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Abstract

Computer Vision is a rapidly developing field in which machines process vi-
sual data to extract meaningful information. Digitised images in their pixels
and bits serve no purpose of their own. It is only by interpreting the data,
and extracting higher level information that a scene can be understood. The
algorithms that enable this process are often complex, and data-intensive, lim-
iting the processing rate when implemented in software. Hardware-accelerated
implementations provide a significant performance boost that can enable real-
time processing.

The Trace Transform is a newly proposed algorithm that has been proven
effective in image categorisation and recognition tasks. It is flexibly defined
allowing the mathematical details to be tailored to the target application.
However, it is highly computationally intensive, which limits its applications.
Modern heterogeneous FPGAs provide an ideal platform for accelerating the
Trace transform for real-time performance, while also allowing an element of
flexibility, which highly suits the generality of the Trace transform. This thesis

details the implementation of an extensible Trace transform architecture for



vision applications, before extending this architecture to a full flexible plat-
form suited to the exploration of Trace transform applications. As part of
the work presented, a general set of architectures for large-windowed median
and weighted median filters are presented as required for a number of Trace
transform implementations. Finally an acceleration of Pscudo 2-Dimensional
Hidden Markov Model decoding, usable in a person detection system, is pre-
sented. Such a system can be used to extract frames of interest from a video
sequence, to be subsequently processed by the Trace transform.

All these architectures emphasise the need for considered, platform-driven

design in achieving maximum performance through hardware acceleration.
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Chapter 1

Introduction

Humans interact daily with their surroundings, through perception via our
senses and physical interaction with our limbs. When a sensing faculty is dis-
abled, or its ability diminished, one’s perception of his surroundings decreases,
and so he acts with more uncertainty. As humans, we are able to process the
boundless information that we receive, especially visually, to build some un-
derstanding of the world around us. Images in their pixels and bits serve no
specific purpose. It is only through extracting higher-level information that
some understanding of the scene in question can be gained.

Recently, much effort has been invested in giving machines the ability to
interpret visual data. Computer vision is a fast-moving field with many ex-
citing developments. A typical computer vision processing flow is shown in
Figure 1.1. Image data is first processed in order to extract features that
can be used to represent the image; perhaps edges, corners or other features.

These can then be processed to detect the presence of an object. A detected

1B
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Figure 1.1: A typical computer vision processing flow.

object can be segmented; effectively “cutting it out” of the scene. This object
might then be processed for authentication purposes or for temporal tracking
or other higher-order tasks.

Computer vision applications are often characterised by the large amounts
of data and processing needed to implement them. The most effective algo-
rithms have often also proven to be some of the most complex. Such algorithms
often fail to achieve real-time performance in software and so must be accel-
crated somehow in order for them to be of significant use. Designing efficient
hardware implementations can often propel these systems to the realms of real-
time performance. Hardware design is a complex process, and historically, it
has been out of the reach of most. This has, however, begun to change recently.

Ficld Programmable Gate Arrays (FPGAs) are an emerging force in the
hardware arena, offering some of the power of custom-designed hardware for a
fraction of the effort and cost. Their relative ease of design, low starting cost,
rapid time to market and re-configurability make them both an excellent pro-
totyping platform and an ideal alternative to Application Specific Integrated
Circuits (ASICs) for medium volume applications. The most significant ben-

efits in any hardware implementation are gained when hardware is designed

18



with the target platform in mind. Modern heterogencous IFPGAs offer a wide
array of resource types which can be exploited in numerous ways. The skill
of the designer in exploiting the available resources to their potential is what
separates a mediocre system from an efficient, significantly accelerated archi-
tecture.

Such a platform provides all the ingredients needed for computer vision
research and implementation. FPGAs afford the designer the opportunity to
research different algorithms, to incrementally improve implementations and
to test applications in the field without huge start-up costs and the associated
risks.

The Trace transform is a recently introduced algorithm that has been shown
to perform well in a variety of image recognition and categorisation tasks.
It maps a standard image to an alternative domain, and while defining the
spatial mapping, is general in terms of the mathematical aspect. This allows
the transform the flexibility to adapt to different applications and for the
mathematical components to be selected with respect to their performance for
a specific task. The Trace transform is, however, computationally intensive,
and acceleration would enable real-time performance that is as yet unachieved
in software.

In a vision flow, the Trace transform can be used in numerous ways. It is
possible to use the Trace transform to extract global features from an image.
These features can be used to characterise certain aspects of the image. An

example is the car park usage classification system discussed in Section 3.5.3.

19



The Trace transform has thus far been primarily used for object recognition or
authentication, which would typically follow an object segmentation step. The
Trace Transform has been applied to image database search [KPO1] and face
authentication [SPKI05], covered in more detail in Sections 3.5.1 and 3.5.4,
respectively.

One of the Trace transform’s strengths is its flexibility in terms of the
computational mapping. This Hexibility is essential in optimally applying the
transform to a desired application. Hence, this thesis details an architecture
that maintains flexibility and scalability. One of the oft-used mathematical
functions within these arithmetic blocks is the median and weighted median.
Developing an efficient architecture to implement this enables the use of some
of the more complex arithmetic mappings.

Pseudo 2-dimensional HMM decoding is a method that is useful in detection
and recognition tasks. The work in this thesis is related to an application
used for person tracking [BRO3]. Similar systems have been used for face
detection [Nef99]. The pseudo 2-dimensional HMM can be used as a stage
prior to the Trace transform, that extracts an object of interest for processing
by the transform.

This thesis will investigate the use of FPGAs in computer vision, with the
primary focus being the hardware acceleration of the novel Trace transform.
All aspects of the implementations will be discussed from design methods,
through architectural considerations, down to the implementation results. Be-

side real-time acceleration, the architecture will be extended to allow for a

20
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Figure 1.2: A vision flow incorporating the work in this thesis.

fully flexible set of mathematical units, as well as a framework for creating
such units and reconfiguring them at runtime. All the architectures presented
emphasise the need for considered design and the exploitation of heterogencous
resources to achieve optimum performance.

An overview of a vision flow incorporating the work in this thesis is shown

in Figure 1.2.

1.1 Thesis Outline

The remainder of this thesis is composed of seven further chapters as follows:

Chapter 2 covers general background information on Field-Programmable
Gate Arrays, the architectures, design processes and performance metrics used
to measure implementations. A general overview of the computer vision do-

main is given with a summary of FPGA implementations of various algorithms.



Chapter 3 is an introduction to the Trace transform and its precursor,
the Radon transtorm. The mathematical foundations of the Radon transform
are introduced, followed by a brief overview of its applications. The Trace
transform is then defined before looking at a variety of applications and dis-
cussing its different modes of nse. Finally, some analysis of its computational
complexity is presented.

In Chapter 4, a hardware architecture is developed for the Trace transform
that provides for real-time acceleration of the algorithm. The architecture is
detailed showing how significant acceleration is achieved through the exploita-
tion of algorithmic parallelism. The architecture presented is extensible, and
can be used to build up a full recognition system using the Trace transform.

In Chapter 5, a framework for developing flexible, re-programmable func-
tionals is presented. The framework interfaces with the architecture developed
in Chapter 4, and while adding significant flexibility, has no adverse impact on
performance. As a reference, three flexible functional blocks are implemented,
each with the capability to compute a number of different functionals from an
existent implementation. The framework facilitates the exploration of Trace
transform functionals for a given application.

In Chapter 6, a highly efficient hardware implementation of large-windowed
median and weighted median filters is developed. This implementation assists
in implementing some of the more complex Trace transform functionals in
a real-time system. Numerous design variations including fixed vs. sliding

windowed, fixed vs. variable median index and standard vs. weighted median

Do
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are investigated in terms of their area usage.

In Chapter 7, a hardware architecture for Pseudo 2-dimensional Hidden
Markov Model (HMM) decoding, as used in a person detection system, is
presented. Such a system can serve as an initial step in a full person recognition
system, extracting frames of interest from a video stream which can then be
processed using the Trace transform. The HMM decoding is accelerated by
analysing the state transitions and optimising the hardware accordingly, while
also exploiting algorithmic parallelism. The architecture is generalisable to
any pscudo-2D HMM.

Finally, in Chapter 8, the work is summarised, along with the conclusions
reached from these implementations. Finally, some suggestions for future work

are given.

1.2 Contributions

The main contributions of this thesis are as follows:

¢ A thorough computational analysis of the Trace transform, including a
look at areas of algorithmic parallelism that can be exploited for hard-

ware acceleration. (Section 3.6).

e The first hardware implementation of an extensible Trace transform ar-
chitecture, which achieves real-time processing speeds, while remaining
fully flexible in terms of the number of functionals implemented. A
novel approach to parallelising rotations through the concatenation of

23



orthogonal base rotations quadruples performance while designing the
architecture to process a stream of image data removes the need for any

internal buffering. (Chapter 4).

A framework for developing flexible functionals for use in the Trace trans-
form architecture mentioned above, including three examples. Embedded
memories on the FPGA are used for function evaluation, and multiple
datapaths are selectable via a configuration register, thus allowing a sin-
ele functional block to compute a range of different functional equations.
This framework serves as an ideal platform for further investigation of

the Trace transform itself for a variety of applications. (Chapter 5).

A highly flexible set of architectures for implementing one-dimensional
large-windowed median and weighted median filters for image processing.
A rank of cumulative histogram bins is addressed in parallel, keeping :
fully updated cumulative histogram with every sample that enters the
system. The architecture is unique in its ability to process windows of ar-
bitrary size, and without an area increase. The architecture implements
both standard and weighted median calculation for fixed and variable

windows. (Chapter 6).

A real-time acceleration of Pseudo 2-dimensional Hidden Markov Model
decoding. By considering the state transition trellis for a pseudo 2-

dimensional HMM, significant simplifications can be made to the decod-

ing stage. This simplifies the otherwise complex Viterbi calculation used



in the system. The pseudo 2D HMM has been shown to be applicable to

image segmentation as part of an object tracking system. (Chapter 7).

1.3 Publications

Parts of the work detailed in this thesis have also been separately published

in the following publications:

e “Hardware Acceleration of Hidden Markov Model Decoding for Person
Detection” S.A. Fahmy, P.Y.K. Cheung, W. Luk. Proceedings of Design,
Automation and Test in Europe (DATE), 7-11 March 2005, Munich,

iermany. Volume 3, Pages 8-13. [FCL05a)

“Novel FPGA-Based Implementation of Median and Weighted Median
Filters for Image Processing” S.A. Fahmy, P.Y.K. Cheung, W. Luk. Pro-
ceedings of International Conference on Field Programmable Logic and
Applications (FPL), 24-28 August 2005, Tampere, Finland. Pages 142-

147. [FCLO5D)

[PBCLOGJ: “Efficient Realtime Implementation of the Trace Transform”
S.A. Fahmy, C.-S. Bouganis, P.Y.K. Cheung, W. Luk. Proceedings of
International Conference on Field Programmable Logic and Applications

(FPL), August 2006, Madrid, Spain. [FBCLOG]

“Real-Time Hardware Acceleration of the Trace Transform” S.A. Fahmy,

C.-S. Bouganis, P.Y.K. Cheung, W. Luk. Journal of Real-Time Image



Processing: Special Issue on Field-Programmable Technology, Springer,

December 2007. [FBCLOT7]

“From Algorithms to Architecture” S.A. Fahmy, C.-S. Bouganis, P.Y.K.
Cheung. Chapter 11 of A. Bharath and M. Petrou (editors) Reverse

Engineering the Human Vision System, Artech Publishers, to appear in

2008. [BMOS]



Chapter 2

Background

2.1 Introduction

Field Programmable Gate Arrays (FPGASs) are a relatively recent development
when considered against the backdrop of decades of development in the field
of digital electronics. The simple digital cirenits of yesteryear were often con-
structed using off-the shelf logic devices that could manage only a very primi-
tive, single logic operation each. A board with hundreds of these small chips
might implement an archaic system of minimal complexity. Only the most
well-funded corporations could afford to design their own devices from the
ground up, using what were the cutting edge Computer-Aided Design (CAD)
tools of their time, and the newly emerging integrated circuit (1C) technolo-
gies. For the hobbyist or small company or research effort, these “advanced”
technologies were out of reach.

The emergence of ICs, driven initially by some high-profile acrospace projects

o
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saw the start of a rapidly developing landscape of custom designed integrated
circuits, offering high performance and compactness. The growth has been
exponential, and today, some Application Specific Integrated Circuits (ASICs)
contain hundreds of millions of transistors on-die.

[n this chapter, background information on FPGAs will be provided, with
some insight into the design process and various design decisions that must be
made.

A review of some hardware implementations of computer vision applica-
tions will also be presented. Computer vision systems arc computationally
very complex, and hardware implementations are often required for real-time
performance. Background related to the Trace transform will be presented in

the next chapter.

2.2 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) were invented in 1984 by Ross
Freeman [Xil04], one of the founders of Xilinx Inc. In 1985, Xilinx released their
first FPGA, the XC2064 which contained 64 logic blocks and 1000 gates [Xil04].
Today, FPGAs have become a viable platform for implementing some of the
most complex digital designs with sizes the equivalent of tens of millions of
gates. Whereas FPGAs were seen as a platform for implementing glue-logic
in the early days, they now find use in a wide range of applications, and often

feature in end-market products.



When choosing an implementation platform for a given application or prod-
uct, the typical choice one would make is between custom ASIC, some form
of Application-Specific Standard Platform (ASSP), such as Digital Signal Pro-
cessors (DSPs) or Graphics Processing Units (GPUs) and standard General
Purpose Processors (GPPs). GPPs are simpler versions of what one might
find in his PC; simple microprocessors that can compute a wide variety of
different functions by breaking them up into standard instructions that are
manageable by the on-die resources. Typically, an application would be pro-
grammed in a familiar high-level language and a compiler would then translate
this into native “machine-code”. ASSPs are processors suited to a specific im-
plementation domain; typically the on-die pipelines and processing units are
tailored to the needs of specific tasks required by the target domain. DSPs
(e.g. Texas Instruments TMS320 series) are the most prevalent and typically
allow for real-time implementation of complex signal processing applications.
GPUs (e.g. ATI Radeon series) are highly optimised for graphics tasks, and
indeed the transistor count of some GPUs exceeds that of many top-end GPPs.
Network processors are another form of ASSP that has become widely used in
the field of networking. ASSPs are also typically programmed using high-level
languages, sometimes with extensions specific to the application domain,

There is little doubt that for the highest possible performance for a given,
fixed application, that custom ASICs are the platform of choice. A custom
ASIC is designed from the ground up to implement the specified application.

A hardware architecture tailored to the system at hand is developed and every-
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thing is tweaked to the parameters of the application. The significant speedup
results from two things:

Firstly, within most complex algorithms, there is some complex arithmetic
computation. When such computations are run on general purpose processors,
the steps must be broken down into small instructions that can be executed by
the pipeline present on the target device. Standard programming langnages
make this easier by allowing a coder to specify complex instructions, while the
compiler breaks these up into “machine code”. Typically, a general purpose
processor will have a core processing unit that is capable of computing a fixed
variation of simple operations at very high speed. While the number of com-
putations per second may be very high, the number of complete operations
per second is significantly reduced. This is especially pronounced when the
operations being performed are far from those intended by the design of the
pipeline. This is what has pushed the development of ASSPs.

When designing a hardware system, the designer is freed from these con-
straints, since the computational unit can be tailored to specified requirements,
and the designer is free to implement any number of different units. By imple-
menting a core that is custom-designed to implement specific operations, the
core can run slower (in terms of clock speed) than a general purpose processor
but still have significantly greater processing throughput!,

Secondly, an algorithm can be accelerated in hardware through parallel

"Throughput refers to the real overall processing speed of a system, and is typically
measured in full data units completed per second. For image and video processing, the
typical measure would be the number of frames processed per second.
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computation. Complex algorithms typically iterate over various values of
parameters in order to compute one complete result.  As an example, a 2-
dimensional image filtering algorithm would require iterations along all pixels
in the z and y axes. Often there is somewhere in the algorithm where such
a set of iterations occurs. In a hardware system, the designer is free to im-
plement as many computational blocks as the resources will allow, and this
means that multiple serial iterations can in fact be processed simultanconsly.
The only limitation is that the results for each iteration of a variable must be
independent of each other: the calculation of results for one iteration should
not depend on the results of another. When this is the case, the designer
can design the system to exploit this algorithmic parallelism in order to afford
significant speedup.

As a result of this custom tailored design, the resultant hardware is opti-
mised for speed, area and power, and significantly outperforms the equivalent
software system running on a GPP or ASSP. Of course, there are other factors
to be considered which reduce this advantage somewhat. [irstly, the design
and verification of a custom ASIC is a complex, time-consuming process. As
such, the non-recurring engineering (NRE) costs are significant. Couple this
with the initial costs of production, which can exceed $1 million in the case
of some of the newer manufacturing technologies, and the long time-to-market
and it is clear that economies of scale play a big part in the viability argument.
Furthermore, one may wish to consider the increasing rate at which new stan-

dards are being introduced. An ASIC implementation is fixed, and thus any
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envisaged changes in the design would either have to be incorporated into the
initial architecture, or else, a new chip would have to be produced, with the
associated costs.

FPGASs can be seen as a half-way house between custom ASICs and AS-
SPs. They offer the significant performance advantage of a custom-designed
architecture, with much lower NRE and implementation costs than ASICs:
they are available as off-the-shelf products. FPGAs are reconfigurable, which
means that an implemented design can be changed or replaced, even after
system integration. There is no need for low-level verification of a design,
since FPGAs are designed to meet specified constraints for on-chip logic and
[/O. Of course, there are still other factors to consider in deciding whether
to use FPGAs for a specific application. Firstly, an I'PGA implementation is
still a hardware design, and hence the required knowledge is arguably more
specialised than that needed for software implementations. Furthermore, the
cost of FPGAs is higher than ASICs for very large quantities. One of the
common examples where an ASIC implementation is more enticing is that of
codec chips, such as an MPEG-4 decoder. Given a fixed design that will be
used in hundreds of millions of devices, across an array of applications, the
cost of an ASIC implementation becomes lower than using FPGAs. FPGAs
also typically consume more power than equivalent designs in ASIC, so are
generally not favoured in mobile applications.

As technology has improved, however, many of the disadvantages of using

FPGAs have been tackled. While much benefit has been gained from general



Platform

Advantages

Disadvantages

GpPP

Very simple to program,
widely available, can be dis-
tributed as standard soft-
ware,

Poor performance, very lim-
ited architecture,

ASSP

Simple to program, tailored
to application domain, with
excellent performance for
the specified applications.

Available for specific appli-
cations only, performance is
not as fast as custom ASIC
for a non-standard applica-
tion.

FPGA

High performance, signifi-
cant flexibility, design effort
less than ASIC.

Design more complex than
software, high power con-
sumption.

Custom ASIC

Best performance available,
completely tailored to appli-
cation.

Very high costs, complex

design and  verification,
fixed design cannot be
changed.

Table 2.1: Advantages and disadvantages

of various target platforms.

advancements in fabrication processes, a number of functional improvements

have scen the FPGA become a more viable target platform for a plethora

of application domains. The latest generations of FPGAs have significantly

reduced power requirements, are able to run at higher speeds, support a wider

array of I/O standards, and offer significantly more complex on-die units.

Couple this with the rising costs of implementing cutting-edge ASICs and

the rapid development and deployment of new industry standards, and it is

clear that the advantages held by FPGAs in terms of rapid design time, and

deployment, with reduced time-to-market make them an attractive alternative

to ASICs. Some of the trade-offs in selecting a target platform are summarised

in Table 2.1.
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2.2.1 Logic and Routing

The principle behind an FPGA is an architecture that can implement any
arbitrarily defined function. The FPGA is a pre-fabricated circuit, needing
nothing more than a simple configuration to be applied in order for it to func-
tion. For the flexibility to implement any function, two requirements must be
met. Firstly, there must be simple, flexible circuit elements that can implement
arbitrary logic functions; this is often termed the logic fabric. Secondly, there
must be some method of connecting such units up in an arbitrary fashion, the
routing fabric. These elements are the core of F'PGA architectures.

The logic fabric is typically composed of circuit elements built around small
Look-Up Tables (LUTSs). These can perform any given logic function with
a single output. A 4-input LUT can implement any logic function of four
variables with a single output. The output of this LUT is typically connected
to an optional flip-flop allowing for synchronous circuits. The routing fabric
connects multiple logic elements together through switch-boxes. These are
separately programmable to connect arbitrary logic elements together. This
flexibility is the key to an FPGA’s reprogrammability, as well as its ability to
implement any design. Both the contents of the LUTs and the routing switches
arc reconfigurable.

Of course, this level of flexibility comes as a cost. Whereas in an ASIC
design, fixed wires route between circuit elements, in an FPGA, signals must

travel through the routing fabric including switches and drive wires which may



be longer than are absolutely necessary. This all introduces delay, creating a
performance gap between an FPGA and ASIC implementation of the same
design. One must also consider the fact that a design is targeted to an FPGA
with a specified number of logic-elements: the sizes step-up in stages, and so it
is likely that some part of the FPGA’s logic fabric will be unused in a design.
Fnabling the huge number of possible connections in an FPGA architecture
also means that the routing is very abundant, which means that a significant
portion of chip area is consumed by non-computational elements.

The earlier FPGA architectures, such as the Xilinx 4000 series [Xil99a]
and the Altera FLEX 8000 [AltO1b] consisted solely of the logic elements and
routing fabric as described above, as well as 1/0 blocks for off-chip communi-
cation. These architectures developed rapidly, with the addition of carry-chain
logic to the the basic elements and other tweaks to the logic fabric to allow for
more efficient implementation of common design components. The delay-cost
of routing has driven significant changes in the routing fabric too, with more
considered (and complex) routing arrangement including hierarchical routing
and multiple wire lengths. The most recent FPGA devices have departed
from 4-input LUTSs to 6-input LUTs (in the case of the Virtex 5 [Xil07b]) and

adaptive LUTs and adders (in the case of the Stratix IIT [A1t07]).

2.2.2 Reconfigurability

FPGAs are SRAM-based devices. The logic and routing are configured at

runtime, and upon power-off, this configuration is lost. This is why a produc-



tion FPGA will typically have a Programmable ROM (PROM) that stores the
configuration data sited beside it, so that it can configure when it powers-up.
This also means that the system configuration can be changed at any time,
and the circuit can be modified. Typically, this might be used to try differ-
ent variations of a circuit or fix problems that arise in simulation. However,
another possibility is what has been termed dynamic reconfiguration. This is
where the FPGA configuration is modified while it is running. Partial recon-
figuration is where only a part of the circuit is modified at runtime, perhaps
to implement an alternative block within the same architecture. A thorough
explanation is given in [Sed06].

Unfortunately, the design flow for a reconfigurable architecture is signif-
icantly more complex than that for a static architecture. At present, the
designer needs to work at a relatively low level, managing the placement of re-
configurable blocks, in order to allow for partial reconfiguration. This situation

is changing but as yet, this field remains the preserve of academic research.

2.2.3 Embedded Memories

A significant development to FPGA architectures was the addition of other
types of resources such as embedded memories, as in the case of the Xilinx
Virtex [Xil99¢] and Altera FLEX 10K [AltO1a]. If one considers the logic fabric
mentioned above, it is clear that implementing memories of any reasonable size
would be highly inefficient in LUTs. Memories are useful in many applications,
as buffers, FIFOs and for temporary storage. Small embedded memories negate
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the need for routing between LUTSs, thus increasing the speed, and redncing
the area and power consumption of memory accesses. This also saves on the
need to use off-chip RAM, and thus the costs associated with 1/0. The Xilinx
Virtex brought between 8 and 32 4Kbit RAM blocks per device (depending on
device size). Later, the Xilinx Virtex IT [Xil99b] saw these enlarged to 18Kbits
each as well as increasing in number. The Virtex 4 [Xil07a] maintains the same
Block RAM configuration, while the Virtex 5 [XilO7b] increases the capacity to
36kbits each. RAMs can also be combined without the use of extra logic in the
Virtex 4 and Virtex 5. Altera, on the other hand, has developed a hierarchical
memory architecture for its Stratix [Alt05] series, with three different sizes of
RAMSs on chip. This suits applications where a few large buffers might be
needed, as well as small local coefficient memories.

Embedded memories have significant advantages. A 4-input LUT can only
implement a 16x1bit ROM. Thus for any reasonable sized memory, a significant
number of Slices and consequently routing resources would be required. As a
comparison, a 16k x 1bit ROM, implemented in logic on a Xilinx Virtex IT would
use 559 Slices and could only be clocked at 2/3 the speed of the equivalent
implemented in a Block RAM [Smi07]|. The Block RAMs on the Xilinx Virtex
IT can be implemented as single- or dual-port ROMs or RAMSs, synchronous

or asynchronous FIFOs and also data width converters [Xil99b.



2.2.4 Embedded Multipliers and DSP Blocks

The Xilinx Virtex IT brought with it embedded multipliers. FPGAs had found
a significant following in the DSP community and multipliers are a feature of
many DSP designs. Since implementing multipliers using LUTSs carries with
it all the inefliciency of the routing between LUTSs, hard-wired multipliers
can free up significant resources for other tasks. The Altera Stratix pushed
this idea further by implementing a DSP block, another name for a multiply-
accumulator (MAC). The latest Xilinx Virtex 4 and 5 [Xil07a, Xil07b] have
followed suit.

Multipliers find their most obvious use in digital filters. In the Virtex II,
the architecture was designed with the Block RAMs beside the multipliers
so as to minimise routing delays between the coefficients, typically stored in
memories, and the multipliers. Aside from traditional uses, multipliers have
also been used as barrel-shifters [Gig04], for implementing floating-point units
and even to replace Block RAMs [MCCO7]. In fact, multiplications surface
in a significant number of image processing applications from colour-space
conversion and image rotation, to filtering and image transforms (see [Rus02]
for an overview of algorithms). The saving in using embedded multipliers is
both in terms of logic fabric and routing resources. An 18x18 bit multiplier
implemented in logic on a Xilinx Virtex LI would use 201 Slices and would only

run at half the speed of the equivalent embedded multiplier [Smi07].



2.2.5 Other Resources

Modern FPGAs include a number of other resources which find uses in various
applications. The Xilinx Virtex II Pro introduced embedded PowerPC micro-
processors. These are offered on some parts of the new Virtex 4 and 5 families
today. Having a processor on chip means that a whole software/hardware
solution can be developed on a single chip. This is often termed System-on-a-
Programmable-Chip (SoPC) development. The PowerPC can even been used
to run an embedded version of Linux on the FPGA [Sai04]. It is also possible to
allow the PowerPC to control runtime reconfiguration of the FPGA [BJRK103].
In those FPGAs where no processor is available, vendors offer a soft processor
that can be implemented using the logic fabric. Xilinx offers the MicroBlaze
and PicoBlaze, while Altera offers the NIOS processor.

Delay-Locked Loops (DLLs), Phase-Locked Loops (PLLs) and Digital Clock
Management (DCM) blocks allow fine control over clock signals, including the
facilitation of multiple clock domains in a design. Advanced 1/0 standards
are also supported on some devices, with gigabit transceivers and differential
signalling built in to the fabric. 1/0 is one area where 'PGAs shine. Since the
[/Os are verified against multiple standards one need not concern themselves

with this process, as would be the case with an ASIC design.
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2.2.6 The FPGA Design Flow

The FPGA design flow is similar to that of standard ASIC hardware, but with
some notable differences due to the different target platform. Here, the various
steps are detailed along with a discussions of some of the design decisions that

can be taken.

Design Entry

The first step in the flow is design entry. This is where the hardware ar-
chitecture is specified. This can be done at a number of different levels of
abstraction, and using various different tools and languages. One of the more
archaic methods is Schematic Capture. Typically a computer-based design
program, that contains visual representations of basic building blocks, is used.
The designer places these on a canvas, defines the parameters of each of the
blocks then connects them graphically, as required. The designer then defines
the inputs to the system and its outputs, and the tools take care of the rest.
However, with the increase in design complexity, this method of design entry
has become more rarely used.

Another method is the use of Hardware Description Languages (HDLs).
These are special languages used to describe hardware. Initially, they were
used to describe a circuit structurally, in terms of its low-level components.
These languages can also be used to describe hardware at Register Transfer
Level (RTL), where the system is designed in terms of a set of registers and
transfer functions describing the flow of data between them. Now, a more
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significant portion of designs are described at a behavioural level. At this
level of abstraction, the designer specifies what the circuit does, leaving the
synthesis tools to determine how to implement this behaviour. As an example,
the designer can simply specify A+ B = C, and the compiler will determine the
circuitry to do this. This allows the designer to focus less on the small details,
and also means that the same code can be used to target multiple architectures
using appropriate synthesis tools. The foremost HDLs used today are VHDL
and Verilog.

Recently, significant effort has been spent in developing tools that allow
the designer to work at higher levels of abstraction. The idea behind “High-
Level Synthesis” is that the designer should be free to focus on the system-level
design and ignore the details of the hardware implementation. Extensions to
the C programming language, such as Handel-C [Cell, add language elements
for hardware description yet allow the designer to use familiar C-based syn-
tax. Xilinx’s System Generator [Xil] is a tool that latches into Mathworks’
Simulink software [Mat], used in DSP design. It allows the hardware designer
to draw dataflow graphs to describe a DSP system, and the tools take care of
the translation to hardware. High-level synthesis, however, is still relatively
novel, and the performance of most tools cannot compete with the perfor-
mance and compactness of systems designed at lower levels of abstraction.
Vendor tools such as System Generator are significantly better than general
High-level languages, since often, they contain pre-defined blocks that have

already been optimised for hardware implementation. Such tools though, are
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often restricted to a specific application domain; in the case of System Gen-
erator, DSP systems. True general purpose high-level synthesis is much more
difficult to achieve, and hence cannot always be considered as the ideal design
tool. With languages like Handel-C, the added language constructs still allow
the designer to design at a level of abstraction similar to behavioural HDL
descriptions, and when used in such a manner, the resultant implementations
are significantly faster and more compact than when the langnage is used in
a software-centric way. [CHO02] and [TCW™'05] both discuss the various design
tools and descriptions available and the trade-olfs associated with high-level
synthesis. This, however, remains a fast-developing field and the situation
continues to improve. A full scientific study of the trade-offs associated with
different design description would be a welcome resource to assist designers in

selecting the most suitable tools.

Notes on Handel-C

Since some of the work in this thesis was completed using Handel-C, it is
worth noting some of the features of the language and design environment.
Handel-C' extends a subset of the C language to allow for customisable data
widths and parallelism; two essential elements of hardware design. Timing is
fixed at one clock cycle per C statement, allowing the designer fine control
over circuit scheduling. The compiled circuit is a one-hot state machine that
uses token-passing to move from one statement (or a block in the hardware)

to the next.



The design environment for Handel-C is the Celoxica DK suite, which pro-
vides a code editor and simple simulator. The simulation tools can be awkward
for hardware design since concurrency is difficult to track using a variable
watch window. The real strength of using the Celoxica tools comes in the
board APIs, that enable the use of development board resources with minimal
effort, abstracting complex control and data signalling to simple C statements.

Handel-C code is compiled to an EDIE netlist or to VHDL code, that
can then be further synthesised, placed and routed using the standard tools
described below. Due to the hidden control circuitry, there is an area and speed
overhead, but no concrete figures are available, since this depends entirely
on the specific application. Massively parallel systems, such as the median
calculation architecture presented in Chapter 6 suffer more than small regular
circuits or those with complex control, but only a few parallel blocks.

Coding in Handel-C can be simpler than VHDI for complex designs. There
are numerous constructs that assist in code reuse, and replication. Further-
more, since the clocking is inherent in the code, it can be tidier. Channels
allow for timing-blind inter-block communication and synchronisation with
ease. Figures 2.1 and 2.2 show a simple block of code in both VHDL and

Handel-C (respectively), with the resultant circuit shown in Figure 2.3.

Functional Verification

In this step of the design flow, the designer confirms that the circuit, as de-

scribed, implements the desired behaviour. A testbench is written, that wraps
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data_proc: process(clk)

begin
if rising_edge(clk) then
a <= ain; par {
b <= bin; a = ain;
X <= a + b; b = bin;
end if; X = a -+ b;
end process data_proc; b
Figure 2.1: Example VHDL Code. Figure 2.2: Example Handel-C Code.
ain
bin

Figure 2.3: Circuit corresponding to the VHDL and Handel-C descriptions in
Figures 2.1 and 2.2.
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the block under test, and feeds it the appropriate data, while monitoring the
block’s outputs. Tools such as Modeltech’s ModelSim [Mod] can be used to
analyse waveforms of the outputs as well as signals internal to the block. It is
necessary to consider “corner cases”, or patterns of data, perhaps unexpected,
that could expose some frailty in the system, for example, overflows in arith-
metic operations. Once functional verification is complete, the designer’s work

is for the most part done.

Synthesis and Mapping

When designing using RTL or behavioural descriptions, these must be trans-
lated into primitive hardware blocks. This job is done by the synthesis soft-
ware, for example Synplicity Synplify Pro [Syn|. An addition specified on a
line of code will be turned into an adder. Registers will be created to hold val-
ues and the code will be translated into the hardware primitives of the target
architecture. When targeting an FPGA, these resources must also be mapped
to a type of resource on the device. So portions of logic will be mapped to
LUTs and Flip-Flops then clustered into Slices, including the use of carry-
chains and other resources. As a result, the designer need not be concerned
with the granularity of most operations, as the tools will take care of breaking
down large blocks into the size required by target hardware. The output of this
stage is a netlist describing hardware resources and the connections between
them.

For heterogeneous architectures, the mapping phase is also where decisions
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are taken as to which type of resource to use. Often, there will be more than
one way to implement a hardware block. For example a multiplier could be
implemented using standard logic elements or using an embedded multiplier,
a FIFO could be implemented using Flip-Flops or embedded memory. Many
synthesis tools allow the designer to specify some preference that is taken
into account when synthesising. In other cases, the designer must specify the
type of resource to use explicitly. There exists a significant body of research
that looks at the trade-offs involved in selecting different types of hardware,
and the resultant choices that can be made when designing a reconfigurable

architecture. [Smi07] contains a good survey of work in the field.

Placement and Routing

Once the netlist has been produced and the whole circuit has been mapped
to the primitives available on the target device, it is necessary to place these
instances into specific locations on the device and route the associated signals.
The primary aim is to minimise delays by placing communicating blocks adja-
cent to each other. Once the blocks are placed, it is necessary to configure the
routing between them. Again, this is done with the aim of reducing delays.
The result of this step is a bitfile, containing all the configuration data needed
to set up the circuit in the FPGA device. Typically, in a production system,
this bitfile is stored in a Programmable ROM (PROM), which is accessed by

the FPGA on power-up, and used to configure the device.
) g
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Timing Verification

After placement and routing, it is necessary to check that specified timing
constraints have been met. This is often reported when placement and routing
is completed. It is also possible to configure the tools to produce a post-
place and route simulation model which can be used to check the resultant
circuit using tools like ModelSim. If timing constraints have not been met,
the violating paths will be reported, and the designer can attempt to modify

those parts of the circuit in order to increase performance.

2.2.7 Circuit Measurement Metrics

When designing a circuit, it is necessary to have metrics by which the design
can be evaluated. The most obvious metric is that of speed. A faster circuit
will process data at a quicker rate. It is important, however to bear in mind
that speed should be measured in terms of throughput and not necessarily
cycle time. It is possible for a circuit to be clocked at very high speed, but
have a relatively low throughput when compared to another circuit with lower
clock speed. This is clear when comparing an FPGA implementation against
a standard GPP. As shown in Chapter 4 an Intel Pentium 4 Processor running
at 2GHz can be outperformed by an FPGA running at 80MHz because the
throughput is higher due to parallelism and a more tailored datapath. In
image- and video-processing applications, throughput is usually given in frames

per second (fps), though it is important to consider the size of each frame too.



In some instances the throughput requirements of a system are fixed, and hence
as long as these requirement constraints are met, it is area and power that are
of interest.

When discussing the area usage of an FPGA design, the most basic element
to be considered is the standard logic element of the target device. In the
case of Xilinx FPGAs, area is typically measured in Slices, while for Altera
FPGAs, the Adaptive Logic Modules (ALMs) for more recent devices or the
Logic Elements (LEs) for older devices, are the measure. Synthesis tools will
often report finer levels of resource usage such as flip flops and LUTSs, since
often the resources can be assigned and packed differently.

With heterogeneous architectures it is also necessary to consider the us-
age of other resources such as embedded memories and multipliers, since the
portions of the circuit mapped to these resources are not represented in the
standard Slice count. It is important to note that the proportions of different
resources in a device are fixed by the device vendor. As such it may well be
possible to deplete the available resources of one type while still having capac-
ity to spare in another type of resource. In such cases, the designer can either
target a larger device, or map parts of the circuit from one resource type to
another, bearing in mind the performance costs. Memories and multipliers can
easily be mapped to use LUTs if needed. Similarly, if some of the standard
logic elements are in short supply, the designer should ensure that all portions
of the circuit that can be mapped to other resources are transferred.

Another metric that has more recently gained popularity is that of power.
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ASIC designers will typically have more control over this, as they can design
their architecture to suit. With FPGAs, the power consumption is often out
of the hands of the designer, as the static power consumption of the FPGA —
which is a subject of the FPGA architecture and manufacturing process — is
significant when compared to the dynamic power — caused by circuit switch-
ing, and over which the designer may have some influence. In all, FPGAs
still consume a significantly greater amount of power than ASICs, at present,
and so fail to be considered as an ideal platform for mobile devices. With
cach transition to newer circuit technologies, the ratio of dynamic power to
static power consumption increases, meaning that power considerations will
become important to designers in the near future. Currently, the tools pro-
vided for power analysis are limited, and techniques for optimising for power
obscure. FPGA vendors are pushing forward with architectural solutions such
as switching off parts of the chip not in use [TT07|. Development on the two
fronts will be necessary in order to assist designers in optimising their designs
for power consumption.

When synthesising a design, it is possible to increase the effort level of the
tools. This may be necessary when a timing constraint is missed by a small
margin, or the design is slightly too large to map to the target device. When
the effort is increased, the tools run more aggressive optimisation routines in
order to meet constraints. The tools can be instructed to optimise for area or

speed, depending on the requirements of the design.



2.3 Hardware Acceleration of Vision Systems

FPGAs provide an ideal platform for prototyping computer vision applications.
Such applications are characterised by the large amounts of data processed,
and the high computational complexity of the algorithms involved. The pro-
vision of heterogeneous resources fairly recently, makes them an even more
attractive target platform. Memories specifically can simplify designs hence
requiring fewer accesses to external memory, which can often be a bottleneck
in a video- or image-processing design. In this section, an overview of some

FPGA implementations of vision systems will be presented.

2.3.1 Colour to Black and White Conversion

Images in digital systems are usually represented in the additive three-colour
Red-Green-Blue (RGB) domain. However it is often more intuitive to use the
HSI (Hue, Saturation, Intensity) colour space. The hue is the colour that is
being represented, saturation is how pure the colour is, with full saturation
being very strong and zero saturation being grey. Intensity is the brightness
of the pixel.

The human vision system is more sensitive to certain wavelengths of light
than others, hence in converting from colour to black and white, the colours

need to be mixed in different proportions. The standard proportions are shown



in (2.1), where Y is the (greyscale) intensity value [Rus(2].

Y =0.299- R+0.587 -G +0.114- B (2.1)

For video applications, the input will often be in colour, but most of the
complex computation can be performed on the greyscale intensity image to
lessen the computational load, then later combined with the colour image
if needed. Here, a simple implementation will be presented, to show how
for cach algorithm, thinking in terms of the target platform is paramount in
an efficient implementation. To implement this colour to black and white
conversion efficiently, one can recall that in hardware, any base 2 divisions
are simply shifts of the bits, or selecting certain bits. Hence, it is possible
to come close to the equation mentioned above without having to implement
any multipliers. An example is shown in (2.3), where Y is an approximation
of the pixel intensity, given R, G and B input values for red, green and blue

respectively. This is much more easily implemented in hardware, with only

shifts and 4 two-input adders, as shown in Figure 2.4,

Y= 03125 - R+0.5625.-G +0.125- B (2.2)
— (e d) R ()G (]) B 2
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Figure 2.4: Simple colour to greyscale conversion circuit using only adders.
2.3.2 Object Detection

In object detection, a system must detect the presence of an object of interest
in the frame. This can be done in one of two ways. Firstly, it is possible
to detect the presence of an arbitrary object. This can only be done with a
video sequence, since it is the temporal information that provides the cue that
something has been introduced into the scene. Such a form of object detection
will often be done using background subtraction, where subsequent frames are
extracted from a static reference frame, and areas where there is a difference
are treated as objects. Unfortunately, this method requires the camera to be
stationary and can be adversely affected by other changes such as illumination.
Another method is to use motion vectors to extract moving objects in a video
sequence. Areas of the image where the motion vectors close to one another
move in the same direction and with the same magnitude are considered as
rigid bodies, and can be segmented from the frame. It is important to note that

some forms of motion yield different patterns of motion vectors, and depending
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on the application, alternative clusterings may have to be considered [YJS06].
With both these approaches, this segmentation gives a bounding box which
must then be processed to see whether it is of the type being considered in
the system. Simple heuristics such as the consideration that a walking person
could only be represented by an object that is taller than it is wide, or that a
vehicle may be wider than it is tall, can be used to reject segmented objects
without having to process them.

The second type of object segmentation involves analysing the frames with
some criteria in mind. Such techniques can depend upon colour, texture, shape
or other properties of the image. Often the segmentation can be applied to a
single frame, with no need for temporal information. In such a system, objects

of interest are often directly segmented from the image.

2.3.3 Object Segmentation

Following detection of the presence of an object, it is often necessary to segment
this object from the frame. In many cases, detection and segmentation occur
together, such as some background subtraction, and most face authentication
algorithms. If this is not the case then a number of methods can be employed.
Sometimes detection will return the centroid of the desired object, or some
other general positional information. In such cases, prior knowledge of the
shape of the object can be used to segment it based on these parameters.
Segmentation can also be achieved through the use of edge detection,

whether on the image directly, or some property obtained from the detection



phase. Edge detection is most often achieved through the use of simple filters
like the Sobel or Laplace masks [HS92]. The result of filtering is an edge map
where edge pixels have high values and non-edges have close to zero values, or
in the case of the Laplace mask, the edges are represented by zero-crossings.
Typically, these edges maps correspond to the outline of objects in the scene.

Further shape analysis methods can be used to segment the desired objects.

2.3.4 Object Tracking

In the case of video sequences, temporal data can be used to track the positions
of moving objects in the frame. Numerous methods exist (see [YJS06] for a
through survey). Typically, motion vectors will be extracted for a frame.
Where a cluster of pixels are determined to have the same motion vectors,
a rigid body can be deduced. It is important to note that changes in the
background, or camera position introduce many superfluous motion vectors.
In some systems, the motion vectors are computed for image features rather
than directly on pixel blocks. This reduces the amount of data that needs to
be processed.

Block matching is achieved by looking at two successive frames and at-
tempting to find the correspondence in one frame for a block in another. The
search is typically constrained within a window. Hardware implementations
of block matching algorithms are numerous. The most basic block-matching
technique is what is termed Full Search Block-Matching (FSBM); in which the

correspondence for every block within the search area is calculated in order to



find a match. Clearly this is very computationally expensive. Parallelisim can
be used to speed it up in hardware, but memory bandwidth and data organisa-
tion present challenges in designing an architecture. Simplifications have been
suggested including the 3-step search (3SS) [KIH*81], the New 3-step search
(N3SS) [LZL94| and the 4-step search (4SS) [PM96]. These are much less
computationally intensive, but the search can get stuck in local minima and so
these algorithms do not perform as well as FSBM in terms of the quality of re-
sults. The FSBM can be implemented in a number of ditferent ways including
systolic array designs [KP90, YH95], and tree structures [LCTWIT7]. A ge-
netic algorithm has also been applied to block-matching [LW96], implemented
in [WS03]; the quality of results is much better than for other hierarchical
searches with comparable hardware usage, but still a significant saving over
FSBM. [TCJ02] includes a good overview of the data reuse and bandwidth
needs of different implementations in hardware.

Aside from these direct feature matching methods, other higher-level track-
ing algorithms include Kalman filters [Sor85], the CONDENSATION algo-

rithm [IB98] and particle filters [LZP03].

2.3.5 Literature Summary

A concise summary of some computer vision algorithms is presented here.
Unfortunately, much of the published literature does not follow a systematic
approach when reporting hardware designs. In many papers, resource usage is

ignored or reported in a non-detailed way. In some cases figures for clock-speed
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are given without discussing throughput. In many cases, no mention is made of
the heterogeneous resources used in the design. Some implementations simply
map software code to hardware through the use of high-level languages, and as
such the performance is not accelerated by any significant amount. The aim of
this section is simply to give a general idea as to the recent work implemented
on FPGAs, with a specific concentration on face detection.

In [RV04], the authors develop a hardware implementation of an edge-
detection system based on the Canny edge detector. This algorithm first
smoothes the image, then computes the horizontal and vertical gradients for
each pixel using the standard Prewitt kernels. The result is that edges become
ridges. Using non-maximum suppression, all non-edges can be eliminated. Fi-
nally, the resultant image is thresholded to select the significant edges. The
hardware system was designed using Handel-C and resulted in a system that
ran at 16MHz on a Xilinx Virtex I, processing a 256 x 256 pixel image in 4.2ms.

In [HWCC05, HCWCO06], a similar algorithm is implemented, inspired
by an implementation in [AC97]. Firstly, instead of applying the Gaussian
smoothing filter as is, it is approximated using fractions that can be repre-
sented using powers of 2. This simplifies the filtering circuitry significantly,
and this is implemented using a systolic array. An edge-strength and locali-
sation unit is developed which computes edge values and compares them with
neighbours in the edge direction producing a ‘1’ for an edge pixel in the out-
put. Two different FIFO schemes are compared to allow flexibility in image

size (while maintaining a dimension that is a power of 2 as a requirement).



The end result is a system that runs at 73.6MHz with a throughput 265 times
greater than a DSP implementation.

In [SV07], the authors apply simple edge detection nsing standard Prewitt
masks, then by summing pixels horizontally and vertically, extract the grid
array structure for DNA microarrays. They use a Xilinx Virtex I Pro FPGA,
employing the PowerPC processor to manage their hardware system and Block
RAMSs to buffer parts of the large input images as they are processed, and
similarly at output. A Block RAM is used for storing the horizontal and
vertical profiles. The whole system is clocked at 200MHz and shows an order
of magnitude improvement over software in terms of processing speed. Input
images vary in size from around 1900x 1900 up to around 2000x 5600 pixels.

In [PPACOG], the authors develop an FPGA-based system that can detect
vehicles in aerial images for use in an unmanned aerial vehicle (U AV) system.
The system operates on streaming data from a camera, due to memory con-
straints. First the pixels are converted to the HSV (Hue, Saturation, Valne)
colour space. The pixels are then thresholded independent of hue, and the
resultant image eroded to remove superfluous points. Edge detection is then
applied using a simple Laplacian kernel. The resultant image contains blobs
which are then correlated with a template that takes into account the expected
size and spacing of the desired objects, in this case vehicles. The system is
shown to perform as desired though no performance figures are given.

In [DDM*05], the authors develop a system to check the bolts in railway

lines. They first predict the frames in which bolts are expected using the dis-
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tance between bolts; this is done in software. The images are then processed
using the Haar DWT [SN!)G] transform and a Neural Classifier used to deter-
mine the presence of bolts. The combined software-hardware system processes
a 24x100 pixel window in 13.29 us.

In [APTE*05], a system is presented that implements Wronskian change
detection on video sequences. A reference frame is subtracted from subsequent
frames with some measure of robustness to noise and illumination changes.
The system uses external memories on a development board for storing the
reference and result frames. The system occupies just over 7000 slices in a
Xilinx Virtex FPGA clocked at 25MHz, processing 640x480 pixel frames at
15fps.

In [JSCO6], the authors develop a Hough transform system for detecting
circles in images. An image is first converted from colour to greyscale simply
by averaging the channel values. Then a Sobel edge detector is applied followed
by a Laplace filter to reduce the number of edge pixels further. A simple unit
based on the Circular Hough Transform (CHT) is implemented, producing
a histogram of circle parameters, from which the maximum is taken to be
the dominant circle in the image. The design was implemented on an Altera
Stratix FPGA, using 3056 Logic Cells, 128 M4K RAMs, 2 MRAMs and 42
DSP blocks. The design is not significantly pipelined though, so despite being
clocked at 50MHz, it takes 4.3 seconds to detect the circles in a 256x256 pixel
image.

The task of detecting people in images is one of the more interesting areas



in vision research. One of the simple methods involved in many such systems is
skin detection based on colour. In [TMJF06], an FPGA system for the detec-
tion of skin colour is presented. They combine classifications obtained from the
YIQ, YUV, YCbCr and RGB colour spaces since each performs well in specific
instances. Colour space conversion was implemented using the Xilinx System
Generator tool with fixed coefficient multiplications. System Generator was
also used to implement the rule checks. A probability map was implemented
in Block RAMs with a MicroBlaze soft processor used to tweak parameters in
the various blocks. The system processes 640x480 pixel images at 190 frames
per second.

In [O0i06], a similar colour segmentation routine is implemented, but it
is done by translating C code into a Handel-C implementation and using the
Celoxica PAL API which allows simplified access to board peripherals [Cel.
While the hardware system is shown to perform close to the software imple-
mentation in terms of accuracy, no performance figures are given, and the area
usage is given in NAND gates, though how the numbers are obtained is not
clear.

[RAE04] details a rather unusual approach to hardware design. Following
a similar algorithm to the previous paper, the authors implement a custom
MIPS processor to conduct the face detection by analysing the colour values
of pixels. The system is also implemented using Handel-C and the Celoxica
PAL libraries. The system processes 360x288 pixel frames at 13 frames per

second. It is unclear why the authors did not implement the algorithm directly
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in hardware, as clearly the performance is below-par and the effort needed to
design a processor may well be as significant as designing custom hardware.

The implementation in [PB03] is also colour-based. The system takes a
176x 144 pixel input frame and applies 16x16 pixel subsampling resulting in
an 11x9 frame. They claim that this is done to reduce computational com-
plexity as well as generating larger skin patches. Pixels are mapped to the
LogRB colour space then compared to a histogram of skin values obtained
during a training phase. The detected skin areas are then enhanced through
spatial filtering, and the centroids extracted using a moments based calcula-
tion. Subsampling is done on the image stream directly, forgoing the need
for buffering. The colour space histogram is stored in embedded memory and
used to apply the skin filtering operation. The system is designed to adapt the
values in the histogram based on detected faces. The circuit is small, as would
be expected from the data size being processed. It is clocked at 33MHz and
occupies approximately 3000 Logic Elements in an Altera FLEX 20K FPGA
processing 434 frames per second.

[n [WBCO04], the authors present a hardware implementation of the Ad-
aBoost algorithm which has been shown to offer excellent performance for face
detection [VJO1]. The system combines several weak classifiers based on Haar
wavelets into a strong classifier. A pyramid of sub-images is created, so from
one 120x 120 pixel image, 17,281 sub-images must be processed. An integral
image is computed using Multiply-accumulators (MACs) for each 24x24 pixel

sub-image. Three classifier stages with an increasing number of Haar wavelets
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are implemented. The resultant circuit is clocked at 91MHz and occupies 8000
Slices, 56 Block RAMs and 28 embedded multipliers in a Xilinx Virtex I1 2000
FPGA. It processes 120x 120 pixel frames at 15 frames per second.

In [ITNIO6], the authors develop a face detection system based on Neural
Networks [RBK98]. A shared MAC is used between different neurons, cach
with their own storage. Different scales of image are processed using a 20x 20
pixel window to allow for different sized faces. Little detail of the implemen-
tation is given, but the system is clocked at 100MHz and processes 320x240
pixel image frames at 40fps.

In [NHAS06], a face detection system is developed based on a Naive Bayes
classifier. Again, the image is processed in 20x20 search windows. The win-
dows are made to overlap in order to provide full coverage. First Sobel edge
detection is applied to the images after they have been histogram-equalised.
Then each window is classified as a face or not-face using the Bayes classifier
which has been trained on a large training set. A face is located by looking at
clusters of windows that have been identified as faces. The position of the lips
is identified by analysing the lower portion of the face segment. The points
of highest contrast are the left and right edges of the lips. By tracing along
the lip edge, the upper and lower sections can be identified. The system was
implemented on an Altera Stratix FPGA clocked at 41MHz processing 136
320x 240 pixel frames per second. The overall architecture is shown in Figure
215,

In all of these implementations, it is clear that those that involved the de-
Y
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Figure 2.5: The system architecture for the face detection and lip extraction

implementation in [NHAS06]. (© 2006 IEEE.

sign of a custom architecture with significant, pipelining and the use of embed-
ded elements, offered a significant performance advantage over software. Those
implementations in which the hardware seemed an afterthought, achieved little
benefit over software. It is thus clear that to exploit the power of hardware,

an implementation must be deigned in a way that suits the target platform.

2.4 Summary

It is clear that FPGAs, particularly modern heterogeneous FPGAs, are ideally
suited to the field of computer vision. The high computational complexity and
significant data richness of vision applications means that software implemen-
tations are often insufficient for the real-time performance usually demanded.
Given the plethora of algorithms for any given task, as well as the significant
variation in parameters and other design aspects, the flexibility of FPGAs pro-
vides an ideal platform for investigating and tuning vision systems. While the

expertise requirement is more than for software systems, an FGPA designer’s



work is significantly simpler than of an ASIC designer, and can reap benefits
quicker and more cheaply. The most important conclusion from this chapter
is that considered, appropriate design decisions, taken with the target plat-
form in mind are what mark the dividing line between successful, significant

acceleration and a mediocre showing,.



Chapter 3

Trace Transform Theory

3.1 Introduction

The Trace Transform is a novel algorithm, first introduced in 1998 by Kady-
rov and Petrou [KP98]. The name belies the fact that the Trace Transform
does in fact describe a class of algorithms rather than a specific case. Es-
sentially, the Trace transform of an image is constructed by computing some
functional along all lines crossing the image. The specific functional is not
pre-determined, but rather selected to suit the application. In order to bet-
ter understand the transform, it is beneficial to look at a more specific case
of the transform that was introduced in 1917, namely, the Radon Transform.
The Radon transform has garnered widespread use in fields as divergent as
Computer Tomography (CT), astrophysics, electron microscopy and nuclear
magnetic resonance [Dea83].

The Trace transform can be considered as a generalisation of the Radon
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transform, as will become apparent. [t has been shown to be a powerful
tool in image recognition and categorisation tasks [KP01], though the issue of
high computational complexity has been an obstacle to widespread adoption.
By investigating the principles behind the transform and understanding the
complexity issues, it is possible to identify algorithmic parallelism and thus
methods by which this class of transform can be accelerated in hardware. Fur-
thermore, the flexibility afforded by modern Field Programmable Gate Arrays

(FPGAs) is ideally suited to such an algorithm, that is itself highly flexible.

3.2 The Radon Transform

Before discussing the detailed theory behind the Trace transform, it is worth
introducing its precursor, the Radon transform. The Radon Transform has
come to the fore in recent decades primarily as a mechanism for dealing with
the reconstruction problem. This is the problem of determining the internal
properties of an object through external probing. Essentially, the object either
emits or is acted on by a probe; by taking the resultant profile, some internal

property of the object can be identified.

3.2.1 Mathematical Foundations

A detailed definition of the transform and thorough explanation of all its math-
ematical properties can be found in [Dea83|. A basic explanation is reproduced

here for reference.



Figure 3.1: Coordinates describing a line L.

Consider an arbitrary function f of coordinates (x,y) defined on a plane
of real numbers. If L is any line in the plane, then the Radon Transform
(designated by #) of f(x,y) is equal to the mapping defined by the line integral

of f along all possible lines L. Explicitly,
f=2{f}= [ f(z,y)ds, (3.1)
L

where ds is an infinitesimal increment of length along L. Figure 3.1 shows

a line L with equation

p = T cos ¢ + ysin . (3.2)

The line integral, as defined in 3.1, clearly depends on the values of p and

66



Figure 3.2: Coordinates describing a line L relative to original and rotated

coordinates.

¢. This can be stated explicitly as follows:

f(p,0) = Z{f} = ] [, y)ds. (3.3)

If f(p,¢) is known for all values of p and ¢, then f(p,¢) is the Radon
Transform of f(x, ), otherwise it is considered a sample of the Radon Trans-
form.

Consider now, a new coordinate system, introduced by rotating the axes
in Figure 3.1 by ¢, as shown in Figure 3.2. If the new axes are labelled p and

s, then

T = pcos¢ — §sin ¢

Yy = psin¢o + s cos ¢
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The transform can then be written
OO0
flp, @) = / f(pcos g — ssing, psin g + s cos p)ds. (3.4)
J —00

Another common way of writing the Radon transform is in vector notation.

First, define the unit vector
£ = (cos ¢, sin ¢). (3.5)
Now, the equation of the line can be written as
P=E4X=TCO8Q+ySsing. (3.6)
and the Radon transform can be written
fp, &) = / F(x)d(p — € - x)dx. (3.7)

The Radon transform is linear and homogeneous. It is also closely related
to the Fourier transform [Dea83].

Key to the Radon transform’s use is the inversion property: that is, the
ability to deduce the original function from the transformed profiles. Backpro-
jection is the preferred method for achieving this inversion and is stated here
for reference.

Consider an arbitrary function ¥ (¢,&) where ¢t = £ - X = x cos ¢ + ysin ¢.
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The backprojection operator # is defined by

™
B = / (xcos g+ ysing, )dp. (3.8)

J0

This can also be written
(B (z,y) = / (xcos ¢ + ysin g, £)dp, (3.9)

since Z is a function of (x,y) and £ completely depends on ¢.

Now, if 1)(p, ¢) is set to the projection function f(p, #) obtained by applying
the Radon Transform to f(z, ), then the contribution to % at point (x,y)
is just f(p, ¢)-de for any given ¢. The value of f(p, ¢) is simply the integral of
the line passing through (z,y) at distance p = x cos ¢ +ysin ¢ from the origin.
Integrating for all ¢ yields the complete backprojection as per (3.9). This is

shown in Figure 3.3.

3.2.2 Applications

To better understand how the Radon Transform is used in practice, it is worth
considering the many applications that make use of it. As mentioned previ-
ously, the transform facilitates the extraction of information about the inter-
nal structure of an object of interest from a set of profiles. These profiles are
formed from some application of a probe to the object and taking measure-

ments along various lines as defined previously, thus constructing the Radon
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Figure 3.3: Geometry for obtaining the ¢-backprojection. For a fixed angle ®,
the incremental contribution d(%y) to %y at the point (x,y), or alternatively
(r,0), is given by (¢, ®)df. The full contribution to % at (x,y) is found
by integrating over ¢ as shown in (3.9). Note that ¢ = xcos® + ysind =
rcos(0 — ®). Adapted from [Dea83).



Figure 3.4: A beam passes through the region of interest.

Transform result from these (p, ¢) values. With this result in hand, the Inverse
Radon Transform can be applied to obtain detailed information on the internal
structure of the object.

As regards the nature of the probe, this depends entirely upon the field
of application. The simplest example to consider is X-Ray Computed Tomog-
raphy (CT) [Dea83]. When a narrow beam of X-ray photons passes through
an object, the beam intensity decreases by an amount that depends upon the
density and nuclear composition of the materials in its path. When a single
cross-section of the object is considered, detecting the amount that has passed
though gives a single projection, equivalent to the line projection defined in
3.1. Multiple parallel projections would yield a single profile P(p, ¢) for a sin-
gle value of ¢, as shown in Figure 3.5. By applying the same technique at
further angles, a complete sample of the Radon transform is obtained. The

transmitted amount of radiation is determined by known equations. This can
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Figure 3.5: For a fixed angle ¢, the source and detector move (varying p) and
this creates a profile, P(p, ¢) for angle ¢. (Adapted from [Dea83]).

then be inverted to give a full picture of the composition of that cross-section.

3.2.3 Application to Image Processing

Applying the Radon transform to the image domain is a trivial development.
Replacing the beam and probe, one simply considers the sum of pixel intensities
along the lines that cross the image. It is important to note that digital images
being discrete in nature means that some method for approximating the values

along lines is necessary, since often the line will not pass directly through the
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centre of a pixel. There are a number of methods that can be used. Firstly,
nearest-neighbour approximation simply takes the intensity of the pixel nearest,
to the sampling point as its intensity. Other methods of interpolation aim
to give a more accurate result by interpolating the intensity values of other
neighbouring pixels. Bilinear interpolation uses the four nearest neighbours
while bi-cubic interpolation uses 16 neighbours.

To better understand the mappings from the image domain to the param-
eter domain, consider Figure 3.6. It shows a variety of simple images (a, c, e,

g, i) and their transformed equivalents (b, d, f, h, j).

3.3 The Hough Transform

The Hough Transform is another transform related to the Radon transform.
The idea behind the Hough transform is to characterise the shapes in the edge-
map of an image. The Hough transform maps a line in the image domain to
a single point in the Hough domain. The Hough domain parameters are the
same as those of the Radon and Trace transforms. In fact, the application
of the Radon transform to an edge map would yield the Hough transform.
The difference can be thought of theoretically as follows: the Radon transform
maps a point in the image domain to a shape in the parameter domain, whereas
the Hough transform maps a shape in the image domain to a point in the
parameter domain. To clarify this, it is suggested that each point in the

image domain “votes” for the parameters that correspond to all the lines that
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pass throngh it. While the theory is different, the manifestation is the same.
Computationally, the Hough transform can be more efficient than the Radon
transform, as it only deals with edges, so most of the pixels to be considered
are zero-valued. If taken into account in an implementation, this can make the

system significantly faster [Tof96].

3.4 The Trace Transform

After discussing the principles behind the Radon transform, it is now possible
to introduce the Trace transform. Simply, the Trace transform is a generali-
sation of the Radon transform such that any functional can be used in place
of the integral along each line L. The Trace transform is thus a class of trans-
forms rather than a single instance, and the Radon and Hough transforms are
special cases of the Trace transform.

A functional is a function that maps a vector function to a single value, and
requires that function to be defined for all parameter values. With a standard
function, the result is defined on each single point, whereas a functional will
only produce a result from a function that is defined over all points. As an
example [ f(z), maz(f(z)) and min(f(x)) are functionals, since the full set
of values for f(z) must be known for a result to be valid. In the Radon
transform, the functional is simply the line integral; in the Trace Transform,
the functional, denoted by 7'(f(¢)), is not specified, and can be any functional

of one’s choosing. Herein lies the flexibility of the Trace transform and its
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Figure 3.7: Mapping of an image to the Trace parameter domain.

power in recognition tasks. A diagrammatical representation of the domain
parameter transformation is shown in Figure 3.7.

The mathematical definition of the Trace transform is identical to that of
the Radon transform in terms of parameters. Just as with the Radon trans-
form, the Trace domain is defined by parameters (¢, p). Fach (¢, p) point in
the Trace domain is the result of applying a functional, T'(f(¢)), to the line
corresponding to parameters ¢ and p.

It is important to note here that the relationship to the Radon transform
is only in terms of definitions. The properties and relationships to other trans-
forms do not hold for the Trace transform, since each functional is ditferent.
Separate investigations would have to be undertaken to establish the degree of
similarity in these properties, but since the Trace transform is not being used
for the reconstruction problem, properties such as linearity and inversion are
of no concern. It is possible to select a functional that breaks Radon trans-

form properties and yet shows effectiveness when used in a Trace transform

application.
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3.4.1 Triple Feature Extraction

One of the methods by which the Trace transform is employed for recognition
tasks is “Triple Feature” extraction. So far we have observed how the transform
maps an image to another two-dimensional space defined over coordinates
(p,p). Extraction of triple features requires further functionals to be applied
to this result to give single value features. Firstly a functional, called the
“diametrical functional” , P, is applied to each column in turn returning a
vector in ¢. Finally, a functional called the “circus functional”, ¢, is applied
to the vector, returning a single value result called the “triple feature” [KKPO1].
These steps are shown in Figure 3.8.

Triple features are thus single numbers that characterise the image in some
way. At first, this seems like an excessive reduction of an entire image space
to a single value. However, the strength of this approach lies in selecting
multiple functionals at stages 7', P and ® of the feature extraction process.
[f Ny functionals are used for the trace functional (7), Np functionals are
used for the diametrical functional (P) and Ny functionals are used for the
circus functional (@), then a total of NpNpNg triple features can be extracted.
Taking these triple features together can allow for complex characterisation of
a scene.

It is expected that not all of these triple features would play a part in char-
acterising the image, however given sufticient data with regard to the specific

application and a wide array of functionals, it is possible to hone a selection
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Figure 3.8: An image, its trace, and the subsequent steps of triple feature
extraction.

of functionals that effectively characterise the required property for a specific
application. In [KP03, PKO04], the authors show a system which employs func-
tionals that yield triple features that are robust to affine transformations. In
[KP06], features are constructed that are able to deduce the affine transforma-

tions that affect the target image.

3.4.2 Selection of Functionals

When the Trace transform is used for image recognition tasks, the require-
ment is typically to identify matching objects, subject to some distortions,
including translation, rotation, scaling, affine transformations, and even some
minor non-linear deformations. To achieve this, appropriate functionals must
be selected for T', P and ®. Petrou and Kadyrov detailed the theory behind se-

lection of these functionals in [PK04]. It is clear, intuitively, that certain types
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of functionals at different stages can yield robustness to certain distortions.
Consider a rotation in the original image: this would yield a horizontal shift
in the Trace image. Thus a suitable function selected for & could cancel this

effect on a triple-feature. More complex transformations can also be analysed

in this way.

3.5 Trace Transform Applications

The Trace transform, despite its relative novelty, has been applied to a wide
range of different image analysis applications. When considering the flexibility
inherent in the algorithm, it is clear that it can serve a purpose in many dif-
ferent fields. Since functionals can be selected according to their performance
for a particular task, the end result is an effective and accurate system. In
this section, various existent applications of the Trace transform are briefly

presented.

3.5.1 Image Database Search

The primary application that was used by the proposers of the Trace transform
to show it effectiveness was an image database search system [KP01]. An
image is selected from a database containing different subjects, then some
transformations are applied. This distorted image is then used as the search
subject. By applying triple feature extraction to the subject and comparing

the results to the features stored for each of the images in the database, an



; o b #
m‘x ﬂ’““%‘m«{‘ < : 4
B ¢ e v 2 g
“45.80 46.93 47.83
- o
.‘“\- ol T Y Q!T':’&'&( .m
',4' o -'&’f N - T =
TR 59.95 60.2
M oy e d
17.19 N 43.99 47.56 @775
M{:ﬂ“\{
V7 fis
¥ 28.64 TR T

Figure 3.9: Examples of queries to the image database and the first five
matches returned for each [KP0O1]. © 2001 IEEE.

attempt is made to find the correct match. Varying the distortion applied
to the subject allows investigation of the algorithm’s robustness. Figure 3.9
shows queries to the database that have been distorted by random amounts of
translation, rotation and scaling, and the first five returned matches for each.

In [KPO01], the authors construct five sets of invariant features for each of 94
images in a database containing pictures of different fish. An image is selected
from the database, then distortions such as rotation, scaling, translation and
the addition of noise, are applied. This distorted image is then made the
subject of a query. The five triple features are extracted for this query image
and compared to the values stored in the database. The values that closest
match indicate the matching image. Scale factors down to 0.6x, along with
random rotation and translation, return the correct image within the first five
returned results, the vast majority (88%) being returned as the first match,
even in the worst case. Additive Gaussian noise within the object was also
shown to be tolerated very well, even in the presence of scaling, rotation and

translation. Experiments with “salt and pepper” noise gave similar results.
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However, the addition of noise to the whole image (i.e., outside the object
outline) had a highly detrimental effect on the performance of the algorithm.
This leads to an important conclusion: that the Trace transform, when used for
object recognition tasks, must be preceded by some sort of object segmentation
step.

In [PKO04], this system is extended, and further experiments are conducted
in the presence of the full set of affine transformations as well as non-linear
deformation and occlusion. A Trace transform system is shown to be immune
to affine transformations, outperforming standard moments-based methods.
In the presence of noise within the object, the Trace transform becomes far su-
perior to the other methods. The experiments are then carried out with query
subjects that have non-linear deformations and illumination changes applied
alongside the affine transformation. The Trace transform shows robustness,
even in the presence of moderate amounts of these distortions. Furthermore,
it. degrades gracefully as opposed to the rapid breakdown in the case of the
moments-based approaches. IFinally, the test is carried out for query subjects
that are partially occluded, or have a text label attached. Again, the Trace
Transform shows robustness as long as the distortions fall within the outline
of the object.

A slight variation is presented in [KP03|, where circuses are used instead
of triple features; the last step of triple feature extraction is not carried out.
The results of applying the first two functional types is a polar plot of the

circus functional which is used as an object signature. Matching is achieved
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by correlating the signatures of the query subject and the elements in the
database. This method is tested for occlusions and found to outperform the
standard moments-based approaches.

A number of other image recognition applications along the same lines have

also been implemented [TZFO05, STZ05].

3.5.2 Token Verification

In [KPO1], the Trace transform is applied to token registration. This task
consists of comparing a 2D object to a reference. The test object has undergone
some rotation and translation, and these parameters must be recovered in order
to allow for an aligned comparison between the two. By selecting sets of 7T,
P and @ functionals that were sensitive to each of these transformations, a
system was developed that could extract the parameters accurately. Even in
the presence of noise, the system was robust. Again, noise introduced outside

the object outline significantly degraded results.

3.5.3 Change Detection

Also in [KPO01], the authors apply the Trace transform to change detection.
The idea is that some changes that one seeks to monitor can be thought of a
change in texture. The example used is that of a car park, where one may wish
to monitor the level of activity, characterised by the number of parked cars.
Rather than counting blobs, an aerial photograph of the car park, as shown in
Figure 3.10, is regarded as a texture and a large number of triple features are
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Figure 3.10: Aerial images of a car park with varying degrees of activity. By
identifying triple features that correspond to the level of activity, a set that
accurately characterises activity can be found[KP01]. © 2001 IEEE.

computed for each of these training images that show the car park in various
different states of activity. By finding those triple features that correlate with
the level of activity, one can then take any image of the car park, extract
the same triple features, and give an accurate conclusion as to the level of
activity in the image. In this sense the Trace transform is used to construct a
huge number of features, which are then whittled down to the few that, from

observation, characterise the required property.

33



3.5.4 Face Authentication

[n [SPKKO03, SPKKO05], the authors develop a face anthentication system using
the Trace transform. The principle is to compare a candidate face to a face
stored in the database and determine whether it is a match. Such a system
must be robust to some changes in illumination, facial hair, expression, and
other changes that may occur to a subject’s face between two separate occa-
sions. In this implementation, only the first stage of the Trace transform is
used, that is the application of the 7" functional. This yields a two-dimensional
Trace image defined over parameters (¢, p), as detailed earlier. As with most
authentication systems, a training phase is used to derive the recognition pa-
rameters which are then used during authentication.

In order to compare the trace image of a candidate face with that of a
reference in the database, two separate methods are employed. The first is
the Weighted Trace Transform (W'TT). In the WTT, training images of the
same person are compared and wherever the values in the trace image differ
between all training images by less than some threshold, a weight matrix,
W{(p,p) is set to 1. Elsewhere it is set to 0. This matrix defines the points
that most characterise this individual face, since they vary the least from one
pose to the next. This matrix is used to select pixels in the candidate image
to compare to the source image. By looking at the overall level of matching
between the two in the positions defined by the W matrix, a confident match

can be determined.
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The second method used in this implementation is the Shape Trace Trans-
form (STT). Again, trace images are extracted from a candidate image, how-
ever instead of matching trace images directly, a shape is extracted from the
trace for comparison. This is done by thresholding the image according to
some pre-computed threshold then applying edge detection. The resultant
shape is then compared to the shapes for faces in the database using a novel
measure they propose called the Hausdortf Context based on the Hausdorff
Distance [HGR93]. The steps involved in this process are illustrated in Fig-
ure 3.11. A match in the shape indicates a match of the corresponding faces.
In order to compute the thresholds for both the WTT and STT, reinforce-
ment learning is used, which uses results from previous matches to improve
the threshold with each iteration.

The two classifiers mentioned above are combined to create a system that
outperforms many other face authentication algorithms. It is worth noting
however, that the STT contributes the most to the performance of the system.
The WTT only adds a very marginal improvement in performance, and in
isolation performs poorly. In [MKST03], the performance of a system based
solely on the STT is compared to seven other face verification algorithms and

outperforms them all.



Face Trace Tr. Thresholding Shape Extr'n

Figure 3.11: The Shape Trace Transform for face authentication. Two faces
with different poses, (a) and (b) belonging to the same individual, and another
face, (¢), of a different individual. The shapes extracted show a match for
the same person and a distinct difference for the odd face. Generated using
MATLAB as per the system described in [SPKKO05].
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3.6 Computational Complexity of the Trace

Transform

One issue with the Trace transform is that of computational complexity. In
this section, a thorough investigation of the algorithm’s computational com-
plexity is presented. This analysis is used in Chapter 4 to develop a hardware
architecture that implements the Trace transform. To investigate this, it is
first necessary to understand the parameters that are controlled in any imple-
mentation.

Firstly, a fixed sampling density of angles can be considered, n,; one could
consider angles down to a one degree accuracy or lower, or alternatively choose
a coarser sampling. The amount of information carried over to the Trace
domain clearly depends on this parameter. Secondly, it is possible to sample
an arbitrary number of lines, n,, per angle. Again this has a bearing on the
accuracy of the transformation. For an N x N image, an inter-line distance of
a single pixel may be required, so n, would have a maximum valne of V2N (for
a diagonal line). Since each line maps to a single point in the (¢, p) domain, an
image transformed with the above parameters will yield a trace of size ng x n,,.
Another parameter that can be varied is the sampling granularity along each
line, or more intuitively, the number of samples taken into account for each
line, n,. If the requirement is to read every pixel along each line, then the
maximum value of n, is also V2N. This will not affect the density of data in

the parameter domain but will affect the accuracy of the results of applying
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Parameter Explanation

Ty the number of angles to consider

Ty the number of distances (inverse of the interline distance)

ny the number of points to consider along each trace line
Ny the number of Trace functionals

Np the number of diametrical functionals

Ng the number of circus functionals

Cs the operations required for trace line address generation
T the average operations per sample for each 7" functional

Cp the average operations per sample for each P functional

Co the average operations per sample for each @ functional

Table 3.1: Trace transform computational parameters
the functional along the line. Algorithm 1 shows a pseudo-code version of the
Trace transform. Other parameters referred to in this section are shown in

Table 3.1.

Algorithm 1 Trace Transform Algorithm
for func= 1 to Ny do
for p =0 ton, —1do
for p=0ton,—1do
fort=0ton,—1do
process pixel using func
end for
store result for (¢, p) point
end for
end for
store result for func
end for

There are two main steps in computing the Trace transform. The first is to
extract the necessary pixels from the source image, given values (¢, p) and the

second is the actual computation of the Trace results. For each of n, angles
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and n, lines per angle, let ', represent the number of operations required to
compute the pixel addresses for a line. To compute each of Np functional
results, n, points on each of the n, lines for each of the n, angles must be
processed. If C'p denotes the number of operations required on average per
pixel per functional, then a total of nyn,n,NrCp operations are required to
compute the traces for an image, while ngn,C', operations are required for the
line extraction.

If triple features are to be extracted, then for each of the Np diametrical
functionals, n, points must be calculated at a cost of C'p operations per point.
This must be applied to each of the Ny trace images produced in the previons
step. Finally, Ng circus functionals must be computed on n, points at a cost
of Cy operations per point. This is applied to each of the Ny Np vectors from
the previous step.

This gives a total number of operations of

neNpCy + NNy NpCr + ngny Ny NpCp + ngNrNpNgCo (3.10)

For an N x N image, these parameters may take values as follows: n, = 180,
n, >~ N and n; =~ N. Ny, Np and Ng could take values of 10 each. This would
P

give a total computation complexity of

180N Cy + 1800N*Cp + 18000N Cp + 180000C. (3.11)
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It is thus clear that the complexity of computing the line coordinates and
the diametrical functionals are linear with respect to the image size. The
complexity of the circus functionals is independent of image size. Meanwhile
the first computation step — computing the trace images — is quadratic with
respect to image size. For N = 10, all three functionals consume equal pro-
cessing power. For more realistic image sizes of over 100 x 100 pixels, the trace
computation step dominates the processing requirements.

The amount of time taken for Cy and C7 would depend on the implemen-
tation; in hardware, it might be possible to do these operations more efficiently
than in software. Furthermore, by parallelising in the number of angles (n,),
the number of lines (n,) and the number of functionals (N7), the total run-
time can be reduced significantly. The key to accelerating any algorithm in
hardware is to identify the inherent parallelism then exploit it in the design.
By harnessing this parallelism, the algorithm could be accelerated to run in
real-time. Given the pseudo-code presented, and these parameters, it is clear
that there is significant parallelism in ¢, p, and Np

siven these results, it is clear that accelerating the first step, that of trace
image generation holds the key to significant speedup. Couple this with the
fact that some applications do not require the extraction of triple features
and it is clear that this step is most important when it comes to hardware
acceleration.

[t is also important to note that the Trace transform functionals can in

themselves be very complex. While a Radon transform will just use the sum
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of pixel values, the Trace transform can apply a variety of mathematical func-
tions. Table 5.2 in Chapter 5 shows the functionals used in a face anthentica-

tion application, and shows the typical complexity to be expected.

3.7 Related Hardware Implementations

The work presented in this thesis and in [FBCLO6] and [FBCLO7] is the first to
deal with hardware implementation of the Trace transform. The most closely
related work is that which deals with the Radon transform and so that is what
will be considered here.

In [SCHA92], a system based on four parallel DSP processors for computa-
tion of the Radon and Inverse Radon Transform is presented. The parallelism
of angles is exploited to increase performance. Different interpolation tech-
niques are compared, and while Linear Interpolation is shown to be slower
than Nearest Neighbour, it is chosen due to the increase in quality.

In [BY92], the authors use progressively larger line segments to approxi-
mate the line sums, thus significantly reducing processing time. The authors of
[FVS05] further develop this algorithm, presenting a hardware implementation
that can process 21 512x512 pixel frames per second.

In [S194], the presented implementation first maps an image to the Polar
coordinate system, then uses this to transform it to the Radon domain. The
system only deals with binary images. The authors also suggest parallelisation

in the angles.
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[n [MBO4], the anthors make use of the Radon transform’s relationship
with the Fourier transform. Using efficient implementations of the FEF'T and
[FFT, they are able to accelerate computation of the Radon and inverse Radon
transforms.

Finally, in [CA05], the authors present two architectures for the acceleration
of the Finite Radon Transform. They mention the clear distinction between
the Finite Radon Transform and the Discrete Radon Transform. The theory
is thus distinct.

There are a few important notes to be mentioned, that preclude much of
this previous work from being useful in regard to the Trace transform. Firstly,
Radon transform implementations assume the function to be applied to each
line is a sum. For the Trace transform, this is clearly not the case, so ideas such
as partial results and the summing of line segments (as in [FVS05]) cannot be
applied. The work in [SI94] actually links closely to the idea of using rotations
instead of line extractions that will be shown in the next section. Furthermore,
the Trace transform does not retain the mathematical properties of the Radon
transform nor its relationship to other transforms, hence work such as that in

[MBO04] cannot be adapted for a Trace transform architecture.

3.8 Summary

Having discussed the Trace transform in depth, it is clear that it is a very

powerful tool in the domain of computer vision. It has shown excellent per-



formance in a wide range of different application domains and its flexibility
suggests that it could be used in many more. The computational complex-
ity of the algorithm is an issue though, and applying the algorithm in real
time presents a challenge. The algorithm can be thought of as a fusion of two
stages. Firstly, there must be some mechanism for extracting lines of pixels
from an image. The next part is more complex, and perhaps the core of any
implementation; the functionals. Key to the algorithm’s wide array of uses is
the flexibility in selecting functionals. Furthermore, the functionals are math-
ematically varied and often complex. With these two attributes in mind, it is
clear that hardware accelerations using FPGAs is ideally suited to implement-
ing the algorithm. Hardware acceleration would involve in-depth acceleration
of the functionals as well as introducing some degree of flexibility, something
which FPGAs are very suited to. A hardware implementation of the Trace
transform would be applicable to the Radon and Hough transforms as well,
and so be useful for any transform in this class.

Significant acceleration would allow not just fast runtime in a specific ap-
plication, but also a more thorough method for finding applicable functionals.
By offering significant acceleration and a wide array of functionals through a
generalised, flexible framework, the designer is free to search a large functional
space to find those functionals that offer the best performance for any given
application.

Chapter 4 deals with the development of an extensible hardware implemen-

tation of the Trace transform that achieves real-time performance. Chapter
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5 deals with introducing flexible functionals that can be used to explore the

algorithm’s performance in a wide variety of application domains.
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Chapter 4

A Hardware Architecture for
Trace Transform

Implementations

4.1 Introduction

In Chapter 3, the Trace transform was introduced along with a discussion of
some of its applications, and the computational issues associated with imple-
menting the algorithm. This chapter investigates how the Trace transform can
be accelerated in hardware and propose an extensible architecture that offers
significant speedup over software implementations. By investigating the algo-
rithm and its computational requirements, a hardware implementation can be
created, that provides for significant acceleration. Field Programmable Gate

Arrays (FPGAs) bring new opportunities to digital circuit designers, simpli-



fying the hardware design process while allowing for rapid prototyping and
testing.

The Trace transform has thus far been applied primarily to images. Fur-
thermore, investigation of functionals has been somewhat limited. By accel-
crating the algorithm in hardware, and achieving real-time performance, the
algorithm could be applied to video sequences too. Acceleration would also
open the door to examining a large set of different functionals as applied to
different target applications.

[n this chapter, a hardware implementation of the Trace transform is pre-
sented. A discussion as to the different aspects of hardware acceleration is
presented, coupled strongly with a consideration of the appropriate use of het-
erogeneous FPGA resources. A complete implementation with three function-
als is evaluated in terms of speed and area requirements. The implementation
presented here achieves a significant speedup of 75x over an equivalent soft-
ware implementation for three functionals. Part of the work detailed in this

chapter has been published in [FBCLOG].

4.2 From Algorithm to Architecture

As mentioned in Chapter 2, accelerating an algorithm in hardware is usually
approached from two facets. The first is to efficiently implement the complex
computations in the architecture such that they can be computed at high

speed, forgoing the need for splitting up such instructions as is typical for
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soltware. The second is to exploit parallelism: where a set of instructions must
be computed numerous times, while iterating over a parameter, a hardware
implementation can implement multiple iterations in parallel. This chapter
will deal with exploiting the algorithmic parallelism inherent in the Trace (as
well as Radon and Hough) transform, and the design of a real-time hardware

system for this class of transforms.

4.2.1 Partitioning into Blocks

As alluded to in the previous chapter, the Trace transform consists of two
fundamental building blocks. The first of these takes values of ¢ and p as
an input, and returns the pixel intensities along the corresponding line. The
second part takes these pixel intensities and applies some functional to them to
produce the Trace image. The first part is common between the Trace, Radon
and Hough transforms, while the second part is more general and incorporates
the facility to compute all three!.

In a hardware architecture, other blocks deal with dataflow and control;

these are detailed in the next section.

"The only difference between the Hough and Trace transforms is that the source im-
age in the case of the Hough transform is an edge-map. Since, the result of applying the
Radon transform to an edge-map is equivalent to the Hough transform, the names are used
synonymously in this thesis.
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4.2.2  Exploiting Algorithmic Parallelism

dd

The discussion on computational complexity in Section 3.6 gives an idea as to
the areas of parallelism in the design. It concludes that the most significant
speedup is to be gained by accelerating the Trace image generation as opposed
to the subsequent steps of triple feature extraction. As shown in the afore-
mentioned section, the total computation complexity of the algorithm is given

by (3.10), reproduced here:

ngnpCo + ngnpni NrCr + ngnp Ny NpCp + ngNpNpNg Cy,

The last two terms are less significant for images of standard size, and not
used in all implementations, and so can be ignored. It is clear that there are
multiple candidates for parallelisation. Firstly, a system can be developed that
extracts lines for multiple values of ¢ simultaneously. Similarly for values of p.
Finally, computing multiple of the Ny functionals in parallel would also yield
a significant speedup. For the moment, C', the per-pixel cost of functional
computation, is ignored. The intention is to design all the functionals with
as high a throughput as possible. This is achieved by fully pipelining the
functional blocks. This means that they produce a result in cach cycle, and
thus run as fast as the full system allows. By designing in such a manner,
functionals with different computational requirements do not adversely affect

the performance of the overall system.
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4.3 The Target Hardware

The target platform for this implementation is the Celoxica RC300 Develop-
ment board [Cel]. This is a widely available board that hosts a Xilinx Virtex
II XC2V6000 FPGA, alongside a vast array of peripherals. The only other
components of interest for this implementation are the on-board pipelined
ZBT SRAMSs - there are four 8MB chips - and the USB connection to a host
computer. The RAMs can be accessed in pipelined mode, accepting a sin-
gle read or write instruction per cycle and are 36 bits wide. The Virtex 11
FPGA on the board has a large logic capacity as well as providing 144 hard-
wired multipliers and 144 18Kb BlockRAMs. The system was designed and
implemented using Celoxica Handel-C, a high-level C-syntax based hardware
description langnage [Cel]. As mentioned in Chapter 2, high-level languages
such as Handel-C allow the designer to write mostly standard C and compile
it to an FPGA design. However, the key to exploiting the full power of the
FPGA in a design is to write the Handel-C code in a manner that suits the
hardware implementation. As such it is important to design the architecture
conceptually, rather than attempt to make small modifications to a software

version of the algorithm.
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4.4 Hardware Architecture

4.4.1 System Framework

Before discussing the details of the hardware implementation, it is necessary
to look at the overall system in its constituent parts, as shown in Figure 4.1.
A host PC captures image data by way of a standard USB camera. The image
data is pre-processed, including resizing and grayscale conversion, before being
sent to the development board via a USB interface. The image data is stored
in one of the on-board SRAMSs before any processing occurs. As each frame
becomes available in the SRAMs, the FPGA reads the frame and computes the
results. These results are stored in another SRAM, from which the result is
transmitted back to the PC, again via the USB interface. On the PC, the data
is reorganised and used in the subsequent processing steps of any overall vision
system. Hence the crux of the hardware implementation deals with the data
between the input and result RAMs. (The FPGA is actually used to control
the communication with the PC as well as the data reading and storage.)

A Top-Level Control block oversees the communication between separate
blocks and ensures synchronisation. The Rotation Block reads an input image
from the on-board RAM and produces a rotated copy at its output. Each
Functional Block takes the pixels in this rotated image and uses them to com-
pute the relevant results for each line crossing the image at that angle. This
is the first example of parallelism in the design; these functional blocks work

in parallel thus producing all their results in the time it would normally take
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to produce a single functional result. Further parallelism will be examined in
subsequent sections. Finally, an Aggregator Block reads the results from each
functional in turn and outputs them serially to the result RAM.

The host PC sends the image data, frame by frame to the image RAM on
the board. The FPGA reads this image data from the USB port and selects
a RAM to write the image to. The RAMs are double buffered to increase
performance. This means that while an image is being loaded into one RAM,
the other RAM in the pair is being used for calculation. When one calculation
cycle is completed, the roles of the RAMs are swapped. The rotation block
produces rotated versions of the original image with angles increasing by 2° per
iteration. This increment can be modified as required for an implementation.
The reason for selecting this value, was to attempt to retain a similar amount
of information in the trace domain representation as in the image domain.
This results in a mapping of a 256¢x256 pixel image to 256 x 180 points in the
transform domain.

The functional blocks read the resultant stream, keeping track of the row
beginnings and endings, and passing the results for each row to the Aggregator.
Jach row corresponds to a single line across the original image. Once the
calculation of all lines for all rotations is complete, and the results stored in an
output RAM, the host PC reads from this RAM, while the system writes the
next set of results to the other output RAM. The results can then be extracted

and organised on the host PC for further processing,.
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4.4.2 Top Level Control

The Top-Level Control block oversees all the other blocks. It initiates the
rotations and ensures that each new rotation is synchronised with the com-
pletion of results calculation for the previous rotation. It also manages the

double-buffering of the external RAMs.

4.4.3 Rotation Block

Conceptually, the first step in the algorithm is a line tracer: a block that takes
a (¢, p) value and produces the coordinates of the relevant pixels in the source
image. These coordinates are then used to extract pixel intensity values from
the source image, stored in off-chip RAM. It is worth noting however, that to
compute a trace, all values of (¢, p) must be used, hence, the whole image is
traced for all angles and at all distances from the centre. Bearing this in mind,
a simplification can be made that makes for a more efficient implementation.
Rather than iterate over values of ¢ and p, it is possible to rotate the whole
image by an angle § and sample pixel values along the horizontal rows in that
rotated version. This would be equivalent to computing all the trace results
(all values of p) for a fixed value of ¢ = 90 — 6. This equivalence is illustrated
in Figure 4.2.

It is necessary here to mention an important caveat. When rotating an
image, some parts of the image fall outside the original boundary of the source

image. The rotated version must either be larger than the source image, to
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(a) (b)

Figure 4.2: Rotating an image then reading across its rows can replace the

address generation required for extracting line pixels. The line shown in (a) is
equivalent to the row of the rotated image in (b). The shaded area shows the
part of the image that will fall out of the image frame for some rotations, and
so must not contain an area of interest.

accommodate this extra information, or else the information is lost. An equiv-
alent amount of empty canvas is also introduced from areas “underneath” the
image that become exposed. If a square image of size NV x N is rotated through
all angles from zero through 360°, then only the portions of the image that
fall within a concentric circle with diameter N would be present in all possible
rotations. This is also shown in Figure 4.2. It is worth recalling, as mentioned
in Chapter 3, that the Trace transform has only been shown to perform well
with masked images in the presence of noise [KPO1]; since the lines that trace
the image may include part of the background too, a lack of masking would
allow the background to contribute significantly to the functional results. Due
to this fact, it is necessary for the object of interest to be masked; that is, that
a binary overlay be present that determines whether or not the corresponding

pixel in the image is used in calculations. It is thus a fair assumption for this



system to require any object to fall within the aforementioned area and to be
masked appropriately.

To understand why the change from line extraction to rotation simplifies
the system, consider first the initial approach. A block would be required that
takes a (¢, p) value and outputs a vector of addresses. To do this, cach line must
have a starting point (which must be computed), that may well fall outside the
image coordinates. A counter must then be incremented for both image axes
and coordinates that fall outside the image must be discarded. The lines will
vary in length, and so, some way of tracking the position of the perpendicular
to the centre is needed. Furthermore, some way of tracking the correct (¢, p)
values for each line is required, since each line is extracted independently. Due
to the variation in line lengths, there is the added problem of reading from
the image RAM inefficiently. Alignment of vectors to take account for the
gaps in between readings would also be necessary. A detailed description of
the varions parameters required to implement the line extraction in this way
is given in [MXS07].

Now consider the approach where the whole image is rotated. Fach rotation
produces a set of all p values for the given rotation (note the offset mentioned
above). Since the resultant rotated image is produced in raster scan format,
there are no timing gaps, and the vectors are all aligned. This means that no
further logic is required before reading from the source RAM. Dealing with a
fixed line length of N also simplifies tracking of the p values in the functional

blocks, since this is simply the row number in the rotated image (again there
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is an offset). Once a rotation has been completed, the source image is again
rotated by a new angle, and this produces the vectors for another value of ¢
and so on. This technique simplifies the system significantly and allows for full
pipelining of the architecture.

The Rotation Block thus takes an angle as its input and produces the raster
scan of the source image rotated by that angle at its output. The source image
is read out of order, and since the output is in order, there is no need for image
buffers or further logic, since all addressing is inherent in the data.

So far, this modification has dealt with data handling. To fully harness the
power of hardware implementation, it is also worthwhile to look at exploiting
parallelism in the algorithm. Since results for one angle, ¢, are in no way
computationally related to other values of ¢, the algorithm could be said to
be independent in ¢. Hence a number of parallel angles could be computed,
equal to the number of angles considered. It is however necessary to consider
datapath limitations. Three possible methods of parallelising rotations are
depicted in Figure 4.3.

For each rotation that occurs in parallel, separate accesses would be re-
quired to the source image, due to the out of order access imposed by the
design specified above. Hence, multiple copies of the image in separate RAMs
would be required, each addressed by separate rotation engines. Since the
board RAMs on the target development board only provide single port access,
this would mean that each rotation engine would need its own board RAM.

Given that there are only four RAMs on the board and two of them are re-
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Figure 4.3: Three methods for parallelising rotations. In (a), separate rotation
engines run in parallel. In (b), each line is stored in a line buffer and read in
both directions. In (¢), four orthogonal rotations are concatenated, and thus
each iteration of the rotation engine gives four different rotations of the source
image.

served for the results, this is not feasible. Another way to parallelise rotations
is to read each line into a line buffer, then read that buffer from both ends
independently. This would give the lines for both (¢, p) and (¢ + 180°, —p)
simultaneously.

There is however, another way of enhancing performance even further.
Consider that any rotation by a multiple of 90° is simply a rearrangement of
data (or alternatively a reassigning of axes values); this is easily implemented in
software. It is also clear that a rotation by any (positive) angle, @, is equivalent

to a rotation by some multiple of 90° plus the remaining angle. Formally:

6 = [0/90°] x 90° + 0 mod 90°. (4.1)

As an example, rotation by 212° is equivalent to rotation by 180° followed
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Rotation % Y

0° T i
90" Y N -z
180° N—-—x N-y
270° N-—y z

Table 4.1: Base orthogonal rotation coordinates, for an N' x N image.

by a further rotation by 32°.

This fact can be exploited in order to parallelise rotations as follows. The
source image is a standard 8-bit greyscale image. The external board RAMs
are 36-bits wide, and hence, storing a single image is a waste of the available
wordlength. Instead, what can be done is to store the four orthogonal base
rotations (0%, 90°, 180° and 270°) concatenated in a single RAM word. Since
the host computer can easily construct the other three rotations from a stan-
dard image, there is no real computational cost to be considered. Table 4.1
shows that any orthogonal rotation can be obtained with no more than simple
calculations that can be performed extremely fast on a host PC.

Now when a rotation by angle 0 is carried out, the RAM word that is
output can be spliced to give the relevant pixel for the rotations by 6, 6 + 90°,
0 + 180° and 6 + 270°. This effectively quadruples performance with only
minimal impact on rotation block area. The area impact is only as a result of
increasing the size of the registers.

A new rotation is complete every 65,536 cycles plus a few cycles used to
fill and flush the pipeline. With a rotation angle step size of 2°, 180 rotations

are needed for a full set of results. Since 4 rotations are computed in parallel,
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Figure 4.4: Structure of a single word in external RAM.

the actual number of rotation operations is 45. Hence, assuming a rotation
latency of 65, 560 cycles (to include the margins mentioned above) a full set of
rotations is complete in just under 3 million clock cycles.

The construction of the orthogonal rotations occurs on the host PC, and
only once per frame. While this takes 4 x N? reads on the PC (ignoring
the effects of caching), the resultant concatenated image is rotated 45 times
instead of the the 180 that would be needed for a standard image, in order to
construct a full trace. This saves over 9 million cycles per trace, at a cost of
3 x N? extra cycles on the PC (for which cycle times are much shorter). Hence
the overhead is minimal.

Since all images are also masked, the four mask rotations are also stored in
the RAM. With four 8-bit image words and 4 1-bit masks, the total wordlength
is 36-bits which matches the RAM perfectly. The makeup of a single RAM
word is shown in Figure 4.4. Loading an image onto the board over USB
requires the data to be sent in single bytes, this means a 256x256 pixel image
takes 256 x 256 x 5 = 327,860 cycles to be transferred from the PC to the
board RAM.

In order to compute the rotations, the system proceeds as follows. The
input angle is used to address sine and cosine lookup tables (stored in Block-

RAMs). The resultant values are then used to compute the standard Cartesian
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rotation equations:

' =xzcost) —ysinf (4.2)

"= xsinf + ycosd (4.3)

=
|
|

The calculations are carried out using 8-bit fixed-point calculation. Nearest
neighbour approximation is used whereby each sample point takes the value
of its nearest pixel; this avoids the more complex circuitry and scheduling
required for bilinear or bicubic approximation. The result is that a complete
rotation of an N x N image is complete in N? clock cycles.

The 2 and y coordinates obtained from this computation are used to read
specific pixels from the source image in off-chip RAM. Recall that these source
pixels are in fact a set of four concatenated orthogonal base rotations. When
one of these concatenated “pixels” is read, it is spliced into its four separate
parts and each of those is used to build a separate rotated image. This means
that in N? cycles, 4 separate rotations have been completed.

The resultant rotated images stream through the system in raster scan
format. This is where each row is transmitted, one pixel at a time, followed
immediately by the next row and so on. This makes the subsequent blocks
simpler since there is no complex buffering or ordering to be considered. By
parallelising rotations in this way, the rotation engine now only needs to iterate

Q

44 times (for a 2° step size) for a full set of rotations, as opposed to the 178

iterations originally needed.
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The overhead imposed by this method of parallelising is primarily at the
host PC. Rather than sending an image directly requiring a single read from
memory and a single USB write, the system must now read from memory four
times for each pixel, transmit four bytes rather than one, hence four times
the amount of image data is transferred over USB. This overhead does not
affect the performance of the system, however, as it is done in parallel with

the system processing a frame.

4.4.4 TFunctional Blocks

The actual computation of results for the Trace transform occurs in the func-
tional blocks. Each block must process the output of the rotation block, com-
puting the results of the appropriate calculation applied to each row of input,
and then pass this result on to be stored in the result RAM. A few aspects of
the implementation should be noted here. Firstly, the input to the functional
blocks is the raster scan of the rotated image. To assist in keeping the data
aligned, a “new row” signal is also passed by the rotation block. FEach new
rotation is processed independently, so there is a short gap in processing be-
tween subsequent rotations. This is needed to allow for functional blocks with
different latencies to process the correct data at the same time.

Secondly, recall that the output of the rotation block is four orthogonal
rotations rather than one. Each functional block therefore splices this data
and computes results for each of the four rotations independently. This means
that all the computation datapaths and registers are duplicated four times.
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The control circuitry is kept combined for compactness and synchronisation
purposes.

Finally, it is important that each functional block malkes use of the mask
associated with each pixel to decide whether it is used in the calculation. Re-
call that masked-out pixels are ignored in the Trace transform. The three
functionals presented here do not rely on the position of input pixels for com-
puting the result. However, a counter is maintained that keeps track of the
position in the row while it is being processed. This serves to mark the end of
cach row.

When the results for each row are ready, they are passed in parallel to an
output buffer and a “result ready” signal is passed to the Aggregator which
deals with storing the results to off-chip memory. Since the board SRAMs
have a 36-bit wordlength, the widths of the datapaths are tailored to ensure
that the final result fits within this limit. In the case of the three functionals
presented here, the range of results fits with no need for any scaling. Where
some scaling is required, the impact on accuracy must be considered.

In developing this extensible architecture, the three functionals shown in
Table 4.2 were implemented as a proof of concept. They were built fully
pipelined, such that they could be changed without impacting the timings of
the whole system. In Chapter 5, a framework for developing flexible functionals
to replace these ones is presented.

Details of the design for cach of the functionals are shown below. The “D”

blocks in the diagrams are registers. The “Store” block is activated at the end
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No. Functional

U T(f(6) = g J)
2 TUW =X, Fol
3 T(f(t) = [Z;}' \/If(t)l]

Table 4.2: Trace functionals used in this implementation.

of each line, storing the final result for that functional.

Functional 1

This is the simplest of the functionals, summing all the pixels in each trace
line. The Trace Transform using this functional is the equivalent of the Radon
Transform. The corresponding equation is shown in (4.4). Figure 4.5 shows

the schematic diagram of the design.

N

T = () (4.4)

endline = res_ready
I '
EN
R
ixel[7:0 15:0 rowresuli[15:0
pixel[7:0] J [ [onsumi1sol gy oo [15:0]

Figure 4.5: Schematic diagram of Functional 1.
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Functional 2
This functional sums the absolute differences between adjacent pixels in each
trace line. The corresponding equation is shown in (4.5). Figure 4.6 shows the

schematic diagram of the design.

%
T(f(t) = D IF'®) (4.5)
0
endline l @ res_ready>

D rowsum([15:0] Store rowresult[15:9]

pixel[7:0] D pixdel[7:0] I labsdiff]?:O]@J

Figure 4.6: Schematic diagram of Functional 2.

Functional 3

This functional is the square of the sum of the square roots of the pixels in each
trace line. The square root was implemented using a lookup table since the
pixel intensities are only 8 bits wide. The square operation was implemented

using the embedded multipliers. The corresponding equation is shown in (4.6).
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Figure 4.7 shows the schematic diagram of the design.

N 2
T(f(1) = | VIS @) (4.6)
0

: —__res_ready
endline l »D] >

EN

D rOWSUfn[1534]‘/x\rowsqr[QS:O] STore rowresult[23:0]

pixel[7:0] | {7 sqrtpix(7:0]

Figure 4.7: Schematic diagram of Functional 3.

4.4.5 Aggregator

The Aggregator polls the functionals in a round-robin fashion awaiting a “new
result” signal®. When received, the aggregator proceeds to store the four results
from the current functional in a serial manner. This is done to avoid having
a large data bus between each of the functionals and the aggregator. Since
there is only a new result every N cycles (256 in this implementation), there is
sufficient time to read each result from each functional in series. The results
are stored in an on-board RAM addressed using a concatenation of functional

number, rotation and row number. The contents of this RAM can then be read

Tt is preferable that the polling is ordered such that the functional that finishes first is
the first polled. This would provide the most efficient use of the storage time window.



by the host PC over USB and the results used in further stages of processing,.

4.5 Platform Considerations

The architecture presented here suits any target hardware platform. While
other development boards do offer more significant throughput to external re-
sources, it simplifies the architecture and control considerably, to limit accesses
to external communication and memories. The system presented is effectively
a block that sits between two memories, processing the contents of one, us-
ing no external communication, save the reading of the data, and storing its
results in another memory. Stream processing is what facilitates the simple
architecture, enabled by the use of horizontal lines from the rotated image,
that stream through the system in order.

The architecture could be synthesised on any of the modern FPGAs avail-
able today. They all contain embedded memories and multipliers. Indeed with
some of the latest devices, the resource usage would decrease, while the speed
would be significantly increased. An important limiting factor that must also
be considered beside the FPGA is the speed of the external memories. In this
implementation, this proved more restrictive than the FPGA itself.

The use of the wide external memories on the development board enables
the parallelisation of rotations in the manner presented. If such resources
were not available, the alternative method of reading a line into a buffer, then

processing from both directions (as shown in Figure 4.3(b)), could be used.
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Alternatively, if more external memories, or memories with more ports are
available, separate rotations engines could be employed to the same effect.
The use of separate memories or multi-ported memories would enable more
than four parallel rotations, while the current method cannot be improved
upon as it stands.

The architecture is in itself efficient and flexible and could be easily modified

to suit a different target platform.

4.6 Implementation Results

This design was implemented on the development board described in Section
4.3 using the Handel-C language and Celoxica DK tools[Cel|. The implemen-
tation instantiates three functionals as detailed above, however, the design is
modular so that adding extra functionals is straightforward. Synthesis resnlts
are shown in Table 4.3. The resultant clock-speed of 80MHz is limited by
the development board libraries used to access on-board resources. This high
speed was primarily due to the fully-pipelined nature of the design. Significant
use of the channel communications provided for in Handel-C' was made.

This clock speed results in a throughput of 26 frames per second for a
256256 pixel image. In comparison, a highly optimised MATLAB equivalent
in software, running on a Pentium-4 2.2GHz, took just over 3 seconds to com-
plete the same calculations on a single frame. This hardware architecture thus

gives over a 75 times speed-up. This acceleration increases with the number
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Synthesis Results

Device Xilinx Virtex [1 XC2V6000-6
Clock Speed SOMHz

Frame Rate 26fps

Slices 2,070 (6%)

BlockRAMs 6 (4%)

Embedded Mults 8 (6%)

Table 4.3: Trace transform architecture synthesis results for the Celoxica

RC300 Development Board.

of functionals, as additional functionals would slow down the software version
while not affecting the speed of hardware implementation. Bear in mind also,
that other functionals can be significantly more complex, and hence the effect
of hardware acceleration can be more pronounced in those cases.

Figure 4.8 shows the system-level timing for the architecture. Consider a
256 x 256 image, so N = 256. In this case, the architecture completes four
orthogonal rotations of the image in 65,536 cycles. Each of these 65,536 pixels
is passed to the functional blocks in order, with a new row starting every 256
cycles. In the last cycle of each row, the functional copies the results for each
of the four orthogonal rotations to output buffers and continues with the next
row. The Aggregator waits for a result to arrive at the first functional. It
takes 7 cycles to store the result for the four rotations into the output RAM,
then it continues with the other functionals in order, storing each of the results
in the external RAM. It is available until the next results arrive, 256 cycles
after the previous ones. Once the last result is stored for a rotation, the

Aggregator instructs the rotation block to start another rotation, and so the
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process continues. Hence, a complete computation of the Trace transform for a
256 x 256 pixel image takes approximately 3 million clock cycles. For a system
running at 80MHz, that results in a throughput of 26 frames per second.

The implementation serves as an extensible architecture for Trace Trans-
form applications. The simplicity of the architecture belies its power. More
functionals can be added with ease. The only theoretical limit is where the
functional result storage latency exceeds the time between successive row re-
sults. Given that for a 256 x 256 image, a new result comes in every 256
cycles, and that each functional result takes 7 cycles to store, this allows suf-
ficient slack in time for 36 functionals. Assuming these functionals are each
optimised and pipelined, they will not affect the overall latency of the system
or its clock speed. The only limitation, then, is the area requirements of the

functionals.

4.7 Summary

By harnessing the inherent parallelism in the Trace transform, it has been
possible to design a hardware architecture that offers a significant speedup of
75 times over software for three functionals. Furthermore, the hardware ar-
chitecture is scalable, able to accommodate the addition of further functionals
without a performance cost. The methods used here are generalisable for the
whole class of transforms including the Radon and Hough transforms. This

is the first hardware implementation of the Trace Transform, and illustrates



the power of a hardware-centric design methodology. The design of this ar-
chitecture was developed directly from an understanding of how the algorithm
works, rather than simply by parallelising the loops in a software implementa-
tion. One of the difficulties in designing hardware is the datalow management;
one must consider, given the constraints of the communication channels, how
to transport data into and out of the system. One must also attempt to circum-
vent the need for intermediate storage. The simplification of line-extraction to
a series of rotations allowed for a simple datapath using streamed data with no
need for internal storage. Parallelising the rotations in the manner described
further quadrupled performance with minimal impact on storage needs. This
architecture serves as the foundation for building a flexible Trace transform

functional exploration framework, presented in Chapter 5.



Chapter 5

Flexible Functional Blocks for

Exploration

5.1 Introduction

In Chapter 4, a hardware architecture that implements the Trace transform
was described. It is capable of real-time performance, of 26 frames per second,
when processing 256 x 256 pixel images. The architecture was designed with
extensibility in mind, and all the blocks are fully pipelined, such that alter-
native functionals can be swapped in without any change to the architecture
or timing. In this chapter, a framework for developing flexible functionals for
the Trace transform architecture in Chapter 4 is presented. Three example
functionals are also described, that cover those used in the Shape Trace Trans-

form (STT) for face verification [SPKKO05]. These can be instantiated in the



aforementioned framework and provide for run-time re-programability®.

A significant opportunity afforded by accelerating the Trace transform is
that of investigating suitable functionals for a specific application. The Trace
transform’s strength lies in its general definition, allowing for functionals to be
selected based on their strength for a specific application. A flexible hardware
architecture greatly simplifies the exploration of the functional space. Rather
than iterate through a short list of alternatives one-by-one, a large number of
alternative functionals can be investigated in parallel without the need to re-
synthesise the design. In order to achieve this, the heterogeneous resources on
the FPGA, specifically the on-chip Block RAMs, are used to create generalised
functional blocks that can compute a selection of different functional results
using the same block. Changing the contents of Block RAMs, and configura-
tion registers in cach functional block, determines which specific computation
is to be computed. In this way, there is no need to re-synthesise the design
with each new set of functionals.

It is worth noting that there has not been, to date, a thorough investigation
comparing functionals for a given application. Applications of the Trace trans-
form presented in the literature (as summarised in Chapter 3), have simply
used the functionals that were available. While work on determining function-

als that perform well for specific geometric invariance, such as affine transfor-

'Note that the term re-programability is used here to differentiate from FPGA recon-
figurability. Runtime and/or partial reconfiguration of FPGAs is still an active area of
research, without a mature tool-flow as yet. All the work in this thesis is implemented using
static configurations.



mations, has been conducted, functionals tailored to more specific applications
have not been investigated. A hardware system, combined with a framework
for developing flexible functionals, enables this process and allows the Trace

transform to be investigated for many new applications.

5.2 A Framework for Designing Flexible Func-

tionals

In order to achieve some flexibility in the functionals to be implemented, there
are three possible approaches. The first is to create multiple functional designs,
then select the appropriate ones during synthesis. While such an approach
would work, it would mean that each combination of functionals would require
a fresh synthesis run. This can be time-consuming, negating the benefits of
hardware acceleration. This method also fails to avail of the more advanced
methods that modern FPGAs atford.

The second method is to use runtime reconfiguration. Runtime reconfigu-
ration refers to the modification of the FPGA configuration during runtime.
Recall that the circuit implemented in an FPGA is defined by a configuration
bitstream that details the states of each of the circuit units and the routing
configuration. Applying a new bitstream allows the circuit to be changed while
running. Partial reconfiguration allows parts of the circuit to be updated while
others continue to run. Such a process could be employed to allow functionals

to be swapped in and out in various combinations. The design flow is, how-
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ever, more complex and the tools are not yet completely suited to this form of
design, though it continues to be an active area of research [Sed06].

Another simpler method, which still provides relative flexibility is to design
blocks that can compute multiple functionals, selectable by some configuration
information. One of the simplest ways to achieve this is to use Block RAMs
to compute basic mathematical functions within the functionals. Using Block-
RAMs as lookups in this manner means that the actual operation performed
san be changed without modifying the circuit. Furthermore, it is possible to
use small registers with stored values to determine the selection of paths in
a system with multiple datapaths. These two modifications allow for a single
functional block to compute a large variety of functionals, and for the selection

to be modified on the fly.

5.2.1 Integration into Trace Transform Architecture

It is necessary to summarise the requirements for a generalised functional that
san be used in the Trace transform architecture presented in Chapter 4. Recall
that the output of the rotation block is a 36-bit signal, as read from the image
RAMI. This signal is a concatenation of the four orthogonal rotations and their
masks. Every cycle, one of these “pixels” arrives at the functional blocks. At
the start of each row in the rotated image, a “new line” signal goes high. Each
functional block produces a single result per orthogonal rotation for each full
row of input. This result is stored to registers, in parallel, once it is ready, and

a “result ready” signal is sent to the Aggregator block. The Aggregator block



is set to poll the functional blocks in a round robin fashion starting with the
one that has least latency. It is also important to note that subsequent rows
within the same image arrive in straight succession with no gaps.

This information can be used to devise a basic framework for a flexible
functional block. Firstly, the incoming signal is spliced into the constituent or-
thogonal rotations and masks. Each of these orthogonal rotations is processed
in a separate pipeline, though with unified control circuitry. The first control
element needed is a counter to keep track of the current pixel number within
the row. An “end-row” signal is extracted from this counter to signify the
arrival of the last pixel in the row. The designer must consider the pipeline
delays introduced by circuit elements, and delay this end row signal by the
appropriate amount to extract a “last result” signal which goes high at the
point at which the last pixel of a row has been processed. This is used to
enable a bank of four registers that store the functional results for the four
rotations in parallel.

In each computational stage, the mask must be taken into account. Those
pixels which are masked out should not be incorporated into the computation.
Again, it is necessary to have aligned versions of the mask signals so that each
point in the pipeline processes the correct mask values. For some computa-
tions, the mask need not be applied if the masked out areas are set to zero.
For example, an accumulator does not use mask information since summing a
zero or not summing is the same. The only assumption is that the input image

is set to zero for all masked-out pixels.
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Some functionals may require the incorporation of the pixel position in the
calculation. The counter mentioned above can be used for this purpose. For
this to work, it is necessary to add a single cycle delay to the input “pixel”, to
ensure alignment, since the counter is reset with the first pixel to arrive.

Table 5.2, to follow, shows the functionals used in a face authentication
application of the Trace transform. It is clear that most functionals involve
a summation over all the processed pixels. This may be implemented by in-
stantiating an accumulator at the end of each of the four datapaths. The final
result is limited to 32 bits in order to fit in the board SRAMs. Hence, the
width of the input to the accumulator must be restricted to 24 bits such that
the maximum of 256 such inputs can be accommodated. The accumulator
is reset by an appropriately aligned version of the aforementioned “new-line”
signal. An accumulator may not be needed for other functionals that don’t
involve a summation.

In order to create the flexibility sought, on-chip BlockRAMs are employed
as lookups. A lookup RAM contains pre-computed values for some function
stored at each location. For example, for a lookup RAM to be used for com-
puting cos(x), the contents of each memory location would have to contain the
value of cos(addr), where addr is the address of the RAM word. Thus, when
ralue a is applied to the address input of the lookup, cos(a) emerges at the
data output. Note that the RAMs are in fact used as ROMs in this situation.
However they are still referred to as RAMs because they retain their write ca-

vability. This write capability is what allows them to be exploited for adding
I ) 2)
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flexibility. Since these RAMs can be configured with data at runtime, there is
no need to re-synthesise the design in order to change the RAM contents, and
thus the function computed by each lookup table

Now consider that a wide range of functions can be implemented in this
fashion, and it becomes clear that a functional block with lookup RAMs in-
corporated can implement a wide array of different funcitonals. Some of the
arithmetic functions that can be computed in this manner include z, 2%, /x,
In(z), sin(x), to name but a few. The only limitation is that the input value
must be bound since the size of the RAM must be predetermined. A small
increase in the range of an input can impact the resources used dramatically.
The on-chip BlockRAMs on a Xilinx Virtex II are 18Kb in size, and can be
configured in a number of ways, between 512 x 36-bits to 16K x 1-bit [Xil99b].
The specific configuration must be set in advance. Fortunately, with most im-
age processing systems the input pixels are constrained to be 8-bits wide. The
configuration that corresponds closest to this address width is 512x36bits.
However, exploiting this wordlength efficiently would be difficult, given the
presence of four datapaths within each functional. The presence of multiple
operations within each functional would also mean extremely wide signals at
the end of the processing pipeline. Hence the size of each lookup is set to
256x 16 bits. While this does not fill a BlockRAM, it uses only one, and
provides for 2'9 levels of precision.

Since each functional has four datapaths, it is expected that four Block

RAMs would be needed for each lookup in the functional. In fact, due to
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the dual-port configuration of the BlockRAMs, and the fact that the lookup
information is identical for each of the datapaths, it is possible for a single
BlockRAM to be shared by the datapaths for two orthogonal rotations simul-
taneously.

It is important to consider the case when there may be subsequent lookup
stages within a functional block. This presents a problem since the output
of the first lookup stage is 16-bits wide while the input into any subsequent
lookup can only be 8-bits wide. The designer must incorporate some way of
selecting how this is done. A configuration register controlling a multiplexer
can be used to select between different splicings of the datapath as required.

The other facet of flexibility to be introduced is that of variable datapaths.
In order to allow for selection, each functional includes an 8-bit configuration
register with each bit being used to make a binary selection. This can be to
select the upper or lower 8 bits from a lookup output (as alluded to above), or
to enable or disable parts of the functional computation.

All of these considerations result in a general framework as shown in Figure
5.1. Combined, these allow a single functional block to compute a number of

different functionals without any need for reconfiguration.

5.2.2 Lookup Accuracy Considerations

The use of lookup memories with constrained wordlengths means that accuracy
is sacrificed to some extent for the functions approximated. For some functions,
the specified wordlengths are sufficient for an exact mapping. Table 5.1 gives
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Lookup Function Mean Relative Error

z 0%
T2 0%
7 2.85%
JT 0.00139%
Inz 0.00142%
/e 0.166%
sin(x) 0.011%

Table 5.1: Mean relative error of functions when approximated by a 256x16
bit lookup memory (using maximum possible lossless scaling). @ ranges from
0 to 255.

the mean relative error for a number of example functions when implemented
using the 256x16 bit lookup memories used in this architecture. If more
precision is required, it is relatively straightforward to extend the wordlength.
Using a single Block RAM, it is possible to hold 256x36 bits. However, one
must consider that this will significantly widen the rest of the datapath, as

well as resulting in much wider functional results.

5.3 Initially Proposed Functionals

A number of different functionals have been suggested for the different Trace
transform applications discussed in Section 3.5. A detailed list was given in
[SPKKO05], and consists of 22 functionals used for a face verification application.
These functionals are shown in Table 5.2. Many of these functionals were also
used in other applications [PKO04]. It is clear from Table 5.2 that there are
groups of functionals that are very similar in structure, such as numbers 9, 11,

12, 13 and 14, as well as 20, 21 and 22.
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For the face verification application, the Trace transform is used in two
ways, as mentioned in Chapter 3. Firstly, the traces constructed are directly
compared to each other using the Weighted Trace Transform (WT'T), but the
performance of this method is shown to be mediocre [SPKKO05]. The second
method is the Shape Trace Transform (STT), where the traces are thresholded
and the resultant shapes compared rather than the traces themselves. This
method proved much more accurate. Of the 22 functionals listed in Table 5.2,

numbers 1, 2, 7, 9, 11, 12, 13, 14, 20, 21 and 22 were found to be useful for
) ) | b )

the STT.

5.4 Flexible Functional Blocks

In the following sections, three different generalised functional blocks are pre-
sented. Each of them can implement a number of functionals listed in Table 5.2
as well as some others obtained by changing the lookup functions within each
block. Block diagrams are shown for each type, though for simplification, only
a single datapath is shown whereas, as mentioned previously, each functional
actually processes four rotations in parallel. The signal wordlengths are shown

on the connections. Each lookup is implemented on a single BlockRAM.

5.4.1 Type A Functional Block

This functional block is able to compute functionals 1,2 and 4 from Table

-

5.2. These three functionals were combined despite being different, due to the
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Bit Effect

0 Subtract delayed sample
Select upper 8 bits
Apply I3

Square row sum

Unused

— W o =

-7

Table 5.3: Configuration register for Type A functional block.

simplicity of the operations involved. A block diagram is shown in Figure 5.2.
Note that each circuit element takes a single cycle to run and that the dashed
parts are optional, determined by the configuration register. “D” is a single
cycle delay register.

The block takes an input pixel and applies a lookup function, [, to it.
Optionally, function [, is applied to a one cycle delayed version of the input
pixel and the absolute difference is taken; the actual datapath is decided by
the configuration register. Function [3 can then optionally be applied to either
the upper or lower 8 bits of the output from that stage. The result is passed
through to the accumulator and at the end of the row, the final result is
optionally squared. The configuration register is configured as in Table 5.3.
To implement the functionals using this block, the configuration must be set
as shown in Table 5.4. Numerous other functionals can be implemented by

changing the configuration.
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Func. No. Equation [y ls I3 Conf. Reg.
1 fo f(t)dt r - - ----0000
9 [J;“' |fu)|-%(zz]' VI = = ----0001
4 1 f(t)|dt z x —- ----1001

‘able 5.4: Type A functional configurations.

5.4.2 Type B Functional Block

This functional block is more complex than Type Aj; it can implement func-
tionals 9, 11, 12, 13 and 14 from Table 5.2, which depend on the weighted
median calculation. The weighted median is implemented using the efficient
hardware architecture detailed in Chapter 6, with some modifications. Firstly,
the sample and weight wordlengths are both set to 8 bits, as required for this
block. The median block must also take into account the mask, so this is
incorporated within the median calculation. Finally, there is no need for the
FIFO block since this is not a sliding window implementation. Instead a reset
signal is added to allow the bin counters to reset at the start of each row. Since
the median filter block was implemented in VHDL, a wrapper was used within
the Handel-C code. This wrapper tells the compilation tools to include the
netlist for the VHDL object (which was separately generated using Synplic-
ity Synplify) within the generated netlist for the Handel-C architecture. This
merged netlist is then used within the Xilinx tools for mapping, placement and
routing,.

Since the median block can only return a result after a whole row has been
processed, the current implementation uses the result from the previous row
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Func. No. Equation [y l» I3 Conf. Reg.
9 Joorftydt | oz x - 0
11 forif(tydt | ;
12 [XV/rft)dt | x
13 Jorfliae e
14 [Xrf(t)dt |z
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~
—
—

= <& =
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1
1
]
!
1
1
1
"

(8]
=
[a—y

Table 5.5: Type B functional configurations.

in each calculation.

The functional computes the intermediate values ¢ and r as described in
row 9 of Table 5.2. The input [ as shown in Figure 5.3 is the output of the
pixel position counter mentioned in Section 5.2.1. f(t) is a single-cycle delayed
version of the pixel stream, in order to be aligned with the counter. Lookup
l; offers flexibility in modifying the skew of the median calculation with the
default being x as per the equations. Note that the value ¢ is only updated
once per row (shown shaded in Figure 5.3). Function [/, is then applied to
r and I3 to f(t). The top 12 bits of these values are then multiplied before
being summed in an accumulator. A single bit in the configuration register
determines whether to sum from zero or from e¢. Table 5.5 shows various
configurations of the functional block. Others, outside of those shown in Table

5.2 can be implemented by changing the configuration.

5.4.3 Type C Functional Block

This functional block, shown in Figure 5.4, follows the structure of functionals

20, 21 and 22 in Table 5.2. The system follows similar design to the Type B
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Func. No. Equation L lo

20 [ZVrft)dt | Voo
21 ]’X rf(t)dt i X
22 [f rPft)ydt |22 =z

Table 5.6: Type C functional configurations.

functional block, except that ¢ is computed as described in row 21 of Table 5.2.
Note that the values ¢ and S are only updated once per row. The division by
S in the functionals is implemented using a lookup table, for simpler circuitry
and pipelining. The input to this lookup table is truncated to restrict the
number of embedded memories needed. To allow the full range of inputs, 64
Block RAMs would need to be combined into a 64Kx18 bit memory. By
truncating, a single Block RAM is sufficient. This functional block does not
use a configuration register. Configurations for functionals 20, 21 and 22 are

shown in Table 5.6

5.4.4 Functional Coverage

These three functional types cover 10 of the 11 functionals required by the
Shape Trace Transform (STT) for face authentication [SPKKO05]. Furthermore,
by using alternative look-up functions in the Block RAMs and changing the
values in the configuration registers, it is possible to add further functionals.
The remaining functional used in the STT (Number 7 in Table 5.2) is a Fast
Fourier Transform (FFT) that can be directly implemented using a predesigned

core, with no need for flexibility.
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5.4.5 Accuracy Considerations

In Section 5.2.2, the accuracy of the lookup functions was presented. Any
inaccuracies can propagate through the system, so it is necessary to consider
the overall accuracy for a functional. It is important to note that comput-
ing the Trace transform is not the same as applying another algorithm where
the absolute values that result must be the same, having been defined pre-
cisely. With this Trace transform implementation, it would be used for both
the training and recognition tasks in a given system. As such the requirement
is that it is “self-accurate” — that it produces consistent results so that when
multiple images are compared, the comparison can be made with a degree of
confidence. The numerical data itself is not used in further mathematical pro-
cessing that requires numbers to fit an exact specification. Indeed in the case
of face verification, shapes are extracted from the trace through thresholding,
thus discarding the fine accuracy of the numbers.

With the Type A functional block, the accuracy for the three defined func-
tionals was found to be 100% for the functionals defined above. The inaccuracy
of the square-root lookup is so small, that the maximum relative error for the
whole of a trace image is only 0.02%.

For the Type B functional block, the use of the median result from the
previous row in the calculation introduces some inaccuracy. The relative error
has an average of 2%, with 52% of samples having zero relative error and 97%

having less than 10% relative error.
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For the Type C functional block, the use of old values of the ¢ variable
causes error, but with a different profile to that of the Type B functional
block. In this case, the error has a more even spread, and there are a number
of positions where the relative error is very large. 28% of pixels have zero error,
while 86% have less than 10% relative error. 0.66% of positions have greater
than 100% relative error, however.

It is important to note that these errors have little effect on the trace
images when treated as images. The outliers are very few in overall terms and
are spread sparsely at certain points where there is already high contrast. It
depends largely on the next step in processing as to what constitutes acceptable
error. Figure 5.5 shows traces computed using Hloating point arithmetic on the
left and the equivalent computed in hardware on the right.

Note that the errors for the type A and B functional blocks, as a result of
using one-row delayed intermediate can be overcome by adding a single full line
latency to the whole system. While an additional 256 cycles of latency may at
first seem significant, recall (from Section 4.6) that a complete trace takes over
3 million cycles to produce, and so it is a relatively small delay, and will not
affect the throughput in any way. There is no other way of overcoming this
accuracy issue, since these functionals produce results that depend on some
property of the whole row being computed in advance. In this case, the errors
were found to be tolerable for the types of processing expected to follow, and

so the extra latency was not added.



Figure 5.5: Trace images obtained using floating point arithmetic (left), the
equivalents using the hardware architecture (centre), and error images with
percentage range (right).



5.5 Initialisation

Having covered the design of flexible functionals and given examples, it is nec-
essary to consider how the configurations are defined and applied. The flexible
functionals rely on configuration data in order to function. The correct setting
must be placed into the configuration register, along with the appropriate data
for the lookup memories. This results in the addition of an initialisation stage
before computation can begin.

Since there may be 8 to 10 functionals on the chip at one time, a large
number of Block RAMs must be initialised. Doing so from one central location
would be inefficient since signals would have to be routed to more than 40
locations from the initialisation block (assuming an average of 6 Block RAMs
per functional block). In order to make this process more efficient, the system
reads the initialisation values from the PC via USB and stores them in one
of the board RAMs. From there, a distributor block reads the initialisation
data and writes them to a shared bus as they are. Within each functional, a
small block interfaces with this shared bus ignoring instructions that do not
apply to it, and only activating when the functional is a match. When this is
a case, a counter is reset and enabled, and this serves as the address input to
the Block RAMs. The lookup number is used to select which Block RAM to
write to, and the data values are read directly from the bus and written to the
relevant location within the Block RAM. The system is shown in Figure 5.6.

The initialisation data are formatted as shown in Figure 5.7, with each
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Figure 5.6: Flexible functional initialisation bus.

line representing a single byte of data read from the PC and stored to the
board RAM. Since the data is transmitted over USB, any data longer than a
byte must be split up. The first three bytes, when concatenated, determine
the total length of the initialisation data. Following this, sets of instructions
arrive, each headed by the functional block number followed by the lookup
memory number. Then the contents of the memory are sent in order, split
into bytes. Since the size of the lookup words is fixed at 16-bits, it takes 512
cycles to fill a BlockRAM. In order to initialise each configuration register, a
reserved lookup number of 255 is sent followed by a single byte containing the
data.

Following this modular approach means that the initialisation data can be
in any order, and that the functional blocks can contain a variable number

of lookup memories. The initialisation process only needs to occur at the
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initialisation data size (byte 1 of 3)
initialisation data size (byte 2 of 3)
initialisation data size (byte 3 of 3)
functional number

lookup number // 255=config register code
data 1 // Lookup data to be

data 2 // stored in the memories
data 3 // split into bytes.

functional number
lookup number
data 1

data 2

data 3

Figure 5.7: Functional lookup initialisation data format, as stored in the board

RAM.

beginning of a processing run. The time taken depends on the number of
Block RAMs that need to be initialised with each requiring 514 cycles per
Block RAM and 3 cycles for each configuration register. At 80MHz, this

translates to just over 640ns per Block RAM.

5.6 Performance and Area Results

The system implemented is identical to that in Chapter 4, but with these
three flexible functionals. The system-level timing is identical to that shown
in Figure 4.8. The only difference is that before the system begins processing, it
waits for the completion of the initialisation phase detailed above. The system
was synthesised with each of the above functional blocks in order to obtain

separate area results for each. The resource usage for each of the functionals
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Unit Slices  Embedded Mult’s Block RAMs

[ramework 1,300 4 2
Type A Functional 800 4 6
Type B Functional 23,500 4 22
Type C Functional 1,300 8 6
Total Available 33,792 144 144

Table 5.7: Synthesis Results for the Three Flexible Functional Blocks.

and the framework architecture are shown in Table 5.7.

All units were successfully synthesised to run at 79MHz. This limitation
is enforced by the board libraries that are used to access resources on the
board. This is the same speed as the architecture in Chapter 4, and shows
that by pipelining the design, the complexity of the functionals does not affect
the speed. While the timing allows for 36 functionals to be implemented, as
previously mentioned, the area of each of the blocks must be taken into account.
The actual number of functional blocks that can be implemented would depend
upon the area requirements of each type and the resources available on the
target FPGA.

Table 5.8 shows the speedup in computing a single functional using the
discussed hardware implementation. As a software reference an optimised
MATLAB version is used that is running on a Pentium 4 at 2.2GHz with 1GB
of memory. The MATLAB version was implemented with nearest-neighbour
rotations achieved using matrix multiplication for speed. It was coded making
full use of MATLARB’s vector operations and avoiding the use of loops. Just as

with the hardware, lookup tables were used for computing the trigonometric



functions. Using the MATLAB compiler [Mat] yielded very minimal gains in
performance, so it was not incorporated in these figures. While one might ar-
gue that the absolute performance gain may not be representative of a highly
optimised software implementation, the important observation is that the per-
formance of the hardware functional blocks is not affected by the complexity
of a functional, whereas software reflects the complexity of a functional in its
runtime.

In all the cases, the hardware design outperforms the software version by
a considerable margin. It is important to note that these numbers are for a
single functional. In the hardware implementation, additional functionals are
computed in parallel, resulting in an even greater performance boost. Consider
a system with three functionals - one of each type. The software implementa-
tion would take 7.9 seconds to compute the three traces, whereas the hardware
system would still take 38.5 ms, a speedup of over 200 times. Increasing the
number of functionals further, to the 11 implemented out of Table 5.2, a soft-
ware version takes 31 seconds, while the hardware implementation would still
take the same time as implementing one functional. This results in a speedup
of over 800 times. This would require a larger FPGA device since the area
requirements are significantly more than is available on the current target
platform, however higher capacities are common in the latest generation of
FPGAs [Xil07b, Alt07].

It would be possible to compute the 11 functionals described using just

the three blocks presented here. In such a case, the system would need to

148



Functional Type S/W (ms) H/W (ms) Speedup

Type A Functional 1400 38.5 36x
Type B Functional 3900 38.5 101x
Type C Functional 2600 38.5 67x

Table 5.8: Running times and speedup factors.

run through the trace computation 5 times, to allow the Type B functional
block to compute all its variations. This would result in a total runtime of
38.5 x 5 = 192.5ms, a speedup of over 160x over software.

The number of functionals that can be implemented in hardware is limited
by two factors. Firstly, the resource requirements of a functional block and the
resources available on the target device must be taken into account. Clearly,
the number of functionals possible in an implementation depends entirely on
the combination of functional block types required.

The second factor is timing-related. A full trace computation takes just
under 3 million cycles to complete, and since the input and output memories
are double-buffered, it is necessary for the data transfer to and from the board
to be completed in this time. The loading of input data from the PC takes
327,860 clock cycles as detailed in Section 4.4.3. Each functional produces a
trace image that is 256 %256 pixels in size?, with each pixel being 32 bits wide.
Hence reading a trace image in bytes over USB takes 256 x 256 x 4 = 262, 144
cycles. This means that the maximum number of functionals that can be

accommodated in this implementation is | (3M—327,680)/262, 144 = 10|. This

2The actual result is a 256x180 image, but for ease of address calculation, it is stored
within within a 256x 256 size memory block.
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limitation is due to the use of the USB port to transfer data. An FPGA board

with a wider and/or faster interface to the PC would alleviate this problem.

5.7 Summary

In this chapter, a framework for designing flexible functionals for the Trace
transform was presented. The main design consideration is to introduce flexi-
bility into the functional blocks, allowing a single block to compute a number
of different functionals. Employing Block RAMs as lookups for function evalu-
ation leads to a highly pipelined system with significant flexibility. A flexible,
efficient initialisation scheme was also presented. Three example blocks based
on functionals used for face authentication [SPKKO05] were developed using
this scheme and shown to perform as fast as the fixed blocks shown in Chap-
ter 4. By instantiating multiple functional blocks, the system achieves over
2 orders of magnitude acceleration over a software implementation, with this
factor increasing for the more complex functionals.

The framework presented can be applied to develop further flexible func-
tional blocks that can aid significantly in functional exploration for different
applications of the Trace transform. This can result in a much better choice of
functionals for a given application, rather than relying on a library that may
serve well for some applications while not performing well for an application
at hand. This opens the door to investigating the use of the Trace transform

in a wide variety of application domains beside those already investigated.
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Chapter 6

Large-Windowed,
One-Dimensional Median and

Weighted Median Filters

6.1 Introduction

One of the mathematical functions that is used extensively in Trace transform
functionals is the median and weighted median [SPKKO03, SPKKO05]. Figure 6.1
shows where the Trace transform fits into the Trace transform implementation.

The median of a set of samples is often computed by sorting the input sam-
ples then selecting the middle value. The weighted median can be computed
in multiple stages: first expanding the weighted sample sequence, then sorting
and finally locating the median. However, these methods are not suitable as a

block in a fully pipelined system, since results are not produced immediately
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Figure 6.1: Position of median and weighted median circuit within a Trace
transform implementation.

but after multiple stages. This requires intermediate storage and complex con-
trol logic to pause the previous stages in a circuit. Furthermore, the median
and weighted median calculations used for the Trace transform are typically
on large windows, equivalent to the length of a line crossing an image (200
samples). Also, in the case of the Trace transform, the length of the sample
window is variable. These two facts present a problem for the standard imple-
mentations of median and weighted median filters. In this chapter, a real-time
hardware architecture is presented that can compute the median and weighted
median over a flexibly sized window. The architecture is fully pipeline-able
and thus is easy to incorporate into a pipelined system such as that developed

in Chapter 4. Part of the work in this chapter was published in [FCLO5b].

6.2 Definition

The median filter is a highly versatile non-linear filter that has been used

extensively in a variety of domains. Its strength lies in its ability to filter



out noise while minimally affecting the properties of the underlying signal.
The median filter replaces a sample with the middle ranked value amongst all
the samples within the sample window. In this manner, it filters out samples
that are not representative of their surroundings, in other words, outliers.
In the image processing domain, a two-dimensional median filter allows for
the removal of “salt-and-pepper” type noise from an image without adversely
affecting the underlying edges. The use of a linear filter (such as a Gaussian or
mean filter) in this situation would cause a blurring of edges. The median filter
can still degrade image quality somewhat, though the preservation of edges is
paramount in the computer vision domain.

Given an input sequence z,, ry, x3, -+, a window of size 2K + 1 is defined,
centred on the ith value as W; = {Z;—k,Ti—g+1," "+ 1 Tiy"** s Tivk—1, TitK }-
The output of the median filter, y;, is thus the median of W;; the middle value
in the sorted list.

The weighted median is an extension of the standard median, wherein each
input sample also has an associated weight that determines how much that
sample contributes to the final result. Weights can have fractional or integer
values. From a computational perspective, this makes no difference as long as
fractional weights are fixed point and lie within the same limits for all samples.
Negative weights are undefined.

The input sequence for a weighted median filter can be written:

(;Kla wy )’ (‘T'.’v u]".f)v (‘:1'3\ U).’!)v iy
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where x; are the input samples and w, are the corresponding weights. An
integer weight would simply correspond to having w; copies of sample x; taken

into account in the median calculation. Consider the example sequence:

After expanding, this becomes:

Thl 15 aroforonoly durioia e igtnin ol

To determine the median, this sequence must be sorted as follows:

1,1,1,2,2,2,2,2:3,3,3,8,3,4,4:4,5: 7,7,

Finally, the middle value in the sequence, 3, is selected as the weighted median
of this series.

[t is important to note that for the weighted median, the size of the window
is the sum of weights rather than the number of tuples received. So for the
above sequence it is 19 and not 7. The median index can be calculated by
halving this number and adding one, so in this case the median index is 10.

Much of the literature dealing with median filters in image processing is
focused on 2-dimensional filters of small size [Ric90]. Weighted median does
not have a widespread use in image processing and thus little work has been

done on efficient implementations. The number of sample points required in
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the Trace transform can be very large, in the order of hundreds. Furthermore,
the window size, in the case of the Trace transform, is not fixed, so an im-
plementation must be flexible in this regard. Designing an implementation
that can facilitate such calculations over large windows would allow for a full

hardware implementation of many Trace transform functionals.

6.3 Related Work

Median filters have been implemented in hardware in a variety of ways. [Ric90]
provides a very good review of the area. There are two main methods, the
first is to maintain the input sample list in its original order, then pass it
through some type of sorting network. The median value is then extracted from
the relevant position in the ordered list. The other method involves sorting
the samples as they enter the system. Of the first approach, the simplest
implementation is the bubble sorting grid, where a grid of dual input sorters
each swap their inputs to propagate the higher valued samples upwards, and
lower valued samples downwards (or vice-versa). The median is simply the
middle sample of the grid output. An example of this architecture is shown
in Figure 6.2. This method is regular yet its hardware requirements increase
in proportion to the square of the window size and hence it is not scalable to
larger windows. For a window of size 2V + 1, N(2N + 1) dual input sorters
and 2N + 1 registers are required as can be seen in Figure 6.2.

For small windows, simplifications can be made [BN97|, where the columns,
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Figure 6.2: A simple 11-sample bubble-sorting circuit layout. The large blocks
are compare-swap units that swap their inputs if necessary to propagate the
larger values upwards and the smaller ones downwards. The small blocks are
registers. Note that the shaded blocks are not required for median calculation.

then rows of a 2-dimensional window are each sorted using a triple-input sorter.
Then only one diagonal needs to be sorted to give the median. This saves on
hardware requirements. Karaman et al. [KOA90] propose a change to the stan-
dard sorting network by dealing with samples in a bitwise manner, needing only
single bit sorters, however their implementation is still proportional to N? in
area. The strength of regular array architectures is that they can be pipelined
down to a single compare-swap stage. This results in high throughput. Benkrid
and Crookes [BCB02] create a sorting structure based on Quick Sort using a
bit-voter block; the area requirements are O(N). Other methods that use fewer
building blocks of higher complexity are described in [YLC99, CCH96, BP02|.
Another method is that of threshold decomposition, as used in [BT04], how-
ever the architecture proposed relies on the window being of size 3x3 and uses
3-input adders and so is not scalable to large windows. Systolic median archi-

tectures based on insertion sort have also been proposed [GLO1]; in this case,
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the amount of hardware is proportional to the window size. In [VRSPGP02],
the authors take advantage of the wide data buses on the development board
to allow the median calculations for multiple pixels in parallel. The overlap-
ping data between 3x3 windows is re-used and the sorting circuit is modified
to reduce the number of compare-swap blocks. The proposed architecture is,
however, limited to 2-dimensional windows of 3x3 pixels and larger windows
would not scale due to the sorting circuitry.

Another method for computation of the median of a sequence of numbers
involves computing the cumulative histogram for this sequence, then finding
the index of the first bin total to exceed the median index. The principle is well
established and known, having been mentioned in basic textbooks on image
processing. [AP94] and [HFC95] both deal with software implementations
of this algorithm running on general-purpose processors. Presented here is
the first implementation and analysis in hardware of the proposed method.
The high degree of parallelism that can be had in hardware, coupled with
the independence of the area with regard to window size, is what makes this
method so attractive as compared to a sorting structure. Furthermore, this

method is extensible to the weighted median as will become apparent.
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6.4 Proposed Architecture

6.4.1 General Overview

The proposed architecture works by constructing a cumulative histogram of the
input data. This is done by maintaining a count for occurrences of each possible
input value. Since the application domain in this case is video processing, 8-
bit unsigned numbers (let [ = 8) have been assumed. This means there are
28 = 256 possible input values, and so a rank of 256 bins is used. To construct
a histogram, when an input value is received, the bin corresponding to the
sample value is incremented. For a cumulative histogram, each subsequent bin
must also be incremented. In software, this is normally done as an additional
step after the histogram has been fully populated. A pass through all the bins
adds the value of the previous bin to each bin. Hence, the value stored in the
final bin will always be equal to the number of input samples received. The
median is then simply the first bin whose count reaches or exceeds the median
index.

For example, if the median is to be calculated over a window of 101 ele-
ments, i.e. 2K +1 = 101, K = 50, then the 51st or generally (KX +1)th element
in the ordered list is required. Using the histogram, find the first bin whose
count is 51 or above, this gives the median of the input samples, since the 51st
ordered element must lie in this bin.

To implement this in hardware, a rank of parallel bins is instantiated. The

count value for each bin is compared to the median index (in this example,
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Figure 6.3: A histogram bin node processor.

51), resulting in a 0 if the bin count is smaller, and a 1 if it is equal or larger.
Hence the result for all bins before the one containing the median will be 0,
and all the others will be 1. A priority encoder can then be used to find the
index of the first bin in the series of 1’'s. A priority encoder takes an B-bit
input in which there are b zeros followed by B — b ones, and returns b. This
gives the median of the input.

A separate register is required to keep a count for each of the possible
input values. Hence 256 registers are needed to store the counts for 8-bit
samples. For the registers to all be updated in parallel, each register also
requires its own incrementer, which is activated only when that bin needs to
be incremented. (Recall that to construct a histogram, only the bin with an
index corresponding to the input sample needs to be incremented.) Hence,
each bin has an enable input that determine whether it should be incremented
in the current clock cyecle, and the median index as an input. The output is
a single binary value that is 1 when the value equals or exceeds the median
index and 0 otherwise. This gives the design for a bin node as shown in Figure

6.3. 256, or in the general case of [-bit samples, 2, such nodes are required in
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the proposed system. Note that the width of the bin registers depends on the
window size required. This will be investigated further in Section 6.5.2.

A circuit composed of such processors would yield the histogram of the
input signals. In order to compute the cumulative histogram, some further
processing is needed. As mentioned above, it is possible to separate the con-
struction of the cumulative histogram and do this as a subsequent step. This,
however, would be wasteful, as the accumulation for each bin would have to be
done in turn, taking 256 cycles in total. One possible alternative approach is
to instantiate a comparator for each bin, and compare the input sample value
to the index of each bin. Those bins with an index greater than or equal to
the input sample value would be incremented. However, this would be costly
in terms of hardware, since each bin would require its own (-bit comparator.

Another approach would be to connect each bin to the previous one, such
that if the previous bin is being incremented, then it would increment too.
However this would slow the system down significantly, since that incrementa-
tion signal would need to propagate through 256 stages in the worst case, all
in one clock cycle. Analogous to this is the carry chain in a carry-ripple adder.

A more efficient method, that takes advantage of the heterogeneous re-
sources on modern FPGAs, is to use embedded Block RAMs on the FPGA
as a ROM to store the bin access patterns. For the 8-bit inputs previously
mentioned, a 256 x 256-bit ROM would be required to decode the 8-bit num-
ber to a 256-bit signal, where each bit represents the select input shown in

Figure 6.3, to the corresponding bin; each bit of the output addresses a single
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Address  Contents[0:255]

0 0xFFFFFFF. .. FFFFF
1 Ox7FEFFFFF. .. FFFFF
2 0x3FFFFFF...FFFFF
3 Ox1FFFFFF... FFFFF
4 0xOFFFFFF... FFFFF
D 0x07FFFFF...FFFFF
253 0x0000000. .. 00007
254 0x0000000. .. 00003
255 0x0000000. .. 00001

Table 6.1: Access pattern ROM contents.

bin node processor. The access patterns stored in the ROM, ensure that the
correct bins are enabled for any given input sample. The contents of the ROM
are shown in Table 6.1, while an overview of the circuit is shown in 6.4

This method of constructing a cumulative histogram is highly efficient and
allows for a fully updated histogram in every cycle. This method has also
subsequently been adapted for histogram equalisation on images [AA05]!, and
shown to perform significantly better than a software implementation on a
Graphics Processing Unit (GPU) [CCL07|. Note that histogram generation is

just one part of the median and weighted-median implementation.

'Note that the cited paper does not reference this work as published in [FCLO05b]. [AA05)]
was published in December 2005, having been initially submitted in July 2005. [FCL05b]
was submitted in March 2005, accepted in May 2005 and presented/published in August
2005.
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Figure 6.4: Histogram-based median filter architecture.
6.4.2 Sliding Window Implementation

Thus far, the system takes a sequence of samples and returns the median up
to each point. Such a circuit, however, is not useful, since normally, the me-
dian must be computed for a fixed-size window of values. Often, the filter is
implemented as a sliding-window. This means that in each cycle, the win-
dow moves one sample down the sequence, discarding the oldest sample and
adding the newest into the window. To implement this algorithm for sliding
windows, some changes must be made. Consider that now while constructing
a histogram, with each new sample that enters, the oldest sample is removed
from the window, and thus its effect on the histogram must also be negated.
This however only happens after the window has become full. Hence some way

of keeping track of the old samples, knowing when the window has become full
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Figure 6.5: A bin node for the sliding window implementation. enincdec de-
termines whether the count is incremented, decremented or kept at its current
value.

for the first time, and some way of updating the histogram based on the new
and oldest samples must be devised.

Firstly, a FIFO buffer is used to store the samples for the window over
which the median must be found. When a new sample is received and the
window is full, the oldest sample is removed from the FIFO. Updating the
histogram requires all bins corresponding to the access pattern for the oldest
sample to be decremented. At the same time, the bins corresponding to the
new input sample must be incremented. This can all be done in one cycle, by
simply leaving any bins that are included in both sets unchanged, since they
increment and decrement at the same time. Bins that are only enabled by
the access pattern of the new sample are incremented, while bins enabled only
by the access pattern of the removed sample are decremented. Updating the
histogram in this fashion means that it is up to date in every clock cycle, and
there need not be a pause in the input samples. The new node design is shown

in Figure 6.5.
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Figure 6.6: Application to sliding windows. The arrows aside the bins show the

access patterns for the oldest (-) and new (+) samples. The leftmost example

shows a new sample value of 4 arriving while the oldest sample is of value 7.

Only bins 4 to 7 need to be incremented, all others keep their current values.
The rightmost example shows a new sample of value 8 arriving, while the oldest
sample is of value 2. Only bins 2 to 8 need to be decremented; others are left
alone.

On-chip Block-RAMs are particularly useful for this architecture. Since
these RAMs are dual-ported on the target architecture, it is possible to extract
the enable signals for both the new and oldest samples from the access pattern
ROM in parallel. These can then be processed to determine which bin is
incremented. This is illustrated in Figure 6.6.

To implement this, a simple 2-input, 2-output lookup-table is required to
determine the resultant action. This is shown in Table 6.2. This small logic
function must be implemented for each bin. Recall that as the window is filling

with values the first time, no subtractions take place, since this would mean

164



OldEn  NewEn | enincdec[1:0]
0 0 00
0 1 10
1 0 01
1 1 00

Table 6.2: Extra sliding window logic. The signals OldEn and NewEn are the
enable signals for the bin resulting from the ROM lookup of the oldest and
new samples respectively. enincdec is the signal that instructs the bin counter
whether to increment (10), decrement (01) or do nothing (00).

that the histogram would never fill up with values. As such, a single valid bit
is appended to each input sample. This propagates through the FIFO and
emerges at the final stage of the FIFO only when one full window of values
has been received. This bit is ANDed with the bin subtraction control signal,
so no subtraction can take place until it emerges. The revised architecture is

shown in Figure 6.7.

6.4.3 Extension to Weighted Median

To implement weighted median in the proposed architecture, further changes
to the architecture in Figure 6.7 are needed. Recall that the weighted median
is computed on samples that have associated weights and that those weights
are equivalent to duplicating the sample the corresponding number of times.
Further recall that the window size, and thus median index is dependent on
these weights. To construct the histogram for weighted samples, rather than
increment each bin for corresponding samples, the weight of that sample is

added to the corresponding bin. The cumulative histogram is constructed as
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per the standard median.

To make the necessary changes in hardware, another input signal is in-
troduced to provide the weights. Instead of a simple incrementer, each bin
processor must now add the weight value. Just as with the standard median,
it is possible to keep the histogram fully updated at each clock cycle. Another
FIFO is instantiated, to keep track of the old samples that fall out of the
window. For bins enabled by the access pattern for the oldest sample falling
outside the window, the weight of that sample is subtracted. For those bins
enabled by both access patterns, the difference of the two weights is added
(while being careful to maintain the correct sign). For those bins enabled
only by the access pattern for the new sample, the new sample’s correspond-
ing weight is added. The resultant architecture is shown in Figure 6.8. The
three signals fed into cach of the bins are the weight of the new input sample,
the difference in weights and the weight corresponding to the sample falling
outside the window.

The rank, or position, of the median is not known in advance for weighted
median. Consider the expansion of the sequence shown in Section 6.1, and it
becomes clear that the number of ‘real’ samples received is equal to the sum
of sample weights. Hence, the index of the median must be half of that plus
one, which is simply a right shift and increment in hardware. In the proposed
architecture, the difference of the two weights (that of the new sample and
that of the oldest) is simply added to a register on each clock cycle. This

maintains the current sum of weights. This is right shifted to divide by two and
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incremented and fed into each of the bins, where it is used for the comparison.

The word-length of each bin register must be wide enough to accommodate
the maximum sum of the weights to prevent overflow. In order to do this, the
width of the bin counters must be equal to log, of the window size plus the

width of the weights.

6.5 Implementation Results

Implementation of the above designs was originally coded in Handel-C and
compiled using the Celoxica DK Compiler. The target device in this case is
a Xilinx Virtex II 6000, as found on the Celoxica RC300 development board.
For comparison, an alternative implementation of the median filter based on
the sorting grid mentioned in Section 6.3 was also synthesised.

Using Handel-C was found to give acceptable area and speed results for
the sorting-grid architecture. However, due to the extra control logic that
Handel-C inserts into a design, and the high level of parallelism in the proposed
architecture, routing delays due to large fan-out of control signals was causing
the circuit to have a high clock period. For the proposed architecture, the
area usage was halved and the clock period reduced by over 60% when it was
re-implemented in VHDL. The design was thus re-implemented and compiled
using Synplicity Synplify Pro [Syn].

The reason for this disparity is a function of how Handel-C is implemented

in hardware. A Handel-C circuit functions using token passing, effectively
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enabling subsequent parts of the circuit. Since each line of code takes a single
clock cycle, this token is like the enable signal for all the instantiated hardware.
The problem arises when there are a large number of units that have to be
enabled in parallel, as with the 256 bins in this case. The single token passing
signal must be fanned out to a huge number of circuit elements and this fanout
introduces significant routing delay. Hence this problem is limited to massively
parallel circuits. While Handel-C most definitely introduces some performance
penalty, one must bear in mind the significant advantages atforded in describing

complex circuits and using on-board resources.

6.5.1 Design Variations

In order to thoroughly investigate the proposed architecture, a number of
variations were considered. Fixed window implementations were ignored, since
they are of little use, returning a single result for a whole window. Instead,
sliding window implementations were favoured due to their computation of a
new result every cycle. A number of design parameters were varied, leading
to multiple implementations. Before discussing these, consider the parameters
that might affect area. Firstly, all implementations were synthesised for sample
widths of 8-bits. This is an assumption that is valid for most of the calculations
one would wish to conduct on images. Furthermore, this is the only significant
limiting factor for this design due to the fact that the number of bins varies
exponentially with the sample wordlength. Since this implementation is to be
used in the Trace transform, 8-bit wordlengths are sufficient.
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The counters in each of the bins need to be wide enough to accommodate
the maximum count, equal to the maximum number of samples to be consid-
ered, which is equivalent to the window size. Hence the width of the bins is
equal to the base-2 logarithm of the window size. One can set this arbitrarily
to a fixed number such as 8-bits. This would allow for window sizes up to
255 samples. However, to keep the design as compact as possible it should be
set to the appropriate width. The window size also affects the length of the
FIFO buffer used to track older samples. This buffer is equal in length to the
window size. Finally, one may choose to implement a design that uses a fixed
window size, or one in which the window size is determined by the number of
samples entering the system. The advantage of the second method is that the
window size can be changed in runtime. The first method would synthesise a

fixed value comparator. While this saves area, the window size must be fixed.

6.5.2 Synthesis Results

The first set of results, shown in Figure 6.9 shows the area usage for imple-
mentations and how this varies with the window size for each of three metrics:
Look-Up Tables (LUTSs), Flip-Flops (FFs) and Slices. These implementations
were for fixed window sizes using hard-wired fixed value comparators. The
vertical lines in the graph indicate the boundaries of different wordlengths for
the bin counters.

It is clear from the graph that each time the counter wordlength require-
ments increases by one bit, there is a distinct jump in area requirements, in
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the general case. The Flip Flop usage has a general rising trend, even between
designs with counters of the same wordlength. This is due to the increasing
size of the FIFO buffer; this also explains the increasing gradient of the FF
segments since the window size is on a logarithmic scale.

The considerable variations in LUT usage can be put down to the opti-
misation of the fixed value comparator. When comparing values to a fixed
number, and depending on the value of the fixed number, not all bits need
to be taken into account. The synthesis tools will optimise the comparators
as required. This is most evident for window sizes of 127, 255 and 511 in the
graph. The binary representation of these values is 1111111, 11111111 and
111111111 respectively. The median index will thus be half plus one, giving
1000000 , 10000000, and 100000000 respectively. When comparing a number
to determine whether it is greater than or equal to these numbers, only a single
bit needs to be tested. This means that the comparator is reduced to a one
bit comparator, resulting in a significant reduction in area. Other fluctuations
are the result of similar reductions applied by the tools.

The graph also shows a lack of jump in the Slice count around the 64- and
512-sample window sizes. This can be attributed to the synthesis tools packing
the LUTs and FFs differently, resulting in a more dense arrangement within
the slices. Again, the designer has little input into this.

The general trend for area requirements can thus be described as being
of the form K + log, N, where N is the window size and K is the fixed area

required by the rest of the design regardless of window size. The graph in
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Figure 6.10: Comparison of area requirements for proposed algorithm and
sorting grid.

Figure 6.10 shows how this compares very favourably with the area usage of
the standard sorting grid architecture that was also implemented. The sorting
grid architecture’s area requirement increases exponentially with regard to
window size. The point at which the proposed architecture becomes more
efficient is at a window size of approximately 23 samples. Note that other
sorting algorithms can be used. However, the best case is of order N log(N),
so the proposed algorithm remains advantageous, especially for large window
sizes.

The next variation was to implement generalised comparators. In these
implementations, the median index is computed automatically from the value
of the counter in the last bin. Recall that the last bin in a cumulative histogram

contains the count of the total number of samples in the system. This can be
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halved and incremented to give the median index. The strength of this system
is that it allows for variable window sizes. Clearly, the area requirements
will increase, since the comparators cannot now be simplified by the synthesis
tools and must be full [-bit comparators, where [ is the wordlength of the bin
counter. The graph in Figure 6.11 shows how each of the area metrics increases
when this modification is made. A window size was selected from the middle
of the range of values used for the first set of results* and an equivalent circuit
was implemented but with a variable median index. There was no need to
synthesise the full range of window sizes, as the only difference would be in
the FIFO length. The dotted lines in the graph indicate the requirements for
the fixed comparator equivalents. The number of Flip Flops remains almost
constant since the FIFO is not affected by this architectural change. The LUT
usage, however, increases by between 23% and 26%, while the Slice count
increases by between 19% and 22%.

All designs were synthesised to run at 72MHz. All designs used 8 Block
RAMs to implement the bin selection lookup. Each on-chip 18Kb Block RAM
can be configured in a number of width and depth configurations. The shal-
lowest configuration is 512 x36-bits. Hence a 256 x256 memory would require
8 of these side by side.

The final variation of designs was the weighted median implementations.

Recall that each sample in this implementation has an associated weight; this

>The window sizes used for each of the different wordlengths were 13, 25, 51, 109, 211,
387 and 739 respectively.
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weight is used to update the histogram. This introduces another variable; the
width of this weight in bits. Clearly, this will have an effect on the window
sizes that can be implemented for each bin size. If the bin width is set to p
bits, then for the standard median, it can accommodate a window size of up to
27 — 1 samples. For the weighted median, this window size will depend upon
the width of the weights. If the weights are given widths of ¢ bits, then the
maximum window size for a bin width of p bits is 2°77—1. Hence, increasing the
width of the weights means wider bins are required for an equivalent window
size.

The results of this set of implementations are shown in Figure 6.12. It can
be seen that increasing the width of either the bin counter or weight has a
similar effect. Furthermore, the area required for a weighted median imple-
mentation with weights 2-bits wide is not very different from the generalised
version of the standard median filter. As the width of the weights increases
the weighted median implementation begins to exceed the generalised median
more significantly.

Through developing a parameterised design, it is easy to tailor the imple-
mentation to specific requirements in terms of wordlengths and window size.
The only assumption that holds for all the above designs is that the input
samples are 8-bits wide, as one would find reasonable in the sphere of image
and video processing. The extensibility of the original design coupled with
full pipelining has meant that all these derivatives could be derived from one

architecture, and all can run at 72MHz, returning one result in every clock
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cycle. The throughput is thus 72M samples per second. Note that this cannot
be converted to frames per second since the implementation is not designed as
a spatial filter; it is an arithmetic unit. However, for illustration’s sake, the
computation throughput of this circuit would equal 234 frames per second for

640x 480 pixel images.

6.5.3 Trace Transform Specific Implementation

FFor use in the Trace transform functionals, the requirements for the weighted
median circuit are slightly modified. First, a reset signal is added such that all
the bin counters can be reset at the start of a new set of data (a new line). The
reset, is implemented such that the sample that enters the system in the follow-
ing cycle is not discarded, since there are no spare cycles between subsequent
rows in the Trace image. The sample and weight widths are both set to 8 bits
to accommodate the maximum possible input parameters. Furthermore, the
circuit is modified to completely ignore samples with an accompanying mask
value set to 0. Finally, the FIFO for input samples is discarded, since this is

not a sliding window implementation.

6.6 Summary

In this chapter, an alternative implementation of median filtering for arbitrarily
large one-dimensional windows was presented. The area required to implement

this architecture is of the form K + log, N, where N is the window size, thus
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it is highly scalable. The design also allows for a flexible window-size that can
change from one window to the next. Use of heterogeneous FPGA resources
allow the circuitry to be simplified and fully pipelined. The area requirements
were compared to that of a standard sorting-grid architecture and show the
efficiency of this method for larger windows. For a standard architecture, the
area requirements increase exponentially with window size. An extension to
weighted median calculation was also shown, that has modest impact on area
requirements. A full analysis of area requirements for both fixed-size windows,
flexible windows and the weighted median implementation was shown. The
presented method is elegant in its flexibility with regards to window size. Of
course for very small windows, other techniques may be more compact. How-
ever for large windows, or systems where flexibility in window size is needed,
or for weighted median calculation, the proposed method is scalable, offers a
throughput of 72M Samples/s and uses 15% of the area of the target FPGA.

Given that the weighted-median function is used in a number of Trace
transform functionals, this contribution significantly assists in enabling a hard-
ware implementation of the Trace transform. The challenge answered in this
chapter was the design of a circuit that can return median and weighted medi-
ans for windows of arbitrary length, not necessarily known in advance, in a sin-
gle cycle. This has been successfully achieved by exploiting the heterogeneous
resources on the FPGA. Previous techniques have all assumed fixed window
sizes and most architectural optimisations could not be applied to weighted

median calculation. This architecture is highly flexible and addresses both.
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Chapter 7

Hardware Acceleration of

Pseudo 2-Dimensional Hidden

Markov Model Decoding

7.1 Introduction

In Chapters 4 and 5, a flexible real-time implementation of the Trace transform
was presented. The Trace transform has shown to be applicable to a wide range
of application domains as shown in Chapter 3. One such domain is that of face
authentication [SPKKO05] as touched upon throughout this thesis. It was also
noted when discussing applications, in Chapter 3, that the Trace transform is
best suited when applied to images free from background clutter or noise. As
such it is often applied after a segmentation routine, resulting in a mask as

used in the implementation presented thus far.



In this chapter, a Hidden Markov Model decoding implementation will be
presented. Such a system can be used to extract frames of interest from a
video sequence where a person is present. The resultant frame could then be
processed using the Trace transform.

The most successful application of the Hidden Markov Model (HMM) has
been in speech recognition, with research going back nearly 20 years [RJ86].
In the computer vision domain, much activity has been seen recently, with the
HMM being used for character recognition in deformed text [IKKA94], tem-
plate matching [BMO04] and face recognition [Nef99]. The strength of the
Hidden Markov Model (HMM) is in its ability to cope with deformity to
the image [Nef99]. One application of HMM decoding is in person-detection
and tracking, when combined with a Kalman filter, as presented in [RWM99,
REMO00, BRO1, BRO3].

Unfortunately one of the main difficulties with the use of the Hidden
Markov Model is its computational complexity. Implementation in hardware
seems an ideal solution to this problem, in order to enable faster processing.
While some work has been done on hardware implementation of the Hidden
Markov Model for speech recognition [VFJO01], this is the first work to explore
a hardware architecture and implementation of the Hidden Markov Model
specifically for vision systems.

The work in this chapter deals with accelerating the HMM state decoding,
which is the operation used during recognition tasks. This forms part of the

algorithm presented in [BRO3] for person-tracking. Achieving real-time per-
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formance would mean that the algorithm could be applied to a video sequence

to extract frames in which a person is present.

7.2 The Hidden Markov Model

The Hidden Markov Model (HMM) is essentially an extension of a standard
Markov-process state machine [RJ86]. The idea is that there exists a process
which transitions through a number of states. These states are not directly
observable, but some other observation can be made that is statistically linked
to the state of the process. By knowing the sequence of observations and
the properties of the process, the underlying (hidden) state sequence can be
deduced.

This is called the “state decoding” problem of HMMs. The information
available is as follows:

o A ={a;;} where a;; = Pr(q; at t|g; at t — 1), the state-transition proba-

bilities

e B = {b;(O)} where b;(O) = Pr(O at t|q; at t), the observation proba-

bilities
e and 7 = {m;}

where 7; are the initial state probabilities and ¢; are the states. [RJ806]
Some important notes for HMMs are that there is only one observation

and state-transition per timestep, and the state-transition and observation
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probabilities do not change over time.

Recognition using HMMs relies on the Viterbi algorithm [For73] to extract
the state sequence from a series of observations. The Viterbi algorithm has
been widely researched and efficient implementations in the field of block-
convolution decoding and speech-recognition have been proposed [BYCOI,
ZB03|.

The state-decoding problem is that of trying to deduce the transition se-
quence of hidden states given the sequence of observations. This is done by
solving the recursive equations in 7.1 and 7.2. 0,(j) computes the probability
of being in state 7 in timestep ¢, while 1);(j) gives the most likely predecessor

of state 7 at timestep ¢.

0(J) = ()11513;,[5t—1(,i) : ”ij] i bj(()t) (1)
(7)) = arg max[d;—1(2) - ay;] (7.2)
0<i<N

The state sequence is obtained when 6 and v are computed for the last
timestep. The state with the greatest value of ¢ is taken to be the final state.
The value of ¢ for that state is then used to find the predecessor and the
backtracking process continues recursively until a full state sequence has been
obtained.

It is important to note that the HMM as used in these systems uses offline
learning. That is, the model is taught using training data, until accurate pa-
rameters are obtained. These parameters are then used in recognition systems
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such as ours. The recognition system does not adapt to its input over time,
although the reconfigurable nature of FPGAs means that system parameters

can be changed by writing a completely new design to the chip.

7.2.1 2-Dimensional Representation

The state sequences discussed so far have all been one dimensional with transi-
tions occurring in the time dimension. However, for application of this theory
to images and visual data, the HMNM must be extended to two dimensions.
This would allow parts of the image to be assigned to different states. A
fully connected model, where each state can transition to any other state, is
not scalable since the number of connections increases quadratically with the
number of nodes. This increases the complexity of the training and decoding
nodes quadratically over the one-dimensional approach. Another method is
to let the states in a one-dimensional HMM themselves contain HMMs. This
is called the embedded Hidden Markov Model [KA94]. The structure can be
simplified further by flattening which gives a state-representation as shown in
Figure 7.1.

[t is important to note that this is not a true 2-dimensional representation,
since transitions from column-to-column are not possible. This is called the
Pseundo 2-Dimensional Hidden Markov Model [KA94]. This state representa-
tion is the one used in the proposed system [BRO3], and the efficiency savings

gained from this will be shown.
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Figure 7.1: State representation of the pseudo 2-dimensional HMM.

7.2.2 System Overview

It is important to consider where the HMM decoding unit fits in to the pro-
posed vision system. As proposed by Rigoll et al [RWM99, REM00, BRO1,
BRO3], the HMM is used to identify the presence of a person. First comes
the person-detection phase: through background subtraction, a moving object
is extracted. A bounding-box is formed by adding a margin on each side of
the moving object. This image segment is then processed with a block based
on the Discrete Cosine Transform, using an overlapping sliding window, to
extract features. These are the data presented to the pre-trained HMM block
as observations, and the block decides whether or not a person is present in
the bounding box, by taking into account the number of person states in the
extracted sequence.

Once the presence of a person has been established, the system enters the
person tracking phase. Segmentation is performed based on the states; the
Centre Of Gravity (COG) of the segment is then passed to a Kalman Filter
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that predicts the position in the next frame. A new bounding box is formed
around the predicted COG and passed to the HMM block to check the presence
of a person again. If the person is still present, the parameters of the bounding
box are again passed to the Kalman filter to make the next prediction and so
on. If the person is no longer present, the system switches back to the person-
detection phase. This is summarised in the person-tracking system flowchart
shown in Figure 7.2.

Note that while in the person-detection phase, the camera must be station-
ary for successful segmentation. However, once the system enters the tracking
phase, panning and zooming are allowed. This is one of the strengths of this
system as compared to many other tracking algorithms. The work in this
chapter deals solely with acceleration of the HMM decoding part of the above

system.

7.3 Computational Considerations

7.3.1 Log Domain Representation

To decode the state sequence, a multiplication is needed for each predecessor,
and one more for multiplying by the observation probability, as seen in (7.1).
Given the recursive nature of the equation, dynamic range is an issue that must
be considered, since recursively multiplying a number can lead to overflow. One
way of overcoming this issue is to perform these calculations in the log-domain.
This reduces multiplications to additions and allows the wide dynamic range
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Figure 7.2: The person-tracking system processing flow.
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to be represented with fewer bits. Furthermore, since it is relative rather than
exact values that decide the state sequence, the relative loss of precision is
tolerable and does not impact the results [Mel03].

Given that the logarithm of a probability is always negative, due to the
number being less than 1, the result is negated, removing the need for signed
arithmetic [Mel03]. Therefore the maximisation in (7.1) and (7.2) becomes a

minimisation. In the log domain, the system now needs to compute:

0i(7) = | min_ [6-1(3) + ay] + b;(Oy) (7.3)
te(j) = arg min[6p_1 (i) + ayj] (7.4)
0<i<N

7.3.2 Trellis Structure

The general form of the Viterbi algorithm for deduction of a state-sequence
from a series of observations has been presented. For each timestep, the system
must compute the probability of being in each state as defined in (7.1) and
(7.2). This calculation depends upon the probabilities of each of the states
from the previous timestep and the observation probability for each state in
the current timestep. From the equations, for a system with N states, and
an observation sequence 7' timesteps long, the number of multiplications is
(N?+1)-T. In the proposed system (derived from [BR03]), the number of
states is 24 and the typical number of observations per image is in the region

of 3000. This gives a total of 1,728,000 multiplications to be completed per
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Figure 7.3: Extract from the state-transition trellis for the pseudo 2-
dimensional Hidden Markov Model.

frame. For a real-time system running at 25 frames per second, this means
over 43 million multiplications per second.

Looking at Figure 7.1, one can see that the state transitions for the pseudo
2D representation are not fully connected. The state transition trellis for this
representation is shown in Figure 7.3. Each state only has 2 predecessors. Tak-
ing advantage of this would simplify the calculation immensely, reducing the
number of multiplications to (2N + 1) - 7. That is a reduction in computation
of 90% for these parameters.

One can also deduce that the state transition sequence follows a fixed pat-
tern. The general case is that the 2 possible predecessors for each node N in
timestep T" are the nodes N — 1 and N from timestep 7' — 1. However, in the

case of states 1,7,13 and 19 the predecessors are nodes N —1 and N +5 from the
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previous timestep. Hence, it is possible to design an efficient node-calculation
unit that has 2 inputs, one of which depends on which state the result is being

computed for,

7.3.3 Algorithmic Parallelism

Another property that suggests hardware would be much more suited to HMM
decoding than software is the inherent parallelism in the Trellis. In a normal
software implementation, each node within a timestep is calculated in turn,
before moving onto the next timestep. This means that the system can only
cope with an observation rate that allows it to compute all nodes in the inter-
observation time. In this case, 24 calculation-times must complete before the
arrival of the next observation.

From the trellis diagram, it can be observed that nodes in one timestep
only depend upon values in the previous timestep. This means that more
than one node can be calculated in parallel since results from within the same
timestep have no effect on each other. In fact, given sufficient resources, all
nodes in one timestep could be calculated in parallel. This allows for a higher

observation-rate in line with the aim of realtime processing,.

7.4 Proposed Architecture

The basic idea of the proposed design is to implement a “decoder node”, that

goes through each state to compute the 6 and 1 values for the current timestep.
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Figure 7.4: The eflicient HMM decoder node design.

The node is a simplified solver for (7.3) and (7.4), taking into account the
simplifications mentioned in Section 7.3.2. A primitive example of the design is
shown in Figure 7.4. The results from the calculations in the previous timestep
are fed into the unit. For calculation of the result for state NV, the only possible
predecessors are states N —1, N and N 45, as discussed in Section 7.3.2. These
are fed as inputs along with the appropriate state transition probabilities and
the observation probability for the current state. A select signal goes high
when the node is computing the results for states 1,7,13 and 19. This causes
the values for state N + 5 from the previous timestep to be used instead of
state N. The comparator chooses the minimum of the two values and stores
the most-likely predecessor. The observation probability is then added to give

the final result for this timestep.



7.4.1 Implementation Considerations

For the purposes of this implementation, only the extraction of the state-
sequence from the observation values is considered. As such, the performance
of this specific structure for the HMM as compared to others has not been
evaluated, nor has the HMM training been considered. Rather, model param-
eters supplied from some precursory work [Yaq03] on the same system were
used.

Since the processing unit is the sole object of concern, the transition prob-
ability values have been pre-computed in the log-domain, and the observation
probabilities have been assumed to be in the log domain. For a full system
implementation, one would have to take into account the area requirements of
blocks to convert to and from the log domain. Despite the presence of hard-
coded multipliers on the target device, calculations in the log domain were still
favoured since this allows problems with dynamic range to be circumvented.

It is essential to understand how the Pseudo-2D HMM maps to an im-
age. In the proposed system, image features are extracted, which form a
one-dimensional set of observations. Each observation maps to a position in
the image which has been processed using a block based on the DCT, as pre-
viously mentioned. Hence, the timestep when looking at the observations is
actually a spatial transition in terms of the original image. The word timestep
will still be used in this chapter, since this is the preferred terminology when

discussing HMMs.
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The design was developed and implemented using the Handel-C language
and the Celoxica DK compiler. This enabled different levels of parallelism to
be tested in a short amount of time with minimal extra effort. The targeted
device was a Xilinx Virtex-II 6000 FPGA, on a Celoxica RC300 board, as for

the other work in this thesis.

7.4.2 Dataflow considerations

In an implementation as complex as the Viterbi algorithm, organisation of data
is paramount to an efficient design. Despite this design being much simpler
than a general Viterbi decoder, there were a number of challenges in organising
the delivery of data around the system.

The first important data are results from the previous timestep, 6;—1(7).
This is simply an array of 24 values that is copied from the current results,
once each time the current timestep completes. The next data item to consider
is the observation probability, b;(O;). This is again an array of 24 values that
changes each timestep. The required value is simply referenced by the number
of the state currently being computed. The final and more complex type
of data is the transition probabilities that are constant throughout. At first
these were stored as a 24 x 24 array, and referenced by the values of N for this
timestep and the previous, but this was too complex. Instead a much simpler
approach was developed where each processing node has access to an array
of tuples that contains the transition probabilities for the two predecessors,
ignoring position, with predecessor selection at a higher level. Hence the node
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itself is only the shaded region of Figure 7.4.

In implementing the parallelised versions, some other savings could be
made. Consider first, that each hardware node only needs access to the tran-
sition elements for the states that it will calculate. More importantly, if one of
the parallel nodes will not be computing any of states 1,7,13 or 19, then there
is a saving since there is no need to select between two alternative input pairs
as in the case of those nodes. This explains why the area requirement does
not increase in proportion to the number of nodes, as all nodes above 4 are
simpler in their circuitry.

Furthermore, as the level of parallelism increases, the control circuitry be-
comes more simple, so much so, that in the fully-parallel implementation, there
is almost no control circuitry whatsoever. This is the reason for the improved

clock speed with a higher number of nodes, as will become clear in the results.

7.4.3 Single-node Implementation

For this implementation a single calculation was implemented. In each timestep,
control circuitry uses the node to calculate the results for each state, choosing
the correct predecessors. The results are then shifted serially into a shift-
register. Once all results had been computed for one timestep, the results are
copied, in parallel, to the register holding previous results, ready for calculation
of results in the next timestep.

This design takes 24 clock cycles to complete the state calculations for each
timestep. The fastest clock rate achievable with the circuit is 36MTHz.
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7.4.4 Multi-node Implementations

Implementations were completed for 4, 8, 12 and 24 nodes in parallel. These
designs take 6, 3, 2 and 1 clock cycle(s), respectively, to complete the calcula-
tions for one timestep.

In each case, the appropriate number of nodes is instantiated in parallel.
Surrounding logic decides which data to pass to which node. Each node only
needs access to whichever data it will process; in the case of the transition
probabilities only the necessary tuples were attached to each node.

The implementation for 24 nodes is simpler than for fewer nodes. The
reason is that in the case of the 24 parallel nodes, each is hard-wired to the
appropriate predecessor registers and transition values, and so there is no con-
trol circuitry as such. Since five of the transition probabilities were zero in this
case, this removes one of the adders from those nodes. The 12-node version
only has binary selections since it only runs for two clock-cycles. Hence there
is a significant saving on the multiplexing of signals that causes it to be more
area efficient that the 8-node implementation.

The implementations raise an interesting fact: that in the case of this
design, the control circuitry is a significant part of the area. This is because a
1-bit adder uses the same amount of resources as a 2-way 1-bit select. Since in
these designs the predecessor data is multiplexed into each node, this becomes
significant. This is why there is a significant drop in area usage in the graphs

from 8 to 12 nodes.
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Nodes Slices Cycle-time Cycles/Timestep M Timesteps/s

1 972 27.033ns 24 1.5
4 2083  34.467Tns 6 4.8
8 2271 30.570ns 3 10.9
12 1593 22.112ms 2 22.6
24 1425  14.953ns 1 66.9

Table 7.1: Implementation results for different numbers of nodes instantiated.

7.5 Implementation Results

Implementation results are summarised in Table 7.1 and Figures 7.5,7.6 and
7.7. From the graphs, it can be deduced that the 24-node implementation
is most desirable. It is both faster than all other designs and smaller than
all except the single-node implementation. However of importance too is the
number of cycles needed for a complete result. This swings the result even more
in favour of the 24-node implementation as seen in the throughput figures in
Table 7.1. For reference a full Viterbi decoder in MATLAB, running on a
Pentium 4, 2.4GHz machine, with the same data managed only 1000 results
per second. A result rate greater than 200,000 per second! would be required
for a realtime implementation with 30 frames per second video for the given
state representation. The performance presented here equates to over 10,000

frames per second given those parameters.

'Calculated from data in[Yaq03].
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7.6 Extension to the General Case

The implementation presented here deals with a 24 node HMM, organised as
a 4x6 node pseudo 2-dimensional HMM. The architecture presented thus far
can easily be extended to arbitrarily sized pseudo 2-d HMMs. Consider the
case of an m x n node implementation. The state transition trellis would
be very similar to that shown in Figure 7.3, except that there would be m
“special-case” nodes. For one of these nodes, numbered N, its previous nodes

”

in the trellis would be N — 1 and N + n. All other “standard” nodes would
still have previous nodes N — 1 and N.
For different levels of parallelism, one could investigate m, 2m, 3m, -+, nm

nodes. However, given the results presented above, it is likely that implement-

ing m x n nodes would prove most efficient. The decoder node would remain
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identical to that presented above, save the change to allow for the larger jump
in states for the “special case” nodes. In this manner, the architecture can be

used to implement any pseudo 2-dimensional HMM decoding.

7.7 Summary

In this chapter, it has been shown how, taking into account the structure of
the state representation for an HMNM system, it is possible to significantly
simplify the computation of the state sequence. The number of computations
is reduced from (N2 + 1) T to (2N + 1) - T. Different levels of parallelism
were also explored, and it was found that increasing the number of nodes not
only drastically increases performance, but also has a positive impact on area
usage. This is due to the control circuitry becoming simpler as more nodes are
implemented in parallel. Such a method could be incorporated into a system
to extract frames of interest to be processed by the Trace transform. This
architecture is general to any pseudo 2-dimensional HMM state representation,
and given the high performance, could be used for a larger number of states

while still providing real-time performance.
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Chapter 8

Conclusion

8.1 Summary

The Trace transform is a relatively recent algorithm, which has been shown
to be highly flexible, offering excellent performance in a number of application
domains. An obstacle to its widespread adoption has been its computational
complexity as discussed in Chapter 3. In this thesis, the first hardware imple-
mentation of this algorithm was presented in Chapter 4. The implementation
was designed with both the algorithm and the target architecture in mind,
resulting in a highly efficient, extensible architecture. By exploiting algorith-
mic parallelism, and making the simplification from line extraction to image
rotation, significant speedup of over two orders of magnitude over software is
achieved. More importantly, the architecture was designed to allow for easy
swapping of functionals, with minimal impact on the timing of the overall sys-

tem. The hardware architecture achieves a significant speedup of 75x over
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software for three functionals. Adding more functionals increases this factor
significantly. It is clear that to achieve real-time performance with the Trace
transform, it is necessary for such a hardware architecture to be used. Since the
architecture’s performance is immune to the addition of further functionals, it
also allows the application designer the freedom to use as many functionals as
necessary without a performance cost.

The Trace transform is general in that the functionals used in computa-
tions are not pre-defined. This results in the correct selection of appropriate
functionals being the deciding factor in creating a successful application. The
functional space can be extensive, given the fact that the only requirement is
that a functional maps a vector to a single number. In order to facilitate a
more thorough investigation of the functional space, a framework for design-
ing flexible functionals was developed, as presented in Chapter 5. This was
applied to create three functional blocks that could each implement multiple
variations of functionals for a face verification application. In order to facil-
itate flexibility, the embedded memories on the target FPGA were used to
provide re-programmability. A configuration register was introduced into each
functional to allow for variable datapaths. The timing impact of this extension
of the algorithm was negligible, and for more complex functionals, provides an
even greater acceleration factor over software. With the three functional blocks
presented, 11 functionals from a previous implementation could be calculated
with a significant speedup of over 160x over software.

This framework for designing flexible functionals opens the door to a more
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thorough investigation of functional performance for a variety of domains. It
is now possible to apply the Trace transform to new domains, researching the
efficacy of a wide range of functionals, before deciding on those that most suit
the specific task at hand.

In designing the functionals, an efficient, flexible implementation of me-
dian and weighed-median filters was presented in Chapter 6. The proposed
architecture suits the Trace transform due to its flexibility in terms of window
size, and efficiency in computing medians over large windows. A large rank
of parallel bins maintains an up-to-date cumulative histogram with each input
sample that enters the system. The elegance of the design is apparent in the
multiple configurations presented, each requiring only minor changes to the
overall architecture. This method of histogram generation has separately been
applied to histogram equalisation of images by others.

Finally, an acceleration of Pseudo 2-Dimenstional Hidden Markov Model
(HMM) decoding was presented in Chapter 7. By considering the state tran-
sition probabilities and investigating varying levels of parallelism, real-time
performance was achieved, using a simple replicable processing node. This
architecture is extensible to any pseudo 2-dimensional HMM decoding. The
HMM decoding block has been shown in previous work to be useful in person-
detection, and could be used as a predecessor block the the Trace transform
in a vision system, since the Trace transform requires prior segmentation for
accurate performance.

Modern heterogeneous FPGAs, with the wide array of embedded elements
Y
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that they sport, offer an ideal platform for acceleration of vision algorithms.
The large amounts of data, and complex processing, that characterise these
systems, can be dealt with efficiently through the development of appropriate
architectures. Flexibility can also be afforded by using the embedded elements
on an FPGA. The Trace transform has proven an ideal candidate for acceler-
ation, yielding excellent performance improvements. As such, an architecture,
such as that detailed in this thesis, can be used as an experimentation platform
with which to investigate the use of the algorithm in a range of different appli-
cations. This architecture removes the previous limitations of the software-only
approach, and opens new areas of vision research using the transform.

The spirit of this thesis has been the importance of considering both the
algorithm and target architecture in any hardware investigation. It is unfor-
tunate that some designers simply translate a software implementation into
hardware. While the acceleration that can be gained from loop-unrolling is
welcome, there are often significant factors to be gained from other methods
which may not be apparent in a sheet of pseudo-code. Hence it is important
for a successful designer to consider the algorithm with full understanding in
order to achieve significant speedup.

The heterogeneous resources on modern FPGAs present the designer with
a platform that can be exploited in many ways. Throughout this thesis, the
various types of resources have been used to implement different aspects of
the various architectures. These resources can often provide the solution to a

design problem, such as the use of a ROM to provide the massively parallel
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selection control in the median filter architecture. Again, a thorough under-
standing of the target device and the various ways to exploit these resources
is a huge advantage in creating a fast, efficient design.

To conclude, the designer’s ability to accelerate vision systems in hardware
is significantly aided by modern FPGASs’ heterogencous architectures. The
real-time performance required for many applications can ouly be achieved in
hardware, and by exploiting these resources through considered design, this

can be achieved.

8.2 Future Work

The work in this thesis could be extended in a number of directions. Some
suggestions for future work to follow on from that presented here, will be
mentioned in this section.

One possibility is to create a fully accelerated application using the hard-
ware architecture presented in Chapter 4. An application such as face authen-
tication would present a challenge, while providing the opportunity to compare
performance to the pre-existent software implementation. Other steps in the
face authentication application presented in [SPKKO05] could be investigated
in hardware, or they could be left to software. In any case, the performance
and accuracy of the software and hardware systems could be compared.

A graphical interface, allowing the designer to implement flexible function-

als could be developed without much difficulty. The interface would present



a simple datapath, where the designer could add lookups and selectable data-
paths. The contents of the lookups and configuration registers could then be
set, including multiple ditferent configurations to be tried successively.

Adapting the architecture for a more feature-rich platform would offer some
more performance improvements. A better transfer interface than USB would
remove the current bottleneck in terms of reading the results. Faster memories
that can keep up with the FPGA speed would provide a performance boost.
Furthermore, extra external memories, or multi-ported memories could be used
to compute more rotations in parallel.

Another possible area of work would be to design further flexible functional
blocks using the framework presented in Chapter 5, then employ the system
to research the efficacy of a large set of functionals for a given novel applica-
tion. As yet, there has not been a significant investigation of Trace transform
functionals that suit specific applications. This hardware architecture serves
as an ideal platform for making this contribution.

One area of work enabled by this architecture is to research the efficacy
of multiple computationally simple functionals when compared to the more
complex ones converted from the software implementation. Given the freedom
to use more functionals due to the lack of a performance cost, it may make
more sense to use some simple functionals that suit hardware implementation
as opposed to some of the complex ones presented in Chapter 5.

Further functionals based on the idea of a weighted sum, and also small

filter kernels such as Haar wavelets would pose an interesting area of research.
125
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Such filters are already widely used in computer vision, and could be incorpo-
rated into the Trace transform, using the framework presented in this thesis.

It may be worth investigating the performance of the algorithm when only
applied to 180° of rotations. With the Radon and Hough transforms as well
as the Trace transform for any functional that does not take into account
the pixel position in a line, the resultant parameter domain image is odd-
symmetric. Doing away with the extra rotations would double performance,
allowing real-time performance for larger images. The effect may well be very
minimal even for those functionals that do use the pixel position.

It is worth noting some areas where the transform itself could be extended.
Given the acceleration achieved using hardware, it is now possible to apply the
Trace transform to a video stream. This presents an opportunity to investigate
the temporal properties of the transform, and whether any use can be made
of these.

Another extension is to use the transform on a processed image with fea-
tures extracted using standard methods such as edge-detection. There has also
been some suggestion that the transform could be applied to small areas of
images in a similar method to a sliding window filter. This would enable some
sort of local-feature extraction.

Finally, the histogram generation method presented in Chapter 6 could
be applied to other fields where live histograms could be useful. One such
application is real-time estimation of probability density functions, which could
have wide-ranging applications.
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Glossary

ASSP Application-Specific Standard Platform, e.g., DSPs such as Texas In-
struments TMS320 Platform. Processors that are tailored to a specific

application domain.
Bitstream The data file used to configure an FPGA.

Block RAM The embedded memory components on a Xilinx FPGA.

Computational Complexity A measure of how complex an algorithm is
to implement. Typically characterises an algorithm by the number of

operations with respect to the values of algorithm parameters.

Datapath The path through which data travels in a circuit, including the

wires, computational elements and registers.

DSP Digital Signal Processing or Digital Signal Processor, e.g. Texas Instru-

ments TMS320 Platform.

FIFO First-In-First-Out buffer. A buffer that accepts values and propagates
them through with each cycle, with samples emerging at the other end
in the order in which they arrived.

208



FPGA Field-Programmable Gate Array. A device that consists of logic and
routing that is configurable at runtime to implement and arbitrary cir-

cuit.

Functional A function that maps a vector function to a single value. In the
case of the Trace transform, the computation that converts a line to a

single value in the parameter domain.

GPP General Purpose Processor, e.g. Intel Pentium 4. A processor with a

general purpose datapath.

GPU Graphics Processing Unit, e.g. ATI Radeon Series. A processor with a

datapath specifically tailored to graphics processing.

Handel-C An extended version of the ANSI C language with constructs to

facilitate use in hardware description.

Heterogeneous Architecture A device which contains a variety of ditfer-
ent, primitive elements, like Slices, embedded multipliers and embedded

memories.

HMM Hidden Markov Model. An extension of a standard Markov process,

but where the state transitions are unknown.

LUT Look-up Table. A circuit element that takes multiple inputs and stores

the resultant output of a single output logic function.
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Median The middle value from a set of samples after they have been ordered

in terms of magnitude.

Paralellism Describes portions of an algorithm that iterate a variable over

multiple values, with each iteration being independent.

Pipelining The process of inserting registers between computational stages.
This allows the clock period to be shorter and for the circuit to thus
run faster. Some latency is introduced, but this is negligible for complex

systems.

RAM Random-Access Memory. Memory that is read and written to in ran-

dom order.

Reconfiguration Changing the configuration of an FPGA. Can be during

runtime (Runtime reconfiguration).

ROM Read-Only Memory. Memory that has fixed contents and can only be

read from.

Slice The basic hardware unit on a Xilinx FPGA. Consists of two LUTs and

some other logic. Used as the basic unit for area measurement.

Synthesis The process of converting the hardware description to a set of
o
primitive hardware blocks on the target architecture. Done automatically

in software.

210



Thresholding Turning an image into a binary image by setting all values

above the threshold to 1 and all values below to 0.

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description

Language.

Wordlength The width of a signal or memory location in bits. An n-bit word

, aN ¥ o . 0
can accommodate values from 0 to 2V — 1 in unsigned arithmetic.
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