent advantages for addressable
payloads: the ease of implementing address and data pipelines, burst
transfers and split transactions. These features are also feasible in other
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Figure 2.7: EESC occupies a niche for medium-distance on-chip communica-
tion, where control is programmed, and scalability is important.

communication architectures; in arbitrated buses, the building blocks
required are part of the IP set, making for straightforward designs.

Inside a stored-program processor, we want to avoid the overhead
of arbitration altogether by using scheduling information available at
compile time. This avoids continually making arbitration decisions that
were already made while scheduling!’. The issue of scalability remains,
so we must select network topologies that avoid the disadvantages of
VLSI “crossbars” and exploit all advantages of hierarchical and parallel
communication. Since a topology is normally decided upon by data
plane considerations, it would be best if we could accommodate any

topology.

If we succeed in this venture, we will have, in the context of intra-
tile on-chip communication, an advantage over VLSI crossbars because
we have more topological flexibility, and we will also have an advan-
tage over arbitrated buses because we avoid the overhead of arbitra-
tion. NoCs, being buffer-oriented, have the ultimate advantage of an
extra dimension when optimizing resource usage of the network. In
intra-tile communication, they still have the disadvantage of arbitra-
tion that can be avoided, and increased latency:.

Scalability of communication translates into distance over which
communication can be assured. NoCs have proved their worth for dis-
tributed global communication patterns using little or no coordination.
They are undoubtedly suitable for long-distance on-chip communica-

0 Arbitration in NoCs and arbitrated buses is a distributed process. A distributed
process cannot remember and reuse global decisions; there is no global context for
remembering anything.
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tion. Over the medium-distance, within programmed domains, with
message-type data, we assert that there is a niche, pictured in Fig. 2.7,
where programmed control can prove advantageous.



Chapter 3

Optimization of Control

Nous vivons des temps sans précédent, et notre
obligation sacrée est de les remplir en plein.

Montesquieu.

In this chapter, we first establish a model of wire interconnection
suitable to describe EESC and its optimization. EESC is seen as
an extension of power gating, an established concept from low-
power circuit design. We then overview the domain of intra-tile
EESC, with the purpose of establishing the nature of the com-
municating entities, and present, in turn, a paradigm called the
“communication processor”, the opportunities for programmed
control that it enables, the principle of optimization that it leads
to, and the problems of scalability that it exposes.

At the end of the chapter, we will review processor designs from
literature with architectures motivated by concerns similar to
ours, and state explicitly the scope of programmed control.

NERGY is lost in interconnection by needlessly charging sections of
wire that do not carry useful information. A principle was de-
veloped by TAD to avoid this: wire sectioning, to which the author
adds presently the concept of programmed control. First, we study the
physical model that underlies EESC. Then we circumscribe our domain
of application, intra-tile SoC communication, and the entities we find
there. This leads ultimately to a paradigm and an optimization crite-
rion to guide our design framework.
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Figure 3.1: Physical model for a wire section with repeater, consisting of a
3-stage buffer.

3.1 Sectioned Communication

Wire sectioning enables us to control the capacitive loading of line
drivers individually. To describe this, we adopt the following model.

3.1.1 Physical Model

In the deep submicron domain, medium and long-distance wire sec-
tions contain repeaters [13, 63, 121] consisting of 3 or 4 stages of buffers
of increasing size, as shown in Fig. 3.1. The buffer stages can be dimen-
sioned according to a tapering principle explained in Rabaey [97]. We
want to model the power consumption on such wire sections. The pur-
pose of the model is to elucidate the advantage of EESC (also known as
“power gating for wires”) and to provide a physical basis for optimiza-
tion.

Transport energy The transport energy loss E,;, on a wire section is
the sum of dynamic and static energy loss in the buffers. The former
consists of switching and short-circuit loss, the latter is leakage. Thus
transport energy loss has the following elements: E,, = Egy, + Estar =
Egy+ Esc+ Eleqr- Switching loss E,,, and short-circuit loss E. are pro-
portional to the activity on the section. Ey,, is also proportional to wire
capacity, thus section length, while E,. is independent of this length.
Ejcqr is proportional to section length but independent of activity. If s
is a wire section, W the bitwidth of the section, o the activity factor
(i.e. the average fraction of voltage flips per bit and per clock cycle, ob-
served over the duration of a program), and /5 the wire length of the
section, then the energy loss per section and per cycle is expressed as
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By, = aszSE[’iyn + asWE” gy + WPl T (3.1)

E&yn, E” gyn and P.,,, are technology factors. Ti;, is the duration of
acycle. For a given program and input, a can be recorded by profiling.
Accumulating the loss over the duration of a program, we find the total

transport energy loss as

Emp = Ncycles Z Emps' (32)
Vs

When switching loss dominates, (3.2) can at first be approximated

by

Eﬂﬁp = WEélynNcycles Z asls. (3.3)
Vs

Making abstraction of the activity factor as, it drops out of the pic-
ture. This assumption! simplifies the analysis even more. The value
a; ~ 0.15 is a suitable estimate for the activity factor of every section.
Such an estimate is valuable in the absence of detailed profiling, which
is an elaborate procedure. Using the estimate, transport energy loss
from (3.3) can be rewritten as

Eup = W E},, Neyeresi Z L. (3.4)
Vs

The part of E,,, caused by leakage, is

Expleak = WPS/tatTexec Z Ls, (35)
Vs
where Tepec = NeyeresTa is the duration of the application. Expres-

sion (3.5) is similar in form to (3.4) and also does not contain per-section
activity. This shows that the form of (3.4) can be used as an approxi-
mation when leakage dominates, with a slightly modified technology
constant.

Wire sectioning The type of sectioning switch that will serve as our
workhorse: the 6-way 3-terminal (6W3T) buffering switch, is drawn in

!Such assumption is used by [13], and also regularly by TAD and other IMEC re-
searchers.
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Figure 3.2: Six-way three-terminal switch (6W3T) with buffers of staged size.
The size of the buffers is determined by data-plane design. A single decoder
is used for a word-wide switch. The control decode circuit in the figure is
of default type: it receives a control code which is 3 bits wide. In our de-
sign framework, non-default decode circuits can have more control wires and
larger decode circuitry.

Fig. 3.2. It has staged-size output drivers and minimal-size inputs, and
proves for our purpose versatile enough. It has a simple decode circuit
for control of all 7 states (6 ways, plus disconnected state) by means of
3 control inputs (ctl2, ctl1, ctl0). Usually the decoder is more complex;
the type shown is the default (and reference) type.

Using switches, we consistently divide all wires in sections. The
switches are also repeaters. Switches are placed wherever three wires
meet. In design, repeaters are optimally sized and separated to mini-
mize the interconnect delay. Banerjee [13] and Wong [121] show that
considerable freedom exists in placement of the buffers; we can there-
fore place them at wire junctions.?

Observing Fig. 3.2, it could be thought that the area and power
dissipation of the switches is large. In fact, only the area of the
buffer stages is appreciable, while the decoder’s gates are minimum-
size. Moreover, in multiple switches used for parallel wire buses of

“More repeaters may be present than sectioning switches, placed mid wire-section.
They can be assimilated to 2-way 2-terminal (2W2T) switches, and must also be driven
from the control plane. This does not increase topological complexity, and can be easily
accommodated by our design framework. Such 2W2T switches are not mentioned any
more below.
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word size, the decoding circuitry is shared by the wires. The area of
optimally-sized repeaters can be as high as 450 times minimum-size
(cfr. [14], albeit for global-tier, not medium-distance lines). We do not
count the buffers” area of the switches as control costs, since they re-
place repeaters that would be present anyway. It is exactly the cost of
these repeaters which is represented by transport energy losses and
minimized by EESC.

The advantage of wire sectioning is made clear by (3.3). If we can
limit the sum )/, ol in (3.3) to those sections needed for information
processing, the total E,, is strongly reduced. If we also choose [ for
minimal al; on those same wire sections, the effect will even be more
pronounced. This was already illustrated graphically before, in Fig. 1.6.

Gating principle Our gating principle (“power gating for wires”)
bears some resemblance to power or supply voltage gating, an es-
tablished circuit design technique for reducing (static) leakage power
dissipation [95]. With power gating for circuitry, supply voltage is
turned off whenever a circuit is not in use. With EESC, we do similarly
for the buffers that drive wire sections. Because of power gating, the
sum in (3.3) is only over those cycles and sections that truly contribute
to information processing. This is optimal for dynamic and also for
static loss. In comparison to power gating for circuitry, we have the
benefit of reducing both dynamic and static losses.

3.1.2 The Program-controlled Tile

In a SoC, communication takes place between communicating entities
called terminals, over channels which are wires, within the range of
a program-controlled tile. We identify the entities in this domain, their
structure, what resources the networks contain, and how they are par-
titioned. We review the concept of bandwidth which is known for ter-
minals but has to be adapted to serve for communication architectures
as a whole.

Minimum and maximum range The distance range of a program-
controlled domain must be large enough for energy consumption by
wires to matter, and small enough for synchronous operation. Accord-
ing to a reasoning by T. Noll [85], the minimum distance we need to
consider is where wire-driven delay takes over from gate-driven delay:
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Figure 3.3: Critical lengths for different technology nodes. (Graph by T.
Noll, [85])

this is about 2 x 10? transistor feature sizes, as shown in Fig. 3.3. The
maximum is the distance reachable in a single clock cycle. This is al-
most constant in multiples of feature length; the value is 10° [63]. For a
45 nm feature size, the bounds on range are 90um — 4.5mm.

Modules and ports, terminals and terminal classes Within program-
controlled domains, we find certain types of modules that exchange
data: load/store units, functional units, register files, pipeline regis-
ters, parts of memory hierarchies (scratchpads and caches), bridges to
external communication systems. Some of the modules may have mul-
tiple ports. The assignment (binding) of communications to ports is
done design-time: when communication instructions are decoded, the
ISA is explicit as to which ports of a module need to be used. Ports on
the same module do not communicate, at least not over the network.
Every port of a module is a terminal. Terminals of the same type, e.g.
of different memories or corresponding ports of functional units, form
a terminal class, which allow terminal arrangements to be formulated.

Terminal arrangements A terminal arrangement describes which ter-
minals communicate, thus have transfers between them. Requirements
for terminal arrangements follow from the processor’s ISA, and are of-
ten expressed in terms of terminal class membership. Terminals inside
SoCs tend to be arranged like shown in Fig. 3.4, where the ISA requires
a certain number of concurrent transfers between any pair of members
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Figure 3.4: A terminal arrangement with four terminal classes.

t0 t2 t4 t6 8 t10
Figure 3.5: An external view of a composite network.

of 4 terminal classes: level-1 (L1) memories, register files, pipeline reg-
isters and functional units. Since an ISA is a language construct and
has a free grammar, the type of constraint it imposes on the terminal
arrangement can vary. Establishing the terminal arrangement is always
the first step in deciding the sets of concurrent transfers imposed by the
ISA. Inter-tile communication often has an “all-to-all” terminal arrange-
ment, like, for instance, when the terminals are fat computing nodes;
within SoCs, this is often not the case.

Resource network In our scheme, communication resources are swit-
ches or multiplexers. Wire sections are not considered to be resources,
since they cannot themselves be controlled. The resource network has
resources for vertices and wire sections for edges. The topology formed
by terminals and resources, together with the set of paths required by
the ISA, informally make up the communication architecture (CA). We
can see this as a combination of physical and logical connectivity: phys-
ical connectivity is provided by the network, logical structure by the
terminal arrangement; the formal definition comes later.
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Composite networks The resource network may have disconnected
parts; then we call it composite. A composite network, like that shown
in Fig. 3.5, results in a composite CA, with disconnected component CAs.
In the figure, component networks 71, r2 and r3 do not allow transfers
between the terminals of each distinct component.

Bandwidth Bandwidth is the maximum number of transfers per cy-
cle time. Bandwidth is commonly attributed to a terminal, or to an ar-
chitecture with single in- and output. For multi-terminal architectures,
bandwidth refers to the maximum number of concurrent transfers. This
poses no problem for shared-media, where the bandwidth is 1 transfer
per cycle, or point-to-point architectures, where transfers are decou-
pled. In other cases, we must be careful. Bandwidth calculations are
discussed in Chapter 4. Here we note that the total communication
architecture bandwidth is the sum of the bandwidths of the compo-
nents. Components can then be (i) shared-media and allow a single
concurrent transfer per cycle, or (ii) direct (“point-to-point”) and allow
a fixed number of concurrent transfers (which is not likely to be our
choice, because of the inherent lack of scalability), or (iii) indirect and al-
low a variable number of concurrent transfers. If any of the component
CAs has variable bandwidth, the whole communication architecture
has variable bandwidth.

Whether or not the CA’s bandwidth is variable, if it has N termi-
nals with peak bandwidth By, the following constraint applies to the
communication architecture bandwidth B4,.:

N N
< - .
Bac = <2 >BT e (5.6

This follows from our definition of bandwidth and of a terminal,
which can at most communicate once per cycle. If the terminal arrange-
ment is more limited than all-to-all, the constraint will be stronger.
The constraint is external to network topology, which itself will impose
more constraints.

Example communication architecture As an example, we consider a
CA with a single component network and a linear topology. In Fig. 3.6,
the CA has been used in a processor within a hierarchy of 8 scratchpad
memories. The network is subdivided into a data network and a mem-
ory address network. Both are driven by the same set of control sig-
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Figure 3.6: A template for a single-component CA with 8 scratchpad memo-
ries and sectioned linear network topology The CA is driven from the load/-
store unit of the processor. In this example, both data and address buses are
sectioned.

nals. The terminal classes are the processor’s load/store unit (a termi-
nal class with only one member) and the set of memories. The terminal
arrangement prescribes a single transfer (read or write) between two
distinct terminal classes, and not, for instance, a memory-to-memory
transfer. The terminal arrangement and resource network are shown in
Fig. 3.7. The number N of terminals is 9.

Although the network topology may allow many more transfers (it
is “non-blocking”), the terminal arrangement can impose limitations
that make it “blocking”, and the communication architecture band-
width fixed. In this example, although the network does not block
a transfer from terminal m5to m7 while a transfer from processor to
m3is ongoing, the terminal arrangement does. The CA bandwidth is
Ba. = Br, instead of variable and < (S)BT, irrespective of the con-
straints that topology imposes, not as yet analyzed.

3.2 Programmed Control

In this section, we qualify our choice for programmed control of EESC.
As shown, issues arise of determining what scheduling is, when to do
it, and how difficult it is, especially for variable-bandwidth architec-
tures.
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Figure 3.7: Terminal arrangement (a) and resource network (b) for the com-
munication architecture of Fig. 3.6.

3.2.1 Program Control Flow

Program control flow is implemented by conditional instructions in pro-
gram source code. In SoCs, programming is indispensable for the com-
plex control flow inherent to today’s applications. Controlling EESC
is at least as complex, in terms of control flow, as the control flow of
the program that drives the network. Our idea is to use program con-
trol flow itself to control the EESC network. Inspiration was provided
by a 1953 paper [119] by Wilkes and Stringer.> Wilkes advocated pro-
grammed control over all resources of a programmed data processing
machine, rather than hard-wired control by logic mechanisms. His ar-
gument is that programmed control scales better with size of the ma-
chine than hard-wired control, since it re-uses the control structures
found in the program. With EESC, control decisions made once before
are re-used because they are embedded in the control flow of the pro-
gram.

When discriminating between programmed and hard-wired con-
trol, one should not fall into the fallacy that, because a hard condition
generates an event, this event is by necessity hard-wired. After all, the
whole processor is, at the bottom architectural level, activated by sig-

*This paper deeply influenced the semiconductor industry in the seventies and
eighties of the last century. It spawned the concept of the micro-programmed pro-
cessor, which subsequently became ubiquitous for more than a decade.
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nals. It is the presence of a control flow graph, encoded in branching
instructions, that makes a difference. A process is under programmed
control if at any level of its control flow, the occurrence of events is de-
termined by a program written in a sequence of instructions, having
the semantics of a programming language. The question “where is the
program?” usually settles the issue.

Programmed control should also not be confused with software-
assisted design of elements of control. We try to avoid the term “soft-
ware control”, since it does not exclude the case where software is used
at design time, but the controlled machine is not programmable at run
time. Such a machine does not pass the crucial test mentioned above,
and neither does it follow Wilkes’ prescription.

3.2.2 Static Scheduling

Since the act of scheduling is crucial, it makes sense to ask ourselves
when it is performed: at design, compile or run time? Controlling the
resources of a communication system can be seen to consist of four
tasks. Using terminology from [82], they are: (i) identifying the re-
sources to be controlled, (ii) partitioning the resources in sets that are
controlled together, (iii) scheduling in the time domain, i.e. allocating
transfers to time slots, and (iv) binding in the space domain: allocating
resources to transfers. Chapter 2 has revealed that considerable vari-
ation exists in the approach to all these tasks. In our concept, the first
two tasks take place at design time; the latter two, preferably at compile
time, or else at run time.

We call this static scheduling. It is by no means a universal principle,
but common enough in the domain of embedded processors, including
very-long-instruction words (VLIWSs), to serve as the guideline of the
design framework of this thesis.

Identification of resources Resources can be identified at different
levels of abstraction: wire systems, routes, arbitrators, buffers, multi-
plexers, switches. Consistent with our aim of control at the physical
level, we will always choose the lowest level of abstraction. To control

4Superscalar processors, including most general-purpose (Intel x86) and some
(ARM) embedded processors, do not follow the static scheduling paradigm. This does
not wholly disqualify our design framework for such processors, but raises extra issues
which we do not treat in this work.
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Figure 3.8: A composite communication architecture may have shared-media,
direct and indirect components. The total number of transfers to be scheduled
depends on the bandwidth of each component.

something, it must be controllable within its most inner state.

Partitioning resources Scheduling does not always apply to individ-
ual resources, but sometimes to parts of the resource group. A key
question with resource partitioning is how many transfers can/should
be scheduled per scheduling cycle. Partitioning of resources ties in with
the distinction between shared-media, direct, and indirect networks.

Multiple networks are disconnected and have no common re-
sources: they can be controlled separately and form a partition at
top level. Hierarchical networks have a tree-like resource partitioning.
Shared-media networks have no partitioning at all: all resources are
consumed by any single transfer. Direct networks have one resource
per transfer. Each transfer consumes a single resource, and there can be
a fixed number of transfers per cycle. Indirect networks, where trans-
fers are inter-related by conflicting use of resources, have a variable
number of transfers per scheduling cycle.

The bandwidth of a communication system (”architecture”) is a re-
sult of resource partitioning hierarchy. The bandwidth of a composite
communication architecture is the sum of the bandwidth of its com-
ponents. As seen from Fig. 3.8, if any component has variable band-
width, the total communication architecture bandwidth is variable as
well. Communication architectures with only shared-media or direct-
network components are fixed-bandwidth: the first, because there is only
one transfer per cycle, and the second because there are as many trans-
fers per cycle as there are resources. If the bandwidth is fixed at N
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transfers per cycle, a scheduler can choose to schedule any combina-
tion from 0 up to N transfers in any cycle to do this. If the bandwidth
is not fixed, a component is variable-bandwidth. The number of trans-
fers that can be scheduled in a cycle depends on the very set chosen.
There may be a maximum number of possible transfers per cycle. We
have not yet the mathematical concepts to decide this, but we do know
that property of an architecture having fixed or variable bandwidth is
inherited from the component by the architecture as a whole.

Scheduling Scheduling is the decision of how many, and which,
transfers will make use of each time slot. Scheduling is easy for a
fixed-bandwidth architecture, less so when bandwidth is variable. In
variable-bandwidth systems, dependency exists between transfers that
may or may not be scheduled concurrently, depending on the resources
consumed by each. The scheduler really needs to know details of the
communication architecture. If he does, he can still make a decision,
taking all run time possibilities in account. With communication archi-
tectures, the act of scheduling includes an aspect of routing. A routing
table can have been prepared at design time; with program control,
under the assumption of static scheduling, this is always the case.

Binding Binding is the allocation of resources to transfers. Binding,
in a programmed system, can be done at compile time, but not always
completely. Indeed, a conventional compiler cannot fully resolve the
terminals that will be communicating. An amount of run time binding
of resources may have to be done at run time, even under programmed
control. This is for instance the case when the terminal is a memory
bank selected on the basis of addresses known only at run time.

3.2.3 Definition of Programmed Control

We call a communication architecture program-controlled when (i) there
exists a program whose flow controls the architecture; (ii) all schedul-
ing is implied in the instructions of the program; (iii) the scheduling
decisions are made compile time; (iv) binding is done on the basis of in-
structions, as far as possible. This means that all information available
to the compiler is used in binding, even if the binding is incomplete. It
implies that residual binding is performed at run time.
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Exceptions in scheduling (interrupts, cache misses,” direct memory
access (DMA), transfers to other, asynchronous, domains) are handled
by deterministic control procedures. These are synchronous to and co-
ordinated with the program control flow, thus they are compatible with
programmed control, even if their controllers are hard-wired.

3.2.4 The Communication Processor

The communication processor (CP) is a paradigm that guides us
throughout our evaluation of program-controlled EESC, keeps us from
straying into misconceptions, and helps us to cast the actors of our play:
the designer, compiler (including its back end, the assembler), the pro-
gram and the programmed machine. The intention of the paradigm is
to be simple, compatible with many types of embedded VLIWs, and
to allow programmed control to be investigated, simulated, demon-
strated, and optimized.

Components of the communication processor The communication-
specific parts of the CP are shown in Fig. 3.9. The path decoder’s role
in the communication processor is comparable, in a way, to that of the
ALU in the main processor; only it handles topology, not arithmetic or
logic. In another way, it is an extension of the instruction decoder al-
ready present. Its functionality depends on the way use of resources
has been pre-encoded in the ISA. It converts communication instruc-
tions to switch control bits. To do this, it needs topological knowledge
of the data network. Control processing in Fig. 3.9 refers to components®
introduced specifically to reduce control costs, like splitters of control
or transport loop buffers. The networks — drawn in Fig. 3.9 as “clouds”
— consist of a data network’ and a control network — two clouds super-
imposed. Vertices in the data network correspond one-to-one to ver-

*IMEC design style, using DTSE, favors scratchpad memories above caches. Use of
caches, even with a hard-wired cache controller, is not incompatible with programmed
control elsewhere on the tile.

®We do not include registering in control processing, i.e. using memories specif-
ically for control information, since we concentrate on frequently reconfigured net-
works. Registering requires extra costs for access, and becomes more feasible the less
frequent the reconfiguration is.

"The direct link between the communication instruction register and the data net-
work in Fig. 3.9 is a detail, included for completeness. It allows for the possibility of
immediate addressing (see below). Some part of the communication instruction can be
injected straight into the data plane.



3.2 Programmed Control 51

1
1
u terminals data network

switches

control network

control processing

decoding for
other functionality

path decoder

/

instruction communication instruction

instruction register

program counter

instruction memory

Figure 3.9: The communication processor paradigm.

tices in the control network. After all, every data switch needs control
as well.

The data plane With respect to EESC, memory or register address
networks are just a part of the data plane. For instance, the data plane
in Fig. 3.6, our linear-topology example communication architecture,
contained an address as well as a data network. If an address network
has the same topology as the data network, we use the same control
codes for both. In [59], we found that sectioning gain in a memory
address network can be as high as that in the data network, at almost
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no extra cost in control.

Access protocols Transporting data of addressed type in the data
plane poses specific feasibility problems. Data cannot be accessed
without at least a simple access protocol, specifying the timing of ad-
dress and data phases. Such a protocol can be improved by techniques
like data/address pipelining, sequential and split transfers. To incor-
porate these in the control plane is cheap and effective. To verify their
correct operation is not trivial. Simulations made in preparation for
the publication of [59], convinced us that a simple protocol could work.
Further than those, we considered optimization of address/data timing
out of scope for the control plane.

Importance of the instruction set architecture At the instruction
level of the machine, the use of a communication processor presumes
the definition of elements of a communication instruction set. Our aim
is to configure the sectioning switches for every instruction cycle that
includes a transfer. A program can do this, provided the necessary
features are included in the ISA. The part of the ISA pertaining to
communication is the communication ISA. Likewise, the part of the
instruction relating to communication is called the communication in-
struction. Machine language instructions must include features that
allow the desired network state to be set, i.e. the resources to be used
during each transfer.

We call an ISA transfer-aware if some transfers between modules
(terminals) can be controlled from a program. This is in fact always the
case: all instruction sets (ISs) define some load/store transfers, even if
some other transfers are invisible to the IS (for example, instructions
transferring addresses to the program counter). Communication in-
structions comprise all features of the instruction that initiate a transfer
in the CA. If functional units of the machine are connected by the CA,
the operational instructions (add, multiply ...) are in part communica-
tion instructions. This is also transfer-awareness of the ISA.

If any other properties of the intra-processor communication sys-
tem than transfers are exposed to the IS, we call the processor and
its ISA communication-aware. For example, the transport loop buffer
control instructions employed in [59] are communication-aware: they
exist solely for control processing in the communication architecture.
Communication awareness might be implemented for various reasons,
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likely having to do with resource conservation: energy efficiency, con-
gestion avoidance, reconfiguration in the presence of device errors or
variability. It is a interesting property, since few contemporary embed-
ded processors display it, as seen from a recent survey like [86].

A special form of communication-awareness is awareness of topo-
logy. We call an ISA topology-aware if the IS is able to control the paths
followed by intra-processor communication, not only the endpoints.
Topology-awareness is not common, although it might become so with
future requirements for the data plane.

3.2.5 Scalability of Control: Principle of Minimal Width

Fixed-bandwidth architectures are trivial to control, even with many
terminals. There are various reasons why architectures may become
more complex than shared-media or point-to-point. Mesh topologies
allow multiple concurrent transfers, but are variable-bandwidth. Hier-
archical CAs need to be variable-bandwidth if their resources are to be
fully exploited: when one part of the hierarchy is used for a transfer,
another part is still available for use. Bus components that are ba-
sically fixed-bandwidth may become variable-bandwidth because of
occasional interconnections. Even linear topologies can be used in a
variable-bandwidth way, boosting resource utilization, as we shall see
later.

Scaling with complexity Asnetwork complexity increases, when and
why does EESC become uncontrollable? Not by failure to gain from
wire sectioning: a large complex data network profits proportionally
to the number of unused sections. If relatively more sections of the
network are not driven during some transfer cycles, sectioning gain in-
creases. To understand the scalability problem, we must watch the flow
of control information, shown in Fig. 3.10. Control originates from the
fetching and decoding of the communication instruction, the commu-
nication-aware part of the instruction set. The path decoder recodes
this information according to its knowledge of the CA. Control pro-
cessing operates on the control information before or while it is dis-
tributed over the surface of the tile. Ultimately, every switch must be
provided with a control code for every cycle. This holds true even if
network resources are organized hierarchically: hierarchical organiza-
tions reduce the amount of control information, but the control infor-
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Figure 3.10: The width of the control path varies at different sections of the
control plane of the communication processor. At each stage (after instruction
decoding, path decoding, and before distribution to the switches), width is
related to costs of control.

mation must cover approximately the same distance as the data, follow
approximately the same path, since it is not registered.

Communication instruction width is expensive, since it consumes a
part of the general budget for instruction fetching. Transporting switch
control codes over many parallel wires is also costly, not only in chip
area but also in power and wire congestion. If the activities and lengths
of control wires are of the same order of those of data wires, the trans-
port energy required to distribute control will become comparable to
the energy won by EESC, once the bitwidth of the control plane is com-
parable.

We suspect that control efficiency breaks when the control path be-
comes too wide; our use cases will confirm this. With too many swit-
ches to control, the EESC principle breaks. This eventuality guides our
optimization of control: we will be looking for minimal width at every
section of the control plane: while fetching and decoding instructions,
doing path (trans)coding and distributing control codes.
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Figure 3.11: An instance of CRISP (RF: Register File, FU: Functional Unit)
Source: [15].

3.3 State of the Art for Programmed Control

Having narrowed down the concept of programmed control over
EESC, we turn to literature to see which processors might use similar
concepts, and where our own concept of EESC control might fit most
readily. Under assumption of static scheduling and frequent reconfigu-
ration, the most suitable way to decide which class of communication-
awareness a processor belongs to, is to inspect the ISA. Indeed, any fea-
ture not present in the ISA is ipso facto not controllable by a program.
We will determine whether there is programmed control, whether we
have fixed or variable bandwidth, and which features of the intra-
processor network are controlled, i.e. exposed to the ISA.

The CRISP processor CRISP (Configurable and Reconfigurable In-
struction Set Processor) is a VLIW research processor developed at
ESAT, Katholieke Universiteit Leuven, and IMEC. It was the subject
of 3 theses [15, 68, 111] at IMEC. It has the following outstanding fea-
tures. The ISA is built upon the HPL-PD ISA. Instances of CRISP are
configured by means of XPML, an architecture description language
for high-level design space exploration, based on Extended Markup
Language (XML). Configurable features include data path compo-
nents, like number of clusters, number of instruction issue slots per
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cluster, functional units and register files, data and instruction mem-
ory hierarchies. It has a data-path bypass network allowing to chain
functional units within a clock cycle. The instruction fetch architecture
is scalable, designed for low power consumption and features loop
buffers. The design space exploration framework consists of a com-
piler and a simulator, derived from the Trimaran framework [110] and
a power estimation tool.

A diagram of an instance of CRISP is shown in Fig. 3.11, where
four separate instruction-issue clusters have been implemented. In our
terms, CRISP is a transport-aware processor, with the peculiarity that
the transfers include broadcast transfers. The intra-tile network cen-
ters around the configurable functional units, register files and load-
/store units found in each cluster. The communication architecture’s
bandwidth is fixed, since the compiler includes no facility to schedule
a variable number of transfers per cycle. There is no topology aware-
ness in the ISA. Frequent reconfiguration and static scheduling apply.
Chapter 8 contains an example of control of EESC for CRISP.

Transport-triggered Architecture (TTA) The key idea in TTAs, an-
other class of VLIW architectures, is to code transfers between func-
tional units within the instructions, not functions and their operands.
The transfers to the local operand registers of the functions automati-
cally trigger function execution. There are, in essence, no other instruc-
tions than transfer instructions, making a TTA a transfer-aware pro-
cessor par excellence. Dependencies and independencies are resolved at
compile time. TTAs are fixed-bandwidth, and to our knowledge make
no use of other topologies than “buses” (multiple shared-media), even
in recent implementations such as the TACO Internet Protocol (IPv6)
Processor [112]. This leads to our suggestion that TTAs could bene-
fit from variable bandwidth and the more fine-grained communication
control proposed in this work for EESC.

The Imagine architecture The Imagine chip is a stream processor that
contains 8 clusters of arithmetic units (tiles, in our parlance) processing
data from a stream register file (SRF). The SRF, a large on-chip storage
for streams, is the nexus of connectivity between tiles. It is, in effect,
an inter-tile communication system, intended to carry 8 payloads of
stream type. The communication bandwidth is fixed. Within the tiles,
the communication system is a buffered crossbar, which in itself is not
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Figure 3.12: The Raw processor comprises 16 tiles. The tiles are “fat nodes”:
they contain compute resources, memories and a router.

an optimized structure for low-power consumption. We conclude that
also this computer is only transfer-aware. Since its communication net-
work is special-purpose, it is not immediately clear how much could be
contributed by programmed control of EESC.

The Raw processor The Raw processor’s design philosophy explic-
itly intends “to bare all to software”, including pins and wires of the on-
chip networks. Every aspect of communication is program-controlled,
including topology.

Considering multicore processors like Raw, we must separate the
intra-tile network from the inter-tile network. Since Raw was not
specifically designed as alow-power architecture, the intra-tile network
has no sectioned communication. The inter-tile network (depicted in
Fig. 3.12) consists of two static networks, for which the routes are spec-
ified at compile time, and two dynamic networks, where routing is
performed at run time. Both networks (intra- and inter-tile) are under
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Figure 3.13: The network of the Swiss T1 supercomputer. The numbers on
the links of the central network architecture denote the number of concurrent
transfers for all-to-all operation between the switches 1-8. (Source: [42]).

programmed control. The inter-tile scheduling by the compiler [39] is
limited to the static networks; the dynamic networks are used for cache
misses, interrupts and other asynchronous events.

The input ports of the switches each have a 4-element FIFO. Com-
munication is thus store-and-forward, not circuit-oriented. The whole
structure is synchronous: every wire is registered at the input to its des-
tination tile. The longest delay in the system is no longer than the delay
of a hop in the intra-tile networks. To the processor tiles, the inter-tile
network appears as a register file. Values can be read off and put on
the network with no overhead in latency. The programmable switches
route operands through the network, as instructed by per-switch route
instructions, which incidentally, are 64-bit wide.

Nurmi [86], chapter 14, gives an extensive account of the Raw ar-
chitecture. For our part, we conclude that even inter-tile communica-
tion can be program-controlled in a topology-aware way. Since pro-
grammed control in a stream multicore processor is not what we en-
visaged in our work, a transposition of EESC to Raw would not be
straightforward, although there are no fundamental incompatibilities.
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The Swiss T1 supercomputer Supercomputing multiprocessors of-
ten blaze new trails in interconnection methodology. The Swiss T1
Supercomputer is a commodity supercomputer built from 70 Compaq
Alpha processors. It features a central computational network with 8
12x12 crossbars switches, each connecting 4 dual-processor comput-
ers to a topology consisting of two superimposed K-rings, shown in
Fig. 3.13.

The supercomputer as a whole does not form a single program-
controlled domain, nor has it an overall ISA as such. The bandwidth is
variable, the scheduling of communication is collective and topology-
aware. Indeed the method of liquid scheduling described in [36] has
some similarities to our theory of useful-state encoding, but the type
of constraints imposed by the topology are different. In comparison to
our methodology, the switches of [36] are not atomic, and the principle
of optimality for scheduling is the maximal use of bottleneck links by a
given set of transfers, whereas we consider every possible transfer set
per cycle.

3.4 Scope of Program Control

In this chapter, we have explained how EESC reduces power consump-
tion by interconnects; why programmed control creates a niche for
EESC, for medium-distance communication in programmed intra-tile
domains; we have presented the principle of static scheduling and the
paradigm of the communication processor, and settled on a criterion of
optimization for our design framework.

Scope of the communication processor paradigm The communica-
tion processor paradigm is applicable in the domain of (i) medium-
distance (intra-tile) on-chip communication, for (ii) embedded systems-
on-chips. under the assumptions of (i) static scheduling, and (iv) fre-
quently reconfiguration. These conditions cover academic processors
like CRISP, DLX, Trimaran and VEX (all of which, except DLX, are
research-type VLIWSs); some versions of open-source processors like
Leon, and of industrial embedded processors like ARM, MicroBlaze
(an extension of DLX), NIOS II, PowerPC, SPARC, and Super-H, (some
of which are IP cores for FPGAs). Our scope is thus not unlike that of
IMEC’s COFFEE architecture exploration framework [100, 101]. Even
processors using some concepts similar to our own, however, may have
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features that cannot be immediately accommodated. This does not re-
flect on the feasibility of EESC itself, nor on control of EESC. Rather, we
conclude that programmed control of sectioned communication is an
intrusive principle that permeates the entire design of a SoC, and has
to be built-in from the start.

As follows from Section 3.1.1 and [50, 92], EESC is itself applicable
to all deep sub-micron-technologies.® Our design pattern and frame-
work, based on the communication processor (CP) paradigm is, like
all TAD work, concerned with the interface to processing architectures,
physical design and platforms, rather these fields themselves.

8For hard-wired circuits EESC can be controlled by a custom-built sequencer, hav-
ing the basic functionality of a communication processor (CP). The reason why such
a sequencer can be simple will be found in the next chapter on Useful-state Analysis
and useful-state encoding.



Chapter 4

Network Control with
Minimal Redundancy

What's the use of looking when you don’t know what it means?

Elvis Costello, Mystery Dance.

This chapter describes the theory of useful-state analysis (USA)
and useful-state encoding (USE). We start with a preparatory
mapping of the subject. Using a simple example for illustration,
we provide mathematical definitions for the entities of a commu-
nication architecture (CA), and for the sets of paths and transfers
that traverse the network. We show that, in the context of a par-
ticular communication architecture, the state of a network can be
described by a set of useful states smaller than the combination of
all resource states. This description has minimum redundancy.

Useful-state analysis is the procedure of finding the useful states.
To perform it, we define some types of graphs to be constructed
from CA specifications and present an algorithm operating on the
Path Allocation Graph (PAG).

Since our first example, used for definitions is oversimplified, we
will also illustrate real-life USA with a second example. We will
ultimately define communication architecture bandwidth, propose
figures of merit for communication architectures, and end with
with a summary of useful-state encoding, including a survey of
the broader application of USE to frequently reconfigured trans-
port networks.
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Figure 4.1: A mind map for the reader: communication architecture, useful-
state analysis, useful-state encoding, path and transfer lookup tables.

OMMUNICATION architectures, defined later in this chapter, de-
C scribe both physical and logical connectivity in a network. In-
tuitively they can be seen as a combination of network topology and
terminal arrangement. If a communication architecture (CA) contains
other components than shared-media and point-to-point networks,
this raises issues in respect to transfer scheduling. We need a frame-
work to handle the allocation of resources of CAs that can be complex,
containing meshes, rings, trees, hierarchical or irregular topologies. Ex-
periments with linear-topology CAs have led us to identify the primary
problem with large topologies: the explosion in width of the control
plane, due to inordinate growth of the control state space. Useful-state
analysis will show that this growth is avoidable: much of the control
state space has no use for actually realizing communicating paths. Of-
ten, the network’s control state space can be limited to a size that is still
manageable.

To explain resource allocation in CAs, we must first define a num-
ber of communication concepts in terms of graph theory. Then we will
define the concept of network states and explain the advantage of a net-
work description in terms of useful states. Ultimately we will arrive at
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useful-state analysis, which allows us to find the useful state set. The
concepts to be defined have been visualized in the mind map of Fig. 4.1.
This allows the reader to situate every aspect in relation to the others;
when every concept is fully defined, we will refer back to the map. The
map features a terminal arrangement, a communication architecture con-
sisting of a network topology and a useful paths set. The communication
architecture has a number of possible states, but the useful-state set is
only a subset of those. Useful-state Analysis is the procedure that yields
the set of concurrent path-sets from the communication architecture’s de-
scription, and assigns control codes to each of the sets. A concurrent
path-set then corresponds one-to-one to a useful state. USA results in
a path-set lookup table, which links control codes to concurrent path-sets
and useful states. Optionally, a path-set lookup table can be reduced
or just rewritten as a transfer-set lookup table. At various points in
the procedure the designer intervenes in the procedure: Useful-state
Analysis is not only mathematical analysis, but rather a design process.
The designer must interpret the terminal arrangement, select the useful
paths from the topology’s all-paths set, and perform concurrent path-
set reduction if he or she deems it necessary or opportune.

The work described in this chapter is wholly original, except where
stated. Since the result is powerful but basically simple, it cannot be ex-
cluded that others have thought about this and expressed it in another
form. In any case, the reference works on interconnection engineer-
ing [29, 31, 94] do not mention it.

4.1 Communication Architectures

In this section, we define communicating entities, network resources,
communication architectures, and sets of paths and transfers. Fig. 4.2
shows the example of a simple communication system, a communication
architecture (CA), consisting of a network graph (on the left) and a set of
useful paths (on the right). The network graph is sometimes called a
topology. The example is not drawn from practice, but simple enough
for the concepts to be readily pictured and understood.

Network graphs A network graph G nw is a graph (V, E). It may be
undirected or directed. The vertices V' are terminals and resources. The
edges I are wire sections. Undirected network graphs allow two-way
communication on all wires. Directed network graphs model networks
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Figure 4.3: Control elements: 6W3T switch, crosspoint, multiplexer.

where at least some wire sections are one-way.

Terminals and resources Terminals are network vertices of degree 1.
All other vertices are resources. The resource network is the subnetwork
spanning the resources. In Fig. 4.2, its edges are marked in bold. It does
not include the terminals and their drop-in sections, the single edges
by which the terminals are connected. (Drop-in sections are marked as
dashed edges.) The network vertices either belong to the terminal set
Tyw = {t}, or to the resource set Ryw = {r}. In Fig. 4.2, T(Gnw) =
{al,a2,01,b2}, and R(Gnw) = {il,i2,i3,i4}. Resource networks with
disconnected components belong to composite CAs, each of which can
be analyzed separately. We will concentrate on connected resource net-
works, that make up a single component network.
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Resources as control elements Resources can be switches, but also
other types of control element. Among some choices, shown in Fig. 4.3,
we see a 6W3T switch, a crosspoint1 and a multiplexer. Our framework
is applicable to all of them with little change. Multiplexers need an
output disable control to be useful for wire sectioning.

A 6W3T switch, of the type used in the example network graph of
Fig. 4.2, can be in one of 7 states, resulting from control: one state per
way, plus one for total disconnection. These states are shown in Fig.4.5.
A crosspoint has 3 states (a state relaying input i0, a state relaying i1,
and the state of output disable). A 4-to-1 multiplexer with output dis-
able has 4 + 1 = 5 states.

Importantly, resources are atomic: they can only be allocated to a
single path. If they are set up to realize a path, they can and should

A crosspoint has 2 inputs i0 and i1, the latter of which is looped through via i'1 to
the next crosspoint in a crossbar. This allows multiple crossbars to be constructed like
in Fig. 4.4.
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not realize another path simultaneously. For instance, a switch which
has states corresponding to the paths depicted in Fig. 4.6 is not atomic.
In that figure, a path enters the resource via port iog and leaves via
port io;, while another path enters via port i0, and leaves via port i03.
Atomic resources do not allow such behavior. If this needs to be mod-
eled, we should split up resources.

If necessary, non-atomic resources may be replaced with multiple
atomic ones. In on-chip communication, close to the physical structure
of the network, we are never far away from the atomic level, which
corresponds to the actions of single gates and transistors. Splitting up
non-atomic switches in atomic ones is always possible, but sometimes
leads to using a different types of control element, or having to consider
related control between elements. This is not an essential problem, and
can be accounted for by bookkeeping and combinatorics. It complicates
the formalism, and in this chapter we will not consider such situations.

That control states can be related could already be seen from Fig. 4.4,
where the control of the individual crosspoints in a crossbar is corre-
lated. A crossbar is often depicted as having “radio buttons”: selecting
one “button” releases the others. If control of the switchpoints is corre-
lated, or if the switches are not of the same type, the states of a number
of switches is not the product of the number of states of each switch.

The resource state set S¢(r) = {t} is the set of states associated with a
resource r. As stated above, we will usually assume all resources to be
of the same type, thus all resource state sets to be identical. This is not
essential to the theory, but it simplifies counting states.

Control code lookup A control code corresponds with every state of
a switch. A control code set S¢(r) is the set of control codes ¢, associated
with a resource r. A switch control code lookup table is a one-to-one map-
ping from control code set S(r) to resource state set Si(r), where the
sizes of the sets |S| = |S¢|. Such a mapping can be implemented in
hardware as a combinatorial circuit, or in hardware design language as
a lookup table. In both cases, the map is implemented as a decoder. The
6W3T switch shown earlier, in Fig. 3.2, had a decoder of default type
for such switches. Although resources are usually of same type, each
normally has its own lookup table, thus a different decoder.

For all resource types, the number of wires needed to deliver control
is [logy(|St|)]. For instance, for a 6W3T switch, [log,(7)| = 3.
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Figure 4.7: Terminal arrangement for the simple CA of Fig. 4.2.

Paths Inanetwork graph, acyclic inter-terminal paths p; ; = (t;,...,t;)
can be realized. For our purpose, a path is always acyclic, because cyclic

inter-terminal paths would contain some resources twice, contrary to

our assumption of atomicity and thus single-path allocation. Paths can

be directed or undirected. In the latter case, they are equivalent to two

directed paths in anti-parallel.

The all-paths set Sap(Gnw) of the network graph is the set of all
acyclic paths between terminals. Finding all paths in a network graph
is trivial for acyclic but not for meshed topologies. In the latter case, the
designer can make use of the path-finding algorithms of Section 5.1.

A transfer tis formally an ordered pair covered by a path: t = (t;,t;)
for which a path p; ; = (t;,...,t;) or a path p;; = (¢;,...,t;) exists.
(Recall that paths may be undirected, so we must account for both pos-
sibilities (t;,...,t;) and (¢;,...,t;).)

Terminal arrangement A terminal arrangement is a set of terminal con-
straints best expressed in a language; natural language has served us
well. It can often be depicted as a directed simple graph Ay = (V, E).
The vertices V(Ar) are terminals. The edges E(Ar) are transfers.
Fig. 4.7 shows the terminal arrangement for our example. The only
transfers are between distinct terminal classes, not within a terminal
class. The terminal classes are A = {al,a2} and B = {b1,b2}.

Communication architecture We can now give a formal definition of
a communication architecture (CA). Itis a pair Ac = (Gyw, Suyp) of anet-
work graph and a useful path-set. The network graph is the topology,
but the useful path-set is chosen by the designer.
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Figure 4.8: A set of concurrent path-sets. In each path-set, concurrent paths
are marked by solid edges.

Useful-paths set The useful-paths set Syp(Ac) of the CA is a set of
acyclic paths between terminals. It is a subset of the all-paths set S 4p of
the network graph Gnw (Ac): Sup(Ac) C Sap(Gyw (Ac)). Choosing
the useful path-set is part of the design: in the useful path-set, only
paths are selected that (a) will cover the required terminal arrangement,
(b) are minimal, meaning that no other path in Sy p contains it, and (c)
do not contain an excessive number of resources, in the judgment of
the designer. If it is evident that some long detour consumes resources
without adding usable redundancy, the designer can drop it. Else, the
designer can be prudent, keeping the path at this point, and remove
it later when reducing the path-set lookup table (PSLT) as described
below.

Concurrent path-sets and set of concurrent path sets Concurrency for
paths means that they are resource-disjoint, so that they can occur to-
gether. Fig. 4.8(a) shows such a concurrent path-set (CPS) for our exam-
ple CA: a set of useful paths with no resources in common. The paths
of a set are indicated in bold. The three sets in Fig. 4.8 form a set of con-
current path-sets for our example CA. The complete set of concurrent
path-sets (SCPS) is termed Scps, the set of all CPSs. Whether a set of
concurrent path-sets like that of Fig. 4.8 is complete, cannot be decided
yet in all but trivial cases: it requires useful-state analysis, which we
will come to.
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Broadcasting In a broadcast architecture, single terminals can transfer
simultaneously to all or some members of another terminal class (or
their own class). For a broadcast CA, the concept of a useful path-set
Sup(Ac) is replaced by that of a useful path tree set Sy pr(Ac). It con-
tains broadcast trees covering the terminal broadcasting arrangement.
Useful-state analysis for broadcasting CAs can be performed in terms
of broadcast tree broadcast tree sets instead of path-sets. Atomicity of swit-
ches with broadcasting means that resources can only be attributed to
a single tree. We will not further mention specific notation or termi-
nology for broadcast tree sets The difference consists mostly of keeping
track of trees instead of paths in the algorithms.

4.2 Network State and Useful-state Sets

In the mind map of Fig. 4.1, we see the communication architecture in
the top left corner. It consists of network topology and useful-paths set,
a subset of the all-paths set, derived from the terminal arrangement,
as determined by the designer. The useful-paths set is possibly dimin-
ished by the designer, for reasons of computational efficiency or good
sense. Now, having defined the building blocks of a CA, we can seek
to control it with minimal redundancy, hence minimal cost.

Network all-state space The state of a network follows from the states
of its resources. If the resource states are independent, the network all-
state space Sy is the Cartesian product of resource state sets. So(Gyw) =

HLﬂ Se(ri). (a stands for all-states). If the switches are all of same type,
|Sq| = |S¢|IFl. In Fig. 4.2, for instance, with 4 6W3T switches and 7 states
per switch, in total, |Sy| = 74 = 2401 states exist.

Useful state and useful-state set A CA is in a useful state u if all paths
realized by the switches belong to the useful path-set. The useful-state
set Su(Ac) is the set of all its useful states. By definition, S, maps one-
to-one to the set of concurrent path-sets Scps.

Fig. 4.8 shows that not all products of individual resource states
correspond with a useful state. For instance, if switch i4 realizes a
path from a2 to b2, switch i3 is always disconnected. If switch i3
has a path from i1 toi4 , switch i4 always has a path from i3 to b2.
Other useless states are those where adjoining switches do not make
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a path, e.g. because they are oriented in opposite. Consequently, the
useful-state set maps to a subset of network all-state space.

Useful-state encoding The useful-state subset S,(A¢) is often much
smaller than the total network state space. When transporting state
information to control the network, it is cheaper to encode it in one-
to-one relationship to useful state, and not transport full network state
information. We call the encoding of control USE when it defines only
useful states.

Given the topology and useful path-set, USE is of minimal redun-
dancy, because a state outside the useful-state set has no inter-terminal
path. Therefore it should not be encoded.

In the network state corresponding to the null path-set, no resources
are allocated. For power-saving, it is important that such a state can be
encoded. We will always, conventionally, include it in the useful state
set.

Path-set lookup table A path-set lookup table (PSLT) is a map from a
positive integer code, the useful-state code to the SCPS. 0 always maps
to the null path-set, by convention. We can choose the codes sequen-
tially, or to have the lowest total entropy, or be the easiest to decode.
Path-set lookup tables can be constructed by combining the tables of
subnetworks that have a known PSLT or by useful-state analysis, de-
scribed below.

4.3 Useful-state Analysis

In the map of Fig. 4.1, the communication architecture implies the
useful-state space of the CA, which is a subset of the all-state space, but
at this stage, the useful-state space is not yet fully determined.

Useful-state Analysis (USA) is the determination of the complete
set of concurrent path-sets, the path-set lookup table, the transfer-set
lookup table, and the switch lookup tables, from the communication
architecture (CA) Ac = (Gyw, Sup)-

Path allocation graph A path allocation graph (PAG) is a simple undi-
rected graph Gpa(Ac) = (V,E), The vertices V are the members
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Figure 4.9: Path allocation graph for the CA of Fig. 4.2.

of the useful path-set. V(Gpa) = Syp(Ac). An edge exists be-
tween each pair of useful paths with a common resource. E(Gpa) =
{¥(p1,p2),p1,p26SuP(Ac) | (3r | rep1 A rep2)}. Fig. 4.9 shows the PAG
for our example communication system with 4 terminals and 2 terminal
classes.

Graph concepts In graph theory, independent sets are sets of vertices
not incident on a common edge. Maximal independent sets are inde-
pendent sets not contained in any other independent sets.

A maximum independent set, is an independent set of maximum
size. A maximum independent set is a maximal independent set, but
the reverse is not necessarily true [118].

The independence number o(G) is the maximum size of an indepen-
dent set. We also define the concurrency number v(G) as the maximum
number of concurrent paths in a graph. v(G) can often be determined
by inspection. This is important since knowing v(G) limits the run time
of the USA algorithms.

Concurrent path-sets in a CA by definition correspond to indepen-
dent sets in the PAG. Maximal independent sets in the PAG, not con-
tained in any other independent set, are termed maximal path sets in the
CA. The size of independent sets in the PAG, a(Gpa), is bounded by
v(Gnw ). Since some of the maximal number of concurrent paths may
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not be useful, «(Gp4) < v(Gnw ). We call the maximal number of con-
current paths the concurrency number of the communication architecture,

Y(Ac) = a(Gpa(Ac)).

USA algorithm Finding the PSLT entails

1. constructing the PAG;

2. obtaining all independent sets of vertices in the PAG (which are
paths in the CA);

3. (if the concurrent path-set contains undirected paths:) combining
paths of both directions into new sets of directed paths;

4. numbering the sets of paths, which are concurrent path-sets, with
useful-state codes.

Constructing the PAG in step 1) is a matter of enumerating the use-
ful paths as vertices, and introducing an edge whenever pairs of useful
paths have resources in common. The technical aspect of step 2) is to be
described in Section 5.2. The rationale for step 3) is computational: if
the concurrent path-set contains bidirectional paths, one could replace
each by two directed paths and proceed as above, but without step 3).
One then has up to twice as many useful paths, leading to far higher
complexity, as Chapter 5 will show. It is better to keep the paths undi-
rected at first and recombine the paths of both directions later in new
sets of directed paths, with little computational burden. For instance,
the undirected path-set {a2-i4-b2, al-il-i2-bl } recombines to
four directed path-sets {a2->i4->b2, al->il1->i2->bl }, {b2->-
i4->a2, al->i1l->i2->bl }, {a2->i4->b2, bl->i2->il->al }
and {b2->i4->a2, bl->i2->il->al }.

The result of the USA algorithms is a lookup table for the set of con-
current path-sets, the path-set lookup table (PSLT). The chosen num-
bers can be used as instruction or control codes.

Example Using a USA algorithm, we find the complete directed PSLT
for the communication architecture of Fig. 4.2. It is depicted in Fig. 4.11,
and listed in Fig. 4.10. We find that Fig. 4.8 did represent the set of
maximal path-sets, but not the complete set of concurrent path-sets,
after all.
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az2->i4->b2 al->il->i2->bl
b2->i4->a2 al->i1->i2->bl
az2->i4->b2 bl->i2->i1->al
b2->i4->a2 bl->i2->i1->al
al->i1l->i2->b1l
b1->i2->i1->al
al->i1->i3->i4->b2
b2->i4->i3->i1->al
a2->i4->h2

10 b2->i4->a2

11 bl->i2->i3->i4->a2

12 a2->i4->i3->i2->b1

O O ~NO P~ wWNEFO

Figure 4.10: A listing of the complete directed path-set lookup table (PSLT).

Effect of useful-state encoding Instead of transporting 2401 states to
the 4 switches, we only need to transport 13 useful states. In terms of
control wires, using USE, we need only 4 wires, instead of 12.

PSLT reduction With every directed path corresponds a directed
transfer. The reduced PSLT corresponds with a transfer-set lookup
table (TSLT) that has a unique set of paths per set of transfers. Reduc-
ing the PSLT entails removing from the PSLT all but one concurrent
path-set that covers the same concurrent transfer-set, and (option-
ally) removing concurrent path-sets whose correspondent concurrent
transfer-set is never required by the ISA. In our example PSLT of
Fig. 4.10, no reduction is required. The TSLT is listed in Fig. 4.12.

Omitting the control codes, the TSLT can be transformed to a
transfer-compatibility hypergraph (TCH), a hypergraph Hrc(Ac) = (X, D)
where the vertices X = V(Gpy) are the useful paths and the hyper-
edges D are the useful path-sets. Fig. 4.13 shows an example TCH, for
the TSLT of Fig. 4.12. In this case, it is a graph, not a hypergraph, since
no conflict involves more than 2 transfers. (No useful path-set counts
more than 2 useful paths.) The TCH is the specification for transfer
compatibility that the scheduler needs to observe; we will meet it again
in Section 7.3 on design flow.

Referring back to the map of Fig. 4.1, we have after useful-state anal-
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Figure 4.11: The set of concurrent path-sets (SCPS), with their useful state
codes.

ysis, arrived at the top right-hand corner: the set of concurrent path-sets
has been determined, and control codes have been assigned to each
useful state, arriving at the path-set lookup tables. Optionally, at the
discretion of the designer and in function of ISA or terminal arrange-
ment, the set of concurrent path-sets, may be reduced and a transfer-set
lookup table may be arrived at, shown in the bottom right-hand corner.
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az2->h2 al->bl
b2->a2 al->bl
az2->bh2 bl->al
b2->a2 bl->al
al->bl
bl->al
al->b2
b2->al
a2->h2
10 b2->a2
11 bl->a2
12 a2->bl

O O ~NO O P~wWNEFO

Figure 4.12: A listing of the transfer-set lookup table (TSLT).

@D @D
@D @
o)

Figure 4.13: Transfer compatibility hypergraph for the TSLT of Fig. 4.12. Since
the concurrency number is 2, it is also a plain graph.

4.4 Communication Architecture Bandwidth

We are now able to answer the question: when is a communication
architecture fixed-bandwidth, and when is it variable-bandwidth? This
can be established, by USA, from the CA: the network topology and the
chosen set of useful paths, with some the concurrent path-sets removed
by reduction, at the designer’s discretion. The property of bandwidth
variability is thus acquired by design. USA results in a canonical PSLT
which describes all the useful states of the CA.
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Figure 4.14: Network topologies for shared-media and point-to-point com-
munication architectures.

t0:i0:11 t0:i0:i01:i1:t1
t0:i0:12 t0:10:102:12:12
t0:i0:t13 t0:i0:i03:i3:t3
t1:i0:12 t1:11:112:12:12
t1:i0:t13 t1:01:i13:i3:13
t2:10:13 t2:12:123:13:13

Figure 4.15: Useful paths for shared-media (left) and point-to-point (right)
communication architectures.

The CA is fixed-bandwidth if and if only all maximal independent sets
of the PAG have the same size, which then is the bandwidth of the CA
(in transfers per cycle). This implies that all maximal independent sets
are maximum independent sets. In the other case, the CA is variable-
bandwidth.

To make this mathematical definition consistent with our earlier
statements (in Section 3.1.2), we must show that shared-media and di-
rect (“point-to-point”) CAs have a PAG with maximal independent sets
of constant size. This can be derived by performing USA, which in
both cases is trivial. Two topologies with four terminals are shown
in Fig. 4.14: one with a common, shared resource (resource i0) for all
communication and one with a resource per terminal pair (resources
i01-123), making it point-to-point. For the point-to-point network, per
terminal is added an extra resource (resources i0-i3), to model the as-
signment of a channel to a terminal. Without it, the function of terminal
and channel would not be properly separated and our methodology’s
requirement that “terminals have degree 1” violated (cfr. Section 4.1).
The terminal arrangement is all-to-all; so we choose the concurrent
path-sets shown in Fig. 4.15. This yields the PAGs of Fig. 4.16 and the
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t0:i0:i0L:i1:t1

Figure 4.16: Path allocation graphs for shared-media and point-to-point com-
munication architectures.

t0:i0:t1 t0:i0:101:i1:t11 t2:i2:i23:i3:t13
t0:i0:t2 t0:i0:i02:i2:t12 11:i1:i13:i3:t3
t0:i0:t13 t0:i0:i03:i3:t3 t1:il1:i12:i2:t12
t1:i0:t2
t1:i0:t13
t2:i0:t3

Figure 4.17: Maximal (and maximum) independent path-sets for the path allo-
cation graph of shared-media (left) and point-to-point (right) communication
architectures.

maximal independent sets shown in Fig. 4.17. These are all of the same
size: the concurrency number of the CAs, which is 1 and 2, respectively
(and for the point-to-point communication architecture not 3, since out
of 3 terminals at most two terminal pairs can be chosen). The maximal
independent sets are also maximum; their sizes, 1 and 2, are also the
respective fixed bandwidths of the CAs in transfers per cycle.

For a CA with fixed bandwidth N, the scheduler can schedule any

number from 0 to N transfers per cycle. The number of choices it has,
the useful states, can be derived from the PSLT: for the shared media
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Figure 4.19: Terminal
arrangement for func-
tional units and memo-

ries.
Figure 4.18: Communication architecture

with circular topology.

CA, itis 7; for the point-to point, 10.

4.5 Another Example: Circular Topology with Two
Terminal Classes

A circular topology has some advantages over a linear topology, at lit-
tle extra cost: for the price of one extra section, one obtains the pos-
sibility to carry many more concurrent transfers. Fig. 4.18 depicts the
network of a CA with two terminal classes: functional units (fI-f4) and
memories (m1-m4). Each functional unit must communicate in two di-
rections with each memory, as is indicated in the terminal arrangement
of Fig. 4.19. Up to four concurrent transfers are possible, for instance
the transfers f1->m1 , f2->m2 , f3->m3 and f4->m4 .

The useful-paths set Sy p has 32 paths. We have retained all paths
from the all-paths set since even the longest paths may offer a useful de-
tour in our terminal arrangement. The PAG for this CA has 32 vertices
and 441 edges; it is shown in Fig. 4.20, if only to convey the complexity
and the need for a good algorithm to find the independent sets. The
edge density? is 0.43; edge densities of PAGs have been found to range

*Edge density 6 = |E|/|V|? is a measure of whether a graph is computationally
represented most efficiently by an adjacency list (6 < 1) or by a adjacency matrix (6 >
1) [106].
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Figure 4.20: Path allocation graph for the CA of Fig. 4.18, with circular topo-
logy and a bipartite terminal arrangement.

from 0.1 to 0.5. This is smaller than 1, making the graphs low edge-
density and computationally best represented by an adjacency list. We
have seen that the concurrency number is 4; therefore the independent
sets have at most 4 members. Using the maximum independent path-
set (MIPS) algorithm (program: mkpslt -D), the PSLT is found in 7.8 s.
USA reveals that the CA has 513 useful states. Some of the concurrent
path sets are redundant; reducing the PSLT yields 478 states. Thus,
nue = 1 —(9/(8 x 3)) = 62.5%. The CA can be driven with 9 wires
instead of 24.

The bandwidth of the CA is variable between 1 and 4 transfers per
cycle, as seen from the undirected maximal path-set table, which has 46
entries: 8 of size 1, 20 of size 2, 16 of size 3, and 2 of size 4. The canonical
transfer-set table, reduced to include only one path-set per transfer set,
has 481 entries, reduced from 513.
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One wonders whether this CA could have been made fixed-bandwidth,
by reducing the path-set lookup table. There are 2! = 16 terminal pairs,
out of which we can choose 3 pairs in 3,1X—61'3, = 560 ways. We can also
choose 2 pairs in #61!4! = 120 ways, or 1 pair in 16 ways. (Mark
that some path-sets of given size are subsets of the undirected maxi-
mal path-sets of a greater size.) The sizes of the fixed-size undirected
maximal path-sets are not large enough to support a fixed bandwidth
larger than 1. We could have seen this from the topology: any diagonal
transfer, like f1-m3, blocks other diagonal transfers like f2-m4 under the
prevailing terminal arrangement.

Strictly speaking, we could have obtained a single transfer per cycle
version of the CA by looking only for 1-maximal independent sets. 32
undirected independent sets can be found. This can be reduced by half,
since each transfer can be done using each of two alternate paths in each
direction: clockwise and counterclockwise. Ultimately, this leads to a
canonical PSLT with 65 entries.

4.6 Figures of Merit

The concept of useful states allows us to define figures of merit for a CA
independent of the applications running on them. The figures allow us
to quantify a design early in the design process.

4.6.1 Useful-encoding Efficiency

One figure of merit, Useful-encoding Efficiency (UEE) is the amount
by which useful-state encoding reduces the number of control wires,
relative to the number of wires before reduction. For resources of the
same type, whose control states are unrelated,

nue =1 — ([logy [Sul1/(|R|.[logy [S[1)), (4.1)

with |Sy| the number of useful states, | R| the number of resources and
|S¢| the number of states per resource. Assuming all resources are of
the same type, the number of bits required to control | R| switches, thus
the width of the control plane, is

Wep = (1 —nug)|R|.[logy [Sd]. (4.2)

nuk ranges from 0 to 100%. In our first example, of Fig. 4.2, nyg =
1 —(4/(4 x 3)) = 67%, meaning that, using USE, the resources need
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only 33% of the number of wires required when USE is not used. The
number of wires Wcp = 4. In our second example, of Fig. 4.18, ny g (8 x
3)) = 62.5%.

4.6.2 Intrinsic Sectioning Gain

To define Intrinsic Sectioning Gain (ISG), we return to the concept of
sectioning gain already mentioned in Chapter 3. We develop a view of
sectioning gain which is independent of program, data and geometry,
and thus also of power-aware placement. The sectioning gain G'g is the
energy saved by sectioning, divided by the energy consumption as it
was before sectioning. Because of Eq. (3.3), we have

Gao = Emi”unsect - Expsect -1 Emi”sect
ST E - E
TPunsect TPunsect (4 3)
-1 Zszitched—on sections asls

ZVS asls

Intrinsic and program-specific sectioning gain To be independent of
geometry and application, the section lengths [, and per-section activi-
ties a; must disappear from (4.3), making the sectioning gain inherent
to the communication architecture. We call this the Intrinsic Sectioning
Gain (ISG). For this, we assume (a) «; to be either 0 (for sections not
switched on) or 0.15, the estimated value «; from Eq. (3.4), and (b) I to
be either 0 (for terminal drop-in sections, where the resource is close to
the terminal) or unit length (between resources).

1
Grs =1~ > ST (44)
Vs’

where ¢’ is a section of the resource network, excluding terminal drop-
in sections.

Vswitched—on sections

In other words, ISG is the length of unused (sectioned-off) resource
network sections, normalized to the total section length of the resource
network, making abstraction of geometry, and averaged in time over
the duration of the application. It is the sectioning gain under activity-
and placement-neutral conditions.

This average can be further simplified by making one more assump-
tion, that of schedule-neutral conditions, i. e. that all useful states have
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equal probability. In fixed-bandwidth CAs, this means that all trans-
fers have equal probability, which can be true, for instance in a mem-
ory hierarchy where all memories have the same probability of access.
In any case, schedule-neutrality is the best prior estimate we can make,
not knowing the real distribution of useful states which depends on the
compiler and the program. We define schedule-neutral ISG G, ¢ as

(13" Lsls) 45
PN .

where g, (s') is the membership function for a wire section s’ to be-
long to the concurrent path-set corresponding to useful state S,. G’ 4 is
the average length of switched-off sections, made over the set of con-
current path-sets, thus over the useful states. The real sectioning gain
is (sometimes much) better than G, but too dependent on the pro-
gram or compiler for our purpose. If power-aware placement is done
properly, it should never be worse.

Power-aware placement Sectioning gains in the data plane after
power-aware placement, reported in [48, 49, 57, 59], ranged from 44
to 85%. Since calculated schedule-neutral ISG was in the range of 20 to
40%, the program-specific gain Gps = Gg — G4 can be as high as 45%
above schedule-neutral ISG.

Sub-word selection If a CA has a word-wide bus network but the
ISA features transfer instructions operating on sub-words, an apprecia-
ble amount of data plane transport energy can additionally be saved
by disconnecting the parallel parts of the sections for the unused parts
of the sub-word. Control-wise, this is cheap, as control of sub-word
selection is grouped per data word.

Because power-aware placement and sub-word selection are data
plane techniques, we can, in topological analysis, consider only schedule-
neutral ISG, and see it as a separate figure of merit that is proper to the
CA.

In our first example of this chapter, the CA of Fig. 42, G4 =
71%, meaning that, in schedule-neutral conditions, 71% of wire sec-
tion length is unused. In the second example, the CA of Fig. 4.18,
Ghg = 52%.
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4.7 Summary

A communication architecture is described by a network graph and a
useful paths-set. The latter is selected from the all-paths set. The de-
signer selects paths he wants to use. He can keep long paths in the set
and discard them later, at the risk of introducing computational com-
plexity during USA that could have been avoided. If the network has a
resource set R and an all-state space S, its state can equivalently be de-
scribed by its useful-state set S,, where |S,| = (1 —nyg)|S.|. USA yields
a PSLT and control codes for each of the communication architecture’s
useful states.

Unless the network state allows for multiple paths per transfer, the
path-set lookup table can be replaced by a transfer set table, which is
smaller and thus has a still larger 77 g. For conciseness, we will use the
term path-set specification also in the case where the lookup is unique,
and thus defines a set of transfer sets as well as a set of path-sets.

The underlying assumption for all this is that the vertices in the net-
work are atomic, i.e. that at most one path through a vertex is allowed
to exist at one time. This includes multi-way switches, multiplexers
and crosspoints, but not full crossbar switches.? USE requires that each
vertex has its own switch lookup table, correlating the global useful
state code to its own state.

The purpose of reducing a PSLT can be to remove useful states be-
cause they are not required to match the terminal arrangement. This
may be because the ISA is not topology-aware, or is designed for a fixed
bandwidth. If the purpose is to encode only transfers and not network
state, the PSLT can be represented by a single-path, or transfer lookup
table.

On arrival of a useful-state code, a switch can look up its configu-
ration by indexing the entry in its switch lookup table. A switch lookup
table is derived from a complete canonical PSLT. The procedure is de-
scribed in Appendix A, and is important for switch synthesis.

The concept of USE can be expanded to broadcasting, where path
tree sets replace path-sets. Useful-state efficiency was found to be bet-
ter, since broadcasting resources have more states, while the states of
vertices participating in broadcasting are more strongly interrelated.
The concept of broadcasting spawns yet another type of lookup table,
the path-tree set lookup table. Its use will by now be clear.

3Railway switches can be handled; Internet routers, alas, not.
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4.8 A Survey of Future Work on USE

The scope of USE is different, and larger than, EESC alone. At this
point, we want to digress briefly from our main field of application
(SoCs) and speculate where else USE and sectioning might also be
applicable. Many sorts of frequently reconfigured multi-commodity
transport networks exist. We want to see where else our assumptions
apply, and to which extent they might be relaxed if they do not.

Frequently reconfigurable communication networks As we have
seen, sectioning can be and is used widely as a cost-saving princi-
ple, wherever transport costs are proportional to the length of a link.
USE applies wherever extensive networks are controlled or monitored
frequently, and the volume of state information to be exchanged is ap-
preciable. With irregular topologies, the major advantage of USE is the
ease of design-time scheduling, while redundancy is minimal at run
time.

Key assumptions The key assumptions for USE are static scheduling,
atomicity of the network vertices and centralized control. The require-
ment for programmed control can be relaxed to program-assisted de-
sign of control, thus USE is not limited to programmed machines. A
fourth assumption, that we have circuit-orientation, and not “store-and-
forward”, which would require buffering in the vertices, can possibly
be relaxed by developing the proper algorithms.

Candidate application fields Overviewing some candidate appli-
cation fields, like multi-commodity transportation, Internet routing,
global monitoring of IPv6 network topology, NoCs, inter-tile networks
in communication-aware CMP, operating-system control of chip multi-
threading (CMT)/CMP, FPGA interconnect fabrics, and EESC without
programmed control, we see that some are ineligible (IPv6) because
network vertex atomicity does not apply. We know that EESC can
be used as a “style of connection” in ASIC Register Transfer Level
(RTL) networks; since it can be controlled by ad hoc communication
sequencers. this opens up interesting avenues in FPGAs. Elsewhere,
like in NoCs and CMPs, vertex atomicity is at the designer’s discretion.
If we had algorithms for USA with “store and forward” mode of op-
eration, EESC could be applied in these fields. This would allow more
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power-efficient use of communication resources in NoCs and CMPs.

A number of application cases come to mind; for instance, rout-
ing in NoCs and CMPs for irregular topologies. As we have seen in
Section 2.2, deterministic routing, either source routing or distributed,
features a lookup table at each vertex. These tables increase in size
with network size and complexity. Also, with source routing, headers
greatly increase in size with large and complex networks. In NoCs with
irregular topologies, significant savings might be obtained from route
specification with minimal redundancy.

CMT/CMP processors with non-uniform memory access (NUMA)
are of research interest today. A CMT/CMP processor consists of com-
puting nodes with L1 caches, while L2 and lower-order caches are
shared by different (or all) nodes. NUMA architectures are designed to
surpass the scalability limits of the symmetric multi-processing (SMP)
architecture. In a SMP, all L2 accesses use the same shared-media mem-
ory bus. NUMA alleviates this bottleneck by connecting the various
computing nodes and caches by a more specialized communication
architecture. This creates the paradigm of a local memory and remote
memories with different levels of remoteness. Control over such a
communication architecture is centralized and originates from the op-
erating system. USE, when adapted for store-and-forward operation,
could be used for discovery, description, scheduling and control of
advanced and irregular NUMA topologies.
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Chapter 5

Algorithms for Path-finding
and USA

A computer architecture is its own punishment.

In this chapter, we describes specific algorithms developed for
our design framework, and their implementation, in detail. We
present algorithms for finding all routes in a network, needed
to determine the all-paths set of a communication architecture,
and for deriving a path-set lookup table from a path allocation
graph (PAG), that is to say for Useful-state Analysis (USA).

Alternative USA algorithms will also be explored, based on graph
representations other than the path allocation graph (PAG), and
approaches other than graph theory.

UR design framework for control of EESC needs to built on correct
O concepts, but, equally important, we must be able to perform de-
sign procedures in reasonable time. As we shall see, we are hampered
by computational complexity which is essentially non-polynomial.

5.1 Path-finding Algorithms

To define a communication architecture (CA), it is necessary to deter-
mine the set of all paths between terminals. We can then choose the
useful paths for the terminal arrangement at hand, and arrive at the
useful-paths set. For acyclic network topologies, determining the all-
paths set is trivial, while for many regular networks it can be done
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analytically, but not so for the cyclic (meshed) networks that we need
for implementing survivable architectures. Such architectures are cov-
ered exhaustively in Grover [41], albeit in the context of telecommuni-
cations, not SoCs.

Paths, or routes as they are often called in this context, refer to a
sequence of vertices. As seen in Chapter 4, the paths must be acyclic,
thus not contain the same vertex twice. They are considered distinct if
the sequence of vertices is different in any way. Note that distinctness is
not the same as vertex-disjointness or edge-disjointness, criteria which
are also used in literature but mean only that routes have no vertex or
edge in common.

On the order of O(2") distinct routes are possible between vertex
pairs in a graph with n vertices, because of the binomial sum

n n "
> <k> =", (5.1)

k=0

If we have S edges and use a hop limit (or maximum path length) of
H < S, we expect abound of O(( fl) ). In a communication architecture,
we need only to find routes between pairs of vertices that are terminals;
with T terminals out of n vertices, there are (g) of those pairs. Two
algorithms have been found usable: find distinct routes (FDR) and find

all routes (FAR).

Grover’s find-distinct-routes algorithm  Studying literature, we found
that the body of algorithmic research is concerned with finding short-
est, rather than all routes. Grover mentions it is theoretically possible to
apply a k-shortest distinct route algorithm, which by itself is known to
be efficient for the path-finding problem, repetitively, starting from an
initial set of k-shortest distinct routes, and performing what is in effect
a depth-first search on each edge. He warns that it is impractical to do,
since the number of distinct routes explodes combinatorial as the hop
count increases. He advises to use instead his own find-distinct routes
algorithm, also a depth-first search. The algorithm specifies a terminal
pair and then seeks to find all distinct routes, up to a certain hop limit.

The modus operandi is interesting enough to reproduce here from
Grover [41]. It starts at a source vertex, and takes an excursion out
on any edge incident at the source, marking the edge as having been
visited. At the next edge thus visited, this is repeated. At each vertex,
the rule is to take an unmarked edge, mark it, and head down further
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to a next vertex if possible. Whenever the target vertex is discovered,
the process records the route and backs up to the penultimate vertex on
the route. If all edges are marked at that vertex, it backs up again. At
the first such vertex found during this backtracking, where there is an
unmarked edge, the search branches down that edge and continues as
above.

Anytime the search depth reaches H hops without discovery of the
target, or if a loop is discovered in the route, the process also backs
up. A potential loop is discovered when the unmarked edge currently
branched upon leads to a vertex that is already a parent of the vertex
from which branching just occurred. In this case the edge is marked
and the branch is not taken. An important detail is: as the process
backs up from any vertex, all edges at the vertex that it is leaving, ex-
cept the one to the parent, to which it is returning, are unmarked upon
departure from the vertex.

This is the only method found in literature to establish all distinct
routes in a topology, apart from brute-force.! It has been established
that the algorithm can work with even non-planar graphs; in SoC com-
munication, topologies are anyhow expected to be planar. For small
graphs, it can work well, for instance for our example on p. ??. It can
ultimately find routes with long hop counts, but also often fails to reach
the end of the route in a reasonable time.

Find-all-routes algorithm Looking for alternatives, we found that,
with careful programming, all routes in a sufficiently small network
can be enumerated by a brute-force approach: making the combina-
tions of all terminal pairs, permuting the internal vertices to yield all
candidate routes and discarding them unless all edges in the candidate
route are present in the network. This is is called the FAR algorithm.

The feasibility of FAR depends on memory-efficient generation of
combinatorial sequences. With large networks, time and memory re-
sources are likely to fail spectacularly, though. Prudence is thus ad-
vised: one should start with small hop counts and gradually increase

!Grover’s FDR algorithm is of Hénsl-und-Gretl-type. (A continental European
reader would recall “Thumblin” instead, but the English version of that fairy tale hap-
pens not to mention breadcrumbs.) It is a charming thought that such ancient prescrip-
tions are still state-of-the-art, and similar in spirit to those given, in “The Name of the
Rose”[33], by William of Baskerville to his confrater Adso, as they were contemplating,
in 1327, to search the labyrinth at the Benedictine Abbey. Eco dwells on the subject of
medieval path-finding for a whole chapter.
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Figure 5.1: Planar graph with 8 terminals, 16 resource vertices and 36 edges
between resources.
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Figure 5.2: Run time required (left) and number of routes (right) for the graph
of Fig. 5.1, and the 4x4 grid on p. 166, for various maximum hop counts, cal-
culated using the find-all-routes algorithm. We see the extra run time per
additional route increasing.

them.

Fig. 5.1 shows a planar graph with 8 terminals, 16 resource vertices
and 36 edges between resources. In Fig. 5.2 we see the run time re-
quired? to find all inter-terminal routes in the graph, and the number

2All execution times are given for a single-threaded program on an 64-bit Intel Core
Duo 2 at 1-1.67 GHz clock rate (with on-demand frequency scaling), and with a 2M L2
cache.
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of routes found, for various maximum hop counts. A set of routes
can easily be found provided the hop count is 7 or lower, but perfor-
mance rapidly degrades with a hop count of 8 and more. This is a
serious limitation, since the graph does have routes with a hop count
of 16 and more, and some of those might be useful. The problem could
be attacked with more sophisticated techniques, but never ultimately
solved, because of the multitude of combinations of hops. Fig. 5.2 also
shows results for another topology, the 4x4 grid depicted on p. 166. The
extra run time per additional route increases strongly, indicating poor
scalability.

If H is the hop limit, R the number of resources and 7" the number
of terminals in a topology, then, assessing time and memory complex-
ity of the FAR algorithm using the Standard Template Library (STL),
non-strict time complexity is O(min(H, R)2® RIT?). Memory complex-
ity stems from the need to pre-calculate and store all terminal pairs of
the communication architecture: it is O(7?).

Comparison of path-finding algorithms Both approaches are com-
plementary: one may first finds all short routes using the find all routes,
then add the longer routes using Grover’s algorithm. If this has to be
done, it is tedious, as it must be done for each terminal pair. Ultimately,
path-finding has been done for all examples in this work. The usage
forms for the tools are described in Appendix A. The job can be sim-
plified by symmetry in the network graph. Anyway, missing routes is
not very detrimental to control of the network: it only means that those
routes will never be followed. If they were hard to find, chances are
they are not essential to the communication architecture.

5.2 Algorithms for Useful-state Analysis

The basic way to perform USA is to determine topology and useful-
path set, construct a path allocation graph (PAG) and then identify the
independent sets in the PAG. These correspond with concurrent path-
sets in the CA. Caution is to be exercised with undirected paths in the
useful-path set (see also Section 4.3): if they are considered early on in
the PAG as two paths of opposite direction, this needlessly burdens the
algorithms. It is better to see undirected paths only as paths directed in
opposition in the last stage of the algorithm, when undirected path-sets
are recombined into sets of directed paths.
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Finding in a graph a single independent vertex set, even a maximal
independent set, can be solved in polynomial time by a greedy algo-
rithm [118]. For finding all independent or maximal independent sets,
we know no polynomial-time algorithm.

5.2.1 Maximal path-sets and PAGs: three basic methods

We will describe three variants that are non-polynomial: the inde-
pendent path-set (IPS) algorithm, the maximal independent path-
set (MIPS) algorithm and the path-powerset algorithm (PPS) algorithm.
The second gives most insight, also in practical situations of CAs to be
analyzed. All can be applied equally well on CAs with broad- or
narrowcasting; the concept of a path is then replaced by a (broad-
cast) path-tree, that is perforce directed. The design flow and working
method remains the same. Actually the concept of broadcasting resides
in the PAG, not in the algorithm. (Recall that with broadcasting, the
concept of a “path tree” replaces a path. Once the PAG is constructed,
the allocation problem is the same for paths as for path trees.)

Before we select any of the three variants, we want to ensure that
our algorithms are sufficiently optimized. We will be applying a com-
mon strategy of optimization [73], prescribing to proceed in the sim-
plest and most straightforward way, make the algorithms work first,
then apply it to various problems, first of small size and then larger,
look at the problems of scaling, and to solve those in the order that
they present themselves. We will discuss the implementation of the
algorithms, illustrate the scalability problems encountered, show how
those can be alleviated, and then present the time complexity of the
algorithm that we will ultimately select as best.

Independent path-set algorithm (IPS) Independent sets can be found
directly, by brute-force construction.The IPS algorithm is written down
as pseudo-code in listing 5.1.

Maximal independent path-set algorithm (MIPS) As stated before,
maximal independent sets are independent sets not contained by any
other independent sets. Maximal independent sets in the PAG corre-
spond to maximal concurrent path-sets in the CA.

The intermediary step of finding maximal independent sets could
be more efficient than calculating independent sets by brute force, since
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// find all k—maximal independent sets by brute
force

for all sizes n of vertex sets from k downto 0
for all vertex sets S of n—combinations
if set S has 2 or more members
for each 2—combination (a,b) of members
if a and b are adjacent
continue with next vertex set S
record that set S is independent
else if set S has 1 member
record that set S is independent
else if set S is the null set
record that set S is independent

Listing 5.1: Pseudocode for the IPS Algorithm.

10

10" H

10

Time O(n)

10° +

4 8 16 32 64
Size of graph n

Figure 5.3: Estimated run time for Eppstein’s algorithm.

most PAGs are large, which hinders any brute-force approach. The
MIPS algorithm is recursive and thus easy to conceptualize. In the end,
we were proved right, though counterexamples were encountered.

In MIPS we use Eppstein’s algorithm [34] to find all maximal inde-
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Figure 5.4: Nielsen’s bound: the number of maximal independent sets of size
at most k in a graph with n vertices.

pendent sets in the PAG. and runs in time
O(n) = 3¥k—nyn=3k, (5.2)

This bound is tight if n/4 < k < n/3 and is approximately equal to
(3)* for k < n, although in that region the bound is not tight. The run
time is shown in Fig. 5.3. In any case, the run time estimation could
possibly be improved if the specific mathematical properties of a PAG,
which follow from the manner of its construction, were taken into ac-
count. This has not been required up to now, and anyway exceeds the
qualification of the author, who is not a mathematician, and preferred
to improve the implementation, not the estimation.’

The number of maximal independent sets of size exactly k& in any
graph with n vertices is at most

Ln/ka—(n mod k)(Ln/k‘J + l)n mod k’ (53)

according to Nielsen [84], who adds that the same bound holds for the
number of maximal independent sets of size at most k if k < n/3, and an

There is an analogy here between low tire pressure and high time complexity: if
you just check the pressure, you may know whether you have a problem, but if you
pump the tire, you can drive.
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boolean adjacency_map []; // adjacency map

inline boolean function is_an_independent_set (
bitset set, booleanx adjacency_map) {
// is the set an independent set?

for (bitset a = set, i = 0; a != 0; a >=1, ++
i)
for (bitset b = set, j = 0; b != 0; b>>=1,
++j)
if (i > &k (a&l) && (b&1) && *(amap(j, i)
== false))

return false;
return true;

}

// generate all subsets of vertices
for each subset S of the vertex set

if (is_.an_independent_set(S, &adjacency_map))
record that set S is independent;

Listing 5.2: Pseudocode for the PPS Algorithm.

approximate bound of 3"/? exists if k > n/3. These bounds are depicted
in Fig. 5.4.

Before running the algorithm, & can be set equal to v(Gnw), the
concurrency number of the network used to construct the PAG, As dis-
cussed in Section 4.3, no more maximal independent paths in a set can
exist for the PAG than there are concurrent paths possible in the topo-
logy. This fact reduces the expected and actual run time of Eppstein’s
algorithm by a large amount.

Path-powerset algorithm (PPS) Another construction algorithm to
find all independent sets, PPS, more brute than IPS, can be employed.
It is shown in Listing 5.2, and relies on fast execution set operations
on a 64-bit integer representation of a set. The algorithm is not com-
binatorial at all, but just generates 2" subsets in the fastest way (still
to be determined experimentally). It checks each set for independence
by shifting a copy of the set in position against the original, as shown
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maximal math. set size = 8
1 1

000O0O1O01O01O010
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i
]
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. . . shift: 0 - (max. math. set size-1)
don’t check same pair of bits twice! |

or check bits against themselves |_>1 => test adjacency(7, 3)

Figure 5.5: Shifting a bitset against itself to obtain all 2-combinations.

in Fig. 5.5. It consults the PAG’s adjacency matrix where the positions
match and the set is populated. Time complexity, for sparse graphs,
is O(2") and for fully connected graphs it is O(2"n?); PAGs are not
sparse. There is no time dependency on any maximal size k; for large
k, PPS could prove to be better than MIPS or IPS. We will see below
how it fares.

5.2.2 An Auxiliary Program: Dharwadker’s Algorithm

Dharwadker’s Algorithm and Maximum Independent Path-sets Both
MIPS and IPS algorithms are not polynomial-time, and must be ex-
pected to fail at some point, for PAGs that are too large. Dharwad-
ker [30] describes a polynomial-time algorithm to find at least one
maximum independent set in graphs. He shows that every graph with
n vertices and maximum vertex degree A must have a maximum in-
dependent set of size at least [n/(A + 1)] and that this condition is
the best possible in terms of n and A. Dharwadker’s independent set
algorithm (DIS) [30] finds a maximum independent set in a large set of
difficult graphs, and Dharwadker states the conjecture that there exists
no graph for which the algorithm cannot find a maximum independent
set, even though this problem has been described as NP-complete [118].
The algorithm is useful for exploration and in combination with others.

Dharwadker and the PPS algorithm PPS is used with advantage in
combination with Dharwadker’s IS: we spend a few seconds, before
starting PPS, to find the independence number first, and then generate
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Figure 5.6: Measured run times for indexed combination algorithm.

all subsets until we have reached a size greater than the independence
number.

5.2.3 Time and memory complexity

We will have to relate the time complexity of our algorithms to (3.6),
the external constraint on the peak bandwidth B, of a CA with N
terminals having peak bandwidth Br.

The bandwidth (in transfers per cycle) is exactly the concurrency
number of the CA, the independence number of the PAG, and the max-
imum number k we need to consider in (5.3) and (5.2). External con-
straints on B4, and internal constraints of the CA, imposed by graph
theory, are thus related to computational complexity.

Implementation notes For our optimized implementation, we have
used the STL, which uniquely offers components of known and guar-
anteed time complexity [107]. An O(1) implementation of combination
in C+* is known [115] and has been verified: cfr. Fig. 5.6. Typically 10°
combinations per second can be achieved with this method. It is called
indexed combination, * and is central to our implementations.

“The rate is fairly constant over the range of n and k shown in Fig. 5.6, which is
huge: between 45 and 536,878,650 combinations are possible. Thus we consider in-
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Figure 5.7: Computationally, set size and member count are different. Algo-
rithms must be prepared to handle M, a maximal mathematical bit size to be
expected. In this example, M must be at least 8.

Representing sets Computationally, sets can be represented by one
of many types of container, like bitsets, ordered and unordered maps and
hashes, vectors, specialized vectors of boolean, lists and a container appro-
priately named set. Which to choose depends on the access methods
that will be operating on the set, the number of sets involved and the
criticality of each operation for overall efficiency.

In our algorithms, immediate storage and time efficiency require-
ments dictate using a bitset in one form or another: either the STL
own’s bitset, Boost’s dynamic bitset or Atlas’ [8] wide bitset. For storage
efficiency, these use only one or two machine words (on a 64-bit com-
puter, 64 or 128 bits) to represent a set. For speed, bitsets provide fast
basic set operations, including subset operations, in machine code. Our
algorithms need only those, but must handle them fast and in constant
time. Our algorithms also have to process many sets (as many as 8M
sets with up to 16 members, in one use case), requiring efficient use of
memory. From the above, we decide that no other set container than a
bitset could be used and still achieve the performance attained.

With a bitset, computationally, a difference must be made between
set size and member (i.e. bit) count. The computational set size is the
width of the container (128, 64, 32 or smaller) while the computational
bit count is the mathematical set size, i.e. the number of members. This
can be observed in Fig. 5.7.

We will denote computational size of a set S as S.size(). and com-
putational bit count as S.count(). The maximal bit count our algorithms
expect and must reserve space for, is usually not S.size(), but some other
tigure M that may have to be computed from the sets themselves, in a
fairly expensive for-loop. In Fig. 5.7, for instance, S.size() = 64, S.count()
=4, and M = 8 bits need to be reserved to hold the set S.

Computational set size is determined statically at compile time (STL

dexed combination O(1), even if there is still 100:1 variation in run time.
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and Atlas bitsets) or dynamically at run time (Boost dynamic bitset).
Since the sizes of two sets operated upon must anyway be equal, the
dynamic bitsets have no advantage for our purpose. Our algorithms
are all limited by the implementation- and machine-dependent maxi-
mum size of the bitset, determining the number of vertices that can be
handled in a PAG. With Atlas” wide bitsets, on a 64-bit computer, the
limit is 128 vertices. Fokko du Cloux, the author of [8]. mentions that
wider bitsets are possible only with less than optimal speed. Since 64-
vertex PAGs are commonplace, using the 128-bit Atlas bitset is manda-
tory, if the algorithm really can withstand more than 64 vertices. PAGs
with more than 128 vertices have also recently been encountered. To
handle them, we will need a whole new computational approach, to be
covered in future work.

Enumerating subsets Enumerating subsets is critical for all our algo-
rithms. The number of subsets of a set S, including itself and the null
set is 21°1, the binomial sum (5.1). Here |S| is the mathematical size of
the set, the bit count S.count().

Subsets of a set can be enumerated in at least four straightfor-
ward ways: by means of a powerset iterator (PIT) (also known as Gray
code iterator), as a sequence of combinations (SOC), by a Samuel Beckett
iterator (BIT) (also known as binary reflected Gray code iterator), or by
a breadth-first search iterator (BFSIT).

PIT iteration simply involves counting in binary and looking at the
binary representation. The iteration code for SOC, is shown in list-
ing 5.3. It uses indexed r-combination of n members: the bits to be
combined are copied to an n-sequence vector, of size n. The n-sequence
is the larger sequence from which an r-sequence of size r is picked.
The r-sequence vector initially contains sequential indices into the n-
sequence; during operation, it is modified by the combination iterator.
The iterator proceeds until #lr), combinations have been found. BIT
is named after Samuel Beckett because the iterator script reads like the
stage directions for one of his plays: starting from an empty stage, N
characters from an ”actor troupe” enter and exit one at a time, in such
way that each subset of actors appears exactly once. The iteration code
is shown in listing 5.4. The code for BFSIT is too long to reproduce; it is
essentially a rephrasing of breadth-first search on graphs.
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bitset<64> S(s); // s is the set to combine
vector < unsigned > nseq; // n—sequence
for (unsigned i = 0; i < s.size(); i++)
if (S[i])
nseq.push_back(i); // populate n—sequence
const unsigned sz = nseq.size(); // math. size

for (unsigned k = sz; k > 0; —k) {
indexed_combination it(sz, k);

vector < unsigned > rseq; // r—sequence
for (unsigned i = 0; i < k; i++)
rseq.push_back(i); // populate r—sequence

do { bitset<64> out(OUL);
for (unsigned 1 = 0; 1 < k; 1++)
out.set(nseq[rseq[l]], 1);
cout << out << endl;
} while (it.next_.combination(rseq));

}

Listing 5.3: SOC subset iterator. The set container is a bitset < 64 >.

Table 5.1: Comparison of run times to enumerate all subsets of a bitset with
16 members: Ct* or C code, modified for O(2(5-<»"*0)) behavior if neces-
sary, and optimized. Standard output was piped into /dev/null  in order to
neutralize the varying effects of buffered output. All test sets are the same,
except for the PIT iterator, which cannot generate all subsets of Oxaaaaaaa in
reasonable time.

test static | max. math. size run

iterator set size | setsize | i.e. bit count | time
PIT Oxaaaaaaaa 64 32 16 8.81s
SOC Oxaaaaaaaa 64 32 16 0.093 s
BIT Oxaaaaaaaa 64 32 16 0.141 s
BFSIT | Oxaaaaaaaa 128 32 16 0.386 s
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void moves(bitset<32>& S, int n, bool enter) {
if (n == 0) return;
moves(S, n — 1, true); // enter
if (enter) S.set(n — 1, 1);
else S.set(n — 1, 0);
cout << S << endl;
moves(S, n — 1, false); // leave

}

int main(int ac, char xargv[]) {
const unsigned N = atoi(argv[1]);
bitset <32> S(0);
moves(S, N, true);
return O;

Listing 5.4: Beckett subset iterator, on bitset < 32 >.

Selecting a subset enumerator The order of enumeration of the sets is
important and typical for each: for PIT and BIT: it is in numerical or-
der, the binary code; for SOC, enumeration is from small to large sets
or the reverse; and for BFSIT: from small to large. In fact, the order
can always be reversed, by just flipping the bits. PIT is too slow. SOC,
using indexed combination, runs better than O(2%*"0)). BIT runs in
O(25=2¢0)), BFSIT runs worse than O(2%%%¢0). Running in O(25-:2¢0)),
instead of O(2% ), is catastrophic for sets S of given size that are
sparse in any way, i.e. contain 0-bits anywhere. This means: for most
interesting sets. Fortunately, BIT and BFSIT have indexed variations
where run times depend on S.count() instead of on S.size(), with lit-
tle overhead. This is done by providing a constant-time index lookup
table before iteration starts. With these modifications taken in account,
we compare the four modes of iteration. SOC is remarkably efficient,
thanks to constant-time combination. BIT is elegant, and has little over-
head. It is recursive, but uses a predetermined amount of space on the
stack. BFSIT is also recursive but has more overhead than BIT. Its use-
ful property is that of iterating in order of size. Table 5.1 compares run
times of four methods to enumerate bitsets. SOC, BIT and BFSIT all
perform well; BFSIT is reasonably fast, but allocates an unordered hash
map that can exhaust memory, which, as we will see, bothers us with
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Table 5.2: Comparison of run times for MIPS, IPS and PPS
(Optimized C** code using STL).

comm. vertices | k o MIPS IPS PPS
arch. in PAG & DIS
circ. topol.

w. 2 term. cl. 32 4 | 0429 0.64s | 0.06s 0.52s
K-ring & 61 4 10.349 0.19s | 0.18s | 40-180 s
all-to-all TA swaps
3x3 grid & 70 4 10.393 0.28s | 0.31s N.A.
all-to-all TA

FU chaining,

reduc. PAG 40 8 | 0.097 496s | 0.11s N.A.
reduc. PAG 40 12 | 0.097 829s | 16.8s N.A.
reduc. PAG 40 16 | 0.097 8.65ss | >1h > 6h
FU chaining, 15077 s

compl. PAG 72 16 | 0.124 | =4h10m | > 8h N.A.

big sets.

Enumerating subsets in order of set size, implies that BFSIT can be
broken off at a given set size. SOC has the same property which be-
comes even more advantageous when a series of combinations can be
broken off if certain sets prove not to be independent. This is the basis
of the relative success of IPS.

Profiling and inlining Profiling, subsequent inlining of code, and op-
timizing data structures are never fully completed. For instance, at this
moment, the BFSIT used in MIPS could improve from using a better
hash function, maybe a perfect hash function [18]; this is a matter of fu-
ture study. We describe here our results for three algorithms, not only
the best, since it cannot be excluded that an algorithm which is sub-
optimal in one combination of circumstances later becomes best.
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Results Table 5.2 compares run times between the MIPS algorithm,
brute-force construction of the independent sets (IPS) and the still more
brute-force (PPS) algorithm. The PPS algorithm in the table breaks
off when the size of the maximum independent path-set, predicted by
Dharwadker’s algorithm, is reached. For subset iterator, the version of
MIPS discussed in the table uses BIT, the IPS uses SOC (which is much
improved by breaking off further combinations when dependent sets
are encountered), and PPS with DIS uses BFSIT. The programs have
been optimized intensively. Among the test cases, the CA with circu-
lar topology and 2 terminal classes was presented in Section 4.5. The
K-ring and 3x3 grid CA will be described in Chapter 8. The functional
unit (FU)-chaining CA will be described in Section 8.2.1 on p. 151. The
network topology is shown in Fig. 8.20. The PAG is too large to be vi-
sualized. Some algorithms are too slow for the full FU-chaining PAG to
complete in reasonable time, so we also ran them on a reduced version
of this PAG with only 40, instead of 72, vertices. PPS for the K-ring runs
in a variable time because it runs out of memory and starts trashing
memory, which depends on circumstances. In the table, ‘'N.A.” means
the program cannot be run at all: either because the PAG contains more
than 64 vertices, or because it always iterates until the independence
number is reached (PPS & DIS).

The MIPS algorithm now performs best in overall and can perform
USA for the difficult use case of Section 8.2.1 in 4 hours. IPS outper-
forms MIPS on some smaller PAGs, but fails on large ones like the full
functional-unit chaining PAG. Henceforward, we will as a candidate
only consider MIPS for further optimization.

Time complexity of MIPS MIPS runs in three phases: (i) the calcula-
tion of small independent sets using Eppsteins’s algorithm; (ii) the cal-
culation of all independent sets from the small independent sets, using
a BIT to generate subsets of decreasing size; (iii) it provides the caller
of the algorithm with a list iterator on the set of independent sets. The
caller can copy or use the list at its own discretion. This is by itself an
optimization, since copying large lists can impose a serious overhead.

Phase (ii) also is an optimization: the independent sets are obtained
from an intermediate list of small independent sets, not from the list of
maximal independent sets which Eppstein’s algorithm can also gener-
ate. The small independent sets can possibly include sets that are not
maximal; tracing reveals that this rarely happens. Using the list of small
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independent sets, we avoid an extra phase of verifying their maximal-
ity.

Observing the behavior of MIPS, we see that phase (ii)) now out-
weighs other phases in time complexity. Consequently, we can apply
Nielsen’s bound (5.3), the best we know, to the whole of the MIPS al-
gorithm. In (5.3), we must use n = |V (PAG)| and k, the independence
number of the PAG, as can be found from DIS. We not yet encoun-
tered k£ > n/3 in our CAs and will only consider £ < n/3. Recall that
Nielsen’s bound also holds for the number of maximal independent
sets of size at most k.

According to MIPS procedure, we find the time complexity as

O(n,k)y < > 20(C@raldc)), (5.4)
Scps(Ac)

where Scps(Ac) is the set of concurrent path-setsand k£ = a(Gpa(Ac))
is the concurrency number of the communication architecture Ac. In
the form given above, this is not so exciting, since the set of concurrent
path-sets is what we are looking for. Plugging Nielsen’s bound into
(5.4) yields

O(n, k) < |n/k|Fnmed k) (|p /| 4+ 1)n med kok, (5.5)

This is a function of n = |V(PAG)| only, since k is determined as the
PAGs’ independence number, but we cannot determine £ analytically.
We only know that in our use cases k¥ < n/3 and that k& < ﬁ, the
external bound, with N the number of terminals. The latter bound is

rather loose.

Time complexity of MIPS is shown in Fig. 5.8. For fixed-bandwidth
CAs, Eq. (5.5) is tighter than for CAs with variable-bandwidth, since
(5.4) is then exact, not a bound. Reducing the time complexity of listing
the independent sets from the small maximal independent set found by
Eppstein’s algorithm now has high priority in our future work. Mem-
ory complexity is not yet an issue with MIPS.

Multi-core multithreading Of our four iterators, SOC and PIT can be
multithreaded by partitioning the iterator space; the parallelization of
BIT, seen from the viewpoint of a member of Beckett’s actor troupe, is
similar to the dining philospher’s problem and could possibly be ap-
proached that way; BFSIT cannot readily be parallelized, but the Epp-
stein algorithm as a whole can. Future work could modify MIPS to
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Figure 5.8: Time complexity of MIPS for a PAG with n vertices and indepen-
dence number k.

run several instances of the Eppstein algorithm at once, and afterwards
recombine them.

5.3 Exploration of alternative algorithms for USA

Other allocation graphs Apart from the PAG shown in Fig. 4.9,
other graphs can express the relationships between resources and use-
ful paths in a CA. The resource allocation hypergraph (RAH), seen in
Fig. 5.9, is the dual of the PAG: Hra(Ac) = (Gpa(Ac))* = (X, D) =
(E(Gpa),V(Gpa)). Its vertices X are resources, and the hyperedges D
are useful paths. A vertex is incident to a hyperedge in Hra(Ac¢) if the
resource is part of the path.

Another representation of the same information is the path-resource
allocation graph (PRAG) shown in Fig. 5.10. It is the bipartite (Konig)
representation of the RAH. The PRAG is a bipartite graph Gpra(Ac) =
(V(Gpa) UE(Gpa), Z). Its vertices are the vertices and edges of Hr4,
and a vertex v is adjacent to a vertex e if and only if in Hg4 the vertex
v is incident to the edge e. Looking at Fig. 5.10, we see that it is a good
expression of the allocation problem: if we consider the paths as “jobs’
and the switches as 'resources’, the existence of an edge represents the
allocation of a resource to a job.
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al:il:i2:bl
_ al:il:i3:i4:b2
ol
a2:14:b2
i2 14
o3
b1:i2:13:14:a2

Figure 5.9: Resource allocation hypergraph for the CA of Fig. 4.2.

Figure 5.10: Path-resource allocation graph for the CA of Fig. 4.2.

USA on PAGs involves independent sets of vertices with no edge in
common. On RAHs it involves the dual problem, the matching of sets
of edges without common vertices. Fewer algorithms exist for hyper-
graphs than for plain graphs: the RAH approach is not expected to de-
liver advantages in efficiency. The advantage of a RAH representation
is that it can be mixed in with other constraints on resource usage, for
instance when a buffered resource is sequentially allocated, over differ-
ent time slots, to a path. Voloshin [114] shows how the RAH and PRAG
representations can be extended to represent resource allocation over
subsequent time slots. This involves the theory and vertex-coloring of
mixed hypergraphs.

Coloring algorithms for USA The PRAG representation has been
used experimentally for another approach to USA that colored edges
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in the PRAG: a correct resource allocation has edge colors which are
different at the side of the resources, and the same at the side of the paths.
One color,for instance the black edge color in Fig. 5.10, then represents
a valid allocation for all resources. In the example, resources il and
i2 are allocated to path al:il:i2:b2 , resources i3 is disconnected,
and resource i4 is allocated to path a2:i4:b2 . Each proper coloring
yields a number of useful states, and also the allocation of each individ-
ual resource in the state. A distributed edge-coloring algorithm from
Grable and Panconesi cite [88] was at one point adapted for this type
of edge-coloring. USA based on this algorithm has the disadvantage of
not yielding all useful states at once: it must be repeatedly applied until
no more new useful states are found. On the other hand, the method is
distributed and suitable for parallelization with many threads.

Linear and Integer Programming Approaches using integer (linear)
programming (ILP), mixed integer programming (MIP) and 1/0 MIP
are advocated in [41] as yielding significant and practical tools for anal-
ysis and design of mesh-based survivable networks. Modern solution
engines can handle very large optimization problems of these types,
giving optimal or high quality solutions in reasonable time. However
the linear and integer programming approach is not intuitive and is
known to give little insight in the optimization problem at hand. This
is the reason why we did not use it.

Linear and integer programming methods have arisen from the
field of mathematical programming methods in the operational re-
search community.” Mathematical programming methods are: first,
linear programming (LP), where the objective and the constraints in
the program are all linear functions, and the decision variables may
take on continuous real values. Second, ILP, where one or more deci-
sion variables are restricted to integer values only. All of the objective
and constraint functions remain linear. In a pure ILP all variables are
strictly integer. Thirdly, in MIP, some variables are continuous and oth-
ers are restricted to whole numbers or integers. A more restricted form
of MIP is called a 1/0 MIP problem, where some integer variables are
further restricted to take on only binary values, typically representing
yes/no outcomes.

5 Operational research is concerned with creating minimal cost (or maximal benefit)
schedules or plans; such plans are called “programs”. The terminology dates from the
1930s, when computer programming did not yet exist. The term “programming” in
this context has little to do with its usual meaning today.
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5.4 Conclusions and Future Work

When facing combinatorial complexity, one cannot win, only put up
a spirited defense. Since the conception of USA, tools based on the
algorithms have matured: the performance of implementations have
improved, scaling down in run time, over a range of several decades.
Comparing the run times of our first research prototypes and present
state of the art, they decreased, for some use-cases, 70 to 600-fold for
path-finding and 2000-fold for USA. This was achieved by paying at-
tention to detail in implementation.

For USA, many avenues of advance are still open: creative use of
allocation graphs, mixed hypergraphs to express time-dependent con-
straints on allocation, coloring algorithms, linear and integer program-
ming, and multithreading implementations.

For path finding, the author is under the impression of presently be-
ing in a cul-de-sac, where more assistance from mathematics is needed.
The FAR algorithm works for a limited number of terminals, and for
use cases in this work, but scales badly. The FDR algorithm is helpful
when FAR fails, but not as reliable as FAR and it sometimes needs hu-
man supervision. This will hinder USA for large irregular topologies,
since analytic path-finding is possible for regular networks.



Chapter 6

Design Pattern for an
Optimal Control Plane

Rejoice, rejoice, we have no choice.

CSN&Y, Carry On.

In this chapter, we propose our conceptual framework for EESC
control plane design, guided by the paradigm of the communica-
tion processor (CP). We consider the issues that it exposes, iden-
tify the stages that must be part of the control plane, and fit them
into a design pattern.

We will quantify the losses of each stage, based on our model for
on-chip communication, and find some further optimizations that
may become important at the far end of scalability, with many
terminals, or for SoCs survivable in the face of interconnect relia-
bility degradation.

EFERRING back to the CP paradigm and control plane model first
R presented in Fig. 3.9, we now need a framework for the design of
small control planes. The designer’s task is to convey scheduling deci-
sions to each switch, avoiding energy losses and wire congestion. We
presume the communication architecture to be configured frequently,
up to once per transfer cycle.! If the volume of the reconfiguration in-
formation were small in comparison to the data transport information,

!'Infrequently reconfigured communication architectures allow some obvious opti-
mizations, like differential control of network state, that we will not explore.
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then reducing energy loss during distribution would be less urgent, but
it would still be important to convey the correct information at all times.

6.1 Design Choices

The paradigm of the communication processor allows us to settle our
minds about some fundamental issues in the control plane, involving
(a) the consequences of explicit path specification, (b) the timing inside
the processor, and (c) the presence of loop buffers in the control plane.
These issues concern optimization, or even simply feasibility of what
we want to achieve.

Implicit and explicit path-set specification In many ISAs, each
transfer-set specification is implicitly encoded within the transfer and
operational instructions. A transfer operation, for instance for a CA
based on multiple buses, will include the bus network-ID specification,
the specification of the pairs of terminal sets for transfers, and the direc-
tion of the transfers. In an operational instruction on two operands, the
two input transfers from a register file to the inputs of the functional
unit, plus the output transfer from functional unit to register file are
implicitly specified. These specifications are encoded in some efficient
way, proper to the ISA.

Alternatively, it is possible that the ISA includes elements of instruc-
tions that set the control codes and the state of the CA directly. We call
this explicit path specification. It means that the communication instruc-
tion code immediately becomes control code. This would normally be
using the useful-state code, because it has least redundancy, as we saw
in Chapter 4.

Implicit Path Specification Fig. 6.1 shows the form our design pat-
tern takes with implicit path specification. Unless the CA is topology-
aware, the width of the control plane at the point of fetching is zero:
Weprercua = 0. With a topology-aware ISA, Wep rercr must still
be small, since it only needs to differentiate between paths covering
the same transfer. If the CA is composite, the control path is split be-
fore the transcoder (also the path decoder). The path decoder is inte-
grated with other instruction decoding, including the Terminal Select
Unit (TSU), and produces a single control code for all switches. Its out-
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Figure 6.1: Design pattern for a control plane with implicit path specification.
The width of the control path at the point of fetching is small. There is no
transport loop buffering since the overhead of memory access would be pro-
hibitive.
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Figure 6.2: Design pattern for a control plane with explicit path specification.
The width of the control path for fetching and transporting is the same. Trans-
port loop buffering is integrated with fetch loop buffering.

put width, WCP,TRANSPORT/ is minimal due to USE. WCP,FETCH #
Weprransport- The switches” decoders are synthesized individually,
from information present in the PSLT.

Explicit Path Specification Fig. 6.2 shows the form of our design pat-
tern with explicit path specification. The path specification is fetched
together with other instructions. If the processor features clustered
fetch loop buffers, these are integrated with the decoding of branch-
ing instructions. Clustering is organized per component CA. There is
no transcoder, thus Wep rercr = Weprransport. Transport and
decoding is as above.

Redundancy of explicit path-set specification One of the problems
with explicit path specification is redundancy: all information is al-
ready implicitly present in the decoded communication instruction. It
is an unnecessary cost to explicitly fetch control code, since a decoder
could obtain the same information without extra fetching. The amount
of extra information to be fetched for the benefit of the control plane, in
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Figure 6.3: Control plane without (left) and with useful-state encoding (right):
compare the level of wire congestion, the degree of difficulty for timing clo-
sure and the risk of glitches occurring. Control codes are all different without
USE, all the same with USE. Also mark the reduction of the control path width.

comparison to a processor without it, is essentially zero, unless the ISA
is topology-aware. In that case, the extra information amounts to the
2-logarithm of the concurrency number (A¢) of the CA, at most.

Register-indirect (RI) addressing Another feasibility problem arises
whenever addresses (of memory or registers) are required to select
terminals in the CA. The reason is the prevalence of RI addressing
mode when emitting instructions.? RI addressing precludes explicit
path specification. If all control codes are not known at compile time,
explicit paths cannot be specified.

With RT addressing and explicit path specification, then, an extra
analysis stage to determine addresses and so reference data is neces-
sary for the compiler. To develop such a compiler is an appreciable
effort. Implicit path specification, on the other hand, is performed by
an ordinary compiler: no development is needed.

Timing and glitches In staged pipelined processors, instruction
codes are registered after fetching. A time slot of 16 fan-out 4 (FO4)
delays [1] is typically available for decoding and also for subsequent
transfer stages. This decoding time slot is equally available for the path
transcoder. The timing of memory access stages, is too dependent on
specific processor properties and CA topology to fit in an abstract treat-
ment of the control plane. We studied it in a use case (in Section 8.1.2).

“Most processors, apart from stream processors, have some form of RI addressing,
since it is efficient for both compiler and hardware implementation [86].



6.2 Operation of the Control Plane 113

Similarly, the problem of glitches within the control plane, with data
and control traveling possibly in opposite direction along the meshes
of the network, was not studied. Employing useful-state code, which
is identical for each switch and travels on a limited number of wires
alongside the data path, helps in reducing the risk of glitches occurring
and also in obtaining timing closure, as can be glanced from Fig. 6.3.

Transport loop buffering and decoding Fig. 6.2 and the principle of
staged pipelining show why fetch and transport loop buffering must of
necessity be separate. After reading the buffers, the decoded instruc-
tion information must be registered to be in sync with the processor’s
pipeline. Also, a fetch loop buffer’s output must interact with the in-
struction branching circuitry. Thus, if transport loop buffering is to be
deployed, it must use its own loop buffers. The cost of accessing these
transport loop buffers must then be offset by a reduction in costs of
transporting control information. Our publication [59] showed that
this is not the case, given the wire-lengths and technology nodes in-
volved.

Conclusion Use cases (in Section 8.1.3 and 8.2.1 show that explicit
path scheduling leads to a sub-optimal control plane. For this and
other reasons, implicit path specification is always advisable, with
any conventional compiler. As mentioned before, if the tile is non-
programmed (and thus not a SoC), it is possible to build a “communi-
cation sequencer” just for the purpose of controlling EESC. In that case,
there is normally only direct addressing, no need for a compiler, and
not a conventional pipelined timing model. Explicit path specification
may then make sense.

Fig. 6.3 shows another advantage of USE, maybe not yet enough
stressed before: a control plane designed with USE suffers less from
wire congestion, which translates to savings on chip area.

6.2 Operation of the Control Plane

With the tasks set for the communication processor, the design space for
complex communication topologies explored, and some issues of fea-
sibility settled, we can propose a design pattern for an optimal EESC
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Figure 6.4: Six stages in control, including five physical stages. The role of
compiler and transcoder can vary according to the type of path specification.
Splitting the control plane in components CAs, i.e. clusters of switches, makes
USA, and analysis in general, easier.

control plane. We first identify the stages required to design and oper-
ate a management plane, shown in Fig. 6.4.

6.2.1 Stages of Control

Six stages are identified in control plane sequencing: compiling, fetching,
splitting, transcoding, transporting, and finally, decoding in the switches.
All, except the first, occur in the processor at program run time. They
consume chip area, latency and energy. In any attempt to achieve opti-
mized control, these hardware costs need to be traded off between each
other. The cost of development, including USA, must be set off against
all hardware costs.

Compilation Tasks for the compiler include scheduling, routing,
and possibly control-code prediction, i.e. analysis of the control bits
to be emitted. Control-code prediction is difficult, often impossible,
but only required for explicit path specification. If the CA is fixed-
bandwidth, most compilers already perform scheduling correctly.
Variable-bandwidth scheduling is a novelty. If it needs to be done,
the compiler needs to know the TSLT.> Topology-aware scheduling
needs of course to fit in with all other scheduling to be performed by
the compiler: basic code blocks, registers, functional units, etc. The
subject matter is vast and out of topic for our work.

Fetching produces instruction code for the processor. With implicit
path-set specification, little or no extra costs from fetching are to be
attributed to the control plane. With explicit path-set specification, we

3Unless the ISA is topology-aware, a full PSLT is not required at compile time.
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would still have to fetch the implicit information to operate the date
plane; be it redundant, it is still required.

Splitting This stage can exploit the opportunity of clustering the swit-
ches and reduce subsequent costs in transport and decoding. It has no
cost by itself. A clustered control plane is recommendable if the data
network consists of similar subnetworks, because of design-time effi-
ciency of computation, but also, as use cases have shown, since it re-
duces decoding loss.

Transcoding produces switch control codes. The resources to be used
and paths to be switched can be determined by the path decoder from
implicit information and the TSU. On the other hand, if the path-set
specification is explicit, we may need no transcoding.

Transporting Feeding the control code into the wires has it own costs
in energy, latency and area (of the drivers).

With explicit path-set specification, fetch loop buffering can be in-
tegral to both the fetching and part of the transport stage, if there is
no transcoder or splitting in-between. It can never be effective on the
last stretch to the switches, since loop buffered instruction must be de-
coded at some point. If we still want temporal re-use after that point,
we would need transport loop buffers.

Decoding In our experiments, decoding costs were found to be negli-
gible in respect to other costs. Decoders were little more complex than
the default decoder of Fig. 3.2.

6.2.2 Losses from Control

To each of the stages mentioned above is associated its own type of
losses.

Fetch losses Fetch losses in area and energy are both proportional to
control path width at the point of instruction code fetching. Latency is
not increased by fetching, since communication instructions are fetched
in parallel with other parts of instructions. In a design, fetching uses up
a portion of the instruction width budget allocated by the ISA designer,
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and this budget must be respected. The requirement at the point of
fetching is that the width of the control plane Wep rerer < K, a con-
stant. With USE, because of (4.2), this becomes easier to satisfy.

Losses from transcoding Essentially, path decoders represent topo-
logical, as opposed to logical, knowledge of the CA. Their logical ex-
pression, when synthesized as sums-of-products of their input signals,
cannot be simplified: they tend to contain the maximum number of
possible coefficients. With p inputs and ¢ outputs, the chip area of the
decoder thus scales O(p x ¢). This means that USE reduces the width of
the path decoder. Also according to our use cases, losses from transcod-
ing scale well with increasing number of terminals.

Losses from control energy transport Let WoprraNsPorT and Wpp
be the control-plane and data-plane bitwidth respectively. We want to
assure that the loss from control energy transport E,, ,, is not larger
than the transport energy gained. From Eq. (3.3) and (4.3), the transport
energy gained by EESC is

E, GsE

Pgained = Em Em TPsect

/
= GSWDPEdynNcycles Z ol
Vs

Punsect Psect —

(6.1)

We now argue that Eyp ) < Eup ;04 as long as the number of re-
sources (switches) is not too large. Assimilating the control plane to
a wire section of width Wpp, activity factor o,y and length [y,

/
E:cpctl = WC’P,TRANSPORTEdynNcyclesactllctl' (62)

The condition £, ,, < E, can be written as

Pgained’

/ / z :
WC’P,TRANSPORTEdynNcyclesactllctl < GS WDPEdynNcycles Qg ls .
Vs
(6.3)

Because of (4.2), this is equivalent to

GsWpp > s sl

, 6.4
(1 —nuEe)logy [S: aculeu (64)

|R| <

where |R| is the number of resources.
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If all activity factors are taken to be intrinsic and it is recognized
that data and control sections cover the same distances on the surface
of the chip, then, not knowing » ", asls and aylcy, we can nevertheless
assume that they are of the same order of magnitude. Therefore the
condition becomes

GsWpp

R < Rmax% )
1Bl < 1Blmas > 7 S ogy 154

(6.5)

meaning that the number of resources must be smaller than some crit-
ical number, which increases with sectioning gain and with UEE. The
exact value of |R|;q: is not known. It can be determined from a com-
bined topological/statistical analysis of application and CA. A typical
value we will encounter (in Section 8.1.3) is |R| ;a0 = (0.82%72)/(0.19
3) = 103.

Decoding loss Decoding losses were not yet quantified. With many
switching resources and a large useful-state set, they could become ex-
cessive. Conceivably, the better other costs in the control plane are opti-
mized, the more decoding will become dominant, becoming the largest
cost factor. Only a combined topological/statistical analysis can deter-
mine the conditions under which this happens.

6.3 Conclusions and Future Work

In this chapter, we have established a design pattern for the EESC con-
trol plane that follows six stages: compiling (including scheduling),
splitting, fetching, transcoding, transporting and decoding. Costs of
control can be attributed to each stage, and scaling properties with
many terminals quantified, although the decoding stage is not yet an-
alyzed at the far end of scaling. The design pattern can be used for
fixed and variable-bandwidth communication architectures, and with
implicit or explicit path specification.

Trade-off charts Mentally, we have often approached the optimiza-
tion problem in diagrams with 4 dimensions, like the trade-off chart in
Fig 6.5. We trade off design-time effort (path-finding, USA, and various
tasks associated with compiling), including even the effort in develop-
ing the programs to accomplish this, against the 3 physical dimensions
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Figure 6.5: Trade-off chart of design-time effort against the 3D-space of area,
latency and energy. Each dimension in the 3D-space has the same compo-
nents, linked to physical control stages.

area, latency and energy. The physical dimensions have the same com-
ponents: fetching, transcoding, transporting and decoding, which are
correlated. (Splitting has no cost, only gain in design time.) Efforts in
diminishing the losses associated with one or a combination of those
stages brings other losses to the fore: if fetch and transport losses are
reduced, as they were over the course of this work, a combination of
transcoding and decoding losses becomes dominant. Since transcoders
scale well, the prime cause of concern are the decoders in the switches.
They are, with USE, larger than the default type of decoder used with-
out it, and there are many of them. Implicit path specification, another
example, saves physical costs from fetching, as well as costs in design
and development time (for the compiler). For fixed-bandwidth CAs,
this seems a pure advantage. Even for variable-bandwidth, the extra
cost is only in scheduling, with no costs for (or problems with) predic-
tion.
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Figure 6.6: Adaptive path decoder.

Code optimization A dimension of optimization is left to address re-
maining problems of transcoding and decoding stages: the choice of
the values of useful-state codes. Optimization of the control plane by
selecting the actual values of control codes can have one of two pur-
poses: Frequency analysis of useful states can lead to Huffman-type
low-entropy encoding. This benefits control transport costs. The num-
ber of wires remains the same, but the control transport energy is bet-
ter, since frequently occurring codes have a low bit count. Control code
values can be chosen for easy decodability, benefiting energy, area and
latency costs of decoding. To do so requires a statistical analysis of the
transitions between useful states.

Survivability Interconnect reliability degradation in SoCs, men-
tioned in Section 1.1.2 may force designers to adopt built-in topological
redundancy, such as advocated in Grover [41] for telecommunication
networks. Grover finds the cost of redundant mesh-based networks
intrinsically lower than that of ring-based networks. Control costs,
however, are higher.

Adaptive Path Decoder Survivability of DSM SoCs could possibly be
assured by integrating an adaptive path decoder into the control plane.

The problem of interconnect reliability degradation in SoCs, men-
tioned in Section 1.1.2, can be solved, as far as control is involved, with
an adaptive path decoder, depicted in Fig. 6.6. Given an ISA which
contains a communication instruction to announce a failure mode to
the CA, presumably a single-link failure (although multiple link fail-
ures and switch failures can be accommodated), the lookup table of an
adaptive path decoder can be constructed as follows. Calculate a full
PSLT for the CA described by topology and the original, full, path-set.
For each failure mode, eliminate the paths that contain the failed link
from the path-sets and reduce the resulting PSLT to a TSLT. Construct
the path decoder’s lookup table from the combination of all TSLTs. The
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most probable failure modes are yielded by an analysis described in
[51]. Failure is detected by a controller described in [50]. Multiple fail-
ures raise the issue of complexity of analyzing all backup paths; this
is not part of the present work, but illustrates the need for still further
development of USA.



Chapter 7

Methods for Analysis,
Simulation and Design

Though this be madness, yet there is method in't.

Hamlet, Act II, scene 2.

This chapter explores different approaches to analysis, simulation
and design, their weak and strong points, and tools based on these
approaches. Then we envisage a design flow for an EESC plat-
form, and the data structures to be exchanged by designers, in-
cluding the interface between a variable-bandwidth communica-
tion architecture and a topology-aware compiler.

We will also explore the merits of topology design, in the context
of on-chip communication.

BEFORE before approaching design of a control plane, we should be
able to simulate and analyze its operation.

7.1 Analysis and Simulation

The methodology for analysis and simulation changed over the dura-
tion of our work, as focus shifted from explicit to implicit path specifi-
cation, from fixed-bandwidth architectures to variable-bandwidth, and
as useful state analysis was developed. The first tool developed was a
control-code analyzer. The approach was statistical: it used an abstrac-
tion of the application, furnished with physical (geometrical and elec-
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trical) data, to study and predict the properties of the control-code flow.
Communication architectures were fixed-bandwidth. The second tool
was a simulator, applied to a proper communication-aware processor,
embedded in a SoC. The communication architecture was still fixed-
bandwidth, even single-transfer; simulation remained based on statis-
tical and geometrical data. The third toolset used a topological approach.
It employed the concept of useful-state encoding (USE), made abstrac-
tion of geometry, calculated figures of merit (UEE and ISG) and was
suitable for variable-bandwidth CAs. The underlying assumption was
schedule-neutrality, so compiler and application were left out of the
model.

Statistical analysis of EESC In statistical analysis, we make use of
the following entities: a compiler, application source code, a model for
the processor, a geometric and circuit model of the data and the con-
trol plane, physical data on the semiconductor technology used, and a
model for power consumption on a wire section. We must (a) determine
the useful-state set, (b) perform power-aware placement, (c) determine
the lengths of wire sections, (d) run a transaction-level (TL) simulation,
(e) record the frequencies of useful states and the activity factors for
the sections, and (f) calculate the savings and losses involved. Most of
the statistical analyses described in Chapter 8 did not actually employ
useful-state analysis, because we did not yet have it. It would have
been easy to do so, anyway, since USA is trivial for fixed-bandwidth
architectures.

Topological analysis In topological analyses, abstraction is made of
specific applications, section lengths, useful-state frequencies, and ac-
tivity factors. This is schedule-neutrality. It is recognized that only a
part of the sectioning gain is intrinsic to the CA; this is the part that we
study in topological analysis. The intention is to determine whether
control for EESC is feasible for the CA and what ISG can be expected
as a minimum, realizing that a statistical analysis after power-aware
placement will yield a better sectioning gain.

Combined statistical/topological analysis The assumption of schedu-
le-neutrality serves to separate the properties of application, including
geometry of the tile, from the design of the control plane. Under this
assumption one cannot, however, study all costs in our control plane
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model: the energy costs of the transcoding and decoding stages are
determined by transitions between useful states, not only by the fre-
quency of their occurrence. Given the results of USA, it should be
possible to record the frequencies of occurrence of useful states as well
as their transition frequencies. This is the Markov transition matrix.
Both frequencies of occurrence and of transition depend on the ap-
plication, but perhaps even more on the scheduling performed by the
compiler. We do not have a topology-aware compiler, but we can sketch
the following modus operandi: (i) An ISA determines the properties
of the CA. (ii)) A path-set lookup table (PSLT) is determined for the
CA under consideration. (iii) The path decoder and switch decoders
are synthesized, using for instance a sum-of-products description. (iv)
This synthesis determines the size of path and switch decoders, and
their costs in latency. (v) Given the properties of compiler and applica-
tion(s), frequencies are recorded. (vi) The transition frequencies of data
and useful states determine the balance of transport energies between
data and control plane. (vii) The transition frequencies between useful
states determine the energy costs of path and switch decoders.

It is elaborate and time-consuming to have to actually compile and
run the application to obtain useful-state frequencies, and it hinders
fast design space exploration. The challenge of combined statistical/-
topological analysis is to determine figures of merit on the basis of ISA
and compiler scheduling properties alone.

7.2 Analysis and Simulation Tools

Each toolset developed over the course of experimentation consists of
many lines of code, and uses different approaches in software engineer-
ing. To describe their concepts in detail would take up too much space;
this section therefore contains only some salient features for each.

721 Segmented Bus Analysis

Segmented bus analysis, a statistical method, was employed in the
context of intra-tile communication for a hierarchical memory sys-
tem, designed by means of data storage and bandwidth exploration
(DTSE) [25]. In experiments of this type, a memory architecture opti-
mization tool (Atomium/MA (Memory Architect)) [9] is used to design
the hierarchy. The functional units in the tile are identified from inspec-
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tion of the C code. The communication architecture is fixed-bandwidth,
consisting of a number of “buses” (shared media). Scheduling is per-
formed by another tool, Atomium/SBO (Storage Bandwidth Opti-
mization). “Bus sharing” methodology, described in [113], is used to
define a shared-media architecture suitable to satisfy the bandwidth
requirements. The connection of individual memories to buses is then
synthesized on the basis of matching of the bus connection structure to
the memory architecture by means of a transfer conflict graph (TCG).

After power-aware layout, described in [46], all bus segment and
control code line-lengths are extracted using a commercial routing tool.
The source of control is deemed to be a location at the center of the
floorplan.

A program named sba, i.e. segmented bus analysis, which is in
fact, a control-code analyzer automates analysis of instrumented source
code and the profiled run of an application. The method can yield
valuable information on the distribution of control codes, but it can-
not yield an exact bit stream to be used for explicit path specification,
since it is based on a high-level (C-code) mapping of the application
made by Atomium, not on the properties of the SoC, or the scheduling
of the proper compiler. Moreover, a degree of uncertainty is present in
the control codes due to register indirect addressing. Finally, since it
is based on profiling, the method must estimate the actual data ener-
gies being spent on the buses. (Profiling records events, not data.) This
limits the accuracy of the energy balances obtained from this approach.

7.2.2 System C Power Simulator

To address these deficiencies, a simulator was developed to obtain the
actual bitstreams in a simple SoC. System C enables us to zoom in on
areas of interest of different level and granularity, ranging from RTL
level to communication instruction execution and topological proper-
ties. The simulator uses the CP paradigm, and operates in the context
of a memory hierarchy developed using Atomium and power-aware
floor-planning, as described above. The CA is single-transfer; the topo-
logy is a linear segmented bus. Analysis is still statistical. The control
plane uses implicit, not explicit path specification.

Modeling the processor Since we want RTL simulation of the CA, but
are unwilling to sacrifice many cycles for the detailed simulation of a



7.2 Analysis and Simulation Tools 125

high-zZ high-Z
t
0 (] (] (] (]
) ! ) ) 1
0 1 2 Tew N-1 N
! b 1
flip no flip flip flip flip

Figure 7.1: Power simulation for 4-state-signals. Signals that transit from 0 via
Z to 0 or 1 via Z to 1 have not changed and do not contribute to any energy
budget.

processor, we use a TL model for the processor. The didactic DLX pro-
cessor modeled in System C by Grunwald [43] was found to be suitable.
In our simulator, the model for the processor is general and high-level.
It uses the 5 classic processing stages of computing (fetch, decode, exe-
cute, memory access, write-back) and passes on the full state of the ma-
chine between those stages. The interface between processor and CA
is independent on any particular processor hardware, making the CA
model itself portable to other processors. The DLX model comes with
a compiler, a gcc 2.7 derivative, and an assembler written in perl ,
easily modifiable for our needs. This is necessary to incorporate extra
communication instructions (like for loop buffer control) in the ISA.

Energy- and topology-aware classes in System C System C knows
the 4-state signals of CMOS. The four states are 0, 1, Z (high-impedance)
and X (invalid).

Using our model, two concerns arise: (i) System C allows for RTL
simulation, but it is not a power simulator, and (ii) even with a simple
topology like a simple linear sectioned bus, debugging the simulator
program proves to be difficult.

Wire segments can at times not be driven at all or, at other times,
active CMOS drivers can have their outputs shorted. Fault conditions
in the network, caused by incorrect control codes driving wire section
buffers, cannot be traced by classic debugging techniques. They prop-
agate over the network, and are observed at places in the simulation
where they did logically not occur.
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Figure 7.2: Energy-aware classes. The native classes for signals and resolved
vectors of signals are superclassed by energy-aware versions containing a wire
sensor which observes signal states and accumulates energy dissipated on the
wire.

Inside the System C power simulator, modified classes are used,
termed energy-aware resp. topology-aware, for signals and com-
ponents. Unified Modeling Language (UML)-diagrams (depicted in
Figs. 7.2 and 7.3) show how the new classes relate to the ones being
overloaded.

Energy-aware signals have the behavior depicted in Fig. 7.1, and
can be used to measure power on sectioned wires. Signal flips, costing
energy, are transitions from 0 via Z to 1 or from 1 via Z to 0. Signals that
transit from 0 via Z to 0 or 1 via Z to 1 have not changed and do not con-
tribute to any energy budget. To address problem (ii), we can provide
all components in the SoC under test, which are terminals in the CA,
with the capability of asserting the continuity of the paths in the topo-
logy and the validity of the signals. The latter assertions are formulated
in terms of Property Syntax Language (PSL) [96]. PSL is not part of Sys-
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Figure 7.3: Topology-aware classes. Key components of the simulator, RAM,
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aware versions, which assert the correctness of signal state and path conti-
nuity, enabling a report of fault conditions when and where they occur, before

propagating.

tem C as it is of other HDLs, but a suitable C*+ PSL-library was writ-
ten by the author. The topological knowledge of the network, a linear
shared bus with drop-off sections has also been encoded. Components
that have built-in knowledge of topological relations, and even proper
time sequences to be asserted during simulation, are termed topology-
aware.

7.2.3 Useful-state Analysis Tools

A third toolset is primarily intended for design using USA, and features
a topological approach. It fits in the design flow recorded below, and
is suited for variable-bandwidth CAs. A brief description of the tools’
usage forms is given in Appendix A. The tools are aimed at finding
the all-paths set in a meshed topology, constructing a path allocation
graph out of a CA description, and a path-set lookup table from a path
allocation graph.
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Figure 7.4: Data structure dependencies in USA.

7.3 Design Flow

7.3.1 Dependencies

The data structures involved in control plane design have some de-
pendencies, shown in Fig.7.4. It is informative to observe how these
structures are exchanged between the actors in the design process.

1. Aninstruction set designer defines the instruction set architecture
(ISA). The ISA is an extensive specification that including transfer
and operational instructions for the processor, their addressing
modes, the communicating entities, and, under our assumptions,
the level of concurrency. For the network designer this implies the
terminal arrangement (TA). The terminal arrangement should be
seen as a set of constraints on communication, but not yet as the
full description of a communication architecture (CA).

2. The network designer develops, after exploration, a network to
match the TA. Below, we will briefly describe the type of consid-
erations that come into play. The design of the network, and the
terminal arrangement, result in a formal CA: a combination of a
topology and a set of useful paths.

3. The network designer finds the useful-state sets, attributes con-
trol codes to each, and, if the ISA is not topology-aware, reduces
the PSLT to a transfer-set lookup table (TSLT). This is useful-state
analysis (USA). Byproducts of useful-state analysis are optimum
encoding and the data for eventual switch decoder synthesis.

4. The CISA (communication ISA, including communication-aware
instructions, if needed) is now fixed. The transfer-compatibility
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hypergraph, derived from the TSLT, serves as a specification to
the memory architect and the writer of the scheduler. The com-
piler, in case of explicit path sspecification, needs to know the
actual control codes, in order to issue them.

The transfer-compatibility hypergraph satisfies the minimum re-
quirements of the ISA and TA. Opportunities to schedule more trans-
fers than the TA required, may exist. These would follow from topo-
logy design. In order to utilize those, the ISA would have to be adapted.
Alternatively, the network designer can reduce the CA more, reducing
the size of the control plane in the process.

7.3.2 Topology Design

There is a large body of theoretical research on optimal topologies [29]
in the data plane, based on graph-theoretical metrics such as vertex
and edge symmetry, degree 9, average distance d,, network diameter
D, and bisection width B¢, among others. These parameters have a
direct impact on network performance. Fig. 7.5 shows some basic can-
didate topologies. The choice of such a topology, is often central in the
decisions that determine performance of supercomputers, as witnessed
by the choice of a fat cube topology for distributed shared-memory
NUMA machines like the SGI Origin 3000 [29] or of the K-ring for the
Swiss-T1 cluster [36]. We want to argue that the criteria for optimal-
ity are different for SoCs than for high-performance computing (HPC),
and not really explored yet.

The prime topological constraints in HPC come from the subdivi-
sion in modules, chips, boards and chassis required in a physical sys-
tem. The parameters of topology and packaging technology determine
the placement of communication nodes in the system, as well as the
channels” bandwidth. (For an instructive exploration of this, we re-
fer to [29], Chapter 3). In SoCs, these constraints are relaxed, because
all connectivity is on-chip. The cost elements of an on-chip CA are
area consumed and congestion caused in the upper metal layers of the
chip, while merit is found in the ability to provide many parallel high-
bandwidth links and topological redundancy (to combat interconnect
reliability degradation). These requirements both point in the direction
of meshed topologies. In fact, a non-cyclic topology like a linear bus
can never guarantee topological redundancy.

Whereas in HPC the vertices in topologies like those of Fig 7.5 are



130 Methods for Analysis, Simulation and Design

it
i

— - I

& &

c) 8)
d) h)
Figure 7.5: Eight generic networks from high-performance computing, with

8 (or 10) terminals: a) Moore graph, b) Octagon, c) K-ring d) Ladder
e) Midimew, f) Hypercube, g) AMP h) Twisted Ladder. (Source: [87])

i

routers and the links are serial, in SoCs the vertices are atomic switches
and the links parallel wires. Other fundamental differences between
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the intra-tile domain in SoCs and HPC include: (i) the opportunities of
3D stacking in SoCs, reducing congestion; (ii) the importance of the ter-
minal arrangement. In HPC the terminals are often functionally iden-
tical, while with SoCs they belong in most cases to distinct terminal
classes with different roles; and (iii) the prospect of centralized compile
time scheduling within SoCs, in contrast to the semi-random routing
process of HPC.

While we have, in this section, raised more questions than we an-
swered, we think that USA can contribute to the study of aspects (ii)-
(iii) above. Indeed, our topological use cases in Chapter 8 yield at least
one more concept of merit for CAs that USA can calculate: the histogram
of concurrency of transfers over the useful states, given a certain terminal
arrangement. This amount of concurrency determines the opportuni-
ties for the scheduler and also provides a measure for the redundancy
built into the CA.

7.4 Future Work

In future work, it must be possible to re-introduce scheduling by means
of combined statistical/topological analysis, while still foregoing geometry
and possibly, the application. Such an approach would focus on control
states rather than on data activities, and allow us to determine the feasi-
bility of control over EESC at the far end of scalability, with very many
switching resources, where transcoding and decoding losses dominate
over transport and fetching losses. Precise knowledge of data values
is not essential in the control plane, but puts a heavy burden on the
simulation.
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Chapter 8

Use Cases

The purpose of computing is insight, not numbers.

Richard Hamming.

This chapter presents experiments conducted and published while
our framework was developed. Two designs for control planes
were analyzed statistically, the second one twice (once without
and once with USE). A Digital Audio Broadcasting (DAB)
receiver design was analyzed in order to study the feasibility
of EESC control. A design for a Global System for Mobile
Telecommunication (GSM) speech encoder, was optimized once
with loop buffers and once using USE.

We will derive from these experiments some rules of thumb on
fixed- and variable bandwidth communication architectures, and
conclusions on our figures of merit. After the statistical analyses,
we will present topological analyses on various CAs ranging from
simple to complex: an intra-processor functional-unit intercon-
nect, a CA with a broadcasting terminal arrangement, and var-
ious architectures with interesting topology, including grid and
torus interconnects often found in SoCs. We conclude the chapter
with a conclusion on the scalability of control of EESC with many
terminals.

HAVING driven the design framework now as far as it will presently
g0, we turn to the use cases that guided its development. Bench-
marks are taken from the field of low-power processing for multi-
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media.l

Fixed-bandwidth systems are simple, and easy to control or sched-
ule. Their energy-saving properties are found to scale well with bus
network multiplicity and number of terminals. They can easily be used
for memory hierarchies with register-indirect memory-addressing.
Variable-bandwidth CAs are harder to schedule than fixed-bandwidth
CAs. They are found to still have good sectioning gain. They are usable
as long as the control path W¢p is narrow enough at all section points.
Whether this can be achieved, is decided by useful-state analysis.

8.1 Statistical Analyses

8.1.1 DAB Receiver

In our publication [57], we performed control-bit analysis by processing
a profiled run of a DAB receiver application, of which the principles are
pictured in Fig. 8.1, As implemented, the receiver has three functional

'We should not exaggerate the importance of the multi-media aspect: from the
viewpoint of control, it is difficult to characterize an application by the data it carries.
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Figure 8.2: The DAB receiver architecture.

units; the interconnection is shown in Fig. 8.2: a FFT subsystem (f1
in the diagrams below), a Viterbi decoder or error correction processor
(f2 ), and a de-interleaver or unscrambling processor (f3 ).

To estimate the required switch control power consumed on a sec-
tioned bus for different solutions in the floorplan of a data-intensive
application, we made 4 different physical floorplans for a DAB receiver.
Each represented a different trade-off between power efficiency and cir-
cuit area, and had a different on-chip memory count and consequently,
a different complexity of the sectioned bus structure. Two memory par-
titions (sets of memories of different types): mland m3are referred to
in Figures 8.3-8.6, which shows the four solutions. In each solution, the
optimization of putting more arrays in different and smaller memory
modules (named m1-1, etc.) can be pursued to a different extent.

After data storage and bandwidth exploration (DTSE) [25] analysis
of the problem, 4 different optimizations are chosen, to set 4 alternative
tasks for the design process. The solutions are 4 designs that all feature
3 parallel buses, but have a different number of memories: respectively
4, 8,10 and 12. They all feature an 8-bit bus (b1), which in some solu-
tions is extended to include some 16-bit sections, and two 32-bit buses
(b2 and b3), as shown in Figures 8.3-8.6.

Activity-aware floorplanning [46] minimizes the length of sections
with high activity. Since the sections most frequently used are mini-
mal in length, this technique globally optimizes the energy consumed
by the data transfer over the sectioned buses. Fig. 8.7 shows the four



136

Use Cases

fl ml-2| m3-2 f2 . m3-1 f3 |
fft deint vit
<] L is ’J}‘ <] <]
TR I
Tswitch
mi-1 logic
b2 l - _ .I.;'I
S s21
b3 oF £
s31
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Figure 8.4: Solution 2 from design space exploration, with 8 memories.

layouts that result from each optimization.
The experiment allows following observations to be made:

e A typical control bit activity pattern is similar to the one depicted
in Table 8.1, from solution 3, the 12-memory design, where FFT-
processor f1 is active and uses buses b1 and b2:

e Looking at Fig. 8.6, we see that only switches b1:sw8 , b1:sw9 ,
b2:sw3 and b2:sw4 are active, switching the right-hand side of
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Figure 8.6: Solution 4 from design space exploration, with 12 memories.

Table 8.1: Typical activity pattern of control bits. The control codes are for
6W3T switches with default decoder type.

bl
swl sw2 sw3 sw4 sws5 swb6 sw7 sw8 sw9
1100 1100 1100 1100 1100 1100 1100 1100 1000
1100 1100 1100 1100 1100 1100 1100 1100 1100
1100 1100 1100 1100 1100 1100 1100 1000 1010
1100 1100 1100 1100 1100 1100 1100 1100 1000
1100 1100 1100 1100 1100 1100 1100 1100 1100
1100 1100 1100 1100 1100 1100 1100 1000 1010

b2 b3
swl sw2 sw3 sw4 swl sw2 sw3
1100 1100 1100 1100 1100 1100 1100
1100 1100 1001 0111 1100 1100 1100
1100 1100 1100 1100 1100 1100 1100
1100 1100 1100 1100 1100 1100 1100
1100 1100 1001 0111 1100 1100 1100
1100 1100 1100 1100 1100 1100 1100

buses bl and b2. The period is 3 cycles, in this case.

Localization of switch activity would encourage us to seek for
clusters of groups of switches, that can be efficiently driven from
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Histogram Histogram

Figure 8.7: Four possible solutions for the layout: 4, 8, 10 and 12 memories.

loop buffers. We find that if two switches change data direction,
all switches in-between also change data direction and show ac-
tivity. This is detrimental to the locality of switching activity. The
effect, observed also at other times and on other buses, made us
think of clustering by bus rather than by locality. The inevitability
of thhe global correlation of control code patterns is confirmed in
another use case, in Section 8.2.1.

Using the switch control patterns and the line-lengths, we can cal-
culate energies. In Fig. 8.8, the energy consumed on the buses by the
DAB application is compared with the energies that would be con-
sumed were the bus not sectioned. In the first place, the comparison
corroborates the advantage of a sectioned bus from the point of power
efficiency.

Comparing the data energy on the bus not-sectioned with the en-
ergy consumed on a sectioned bus, we see that both Ej.ctioneq and
Ensectioned Teach a minimum which is not radically different between
the four solutions. This indicates that sectioning does not impose dif-
ferent targets for physical layout optimization than a non-sectioned
solution.

In Fig. 8.9 we compare the energy required to transport switch con-
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Figure 8.8: Comparison of sectioned vs. non-sectioned energy over the appli-
cation, for four DAB receiver design choices

trol bits with the data energy over the sectioned buses, for all design
choices. We find that it is of a lower order of magnitude. Intuitively,
we attribute this to a good choice of the switch codes, chosen in this
experiment to minimize the activity on the control bit wires. More im-
portantly, our experimental set-up contains many more active data and
address lines than control bit lines. Also there is only limited activity on
some buses in some branches of the program, thanks to activity-aware
placement. This observation is the core of the reasoning made on p. 115
in Section 6.2.2: the best way to limit costs of transport of control, when
compared to costs of data transport, is keeping the number of control
wires down. Furthermore, we see that:

e Power consumed on the sectioned bus for transport of data is 17-
21% of the power consumed on the equivalent unsectioned bus.

e Power consumed by transport of control bits is much smaller than
the saving obtained from sectioning in the first place. It is in the
range of 1.5-6% of the data transport power, after sectioning.? So

*Some inaccuracy here comes from the denominator of the comparison: the power
for data transport is dependent on the content of the data and addresses, which can
only be guessed at if only profiling but no platform compilation or full hardware sim-
ulation is done.
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Figure 8.9: Comparison of switch control energy vs. sectioned bus energy over
the application, for four DAB receiver design choices

the reduction of the control power is quite satisfactory.

e Clustering the switches may make sense both locally and per bus;
it is hard to decide from this experiment. Often the switches do
not change state because the bus is not in use. At other times,
frequent patterns can be seen on a section of a bus because only
short sections are being used.

e Switching occurs often, and for long periods, every cycle. This
follows from what Atomium/SBO’s optimization considers to be
a cycle: a period through which accesses to external memory are
scheduled. Consecutive cycles during when internal registers are
accessed, are not counted. Only if the access schedule would be
completely the same for two successive cycles, w.r.t. sources and
sinks as well as data direction, would there be no switching activ-
ity, or else when the bus were simply not in use. The communica-
tion architecture is thus reconfigured frequently.

Conclusions from this experiment Not knowing at the time the full
extent of design space, the experiment yielded no strong optimum for
sectioned bus energy. Basically, looking at control transport energy
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only (we did not consider other classes of loss in this experiment), the
experiment showed that the case for the sectioned bus had held well.
Observation of the control bit flow indicated that we should not go for
optimization of the transport energy component, but instead try to min-
imize the energy cost of fetching the control information. The concept
of a pure control bit analyzer proved dissatisfying, since it could not
always predict the exact flow of control bits in a real SoC, where one er-
ror would disable the application. From this, the CP paradigm evolved,
and the concept of implicit path specification.

8.1.2 GSM Speech Encoder with Loop buffers

Our paper [59] demonstrates control of a low-power communication
network by a simple processor as shown in Fig. 8.10. It had only one
linear energy-efficient sectioned bus (LESB). The paper explores the en-
ergy cost saving of switch control transport by inserting clustered loop
buffers in the control processing path, thereby exploiting periodicity of
the control bit flow. It describes the implementation and simulation of
such a system, in a simple but significant test case, concentrating on
programmed control and the loop buffers. Also, from these results, it
considered the prospect of expanding the EESC control concept to mul-
tiple buses including non-linear control topologies.

DATA
MEMORIES mO m1 m2 m3 m4 m5 mé m7

LESB

LOOP
BUFFERS

|addr |insﬂ
hNSTRUCﬂONMEMORY|

Figure 8.10: Simple communication processor with 1 LESB and 8 memories.

The full platform is shown in Fig. 8.10. It includes a DLX [55] CPU,
with instruction memory, a single linear sectioned bus, 8 distributed
data memories, sectioning switches, control wires and up to 7 loop
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buffers. This is enough to implement a sizable application. It is in
fact a template, one we eventually wanted to expand to 16 and more
memories.

In the CP paradigm we need to define the “communication instruc-
tions”, the extra instructions that our processor needs. The DLX in-
struction set in fact already contains a “communication instruction”
which expresses the memory and register addressing modes that the
processor needs. It is not necessary to invent new communication in-
structions for this purpose. The realization of this fact leads ultimately
to the concepts of implicit path specification and the path decoder. The
Load/Store instruction is adopted as a communication instruction. The
instruction gets an extra meaning: that of additionally implying the
value of the switch control bits. In addition, we have a new Loop Buffer
instruction in one of the two forms swibon n s and swiboff n. nisa
selector for individual loop buffers or clusters of them. s is the length
of a loop that the program performs.

Our benchmark performs GSM 06.10 lossy speech compression [44].
It encodes frames of 16-bit PCM voice samples at a rate of 8kH z into
GSM frames. Profiling it, we find that 70% of the cycles are spent cal-
culating the codec’s long term predictor (LTP) parameters. This routine
has a loop sequence, containing in fact a sub-loop that was already un-
rolled, of 80 communication instructions, repeated 80 times. For the
purpose of testing loop buffering, exploiting the temporal redundancy
of this single loop can attain nearly all improvement that is possible
by temporal re-use. The buffers need to be 128 cycles long (128 is the
smallest power of 2 exceeding 80).

After code analysis, it is straightforward to order the memory mod-
ules optimally along the bus, and to maximize the activity on the short
wires. As a result, the short and most active wire sections are centrally
located on the bus, between sw4 on one side and sw3 or sw5 on the
other side. From the topology now follows that the switches sw3, sw4
and swb are the most active and that their activity is heavily correlated.
It is thus clear that clustering is most likely to help for that group of
switches. The group of switches sw2-sw6 is another candidate for clus-
tering.

For the purpose of energy computation, we assume a technology
node of 130 nm. Energy-aware layout minimizes the length of the most
active wires and yields the length of the control wires involved. Mem-
ory sizes and energy consumption by wires and memories are based on
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CACTI 4.2 [22] and Banerjee [13].

5555+
55555555

55555555
55555555

Figure 8.11: GSM speech encoder: sectioned operation. The control codes
(above), driving the sectioning switches, ensure that data wires (below) are
only driven when carrying information. At other times, the drivers are open-
impedance.

In the simulator, already described in Section 7.2.2, we want to sim-
ulate all aspects at functional level for the processor and at RTL level for
the bus. Fig. 8.11 shows a trace of the control signals as they drive the
sectioning switches, and the alternation of the bus sections between ac-
tive and high-impedance state. The simulator accumulates the voltage
flips on the wires and the energy costs of reads and writes of all mem-
ories. It verifies correct operation verification statements on topology-
aware System C objects. Energy measurements by the simulator are
confirmed by running an exhaustive set of elementary tests, simple
enough to be verified by inspection.

Observations on design choices We are now able to compare the ef-
ticiency of several alternatives: not sectioning the bus, sectioning with-
out loop buffers, introducing a loop buffer per switch, and clustering
loop buffers. A cluster of triple loop buffers must necessarily be better
than any other loop buffer clustering solution, since almost all cycles
are spent accessing the small memories centrally located on the bus. Be-
cause the loop buffer’s SRAMs are narrow, which is relatively power-
inefficient, clustering makes good sense. Thus we do not, in the end,
deploy separate loop buffers per switch, but only one loop buffer for a
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Figure 8.12: GSM speech encoder results: transport and access energies.

cluster of 3 switches, shown in Fig. 8.10 within a dashed box. Fig. 8.12
shows the results of our experiments. Without sectioning the transport
energy of data on the bus is 0.9104:J, for the length of the code sequence
involved. After sectioning, it is 0.127x.J. We conclude that

e Improving energy-efficiency by sectioning works: in sectioned
operation, even without loop buffers, the data transport energy
is reduced by 86% at a cost of 4.7% in switch control transport
energy. The sectioning gain® is 81%. The switch control transport
energy does not need to be minimized further, at least not for a
linear bus.

e On the other hand, the bus address transport energy, shown for
reference, is 73% of the data transport energy before reduction,
and in this experiment not reduced by the sectioning. There may
exist other techniques to reduce address energy for low-power
SoC [78, 80], but that should not stop us from optimizing it at the
level of wire sectioning as well. Hence, the address bus should
also be sectioned in the future.

e Loop buffer operation reduces switch control transport energy to
18.2nJ from 46.7n.J, but incurs high costs in read accesses for the

*In [59], the definition of sectioning gain differed slightly from the definition in this
work. Rather than re-calculating the data, we quote figures from the paper.
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loop buffers (99.8n.J). Sectioning sectioning gain reduces to only
73%. Loop buffer access losses outweigh the saving obtained.
Loop buffers are no panacea to further reduce control transport
energy, if that were still required.

We learn here that we should not confuse between transport loop
buffering and fetch loop buffering. The latter is effective in re-
ducing the fetch energy of all instructions, since it is built into the
fabric of the processor. Our transport loop buffers are “out on the
surface” of the chip, have no connection to the program counter,
and can save nothing but transport energy. But their memory ac-
cess overhead is too large for that.

e Data memory accesses and the transport energies towards the in-
struction memory are both costly. This is normal, since we did
not optimize the platform under test in any way for this.

e Fetching Load/Store instructions requires 563n.J. This figure is
only meaningful in order of magnitude. Since the instructions
must be fetched anyway (implicit path specification), they are not
included in the budget. Also, our simulator is in no way designed
to optimize the cost of instruction fetches. But the fact does in-
dicate that explicit specification would have been prohibitively
costly.

e Fetching the Loop Buffer On/Off instructions, on the other hand,
requires only 0.136n.J. It happens only seldom, and on its own
this is very efficient.

Conclusions from this experiment The paradigm of the CP, first used
in this experiment, proved helpful in identifying all energy costs. The
simulator lets us verify the operation of EESC and measure all energy
costs, including some not measured before, and make a complete en-
ergy balance. The balance of control vs. transport energy remained fa-
vorable. Further reduction of control energy proved again, as in the
DAB experiment, not to be needed. We reduced the overhead in com-
munication instruction fetch energy to near zero, by the suitable means
of implicit path specification. Controlling EESC, we did not squander
the savings made by sectioning. We identified the essential compo-
nent of the communication processor: the path decoder. Loop buffers
proved not effective in this context. As for scalability, we decided that
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Figure 8.13: A simplified template for a single-transfer-per-cycle CA with 8
scratchpad memories and sectioned linear bus network topology.
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Figure 8.14: Statistical analysis for GSM speech encoder: (a) transport energies
without wire sectioning, optimized without useful-state analysis, (b) transport
and control energies with EESC, optimized without USE, and (c) same, but
optimized with USE, memory-address bus network sectioning and sub-word
selection.

the path decoder mechanism would still serve us with up to 16 mod-
ules and up to four linear buses, which was at that time our next im-
mediate concern, and that we had resolved the issue at the bottom-end
to medium range of complexity, which was significant as it covers all
single-issue processors with single linear buses.
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Figure 8.15: ISG calculated for a half sectioned linear bus.

8.1.3 GSM Speech Encoder with Useful-state Encoding

For our paper [62], we revisited the CP with one linear energy-efficient
sectioned bus (LESB), using the same GSM speech encoder [44] pro-
gram and architecture now simplified to Fig. 8.13. This second opti-
mization employed USE, memory-address bus network sectioning, and
sub-word selection. This reduces the width of the control plane: UEE
is 81%, which accounts for a large drop in control energy. Fig. 8.14
shows the data plane (data and address) transport energies for the un-
optimized platform (a), as well as the results of EESC after the first (b)
and second (c) optimization. The total pie areas in Fig. 8.14(a-c) are
proportional to the data plane transport energy: 1574 n.J, 834 n.J, and
282 nJ. The pie-charts show the ratio to control energy of data and ad-
dress transport energy respectively. The latter consists almost entirely
of control transport energy. Sectioning gains after each optimization are
47% and 82 % respectively. After the second optimization, losses from
energy transport of control bits have almost completely disappeared:
they drop from 42 nJ to less than 3 n.J. Interconnect losses with EESC
are in the end dominated by losses from transport on the address bus
network. The schedule-neutral ISG for this CA is 37.5%, implying that
the program-specific sectioning gain goes from 10% in the first opti-
mization to 44% in the second. This understates the effect of the first
optimization. Related to data transport energy alone, excluding ad-
dress transport energy, program-specific sectioning gain is 38% for the
first optimization. We also find that switch selection by subword and
address bus sectioning are indispensable.
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Figure 8.16: UEE and ISG for CA with linear topology.

8.1.4 Fixed-Bandwidth Architectures

We expand our fixed-bandwidth example of Fig. 8.13, to the general
case of a fixed-bandwidth CA with M bus networks, of linear topology,
and N memories. The load/store unit fy takes part in every transfer.
The data plane has data and memory address sub-buses. With shared
media, path specification means bus specification. The path decoder
is multiplexed per bus. For each bus, control of data and memory ad-
dresses is the same. Data and memory switches are co-located. Check-
ing the figures of merit, we find, by averaging the lengths of the un-
used sections over all useful states (cfr. 8.15) that schedule-neutral ISG

"¢ = (N/2—1)/N. Finding the useful states is trivial with CAs with a
linear topology and a single transfer per cycle: there exist 142 x N use-
ful states. Useful-state control code transport requires [log,(1+2 x N)]
bits, not 3 x (N — 1). (3 is the default number of wires for a default
switch, N — 1 is the number of switches). UEE is nyg = 1 — [logy(1 +
2x N)|/(3x (N —1)). ISG and UEE are plotted in Fig. 8.16. For 8 mem-
ories, nug = 76%; for 16 memories, nyg = 87%. Useful encoding uses
only 24,% respectively 13% of the number of control wires that would
be used without USE. The limit for very long buses is 50% for ISG
and 100% for UEE. The merit of useful-state encoding is not limited by
the size of the communication architecture; gain from wire-sectioning
has a bound, which comes essentially from the symmetric nature of the

topology.
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Figure 8.17: Control plane design pattern for implicit path specification.
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Figure 8.18: Control plane design pattern for explicit path specification.

8.1.5 Rules of Thumb on Path Specification and CA Band-
width

Control planes with implicit transfer set specification follow a general
pattern shown in Fig. 8.17. They do not incur fetch stage penalties,
as all information for the path transcoder is already present in the in-
struction, even when no EESC is employed. The exception to this is
path selection information, which is why we write Wep ~ 0 and not
Wep = 0 at the point of fetching. With USE, the path decoder is of
minimal width. With explicit path-set specification, the control plane
does not need a path decoder, but must fetch useful-state codes explic-
itly for each transfer instruction, as shown in Fig. 8.18.

The path for control transport is of minimal width, because control
encoding has minimal topological redundancy. Useful path codes are
presented to all switches. This reduces wire congestion, which is bene-
ficial. With USE, the switches” decoders can be larger than they would
be without USE. Optimization by choosing the numerical values of
the control code after combined topological/statistical analysis could
reduce the decoding losses.

Tables 8.2 and 8.3 summarize rules of thumb that can be used for
design space exploration of ISA and data-plane topology, to determine
the consequences for the control plane.



150

Use Cases

Table 8.2: Synopsis of use cases, for implicit path specification

Stage M single-transfer CAs variable-BW CA
with N terminals

Fetch none none

Transcode | area: O((logy N)?) | area : O((logs |Sul)?)

delay : O(M)*

Control

Transport |R| < |R|maz X I_Gn%

Decode Code optimization (statistical)

*Or bus-pipelined.

Table 8.3: Synopsis of use cases, for explicit path specification

Stage M single-transfer CAs | variable-BW CA
with N terminals

Fetch O(logy M + logy N) Wep < K

Transcode none none

Control

Transport |R| < |R|maz o I_Gn%

Decode Code optimization (statistical)

8.2 Topological Analyses

Variable-bandwidth communication architectures are intended for spe-
cial needs, message passing, broadcasting, direct addressing, non-
uniform memory architectures, topological optimizations, process
variability issues or other requirements for path redundancy. They are
harder to schedule than fixed-bandwidth communication architectures.
They normally still have good sectioning gain. They are usable as long
as the width at all sections in the control path is low enough. Whether
this can be achieved is decided by useful state analysis.

Without loss of generality, we can focus on single-component CAs,
since disconnected bus networks can be analyzed separately.
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8.2.1 Functional-Unit Interconnects

Functional unit interconnects are likely to contain directional paths,
have many switches and a high correlation between switch positions.
Because of the correlation, they should have good UEE. Because of the
many switches, they need it.

The terminal arrangement for a functional-unit interconnect is obvi-
ously very dependent on the exact ISA. For example, we take a typical
intra-tile network: the functional unit chaining interconnect described
by E. Barat Quesada in his thesis [15]. This network has already been
seen in Fig. 3.11, but is now treated in more detail. Many VLIW pro-
cessors contain register bypass networks. CRISP has an extra facility
for functional unit chaining: two functional operations can be chained
within a single execution cycle. For this purpose, the delay of the data
path operation has been kept to less than half the clock cycle. Also,
the functional units are augmented with a shunt register, which can be
bypassed when results are needed within the current clock cycle. Re-
sults needed within the current cycle, but not any more afterwards, are
termed ephemeral results. Barat Quesada has not implemented it using
EESC. Our own implementation with EESC is not meant to be optimal:
it is a seemingly logical first try. The network topology is shown pic-
torially in Fig. 8.19 and mathematically in Fig. 8.20. It is influenced by
“linear bus” thinking, since we know as yet very little about optimal
intra-tile topologies.

Communication-architecture analysis From the terminal arrangement
(TA) and the network topology (there are no meshes), we can get the
all-paths set and the useful-paths set. To deduce the terminal arrange-
ment, we need to know the ISA. In CRISP, functional instructions have
a destination and two sources. To encode the instructions that pro-
duce ephemeral results, a constant register is used as destination. Such
registers have a fixed value which is, for instance, always zero. Writ-
ing to such register has no effect. If the source for an instruction is an
ephemeral result, instead of a register, this is specified by #n, where n is
the number of the functional unit that produced the effect. An example
is given below.* Instructions issued in the same cycle are joined by the
C-language logical-OR notation || ; subsequent cycles are separated by

“In this example code, al, a2, etc. are address registers and d1, d2, etc. are data
registers, not to be confused with the terminals d1, d2, ...in Fig. 8.19.
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Figure 8.19: Functional unit chaining: functional unit network from CRISP.
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Figure 8.20: Functional unit chaining: network topology.

semicolons.

SHL.1 d2, do, d1 || MUL.3 d8, d6, d7 ;

ADD.1 NULL, d3, d4 || ADD.2 d9, #1, d5 ;

ADD.1 NULL, d9, al || ADD.2 NULL, d5, a2
|| SUB.3 NULL, #1, #2 || ADD.4 d13, #3, a3 ;

In this example, functional unit chaining takes place once in cycle
2 and thrice in cycle 3. The useful paths used in cycle 3 are shown in
Fig. 8.21. A functional unit cannot be chained with itself; the ISA does
not allow it. The code snippet below, using plain register bypassing, is
however possible, yielding still more useful paths:

SHL.1 d2, dO, d1 ;
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ADD.1 d9, f1, d5 ;

The useful-paths set (UPS), which follows from the TA, must pro-
vide round-trip paths from the output of a functional unit to its own
inputs, like for instance, in Fig 8.19, the path g0—01—03—04—05—-
09—11—01—c0 does. Altogether there are 72 useful paths, shown
in Tables 8.4 and 8.5. This makes USA computationally challenging.
We recognize 8 terminal classes in the TA and can identify them in
Fig. 8.19. We have register file sources (2 classes) and destinations (1
class): 3 classes together; sources (2 classes) and outputs (1 class) of
functional units: 3 classes; shunt register in- and outputs: 1 class each,
2 classes altogether. The CA has only a single component: it is com-
pletely connected. The network designer (the author) has in some way
wanted to realize logical “buses”: 8 for the inputs of the functional
units, and 4 feedback networks. He might have wanted to create 12
fixed-bandwidth CA, but has in fact created one single-component CA,
because the “buses” are interconnected, with a bandwidth that is prob-
ably variable. Surely, it can carry from 0 up to 16 concurrent transfers.
This is intuitive, and the DIS algorithm confirms it: the concurrency
number is 16 (not 12). A CA is fixed-bandwidth if all maximal inde-
pendent path-sets are same-size. Besides, using USA, one can quickly
find some maximal independent path-sets of size 12. Thus the CA is
not fixed, but variable-bandwidth. The concurrency number is 16.

Alternate view With this particular CA, one can take a alternate topo-
logical view of resource allocation. Crucial resources can be identi-
tied, like for instance 04 (or 24, 44, and 64, respectively). These con-
trol access to certain logical “buses”, like, in this case, the four feed-
back “buses” #1, #2, #3, and #4. One can even group crucial re-
sources in 12 critical resource groups, called rg03 , rg23 , rg43 and
rg63 (each grouping 2 resources) and rg02 , rgl2 ,rg22 ,rg32 ,rg42 ,
rg52 ,rg62 ,rg72 (each grouping 4 resources). Resource group rg03 ,
for instance, contains resources 03 and 04. Resource group rg02 con-
tains resources 02, 09, 10 and 11. The critical resource groups are
shown in Fig. 8.22. Interestingly, when the states of the groups are com-
bined (with a Cartesian product), demonstrably less than their all-state
space is useful. Resource group rg03 has only 3 useful states out of 4
possible; Resource group rg02 has only 4 useful states out of 16. One
could envisage an ad hoc design tool that enumerates the useful-state
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Table 8.4: Useful-paths set for functional unit chaining, part 1.

a0->01->c0 al->21->cl az2->41->c2 a3->61->c3
b0->12->d0 b1->32->d1 b2->52->d2 b3->72->d3
e0->02->f0 el->22->f1 e2->42->f2 e3->62->f3
g0->03->04->h0 g1->23->24->h1 g2->43->44->h2 ¢3->63->6 4->h3

€0->02->03->04->05->13->25->29->31->21->c1
e0->02->03->04->05->13->25->33->37->39->32->d1
€0->02->03->04->05->13->25->33->45->49->51->41->¢2

€0->02->03->04->05->13->25->33->45->53->57->59->52- >d2
€0->02->03->04->05->13->25->33->45->53->65->69->71- >61->c3
€0->02->03->04->05->13->25->33->45->53->65->77->79- >72->d3

e1->22->23->24->80->14->09->11->01->c0
€1->22->23->24->80->14->17->19->12->d0
€1->22->23->24->80->26->34->46->49->51->41->¢c2
€1->22->23->24->80->26->34->46->54->57->59->52->d2
€1->22->23->24->80->26->34->46->54->66->69->71->61- >c3
€1->22->23->24->80->26->34->46->54->66->77->79->72- >d3

e2->42->43->44->81->35->27->15->10->11->01->c0
e2->42->43->44->81->35->27->15->18->19->12->d0
€2->42->43->44->81->35->27->30->31->21->c1
e2->42->43->44->81->35->38->39->32->d1
€2->42->43->44->81->47->55->67->70->71->61->C3
€2->42->43->44->81->47->55->67->78->79->72->d3

e3->62->63->64->76->68->56->48->36->28->16->10->11- >01->c0
€3->62->63->64->76->68->56->48->36->28->16->18->19- >12->d0
€3->62->63->64->76->68->56->48->36->28->30->31->21- >cl

€3->62->63->64->76->68->56->48->36->38->39->32->d1
€3->62->63->64->76->68->56->48->50->51->41->C2
€3->62->63->64->76->68->56->58->59->52->d2

space based on the interdependency of these 12 resources groups, to-
gether with the equally crucial single resources 02, 22, 42 and 62. To
enumerate these would take 4% x 3% x 2 = 84934656 ~ 85.10° steps.
The task is not insuperable and all useful states can be derived from
this. But the design tool would require much optimization in order
to run in reasonable time, and can only be used for one CA. Instead of
doing this, we will continue with regular USA.

Useful-state analysis The experiment allows the following observa-
tions to be made. We can construct the PAG and find the PSLT. The
concurrency number is large (because we must include the paths from
functional unit to shunt register, 16). The performance of MIPS, IPS and
PPS were mentioned already in Table 5.2. MIPS does the job in 4 hours;
IPS and PPS, took longer than 8 hours. In total there are 1385 directed
maximal independent path-sets. The complete directed PSLT (or TSLT,
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Table 8.5: Useful-paths set for functional unit chaining, part 2.

g0->03->04->05->09->11->01->c0
g0->03->04->05->13->17->19->12->d0
g0->03->04->05->13->25->29->31->21->c1l
g0->03->04->05->13->25->33->37->39->32->d1
g0->03->04->05->13->25->33->45->49->51->41->c2
g0->03->04->05->13->25->33->45->53->57->59->52->d2
g0->03->04->05->13->25->33->45->53->65->69->71->61- >c3
g0->03->04->05->13->25->33->45->53->65->77->79->72- >d3

g1->23->24->80->14->09->11->01->c0
g1->23->24->80->14->17->19->12->d0
g1->23->24->80->26->29->31->21->cl
91->23->24->80->26->34->37->39->32->d1
g1->23->24->80->26->34->46->49->51->41->¢2
g1->23->24->80->26->34->46->54->57->59->52->d2
g1->23->24->80->26->34->46->54->66->69->71->61->C3
g1->23->24->80->26->34->46->54->66->77->79->72->d3

g2->43->44->81->35->27->15->10->11->01->c0
g2->43->44->81->35->27->15->18->19->12->d0
g2->43->44->81->35->27->30->31->21->Cc1l
g2->43->44->81->35->38->39->32->d1
g2->43->44->81->47->50->51->41->c2
g2->43->44->81->47->55->58->59->52->d2
g2->43->44->81->47->55->67->70->71->61->c3
g2->43->44->81->47->55->67->78->79->72->d3

g3->63->64->76->68->56->48->36->28->16->10->11->01- >c0
g3->63->64->76->68->56->48->36->28->16->18->19->12- >d0
g3->63->64->76->68->56->48->36->28->30->31->21->cl
g3->63->64->76->68->56->48->36->38->39->32->d1
g3->63->64->76->68->56->48->50->51->41->c2
g3->63->64->76->68->56->58->59->52->d2
g3->63->64->76->68->70->71->61->C3
g3->63->64->76->78->79->72->d3

since only one path-set exists for each transfer set) has 543744 useful

states. UEE =1 — % = 90.74%. With USE, we need 20 wires
instead of 216 (since there are 72 switches). Intrinsic Sectioning Gain is
unknown since our most optimized tool lacks the option to calculate it.
It is evident that ISG will be high; Fig 8.21 indicates this, showing, for
one particular useful state, that many wire sections are not driven.

It is instructive to compare the above solution to another design
solution without USE, where path specification would have been ex-
plicit and transport loop buffers would have been employed. With loop
buffer clustering per bus, we would presumably have needed 8 loop
buffers, 4 of which would have to be clustered with the functional units,
and 4 others with the functional unit feedback bus bars, since control
codes for the switches along those are mutually heavily correlated but
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not with individual functional-unit loop buffer’s instruction streams.
Loop buffer clustering per location would be impractical, since nearby
switch states are evidently not correlated.

It might be possible to find a better topology for the network, but
given the results of USE, this is not immediately called for. This exam-
ple also illustrated how sensitive a communication architecture can be
to the exact form of the ISA, and how little sense it makes to experiment
with advanced topologies without reference to a terminal arrangement.

Tentative approach to address interconnect reliability degradation
How to adapt this CA to be survivable for single link or node failures, is
not evident. Protecting against single link failures, on long wires only,
is feasible by making 16 long wires bidirectional and circular. In order
not to overload the figure, we show in Fig. 8.23 only 7 of the 16 bidirec-
tional connections. 32 additional 6W3T switches need to be introduced.
Performing USA on the 16 individual single-fault scenarios, given the
improvement of optimized design support tools, and the availability of
parallel processors, is possible. We must note that backing up against
failure by introducing rings is sub-optimal, according to [41]. Rings are
easy to comprehend; mesh-based survivable networks in telecommu-
nication have been found to be less costly. Our design tools are suited
for both.

8.2.2 Other Variable-Bandwidth Architectures with Interest-
ing Topology

Four variable-bandwidth architectures with all-to-all terminal ar-
rangement Fig. 8.24 shows four common network topologies: a lin-
ear, circular, K-ring [74] and butterfly topology. Each has 8 terminals
and the same terminal arrangement: all terminals can communicate
with all others. The networks have 6, 8, 8 and 16 resources (switches)
respectively. The linear, circular and butterfly networks use 6W3T swit-
ches, controlled by 3 bits each, while the K-ring uses 40-way 5-terminal
(40W5T) switches, controlled by 8 bits per switch. All switches have a
single set of control states: they do not allow two paths to use the same
switch.

The useful path-sets of the four CAs all allow between 1 to 4 concur-
rent paths between terminals. Even the linear CA of Fig. 8.24(a) does
this, allowing for instance 4 concurrent transfers between adjacent ter-
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Figure 8.23: Functional unit chaining: survivable network. Out of 16 single-
failure fall-back options, 7 are shown in red. Also shown are 14 of the 32
additional switches required. Note that using fall-back rings is not necessarily
optimal.
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(0) (d)

Figure 8.24: Four variable-bandwidth architectures: linear (a), circular (b), K-
ring (c), butterfly (d).

minals. Of course, in a linear CA, any end-to-end transfer blocks out all
other transfers. The number of useful paths for each CA is rep. 28, 56,
61 and 60. What interests us is the capacity of the topologies to combine
the useful paths with reasonable ISG and good UEE.

Table 8.6 shows schedule-neutral ISG and UEE for each CA, to-
gether with the number of bits required to control it, derived from the
number of concurrent path-sets. The mean unused path length, thus
ISG, is lower for the linear and circular topologies. They are simpler
and have fewer hops (2.5 resp 4.0, in schedule-neutral conditions) than
the K-ring and the butterfly. The ISG for K-ring and butterfly is bet-
ter, but they also have more hops in the mean (3.5, 4.9 respectively). In
all cases, ISG is at or over 50%. This is excellent, but leaves still room
for improvement. Thus power-aware placement still makes sense. The
UEE is 44% and over, and larger for the more complex CAs. The control
bitwidth (10-13 bits) is small enough to find a place in 32-bit and larger
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Table 8.6: ISG, UEE and control bitwidth for 4 variable-bandwidth architec-
tures.

linear | circular | K-ring | butterfly
ISG 58% 50% 78% 75%
UEE 44% 54% 73% 80%
control bits 10 11 13 10
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Figure 8.25: Variable-bandwidth CAs: histogram of concurrency.

ISAs.

Comparing the CAs, it is instructive to watch the histogram of the
sizes of the concurrent path-sets, shown in Fig. 8.25. Linear, circular
and butterfly CAs fail to offer many concurrent path-sets of concur-
rency number, 2 or 3 in comparison to the K-ring. In fact, the K-ring can
at any time route 3 transfers for any combination of terminals, making
it far superior to the others in this respect, while it has still a good UEE.
The useful-state set of the K-ring can be reduced by excluding path-
sets with concurrency number 4, and some with concurrency number
3, that needlessly duplicate combinations of transfers. This does not, as
it happens, bring the control bitwidth below 13.

Of the 4 alternatives, the K-ring is superior; offering good ISG, UEE
and much concurrency to the benefit of the scheduler. The butterfly
does not offer enough concurrency to be of use for in terminal arrange-
ment.
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Figure 8.26: Triple linear sectioned CA: topology (a) and terminal arrange-
ment (b), by terminal class.

8.2.3 Broadcasting Arrangements

CA with triple linear topology and narrowcasting Useful-state anal-
ysis is applicable to terminal arrangements that feature broad- or nar-
rowcasting. (Narrowcasting has transfers from one source to multiple,
but not all, terminals of a class). To show this, we analyze a CA with a
network of 12 terminals divided in 3 terminal classes a, b and c. The net-
work contains 16 switches. The network contains 3 linear subnetworks,
shown in Fig. 8.26(a). The terminal arrangement is depicted per class in
figure Fig. 8.26(b). It imposes bidirectional transfers between terminals
of class a and ¢, and between class b and ¢, and unidirectional transfers
from terminals of class a to those of class b. Moreover, narrowcasting is
required within class a.

The switches are all 9-way 3-terminal (YW3T) switches, which allow
broadcasting and require 4 bits of control. The useful path tree set con-
tains 44 simple paths and 12 narrowcast path trees. Of the alternative
paths and trees, only the shortest ones are kept in the useful path-set, to
save on resources. A useful-state analysis yields 5087 useful states and
a UEE of 80%. Control bitwidth is 13 bits, which makes this network
controllable from a program. Without USE, we would have needed 64
bits. The requirement for narrowcasting makes the analysis computa-
tionally heavier, but does not change UEE greatly. Without narrowcast-
ing, we would have used 6W3T switches, yielding 777 useful states and
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Figure 8.27: Topology of a 4-connected 3x3 grid.

a UEE of 79%, This requires 10 control bits, instead of 48 without USE.

8.2.4 Grid Architecture

In Fig. 8.27 we show a frequently used interconnect topology: the 4-
connected grid. Such grids can be found in FPGAs and ASICs con-
necting logical blocks of various sizes. These architectures are prime
candidates for EESC, but are often implemented by means of NoCs,
with large overhead. Over a small distance this is overkill. Terminal ar-
rangements can be all-to-all, or else terminals can be of different type.
Any CA with grid topology has many alternate paths that may all be
useful, offering thus much opportunity for concurrency. On the down
side, the combinatorics of this might lead to computational difficulties.

We want to investigate how good our algorithms presently are, and
whether they are able to handle CAs of this sort. We choose a typical,
but certainly not the easiest terminal arrangement: an all-to-all arrange-
ment, where interconnects are made between any pair of terminals.
We analyze only the maximal independent path-sets, and do not try
to count or list every single network state. The switches in our example
are 24WA4T types. Path-finding in the 3x3 grid of Fig. 8.27 works well:
all paths are easily found by each of both our path-finding algorithms.
It is established within a second, using DIS, that the concurrency num-
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Figure 8.28: Topology of a 4-connected 3x3 torus.

ber is 4. The PAG is established fast (in 3 seconds) and the undirected
maximal and complete path-set lookup tables are found in 0.6 and 0.35
seconds, respectively. 502 maximal independent undirected path-sets
are found, and 1116 undirected independent path-sets. Given the com-
binatorics of directionality, the complete undirected path-set tables will
turn out to be of impressive size.

Extending the 3x3 grid topology to a 3x3 torus, depicted in Fig. 8.28
we experience the combinatorial power of such topologies. Path-
finding algorithms cannot to find all paths, unless we limit the hop
count to 6 hops. Since tori are meant to exploit paths with few hops
it makes sense to do so. With this limitation, useful paths are found
easily. Producing the PAG, however, takes 186 seconds. It must be said
that the PAG-making program is not yet optimized and could eventu-
ally perform better. The resulting PAG is a large (it has 576 nodes and
158409 edges) and dense graph (it has edge density 0.477) that we can
impossibly handle with our algorithms, even optimized. In this huge
graph, the DIS algorithm still finds one maximal independent set, and
fast: in 16.6 seconds. But we need many more than one set. To control
tori featuring EESC, stronger algorithms are required than ours.

If we extend only the size of the 3x3 grid, the number of combi-

nations that generate paths remain manageable. If a reasonable hop
limit (8 hops) is used, finding all paths in a 4x4 grid with all-2-all TA (of
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Figure 8.29: Topology of a 4-connected 4x4 grid.

which the network is shown in Fig. 8.29), is possible with the optimized
FAR algorithm. We obtain 1432 useful paths; The PAG construction tool
must still be optimized; it is now running at its limits. Anyway, the size
of this PAG (1432 vertices) is again too large for the present state of
optimization of our USA algorithms.

We find that for large grids, featuring EESC, to be controlled from
a program, we need a better program for USA. The useful-paths set is
simply too large for our approach.



Chapter 9

Conclusions

The conclusion is the place where you stopped thinking.

Near the end of this work, we recapitulate the key themes: the
comparison of EESC, from the control viewpoint, with compet-
ing methods, the advantage of programmed control, the principles
of optimization in the control plane, the theory of useful-state en-
coding, the design pattern, the methods and algorithms developed,
and the experience gathered from use cases.

We will suggest future work, located in the study of the far end of
scalability (for extensive intra-tile networks), the development of
topology-aware processor architectures, the extension of USA to
serve for buffered communication with “store-and-forward”, and
SoCs that can survive interconnect degradation.

HIS thesis has shown that programmed control over EESC is well
possible and can be used for large and complex intra-tile commu-
nication networks. We demonstrated a design framework for control
planes using statistical analysis. Alternately, concentrating on topologi-
cal features we obtain, early in the design process, a provisional idea of
the sectioning gain that will be achieved, then design the control plane
in an optimal way, and ultimately confirm the feasibility of control of
EESC. With the control plane implemented in this fashion, the balance
of costs remains favorable over a large range of sizes and topologies.

Our method is suited to the present advance into the deep sub-
micron domain: we can exploit opportunities for heterogeneity and
parallelism, address the power consumption problem for SoC intercon-
nects at various architectural levels, contribute to solving the problem
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of degradation of interconnect reliability, and can control topology-
aware processors or terminal arrangements that feature narrow- or
broadcasting.

With respect to the future, we must discrimate between (i) sec-
tioned communication, (ii) control of EESC, and (iii) useful-state encod-
ing. The principle of sectioned communication is universal whenever
communication links represent costs; its implementation depends on
technology. CMOS switches and wire links may be replaced, maybe
by nanotube circuits, but sectioning will remain an advantage. Pro-
grammed control of sectioned communication is suitable for simple
processors. Our design framework is adaptable to others. The trade-
offs may change; static and design-time scheduling keep their advan-
tages. Useful-state encoding has broad application, not linked to any
technology. It is suited for some future technologies like, for instance,
optical-only switching, which precludes “store-and-forward” (there
are no optical registers).

9.1 Resource-efficient Control of On-Chip Com-
munication

The reader will find here an overview of the salient points of the thesis.
Taken together, these constitute our design framework for the EESC
control plane.

EESC occupies a niche in low-power on-chip communication. It
concerns medium-distance, synchronous communication within a tile,
under control of a program. A NoC, in comparison, has superior net-
work scalability because of “store-and-forward” operation, but incurs
an unnecessary overhead, in size and latency from run time arbitration
and scheduling. Alternatives, like arbitrated buses, VLSI crossbars and
synthesized communication logic, suffer either from unnecessary over-
head for resource contention or inferior scalability with the number of
terminals involved in communication.

Programmed control is but an application of Wilkes” 1951 proposi-
tion: “To efficiently control hardware, design a programming language
to execute control decisions using flow control from programs, instead
of just more hardware. This avoids decisions having to be taken by
dedicated circuitry, and efficiently re-uses circuitry able to interpret the
control flow of the program.”
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Communication processor The communication processor (CP) is a
paradigm used to unravel different viewpoints during design, compila-
tion and operation. It assumes static scheduling, and frequent reconfig-
uration. The first assumption is for simplicity of processor architecture;
it still covers many embedded VLIWs and some research processors.
The second assumption ensures that efficiency of control plane design
really matters, since the volume of control information is high. The lat-
ter assumption implies that we should not include registering (buffer-
ing) elements in our control plane, and thus must not study differential
styles of control. This simplifies design options, and is justified by a
use case showing that frequent memory accesses do not offset energy
losses from transport of control information over wires.

The principle of control plane optimization is the reduction of the
width of the control path at all stages of control: i.e. fetching of com-
munication instructions, path decoding, control processing and distri-
bution of control information over the surface of the chip.

The communication processor leads to a recognition that, when es-
tablishing the communication architecture, the SoC’s instruction set
architecture is paramount, and to the discrimination between implicit
and explicit path (or transfer) specification.

Implicit path specification, which uses the instruction set architecture
optimally, avoids incurring costs of fetching control information for the
communication network. Explicit path-set specification is inefficient
because path specification is already implied by the instruction set
architecture, and because the compiler must be modified for the pur-
pose of EESC control alone. It can be used when the controlled domain
is not programmable, i.e. when the CP is a “stand-alone” sequencer
and not integrated in a SoC.

Transfer-, communication- and topology-awareness are terms we
use when studying the properties of an instruction set architecture with
respect to programmed control of EESC. Topology-awareness is a spe-
cial case of communication-awareness, and should be distinguished
from simple transfer-awareness, which is trivial: all instruction set
architectures initiate transfers. Non-trivial communication instructions
pertain to the communication architecture itself. Topology-awareness
means that the instruction set architecture provides the means of select-
ing individual path-sets for a transfer through the topology. In contrast
to high-performance computing, topolopy-aware SoCs do not really
exist yet: It is the purpose of advanced network design to design them,
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and of the concept of useful-state encoding to control them efficiently.
There are large gaps in topology design for SoC, but they fall outside
the scope of this work.

Useful-state encoding Useful-state analysis (USA) reduces the width
of the control plane significantly. Useful-state encoding (USE) is of
minimum-redundancy, making the control plane optimal in terms of
size. USA can be performed for any topology. The path-set lookup table
PSLT, resulting from USA, is the interface between communication ar-
chitecture (CA) and compiler. The concept of USA supports topology-
aware processing, adaptive path decoding, and broadcasting.

Useful-encoding efficiency (UEE) is the measure of the success of
USA in keeping the control plane small. It is a property of the topology
of the communication system, but also of the useful transfer set, and is
derived from the SoC’s instruction set architecture. A certain amount
of sectioning gain is intrinsic to the communication architecture. It can
be calculated, independent from any application, in a straightforward
way. We call it the intrinsic sectioning gain (ISG) in schedule-neutral
conditions. Data-plane design techniques, like power-aware placement
and sub-word selection, can improve on this value. In our experience,
segmentation gain does not diminish, but rather increase, with increas-
ing topological complexity.

Design pattern The concept of a CP leads to identification of the
stages that must be present in any control plane: scheduling, fetching,
splitting, transcoding, transporting and decoding.

Each stage has its own costs. In our reference design, fetch costs
are minimized by implicit path specification. Area and cost of the path
decoder are limited by useful-state encoding, and losses from control
energy transport are lower than the energy saved by sectioning, as long
as the number of sectioning switches is not too large. Combined topo-
logical and statistical study of the application would be needed to de-
termine this number, but we showed to increase with better ISG and
UEE. Decoding costs in the sectioning switches, though small in in our
use cases, could ultimately scale to become dominant. of this condi-
tion can be delayed by by clustering the switches by subnetwork, or
by choosing the numerical values of control codes after topological and
statistical analysis.

The problem of interconnect reliability is addressed by provid-
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ing an adaptive path decoder, driven from a suitable instruction set
architecture. The design of such a path decoder is still guided by
USA. The computational complexity of USA for survivable networks
is known to be severe. The adaptive path decoder is analyzed at design
time, when the cost of using massively parallel computing resources is
may be justified.

Analysis and design Methods of analysis and design for EESC con-
trol planes are seen as (i) statistical, where the data of the application,
the geometry, and the technology node are taken into account, or (ii)
as topological, where abstraction is made of these, but we concentrate
more on the opportunity of optimization offered by USE. Another ap-
proach, (iii), combined statistical/topological, still makes abstraction
of the aforementioned factors but takes transition frequencies between
useful states in account. This method of analysis can answer all ques-
tions of scalability, but it belongs to the future work. We have not yet
done such analysis. In a possible approach, a simple graph description
is combined in a System C simulator with generic models for switches
and the network, and the results of switch decoder synthesis. The simu-
lator would allow to build testbenches for validation of the design, but
also allow to inject statistical properties of scheduling into the model.

Algorithms Algorithms for Useful-state Analysis perform sufficiently
well at the level of complexity considered in this work. With many
more terminals and resources, we might run into problems to find
all routes in a communication architecture, or to determine the useful
states. For the first problem, the body of mathematical knowledge is
limited. For the second, would is possible to advance performance by
a wider algorithmic search. For both applications, massive computing
resources could employed, if the need arises. This is justified by the
benefits of EESC.

Three algorithms for USA and their implementations were investi-
gated: (maximal independent path-set, independent path-set and path-
powerset algorithm with Dharwadker’s independent set algorithm).
MIPS scales best and can be parallelized; PPS with DIS is suitable
for massive parallelism. Alternate approaches to USA, like linear
programming/integer (linear) programming techniques, can either
expand the applicability of USA, or open new roads towards (relative)
efficiency. We must recognize however that ultimately, combinatorial
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complexity will always pose a challenge.

9.2 Summary of Future Work

Future work includes determining the weight of the transcoding and
decoding losses mentioned in Section 6.3 based on combined statistical
and topological analysis, using not only the frequencies of occurrence
of the useful states, but also the transition frequencies between them.
This would enable us to quantify these losses, and discern the upper
limit of scalability. The crucial point here is how to characterize the
behavior of the scheduler without entering into detailed simulation or
profiling of the application.

A particular approach, maybe undervalued in our study, can alle-
viate computational complexity. It was mentioned in Section 4.2 that
Useful-state Analysis can be performed by combining the results for
subnetworks with known path-set lookup tables, upon which USA was
thus already performed. Lacking previous analyses, and not having de-
veloped tools for this combination, we did not explore the avenue. It
is reasonable, however, to expect that, this “divide-and-conquer” ap-
proach can yield serious dividends and optimizations.

A large body of knowledge of advanced topology design exists in
the field of high-performance computing; it is not known how well it
tits into the context of SoC. Also, at this moment, the requirements
for survivability in the face of reliability degradation are not yet well-
formulated. As this knowledge becomes available, USA can be em-
ployed to study the practicality of control in these advanced networks
which have interesting properties.

We have not had the opportunity to actually design a topology-
aware embedded processor, partly because useful-state encoding be-
came not available early enough. With USA, it should now be possible
to design SoCs with communication architectures that are both power-
efficient and survivable.

An interesting theoretical prospect is to extend the validity of USA
to domains that extend over multiple clock periods, by incorporating
buffering in the switches. This would extend the niche that EESC occu-
pies to inter-tile communication on SoC, and enable the application of
sophisticated communication architectures in CMT/CMP applications.
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Dynamically programmed embedded processors IMEC [38, 99, 100,
101, 122] and other research institutions are planning development of
a class of embedded processors called dynamically programmed, in re-
sponse to a increased level of dynamism in applications and the com-
bined requirements of process variability [104] and aging effects [50,
93]. Some of these new platforms are disruptive in the sense that they
are not conventional and do not follow the communication processor
paradigm. Nevertheless many results of our work are potentially ap-
plicable to this new type of processor, including the importance of a
topology-awareness, USA, the benefits of useful-state encoding and the
trade-off between implicit and explicit path specification.
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Appendix A

Design Support Tools

This appendix describes a convention to allowing describing and
visualizing network topologies, and usage forms for tools used in
support of design, analysis, simulation, and synthesis.

INCE they handle both directed and undirected graphs and multi-
S graphs, allow visualization of large graphs (dotty(1) , tulip), and
feature in extensive graph algorithm libraries (perl ’s Perl::Graph !
and the Boost Graph Library (BGL), the dot(1) graph description lan-
guage and the GraphViz [40] visualization system were chosen for all

graphs involved in USA.

A.1 Graph Description and Visualization

Using a graph description as a network description, some conventions
must be respected: (i) A graph defines vertices (terminals and inter-
nal resources, e.g. switches) and edges (wires, 'nets’ in the language of
synthesis). It does not attribute an order to the edges. If the edge is
seen as a net, the port number of the terminal or resource that the net is
attached to is not implied by the graph.

A terminal has only one port, so for terminals there is no problem.
For resources, we must circumvent the ambiguity. The convention is,
then, for resources, that nets are attached to the ports of the resource
in the alphabetical order of the names of the corresponding neighbor

!Perl tools require Perl::Graph  version 0.69 or later.
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vertices, i.e. of the resources that the edges are incident on. (ii) Termi-
nals can be distinguished from resources by their vertex degree, but not
all support tool programs do this, as it may spoil their generality. The
convention is to start the name of resource vertices with i (for internal)
or sw (for switch), and use t or a terminal class indication for terminals.
Given these conventions and the types of resource, a graph specifica-
tion becomes a network hardware description.

A.2 Finding an All-Paths Set: f ar,f dr,and f dr 2

Two ways exist to establish the all-paths set: FAR and Grover’s FDR
algorithm. far ’s form of usage is:

The FAR algorithm

far: usage: far [-Dhv] [-H maxhopct] [-i internal-prefix] g raph.dot
options: -D: directed graph

-h:  print help

-H maxhopct: maximum hop count

-i internal-prefix:  prefix to recognize a vertex as interna

-v: print revision id
infile: .dot (GraphViz) graph representation

far is used to generate all short distinct routes in a network topo-
logy. Use it only with small hop counts. It consumes large amounts of
time and memory when the hop count gets too large.

Grover’s FDR algorithm

fdr: usage: fdr [-dR] [-s seed] [-h maxhopct] [-| logtree]
[-r rtelimit] -f from -t to infile
options: -d: debug
-R: not random; always choose first available
(leftmost’) edge
-s: seed for randomizer
-h maxhopct: maximum hop count
-I logtree: file to log search path in
-r rtelimit: limits number of routes to print
-f from: source vertex
-t to: target vertex
infile: .dot (GraphViz) graph representation

fdr is used to explore the behavior of Grover’s find-direct-routes
algorithm. It can find longer routes, but only a few at a time, and it has
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a tendency to block on long routes in irregular networks. Typically, use
it a few times like this:

$ fdr -h 12 -r 3 -f t1 -t t5 topology.dot

Note the number of different routes it regularly produces, like for
instance two or three at a time. In that case, use 3 as the route limit for
fdr2 . fdr2 ’s form of usage is:

fdr2: usage: fdr2 [-Uv] [-c ctlimit] [-h maxhops]
[-k known-routes] [-r rtelimit] [-R totalrtelimit]
-f from -t to infile
options: -U: update known-routes-table
-v: verbose (recommended)
-h maxhops: maximum hop count
-c ctlimit: limits number of runs of fdr
-r rtelimit: limits number of routes per run of fdr
-k known-routes-table: routes table to use
-R totalrtelimit: limits total number of routes
-f from: source vertex
-t to: target vertex
infile: .dot (GraphViz) graph representation

fdr2 can be used to fill up (update) a known-routes table until no
more new routes are found. This runs fdr repetitively. Each of the runs
can be interrupted with CNTL-C if it no longer produce new routes. It
is recommended to use the -v option to observe what is happening,
like in this example:

$fdr2 -vUk routes.txt -h 12 -r 3 -R 100 -f t1
-t t5 topology.dot

For small regular graphs, fdr2 can sometimes establish all paths
without user intervention. A small script for this is included in Sec-
tion A.5.

A.3 Making a Path Allocation Graph: nkpag

Mkpag still works well for most communication architectures, but is in
need of optimization.

NAME
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mkpag - make a path allocation graph (PAG) or path resource
allocation graph (PRAG)

SYNOPSIS
mkpag [-ADhLmNrv] [-n name] nw.dot [paths-file] [path-tre es ..]
OPTIONS
A PAG/PRAG is constructed from a network graph file "nw.dot" , plus
optionally a set of a useful paths, listed in the paths-file. When
broadcasting is involved, a set of broadcast path trees may a Iso
be specified. A PAG/PRAG is always an undirected graph. The p aths
it refers to may be undirected or directed.
In the most common case, The network graph file is undirected , and
the useful paths given are also undirected. This needs no spe cial
options. A PAG/PRAG for undirected paths is constructed. If
broadcast path trees are additionally given, these are dire cted
path trees. A PAG or PRAG for directed paths should then be
constructed and this requires the -D option. On the other han d, if
the network graph is directed, the paths-file must contain
directed paths. (Broadcast path trees may additionally be g iven.)
A PAG or PRAG for directed paths should then be constructed; t his

requires the -A option.

-A Make a PAG/PRAG from a directed network graph, referring
to directed paths. The paths in the paths-file are
required to be directed, and path-trees are always
directed. (The resulting PRAG/PAG still is an undirected
graph. The PSLT made from the PAG will be called a
directed pathset lookup table, since it contains codes for
directed paths.)

-D Make a PAG/PRAG referring to directed paths. The paths in
the paths-file are required to be undirected, and
path-trees are always directed. The network graph must be
undirected, i.e. bi-directional. (The resulting PRAG/PAG
still is an undirected graph. The PSLT made from the PAG
will have codes for directed paths. This is
computationally much heavier but must be done if
undirected and directed paths are mixed, since otherwise
it is difficult to count useful states.)

-h Print a help message.
-L Don't label edges.
-m Prints the manual page.

-n "name"
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Name to give to graph.

-N Include a null path. This makes sense for PRAGs.
-r Make a PRAG, not a PAG.
-V Be verbose.
DESCRIPTION
mkpag reads a network graph file, optionally also a paths fil e and

a set of path trees. It writes the PAG as a dot graph file, to
standard output.

The path file consists of lines containing paths, with the pa th
components separated by colons. These paths are undirected , unless
the -A option is given. Then they are interpreted as directed , and

the components may be separated by arrows (->).

Path trees are directed dot graph files, that may represent e ither
additional (directed) paths or broadcast path trees.

If no paths file is given, mkpag will assume a simple terminal

arrangement with two terminal sets, and construct the short est
paths, using Floyd-Warshall, between the terminal pairs of the
network. A terminal is any node whose name does not start with "i"
or "sw" (for 'internal’, resp. 'switch’). This is OK for acyc lic
networks, with two terminal classes. In other cases, mileag e may
vary.

Terminal and resource nodes
The nodes of the NWG are either terminals (nodes of degree 1) o r
resources (all others). Their name must have the form ’‘cn’, w here
'c’ is the terminal class for a terminal or 'i" or 'sw’ for a
resource, and 'n’ is an integer.

Paths
For the network graph to be a host graph of the PAG/PRAG, all
paths must be paths of the network graph. For useful state
analysis, the paths must be resource-disjoint.

PAG
A PAG is a simple graph: its vertices are paths from the paths
set. Its edges represent sets of resources that are common to the
paths.

PRAG
A PRAG is a bhi-partite graph: its vertices are partioned into
resources and paths. It is the bi-partite (Koenig) represen tation
of the resource allocation hypergraph (RAH). The RAH is the d ual
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hypergraph of the PAG. The RAH'’s vertices are resources; its
hyperedges are paths incident to each resource they contain

RETURN VALUE
0 if succesful and non-zero on failure.

SEE ALSO
mkram(1), mkta(l).

AUTHOR
Kris Heyrman <kris.heyrman@imec.be>

A.4 Making a Path-set Lookup Table: nkpsl t 5

mkpsltS uses auxiliary programs for good performance. By default,
an IPS (independent path-set) algorithm is used. With the -6 option, it
uses PPS (path powerset). With the -7 option, it uses MIPS (maximal
independent pathset), which is for most problems the fastest. The aux-
iliary programs can also be used directly, but do not necessarily have
all options that mkpsit5 has.

NAME
mkpslt5 - make a complete path set lookup table (PSLT), from a
path allocation graph (PAG)

SYNOPSIS
mkpslt5 [-67dDhmMRv] [-k k] [-T tl] -o output-file pag.dot

OPTIONS
-6 Use PPS algoritm, not IPS.
-7 Use MPS algoritm, not IPS.

-T Calculate mean hop length (MHL) and intrinsic sectioni
gain (ISG), over all useful states, given this total
length of the topology in hops. (Not counting the null
US.) Also prints the number of vertices in the PAG, and
the amount of state reduction caused by the -R option, if

any.
-D Write a directed PSLT, not an undirected one.
-d Don't die if a PAG with mixed undirected/directed paths is

presented. In this case, better call the resulting PSLT
'mixed’ and recombine it to a directed PSLT by other

ng
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means.
-h Print a help message.

-k "k" Include at most "k" paths per set. (l.e. find k-maximal
independent sets.) Do not use with -6 option.

-m Print this manual page.

-M Write a maximal PSLT, not a complete one. Can only be
done together with -7 option.

-0 "output-file"
Output as output-file. Mandatory option.

-R Reduce (disambiguate) the path set lut to a transfer set
lut. Whenever 2 path sets contain different paths between
the same sets of terminal pairs, only the path set with
minimal total hop count is kept.

-V Be verbose.
DESCRIPTION
mkpslt5 writes a PSLT to the output file. This PSLT may be
directed or undirected (containing directed/undirected p aths),

reduced (to a transfer-set lookup table) or not,

IMPLEMENTATION
mkpslt5 uses auxiliary programs for higher performance. By

default, an IPS (independent path-set) algorithm is used. W ith the
-6 option, it uses PPS (path powerset). With the -7 option, it

uses MIPS (maximal independent pathset), which is fastest f or most
problems. The auxiliary programs can also be used directly, but do

not necessarily have all options that mkpslt5 has.

RETURN VALUE
0 if succesful and non-zero on failure.

BUGS
PAGs cannot have edge labels, or the auxiliary program will a bort.
This is actually a feature. They must have been made with
mkpag(1)'s -L option.

SEE ALSO
anapslt(1), mkpag(1).

AUTHOR
Kris Heyrman <kris.heyrman@imec.be>.
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A.5 Sample Makefile for USA

The user should not expect to analyze a communication architecture
automatically, without intervention. It is recommended to work with a
make(1l) and a Makefile, since files produced by USA have some de-
pendencies. Below is an sample Makefile that can be employed, given
a topology, to find an all-paths set, determine the useful paths and ana-
lyze a communication architecture. The variable STEMshould be set to
the common stemname of the files to be produced by the Makefile.

# Makefile for useful state analysis
# remember that lines with rules start with tabs

# all-paths files, path allocation graph, complete path set lut
all: topo.grover.allpaths \

topo.far.allpaths \

topo.pag.dot \

topo.Cpslt \

STEM = topo # stemname for all files
# default rules

# find useful paths (FDR algorithm)
%.grover.allpaths: %.dot
>$=* .grover.allpaths
for FROM in f1 f2 f3 f4; do \
for TO in m1 m2 m3 m4; do \
fdr -f $$FROM -t $$TO -h 9 -r2 $ *.dot \
>>$+ grover.allpaths; \

done \
done
sort $ =.grover.allpaths >$ * .grover.sorted.allpaths
mv $+.grover.sorted.allpaths $ * .grover.allpaths

# find useful paths (FAR algorithm)
# FAR finds all-to-all paths, so must be filtered
%.far.allpaths: %.dot
far5 -ii -H9 $  +.dot >$ = .far.allpaths
sort $ =.far.allpaths >$ * far.sorted.allpaths
mv $+ .far.sorted.allpaths $ + far.allpaths
sort $ =*.far.allpaths \
| grep -v "f. *£.$8" \
| grep -v "m. +m.$$" >$ * .far.selected.allpaths
mv $+ .far.selected.allpaths $ + far.allpaths

# make a path allocation graph
# the usefulpaths file is either of the 2 above
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# allpaths files, (if all paths are useful)
# or your own useful paths file, edited from either
%.pag.dot: %.dot %.usefulpaths
mkpag -n $ *.pag $ *.dot $ =*.usefulpaths \
>$+ .pag.dot

# make a reduced directed complete pathset lookup table
%.Cpslt: %.pag.dot
mkpslt -DR -0 $ *.Cpslt $ +.pag.dot

# below enter specific rules



184 Design Support Tools




Appendix B

Components of the Control
Plane

This appendix contains circuit diagrams and HDL sample code of
components in the EESC control plane: the sectioning switch, the
network and the path decoder.

We include the System C RTL model for a 6W3T switch and for
the network used in our simulator, a future scheme for network
exploration, and an example circuit diagram of a path decoder.

B.1 6W3T Sectioning Switch

W3T sectioning switches belong to both data and control plane. We

define here the interface between the switch and the data plane.

We show implementations of the 6W3T sectioning switch for LP, the

low-leakage option of semiconductor foundries, where dynamic losses

dominate over leakage, and for HP process technologies where static
losses dominate.

Circuit diagrams Rabaey [97] reviews tri-state circuits for CMOS-
technologies with dissipation that is mainly dynamic, discussing two
different versions of a CMOS tri-state buffer. Fig. B.1 shows his pre-
ferred choice to drive large capacitances. Tri-state circuits do not them-
selves limit power consumption by leakage; EESC does this indirectly
by reducing the size of the buffers.
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Figure B.1: Circuit diagram for one of the three output stages in an EESC
tri-state switch.
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Figure B.2: Circuit diagram for the output stage of a power-gating switch.

Power-gating circuits, used against dissipation that is mainly static,
reduces leakage by itself. In a possible implementation, a “power gate
for wires” from Pedram [95, 72], shown in Fig. B.2, only one NMOS
transistor is used to switch off all buffers at once. An NMOS has lower
on-resistance than PMOS. Two transistors could be used, but using one
is practical and saves area. This is termed sleep-transistor sharing.
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Power gating has some drawbacks: it requires a modified CMOS
technology to support both low threshold-voltage devices for logic and
high threshold-voltage devices for sleep devices, decreases the voltage
swing, and thus the DC noise margin, and does not scale well with
supply voltage. Moreover, sizing sleep transistors is not a trivial task.

Still according to Pedram, a trade-off exists between dynamic
power consumption by the sleep transistor and static power-saving
in a circuit like Fig. B.2. A large sleep transistor decreases the high-
to-low transition delay in the circuit, but has more area overhead and
consumes extra dynamic power when turning on and off. Further, a
minimum time may exist below which power saving is not effective.
Therefore we do not want to argue that Fig. B.2 offers a definitive solu-
tion, only that the topic has open issues and is in need of future work.
This proposed circuitry for DSM technologies must still be run past
technology experts at IMEC.

System C model The class sw6w3t, listed in listings B.3-B.6, is a RTL
model for a physical switch. We observe the class constructor, the sim-
ulation method prc() , and methods for loading the switch lookup ta-
ble (load _lut() ) and setting all ports to high-impedance at the start
of simulation (async _reset() ). The model defines the 7 states of a
switch and features control inputs and sub-word selection, a reset in-
put (for simulation only) and 3 bidirectional in/out ports.

For versatility during synthesis and simulation, a switch is imple-
mented as a template class, that can be instantiated for different word
width W control plane width WCPsub-word width SLICE, and sub-
word selection control width WSWT'he model can be used for a single
switch, but also for a word-wide switch, with common decoder for all
wires.

By default, the switch object is constructed for control plane width
WCP=3this is our ‘default switch” of Fig 3.2. In communication archi-
tectures controlled by USE, the width of the control plane is decided
from USA and the default switch lookup tables are overwritten by the
proper lookup table for an individual switch during construction of the
network.

The model can be expanded to a switch with more ways and termi-
nals (an “xWyT” switch); it is not synthesizable, but writing an equiva-
lent synthesizable model in any HDL is a straightforward task.
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B.2 Network Synthesis

Class network , is templated with the same template parameters as
sw6w3t . The interface definition is shown in listing B.1. The network

class has a constructor from a simple graph description file and con-
tains a pointer to a vector of switch lookup tables. Using network ’s
constructor, a network, including switches and switch lookup tables
can be instantiated from only a graph description file and a lookup ta-
ble initialization file. The code for this is shown in listing B.2. In the
example, the network is 32-bits wide, has a word width W=32 5 bits for
USE (the control path width WCP=}, byte-sized subwords and 4 bits for
sub-word selection (in order to individually select 4 bytes in the word).

Validation and Synthesis of Communication Architectures Using
the switch and network model, future work will allow validation of
USA and synthesis of the communication architecture, including the
switch lookup tables and control wire network, given a GraphViz net-
work description. With suitable switch models, the method work for
other switch types than 6W3T. This opens up interesting avenues for
the exploration of different communication architectures with different
topologies and switches.

B.3 Path Decoder

The GSM speech encoder with loop buffers (the use case in Sec-
tion 8.1.2) illustrates a specific path decoder, designed for a single-path
linear bus CA. Since the bus network is symmetric around its center,
we only need a path decoder for half a bus network. (For a full bus
network, the path decoder is shared between the two halves.) For a
scratchpad memory with a load/store unit and 2x4=8 memories, the
path decoder consists of 68 NAND gates and 1 latch. It scales better
than quadratically in size with number of modules (N = 8,16...).
If more bus networks (M = 1,2,4...) exist, the path decoder can be
multiplexed per network; it is then of constant size with an increasing
number of the buses. If the number of buses is not too large, a form of
bus pipelining can be employed. If not pipelined, the inherent latency
of a multiplexed path decoder is O(M) with the number of buses.
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template < int W= 1, // (word) bitwidth of network
int WCIL = 3, // width of ctl network
int SLICE = 1, // slice bitwidth for sw
select
int WW = 0, // width of sw select ctl
template <int, int, int, int>
class SWITCH = swé6w3t > // switch
type:
struct nw : sc_module {
// in/output signals
sc_in < sc_uint < WCIL > > ctl; // control bits
sc_in < sc_uint < WSWN > > sws; // subword select
mask
sc.in < bool > rst; // reset; for simulation only
sc_inout_.rv <W > t0; // terminals
/% ... %/ // more terminals
sc_inout_rv < W > t8; // last terminal

// data members

/% ... %/

// constructor
nw(sc.module_name name, // module name
std:: string filename, // name of GraphViz file
std :: vector <
std ::map < sc_uint < WCIL >, state >
>x tablesp = 0); // points to vector of luts

// load mon—default —type switch control lookup
tables
virtual void

load_luts (std :: vector <
std::map < sc_uint < WCIL >, state >
>x tablesp);

Listing B.1: Class interface definition for a network.
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// a vector of lookup tables
vector < map < sc_uint <5>, sc_uint<3> > > luts(”
luts.ini”);

// the network
nw < 32, 5, 8, 4 > dut(”dut”, string(”graph.dot”));

// load the lookup tables
dut.load _luts(&luts);

Listing B.2: Constructing the switch lookup tables, from a switch
lookup description file luts.ini and a device under test, i.e. a net-
work, from a graph description graph.dot . After construction, the
device’s lookup tables are loaded.

// swéw3t.h: n—tuple 6—way 3—terminal switch

typedef sc_dt::sc_uint < 3 > state;

const state ctlOtol = 7000”; // 0—>1

const state ctl0to2 = 7001”; // 0—>2

const state ctllto2 = 7010"7; // 1->2

const state ctllto0 = 7011"7; // 1-—>0

const state ctl2tol = 7100”7; // 2—>1

const state ctl2to0 = ”101”; // 2—>0

const state illegal = "1107;

const state ctldisc = ”111”; // disconnected

template < int W= 1, /«x or 32, for instance x/
int WCP = 3,

int SLICE = 1, /+« or 8, for instance x/
int WW = 0> /«x or 4, for instance x/

Listing B.3: Class describing a 6W3T switch, part 1.
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struct swb6w3t : sc.module {
// in/output signals
sc_in < sc_uint < WCP > > ctl; // control bits
sc_in < sc_uint < WSWN > > sws; // subword select
mask
sc.in < bool > rst; // reset; for simulation only
sc.inout_.rv <W > io0; // first , downstream , left

sc_.inout_.rv <W > iol; // second, drop, middle

sc.inout.rv <W > io2; // third , upstream , right

// data member: ctl lookup table
map < sc_uint < WCP > , state > lut;

typedef swo6w3t SC.CURRENT_USER MODULE;
// constructor
swbow3t (sc.module_name name,
map < sc_uint < WP >, state >x tablep = 0)
sc.module (name) {
SCMETHOD( async_reset); // first
sensitive << rst;
SCMETHOD( prc) ;
sensitive << ctl << sws << i00 << iol << io2;

// test some assumptions about template
parameters

if (WSW != 0) assert(W == SLICE x WSW);

//if (WCP != 3) assert(tablep != 0);

// initialize lookup table
if (tablep == 0) // default lut for 6W3T
for (int i = 0; i < (I<<WCP); i++)
lut[i] = state(i);
else

load_lut(tablep);

Listing B.4: Class describing a 6W3T switch, part 2.
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// systemc method

virtual void prc() {
// apply lookup table to control value
state ctl_tmp = lut[ctl.read()];
if (ctl.tmp == illegal) assert(0);

// read switch input
sc.lv <W> itmp =

ctl.tmp == ctl0tol or ctl_-tmp == ctl0to2? io0
.read () :

ctl.tmp == ctllto0 or ctl_-tmp == ctllto2? iol
.read () :

ctl.tmp == ctl2to0 or ctl_-tmp == ctl2tol? io2
.read () :

sc_lv <W> (SC.LOGIC_.Z); // disconnected

// apply subword selection
for (int i = 0; i < WOW,; i++)
if (sws[i] !'= 0)
for (int j = 0; j < SLICE; j++)
i_tmp[i*SLICE + j] = SC_LOGIC_Z;

// write output
if (ctl.tmp == ctlOtol) {
iol.write(i_tmp); // 0—>1
io2.write(sc_lv <W> (SC_LOGIC_Z));
} else if (ctl-tmp == ctlOto2) {
io2.write(i_tmp); // 0—>2
iol.write(sc_lv <W > (SC_LOGIC_ Z));
} else if (ctl-tmp == ctllto2) {
io2.write(i_tmp); // 1->2
io0.write(sc_lv < W> (SC.LOGIC_Z));
} else if (ctl-tmp == ctllto0) {
io0.write(i_tmp); // 1->0
io2.write(sc_lv <W> (SC_LOGIC_ Z));

Listing B.5: Class describing a 6W3T switch, part 3.



194 Components of the Control Plane

} else if (ctl-tmp == ctl2tol) {
iol.write(i_tmp); // 2—>1
io0.write(sc_lv < W > (SC.LOGIC_ Z));

} else if (ctl-tmp == ctl2to0) {
io0.write(i_tmp); // 2—>0
iol.write(sc_lv < W> (SC.LOGIC_Z));

} else { // disconnected
io0.write (i_tmp);
iol . write(i_tmp);
io2.write(i_tmp);

}

}

// load mon—default —type switch control lookup
table
virtual void load_lut(map < sc_uint < WCP >,
state >x tablep) {
for (int i = 0; i < (I<<WCP); i++) {
sc.uint < WCP > tmp(i);
// all values present in table?
assert(tablep—>find (tmp) != tablep—>end());
lut [tmp] = (xtablep)[tmp];
}
}

// for simulation only
void async_reset() {
io0.write(sc_lv <W> (SC_LOGIC_Z)

7

)
iol.write(sc_lv < W > (SCLOGIC_Z));
io2.write(sc_lv < W> (SC_LOGIC_Z))

7

Listing B.6: Class describing a 6W3T switch, part 4.
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intrinsic sectioning gain, 81

maximal independent path-set al-
gorithm, 93

network all-state space, 69
network graph, 63
networks-on-chips, 28, 33

path, 67

path allocation graph, 70, 72, 91

path-powerset algorithm, 95

path-resource allocation graph,
105

path-set lookup table, 70, 72

path-set lookup table reduction,
73

powerset iterator, 99

program control flow, 46

program-controlled tile, 41
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resource allocation hypergraph,
105

resource network, 64

resource-disjoint, 68

sectioning gain, 81

segmented bus analysis, 123
sequence of combinations, 99
set of concurrent path-sets, 68
static scheduling, 47

statistical analysis, 122

System C power simulator, 124

terminal arrangement, 67

terminal class, 42

terminals, 64

topological analysis, 122

topology-aware instruction set ar-
chitectures, 53

transfer, 67

transfer-aware instruction set ar-
chitectures, 52

transfer-compatibility hypergraph,
73,129

transfer-set lookup table, 73, 128

transport loop buffering, 14

transport-triggered architectures,
32

USA algorithm, 72

useful encoding efficiency, 80
useful state, 69

useful-paths set, 68
useful-state analysis, 70
useful-state encoding, 70
useful-state set, 70






