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A bstrac t

Computer Vision is a rapidly developing field in which machines process vi

sual data to extract meaningful information. Digitised images in their pixels 

and bits serve no purpose of their own. It is only by interpreting the data, 

and extracting higher level information that a scene can be understood. The 

algorithms that enable this process are often complex, and data-intensive, lim

iting the processing rate when implemented in software. Hardware-accelerated 

implementations provide a significant performance boost that can enable real- 

time processing.

The Trace Transform is a newly proposed algorithm that has been proven 

effective in image categorisation and recognition tasks. It is flexibly defined 

allowing the mathematical details to be tailored to the target application. 

However, it is highly computationally intensive, which limits its applications. 

Modern heterogeneous FPGAs provide an ideal platform for accelerating the 

Trace transform for real-time performance, while also allowing an element of 

flexibility, which highly suits the generality of the Trace transform. This thesis 

details the implementation of an extensible Trace transform architecture for



vision applications, before extending this architecture to a full flexible plat

form suited to the exploration of Trace transform applications. As part of 

the work presented, a general set of architectures for large-windowed median 

and weighted median filters are presented as required for a number of Trace 

transform implementations. Finally an acceleration of Pseudo 2-Dimensional 

Hidden Markov Model decoding, usable in a person detection system, is pre

sented. Such a system can be used to extract frames of interest from a video 

sequence, to be subsequently processed by the Trace transform.

All these architectures emphasise the need for considered, platform-driven 

design in achieving maximum performance through hardware acceleration.
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C hap ter 1

In troduction

Humans interact daily with their surroundings, through perception via our 

senses and physical interaction with our limbs. When a sensing faculty is dis

abled, or its ability diminished, one’s perception of his surroundings decreases, 

and so he acts with more uncertainty. As humans, we are able to process the 

boundless information that we receive, especially visually, to build some un

derstanding of the world around us. Images in their pixels and bits serve no 

specific purpose. It is only through extracting higher-level information that 

some understanding of the scene in question can be gained.

Recently, much effort has been invested in giving machines the ability to 

interpret visual data. Computer vision is a fast-moving field with many ex

citing developments. A typical computer vision processing flow is shown in 

Figure 1.1. Image data is first processed in order to extract features that 

can be used to represent the image; perhaps edges, corners or other features. 

These can then be processed to detect the presence of an object. A detected
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Figure 1.1: A typical computer vision processing flow.

object can be segmented; effectively “cutting it out” of the scene. This object 

might then be processed for authentication purposes or for temporal tracking 

or other higher-order tasks.

Computer vision applications are often characterised by the large amounts 

of data and processing needed to implement them. The most effective algo

rithms have often also proven to be some of the most complex. Such algorithms 

often fail to achieve real-time performance in software and so must be accel

erated somehow in order for them to be of significant use. Designing efficient 

hardware implementations can often propel these systems to the realms of real

time performance. Hardware design is a complex process, and historically, it 

has been out of the reach of most. This has, however, begun to change recently.

Field Programmable Gate Arrays (FPGAs) are an emerging force in the 

hardware arena, offering some of the power of custom-designed hardware for a 

fraction of the effort and cost. Their relative ease of design, low starting cost, 

rapid time to market and re-configurability make them both an excellent pro

totyping platform and an ideal alternative to Application Specific Integrated 

Circuits (ASICs) for medium volume applications. The most significant ben

efits in any hardware implementation are gained when hardware is designed
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with the target platform in mind. Modern heterogeneous FPGAs offer a wide 

array of resource types which can be exploited in numerous ways. The skill 

of the designer in exploiting the available resources to their potential is what 

separates a mediocre system from an efficient, significantly accelerated archi

tecture.

Such a platform provides all the ingredients needed for computer vision 

research and implementation. FPGAs afford the designer the opportunity to 

research different algorithms, to incrementally improve implementations and 

to test applications in the field without huge start-up costs and the associated 

risks.

The Trace transform is a recently introduced algorithm that has been shown 

to perform well in a variety of image recognition and categorisation tasks. 

It maps a standard image to an alternative domain, and while defining the 

spatial mapping, is general in terms of the mathematical aspect. This allows 

the transform the flexibility to adapt to different applications and for the 

mathematical components to be selected with respect to their performance for 

a specific task. The Trace transform is, however, computationally intensive, 

and acceleration would enable real-time performance that is as yet unachieved 

in software.

In a vision flow, the Trace transform can be used in numerous ways, ft is 

possible to use the Trace transform to extract global features from an image. 

These features can be used to characterise certain aspects of the image. An 

example is the car park usage classification system discussed in Section 3.5.3.
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The Trace transform lias thus far been primarily used for object recognition or 

authentication, which would typically follow an object segmentation step. The 

Trace Transform has been applied to image database search [KP01] and face 

authentication [SPKK05], covered in more detail in Sections 3.5.1 and 3.5.4, 

respectively.

One of the Trace transform’s strengths is its flexibility in terms of the 

computational mapping. This flexibility is essential in optimally applying the 

transform to a desired application. Hence, this thesis details an architecture 

that maintains flexibility and scalability. One of the oft-used mathematical 

functions within these arithmetic blocks is the median and weighted median. 

Developing an efficient architecture to implement this enables the use of some 

of the more complex arithmetic mappings.

Pseudo 2-dimensional HMM decoding is a method that is useful in detection 

and recognition tasks. The work in this thesis is related to an application 

used for person tracking [BR03], Similar systems have been used for face 

detection [Nef99]. The pseudo 2-dimensional HMM can be used as a stage 

prior to the Trace transform, that extracts an object of interest for processing 

by the transform.

This thesis will investigate the use of FPGAs in computer vision, with the 

primary focus being the hardware acceleration of the novel Trace transform. 

All aspects of the implementations will be discussed from design methods, 

through architectural considerations, down to the implementation results. Be

side real-time acceleration, the architecture will be extended to allow for a
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Figure 1.2: A vision flow incorporating the work in this thesis.

fully flexible set of mathematical units, as well as a framework for creating 

such units and reconfiguring them at runtime. All the architectures presented 

emphasise the need for considered design and the exploitation of heterogeneous 

resources to achieve optimum performance.

An overview of a vision flow incorporating the work in this thesis is shown 

in Figure 1.2.

1.1 Thesis O utline

The remainder of this thesis is composed of seven further chapters as follows: 

Chapter 2 covers general background information on Field-Programmable 

Gate Arrays, the architectures, design processes and performance metrics used 

to measure implementations. A general overview of the computer vision do

main is given with a summary of FPGA implementations of various algorithms.
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Chapter 3 is an introduction to the Trace transform and its precursor, 

the Radon transform. The mathematical foundations of the Radon transform 

are introduced, followed by a brief overview of its applications. The Trace 

transform is then defined before looking at a variety of applications and dis

cussing its different modes of ust;. Finally, some analysis of its computational 

complexity is presented.

In Chapter 4, a hardware architecture is developed for the Trace transform 

that provides for real-time acceleration of the algorithm. The architecture is 

detailed showing how significant acceleration is achieved through the exploita

tion of algorithmic parallelism. The architecture presented is extensible, and 

can be used to build up a full recognition system using the Trace transform.

In Chapter 5, a framework for developing flexible, re-programmable func

tionals is presented. The framework interfaces with the architecture developed 

in Chapter 4, and while adding significant flexibility, has no adverse impact on 

performance. As a reference, three flexible functional blocks are implemented, 

each with the capability to compute a number of different functionals from an 

existent implementation. The framework facilitates the exploration of Trace 

transform functionals for a given application.

In Chapter 6, a highly efficient hardware implementation of large-windowecl 

median and weighted median filters is developed. This implementation assists 

in implementing some of the more complex Trace transform functionals in 

a real-time system. Numerous design variations including fixed vs. sliding 

windowed, fixed vs. variable median index and standard vs. weighted median
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are investigated in terms of their area usage.

In Chapter 7, a hardware architecture for Pseudo 2-dimensional Hidden 

Markov Model (HMM) decoding, as used in a person detection system, is 

presented. Such a system can serve as an initial step in a full person recognition 

system, extracting frames of interest from a video stream which can then be 

processed using the Trace transform. The HMM decoding is accelerated by 

analysing the state transitions and optimising the hardware accordingly, while 

also exploiting algorithmic parallelism. The architecture is generalisable to 

any pscudo-2D HMM.

Finally, in Chapter 8, the work is summarised, along with the conclusions 

reached from these implementations. Finally, some suggestions for future work 

are given.

1.2 C on tribu tions

The main contributions of this thesis are as follows:

• A thorough computational analysis of the Trace transform, including a 

look at areas of algorithmic parallelism that can be exploited for hard

ware acceleration. (Section 3.6).

• The first hardware implementation of an extensible Trace transform ar

chitecture, which achieves real-time processing speeds, while remaining 

fully flexible in terms of the number of functionals implemented. A 

novel approach to parallelising rotations through the concatenation of
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orthogonal base rotations quadruples performance while designing the 

architecture to process a stream of image data removes the need for any 

internal buffering. (Chapter 4).

• A framework for developing flexible functionals for use in the Trace trans

form architecture mentioned above, including three examples. Embedded 

memories on the FPGA are used for function evaluation, and multiple 

datapaths are selectable via a configuration register, thus allowing a sin

gle functional block to compute a range of different functional equations. 

This framework serves as an ideal platform for further investigation of 

the Trace transform itself for a variety of applications. (Chapter 5).

• A highly flexible set of architectures for implementing one-dimensional 

large-windowed median and weighted median filters for image processing. 

A rank of cumulative histogram bins is addressed in parallel, keeping a 

fully updated cumulative histogram with every sample that enters the 

system. The architecture is unique in its ability to process windows of ar

bitrary size, and without an area increase. The architecture implements 

both standard and weighted median calculation for fixed and variable 

windows. (Chapter 6).

• A real-time acceleration of Pseudo 2-dimensional Hidden Markov Model 

decoding. By considering the state transition trellis for a pseudo 2- 

dimensional HMM, significant simplifications can be made to the decod

ing stage. This simplifies the otherwise complex Vitcrbi calculation used



in the system. The pseudo 2D HMM has been shown to be applicable to 

image segmentation as part of an object tracking system. (Chapter 7).

1.3 P ub lications

Parts of the work detailed in this thesis have also been separately published

in the following publications:

• “Hardware Acceleration of Hidden Markov Model Decoding for Person 

Detection” S.A. Fahmy, P.Y.K. Cheung, W. Luk. Proceedings of Design, 

Automation and Test in Europe (DATE), 7-11 March 2005, Munich, 

Germany. Volume 3, Pages 8-13. [FCL05a]

• “Novel FPGA-Based Implementation of Median and Weighted Median 

Filters for Image Processing” S.A. Fahmy, P.Y.K. Cheung, W. Luk. Pro

ceedings of International Conference on Field Programmable Logic and 

Applications (FPL), 24-28 August 2005, Tampere, Finland. Pages 142- 

147. [FCL05b]

• [FBCL00]: “Efficient Realtime Implementation of the Trace Transform” 

S.A. Fahmy, C.-S. Bouganis, P.Y.K. Cheung, W. Luk. Proceedings of 

International Conference on Field Programmable Logic and Applications 

(FPL), August 2006, Madrid, Spain. [FBCL06]

“Real-Time Hardware Acceleration of the Trace Transform” S.A. Fahmy,

C.-S. Bouganis, P.Y.K. Cheung, W. Luk. Journal of Real-Time Image
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Processing: Special Issue on Field-Programmable Technology, Springer, 

December 2007. [FBCL07]

• “From Algorithms to Architecture” S.A. Fahmy, C.-S. Bouganis, P.Y.K. 

Cheung. Chapter 11 of A. Bharath and M. Petrou (editors) Reverse 

Engineering the Human Vision System, Artccli Publishers, to appear in 

2008. [BM08]
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C hap ter 2

Background

2.1 In tro d u c tio n

Field Programmable Gate Arrays (FPGAs) are a relatively recent development 

when considered against the backdrop of decades of development in the field 

of digital electronics. The simple digital circuits of yesteryear were often con

structed using off-the shelf logic devices that could manage only a very primi

tive, single logic operation each. A board with hundreds of these small chips 

might implement an archaic system of minimal complexity. Only the most 

well-funded corporations could afford to design their own devices from the 

ground up, using what were the cutting edge Computer-Aided Design (CAD) 

tools of their time, and the newly emerging integrated circuit (IC) technolo

gies. For the hobbyist or small company or research effort, these “advanced” 

technologies were out of reach.

The emergence of ICs, driven initially by some high-profile aerospace projects
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saw the start of a rapidly developing landscape of custom designed integrated 

circuits, offering high performance and compactness. The growth has been 

exponential, and today, some Application Specific Integrated Circuits (ASICs) 

contain hundreds of millions of transistors on-die.

In this chapter, background information on FPGAs will be provided, with 

some insight into the design process and various design decisions that must be 

made.

A review of some hardware implementations of computer vision applica

tions will also be presented. Computer vision systems arc computationally 

very complex, and hardware implementations are often required for real-time 

performance. Background related to the Trace transform will be presented in 

the next chapter.

2.2 Field P rog ram m able  G ate  A rrays

Field Programmable Gate Arrays (FPGAs) were invented in 1984 by Ross 

Freeman [Xil04], one of the founders of Xilinx Inc. In 1985, Xilinx released their 

first FPGA, the XC2064 which contained 64 logic blocks and 1000 gates [Xil04], 

Today, FPGAs have become a viable platform for implementing some of the 

most complex digital designs with sizes the equivalent of tens of millions of 

gates. Whereas FPGAs were seen as a platform for implementing glue-logic 

in the early days, they now find use in a wide range of applications, and often 

feature in end-market products.
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When choosing an implementation platform for a given application or prod

uct, the typical choice one would make is between custom ASIC, some form 

of Application-Specific Standard Platform (ASSP), such as Digital Signal Pro

cessors (DSPs) or Graphics Processing Units (GPUs) and standard General 

Purpose Processors (GPPs). GPPs arc simpler versions of what one might 

find in his PC; simple microprocessors that can compute a wide variety of 

different functions by breaking them up into standard instructions that are 

manageable by the on-die resources. Typically, an application would be pro

grammed in a familiar high-level language and a compiler would then translate 

this into native “machine-code”. ASSPs are processors suited to a specific im

plementation domain; typically the on-die pipelines and processing units are 

tailored to the needs of specific tasks required by the target domain. DSPs 

(e.g. Texas Instruments TMS320 series) are the most prevalent and typically 

allow for real-time implementation of complex signal processing applications. 

GPUs (e.g. ATI Radeon series) are highly optimised for graphics tasks, and 

indeed the transistor count of some GPUs exceeds that of many top-end GPPs. 

Network processors are another form of ASSP that has become widely used in 

the field of networking. ASSPs arc also typically programmed using high-level 

languages, sometimes with extensions specific to the application domain.

There is little doubt that for the highest possible performance for a given, 

fixed application, that custom ASICs are the platform of choice. A custom 

ASIC is designed from the ground up to implement the specified application. 

A hardware architecture tailored to the system at hand is developed and every
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thing is tweaked to the parameters of the application. The significant speedup 

results from two things:

Firstly, within most complex algorithms, there is some complex arithmetic 

computation. When such computations are run on general purpose processors, 

the steps must be broken down into small instructions that can be executed by 

the pipeline present on the target device. Standard programming languages 

make this easier by allowing a coder to specify complex instructions, while the 

compiler breaks these up into “machine code”. Typically, a general purpose 

processor will have a core processing unit that is capable of computing a fixed 

variation of simple operations at very high speed. While the number of com

putations per second may be very high, the number of complete operations 

per second is significantly reduced. This is especially pronounced when the 

operations being performed are far from those intended by the design of the 

pipeline. This is what has pushed the development of ASSPs.

When designing a hardware system, the designer is freed from these con

straints, since the computational unit can be tailored to specified requirements, 

and the designer is free to implement any number of different units. By imple

menting a core that is custom-designed to implement specific operations, the 

core can run slower (in terms of clock speed) than a general purpose processor 

but still have significantly greater processing throughput1.

Secondly, an algorithm can be accelerated in hardware through parallel

1 Throughput refers to the real overall processing speed of a system, and is typically 
measured in full data units completed per second. For image and video processing, the 
typical measure would be the number of frames processed per second.
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computation. Complex algorithms typically iterate over various values of 

parameters in order to compute one complete result. As an example, a 2- 

dimensional image filtering algorithm would require iterations along all pixels 

in the x  and y axes. Often there is somewhere in the algorithm where such 

a set of iterations occurs. In a hardware system, the designer is free to im

plement as many computational blocks as the resources will allow, and this 

means that multiple serial iterations can in fact be processed simultaneously. 

The only limitation is that the results for each iteration of a variable must be 

independent of each other: the calculation of results for one iteration should 

not depend on the results of another. When this is the case, the designer 

can design the system to exploit this algorithmic parallelism in order to afford 

significant speedup.

As a result of this custom tailored design, the resultant hardware is opti

mised for speed, area and power, and significantly outperforms the equivalent 

software system running on a GPP or ASSP. Of course, there are other factors 

to be considered which reduce this advantage somewhat. Firstly, the design 

and verification of a custom ASIC is a complex, time-consuming process. As 

such, the non-recurring engineering (NRE) costs are significant. Couple this 

with the initial costs of production, which can exceed $1 million in the case 

of some of the newer manufacturing technologies, and the long time-to-market 

and it is clear that economies of scale play a big part in the viability argument. 

Furthermore, one may wish to consider the increasing rate at which new stan

dards are being introduced. An ASIC implementation is fixed, and thus any
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envisaged changes in the design would either have to be incorporated into the 

initial architecture, or else, a new chip would have to be produced, with the 

associated costs.

FPGAs can be seen as a half-way house between custom ASICs and AS- 

SPs. They offer the significant performance advantage of a custom-designed 

architecture, with much lower NRE and implementation costs than ASICs; 

they are available as off-the-shelf products. FPGAs are reconfigurable, which 

means that an implemented design can be changed or replaced, even after 

system integration. There is no need for low-level verification of a design, 

since FPGAs are designed to meet specified constraints for on-chip logic and 

I/O. Of course, there are still other factors to consider in deciding whether 

to use FPGAs for a specific application. Firstly, an FPGA implementation is 

still a hardware design, and hence the required knowledge is arguably more 

specialised than that needed for software implementations. Furthermore, the 

cost of FPGAs is higher than ASICs for very large quantities. One of the 

common examples where an ASIC implementation is more enticing is that of 

codec chips, such as an MPEG-4 decoder. Given a fixed design that will be 

used in hundreds of millions of devices, across an array of applications, the 

cost of an ASIC implementation becomes lower than using FPGAs. FPGAs 

also typically consume more power than equivalent designs in ASIC, so are 

generally not favoured in mobile applications.

As technology has improved, however, many of the disadvantages of using 

FPGAs have been tackled. While much benefit lias been gained from general



Platform Advantages Disadvantages
GPP Very simple to program, 

widely available, can be dis
tributed as standard soft
ware.

Poor performance, very lim
ited architecture.

ASSP Simple to program, tailored 
to application domain, with 
excellent performance for 
the specified applications.

Available for specific appli
cations only, performance is 
not as fast as custom ASIC 
for a non-standard applica
tion.

FPGA High performance, signifi
cant flexibility, design effort 
less than ASIC.

Design more complex than 
software, high power con
sumption.

Custom ASIC Best performance available, 
completely tailored to appli
cation.

Very high costs, complex 
design and verification, 
fixed design cannot be 
changed.

Table 2.1: Advantages and disadvantages of various target platforms.

advancements in fabrication processes, a number of functional improvements 

have seen the FPGA become a more viable target platform for a plethora 

of application domains. The latest generations of FPGAs have significantly 

reduced power requirements, are able to run at higher speeds, support a wider 

array of I/O standards, and offer significantly more complex on-die units. 

Couple this with the rising costs of implementing cutting-edge ASICs and 

the rapid development and deployment of new industry standards, and it is 

clear that the advantages held by FPGAs in terms of rapid design time, and 

deployment, with reduced time-to-market make them an attractive alternative 

to ASICs. Some of the trade-offs in selecting a target platform are summarised 

in Table 2.1.
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2.2.1 Logic and  R ou ting

The principle behind an FPGA is an architecture that can implement any 

arbitrarily defined function. The FPGA is a pre-fabricated circuit, needing 

nothing more than a simple configuration to be applied in order for it to func

tion. For the flexibility to implement any function, two requirements must be 

met. Firstly, there must be simple, flexible circuit elements that can implement 

arbitrary logic functions; this is often termed the logic fabric. Secondly, there 

must be some method of connecting such units up in an arbitrary fashion, the 

routing fabric. These elements are the core of FPGA architectures.

The logic fabric is typically composed of circuit elements built around small 

Look-Up Tables (LUTs). These can perform any given logic function with 

a single output. A 4-input LUT can implement any logic function of four 

variables with a single output. The output of this LUT is typically connected 

to an optional flip-flop allowing for synchronous circuits. The routing fabric 

connects multiple logic elements together through switch-boxes. These are 

separately programmable to connect arbitrary logic elements together. This 

flexibility is the key to an FPGA’s reprogrammability, as well as its ability to 

implement any design. Both the contents of the LUTs and the routing switches 

are rcconfigurable.

Of course, this level of flexibility comes as a cost. Whereas in an ASIC 

design, fixed wires route between circuit elements, in an FPGA, signals must 

travel through the routing fabric including switches and drive wires which may



be longer than are absolutely necessary. This all introduces delay, creating a 

performance gap between an FPCJA and ASIC implementation of the same 

design. One must also consider the fact that a design is targeted to an FPGA 

with a specified number of logic-elements: the sizes step-up in stages, and so it 

is likely that some part of the FPGA’s logic fabric will be unused in a design. 

Enabling the huge number of possible connections in an FPG A architecture 

also means that the routing is very abundant, which means that a significant 

portion of chip area is consumed by non-computational elements.

The earlier FPGA architectures, such as the Xiliux 4000 series [Xil99a] 

and the Altera FLEX 8000 [AltOlb] consisted solely of the logic elements and 

routing fabric as described above, as well as I/O blocks for off-chip communi

cation. These architectures developed rapidly, with the addition of carry-chain 

logic to the the basic elements and other tweaks to the logic fabric to allow for 

more efficient implementation of common design components. The delay-cost 

of routing has driven significant changes in the routing fabric too, with more 

considered (and complex) routing arrangement including hierarchical routing 

and multiple wire lengths. The most recent FPGA devices have departed 

from 4-input LUTs to 6-input LUTs (in the case of the Virtex 5 [XilOTb]) and 

adaptive LUTs and adders (in the case of the Stratix III [AltOT]).

2.2.2 Reconfigurability

FPGAs arc SRAM-based devices. The logic and routing are configured at 

runtime, and upon power-off, this configuration is lost. This is why a produc
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tion FPGA will typically have a Programmable ROM (PROM) that stores the 

configuration data sited beside it, so that it can configure when it powers-up. 

This also means that the system configuration can be changed at any time, 

and the circuit can be modified. Typically, this might be used to try differ

ent variations of a circuit or fix problems that arise in simulation. However, 

another possibility is what has been termed dynamic reconfiguration. This is 

where the FPGA configuration is modified while it is running. Partial recon

figuration is where only a part of the circuit is modified at runtime, perhaps 

to implement an alternative block within the same architecture. A thorough 

explanation is given in [SedOC].

Unfortunately, the design How for a reconfigurable architecture is signif

icantly more complex than that for a static architecture. At present, the 

designer needs to work at a relatively low level, managing the placement of re- 

configurable blocks, in order to allow for partial reconfiguration. This situation 

is changing but as yet, this field remains the preserve of academic research.

2.2.3 Embedded M emories

A significant development to FPGA architectures was the addition of other 

types of resources such as embedded memories, as in the case of the Xilinx 

Virtex [Xil99c] and Altera FLEX 10K [AltOla]. If one considers the logic fabric 

mentioned above, it is clear that implementing memories of any reasonable size 

would be highly inefficient in LUTs. Memories are useful in many applications, 

as buffers, FIFOs and for temporary storage. Small embedded memories negate



the need for routing between LUTs, thus increasing the speed, and reducing 

the area and power consumption of memory accesses. This also saves on the 

need to use off-chip RAM, and thus the costs associated with I/O. The Xilinx 

Virtex brought between 8 and 32 4Kbit RAM blocks per device (depending on 

device size). Later, the Xilinx Virtex 11 [Xil99b] saw these enlarged to ISKbits 

each as well as increasing in number. The Virtex 4 [XilOTa] maintains the same 

Block RAM configuration, while the Virtex 5 [Xil07b] increases the capacity to 

36kbits each. RAMs can also be combined without the use of extra logic in the 

Virtex 4 and Virtex 5. Altera, on the other hand, has developed a hierarchical 

memory architecture for its Stratix [Alt05] series, with three different sizes of 

RAMs on chip. This suits applications where a few large buffers might be 

needed, as well as small local coefficient memories.

Embedded memories have significant advantages. A 4-input LUT can only 

implement a lbxlbit ROM. Thus for any reasonable sized memory, a significant 

number of Slices and consequently routing resources would be required. As a 

comparison, a 16kxlbit ROM, implemented in logic on a Xilinx Virtex II would 

use 559 Slices and could only be clocked at 2/3 the speed of the equivalent 

implemented in a Block RAM [StniOTj. The Block RAMs on the Xilinx Virtex 

II can be implemented as single- or dual-port ROMs or RAMs, synchronous 

or asynchronous FIFOs and also data width converters [Xil99b],
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2.2.4 E m bedded  M ultip liers and  D SP Blocks

The Xilinx Virtex II brought with it embedded multipliers. FPGAs had found 

a significant following in the DSP community and multipliers are a feature of 

many DSP designs. Since implementing multipliers using LUTs carries with 

it all the inefficiency of the routing between LUTs, hard-wired multipliers 

can free up significant resources for other tasks. The Altera Stratix pushed 

this idea further by implementing a DSP block, another name for a multiply- 

accumulator (MAC). The latest Xilinx Virtex 4 and 5 [Xil07a, Xil()7b] have 

followed suit.

Multipliers find their most obvious use in digital filters. In the Virtex II, 

the architecture was designed with the Block RAMs beside the multipliers 

so as to minimise routing delays between the coefficients, typically stored in 

memories, and the multipliers. Aside from traditional uses, multipliers have 

also been used as barrel-shifters [Gig04], for implementing floating-point, units 

and even to replace Block RAMs [MCC07], In fact, multiplications surface 

in a significant number of image processing applications from colour-space 

conversion and image rotation, to filtering and image transforms (see [Rus02] 

for an overview of algorithms). The saving in using embedded multipliers is 

both in terms of logic fabric and routing resources. An 18x18 bit multiplier 

implemented in logic on a Xilinx Virtex II would use 201 Slices and would only 

run at half the speed of the equivalent embedded multiplier [Smi07].
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2.2.5 O th er R esources

Modern FPGAs include a number of other resources which find uses in various 

applications. The Xilinx Virtex II Pro introduced embedded PowerPC micro

processors. These are offered on some parts of the new Virtex 4 and 5 families 

today. Having a processor on chip means that a whole software/hardware 

solution can be developed on a single chip. This is often termed System-on-a- 

Programmable-Chip (SoPC) development. The PowerPC can even been used 

to run an embedded version of Linux on the F PGA [Sai04]. It is also possible to 

allow the PowerPC to control runtime reconfiguration of the FPGA [BJRK+03]. 

In those FPGAs where no processor is available, vendors offer a soft processor 

that can be implemented using the logic fabric. Xilinx offers the MicroBlaze 

and PicoBlaze, while Altera offers the NIOS processor.

Delay-Locked Loops (DLLs), Phase-Locked Loops (PLLs) and Digital Clock 

Management (DCM) blocks allow fine control over clock signals, including the 

facilitation of multiple clock domains in a design. Advanced I/O standards 

are also supported on some devices, with gigabit transceivers and differential 

signalling built in to the fabric. I/O is one area where FPGAs shine. Since the 

I/Os are verified against multiple standards one need not concern themselves 

with this process, as would be the case with an ASIC design.
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2.2.6 T he F P G A  Design Flow

Tlic FPGA design flow is similar to that of standard ASIC hardware, but with 

some notable differences due to the different target platform. Here, the various 

steps are detailed along with a discussions of some of the design decisions that 

can be taken.

Design Entry

The first step in the flow is design entry. This is where the hardware ar

chitecture is specified. This can be done at a number of different levels of 

abstraction, and using various different tools and languages. One of the more 

archaic methods is Schematic Capture. Typically a computer-based design 

program, that contains visual representations of basic building blocks, is used. 

The designer places these on a canvas, defines the parameters of each of the 

blocks then connects them graphically, as required. The designer then defines 

the inputs to the system and its outputs, and the tools take care of the rest. 

However, with the increase in design complexity, this method of design entry 

has become more rarely used.

Another method is the use of Hardware Description Languages (HDLs). 

These arc special languages used to describe hardware. Initially, they were 

used to describe a circuit structurally, in terms of its low-level components. 

These languages can also be used to describe hardware at Register Transfer 

Level (RTL), where the system is designed in terms of a set of registers and 

transfer functions describing the flow of data between them. Now, a more
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significant portion of designs are described at a behavioural level. At this 

level of abstraction, the designer specifies what the circuit does, leaving the 

synthesis tools to determine how to implement this behaviour. As an example, 

the designer can simply specify A+D  =  C,  and the compiler will determine the 

circuitry to do this. This allows the designer to focus loss on the small details, 

and also means that the same code can be used to target multiple architectures 

using appropriate synthesis tools. The foremost HDLs used today are VHDL 

and Verilog.

Recently, significant effort has been spent in developing tools that allow 

the designer to work at higher levels of abstraction. The idea behind “High- 

Level Synthesis” is that the designer should be free to focus on the system-level 

design and ignore the details of the hardware implementation. Extensions to 

the C programming language, such as Handel-C [Cel], add language elements 

for hardware description yet allow the designer to use familiar C-based syn

tax. Xilinx’s System Generator [Xil] is a tool that latches into Mathworks’ 

Simulink software [Mat], used in DSP design. It allows the hardware designer 

to draw dataflow graphs to describe a DSP system, and the tools take care of 

the translation to hardware. High-level synthesis, however, is still relatively 

novel, and the performance of most tools cannot compete with the perfor

mance and compactness of systems designed at lower levels of abstraction. 

Vendor tools such as System Generator are significantly better than general 

High-level languages, since often, they contain pro-defined blocks that have 

already been optimised for hardware implementation. Such tools though, are
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often restricted to a specific application domain; in the case of System Gen

erator, DSP systems. True general purpose high-level synthesis is much more 

difficult to achieve, and hence cannot always be considered as the ideal design 

tool. With languages like Handel-C, the added language constructs still allow 

the designer to design at a level of abstraction similar to behavioural HDL 

descriptions, and when used in such a manner, the resultant implementations 

are significantly faster and more compact than when the language is used in 

a software-centric way. [CH02] and [TCW+05] both discuss the various design 

tools and descriptions available and the trade-offs associated with high-level 

synthesis. This, however, remains a fast-developing field and the situation 

continues to improve. A full scientific study of the trade-offs associated with 

different design description would be a welcome resource to assist designers in 

selecting the most suitable tools.

Notes on Handel-C

Since some of the work in this thesis was completed using Handel-C, it is 

worth noting some of the features of the language and design environment, 

Handel-C extends a subset of the C language to allow for customisable data 

widths and parallelism; two essential elements of hardware design. Timing is 

fixed at one clock cycle per C statement, allowing the designer fine control 

over circuit scheduling. The compiled circuit is a one-hot state machine that 

uses token-passing to move from one statement (or a block in the hardware) 

to the next.
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The design environment for Handel-C is the Celoxica DI< suite, which pro

vides a code editor and simple simulator. The simulation tools can be awkward 

for hardware design since concurrency is difficult to track using a variable 

watch window. The real strength of using the Celoxica tools comes in the 

board APIs, that enable the use of development board resources with minimal 

effort, abstracting complex control and data signalling to simple C statements.

Handel-C code is compiled to an EDIF netlist or to VHDL code, that 

can then be further synthesised, placed and routed using the standard tools 

described below. Due to the hidden control circuitry, there is an area and speed 

overhead, but no concrete figures are available, since this depends entirely 

on the specific application. Massively parallel systems, such as the median 

calculation architecture presented in Chapter 6 suffer more than small regular 

circuits or those with complex control, but only a few parallel blocks.

Coding in Handel-C can be simpler than VHD1 for complex designs. There 

are numerous constructs that assist in code reuse, and replication. Further

more, since the clocking is inherent in the code, it can be tidier. Channels 

allow for timing-blind inter-block communication and synchronisation with 

ease. Figures 2.1 and 2.2 show a simple block of code in both VHDL and 

Handel-C (respectively), with the resultant circuit shown in Figure 2.3.

Functional Verification

In this step of the design flow, the designer confirms that the circuit, as de

scribed, implements the desired behaviour. A testbench is written, that wraps



data_proc: process(elk)
begin

i f  rising_edge(elk) then
a <= ain; par {
b <= bin; a = ain ;
x <= a + b; b = bin;

end i f ; x = a + b;
end process data_proc; }

Figure 2.1: Example VIIDL Code. Figure 2.2: Example Handel-C Code.

Figure 2.3: Circuit corresponding to the VHDL and Handel-C descriptions in 
Figures 2.1 and 2.2.



the block under test, and feeds it the appropriate data, while monitoring the 

block’s outputs. Tools such as Modeltech’s ModelSim [Mod] can be used to 

analyse waveforms of the outputs as well as signals internal to the block. It is 

necessary to consider “corner cases”, or patterns of data, perhaps unexpected, 

that could expose some frailty in the system, for example, overflows in arith

metic operations. Once functional verification is complete, the designer’s work 

is for the most part done.

Synthesis and Mapping

When designing using RTL or behavioural descriptions, these must be trans

lated into primitive hardware blocks. This job is done by the synthesis soft

ware, for example Synplicity Synplify Pro [Syn]. An addition specified on a 

line of code will be turned into an adder. Registers will be created to hold val

ues and the code will be translated into the hardware primitives of the target 

architecture. When targeting an FPGA, these resources must also be mapped 

to a type of resource on the device. So portions of logic will be mapped to 

LUTs and Flip-Flops then clustered into Slices, including the use of carry- 

chains and other resources. As a result, the designer need not be concerned 

with the granularity of most operations, as the tools will take care of breaking 

down large blocks into the size required by target hardware. The output of this 

stage is a netlist describing hardware resources and the connections between 

them.

For heterogeneous architectures, the mapping phase is also where decisions
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are taken as to which type of resource to use. Often, there will be more than 

one way to implement a hardware block. For example a multiplier could be 

implemented using standard logic elements or using an embedded multiplier, 

a FIFO could be implemented using Flip-Flops or embedded memory. Many 

synthesis tools allow the designer to specify some preference that is taken 

into account when synthesising. In other cases, the designer must specify the 

type of resource to use explicitly. There exists a significant body of research 

that looks at the trade-offs involved in selecting different types of hardware, 

and the resultant choices that can be made when designing a rcconfigurablc 

architecture. [Smi07] contains a good survey of work in the field.

Placement and Routing

Once the netlist has been produced and the whole circuit has been mapped 

to the primitives available on the target device, it is necessary to place these 

instances into specific locations on the device and route the associated signals. 

The primary aim is to minimise delays by placing communicating blocks adja

cent to each other. Once the blocks are placed, it is necessary to configure the 

routing between them. Again, this is done with the aim of reducing delays. 

The result of this step is a bitfile, containing all the configuration data needed 

to set up the circuit in the FPGA device. Typically, in a production system, 

this bitfile is stored in a Programmable ROM (PROM), which is accessed by 

the FPGA on power-up, and used to configure the device.



T im ing  V erification

After placement and routing, it is necessary to check that specified timing- 

constraints have been met. This is often reported when placement and routing 

is completed. It is also possible to configure the tools to produce a post

place and route simulation model which can be used to check the resultant 

circuit using tools like ModelSim. If timing constraints have not been met, 

the violating paths will be reported, and the designer can attempt to modify 

those parts of the circuit in order to increase performance.

2.2.7 Circuit M easurement M etrics

When designing a circuit, it is necessary to have metrics by which the design 

can be evaluated. The most obvious metric is that of speed. A faster circuit 

will process data at a quicker rate. It is important, however to bear in mind 

that speed should be measured in terms of throughput and not necessarily 

cycle time. It is possible for a circuit to be clocked at very high speed, but 

have a relatively low throughput when compared to another circuit with lower 

clock speed. This is clear when comparing an FPGA implementation against 

a standard GPP. As shown in Chapter 4 an Intel Pentium 4 Processor running 

at 2GHz can be outperformed by an FPGA running at 80MHz because the 

throughput is higher due to parallelism and a more tailored datapath. In 

image- and video-processing applications, throughput is usually given in frames 

per second (fps), though it is important to consider the size of each frame too.
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In some instances the throughput requirements of a system are fixed, and hence 

as long as these requirement constraints are met, it is area and power that are 

of interest.

When discussing the area usage of an FPGA design, the most basic element 

to be considered is the standard logic element of the target device. In the 

case of Xilinx FPGAs, area is typically measured in Slices, while lor Altera 

FPGAs, the Adaptive Logic Modules (ALMs) for more recent devices or the 

Logic Elements (LEs) for older devices, are the measure. Synthesis tools will 

often report finer levels of resource usage such as flip flops and LUTs, since 

often the resources can be assigned and packed differently.

With heterogeneous architectures it is also necessary to consider the us

age of other resources such as embedded memories and multipliers, since the 

portions of the circuit mapped to these resources are not represented in the 

standard Slice count. It is important to note that the proportions of different 

resources in a device are fixed by the device vendor. As such it may well be 

possible to deplete the available resources of one type while still having capac

ity to spare in another type of resource. In such cases, the designer can either 

target a larger device, or map parts of the circuit from one resource type to 

another, bearing in mind the performance costs. Memories and multipliers can 

easily be mapped to use LUTs if needed. Similarly, if some of the standard 

logic elements are in short supply, the designer should ensure that all portions 

of the circuit that can be mapped to other resources are transferred.

Another metric that has more recently gained popularity is that of power.
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ASIC designers will typically have more control over this, as they can design 

their architecture to suit. With FPGAs, the power consumption is often out 

of the hands of the designer, as the static power consumption of the FPGA -  

which is a subject of the FPGA architecture and manufacturing process -  is 

significant when compared to the dynamic power -  caused by circuit switch

ing, and over which the designer may have some influence. In all, FPGAs 

still consume a significantly greater amount of power than ASICs, at present, 

and so fail to be considered as an ideal platform for mobile devices. With 

each transition to newer circuit technologies, the ratio of dynamic power to 

static power consumption increases, meaning that power considerations will 

become important to designers in the near future. Currently, the tools pro

vided for power analysis are limited, and techniques for optimising for power 

obscure. FPGA vendors are pushing forward with architectural solutions such 

as switching off parts of the chip not in use [TT07J. Development on the two 

fronts will be necessary in order to assist designers in optimising their designs 

for power consumption.

When synthesising a design, it is possible to increase the effort level of the 

tools. This may be necessary when a timing constraint is missed by a small 

margin, or the design is slightly too large to map to the target device. When 

the effort is increased, the tools run more aggressive optimisation routines in 

order to meet constraints. The tools can be instructed to optimise for area or 

speed, depending on the requirements of the design.
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2.3 H ardw are A cceleration of Vision System s

FPGAs provide an ideal platform for prototyping computer vision applications. 

Such applications are characterised by the large amounts of data processed, 

and the high computational complexity of the algorithms involved. The pro

vision of heterogeneous resources fairly recently, makes them an even more 

attractive target platform. Memories specifically can simplify designs hence 

requiring fewer accesses to external memory, which can often be a bottleneck 

in a video- or image-processing design. In this section, an overview of some 

FPGA implementations of vision systems will be presented.

2.3.1 Colour to Black and W hite Conversion

Images in digital systems are usually represented in the additive three-colour 

Red-Green-Blue (RGB) domain. However it is often more intuitive to use the 

HSI (Hue, Saturation, Intensity) colour space. The hue is the colour that is 

being represented, saturation is how pure the colour is, with full saturation 

being very strong and zero saturation being grey. Intensity is the brightness 

of the pixel.

The human vision system is more sensitive to certain wavelengths of light 

than others, hence in converting from colour to black and white, the colours 

need to be mixed in different proportions. The standard proportions are shown
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in (2.1), where Y  is the (greyscale) intensity value [Rus02].

Y  =  0.299 • R  +  0.587 • G +  0.114 • B  (2.1)

For video applications, the input will often be in colour, but most of the 

complex computation can be performed on the greyscale intensity image to 

lessen the computational load, then later combined with the colour image 

if needed. Here, a simple implementation will be presented, to show how 

for each algorithm, thinking in terms of the target platform is paramount in 

an efficient implementation. To implement this colour to black and white 

conversion efficiently, one can recall that in hardware, any base 2 divisions 

are simply shifts of the bits, or selecting certain bits. Hence, it is possible 

to come close to the equation mentioned above without having to implement 

any multipliers. An example is shown in (2.3), where Y  is an approximation 

of the pixel intensity, given R, G and B input values for red, green and blue 

respectively. This is much more easily implemented in hardware, with only 

shifts and 4 two-input adders, as shown in Figure 2.4.

Y =  0.3125 - R + 0.5625 -G +  0.125 - B  (2.2)

=  ( 1  +  w )  ‘ R+  (2 +  To) ' G + ( a )  ' B  (2-3)
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R[7:0]
R[7:2]

Figure 2.4: Simple colour to greyscale conversion circuit using only adders. 

2.3.2 Object D etection

In object detection, a system must detect the presence of an object of interest 

in the frame. This can be done in one of two ways. Firstly, it is possible 

to detect the presence of an arbitrary object. This can only be done with a 

video sequence, since it is the temporal information that provides the cue that 

something has been introduced into the scene. Such a form of object detection 

will often be done using background subtraction, where subsequent frames are 

extracted from a static reference frame, and areas where there is a difference 

are treated as objects. Unfortunately, this method requires the camera to be 

stationary and can be adversely affected by other changes such as illumination. 

Another method is to use motion vectors to extract moving objects in a video 

sequence. Areas of the image where the motion vectors close to one another 

move in the same direction and with the same magnitude are considered as 

rigid bodies, and can be segmented from the frame. It is important to note that 

some forms of motion yield different patterns of motion vectors, and depending
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on the application, alternative clusterings may have to be considered [YJSOGj. 

With both these approaches, this segmentation gives a bounding box which 

must then be processed to see whether it is of the type being considered in 

the system. Simple heuristics such as the consideration that a walking person 

could only be represented by an object that is taller than it is wide, or that a 

vehicle may be wider than it is tall, can be used to reject segmented objects 

without having to process them.

The second type of object segmentation involves analysing the frames with 

some criteria in mind. Such techniques can depend upon colour, texture, shape 

or other properties of the image. Often the segmentation can be applied to a 

single frame, with no need for temporal information. In such a system, objects 

of interest are often directly segmented from the image.

2.3.3 Object Segm entation

Following detection of the presence of an object, it is often necessary to segment 

this object from the frame. In many cases, detection and segmentation occur 

together, such as some background subtraction, and most face authentication 

algorithms. If this is not the case then a number of methods can be employed. 

Sometimes detection will return the centroid of the desired object, or some 

other general positional information. In such cases, prior knowledge of the 

shape of the object can be used to segment it based on these parameters.

Segmentation can also be achieved through the use of edge detection, 

whether on the image directly, or some property obtained from the detection



phase. Edge detection is most often achieved through the use of simple filters 

like the Sobel or Laplace masks [HS92]. The result of filtering is an edge map 

where edge pixels have high values and non-edges have close to zero values, or 

in the case of the Laplace mask, the edges are represented by zero-crossings. 

Typically, these edges maps correspond to the outline of objects in the scene. 

Further shape analysis methods can be used to segment the desired objects.

2.3.4 Object Tracking

In the case of video sequences, temporal data can be used to track the positions 

of moving objects in the frame. Numerous methods exist (see [YJS06] for a 

through survey). Typically, motion vectors will be extracted for a frame. 

Where a cluster of pixels are determined to have the same motion vectors, 

a rigid body can be deduced. It is important to note that changes in the 

background, or camera position introduce many superfluous motion vectors. 

In some systems, the motion vectors are computed for image features rather 

than directly on pixel blocks. This reduces the amount of data that needs to 

be processed.

Block matching is achieved by looking at two successive frames and at

tempting to find the correspondence in one frame for a block in another. The 

search is typically constrained within a window. Hardware implementations 

of block matching algorithms are numerous. The most basic block-matching 

technique is what is termed Full Search Block-Matching (FSBM); in which the 

correspondence for every block within the search area is calculated in order to



find a match. Clearly this is very computationally expensive. Parallelism can 

be used to speed it up in hardware, but memory bandwidth and data organisa

tion present challenges in designing an architecture. Simplifications have been 

suggested including the 3-step search (3SS) [KIH+81], the New 3-step search 

(N3SS) [LZL94] and the 4-step search (4SS) [PM96]. These arc much less 

computationally intensive, but the search can get stuck in local minima and so 

these algorithms do not perform as well as FSBM in terms of the quality of re

sults. The FSBM can be implemented in a number of different ways including 

systolic array designs [KP90, YH95], and tree structures [LCTW97]. A ge

netic algorithm has also been applied to block-matching [LW96], implemented 

in [WS03]; the quality of results is much better than for other hierarchical 

searches with comparable hardware usage, but still a significant saving over 

FSBM. [TCJ02] includes a good overview of the data reuse and bandwidth 

needs of different implementations in hardware.

Aside from these direct feature matching methods, other higher-level track

ing algorithms include Kalman filters [Sor85], the CONDENSATION algo

rithm [IB98] and particle filters [LZP03].

2.3.5 Literature Summary

A concise summary of some computer vision algorithms is presented here. 

Unfortunately, much of the published literature does not follow a systematic 

approach when reporting hardware designs. In many papers, resource usage is 

ignored or reported in a noil-detailed way. In some cases figures for clock-speed
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are given without discussing throughput. In many cases, no mention is made of 

the heterogeneous resources used in the design. Some implementations simply 

map software code to hardware through the use of high-level languages, and as 

such the performance is not accelerated by any significant amount. The aim of 

this section is simply to give a general idea as to the recent work implemented 

on FPGAs, with a specific concentration on face detection.

In [RV04], the authors develop a hardware implementation of an edge- 

detection system based on the Canny edge detector. This algorithm first 

smoothes the image, then computes the horizontal and vertical gradients for 

each pixel using the standard Prewitt kernels. The result is that edges become 

ridges. Using non-maximum suppression, all non-edges can be eliminated. Fi

nally, the resultant image is thresholded to select the significant edges. The 

hardware system was designed using Handel-C and resulted in a system that 

ran at 16MHz on a Xilinx Virtex E, processing a 256x256 pixel image in 4.2ms.

In [HYVCC05, HCWC06], a similar algorithm is implemented, inspired 

by an implementation in [AC97]. Firstly, instead of applying the Gaussian 

smoothing filter as is, it is approximated using fractions that can be repre

sented using powers of 2. This simplifies the filtering circuitry significantly, 

and this is implemented using a systolic array. An edge-strength anti locali

sation unit is developed which computes edge values and compares them with 

neighbours in the edge direction producing a T  for an edge pixel in the out

put. Two different FIFO schemes are compared to allow flexibility in image 

size (while maintaining a dimension that is a power of 2 as a requirement).
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The end result is a system that runs at 73.6MHz with a throughput 265 times 

greater than a DSP implementation.

In [SV07], the authors apply simple edge detection using standard Prewitt 

masks, then by summing pixels horizontally and vertically, extract the grid 

array structure for DNA microarrays. They use a Xilinx Virtcx II Pro FPGA, 

employing the PowerPC processor to manage their hardware system and Block 

RAMs to buffer parts of the large input images as they are processed, and 

similarly at output. A Block RAM is used for storing the horizontal and 

vertical profiles. The whole system is clocked at 200MHz and shows an order 

of magnitude improvement over software in terms of processing speed. Input 

images vary in size from around 1900x 1900 up to around 2000x 5600 pixels.

In [PPAC06], the authors develop an FPGA-based system that can detect 

vehicles in aerial images for use in an unmanned aerial vehicle (UAV) system. 

The system operates on streaming data from a camera, due to memory con

straints. First the pixels are converted to the HSV (Hue, Saturation, Value) 

colour space. The pixels are then thresholded independent of hue, and the 

resultant image eroded to remove superfluous points. Edge detection is then 

applied using a simple Laplacian kernel. The resultant image contains blobs 

which are then correlated with a template that takes into account the expected 

size and spacing of the desired objects, in this case vehicles. The system is 

shown to perform as desired though no performance figures are given.

In [DDM+05], the authors develop a system to check the bolts in railway 

lines. They first predict the frames in which bolts are expected using the dis-
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tance between bolts; this is done in software. The images are then processed 

using the Haar DWT [SN96] transform and a Neural Classifier used to deter

mine the presence of bolts. The combined software-hardware system processes 

a 24x100 pixel window in 13.29 /is.

in [APTE+05], a system is presented that implements Wronskian change 

detection on video sequences. A reference frame is subtracted from subsequent 

frames with some measure of robustness to noise and illumination changes. 

The system uses external memories on a development board for storing the 

reference and result frames. The system occupies just over 7000 slices in a 

Xilinx Virtex FPGA clocked at 25MHz, processing 640x480 pixel fi •ames at 

15fps.

In [JSC06], the authors develop a Hough transform system for detecting 

circles in images. An image is first converted from colour to greyscale simply 

by averaging the channel values. Then a Sobel edge detector is applied followed 

by a Laplace filter to reduce the number of edge pixels further. A simple unit 

based on the Circular Hough Transform (CUT) is implemented, producing 

a histogram of circle parameters, from which the maximum is taken to be 

the dominant circle in the image. The design was implemented on an Altera 

Stratix FPGA, using 3056 Logic Cells, 128 M4K RAMs, 2 M RAN is and 42 

DSP blocks. The design is not significantly pipelined though, so despite being- 

clocked at 50MHz, it takes 4.3 seconds to detect the circles in a 256x256 pixel 

image.

The task of detecting people in images is one of the more interesting areas
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iii vision research. One of the simple methods involved in many such systems is 

skin detection based on colour. In [TMJF06], an FPGA system for the detec

tion of skin colour is presented. They combine classifications obtained from the 

YIQ, YUV, YCbCr and RGB colour spaces since each performs well in specific 

instances. Colour space conversion was implemented using the Xilinx System 

Generator tool with fixed coefficient multiplications. System Generator was 

also used to implement the rule checks. A probability map was implemented 

in Block RAMs with a MicroBlaze soft processor used to tweak parameters in 

the various blocks. The system processes 640x480 pixel images at 190 frames 

per second.

In [OoiOG], a similar colour segmentation routine is implemented, but it 

is done by translating C code into a Handel-C implementation and using the 

Celoxica PAL API which allows simplified access to board peripherals [Cel], 

While the hardware system is shown to perform close to the software imple

mentation in terms of accuracy, no performance figures are given, and the area 

usage is given in NAND gates, though how the numbers are obtained is not 

clear.

[RAE04] details a rather unusual approach to hardware design. Following 

a similar algorithm to the previous paper, the authors implement a custom 

MIPS processor to conduct the face detection by analysing the colour values 

of pixels. The system is also implemented using Handel-C and the Celoxica 

PAL libraries. The system processes 360x288 pixel frames at 13 frames per 

second. It is unclear why the authors did not implement the algorithm directly
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in hardware, as clearly the performance is bclow-par and the effort needed to 

design a processor may well be as significant as designing custom hardware.

The implementation in [PB03] is also colour-based. The system takes a 

176x144 pixel input frame and applies 16x16 pixel subsampling resulting in 

an 11x9 frame. They claim that this is done to reduce computational com

plexity as well as generating larger skin patches. Pixels are mapped to the 

LogRB colour space then compared to a histogram of skin values obtained 

during a training phase. The detected skin areas are then enhanced through 

spatial filtering, and the centroids extracted using a moments based calcula

tion. Subsampling is done on the image stream directly, forgoing the need 

for buffering. The colour space histogram is stored in embedded memory and 

used to apply the skin filtering operation. The system is designed to adapt the 

values in the histogram based on detected faces. The circuit is small, as would 

be expected from the data size being processed. It is clocked at 33MHz and 

occupies approximately 3000 Logic Elements in an Altera FLEX 20K FPGA 

processing 434 frames per second.

In [WBC04], the authors present a hardware implementation of the Ad- 

aBoost algorithm which has been shown to offer excellent performance for face 

detection [VJ01]. The system combines several weak classifiers based on Haar 

wavelets into a strong classifier. A pyramid of sub-images is created, so from 

one 120x120 pixel image, 17,281 sub-images must be processed. An integral 

image is computed using Multiply-accumulators (MACs) for each 24x24 pixel 

sub-image. Three classifier stages with an increasing number of Haar wavelets
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are implemented. The resultant circuit is clocked at 91MHz and occupies 8000 

Slices, 50 Block RAMs and 28 embedded multipliers in a Xilinx Virtex II 2000 

FPGA. It processes 120x120 pixel frames at 15 frames per second.

In [ITNI06], the authors develop a face detection system based on Neural 

Networks [RBK98]. A shared MAC is used between different neurons, each 

with their own storage. Different scales of image are processed using a 20 x 20 

pixel window to allow for different sized faces. Little detail of the implemen

tation is given, but the system is clocked at 100MHz and processes 320x240 

pixel image frames at 40fps.

In [N4IAS0G], a face detection system is developed based on a Naive Bayes 

classifier. Again, the image is processed in 20x20 search windows. The win

dows are made to overlap in order to provide full coverage. First Sobel edge 

detection is applied to the images after they have been histogram-equalised. 

Then each window is classified as a face or not-face using the Bayes classifier 

which has been trained on a large training set. A face is located by looking at 

clusters of windows that have been identified as faces. The position of the lips 

is identified by analysing the lower portion of the face segment. The points 

of highest contrast are the left and right edges of the lips. By tracing along 

the lip edge, the upper and lower sections can be identified. The system was 

implemented on an Altera Stratix FPGA clocked at 41MHz processing 136 

320x240 pixel frames per second. The overall architecture is shown in Figure 

2.5.

In all of these implementations, it is clear that those that involved the de~
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Figure 2.5: The system architecture for the face detection and lip extraction 
implementation in [NHAS06]. ©  2006 IEEE.

sign of a custom architecture with significant pipelining and the use of embed

ded elements, offered a significant performance advantage over software. Those 

implementations in which the hardware seemed an afterthought, achieved little 

benefit over software. It is thus clear that to exploit the power of hardware, 

an implementation must be deigned in a way that suits the target platform.

2.4 Sum m ary

ft is clear that FPGAs, particularly modern heterogeneous FPGAs, are ideally 

suited to the field of computer vision. The high computational complexity and 

significant data richness of vision applications means that software implemen

tations are often insufficient for the real-time performance usually demanded. 

Given the plethora of algorithms for any given task, as well as the significant 

variation in parameters and other design aspects, the flexibility of FPGAs pro

vides an ideal platform for investigating and tuning vision systems. While the

expertise requirement is more than for software systems, an FGPA designer’s



work is significantly simpler than of an ASIC designer, and can reap benefits 

quicker and more cheaply. The most important conclusion from this chapter 

is that considered, appropriate design decisions, taken with the target plat

form in mind are what mark the dividing line between successful, significant 

acceleration and a mediocre showing.
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C hap ter 3

Trace Transform  Theory

3.1 In tro d u c tio n

The Trace Transform is a novel algorithm, first introduced in 1998 by Kady

rov and Petrou [KP98]. The name belies the fact that the Trace Transform 

does in fact describe a class of algorithms rather than a specific case. Es

sentially, the Trace transform of an image is constructed by computing some 

functional along all lines crossing the image. The specific functional is not 

pre-dctermined, but rather selected to suit the application. In order to bet

ter understand the transform, it is beneficial to look at a more specific case 

of the transform that was introduced in 1917, namely, the Radon Transform. 

The Radon transform has garnered widespread use in fields as divergent ¿is 

Computer Tomography (CT), astrophysics, electron microscopy and nuclear 

magnetic resonance [Dea83].

The Trace transform can be considered as a generalisation of the Radon
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transform, as will become apparent. It has been shown to be a powerful 

tool in image recognition and categorisation tasks [KP01], though the issue of 

high computational complexity has been an obstacle to widespread adoption. 

By investigating the principles behind the transform and understanding the 

complexity issues, it is possible to identify algorithmic parallelism and thus 

methods by which this class of transform can be accelerated in hardware. Fur

thermore, the flexibility afforded by modern Field Programmable Gate Arrays 

(FPGAs) is ideally suited to such an algorithm, that is itself highly flexible.

3.2 T he R adon  T ransform

Before discussing the detailed theory behind the Trace transform, it is worth 

introducing its precursor, the Radon transform. The Radon Transform has 

come to the fore in recent decades primarily as a mechanism for dealing with 

the reconstruction problem. This is the problem of determining the internal 

properties of an object through external probing. Essentially, the object either 

emits or is acted on by a probe; by taking the resultant profile, some internal 

property of the object can be identified.

3.2.1 M athem atical Foundations

A detailed definition of the transform and thorough explanation of all its math

ematical properties can be found in [Dea83]. A basic explanation is reproduced 

here for reference.
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Figure 3.1: Coordinates describing a line L.

Consider an arbitrary function /  of coordinates (x, y) defined on a plane 

of real numbers. If L is any line in the plane, then the Radon Transform 

(designated by &)  of f ( x , y) is equal to the mapping defined by the line integral 

of /  along all possible lines L. Explicitly,

/  =  & { f ]  =  J  f (x ,  y)ds, (3.1)

where ds is an infinitesimal increment of length along L. Figure 3.1 shows 

a line L with equation

p =  x  cos 0 +  y sin (p. (3.2)

The line integral, as defined in 3.1, clearly depends on the values of p and
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Figure 3.2: Coordinates describing a line L relative to original and rotated 
coordinates.

4>. This can be stated explicitly as follows:

f(p, 0) =  ^{ 7 }  =  J f ix .  y)ds. (3.3)

If /(p , 0) is known for all values of p and 0, then f(p, 0) is the Radon 

Transform of f (x ,y ) ,  otherwise it is considered a sample of the Radon Trans

form.

Consider now, a new coordinate system, introduced by rotating the axes 

in Figure 3.1 by <f>, as shown in Figure 3.2. If the new axes are labelled p and 

s, then

x — p cos (¡> — s sin qi> 

y — p sin (j) +  s cos <f>
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The transform can then be written

f(p, 0) =  / f{p  cos <f>- s sin 0, p sin 0 + s cos 0)cJs. (3.4)
J  ~ 0 0

Another common way of writing the Radon transform is in vector notation.

First, define the unit vector

£ =  (cos0, sin0). (3.5)

Now, the equation of the line can be written as

p = £ • x =  x  cos 0 + 7/ sin 0. (3.6)

and the Radon transform can be written

/(P, £) =  j  /(x )i(p  -  £ • x)dx. (3.7)

The Radon transform is linear and homogeneous. It is also closely related 

to the Fourier transform [Dea83].

Key to the Radon transform’s use is the inversion property: that is, the 

ability to deduce the original function from the transformed profiles. Backpro- 

jection is the preferred method for achieving this inversion and is stated here 

for reference.

Consider an arbitrary function V;(f.£) where t =  £ • x =  x  cos <f> + y sin0.

6 8



The backprojection operator 88 is defined by

88J> = /  iJj(x cos (j) + yshufi,£)d(j). 
Jo

This can also be written

(3.8)

/*7T
[88ij)](x, y) =  /  iJj(x cos (f> + y sin 0 , 0 # .  (3.9)

Jo

since 88i(j is a function of {x, y) and £ completely depends on J>.

Now, if ip(p, (j)) is set to the projection function f(p, 0) obtained by applying 

the Radon Transform to f (x ,y) ,  then the contribution to 88'ip at point (x, y) 

is just / (p, qi) • d(j) for any given 0. The value of f(p, </>) is simply the integral of 

the line passing through (x,y) at distance p = x cos J) + y suufi from the origin. 

Integrating for all c/> yields the complete backprojection as per (3.9). This is 

shown in Figure 3.3.

3.2.2 Applications

To better understand how the Radon Transform is used in practice, it is worth 

considering the many applications that make use of it. As mentioned previ

ously, the transform facilitates the extraction of information about the inter

nal structure of an object of interest from a set of profiles. These profiles are 

formed from some application of a probe to the object and taking measure

ments along various lines as defined previously, thus constructing the Radon
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Figure 3.3: Geometry for obtaining the 0-backprojection. For a fixed angle <I>, 
the incremental contribution d(&4>) to at the point (x,y), or alternatively 
(r,0), is given by The full contribution to â§'ij> at (x, y) is found
by integrating over (j) as shown in (3.9). Note that t — x  cos (I> + y sin <F = 
rcos(0 — 4>). Adapted from [Dea83].
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Figure 3.4: A beam passes through the region of interest.

Transform result from these (p, cp) values. With this result in hand, the Inverse 

Radon Transform can be applied to obtain detailed information on the internal 

structure of the object.

As regards the nature of the probe, this depends entirely upon the field 

of application. The simplest example to consider is X-Ray Computed Tomog

raphy (CT) [Dea83j. When a narrow beam of X-ray photons passes through 

an object, the beam intensity decreases by an amount that depends upon the 

density and nuclear composition of the materials in its path. When a single 

cross-section of the object is considered, detecting the amount that has passed 

though gives a single projection, equivalent to the line projection defined in 

3.1. Multiple parallel projections would yield a single profile P(p, 0) for a sin

gle value of (j), as shown in Figure 3.5. By applying the same technique at 

further angles, a complete sample of the Radon transform is obtained. The 

transmitted amount of radiation is determined by known equations. This can
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Figure 3.5: For a fixed angle 0, the source and detector move (varying p) and 
this creates a profile, P{p,4>) for angle qi. (Adapted from [Dea83]).

then be inverted to give a full picture of the composition of that cross-section.

3.2.3 Application to Image Processing

Applying the Radon transform to the image domain is a trivial development. 

Replacing the beam and probe, one simply considers the sum of pixel intensities 

along the lines that cross the image. It is important to note that digital images 

being discrete in nature means that some method for approximating the values 

along lines is necessary, since often the line will not pass directly through the
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centre of a pixel. There are a number of methods that can be used. Firstly, 

nearest-neighbour approximation simply takes the intensity of the pixel nearest 

to the sampling point as its intensity. Other methods of interpolation aim 

to give a more accurate result by interpolating the intensity values of other 

neighbouring pixels. Bilinear interpolation uses the four nearest neighbours 

while bi-cubic interpolation uses 16 neighbours.

To better understand the mappings from the image domain to the param

eter domain, consider Figure 3.6. It shows a variety of simple images (a, c, e, 

g, i) and their transformed equivalents (b, d, f, h, j).

3.3 T he H ough T ransform

The Hough Transform is another transform related to the Radon transform. 

The idea behind the Hough transform is to characterise the shapes in the edge- 

map of an image. The Hough transform maps a line in the image domain to 

a single point in the Hough domain. The Hough domain parameters are the 

same as those of the Radon and Trace transforms. In fact, the application 

of the Radon transform to an edge map would yield the Hough transform. 

The difference can be thought of theoretically as follows: the Radon transform 

maps a point in the image domain to a shape in the parameter domain, whereas 

the Hough transform maps a shape in the image domain to a point in the 

parameter domain. To clarify this, it is suggested that each point in the 

image domain “votes” for the parameters that correspond to all the lines that



Figure 3.6: Some basic images and their equivalents in the Radon parameter 
domain.
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pass through it. While the theory is different, the manifestation is the same. 

Computationally, the Hough transform can be more efficient than the Radon 

transform, as it only deals with edges, so most of the pixels to be considered 

are zero-valued. If taken into account in an implementation, this can make the 

system significantly faster [TofOGj.

3.4 T he "Trace T ransform

After discussing the principles behind the Radon transform, it is now possible 

to introduce the Trace transform. Simply, the Trace transform is a generali

sation of the Radon transform such that any functional can be used in place 

of the integral along each line L. The Trace transform is thus a class of trans

forms rather than a single instance, and the Radon and Hough transforms are 

special cases of the Trace transform.

A functional is a function that maps a vector function to a single value, and 

requires that function to be defined for all parameter values. With a standard 

function, the result is defined on each single point, whereas a functional will 

only produce a result from a function that is defined over all points. As an 

example j  f (x) ,  rnax(f(x)) and min(f(x))  are functionals, since the full set 

of values for f (x )  must be known for a result to be valid, hi the Radon 

transform, the functional is simply the line integral; in the Trace Transform, 

the functional, denoted by T(f(t)),  is not specified, and can be any functional 

of one’s choosing. Herein lies the flexibility of the Trace transform and its



Figure 3.7: Mapping of an image to the Trace parameter domain.

power in recognition tasks. A diagrammatical representation of the domain 

parameter transformation is shown in Figure 3.7.

The mathematical definition of the Trace transform is identical to that of 

the Radon transform in terms of parameters. Just as with the Radon trans

form, the Trace domain is defined by parameters (0, p). Each (0,p) point in 

the Trace domain is the result of applying a functional, T(f(t)),  to the line 

corresponding to parameters 0 and p.

It is important to note here that the relationship to the Radon transform 

is only in terms of definitions. The properties and relationships to other trans

forms do not hold for the Trace transform, since each functional is different. 

Separate investigations would have to be undertaken to establish the degree of 

similarity in these properties, but since the Trace transform is not being used 

for the reconstruction problem, properties such as linearity and inversion are 

of no concern. It is possible to select a functional that breaks Radon trans

form properties and yet shows effectiveness when used in a Trace transform 

application.
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3.4.1 Triple Feature Extraction

One of tlie methods by which the Trace transform is employed for recognition 

tasks is “Triple Feature” extraction. So far we have observed how the transform 

maps an image to another two-dimensional space defined over coordinates 

(0 ,/j). Extraction of triple features requires further functionals to be applied 

to this result to give single value features. Firstly a functional, called the 

“diametrical functional” , P, is applied to each column in turn returning a 

vector in 4>. Finally, a functional called the “circus functional”, (b, is applied 

to the vector, returning a single value result called the “triple feature” [KP01], 

These steps are shown in Figure 3.8.

Triple features are thus single numbers that characterise the image in some 

way. At first, this seems like an excessive reduction of an entire image space 

to a single value. However, the strength of this approach lies in selecting 

multiple functionals at stages T, P  and <E> of the feature extraction process. 

If Nt functionals are used for the trace functional (T), Np functionals are 

used for the diametrical functional (P) and AT functionals are used for the 

circus functional (T), then a total of NpNpN<p triple features can be extracted. 

Taking these triple features together can allow for complex characterisation of 

a scene.

It is expected that not all of these triple features would play a part in char

acterising the image, however given sufficient data with regard to the specific 

application and a wide array of functionals, it is possible to hone a selection
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image trace domain

Figure 3.8: An image, its trace, and the subsequent steps of triple feature 
extraction.

of functionals that effectively characterise the required property for a specific 

application. In [KP03, PK04], the authors show a system which employs func

tionals that yield triple features that are robust to affine transformations. In 

[KP06], features are constructed that are able to deduce the affine transforma

tions that affect the target image.

3.4.2 Selection o f Functionals

When the Trace transform is used for image recognition tasks, the require

ment is typically to identify matching objects, subject to some distortions, 

including translation, rotation, scaling, affine transformations, and even some 

minor non-linear deformations. To achieve this, appropriate functionals must 

be selected for T, P  and ffi. Petrou and Kadyrov detailed the theory behind se

lection of these functionals in [PK04], It is clear, intuitively, that certain types

78



of functionals at different stages can yield robustness to certain distortions. 

Consider a rotation in the original image: this would yield a horizontal shift 

in the Trace image. Thus a suitable function selected for T could cancel this 

effect on a triple-feature. More complex transformations can also be analysed 

in this way.

3.5 Trace T ransform  A pplications

The Trace transform, despite its relative novelty, has been applied to a wide 

range of different image analysis applications. When considering the flexibility 

inherent in the algorithm, it is clear that it can serve a purpose in many dif

ferent fields. Since functionals can be selected according to their performance 

for a particular task, the end result is an effective and accurate system. In 

this section, various existent applications of the Trace transform are briefly 

presented.

3.5.1 Image Database Search

The primary application that was used by the proposers of the Trace transform 

to show it effectiveness was an image database search system [KP01]. An 

image is selected from a database containing different subjects, then some 

transformations are applied. This distorted image is then used as the search 

subject. By applying triple feature extraction to the subject and comparing 

the results to the features stored for each of the images in the database, an
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Figure 3.9: Examples of queries to the image database and the first live 
matches returned for each [KP01]. ©  2001 IEEE.

attempt is made to find the correct match. Varying the distortion applied 

to the subject allows investigation of the algorithm’s robustness. Figure 3.9 

shows queries to the database that have been distorted by random amounts of 

translation, rotation and scaling, and the first five returned matches for each.

In [KP01], the authors construct five sets of invariant features for each of 94 

images in a database containing pictures of different fish. An image is selected 

from the database, then distortions such as rotation, scaling, translation and 

the addition of noise, are applied. This distorted image is then made the 

subject of a query. The live triple features are extracted for this query image 

and compared to the values stored in the database. The values that closest 

match indicate the matching image. Scale factors down to 0.6x, along with 

random rotation and translation, return the correct image within the first five 

returned results, the vast majority (88%) being returned ¡is the first match, 

even in the worst case. Additive Gaussian noise within the object was also 

shown to be tolerated very well, even in the presence of scaling, rotation and 

translation. Experiments with “salt and pepper” noise gave similar results.
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However, the addition of noise to the whole image (i.e., outside the object 

outline) had a highly detrimental effect on the performance of the algorithm. 

This leads to an important conclusion: that the Trace transform, when used for 

object recognition tasks, must be preceded by some sort of object segmentation 

step.

In [PK04], this system is extended, and further experiments are conducted 

in the presence of the full set of affine transformations as well as non-linear 

deformation and occlusion. A Trace transform system is shown to be immune 

to affine transformations, outperforming standard moments-based methods. 

In the presence of noise within the object, the Trace transform becomes far su

perior to the other methods. The experiments are then carried out with query 

subjects that have non-linear deformations and illumination changes applied 

alongside the affine transformation. The Trace transform shows robustness, 

even in the presence of moderate amounts of these distortions. Furthermore, 

it degrades gracefully as opposed to the rapid breakdown in the case of the 

moments-based approaches. Finally, the test is carried out for query subjects 

that are partially occluded, or have a text label attached. Again, the Trace 

Transform shows robustness as long as the distortions fall within the outline 

of the object.

A slight variation is presented in [KP03], where circuses are used instead 

of triple features; the last step of triple feature extraction is not carried out. 

The results of applying the first two functional types is a polar plot of the 

circus functional which is used as an object signature. Matching is achieved
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by correlating the signatures of the query subject and the elements in the 

database. This method is tested for occlusions and found to outperform the 

standard moments-based approaches.

A number of other image recognition applications along the same lines have 

also been implemented [TZFO05, STZ05].

3.5.2 Token Verification

In [IvPOl], the Trace transform is applied to token registration. This task 

consists of comparing a 2D object to a reference. The test object has undergone 

some rotation and translation, and these parameters must be recovered in order 

to allow for an aligned comparison between the two. By selecting sets of T, 

P  and <F functionals that were sensitive to each of these transformations, a 

system was developed that could extract the parameters accurately. Even in 

the presence of noise, the system was robust. Again, noise introduced outside 

the object outline significantly degraded results.

3.5.3 Change D etection

Also in [KPOI], the authors apply the Trace transform to change detection. 

The idea is that some changes that one seeks to monitor can be thought of a 

change in texture. The example used is that of a car park, where one may wish 

to monitor the level of activity, characterised by the number of parked cars. 

Rather than counting blobs, an aerial photograph of the car park, as shown in 

Figure 3.10, is regarded as a texture and a large number of triple features are
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Figure 3.10: Aerial images of a car park with varying degrees of activity. By 
identifying triple features that correspond to the level of activity, a set that 
accurately characterises activity can be found[KPOlj. ©  2001 IEEE.

computed for each of these training images that show the car park in various 

different states of activity. By finding those triple features that correlate with 

the level of activity, one can then take any image of the car park, extract 

the same triple features, and give an accurate conclusion as to the level of 

activity in the image. In this sense the Trace transform is used to construct a 

huge number of features, which are then whittled down to the few that, from 

observation, characterise the required property.
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3.5.4 Face A u th en tica tio n

In [SPKK03, SPKK05], the authors develop a face authentication system using 

the Trace transform. The principle is to compare a candidate face to a face 

stored in the database and determine whether it is a match. Such a system 

must be robust to some changes in illumination, facial hair, expression, and 

other changes that may occur to a subject’s face between two separate occa

sions. In this implementation, only the first stage of the Trace transform is 

used, that is the application of the T  functional. This yields a two-dimensional 

Trace image defined over parameters (</>,p), as detailed earlier. As with most 

authentication systems, a training phase is used to derive the recognition pa

rameters which are then used during authentication.

In order to compare the trace image of a candidate face with that of a 

reference in the database, two separate methods are employed. The first is 

the Weighted Trace Transform (WTT). In the WTT, training images of the 

same person are compared and wherever the values in the trace image differ 

between all training images by less than some threshold, a weight matrix,

\V((/),p) is set to 1. Elsewhere it is set to 0. This matrix defines the points 

that most characterise this individual face, since they vary the least from one 

pose to the next. This matrix is used to select pixels in the candidate image 

to compare to the source image. By looking at the overall level of matching 

between the two in the positions defined by the W  matrix, a confident match 

can be determined.
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The second method used in this implementation is the Shape Trace Trans

form (STT). Again, trace images are extracted from a candidate image, how

ever instead of matching trace images directly, a shape is extracted from the 

trace for comparison. This is done by thresholding the image according to 

some pre-computcd threshold then applying edge detection. The resultant 

shape is then compared to the shapes for faces in the database using a novel 

measure they propose called the Hausdorff Context based on the Hausdorff 

Distance [HGR93]. The steps involved in this process are illustrated in Fig

ure 3.11. A match in the shape indicates a match of the corresponding faces. 

In order to compute the thresholds for both the YVTT and STT, reinforce

ment learning is used, which uses results from previous matches to improve 

the threshold with each iteration.

The two classifiers mentioned above are combined to create a system that 

outperforms many other face authentication algorithms. It is worth noting 

however, that the STT contributes the most to the performance of the system. 

The WTT only adds a very marginal improvement in performance, and in 

isolation performs poorly. In [MKS+03], the performance of a system based 

solely on the STT is compared to seven other face verification algorithms and 

outperforms them all.
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Figure 3.11: The Shape Trace Transform for face authentication. Two faces 
with different poses, (a) and (b) belonging to the same individual, and another 
face, (c), of a different individual. The shapes extracted show a match for 
the same person and a distinct difference for the odd face. Generated using 
MATLAB as per the system described in [SPKK05].
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3.6 C om puta tional C om plexity  of th e  Trace

Transform

One issue with the Trace transform is that of computational complexity. In 

this section, a thorough investigation of the algorithm’s computational com

plexity is presented. This analysis is used in Chapter 4 to develop a hardware 

architecture that implements the Trace transform. To investigate this, it is 

first necessary to understand the parameters that are controlled in any imple

mentation.

Firstly, a fixed sampling density of angles can be considered, nlt>\ one could 

consider angles down to a one degree accuracy or lower, or alternatively choose 

a coarser sampling. The amount of information carried over to the Trace 

domain clearly depends on this parameter. Secondly, it is possible to sample 

an arbitrary number of lines, np, per angle. Again this has a bearing on the 

accuracy of the transformation. For an N  x N  image, an inter-line distance of 

a single pixel may be required, so np would have a maximum value of \/2N  (for 

a diagonal line). Since each line maps to a single point in the (cf>,p) domain, an 

image transformed with the above parameters will yield a trace of size n$ x np. 

Another parameter that can be varied is the sampling granularity along each 

line, or more intuitively, the number of samples taken into account for each 

line, nt. If the requirement is to read every pixel along each line, then the 

maximum value of nt is also v/2Ar. This will not affect the density of data in 

the parameter domain but will affect the accuracy of the results of applying
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riff, the number of angles to consider
np the number of distances (inverse of the interline distance)
nt the number of points to consider along each trace line
Nt the number of Trace functionals
Np the number of diametrical functionals
A* the number of circus functionals
Cq the operations required for trace line address generation
Ct the average operations per sample for each T  functional
Cp the average operations per sample for each P functional
C* the average operations per sample for eacli <[> functional

Table 3.1: Trace transform computational parameters

Parameter Explanation

the functional along the line. Algorithm 1 shows a pseudo-code version of the 

Trace transform. Other parameters referred to in this section are shown in 

Table 3.1.

Algorithm 1 Trace Transform Algorithm
for func= 1 to Np do 

for 0 — 0 to Ti(j, — 1 do 
for p = 0 to Tip — 1 do 

for t — 0 to nt — 1 do 
process pixel using func 

end for
store result for (0,p) point 

end for 
end for
store result for func 

end for

There are two main steps in computing the Trace transform. The first is to 

extract the necessary pixels from the source image, given values and the 

second is the actual computation of the Trace results. For each of angles
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and np lines per angle, let C$ represent the number of operations required to 

compute the pixel addresses for a line. To compute each of Np functional 

results, nt points on each of the np lines for each of the n$ angles must be 

processed. If Cp denotes the number of operations required on average per 

pixel per functional, then a total of n$npntNpCp operations are required to 

compute the traces for an image, while n$npC$ operations are required for the 

line extraction.

If triple features are to be extracted, then for each of the Np diametrical 

functionals, np points must be calculated at a cost of Cp operations per point. 

This must l)o applied to eacli of the AT trace images produced in the previous 

step. Finally, A,r,j> circus functionals must be computed on n$ points at a cost 

of CT operations per point. This is applied to each of the NpNp  vectors from 

the previous step.

This gives a total number of operations of

n$7ipC$ + rppiipiitNjCr + n$np Np Np Cp + n$ Np Np AT C (3.10)

For an N x N  image, these parameters may take values as follows: n$ =  180, 

np ~  N  and nt ~  N. Np, AT and AT could take values of 10 each. This would 

give a total computation complexity of

180 NC$ + 1800A^Cy +  18000iVCP +  180(100C't>. (3.11)
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It, is thus clear that the complexity of computing the line coordinates and 

the diametrical functionals are linear with respect to the image size. The 

complexity of the circus functionals is independent of image size. Meanwhile 

the first computation step -  computing the trace images -  is quadratic with 

respect to image size. For N  =  10, all three functionals consume equal pro

cessing power. For more realistic image sizes of over 100 x 100 pixels, the trace 

computation step dominates the processing requirements.

The amount of time taken for C# and Cr would depend on the implemen

tation; in hardware, it might be possible to do these operations more efficiently 

than in software. Furthermore, by parallelising in the number of angles (n^), 

the number of lines (np) and the number of functionals (Nr), the total run

time can be reduced significantly. The key to accelerating any algorithm in 

hardware is to identify the inherent parallelism then exploit it in the design. 

By harnessing this parallelism, the algorithm could be accelerated to run in 

real-time. Given the pseudo-code presented, and these parameters, it is clear 

that there is significant parallelism in <p, p , and Nr

Given these results, it is clear that accelerating the first step, that of trace 

image generation holds the key to significant speedup. Couple this with the 

fact that some applications do not require the extraction of triple features 

and it is clear that this stop is most important when it comes to hardware 

acceleration.

It is also important to note that the Trace transform functionals can in 

themselves be very complex. While a Radon transform will just use the sum
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of pixel values, the Trace transform can apply a variety of mathematical func

tions. Table 5.2 in Chapter 5 shows the functionals used in a face authentica

tion application, and shows the typical complexity to be expected.

3.7 R e la ted  H ardw are  Im p lem en ta tions

The work presented in this thesis and in [FBC-L06] and [FBCL07] is the first to 

deal with hardware implementation of the Trace transform. The most closely 

related work is that which deals with the Radon transform and so that is what 

will be considered here.

In [SCIIA92], a system based on four parallel DSP processors for computa

tion of the Radon and Inverse Radon Transform is presented. The parallelism 

of angles is exploited to increase performance. Different interpolation tech

niques are compared, and while Linear Interpolation is shown to be slower 

than Nearest Neighbour, it is chosen due to the increase in quality.

In [BY92], the authors use progressively larger line segments to approxi

mate the line sums, thus significantly reducing processing time. The authors of 

[FVS05] further develop this algorithm, presenting a hardware implementation 

that can process 21 512x512 pixel frames per second.

In [SI94], the presented implementation first maps an image to the Polar 

coordinate system, then uses this to transform it to the Radon domain. The 

system only deals with binary images. The authors also suggest parallelisation 

in the angles.

91



In [MB04], the authors make use of the Radon transform’s relationship 

with the Fourier transform. Using efficient implementations of the FFT and 

IFFT, they are able to accelerate computation of the Radon and inverse Radon 

transforms.

Finally, in [CA05], the authors present two architectures for the acceleration 

of the Finite Radon Transform. They mention the clear distinction between 

the Finite Radon Transform and the Discrete Radon Transform. The theory 

is thus distinct.

There are a few important notes to be mentioned, that preclude much of 

this previous work from being useful in regard to the Trace transform. Firstly, 

Radon transform implementations assume the function to be applied to each 

line is a sum. For the Trace transform, this is clearly not the case, so ideas such 

as partial results and the summing of line segments (as in [FVS05]) cannot be 

applied. The work in [SI94] actually links closely to the idea of using rotations 

instead of line extractions that will be shown in the next section. Furthermore, 

the Trace transform does not retain the mathematical properties of the Radon 

transform nor its relationship to other transforms, hence work such as that in 

[MB04] cannot be adapted for a Trace transform architecture.

3.8 S um m ary

Having discussed the Trace transform in depth, it is clear that it is a very 

powerful tool in the domain of computer vision. It lias shown excellent per
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formance in a wide range of different ap])lication domains and its flexibility 

suggests that it could be used in many more. The computational complex

ity of the algorithm is an issue though, and applying the algorithm in real 

time presents a challenge. The algorithm can be thought of as a fusion of two 

stages. Firstly, there must be some mechanism for extracting lines of pixels 

from an image. The next part is more complex, and perhaps the core of any 

implementation; the functionals. Key to the algorithm’s wide array of uses is 

the flexibility in selecting functionals. Furthermore, the functionals are math

ematically varied and often complex. With these two attributes in mind, it is 

clear that hardware accelerations using FPGAs is ideally suited to implement

ing the algorithm. Hardware acceleration would involve in-depth acceleration 

of the functionals ¿is well as introducing some degree of flexibility, something 

which FPGAs are very suited to. A hardware implementation of the Trace 

transform would be applicable to the Radon and Hough transforms as well, 

and so be useful for any transform in this class.

Significant acceleration would allow not just fast runtime in a specific ap

plication, but also a more thorough method for finding applicable functionals. 

By offering significant acceleration and a wide array of functionals through a 

generalised, flexible framework, the designer is free to search a large functional 

space to find those functionals that offer the best performance for any given 

application.

Chapter 4 deals with the development of an extensible hardware implemen

tation of the Trace transform that achieves real-time performance. Chapter



5 deals with introducing flexible functionals that can be used to explore the

algorithm’s performance in a wide variety of application domains.
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C h ap ter 4

A H ardw are A rch itec tu re  for 

Trace Transform

Im plem entations

4.1 In tro d u c tio n

In Chapter 3, the Trace transform was introduced along with a discussion of 

some of its applications, and the computational issues associated with imple

menting the algorithm. This chapter investigates how the Trace transform can 

be accelerated in hardware and propose an extensible architecture that offers 

significant speedup over software implementations. By investigating the algo

rithm and its computational requirements, a hardware implementation can be 

created, that provides for significant acceleration. Field Programmable Gate 

Arrays (FPGAs) bring new opportunities to digital circuit designers, simpli-
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fying the hardware design process while allowing for rapid prototyping and 

testing.

The Trace transform has thus far been applied primarily to images. Fur

thermore, investigation of functionals has been somewhat limited. By accel

erating the algorithm in hardware, and achieving real-time performance, the 

algorithm could be applied to video sequences too. Acceleration would also 

open the door to examining a large set of different functionals as applied to 

different target applications.

In this chapter, a hardware implementation of the Trace transform is pre

sented. A discussion as to the different aspects of hardware acceleration is 

presented, coupled strongly with a consideration of the appropriate use of het

erogeneous FPGA resources. A complete implementation with three function

als is evaluated in terms of speed and area requirements. The implementation 

presented here achieves a significant speedup of 75x over an equivalent soft

ware implementation for three functionals. Part of the work detailed in this 

chapter has been published in [FBCL06].

4.2 Fr om A lgorithm  to A rch itec tu re

As mentioned in Chapter 2, accelerating an algorithm in hardware is usually 

approached from two facets. The first is to efficiently implement the complex 

computations in the architecture such that they can be computed at high 

speed, forgoing the need for splitting up such instructions as is typical for
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software. The second is to exploit parallelism: where a set of instructions must 

be computed numerous times, while iterating over a parameter, a hardware 

implementation can implement multiple iterations in parallel. This chapter 

will deal with exploiting the algorithmic parallelism inherent in the Trace (as 

well as Radon and Hough) transform, and the design of a real-time hardware 

system for this class of transforms.

4.2.1 Partitioning into Blocks

As alluded to in the previous chapter, the Trace transform consists of two 

fundamental building blocks. The first of these takes values of 0 and p as 

an input, and returns the pixel intensities along the corresponding line. The 

second part takes these pixel intensities and applies some functional to them to 

produce the Trace image. The first part is common between the Trace, Radon 

and Hough transforms, while the second part is more general and incorporates 

the facility to compute all three1.

In a hardware architecture, other blocks deal with dataflow and control; 

these are detailed in the next section.

1The only difference between the Hough and Trace transforms is that the source im
age in the case of the Hough transform is an edge-map. Since, the result of applying the 
Radon transform to an edge-map is equivalent to the Hough transform, the names are used 
synonymously in this thesis.

9 7



4.2.2 Exploiting Algorithmic Parallelism

The discussion on computational complexity in Section 3.6 gives an idea as to 

the areas of parallelism in the design. It concludes that the most significant 

speedup is to be gained by accelerating the Trace image generation as opposed 

to the subsequent steps of triple feature extraction. As shown in the afore

mentioned section, the total computation complexity of the algorithm is given 

by (3.10), reproduced here:

n^iipC ff, + n ^ rip iit  N p C p  + n ^ r i p N p N p C  p  + r i^ N p N p N ^ C .p

The last two terms are less significant for images of standard size, and not 

used in all implementations, and so can be ignored. It is clear that there are 

multiple candidates for parallelisation. Firstly, a system can be developed that 

extracts lines for multiple values of 0 simultaneously. Similarly for values of p. 

Finally, computing multiple of the Nr  functionals in parallel would also yield 

a significant speedup. For the moment, CT, the per-pixel cost of functional 

computation, is ignored. The intention is to design all the functionals with 

as high a throughput as possible. This is achieved by fully pipelining the 

functional blocks. This means that they produce a result in each cycle, and 

thus run as fast as the full system allows. By designing in such a manner, 

functionals with different computational requirements do not adversely affect 

the performance of the overall system.
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4.3 T he T arget H ardw are

The target platform for this implementation is the Celoxica RC300 Develop

ment board [Cel]. This is a widely available board that hosts a Xilinx Virtex 

II XC2V6000 FPGA, alongside a vast array of peripherals. The only other 

components of interest for this implementation are the on-board pipelined 

ZBT SRAMs - there are four 8MB chips - and the USB connection to a host 

computer. The RAMs can be accessed in pipelined mode, accepting a sin

gle read or write instruction per cycle and are 36 bits wide. The Virtex II 

FPGA on the board has a large logic capacity as well as providing 144 hard

wired multipliers and 144 18Kb BlockRAMs. The system was designed and 

implemented using Celoxica Handel-C, a high-level C-syntax based hardware 

description language [Cel]. As mentioned in Chapter 2, high-level languages 

such as Handel-C allow the designer to write mostly standard C and compile 

it to an FPGA design. However, the key to exploiting the full power of the 

FPGA in a design is to write the Handel-C code in a manner that suits the 

hardware implementation. As such it is important to design the architecture 

conceptually, rather than attempt to make small modifications to a software 

version of the algorithm.
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4.4 H ardw are A rch itec tu re

4.4.1 System  Framework

Before discussing the details of the hardware implementation, it is necessary 

to look at the overall system in its constituent parts, as shown in Figure 4.1. 

A host PC captures image data by way of a standard USB camera. The image 

data is pre-processed, including resizing and grayscale conversion, before being 

sent to the development board via a USB interface. The image data is stored 

in one of the on-board SRAMs before any processing occurs. As each frame 

becomes available in the SRAMs, the FPGA reads the frame and computes the 

results. These results are stored in another SRAM, from which the result is 

transmitted back to the PC, again via the USB interface. On the PC, the data 

is reorganised and used in the subsequent processing steps of any overall vision 

system. Hence the crux of the hardware implementation deals with the data 

between the input and result RAMs. (The FPGA is actually used to control 

the communication with the PC as well as the data reading and storage.)

A Top-Level Control block oversees the communication between separate 

blocks and ensures synchronisation. The Rotation Block reads an input image 

from the on-board RAM and produces a rotated copy at its output. Each 

Functional Block takes the pixels in this rotated image and uses them to com

pute the relevant results for each line crossing the image at that angle. This 

is the first example of parallelism in the design; these functional blocks work 

in parallel thus producing all their results in the time it would normally take
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to produce a single functional result. Further parallelism will be examined in 

subsequent sections. Finally, an Aggregator Block reads the results from each 

functional in turn and outputs them serially to the result RAM.

The host PC sends the image data, frame by frame to the image RAM on 

the board. The FPGA reads this image data from the USB port and selects 

a RAM to write the image to. The RAMs are double buffered to increase 

performance. This means that while an image is being loaded into one RAM, 

the other RAM in the pair is being used for calculation. When one calculation 

cycle is completed, the roles of the RAMs are swapped. The rotation block 

produces rotated versions of the original image with angles increasing by 2° per 

iteration. This increment can be modified as required for an implementation. 

The reason for selecting this value, was to attempt to retain a similar amount 

of information in the trace domain representation as in the image domain. 

This results in a mapping of a 256fx256 pixel image to 256x180 points in the 

transform domain.

The functional blocks read the resultant stream, keeping track of the row 

beginnings and endings, and passing the results for each row to the Aggregator. 

Each row corresponds to a single line across the original image. Once the 

calculation of all lines for all rotations is complete, and the results stored in an 

output RAM, the host PC reads from this RAM, while the system writes the 

next set of results to the other output RAM. The results can then be extracted 

and organised on the host PC for further processing.
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4.4.2 Top Level Control

The Top-Level Control block oversees all the other blocks. It initiates the 

rotations and ensures that each new rotation is synchronised with the com

pletion of results calculation for the previous rotation. It also manages the 

double-buffering of the external RAMs.

4.4.3 R otation Block

Conceptually, the first step in the algorithm is a line tracer: a block that takes 

a (0, p) value and produces the coordinates of the relevant pixels in the source 

image. These coordinates are then used to extract pixel intensity values from 

the source image, stored in off-chip RAM. It is worth noting however, that to 

compute a trace, all values of (0,p) must be used, hence, the whole image is 

traced for all angles and at all distances from the centre. Bearing this in mind, 

a simplification can be made that makes for a more efficient implementation. 

Rather than iterate over values of 0 and p, it is possible to rotate the whole 

image by an angle 6 and sample pixel values along the horizontal rows in that 

rotated version. This would be equivalent to computing all the trace results 

(all values of p) for a fixed value of 0 — 90 — 0. This equivalence is illustrated 

in Figure 4.2.

It is necessary here to mention an important caveat. When rotating an 

image, some parts of the image fall outside the original boundary of the source 

image. The rotated version must either be larger than the source image, to
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Figure 4.2: Rotating an image then reading across its rows can replace the 
address generation required for extracting line pixels. The line shown in (a) is 
equivalent to the row of the rotated image in (b). The shaded area shows the 
part of the image that will fall out of the image frame for some rotations, and 
so must not contain an area of interest.

accommodate this extra information, or else the information is lost. An equiv

alent amount of empty canvas is also introduced from areas “underneath” the 

image that become exposed. If a square image of size Â  x A" is rotated through 

all angles from zero through 360°, then only the portions of the image that 

fall within a concentric circle with diameter N  would be present in all possible 

rotations. This is also shown in Figure 4.2. It is worth recalling, as mentioned 

in Chapter 3, that the Trace transform has only been shown to perform well 

with masked images in the presence of noise [KP01]; since the lines that trace 

the image may include part of the background too, a lack of masking would 

allow the background to contribute significantly to the functional results. Due 

to this fact, it is necessary for the object of interest to be masked; that is, that 

a binary overlay be present that determines whether or not the corresponding 

pixel in the image is used in calculations. It is thus a fair assumption for this
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system to require any object to fall within the aforementioned area and to be 

masked appropriately.

To understand why the change from line extraction to rotation simplifies 

the system, consider first the initial approach. A block would be required that 

takes a (cp, p ) value and outputs a vector of addresses. To do this, each line must 

have a starting point (which must be computed), that may well fall outside the 

image coordinates. A counter must then be incremented for both image axes 

and coordinates that fall outside the image must be discarded. The lines will 

vary in length, and so, some way of tracking the position of the perpendicular 

to the centre is needed. Furthermore, some way of tracking the correct (0, p) 

values for each line is required, since each line is extracted independently. Due 

to the variation in line lengths, there is the added problem of reading from 

the image RAM inefficiently. Alignment of vectors to take account for the 

gaps in between readings would also be necessary. A detailed description of 

the various parameters required to implement the line extraction in this way 

is given in [MXS07].

Now consider the approach where the whole image is rotated. Each rotation 

produces a set of all p values for the given rotation (note the offset mentioned 

above). Since the resultant rotated image is produced in raster scan format, 

there are no timing gaps, and the vectors are all aligned. This means that no 

further logic is required before reading from the source RAM. Dealing with a 

fixed line length of N  also simplifies tracking of the p values iu the functional 

blocks, since this is simply the row number in the rotated image (again there
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is an offset). Once a rotation has been completed, the source image is again 

rotated by a new angle, and this produces the vectors for another value of 0 

and so on. This technique simplifies the system significantly and allows for full 

pipelining of the architecture.

The Rotation Block thus takes an angle as its input and produces the raster 

scan of the source image rotated by that angle at its output. The source image 

is read out of order, and since the output is in order, there is no need for image 

buffers or further logic, since all addressing is inherent in the data.

So far, this modification has dealt with data handling. To fully harness the 

power of hardware implementation, it is also worthwhile to look at exploiting 

parallelism in the algorithm. Since results for one angle, 0, are in no way 

computationally related to other values of 0, the algorithm could be said to 

be independent in 0. Hence a number of parallel angles could be computed, 

equal to the number of angles considered. It is however necessary to consider 

datapath limitations. Three possible methods of parallelising rotations are 

depicted in Figure 4.3.

For each rotation that occurs in parallel, separate accesses would be re

quired to the source image, due to the out of order access imposed by the 

design specified above. Hence, multiple copies of the image in separate RAMs 

would be required, each addressed by separate rotation engines. Since the 

board RAMs on the target development board only provide single port access, 

this would mean that each rotation engine would need its own board RAM. 

Given that there are only four RAMs on the board and two of them are re
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Figure 4.3: Three methods for parallelising rotations. In (a), separate rotation 
engines run in parallel. In (b), each line is stored in a line buffer and read in 
both directions. In (c), four orthogonal rotations are concatenated, and thus 
each iteration of the rotation engine gives four different rotations of the source 
image.

served for the results, this is not feasible. Another way to parallelise rotations 

is to read each line into a line buffer, then read that buffer from both ends 

independently. This would give the lines for both (0, p) and (r/> + 180°, —p) 

simultaneously.

There is however, another way of enhancing performance even further. 

Consider that any rotation by a multiple of 90° is simply a rearrangement of 

data (or alternatively a reassigning of axes values); this is easily implemented in 

software. It is also clear that a rotation by any (positive) angle, 0, is equivalent 

to a rotation by some multiple of 90° plus the remaining angle. Formally:

0 = [0/90°J x 90° +  0 mod 90°. (4.1)

As an example, rotation by 212° is equivalent to rotation by 180° followed
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Rotation x y

0° X y
90° V N  -  x
180° N - x N - y
270° N - y X

Table 4.1: 13aye orthogonal rotation coordinates, for an N  x N  image, 

by a further rotation by 32°.

This fact can be exploited in order to parallelise rotations as follows. The 

source image is a standard 8-bit greyscale image. The external board RAMs 

are 36-bits wide, and hence, storing a single image is a waste of the available 

wordlength. Instead, what can be done is to store the four orthogonal base 

rotations (0°, 90°, 180° and 270°) concatenated in a single RAM word. Since 

the host computer can easily construct the other three rotations from a stan

dard image, there is no real computational cost to be considered. Table 4.1 

shows that any orthogonal rotation can be obtained with no more than simple 

calculations that can be performed extremely fast on a host PC.

Now when a rotation by angle 0 is carried out, the RAM word that is 

output can be spliced to give the relevant pixel for the rotations by 0,0 + 90°, 

0 +  180° and 0 + 270°. This effectively quadruples performance with only 

minimal impact on rotation block area. The area impact is only as a result of 

increasing the size of the registers.

A new rotation is complete every 65,536 cycles plus a few cycles used to 

fill and flush the pipeline. With a rotation angle step size of 2°, 180 rotations 

are needed for a full set of results. Since 4 rotations are computed in parallel,
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Figure 4.4: Structure of a single word in external RAM.

the actual number of rotation operations is 45. Hence, assuming a rotation 

latency of 65,560 cycles (to include the margins mentioned above) a full set of 

rotations is complete in just under 3 million clock cycles.

The construction of the orthogonal rotations occurs on the host PC, and 

only once per frame. While this takes 4 x N 2 reads on the PC (ignoring 

the effects of caching), the resultant concatenated image is rotated 45 times 

instead of the the 180 that would be needed for a standard image, in order to 

construct a full trace. This saves over 9 million cycles per trace, at a cost of 

3 x N 2 extra cycles on the PC (for which cycle times are much shorter). Hence 

the overhead is minimal.

Since all images are also masked, the four mask rotations are also stored in 

the RAM. With four 8-bit image words and 4 1-bit masks, the total wordlcngth 

is 36-bits which matches the RAM perfectly. The makeup of a single RAM 

word is shown in Figure 4.4. Loading an image onto the board over USB 

requires the data to be sent in single bytes, this means a 256x256 pixel image 

takes 256 x 256 x 5 =  327,860 cycles to be transferred from the PC to the 

board RAM.

In order to compute the rotations, the system proceeds as follows. The 

input angle is used to address sine and cosine lookup tables (stored in Block- 

RAMs). The resultant values are then used to compute the standard Cartesian
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rotation equations:

x  =  £ cos 0 — y sin 0 (4.2)

y' — x sin 0 + y cos 0 (4.3)

The calculations are carried out using 8-bit fixed-point calculation. Nearest 

neighbour approximation is used whereby each sample point takes the value 

of its nearest pixel; this avoids the more complex circuitry and scheduling 

required for bilinear or bicubic approximation. The result is that a complete 

rotation of an N x N  image is complete in N~ clock cycles.

The x  and y coordinates obtained from this computation are used to read 

specific pixels from the source image in off-chip RAM. Recall that these source 

pixels arc in fact a set of four concatenated orthogonal base rotations. When 

one of these concatenated “pixels” is read, it is spliced into its four separate 

parts and each of those is used to build a separate rotated image. This means 

that in N 2 cycles, 4 separate rotations have been completed.

The resultant rotated images stream through the system in raster scan 

format. This is where each row is transmitted, one pixel at a time, followed 

immediately by the next row and so on. This makes the subsequent blocks 

simpler since there is no complex buffering or ordering to be considered. By 

parallelising rotations in this way, the rotation engine now only needs to iterate 

44 times (for a 2° step size) for a full set of rotations, as opposed to the 178

iterations originally needed.



The overhead imposed by this method of parallelising is primarily at the 

host PC. Rather than sending an image directly requiring a single read from 

memory and a single USB write, the system must now read from memory four 

times for each pixel, transmit four bytes rather than one, hence four times 

the amount of image data is transferred over USB. This overhead does not 

affect the performance of the system, however, as it is done in parallel with 

the system processing a frame.

4.4.4 Functional Blocks

The actual computation of results for the Trace transform occurs in the func

tional blocks. Each block must process the output of the rotation block, com

puting the results of the appropriate calculation applied to each row of input, 

and then pass this result on to be stored in the result BAM. A few aspects of 

the implementation should be noted here. Firstly, the input to the functional 

blocks is the raster scan of the rotated image. To assist in keeping the data 

aligned, a “new row” signal is also passed by the rotation block. Each new 

rotation is processed independently, so there is a short gap in processing be

tween subsequent rotations. This is needed to allow for functional blocks with 

different latencies to process the correct data at the same time.

Secondly, recall that the output of the rotation block is four orthogonal 

rotations rather than one. Each functional block therefore splices this data 

and computes results for each of the four rotations independently. This means 

that all the computation datapaths and registers are duplicated four times.



The control circuitry is kept combined for compactness and synchronisation 

purposes.

Finally, it is important that each functional block makes use of the mask 

associated with each pixel to decide whether it is used in the calculation. Re

call that masked-out pixels arc ignored in the Trace transform. The three 

functionals presented here do not rely on the position of input pixels for com

puting the result. However, a counter is maintained that keeps track of the 

position in the row while it is being processed. This serves to mark the end of 

each row.

When the results for each row are ready, they are passed in parallel to an 

output buffer and a “result ready” signal is passed to the Aggregator which 

deals with storing the results to off-chip memory. Since the board SRAMs 

have a 36-bit wordlength, the widths of the datapaths are tailored to ensure 

that the final result fits within this limit. In the case of the three functionals 

presented here, the range of results fits with no need for any scaling. Where 

some scaling is required, the impact on accuracy must be considered.

In developing this extensible architecture, the three functionals shown in 

Table 4.2 were implemented as a proof of concept. They were built fully 

pipelined, such that they could be changed without impacting the timings of 

the whole system. In Chapter 5, a framework for developing flexible functionals 

to replace these ones is presented.

Details of the design for each of the functionals arc shown below. The “D” 

blocks in the diagrams are registers. The “Store” block is activated at the end
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No. Functional
1 n m )  =  e ," m
2 n m )  = E o \ m \
3 n m )  = t .» s / m

Table 4.2: Trace functionals used in this implementation, 

of each line, storing the final result for that functional.

Functional 1

This is the simplest of the functionals, summing all the pixels in each trace 

line. The Trace Transform using this functional is the equivalent of the Radon 

Transform. The corresponding equation is shown in (4.4). Figure 4.5 shows 

the schematic diagram of the design.

N
n / w )  =  £ / w  (4.4)

o

Figure 4.5: Schematic diagram of Functional 1
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F u n ctio n a l 2

This functional sums the absolute differences between adjacent pixels in each 

trace line. The corresponding equation is shown in (4.5). Figure 4.G shows the 

schematic diagram of the design.

N
! ’(/(()) =  £ l / ' « l  (4.5)

0

Figure 4.6: Schematic diagram of Functional 2.

Functional 3

This functional is the square of the sum of the square roots of the pixels in each 

trace line. The square root was implemented using a lookup table since the 

pixel intensities are only 8 bits wide. The square operation was implemented 

using the embedded multipliers. The corresponding equation is shown in (4.6).
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Figure 4.7 shows the schematic diagram of the design.

n / ( 0 )  =
■ N
v v m (4.6)

Figure 4.7: Schematic diagram of Functional 3.

4.4.5 Aggregator

The Aggregator polls the functionals in a round-robin fashion awaiting a “new 

result” signal2. When received, the aggregator proceeds to store the four results 

from the current functional in a serial manner. This is done to avoid having 

a large data bus between each of the functionals and the aggregator. Since 

there is only a new result every N cycles (256 in this implementation), there is 

sufficient time to read each result from each functional in series. The results 

are stored in an on-board R AM addressed using a concatenation of functional 

number, rotation and row number. The contents of this RAM can then be read

2It is preferable that the polling is ordered such that the functional that finishes first is 
the first polled. This would provide the most efficient use of the storage time window.
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by the host PC over USB and the results used in further stages of processing.

4.5 P la tfo rm  C onsiderations

The architecture presented here suits any target hardware platform. While 

other development boards do offer more significant throughput to external re

sources, it simplifies the architecture and control considerably, to limit accesses 

to external communication and memories. The system presented is effectively 

a block that sits between two memories, processing the contents of one, us

ing no external communication, save the reading of the data, and storing its 

results in another memory. Stream processing is what facilitates the simple 

architecture, enabled by the use of horizontal lines from the rotated image, 

that stream through the system in order.

The architecture could be synthesised on any of the modern FPGAs avail

able today. They all contain embedded memories and multipliers. Indeed with 

some of the latest devices, the resource usage would decrease, while the speed 

would be significantly increased. An important limiting factor that must also 

be considered beside the FPGA is the speed of the external memories. In this 

implementation, this proved more restrictive than the FPGA itself.

The use of the wide external memories on the development board enables 

the parallelisation of rotations in the manner presented. If such resources 

were not available, the alternative method of reading a line into a buffer, then 

processing from both directions (as shown in Figure 4.3(b)), could be used.
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Alternatively, if more external memories, or memories with more ports are 

available, separate rotations engines could be employed to the same effect. 

The use of separate memories or multi-ported memories would enable more 

than four parallel rotations, while the current method cannot be improved 

upon as it stands.

The architecture is in itself efficient and flexible and could be easily modified 

to suit a different target platform.

4.6 Im p lem en ta tio n  R esu lts

This design was implemented on the development board described in Section 

4.3 using the Handel-C language and Celoxica DI< tools[Cel]. The implemen

tation instantiates three functionals as detailed above, however, the design is 

modular so that adding extra functionals is straightforward. Synthesis results 

are shown in Table 4.3. The resultant clock-speed of 80MHz is limited by 

the development board libraries used to access on-board resources. This high 

speed was primarily due to the fully-pipelined nature of the design. Significant 

use of the channel communications provided for in Handel-C was made.

1 his clock speed results in a throughput of 26 frames per second for a 

256x256 pixel image. In comparison, a highly optimised MATLAB equivalent 

in software, running on a Pentium-4 2.2GHz, took just over 3 seconds to com

plete the same calculations on a single frame. This hardware architecture thus 

gives over a 75 times speed-up. This acceleration increases with the number



Synthesis Results
Device Xilinx Virtex II XC2V6000-6
Clock Speed 80MHz
Frame Rate 26fps
Slices 2,070 (6%)
BlockRAMs 6 (4%)
Embedded Mults 8 (6%)

Table 4.3: Trace transform architecture synthesis results for the Celoxica 
RC300 Development Board.

of functionals, as additional functionals would slow down the software version 

while not affecting the speed of hardware implementation. Bear in mind also, 

that other functionals can be significantly more complex, and hence the effect 

of hardware acceleration can be more pronounced in those cases.

Figure 4.8 shows the system-level timing for the architecture. Consider a 

256 x 256 image, so N  =  256. In this case, the architecture completes four 

orthogonal rotations of the image in 65,536 cycles. Each of these 65,536 pixels 

is passed to the functional blocks in order, with a new row starting every 256 

cycles. In the last cycle of each row, the functional copies the results for each 

of the four orthogonal rotations to output buffers and continues with the next 

row. The Aggregator waits for a result to arrive at the first functional. It 

takes 7 cycles to store the result for the four rotations into the output RAM, 

then it continues with the other functionals in order, storing each of the results 

in the external RAM. It is available until the next results arrive, 256 cycles 

after the previous ones. Once the last result is stored for a rotation, the 

Aggregator instructs the rotation block to start another rotation, and so the
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process continues. Hence, a complete computation of the Trace transform for a 

25G x 25G pixel image takes approximately 3 million clock cycles. For a system 

running at 80MHz, that results in a throughput of 2G frames per second.

The implementation serves as an extensible architecture for Trace Trans

form applications. The simplicity of the architecture belies its power. More 

functionals can be added with ease. The only theoretical limit is where the 

functional result storage latency exceeds the time between successive row re

sults. Given that for a 25G x 256 image, a new result comes in every 256 

cycles, and that each functional result takes 7 cycles to store, this allows suf

ficient slack in time for 36 functionals. Assuming these functionals are each 

optimised and pipelined, they will not affect, the overall latency of the system 

or its clock speed. The only limitation, then, is the area requirements of the 

functionals.

4.7 Sum m ary

By harnessing the inherent parallelism in the Trace transform, it has been 

possible to design a hardware architecture that offers a significant speedup of 

75 times over software for three functionals. Furthermore, the hardware ar

chitecture is scalable, able to accommodate the addition of further functionals 

without a performance cost. The methods used here are généralisable for the 

whole class of transforms including the Radon and Hough transforms. This 

is the first hardware implementation of the Trace Transform, and illustrates



the power of a hardware-centric design methodology. The design of this ar

chitecture was developed directly from an understanding of how the algorithm 

works, rather than simply by parallelising the loops in a software implementa

tion. One of the difficulties in designing hardware is the dataflow management; 

one must consider, given the constraints of the communication channels, how 

to transport data into and out of the system. One must also attempt to circum

vent the need for intermediate storage. The simplification of line-extraction to 

a series of rotations allowed for a simple datapath using streamed data with no 

need for internal storage. Parallelising the rotations in the manner described 

further quadrupled performance with minimal impact on storage needs. This 

architecture serves as the foundation for building a flexible Trace transform 

functional exploration framework, presented in Chapter 5.



C h ap ter 5

Flexible Functional Blocks for 

E xploration

5.1 In tro d u c tio n

In Chapter 4, a hardware architecture that implements the Trace transform 

was described. It is capable of real-time performance, of 2G frames per second, 

when processing 256 x 256 pixel images. The architecture was designed with 

extensibility in mind, and all the blocks are fully pipelined, such that alter

native functionals can be swapped in without any change to the architecture 

or timing. In this chapter, a framework for developing flexible functionals for 

the Trace transform architecture in Chapter 4 is presented. Three example 

functionals are also described, that cover those used in the Shape Trace Trans

form (STT) for face verification [SPKK05]. These can be instantiated in the
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aforementioned framework and provide for run-time re-programability1.

A significant opportunity afforded by accelerating the Trace transform is 

that of investigating suitable functionals for a specific application. The Trace 

transform’s strength lies in its general definition, allowing for functionals to be 

selected based on their strength for a specific application. A flexible hardware 

architecture greatly simplifies the exploration of the functional space. Rather 

than iterate through a short list of alternatives one-by-one, a large number of 

alternative functionals can be investigated in parallel without the need to re- 

synthesise the design. In order to achieve this, the heterogeneous resources on 

the FPGA, specifically the on-chip Block RAMs, are used to create generalised 

functional blocks that can compute a selection of different functional results 

using the same block. Changing the contents of Block RAMs, and configura

tion registers in each functional block, determines which specific computation 

is to tie computed. In this way, there is no need to re-synthesise the design 

with each new set of functionals.

It is worth noting that there has not been, to date, a thorough investigation 

comparing functionals for a given application. Applications of the Trace trans

form presented in the literature (as summarised in Chapter 3), have simply 

used the functionals that were available. While work on determining function

als that perform well for specific geometric invariance, such as affine transfor-

*Note that the term re-programability is used here to differentiate from FPGA recon
figurability. Runtime and/or partial reconfiguration of FPGAs is still an active area of 
research, without a mature tool-fiow ¡is yet. All the work in this thesis is implemented using 
static configurations.
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mations, has been conducted, functionals tailored to more specific applications 

have not been investigated. A hardware system, combined with a framework 

for developing flexible functionals, enables this process and allows the Trace 

transform to be investigated for many new applications.

5.2 A Fram ew ork for D esigning Flexible Func

tionals

In order to achieve some flexibility in the functionals to be implemented, there 

are three possible approaches. The first is to create multiple functional designs, 

then select the appropriate ones during synthesis. While such an approach 

would work, it would mean that each combination of functionals would require 

a fresh synthesis run. This can be time-consuming, negating the benefits of 

hardware acceleration. This method also fails to avail of the more advanced 

methods that modern FPGAs afford.

The second method is to use runtime reconfiguration. Runtime reconfigu

ration refers to the modification of the FPGA configuration during runtime. 

Recall that the circuit implemented in an FPGA is defined by a configuration 

bitstream that details the states of each of the circuit units and the routing 

configuration. Applying a new bitstream allows the circuit to lie changed while 

running. Partial reconfiguration allows parts of the circuit to be updated while 

others continue to run. Such a process could be employed to allow functionals 

to be swapped in and out in various combinations. The design flow is, how
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ever, more complex and the tools are not yet completely suited to this form of 

design, though it continues to be an active area of research [SedOG].

Another simpler method, which still provides relative flexibility is to design 

blocks that can compute multiple functionals, selectable by some configuration 

information. One of the simplest ways to achieve this is to use Block RAMs 

to compute basic mathematical functions within the functionals. Using Block- 

RAMs as lookups in this manner means that the actual operation performed 

can be changed without modifying the circuit. Furthermore, it is possible to 

use small registers with stored values to determine the selection of paths in 

a system with multiple datapaths. These two modifications allow for a single 

functional block to compute a large variety of functionals, and for the selection 

to be modified on the fly.

5.2.1 Integration into Trace Transform Architecture

It is necessary to summarise the requirements for a generalised functional that 

can be used in the Trace transform architecture presented in Chapter 4. Recall 

that the output of the rotation block is a 36-bit signal, as read from the image 

RAM. This signal is a concatenation of the four orthogonal rotations and their 

masks. Every cycle, one of these “pixels” arrives at the functional blocks. At 

the start of each row in the rotated image, a “new line” signal goes high. Each 

functional block produces a single result per orthogonal rotation for each full 

row of input. This result is stored to registers, in parallel, once it is ready, and 

a “result ready” signal is sent to the Aggregator block. The Aggregator block
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is set to poll the functional blocks in a round robin fashion starting with the 

one that has least latency. It is also important to note that subsequent rows 

within the same image arrive in straight succession with no gaps.

This information can be used to devise a basic framework for a flexible 

functional block. Firstly, the incoming signal is spliced into the constituent or

thogonal rotations and masks. Each of these orthogonal rotations is processed 

in a separate pipeline, though with unified control circuitry. The first control 

element needed is a counter to keep track of the current pixel number within 

the row. An “end-row” signal is extracted from this counter to signify the 

arrival of the hist pixel in the row. The designer must consider the pipeline 

delays introduced by circuit elements, and delay this end row signal by the 

appropriate amount to extract a “last result” signal which goes high at the 

point at which the last pixel of a row has been processed. This is used to 

enable a bank of four registers that store the functional results for the four 

rotations in parallel.

In each computational stage, the mask must be taken into account. Those 

pixels which are masked out should not be incorporated into the computation. 

Again, it is necessary to have aligned versions of the mask signals so that each 

point in the pipeline processes the correct mask values. For some computa

tions, the mask need not be applied if the masked out areas are set to zero. 

For example, an accumulator does not use mask information since summing a 

zero or not summing is the same. The only assumption is that the input image 

is set to zero for all masked-out pixels.
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Some functionals may require the incorporation of the pixel position in the 

calculation. The counter mentioned above can be used for this purpose. For 

this to work, it is necessary to add a single cycle delay to the input “pixel” , to 

ensure alignment, since the counter is reset with the first pixel to arrive.

Table 5.2, to follow, shows the functionals used in a face authentication 

application of the Trace transform. It is clear that most functionals involve 

a summation over all the processed pixels. This may be implemented by in

stantiating an accumulator at the end of each of the four datapaths. The final 

result is limited to 32 bits in order to fit in the board SRAMs. Hence, the 

width of the input to the accumulator must be restricted to 24 bits such that 

the maximum of 256 such inputs can be accommodated. The accumulator 

is reset by an appropriately aligned version of the aforementioned “new-line” 

signal. An accumulator may not be needed for other functionals that don’t 

involve a summation.

In order to create the flexibility sought, on-chip BlockRAMs are employed 

as lookups. A lookup RAM contains pre-computed values for some function 

stored at each location. For example, for a lookup RAM to be used for com

puting cos(x-), the contents of each memory location would have to contain the 

value of cos(addr), where addr is the address of the RAM word. Thus, when 

value a is applied to the address input of the lookup, cos(a) emerges at the 

data output. Note that the RAMs are in fact used as ROMs in this situation. 

However they are still referred to as RAMs because they retain their write ca

pability. This write capability is what allows them to be exploited for adding
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flexibility. Since these RAMs can be configured with data at runtime, there is 

no need to re-synthesise the design in order to change the RAM contents, and 

thus the function computed by each lookup table

Now consider that a wide range of functions can be implemented in this 

fashion, and it becomes clear that a functional block with lookup RAMs in

corporated can implement a wide array of different funcitonals. Some of the 

arithmetic functions that can be computed in this manner include x , a;2, y'x, 

ln(x), sin(x), to name but a few. The only limitation is that the input value 

must be bound since the size of the RAM must be predetermined. A small 

increase in the range of an input can impact the resources used dramatically. 

The on-chip BlockRAMs on a Xilinx Virtex II are 18Kb in size, and can be 

configured in a number of ways, between 512 x 36-bits to 16K x 1-bit [Xil99b]. 

The specific configuration must be set in advance. Fortunately, with most im

age processing systems the input pixels are constrained to be 8-bits wide. The 

configuration that corresponds closest to this address width is 512x36bits. 

However, exploiting this wordlength efficiently would be difficult, given the 

presence of four datapaths within each functional. The presence of multiple 

operations within each functional would also mean extremely wide signals at 

the end of the processing pipeline. Hence the size of each lookup is set to 

256x16 bits. While this does not fill a BlockRAM, it uses only one, and 

provides for 216 levels of precision.

Since each functional has four datapaths, it is expected that four Block 

RAMs would be needed for each lookup in the functional. In fact, due to
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the dual-port configuration of the BlockRAMs, and the fact that the lookup 

information is identical for each of the datapaths, it is possible for a single 

BlockRAM to be shared by the datapaths for two orthogonal rotations simul

taneously.

It is important to consider the case when there may be subsequent lookup 

stages within a functional block. This presents a problem since the output 

of the first lookup stage is 16-bits wide while the input into any subsequent 

lookup can only be 8-bits wide. The designer must incorporate some way of 

selecting how this is done. A configuration register controlling a multiplexer 

can be used to select between different splicings of the datapath as required.

The other facet of flexibility to be introduced is that of variable datapaths. 

In order to allow for selection, each functional includes an 8-bit configuration 

register with each bit. being used to make a binary selection. This can be to 

select the upper or lower 8 bits from a lookup output (as alluded to above), or 

to enable or disable parts of the functional computation.

All of these considerations result in a general framework as shown in Figure 

5.1. Combined, these allow a single functional block to compute a number of 

different functionals without any need for reconfiguration.

5.2.2 Lookup Accuracy Considerations

The use of lookup memories with constrained wordlengths means that accuracy 

is sacrificed to some extent for the functions approximated. For some functions, 

the specified wordlengths are sufficient for an exact mapping. Table 5.1 gives
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Lookup Function Mean Relative Error
X 0%

o 
X * 0%
x 3 2.85%

0.00139%
lnz 0.00142%
\ / x 0.166%

sin(x) 0.011%

Table 5.1: Mean relative error of functions when approximated by a 256x16 
bit lookup memory (using maximum possible lossless scaling), x ranges from 
0 to 255.

the mean relative error for a number of example functions when implemented 

using the 256x16 bit lookup memories used in this architecture. If more 

precision is required, it is relatively straightforward to extend the wordlength. 

Using a single Block RAM, it is possible to hold 256x36 bits. However, one 

must consider that this will significantly widen the rest of the datapath, as 

well as resulting in much wider functional results.

5.3 in itia lly  P ro p o sed  Functionals

A number of different functionals have been suggested for the different Trace 

transform applications discussed in Section 3.5. A detailed list was given in 

[SPKK05], and consists of 22 functionals used for a face verification application. 

These functionals are shown in Table 5.2. Many of these functionals were also 

used in other applications [PK04], It is clear from Table 5.2 that there are 

groups of functionals that are very similar in structure, such as numbers 9, 11, 

12, 13 and 14, as well as 20, 21 and 22.
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For the face verification application, the Trace transform is used in two 

ways, as mentioned in Chapter 3. Firstly, the traces constructed are directly 

compared to each other using the Weighted Trace Transform (WTT), but the 

performance of this method is shown to be mediocre [SPKK05]. The second 

method is the Shape Trace Transform (STT), where the traces are thresholded 

and the resultant shapes compared rather than the traces themselves. This 

method proved much more accurate. Of the 22 functionals listed in Table 5.2, 

numbers 1, 2, 7, 9, 11, 12, 13, 14, 20, 21 and 22 were found to be useful for 

the STT.

5.4 F lexible F unctional Blocks

In the following sections, three different generalised functional blocks are pre

sented. Each of them can implement a number of functionals listed in Table 5.2 

as well as some others obtained by changing the lookup functions within each 

block. Block diagrams are shown for each type, though for simplification, only 

a single datapath is shown whereas, as mentioned previously, each functional 

actually processes four rotations in parallel. The signal word lengths are shown 

on the connections. Each lookup is implemented on a single BlockRAM.

5.4.1 T ype A Functional Block

This functional block is able to compute functionals 1,2 and 3 from Table 

5.2. These three functionals were combined despite being different, due to the
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Bit Effect
0 Subtract delayed sample
1 Select upper 8 bits
2 Apply h
3 Square row sum
4-7 Unused

Table 5.3: Configuration register for Type A functional block.

simplicity of the operations involved. A block diagram is shown in Figure 5.2. 

Note that each circuit element takes a single cycle to run and that the dashed 

parts are optional, determined by the configuration register. “D” is a single 

cycle delay register.

The block takes an input pixel and applies a lookup function, ly to it. 

Optionally, function /2 is applied to a one cycle delayed version of the input 

pixel and the absolute difference is taken; the actual datapath is decided by 

the configuration register. Function 13 can then optionally be applied to either 

the upper or lower 8 bits of the output from that stage. The result is passed 

through to the accumulator and at the end of the row, the final result is 

optionally squared. The configuration register is configured as in Table 5.3. 

To implement the functionals using this block, the configuration must be set 

as shown in Table 5.4. Numerous other functionals can be implemented by 

changing the configuration.
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Func. No. Equation l\ lo h  Conf. Reg.
1 jf;r m dt x  -  -  ------  0000
2 Jo“  1/(01 h-dt s/x  -  -  ------  0001
4 r  i m W x x -  ------ 1001

Table 5.4: Type A functional configurations.

5.4.2 T ype B Functional Block

This functional block is more complex than Type A; it can implement func

tionals 9, 11, 12, 13 and 14 from Table 5.2, which depend on the weighted 

median calculation. The weighted median is implemented using the efficient 

hardware architecture detailed in Chapter 6, with some modifications. Firstly, 

the sample and weight wordlengths are both set to 8 bits, as required for this 

block. The median block must also take into account the mask, so this is 

incorporated within the median calculation. Finally, there is no need for the 

FIFO block since this is not a sliding window implementation. Instead a reset 

signal is added to allow the bin counters to reset at the start of each row. Since 

the median filter block was implemented in VHDL, a wrapper was used within 

the Handel-C code. This wrapper tells the compilation tools to include the 

netlist for the VHDL object (which was separately generated using Simplic

ity Synplify) within the generated netlist for the Handel-C architecture. This 

merged netlist is then used within the Xilinx tools for mapping, placement and 

routing.

Since the median block can only return a result after a whole row has been 

processed, the current implementation uses the result from the previous row
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Func. No. Equation h U I3 Conf. 1Leg.
9 JT  rf{t)dt X X X  .................... - - 0
11 X

9X X  --------------- - - 0
12 ,C° y/rf(t)dt X \ fx  X  .................... - - J
13 £ °  rf( t )dt X X X  .................... - - 1
14 C r 2 f( t)dt X 2X X  .................... - - 1

Table 5.5: Type B functional configurations.

in each calculation.

The functional computes the intermediate values c and r as described in 

row 9 of Table 5.2. The input l as shown in Figure 5.3 is the output of the 

pixel position counter mentioned in Section 5.2.1. f ( t )  is a single-cycle delayed 

version of the pixel stream, in order to be aligned with the counter. Lookup 

¿i offers flexibility in modifying the skew of the median calculation with the 

default being x as per the equations. Note that the value c is only updated 

once per row (shown shaded in Figure 5.3). Function ¿2 is then applied to 

r and I3 to f(t).  The top 12 bits of these values are then multiplied before 

being summed in an accumulator. A single bit in the configuration register 

determines whether to sum from zero or from c. Table 5.5 shows various 

configurations of the functional block. Others, outside of those shown in Table 

5.2 can be implemented by changing the configuration.

5.4.3 T ype C Functional Block

This functional block, shown in Figure 5.4, follows the structure of functionals 

20, 21 and 22 in Table 5.2. The system follows similar design to the Type B



138



Func. No. Equation l i k
20 J T  y/rf{t)dt \Jx x
21 X  X

22 L°° r 2 f( t)dt 9
X~ X

Table 5.G: Type C functional configurations.

functional block, except that c is computed as described in row 21 of Table 5.2. 

Note that the values c and S  are only updated once per row. The division by 

S  in the functionals is implemented using a lookup table, for simpler circuitry 

and pipelining. The input to this lookup table is truncated to restrict the 

number of embedded memories needed. To allow the full range of inputs, 64 

Block RAMs would need to be combined into a S4Kxl8 bit memory. By 

truncating, a single Block RAM is sufficient. This functional block does not 

use a configuration register. Configurations for functionals 20, 21 and 22 are 

shown in Table 5.6

5.4.4 Functional Coverage

These three functional types cover 10 of the 11 functionals required by the 

Shape Trace Transform (STT) for face authentication [SPKK05]. Furthermore, 

by using alternative look-up functions in the Block RAMs and changing the 

values in the configuration registers, it is possible to add further functionals. 

The remaining functional used in the STT (Number 7 in Table 5.2) is a Fast 

Fourier Transform (FFT) that can be directly implemented using a predesigned 

core, with no need for flexibility.
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5.4.5 Accuracy Considerations

In Section 5.2.2, the accuracy of the lookup functions was presented. Any 

inaccuracies can propagate through the system, so it is necessary to consider 

the overall accuracy for a functional. It is important to note that comput

ing the Trace transform is not the same as applying another algorithm where 

the absolute values that result must be the same, having been defined pre

cisely. With this Trace transform implementation, it would be used for both 

the training and recognition tasks in a given system. As such the requirement 

is that it is “self-accurate” -  that it produces consistent results so that when 

multiple images are compared, the comparison can be made with a degree of 

confidence. The numerical data itself is not used in further mathematical pro

cessing that requires numbers to fit an exact specification. Indeed in the case 

of face verification, shapes are extracted from the trace through thresholding, 

thus discarding the fine accuracy of the numbers.

With the Type A functional block, the accuracy for the three defined func

tionals was found to be 100% for the functionals defined above. The inaccuracy 

of the square-root lookup is so small, that the maximum relative error for the 

whole of a trace image is only 0.02%.

For the Type B functional block, the use of the median result from the 

previous row in the calculation introduces some inaccuracy. The relative error 

has an average of 2%, with 52% of samples having zero relative error and 97% 

having less than 10% relative error.
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For the Type C functional block, the use of old values of the c variable 

causes error, but with a different profile to that of the Type B functional 

block. In this case, the error has a more even spread, and there are a number 

of positions where the relative error is very large. 28% of pixels have zero error, 

while 86% have less than 10% relative error. 0.66% of positions have greater 

than 100% relative error, however.

It is important to note that these errors have little effect on the trace 

images when treated as images. The outliers are very few in overall terms and 

are spread sparsely at certain points where there is already high contrast. It 

depends largely on the next step in processing as to what constitutes acceptable 

error. Figure 5.5 shows traces computed using floating point arithmetic on the 

left and the equivalent computed in hardware on the right.

Note that the errors for the type A and B functional blocks, as a result of 

using one-row delayed intermediate can be overcome by adding a single full line 

latency to the whole system. While an additional 256 cycles of latency may at 

first seem significant, recall (from Section 4.6) that a complete trace takes over 

3 million cycles to produce, and so it is a relatively small delay, and will not 

affect the throughput in any way. There is no other way of overcoming this 

accuracy issue, since these functionals produce results that depend on some 

property of the whole row being computed in advance. In this case, the errors 

were found to be tolerable for the types of processing expected to follow, and 

so the extra latency was not added.



Figure 5.5: Trace images obtained using floating point arithmetic (left), the 
equivalents using the hardware architecture (centre), and error images with 
percentage range (right).
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5.5 In itia lisa tion

Having covered the design of flexible functionals and given examples, it is nec

essary to consider how the configurations are defined and applied. The flexible 

functionals rely on configuration data in order to function. The correct setting 

must be placed into the configuration register, along with the appropriate data 

for the lookup memories. This results in the addition of an initialisation stage 

before computation can begin.

Since there may be 8 to 10 functionals on the chip at one time, a large 

number of Block RAMs must be initialised. Doing so from one central location 

would be inefficient since signals would have to be routed to more than 40 

locations from the initialisation block (assuming an average of 6 Block RAMs 

per functional block). In order to make this process more efficient, the system 

reads the initialisation values from the PC via USB and stores them in one 

of the board RAMs. From there, a distributor block reads the initialisation 

data and writes them to a shared bus as they are. Within each functional, a 

small block interfaces with this shared bus ignoring instructions that do not 

apply to it, and only activating when the functional is a match. When this is 

a case, a counter is reset and enabled, and this serves as the address input to 

the Block RAMs. The lookup number is used to select which Block RAM to 

write to, and the data values are read directly from the bus and written to the 

relevant location within the Block RAM. The system is shown in Figure 5.6.

The initialisation data are formatted as shown in Figure 5.7, with each
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Figure 5.G: Flexible functional initialisation bus.

line representing a single byte of data read from the PC and stored to the 

board RAM. Since the data is transmitted over USB, any data longer than a 

byte must be split up. The first three bytes, when concatenated, determine 

the total length of the initialisation data. Following this, sets of instructions 

arrive, each headed by the functional block number followed by the lookup 

memory number. Then the contents of the memory are sent in order, split 

into bytes. Since the size of the lookup words is fixed at 16-bits, it takes 512 

cycles to fill a BlockRAM. In order to initialise each configuration register, a 

reserved lookup number of 255 is sent followed by a single byte containing the 

data.

Following this modular approach means that the initialisation data can be 

in any order, and that the functional blocks can contain a variable number 

of lookup memories. The initialisation process only needs to occur at the
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i n i t i a l i s a t i o n  data s ize  (byte 1 of 3) 
i n i t i a l i s a t i o n  data s iz e  (byte 2 of 3) 
i n i t i a l i s a t i o n  data s iz e  (byte 3 of 3) 
fu n c t io n a l number
lookup number / /  255=config r e g is te r  code 
data 1 / /  Lookup data to  be
data 2 / /  sto red  in  the memories
data 3 / /  s p l i t  in to  bytes.

fu n c t io n a l number 
lookup number 
data 1 
data 2 
data 3

Figure 5.7: Functional lookup initialisation data format, as stored in the board 
RAM.

beginning of a processing run. The time taken depends on the number of 

Block RAMs that need to be initialised with each requiring 514 cycles per 

Block RAM and 3 cycles for each configuration register. At 80MHz, this 

translates to just over 640ns per Block RAM.

5.6 P erfo rm ance  and  A rea R esu lts

The system implemented is identical to that in Chapter 4, but with these 

three flexible functionals. The system-level timing is identical to that shown 

in Figure 4.8. The only difference is that before the system begins processing, it 

waits for the completion of the initialisation phase detailed above. The system 

was synthesised with each of the above functional blocks in order to obtain 

separate area results for each. The resource usage for each of the functionals
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Unit Slices Embedded Mult’s Block RAMs
Framework 1,300 4 9¿J
Type A Functional 800 4 6
Type B Functional 23,500 4 22
Type C Functional 1,300 8 6
Total Available 33,792 144 144

Table 5.7: Synthesis Results for the Three Flexible Functional Blocks.

and the framework architecture are shown in Table 5.7.

All units were successfully synthesised to run at 79MHz. This limitation 

is enforced by the board libraries that are used to access resources on the 

board. This is the same speed as the architecture in Chapter 4, and shows 

that by pipelining the design, the complexity of the functionals does not affect 

the speed. While the timing allows for 36 functionals to be implemented, as 

previously mentioned, the area of each of the blocks must be taken into account. 

The actual number of functional blocks that can be implemented would depend 

upon the area requirements of each type and the resources available on the 

target FPGA.

Table 5.8 shows the speedup in computing a single functional using the 

discussed hardware implementation. As a software reference an optimised 

MATLAB version is used that is running on a Pentium 4 at 2.2GHz with 1GB 

of memory. The MATLAB version was implemented with nearest-neighbour 

rotations achieved using matrix multiplication for speed. It was coded making 

full use of MATLAB’s vector operations and avoiding the use of loops. Just as 

with the hardware, lookup tables were used for computing the trigonometric
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functions. Using the MATLAB compiler [Mat] yielded very minimal gains in 

performance, so it was not incorporated in these figures. While one might ar

gue that the absolute performance gain may not be representative of a highly 

optimised software implementation, the important observation is that the per

formance of the hardware functional blocks is not affected by the complexity 

of a functional, whereas software reflects the complexity of a functional in its 

runtime.

in all the cases, the hardware design outperforms the software version by 

a considerable margin. It is important to note that these numbers arc for a 

single functional. In the hardware implementation, additional functionals are 

computed in parallel, resulting in an even greater performance boost. Consider 

a system with three functionals - one of each type. The software implementa

tion would take 7.9 seconds to compute the three traces, whereas the hardware 

system would still take 38.5 ms, a speedup of over 200 times. Increasing the 

number of functionals further, to the 11 implemented out of Table 5.2, a soft

ware version takes 31 seconds, while the hardware implementation would still 

take the same time as implementing one functional. This results in a speedup 

of over 800 times. This would require a larger FPGA device since the area 

requirements are significantly more than is available on the current target 

platform, however higher capacities are common in the latest generation of 

FPGAs [XilOTb, Alt07].

It would be possible to compute the 11 functionals described using just 

the three blocks presented here. In such a case, the system would need to
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Functional Type S/W  (ms) H/W  (ms) Speedup
Type A Functional 1400 38.5 36x
Type B Functional 3900 38.5 10 lx
Type C Functional 2600 38.5 67x

Table 5.8: Running times and speedup factors.

run through the trace computation 5 times, to allow the Type B functional 

block to compute all its variations. This would result in a total runtime of

38.5 x 5 = 192.5ms, a speedup of over 160 x over software.

The number of functionals that can be implemented in hardware is limited 

by two factors. Firstly, the resource requirements of a functional block and the 

resources available on the target device must be taken into account. Clearly, 

the number of functionals possible in an implementation depends entirely on 

the combination of functional block types required.

The second factor is timing-related. A full trace computation takes just 

under 3 million cycles to complete, and since the input and output memories 

are double-buffered, it is necessary for the data transfer to and from the board 

to be completed in this time. The loading of input data from the PC takes 

327,860 clock cycles as detailed in Section 4.4.3. Each functional produces a 

trace image that is 256x256 pixels in size2, with each pixel being 32 bits wide. 

Hence reading a trace image in bytes over USB takes 256 x 256 x 4 =  262,144 

cycles. This means that the maximum number of functionals that can be 

accommodated in this implementation is [(3M—327,680)/262,144 =  10J. This

2The actual result is a 256x180 image, but for case of address calculation, it is stored 
within within a 256x256 size memory block.
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limitation is due to the use of the USB port to transfer data. An FPGA board 

with a wider and/or faster interface to the PC would alleviate this problem.

5.7 S um m ary

In this chapter, a framework for designing flexible functionals for the Trace 

transform was presented. The main design consideration is to introduce flexi

bility into the functional blocks, allowing a single block to compute a number 

of different functionals. Employing Block RAMs as lookups for function evalu

ation leads to a highly pipelined system with significant flexibility. A flexible, 

efficient initialisation scheme was also presented. Three example blocks based 

on functionals used for face authentication [SPKK05] were developed using 

this scheme and shown to perform as fast as the fixed blocks shown in Chap

ter 4. By instantiating multiple functional blocks, the system achieves over 

2 orders of magnitude acceleration over a software implementation, with this 

factor increasing for the more complex functionals.

The framework presented can be applied to develop further flexible func

tional blocks that can aid significantly in functional exploration for different 

applications of the Trace transform. This can result in a much better choice of 

functionals for a given application, rather than relying on a library that may 

serve well for some applications while not performing well for an application 

at hand. This opens the door to investigating the use of the Trace transform 

in a wide variety of application domains beside those already investigated.
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C h ap ter 6

Large-W indow ed, 

O ne-D im ensional M edian and 

W eighted M edian F ilters

6.1 In tro d u c tio n

One of the mathematical functions that is used extensively in Trace transform 

functionals is the median and weighted median [SPKK03, SPKK05], Figure 6.1 

shows where the Trace transform fits into the Trace transform implementation.

The median of a set of samples is often computed by sorting the input sam

ples then selecting the middle value. The weighted median can be computed 

in multiple stages: first expanding the weighted sample sequence, then sorting 

and finally locating the median. However, these methods arc not suitable as a 

block in a fully pipelined system, since results are not produced immediately
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Figure 6.1: Position of median and weighted median circuit within a Trace 
transform implementation.

but after multiple stages. This requires intermediate storage and complex con

trol logic to pause the previous stages in a circuit. Furthermore, the median 

and weighted median calculations used for the Trace transform arc typically 

on large windows, equivalent to the length of a line crossing an image (200 

samples). Also, in the case of the Trace transform, the length of the sample 

window is variable. These two facts present a problem for the standard imple

mentations of median and weighted median filters. In this chapter, a real-time 

hardware architecture is presented that can compute the median and weighted 

median over a flexibly sized window. The architecture is fully pipeline-able 

and thus is easy to incorporate into a pipelined system such as that developed 

in Chapter 4. Part of the work in this chapter was published in [FCL05b].

6.2 D efin ition

The median filter is a highly versatile non-linear filter that has been used 

extensively in a variety of domains. Its strength lies in its ability to filter
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out noise while minimally affecting the properties of the underlying signal. 

The median filter replaces a sample with the middle ranked value amongst all 

the samples within the sample window. In this manner, it filters out samples 

that are not representative of their surroundings, in other words, outliers. 

In the image processing domain, a two-dimensional median filter allows for 

the removal of “salt-and-pepper” type noise from an image without adversely 

affecting the underlying edges. The use of a linear filter (such as a Gaussian or 

mean filter) in this situation would cause a blurring of edges. The median filter 

can still degrade image quality somewhat, though the preservation of edges is 

paramount in the computer vision domain.

Given an input sequence X\,X2 , £3, • • •, a window of size 2/v +  1 is defined, 

centred on the zth value as Wt =  {:rt_/c, x l^ K+i) ■ ■ ■ , x t, • • • , ^ . [ , 1 ^ } ,  

The output of the median filter, is thus the median of Wf, the middle value 

in the sorted list.

The weighted median is an extension of the standard median, wherein each 

input sample also has an associated weight that determines how much that 

sample contributes to the final result. Weights can have fractional or integer 

values. From a computational perspective, this makes no difference as long as 

fractional weights are fixed point and lie within the same limits for all samples. 

Negative weights are undefined.

The input sequence for a weighted median filter can be written: 

(XuWl),(X2,W2)t (Xa,W3), - • • ,
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where X{ are the input samples and wl are the corresponding weights. An 

integer weight would simply correspond to having w, copies of sample aq taken 

into account in the median calculation. Consider the example sequence:

(1,3), (5,1), (2,5), (4,2), (7,2), (3,5), (4,1).

After expanding, this becomes:

1, 1, 1, 5 , 2, 2, 2, 2, 2, 4, 4 , 7, 7, 3, 3 , 3, 3 , 3, 4.

To determine the median, this sequence must be sorted as follows:

1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 5 7 7U) U )  u ,  U ,  U, I .

Finally, the middle value in the sequence, 3, is selected as the weighted median 

of this series.

It is important to note that for the weighted median, the size of the window 

is the sum of weights rather than the number of tuples received. So for the 

above sequence it is 19 and not 7. The median index can be calculated by 

halving this number and adding one, so in this case the median index is 10.

Much of the literature dealing with median filters in image processing is 

focused on 2-dimensional filters of small size [Ric90]. Weighted median does 

not have a widespread use in image processing and thus little work has been 

done on efficient implementations. The number of sample points required in
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the Trace transform can be very large, in the order of hundreds. Furthermore, 

the window size, in the case of the Trace transform, is not fixed, so an im

plementation must be flexible in this regard. Designing an implementation 

that can facilitate such calculations over large windows would allow for a full 

hardware implementation of many Trace transform functionals.

6.3 R e la ted  W ork

Median filters have been implemented in hardware in a variety of ways. [Ric90] 

provides a very good review of the area. There are two main methods, the 

first is to maintain the input sample list in its original order, then pass it 

through some type of sorting network. The median value is then extracted from 

the relevant position in the ordered list. The other method involves sorting 

the samples as they enter the system. Of the first approach, the simplest 

implementation is the bubble sorting grid, where a grid of dual input sorters 

each swap their inputs to propagate the higher valued samples upwards, and 

lower valued samples downwards (or vice-versa). The median is simply the 

middle sample of the grid output. An example of this architecture is shown 

in Figure 6.2. This method is regular yet its hardware requirements increase 

in proportion to the square of the window size and hence it is not scalable to 

larger windows. For a window of size 2N  +  1, N(2N  +  1) dual input sorters 

and 2N +  1 registers are required as can be seen in Figure 6.2.

For small windows, simplifications can be made [BN97], where the columns,
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median

Figure G.2: A simple 11-sample bubble-sorting circuit layout. The large blocks 
are compare-swap units that swap their inputs if necessary to propagate the 
larger values upwards and the smaller ones downwards. The small blocks are 
registers. Note that the shaded blocks are not required for median calculation.

then rows of a 2-dimensional window are each sorted using a triple-input sorter. 

Then only one diagonal needs to be sorted to give the median. This saves on 

hardware requirements. Karaman et al. [KOA90] propose a change to the stan

dard sorting network by dealing with samples in a bitwise manner, needing only 

single bit sorters, however their implementation is still proportional to N 2 in 

area. The strength of regular array architectures is that they can be pipelined 

down to a single compare-swap stage. This results in high throughput. Benkrid 

and Crookes [BCB02] create a sorting structure based on Quick Sort using a 

bit-voter block; the area requirements are O(N).  Other methods that use fewer 

building blocks of higher complexity are described in [YLC99, CCH96, BP02]. 

Another method is that of threshold decomposition, as used in [BT04], how

ever the architecture proposed relies on the window being of size 3x3 and uses 

3-input adders and so is not scalable to large windows. Systolic median archi

tectures based on insertion sort have also been proposed [GL01]; in this case,
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the amount of hardware is proportional to the window size. In [VRSPGP02], 

the authors take advantage of the wide data buses on the development board 

to allow the median calculations for multiple pixels in parallel. The overlap

ping data between 3x3 windows is re-used and the sorting circuit is modified 

to reduce the number of compare-swap blocks. The proposed architecture is, 

however, limited to 2-dimensional windows of 3x3 pixels and larger windows 

would not scale due to the sorting circuitry.

Another method for computation of the median of a sequence of numbers 

involves computing the cumulative histogram for this sequence, then finding 

the index of the first bin total to exceed the median index. The principle is well 

established and known, having been mentioned in basic textbooks on image 

processing. [AP94] and [HFC95] both deal with software implementations 

of this algorithm running on general-purpose processors. Presented here is 

the first implementation and analysis in hardware of the proposed method. 

The high degree of parallelism that can be had in hardware, coupled with 

the independence of the area with regard to window size, is what makes this 

method so attractive as compared to a sorting structure. Furthermore, this 

method is extensible to the weighted median as will become apparent.
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6.4 P roposed  A rch itec tu re

6.4.1 General Overview

The proposed architecture works by constructing a cumulative histogram of the 

input data. This is done by maintaining a count for occurrences of each possible 

input value. Since the application domain in this case is video processing, 8- 

bit unsigned numbers (let l =  8) have been assumed. This means there are 

28 =  256 possible input values, and so a rank of 256 bins is used. To construct 

a histogram, when an input value is received, the bin corresponding to the 

sample value is incremented. For a cumulative histogram, each subsequent bin 

must also be incremented. In software, this is normally done as an additional 

step after the histogram has been fully populated. A pass through all the bins 

adds the value of the previous bin to each bin. Hence, the value stored in the 

final bin will always be equal to the number of input samples received. The 

median is then simply the first bin whose count reaches or exceeds the median 

index.

For example, if the median is to be calculated over a window of 101 ele

ments, i.e. 2K  + 1 =  101, K  =  50, then the 51st or generally (K  + l)th  element 

in the ordered list is required. Using the histogram, find the first bin whose 

count is 51 or above, this gives the median of the input samples, since the 51st 

ordered element must lie in this bin.

To implement this in hardware, a rank of parallel bins is instantiated. The 

count value for each bin is compared to the median index (in this example,
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m ed index

51), resulting in a 0 if the bin count is smaller, and a 1 if it is equal or larger. 

Hence the result for all bins before the one containing the median will be 0, 

and all the others will be 1. A priority encoder can then be used to find the 

index of the first bin in the series of l ’s. A priority encoder takes an B-bit 

input in which there are b zeros followed by B — b ones, and returns b. This 

gives the median of the input.

A separate register is required to keep a count for each of the possible 

input values. Hence 256 registers are needed to store the counts for 8-bit 

samples. For the registers to all be updated in parallel, each register also 

requires its own incrementer, which is activated only when that bin needs to 

be incremented. (Recall that to construct a histogram, only the bin with an 

index corresponding to the input sample needs to be incremented.) Hence, 

each bin has an enable input that determine whether it should be incremented 

in the current clock cycle, and the median index as an input. The output is 

a single binary value that is 1 when the value equals or exceeds the median 

index and 0 otherwise. This gives the design for a bin node as shown in Figure 

6.3. 256, or in the general case of l-bit samples, 2l, such nodes are required in
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the proposed system. Note that the width of the bin registers depends on the 

window size required. This will be investigated further in Section 6.5.2.

A circuit composed of such processors would yield the histogram of the 

input signals. In order to compute the cumulative histogram, some further 

processing is needed. As mentioned above, it is possible to separate the con

struction of the cumulative histogram and do this as a subsequent step. This, 

however, would be wasteful, as the accumulation for each bin would have to be 

done in turn, taking 256 cycles in total. One possible alternative approach is 

to instantiate a comparator for each bin, and compare the input sample value 

to the index of each bin. Those bins with an index greater than or equal to 

the input sample value would be incremented. However, this would be costly 

in terms of hardware, since each bin would require its own /-bit comparator.

Another approach would be to connect each bin to the previous one, such 

that if the previous bin is being incremented, then it would increment too. 

However this would slow the system down significantly, since that incrementa

tion signal would need to propagate through 256 stages in the worst case, all 

in one clock cycle. Analogous to this is the carry chain in a carry-ripple adder.

A more efficient method, that takes advantage of the heterogeneous re

sources on modern FPGAs, is to use embedded Block RAMs on the FPGA 

as a ROM to store the bin access patterns. For the 8-bit inputs previously 

mentioned, a 256 x 256-bit ROM would be required to decode the 8-bit num

ber to a 256-bit signal, where each bit represents the select input shown in 

Figure 6.3, to the corresponding bin; each bit of the output addresses a single
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Address Contents[0:255]
0 OxFFFFFFF.. . FFFFF
1 OxTFFFFFF.. . FFFFF
2 0x3FFFFFF... FFFFF
3 OxlFFFFFF... FFFFF
4 OxOFFFFFF.. . FFFFF
5 OxOTFFFFF... FFFFF

253 0x0000000... 00007
254 0x0000000... 00003
255 0x0000000... 00001

Table 6.1: Access pattern ROM contents.

bin node processor. The access patterns stored in the ROM, ensure that the 

correct bins are enabled for any given input sample. The contents of the ROM 

are shown in Table 6.1, while an overview of the circuit is shown in 6.4

This method of constructing a cumulative histogram is highly efficient and 

allows for a fully updated histogram in every cycle. This method has also 

subsequently been adapted for histogram equalisation on images [AA05]1, and 

shown to perform significantly better than a software implementation on a 

Graphics Processing Unit (GPU) [CCL07]. Note that histogram generation is 

just one part of the median and weighted-median implementation.

l Note that the cited paper does not reference this work as published in [FCL05b], [AA05] 
was published in December 2005, having been initially submitted in July 2005. [FCLOSbj 
was submitted in March 2005, accepted in May 2005 and presented/published in August 
2005.
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Figure 6.4: Histogram-based median filter architecture.

6.4.2 Sliding W indow Im plem entation

Thus far, the system takes a sequence of samples and returns the median up 

to each point. Such a circuit, however, is not useful, since normally, the me

dian must Ire computed for a fixed-size window of values. Often, the filter is 

implemented as a sliding-window. This means that in each cycle, the win

dow moves one sample down the sequence, discarding the oldest sample and 

adding the newest into the window. To implement this algorithm for sliding 

windows, some changes must be made. Consider that now while constructing 

a histogram, with each new sample that enters, the oldest sample is removed 

from the window, and thus its effect on the histogram must also be negated. 

This however only happens after the window has become full. Hence some way 

of keeping track of the old samples, knowing when the window has become full



m e d jn d e x

Figure 6.5: A bin node for the sliding window implementation, enincdec de
termines whether the count is incremented, decremented or kept at its current 
value.

for the first time, and some way of updating the histogram based on the new 

and oldest samples must be devised.

Firstly, a FIFO buffer is used to store the samples for the window over 

which the median must be found. When a new sample is received and the 

window is full, the oldest sample is removed from the FIFO. Updating the 

histogram requires all bins corresponding to the access pattern for the oldest 

sample to be decremented. At the same time, the bins corresponding to the 

new input sample must be incremented. This can all be done in one cycle, by 

simply leaving any bins that are included in both sets unchanged, since they 

increment and decrement at the same time. Bins that are only enabled by 

the access pattern of the new sample are incremented, while bins enabled only 

by the access pattern of the removed sample are decremented. Updating the 

histogram in this fashion means that it is up to date in every clock cycle, and 

there need not be a pause in the input samples. The new node design is shown 

in Figure 6.5.
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New sample: 4 
Oldest sample: 7

New sample: 8 
Oldest sample: 2

] No change Increment |  Decrement

Figure 0.6: Application to sliding windows. The arrows aside the bins show the 
access patterns for the oldest (-) and new (+) samples. The leftmost example 
shows a new sample value of 4 arriving while the oldest sample is of value 7. 
Only bins 4 to 7 need to be incremented, all others keep their current values. 
The rightmost example shows a new sample of value 8 arriving, while the oldest 
sample is of value 2. Only bins 2 to 8 need to be decremented; others are left 
alone.

On-chip Block-RAMs are particularly useful for this architecture. Since 

these RAMs are dual-ported on the target architecture, it is possible to extract 

the enable signals for both the new and oldest samples from the access pattern 

ROM in parallel. These can then be processed to determine which bin is 

incremented. This is illustrated in Figure 6.6.

To implement this, a simple 2-input, 2-output lookup-table is required to 

determine the resultant action. This is shown in Table 6.2. This small logic 

function must be implemented for each bin. Recall that as the window is filling 

with values the first time, no subtractions take place, since this would mean
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OldEn NewEn enincdec[l:0]
0 0 00
0 1 10
1 0 01
l 1 00

Table 6.2: Extra sliding window logic. The signals OldEn and NewEn are the 
enable signals for the bin resulting from the ROM lookup of the oldest and 
new samples respectively, enincdec is the signal that instructs the bin counter 
whether to increment (10), decrement (01) or do nothing (00).

that the histogram would never fill up with values. As such, a single valid bit 

is appended to each input sample. This propagates through the FIFO and 

emerges at the final stage of the FIFO only when one full window of values 

has been received. This bit is ANDed with the bin subtraction control signal, 

so no subtraction can take place until it emerges. The revised architecture is 

shown in Figure 6.7.

6.4.3 Extension to W eighted M edian

To implement weighted median in the proposed architecture, further changes 

to the architecture in Figure 6.7 are needed. Recall that the weighted median 

is computed on samples that have associated weights and that those weights 

are equivalent to duplicating the sample the corresponding number of times. 

Further recall that the window size, and thus median index is dependent on 

these weights. To construct the histogram for weighted samples, rather than 

increment each bin for corresponding samples, the weight of that sample is 

added to the corresponding bin. The cumulative histogram is constructed as
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per the standard median.

To make the necessary changes in hardware, another input signal is in

troduced to provide the weights. Instead of a simple incrementer, each bin 

processor must now add the weight value. Just as with the standard median, 

it is possible to keep the histogram fully updated at each clock cycle. Another 

FIFO is instantiated, to keep track of the old samples that fall out of the 

window. For bins enabled by the access pattern for the oldest sample falling 

outside the window, the weight of that sample is subtracted. For those bins 

enabled by both access patterns, the difference of the two weights is added 

(while being careful to maintain the correct sign). For those bins enabled 

only by the access pattern for the new sample, the new sample’s correspond

ing weight is added. The resultant architecture is shown in Figure 6.8. The 

three signals fed into each of the bins are the weight of the new input sample, 

the difference in weights and the weight corresponding to the sample falling 

outside the window.

The rank, or position, of the median is not known in advance for weighted 

median. Consider the expansion of the sequence shown in Section 6.1, and it 

becomes clear that the number of ‘real’ samples received is equal to the sum 

of sample weights. Hence, the index of the median must be half of that plus 

one, which is simply a right shift and increment in hardware. In the proposed 

architecture, the difference of the two weights (that of the new sample and 

that of the oldest) is simply added to a register on each clock cycle. This 

maintains the current sum of weights. This is right shifted to divide by two and
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incremented and fed into each of the bins, where it is used for the comparison.

The word-length of each bin register must be wide enough to accommodate 

the maximum sum of the weights to prevent overflow. In order to do this, the 

width of the bin counters must be equal to log2 of the window size plus the 

width of the weights.

6.5 Im p lem en ta tio n  R esu lts

Implementation of the above designs was originally coded in Handel-C and 

compiled using the Celoxica DK Compiler. The target device in this case is 

a Xilinx Virtex II 6000, as found on the Celoxica RC300 development board. 

For comparison, an alternative implementation of the median filter based on 

the sorting grid mentioned in Section 6.3 was also synthesised.

Using Handel-C was found to give acceptable area and speed results for 

the sorting-grid architecture. However, due to the extra control logic that 

Handel-C inserts into a design, and the high level of parallelism in the proposed 

architecture, routing delays due to large fan-out of control signals was causing 

the circuit to have a high clock period. For the proposed architecture, the 

area usage was halved and the clock period reduced by over 60% when it was 

re-implemented in VHDL. The design was thus re-implemented and compiled 

using Synplicity Synplify Pro [Syn],

The reason for this disparity is a function of how Handel-C is implemented 

in hardware. A Handel-C circuit functions using token passing, effectively
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enabling subsequent parts of the circuit. Since each line of code takes a single 

clock cycle, this token is like the enable signal for all the instantiated hardware. 

The problem arises when there are a large number of units that have to be 

enabled in parallel, as with the 256 bins in this case. The single token passing 

signal must be fanned out to a huge number of circuit elements and this fanout 

introduces significant routing delay. Hence this problem is limited to massively 

parallel circuits. While Handel-C most definitely introduces some performance 

penalty, one must bear in mind the significant advantages afforded in describing 

complex circuits and using on-board resources.

6.5.1 D esign Variations

In order to thoroughly investigate the proposed architecture, a number of 

variations were considered. Fixed window implementations were ignored, since 

they arc of little use, returning a single result for a whole window. Instead, 

sliding window implementations were favoured due to their computation of a 

new result every cycle. A number of design parameters were varied, leading 

to multiple implementations. Before discussing these, consider the parameters 

that might affect area. Firstly, all implementations were synthesised for sample 

widths of 8-bits. This is an assumption that is valid for most of the calculations 

one would wish to conduct on images. Furthermore, this is the only significant 

limiting factor for this design due to the fact that the number of bins varies 

exponentially with the sample wordlength. Since this implementation is to be 

used in the Trace transform, 8-bit wordlengths are sufficient.

170



The counters in each of the bins need to be wide enough to accommodate 

the maximum count, equal to the maximum number of samples to be consid

ered, which is equivalent to the window size. Hence the width of the bins is 

equal to the base-2 logarithm of the window size. One can set this arbitrarily 

to a fixed number such as 8-bits. This would allow for window sizes up to 

255 samples. However, to keep the design as compact as possible it should be 

set to the appropriate width. The window size also affects the length of the 

FIFO buffer used to track older samples. This buffer is equal in length to the 

window size. Finally, one may choose to implement a design that uses a fixed 

window size, or one in which the window size is determined by the number of 

samples entering the system. The advantage of the second method is that the 

window size can be changed in runtime. The first method would synthesise a 

fixed value comparator. While tins saves area, the window size must be fixed.

6.5.2 Synthesis R esults

The first set of results, shown in Figure 6.9 shows the area usage for imple

mentations and how this varies with the window size for each of three metrics: 

Look-Up Tables (LUTs), Flip-Flops (FFs) and Slices. These implementations 

were for fixed window sizes using hard-wired fixed value comparators. The 

vertical lines in the graph indicate the boundaries of different wordlengths for 

the bin counters.

It is clear from the graph that each time the counter wordlength require

ments increases by one bit, there is a distinct jump in area requirements, in
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the general case. The Flip Flop usage has a general rising trend, even between 

designs with counters of the same wordlength. This is due to the increasing 

size of the FIFO buffer; this also explains the increasing gradient of the FF 

segments since the window size is on a logarithmic scale.

The considerable variations in LUT usage can be put down to the opti

misation of the fixed value comparator. When comparing values to a fixed 

number, and depending on the value of the fixed number, not all bits need 

to be taken into account. The synthesis tools will optimise the comparators 

as required. This is most evident for window sizes of 127, 255 and 511 in the 

graph. The binary representation of these values is 1111 111, 11111111 and 

111111111 respectively. The median index will thus be half plus one, giving 

1000000 , 10000000, and 100000000 respectively. When comparing a number 

to determine whether it is greater than or equal to these numbers, only a single 

bit needs to be tested. This means that the comparator is reduced to a one 

bit comparator, resulting in a significant reduction in area. Other fluctuations 

are the result of similar reductions applied by the tools.

The graph also shows a lack of jump in the Slice count around the 04- and 

512-sample window sizes. This can be attributed to the synthesis tools packing 

the LUTs and FFs differently, resulting in a more dense arrangement within 

the slices. Again, the designer has little input into this.

The general trend for area requirements can thus be described as being 

of the form K  +  log., N,  where N  is the window size and K is the fixed area 

required by the rest of the design regardless of window size. The graph in
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Figure 6.10: Comparison of area requirements for proposed algorithm and 
sorting grid.

Figure 6.10 shows how this compares very favourably with the area usage of 

the standard sorting grid architecture that was also implemented. The sorting 

grid architecture’s area requirement increases exponentially with regard to 

window size. The point at which the proposed architecture becomes more 

efficient is at a window size of approximately 23 samples. Note that other 

sorting algorithms can be used. However, the best case is of order N\og(N),  

so the proposed algorithm remains advantageous, especially for large window 

sizes.

The next variation was to implement generalised comparators. In these 

implementations, the median index is computed automatically from the value 

of the counter in the last bin. Recall that the hrst bin in a cumulative histogram 

contains the count of the total number of samples in the system. This can be
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halved and incremented to give the median index. The strength of this system 

is that it allows for variable window sizes. Clearly, the area requirements 

will increase, since the comparators cannot now be simplified by the synthesis 

tools and must be full ¿-bit comparators, where l is the wordlength of the bin 

counter. The graph in Figure 6.11 shows how each of the area metrics increases 

when this modification is made. A window size was selected from the middle 

of the range of values used for the first set of results2 and an equivalent circuit 

was implemented but with a variable median index. There was no need to 

synthesise the full range of window sizes, as the only difference would be in 

the FIFO length. The dotted lines in the graph indicate the requirements for 

the fixed comparator equivalents. The number of Flip Flops remains almost 

constant since the FIFO is not affected by this architectural change. The LUT 

usage, however, increases by between 23% and 26%, while the Slice count 

increases by between 19% and 22%.

All designs were synthesised to run at 72MHz. All designs used 8 Block 

RAMs to implement the bin selection lookup. Each on-chip 18I\b Block RAM 

can be configured in a number of width and depth configurations. The shal

lowest configuration is 512 x 36-bits. Hence a 256x256 memory would require 

8 of these side by side.

The final variation of designs was the weighted median implementations. 

Recall that each sample in this implementation has an associated weight; this

“’The window sizes used for each of the different wordlengths were 13, 25, 51, 109, 211, 
387 and 739 respectively.
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weight is used to update the histogram. This introduces another variable; the 

width of this weight in bits. Clearly, this will have an effect on the window 

sizes that can be implemented for each bin size. If the bin width is set to p 

bits, then for the standard median, it can accommodate a window size of up to 

2P — 1 samples. For the weighted median, this window size will depend upon 

the width of the weights. If the weights are given widths of q bits, then the 

maximum window size for a bin width of p bits is 2p~q—l. Hence, increasing the 

width of the weights means wider bins are required for an equivalent window 

size.

The results of this set of implementations are shown in Figure 6.12. It can 

be seen that increasing the width of either the bin counter or weight has a 

similar effect. Furthermore, the area required for a weighted median imple

mentation with weights 2-bits wide is not very different from the generalised 

version of the standard median filter. As the width of the weights increases 

the weighted median implementation begins to exceed the generalised median 

more significantly.

Through developing a parameterised design, it is easy to tailor the imple

mentation to specific requirements in terms of wordlengths and window size. 

The only assumption that holds for all the above designs is that the input 

samples are 8-bits wide, as one would find reasonable in the sphere of image 

and video processing. The extensibility of the original design coupled with 

full pipelining has meant that all these derivatives could be derived from one 

architecture, and all can run at 72MHz, returning one result in every clock
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cycle. The throughput is thus 72M samples per second. Note that this cannot 

be converted to frames per second since the implementation is not designed as 

a spatial filter; it is an arithmetic unit. However, for illustration’s sake, the 

computation throughput of this circuit would equal 234 frames per second for 

640x480 pixel images.

6.5.3 Trace Transform Specific Im plem entation

For use in the Trace transform functionals, the requirements for the weighted 

median circuit are slightly modified. First, a reset signal is added such that all 

the bin counters can be reset at the start of a new set of data (a new line). The 

reset is implemented such that the sample that enters the system in the follow

ing cycle is not discarded, since there are no spare cycles between subsequent 

rows in the Trace image. The sample and weight widths are both set to 8 bits 

to accommodate the maximum possible input parameters. Furthermore, the 

circuit is modified to completely ignore samples with an accompanying mask 

value set to 0. Finally, the FIFO for input samples is discarded, since this is 

not a sliding window implementation.

6.6 S um m ary

In this chapter, an alternative implementation of median filtering for arbitrarily 

large one-dimensional windows was presented. The area required to implement 

this architecture is of the form K  + log2 N,  where N  is the window size, thus
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it is highly scalable. The design also allows for a flexible window-size that can 

change from one window to the next. Use of heterogeneous FPGA resources 

allow the circuitry to be simplified and fully pipelined. The area requirements 

were compared to that of a standard sorting-grid architecture and show the 

efficiency of this method for larger windows. For a standard architecture, the 

area requirements increase exponentially with window size. An extension to 

weighted median calculation was also shown, that has modest impact on area 

requirements. A full analysis of area requirements for both fixed-size windows, 

flexible windows and the weighted median implementation was shown. The 

presented method is elegant in its flexibility with regards to window size. Of 

course for very small windows, other techniques may be more compact. How

ever for large windows, or systems where flexibility in window size is needed, 

or for weighted median calculation, the proposed method is scalable, offers a 

throughput of 72M Samples/s and uses 15% of the area of the target FPGA.

Given that the weighted-median function is used in a number of Trace 

transform functionals, this contribution significantly assists in enabling a hard

ware implementation of the Trace transform. The challenge answered in tins 

chapter was the design of a circuit that can return median and weighted medi

ans for windows of arbitrary length, not necessarily known in advance, in a sin

gle cycle. This has been successfully achieved by exploiting the heterogeneous 

resources on the FPGA. Previous techniques have all assumed fixed window 

sizes and most architectural optimisations could not be applied to weighted 

median calculation. This architecture is highly flexible and addresses both.
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C h ap te r 7

H ardw are A cceleration of 

Pseudo 2-D im ensional H idden 

M arkov M odel D ecoding

7.1 In tro d u c tio n

In Chapters 4 and 5, a flexible real-time implementation of the Trace transform 

was presented. The Trace transform has shown to be applicable to a wide range 

of application domains as shown in Chapter 3. One such domain is that of face 

authentication [SPKK05] as touched upon throughout tliis thesis. It was also 

noted when discussing applications, in Chapter 3, that the Trace transform is 

best suited when applied to images free from background clutter or noise. As 

such it is often applied after a segmentation routine, resulting in a mask as 

used in the implementation presented thus far.
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In this chapter, a Hidden Markov Model decoding implementation will be 

presented. Such a system can be used to extract frames of interest from a 

video sequence where a person is present. The resultant frame could then be 

processed using the Trace transform.

The most successful application of the Hidden Markov Model (HMM) has 

been in speech recognition, with research going back nearly 20 years [RJ86]. 

In the computer vision domain, much activity has been seen recently, with the 

HMM being used for character recognition in deformed text [KA94], tem

plate matching [BM04] and face recognition [Nef99]. The strength of the 

Hidden Markov Model (HMM) is in its ability to cope with deformity to 

the image [Nef99]. One application of HMM decoding is in person-detection 

and tracking, when combined with a Kalman filter, as presented in [RWM99, 

REM00, BR01, BR03].

Unfortunately one of the main difficulties with the use of the Hidden 

Markov Model is its computational complexity. Implementation in hardware 

seems an ideal solution to this problem, in order to enable faster processing. 

While some work has been done on hardware implementation of the Hidden 

Markov Model for speech recognition [VFJ01], this is the first work to explore 

a hardware architecture and implementation of the Hidden Markov Model 

specifically for vision systems.

The work in this chapter deals with accelerating the HMM state decoding, 

which is the operation used during recognition tasks. This forms part of the 

algorithm presented in [BR03] for person-tracking. Achieving real-time per



formance would mean that the algorithm could be applied to a video sequence 

to extract frames in which a person is present.

7.2 T he H idden  M arkov M odel

The Hidden Markov Model (HMM) is essentially an extension of a standard 

Markov-pro cess state machine [RJ86]. The idea is that there exists a process 

which transitions through a number of states. These states are not directly 

observable, but some other observation can be made that is statistically linked 

to the state of the process. By knowing the sequence of observations and 

the properties of the process, the underlying (hidden) state sequence can be 

deduced.

This is called the “state decoding” problem of IIMMs. The information 

available is as follows:

• A — where a¿¿ =  Pr(qj at í|<?¿ at t — 1), the state-transition proba

bilities

• B — {l>j(0)} where bj(0) =  P r (0  at t\qj at i), the observation proba

bilities

• and 7T =  {tt,}

where m are the initial state probabilities and q, are the states. [RJ86] 

Some important notes for HMMs are that there is only one observation 

and state-transition per timestep, and the state-transition and observation
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probabilities do not change over time.

Recognition using HMMs relies on the Viterbi algorithm [For73] to extract 

the state sequence from a series of observations. The Viterbi algorithm has 

been widely researched and efficient implementations in the field of block- 

convolution decoding and speech-recognition have been proposed [BYC01, 

ZB03].

The state-decoding problem is that of trying to deduce the transition se

quence of hidden states given the sequence of observations. This is done by 

solving the recursive equations in 7.1 and 7.2. 8t(j) computes the probability 

of being in state j  in timestep t, while ipt{j) gives the most likely predecessor 

of state j  at timestep t.

$t{j) =  max [6t_i(z) • ay] • bj(Ot) (7.1)0<t<iV

M j )  =  argmax[5t_i(z) • ay] (7.2)
0 < i < N

The state sequence is obtained when 6 and ip are computed for the last 

timestep. The state with the greatest value of 8 is taken to be the final state. 

The value of ip for that state is then used to find the predecessor and the 

backtracking process continues recursively until a full state sequence has been 

obtained.

It is important to note that the HMM as used in these systems uses offline 

learning. That is, the model is taught using training data, until accurate pa

rameters are obtained. These parameters are then used in recognition systems
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such as ours. The recognition system does not adapt to its input over time, 

although the reconfigurable nature of FPGAs means that system parameters 

can be changed by writing a completely new design to the chip.

7 . 2 . 1  2 - D i m e n s i o n a l  R e p r e s e n t a t i o n

The state sequences discussed so far have all been one dimensional with transi

tions occurring in the time dimension. However, for application of this theory 

to images and visual data, the HMM must be extended to two dimensions. 

This would allow parts of the image to be assigned to different states. A 

fully connected model, where each state can transition to any other state, is 

not scalable since the number of connections increases quadratieally with the 

number of nodes. This increases the complexity of the training and decoding 

nodes quadratically over the one-dimensional approach. Another method is 

to let the states in a one-dimensional HMM themselves contain HMMs. This 

is called the embedded Hidden Markov Model [KA94]. The structure can be 

simplified further by flattening which gives a state-representation as shown in 

Figure 7.1.

It is important to note that this is not a true 2-dimensional representation, 

since transitions from colunm-to-column are not possible. This is called the 

Pseudo 2-Dimensional Hidden Markov Model [KA94]. This state representa

tion is the one used in the proposed system [BH03], and the efficiency savings 

gained from this will be shown.

185



Figure 7.1: State representation of the pseudo 2-dimensional HMM.

7 . 2 . 2  S y s t e m  O v e r v i e w

it is important to consider where the HMM decoding unit fits in to the pro

posed vision system. As proposed by Rigoll et al [RVVM99, REMOO, BR01, 

BR03], the HMM is used to identify the presence of a person. First comes 

the person-detection phase: through background subtraction, a moving object 

is extracted. A bounding-box is formed by adding a margin on each side of 

the moving object. This image segment is then processed with a block based 

on the Discrete Cosine Transform, using an overlapping sliding window, to 

extract features. These are the data presented to the pre-trained HMM block 

as observations, and the block decides whether or not a person is present in 

the bounding box, by taking into account the number of person states in the 

extracted sequence.

Once the presence of a person has been established, the system enters the 

person tracking phase. Segmentation is performed based on the states; the 

Centre Of Gravity (COG) of the segment is then passed to a Kalman Filter
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that predicts the position in the next frame. A new bounding box is formed 

around the predicted COG and passed to the HMM block to check the presence 

of a person again. If the person is still present, the parameters of the bounding 

box are again passed to the Kalman filter to make the next prediction and so 

on. If the person is no longer present, the system switches back to the person- 

detection phase. This is summarised in the person-tracking system flowchart 

shown in Figure 7.2.

Note that while in the person-detection phase, the camera must be station

ary for successful segmentation. However, once the system enters the tracking 

phase, panning and zooming are allowed. This is one of the strengths of this 

system as compared to many other tracking algorithms. The work in this 

chapter deals solely with acceleration of the HMM decoding part of the above 

system.

7.3 C o m p u ta tio n a l C onsidera tions

7 . 3 . 1  L o g  D o m a i n  R e p r e s e n t a t i o n

To decode the state sequence, a multiplication is needed for each predecessor, 

and one more for multiplying by the observation probability, as seen in (7.1). 

Given the recursive nature of the equation, dynamic range is an issue that must 

be considered, since recursively multiplying a number can lead to overflow. One 

way of overcoming this issue is to perform these calculations in the log-domain. 

This reduces multiplications to additions and allows the wide dynamic range
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Figure 7.2: The person-tracking system processing flow.
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to be represented with fewer bits. Furthermore, since it is relative rather than 

exact values that decide the state sequence, the relative loss of precision is 

tolerable and does not impact the results [Mel03].

Given that the logarithm of a probability is always negative, due to the 

number being less than 1, the result is negated, removing the need for signed 

arithmetic [Mel03]. Therefore the maximisation in (7.1) and (7.2) becomes a 

minimisation. In the log domain, the system now needs to compute:

st{j) =  0<min J S t-i{i) + Oij] +  bj(Ot) (7.3)

M J )  =  arg min[<St_i(t) +  a*,-] (7.4)
0  < i < N

7 . 3 . 2  T r e l l i s  S t r u c t u r e

The general form of the Viterbi algorithm for deduction of a state-sequence 

from a series of observations has been presented. For each tirnestep, the system 

must compute the probability of being in each state as defined in (7.1) and 

(7.2). This calculation depends upon the probabilities of each of the states 

from the previous timestep and the observation probability for each state in 

the current timestep. From the equations, for a system with N  states, and 

an observation sequence T  timesteps long, the number of multiplications is 

(iV2 +  1) • T. In the proposed system (derived from [BR03]), the number of 

states is 24 and the typical number of observations per image is in the region 

of 3000. This gives a total of 1,728,000 multiplications to be completed per
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timestep ^
t=0 t=1 t=2

Figure 7.3: Extract from the state-transition trellis for the pseudo 2- 
dirnensional Hidden Markov Model.

frame. For a real-time system running at 25 frames per second, this means 

over 43 million multiplications per second.

Looking at Figure 7.1, one can see that the state transitions for the pseudo 

2D representation are not fully connected. The state transition trellis for this 

representation is shown in Figure 7.3. Each state only has 2 predecessors. Tak

ing advantage of this would simplify the calculation immensely, reducing the 

number of multiplications to (2N  + 1) • T.  That is a reduction in computation 

of 90% for these parameters.

One can also deduce that the state transition sequence follows a fixed pat

tern. The general case is that the 2 possible predecessors for each node N  in 

timestep T  are tire nodes N — 1 and N  from timestep T  — 1. However, in the 

case of states 1,7,13 and 19 the predecessors are nodes N  — 1 and N + 5 from the
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previous timestep. Hence, it, is possible to design an efficient node-calculation 

unit that has 2 inputs, one of which depends on which state the result is being 

computed for.

7 . 3 . 3  A l g o r i t h m i c  P a r a l l e l i s m

Another property that suggests hardware would be much more suited to HMM 

decoding than software is the inherent parallelism in the Trellis. In a normal 

software implementation, each node within a timestep is calculated in turn, 

before moving onto the next timestep. This means that the system can only 

cope with an observation rate that allows it to compute all nodes in the inter

observation time. In this case, 24 calculation-times must complete before the 

arrival of the next observation.

From the trellis diagram, it can be observed that nodes in one timestep 

only depend upon values in the previous timestep. This means that more 

than one node can be calculated in parallel since results from within the same 

timestep have no effect on each other. In fact, given sufficient resources, all 

nodes in one timestep could be calculated in parallel. This allows for a higher 

observation-rate in line with the aim of realtime processing.

7.4 P ro p o sed  A rch itec tu re

The basic idea of the proposed design is to implement a “decoder node”, that 

goes through each state to compute the £ and ip values for the current timestep.

191



Figure 7.4: The efficient HMM decoder node design.

The node is a simplified solver for (7.3) and (7.4), taking into account the 

simplifications mentioned in Section 7.3.2. A primitive example of the design is 

shown in Figure 7.4. The results from the calculations in the previous timestep 

are fed into the unit. For calculation of the result for state N, the only possible 

predecessors are states N  — l, N  and Ar+5, as discussed in Section 7.3.2. These 

are fed as inputs along with the appropriate state transition probabilities and 

the observation probability for the current state. A select signal goes high 

when the node is computing the results for states 1,7,13 and 19. This causes 

the values for state N  +  5 from the previous timestep to be used instead of 

state N. The comparator chooses the minimum of the two values and stores 

the most-likely predecessor. The observation probability is then added to give 

the final l’esult; for this timestep.
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7.4.1 Im p lem en ta tio n  C o nsidera tions

For the purposes of this implementation, only the extraction of the state- 

sequence from the observation values is considered. As such, the performance 

of this specific structure for the HMM as compared to others has not been 

evaluated, nor has the HMM training been considered. Rather, model param

eters supplied from some precursory work [Yaq03] on the same system were 

used.

Since the processing unit is the sole object of concern, the transition prob

ability values have been pre-computed in the log-domain, and the observation 

probabilities have been assumed to be in the log domain. For a full system 

implementation, one would have to take into account the area requirements of 

blocks to convert to and from the log domain. Despite the presence of hard

coded multipliers on the target device, calculations in the log domain were still 

favoured since this allows problems with dynamic range to be circumvented.

It is essential to understand how the Pseudo-2D HMM maps to an im

age. In the proposed system, image features are extracted, which form a 

one-dimensional set of observations. Each observation maps to a position in 

the image which has been processed using a block based on the DCT, as pre

viously mentioned. Hence, the timestep when looking at the observations is 

actually a spatial transition in terms of the original image. The word timestep 

will still be used in this chapter, since this is the preferred terminology when 

discussing HMMs.
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The design was developed and implemented using the Handel-C language 

and the Celoxica DK compiler. This enabled different levels of parallelism to 

be tested in a short amount of time with minimal extra effort. The targeted 

device was a Xilinx Virtex-II 6000 FPGA, on a Celoxica RC300 board, as for 

the other work in this thesis.

7.4.2 Dataflow considerations

In an implementation as complex as the Viterbi algorithm, organisation of data 

is paramount to an efficient design. Despite this design being much simpler 

than a general Viterbi decoder, there were a number of challenges in organising 

the delivery of data around the system.

The first important data are results from the previous timestep, 8t- i( j) .  

This is simply an array of 24 values that is copied from the current results, 

once each time the current timestep completes. The next data item to consider 

is the observation probability, bj(Ot). This is again an array of 24 values that 

changes each timestep. The required value is simply referenced by the number 

of the state currently being computed. The final and more complex type 

of data is the transition probabilities that arc constant throughout. At first 

these were stored as a 24 x 24 array, and referenced by the values of N  for this 

timestep and the previous, but this was too complex. Instead a much simpler 

approach was developed where each processing node has access to an array 

of tuples that contains the transition probabilities for the two predecessors, 

ignoring position, with predecessor selection at a higher level. Hence the node
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itself is only the shaded region of Figure 7.4.

In implementing the parallelised versions, some other savings could be 

made. Consider first, that each hardware node only needs access to the tran

sition elements for the states that it will calculate. More importantly, if one of 

the parallel nodes will not be computing any of states 1,7,13 or 19, then there 

is a saving since there is no need to select between two alternative input pairs 

as in the case of those nodes. This explains why the area requirement does 

not increase in proportion to the number of nodes, ms all nodes above 4 are 

simpler in their circuitry.

Furthermore, as the level of parallelism increases, the control circuitry be

comes more simple, so much so, that in the fully-parallel implementation, there 

is almost no control circuitry whatsoever. This is the reason for the improved 

clock speed with a higher number of nodes, as will become clear in the results.

7.4.3 Single-node Im plem entation

For this implementation a single calculation was implemented. In each timestep, 

control circuitry uses the node to calculate the results for each state, choosing 

the correct predecessors. The results are then shifted serially into a shift- 

register. Once all results had been computed for one timestep, the results are 

copied, in parallel, to the register holding previous results, ready for calculation 

of results in the next timestep.

This design takes 24 clock cycles to complete the state calculations for each 

timestep. The fastest clock rate achievable with the circuit is 36MHz.
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7.4.4 M u lti-n o d e  Im p lem en ta tio n s

Implementations were completed for 4, 8, 12 and 24 nodes in parallel. These 

designs take 6, 3, 2 and 1 clock cycle(s), respectively, to complete the calcula

tions for one timestep.

In each case, the appropriate number of nodes is instantiated in parallel. 

Surrounding logic decides which data to pass to which node. Each node only 

needs access to whichever data it will process; in the case of the transition 

probabilities only the necessary tuples were attached to each node.

The implementation for 24 nodes is simpler than for fewer nodes. The 

reason is that in the case of the 24 parallel nodes, each is hard-wired to the 

appropriate predecessor registers and transition values, and so there is no con

trol circuitry as such. Since live of the transition probabilities were zero in this 

case, this removes one of the adders from those nodes. The 12-node version 

only has binary selections since it only runs for two clock-cycles. Hence there 

is a significant saving on the multiplexing of signals that causes it to be more 

area efficient that the 8-node implementation.

The implementations raise an interesting fact: that in the case of this 

design, the control circuitry is a significant part of the area. This is because a 

1-bit adder uses the same amount of resources as a 2-way 1-bit select. Since in 

these designs the predecessor data is multiplexed into each node, this becomes 

significant. This is why there is a significant drop in area usage in the graphs 

from 8 to 12 nodes.
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Nodes Slices Cycle-time Cycles/Timestep M Timesteps/s
1 972 27.033ns 24 1.5
4 2083 34.467ns 6 4.8
8 2271 30.570ns 3 10.9
12 1593 22.112ns 2 22.6
24 1425 14.953ns 1 66.9

Table 7.1: Implementation results for different numbers of nodes instantiated.

7.5 Im p lem en ta tio n  R esu lts

Implementation results are summarised in Table 7.1 and Figures 7.5,7.6 and 

7.7. From the graphs, it can be deduced that the 24-node implementation 

is most desirable. It is both faster than all other designs and smaller than 

all except the single-node implementation. However of importance too is the 

number of cycles needed for a complete result. This swings the result even more 

in favour of the 24-node implementation as seen in the throughput figures in 

Table 7.1. For reference a full Viterbi decoder in MAT LA B. running on a 

Pentium 4, 2.4GHz machine, with the same data managed only 1000 results 

per second. A result rate greater than 200,000 per second1 would be required 

for a realtime implementation with 30 frames per second video for the given 

state representation. The performance presented here equates to over 10,000 

frames per second given those parameters.

1 Calculated from data in[Yaq03).

197



Ar
ea

 (s
lic

es
) 

Cl
oc

k 
Pe

rio
d 

(n
s)

198



Area/Speed Graph

tnc
T3
O

' u
<1)
a.
¿t,oo
o

35

30

25

20

15

10

40

5

0
500

♦ 1-Node
12-Node♦

4-Node
♦

♦
8-Node

4 24-Node

1000 1500 2000 2500
Area (Slices)

Figure 7.7: Plot of area and clock period for different numbers of nodes im
plemented.

7.6 E x tension  to  th e  G eneral Case

The implementation presented here deals with a 24 node HMM, organised as 

a 4x6 node pseudo 2-dimensional HMM. The architecture presented thus far 

can easily be extended to arbitrarily sized pseudo 2-d HMMs. Consider the 

case of an m  x n node implementation. The state transition trellis would 

be very similar to that shown in Figure 7.3, except that there would be in 

“special-case” nodes. For one of these nodes, numbered N, its previous nodes 

in the trellis would be N  — 1 and N  +  n. All other “standard” nodes would 

still have previous nodes N  — 1 and N.

For different levels of parallelism, one could investigate m, 2m, 3m, • • ■, run 

nodes. However, given the results presented above, it is likely that implement

ing m x n nodes would prove most efficient. The decoder node would remain
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identical to that presented above, save the change to allow for the larger jump 

in states for the “special case” nodes. In this manner, the architecture can be 

used to implement any pseudo 2-dimensional HMM decoding.

7.7 S um m ary

In this chapter, it has been shown how, taking into account the structure of 

the state representation for an HMM system, it is possible to significantly 

simplify the computation of the state sequence. The number of computations 

is reduced from (N 2 +  1) • T  to (2N  + 1) • T. Different levels of parallelism 

were also explored, and it was found that increasing the number of nodes not 

only drastically increases performance, but also has a positive impact on area 

usage. This is due to the control circuitry becoming simpler as more nodes are 

implemented in parallel. Such a method could be incorporated into a system 

to extract frames of interest to be processed by the Trace transform. This 

architecture is genera] to any pseudo 2-dimensional HMM state representation, 

and given the high performance, could be used for a larger number of states 

while still providing real-time performance.
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C h ap ter 8

Conclusion

8.1 S um m ary

The Trace transform is a relatively recent algorithm, which has been shown 

to be highly flexible, offering excellent performance in a number of application 

domains. An obstacle to its widespread adoption has been its computational 

complexity as discussed in Chapter 3. In this thesis, the first hardware imple

mentation of this algorithm was presented in Chapter 4. The implementation 

was designed with both the algorithm and the target architecture in mind, 

resulting in a highly efficient, extensible architecture. By exploiting algorith

mic parallelism, and making the simplification from line extraction to image 

rotation, significant speedup of over two orders of magnitude over software is 

achieved. More importantly, the architecture was designed to allow for easy 

swapping of functionals, with minimal impact on the timing of the overall sys

tem. The hardware architecture achieves a significant speedup of 75x over
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software for three functionals. Adding more functionals increases this factor 

significantly. It is clear that to achieve real-time performance with the Trace 

transform, it is necessary for such a hardware architecture to be used. Since the 

architecture’s performance is immune to the addition of further functionals, it 

also allows the application designer the freedom to use as many functionals as 

necessary without a performance cost.

The Trace transform is general in that the functionals used in computa

tions are not pre-defined. This results in the correct selection of appropriate 

functionals being the deciding factor in creating a successful application. The 

functional space can be extensive, given the fact that the only requirement is 

that a functional maps a vector to a single number. In order to facilitate a 

more thorough investigation of the functional space, a framework for design

ing flexible functionals was developed, as presented in Chapter 5. This was 

applied to create three functional blocks that could each implement multiple 

variations of functionals for a face verification application. In order to facil

itate flexibility, the embedded memories on the target FPGA were used to 

provide re-programmability. A configuration register was introduced into each 

functional to allow for variable datapaths. The timing impact of this extension 

of the algorithm was negligible, and for more complex functionals, provides an 

even greater acceleration factor over software. With the three functional blocks 

presented, 11 functionals from a previous implementation could be calculated 

with a significant speedup of over 160x over software.

This framework for designing flexible functionals opens the door to a more
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thorough investigation of functional performance for a variety of domains. It 

is now possible to apply the Trace transform to new domains, researching the 

efficacy of a wide range of functionals, before deciding on those that most suit 

the specific task at hand.

In designing the functionals, an efficient, flexible implementation of me

dian and weighed-median filters was presented in Chapter 6. The proposed 

architecture suits the Trace transform due to its flexibility in terms of window 

size, and efficiency in computing medians over large windows. A large rank 

of parallel bins maintains an up-to-date cumulative histogram with each input 

sample that enters the system. The elegance of the design is apparent in the 

multiple configurations presented, each requiring only minor changes to the 

overall architecture. This method of histogram generation has separately been 

applied to histogram equalisation of images by others.

Finally, an acceleration of Pseudo 2-Dimenstional Hidden Markov Model 

(HMM) decoding was presented in Chapter 7. By considering the state tran

sition probabilities and investigating varying levels of parallelism, real-time 

performance was achieved, using a simple replicable processing node. This 

architecture is extensible to any pseudo 2-dimensional HMM decoding. The 

HMM decoding block has been shown in previous work to be useful in person- 

detection, and could be used as a predecessor block the the Trace transform 

in a vision system, since the Trace transform requires prior segmentation for 

accurate performance.

Modern heterogeneous FPGAs, with the wide array of embedded elements
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that they sport, offer an ideal platform for acceleration of vision algorithms. 

The large amounts of data, and complex processing, that characterise these 

systems, can be dealt with efficiently through the development of appropriate 

architectures. Flexibility can also be afforded by using the embedded elements 

on an FPGA. The Trace transform has proven an ideal candidate for acceler

ation, yielding excellent performance improvements. As such, an architecture, 

such as that detailed in this thesis, can be used as an experimentation platform 

with which to investigate the use of the algorithm in a range of different appli

cations. This architecture removes the previous limitations of the software-only 

approach, and opens new areas of vision research using the transform.

The spirit of this thesis has been the importance of considering both the 

algorithm and target architecture in any hardware investigation. It is unfor

tunate that some designers simply translate a software implementation into 

hardware. While the acceleration that can be gained from loop-unrolling is 

welcome, there are often significant factors to be gained from other methods 

which may not be apparent in a sheet of pseudo-code. Hence it is important 

for a successful designer to consider the algorithm with full understanding in 

order to achieve significant speedup.

The heterogeneous resources on modern FPGAs present the designer with 

a platform that can be exploited in many ways. Throughout this thesis, the 

various types of resources have been used to implement different aspects of 

the various architectures. These resources can often provide the solution to a 

design problem, such as the use of a ROM to provide the massively parallel
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selection control in the median filter architecture. Again, a thorough under

standing of the target device and the various ways to exploit these resources 

is a huge advantage in creating a fast, efficient design.

To conclude, the designer’s ability to accelerate vision systems in hardware 

is significantly aided by modern FPGAs’ heterogeneous architectures. The 

real-time performance required for many applications can only be achieved in 

hardware, and by exploiting these resources through considered design, this 

can be achieved.

8.2 F u tu re  W ork

The work in this thesis could be extended in a number of directions. Some 

suggestions for future work to follow on from that presented here, will Ire 

mentioned in this section.

One possibility is to create a fully accelerated application using the hard

ware architecture presented in Chapter 4. An application such as face authen

tication would present a challenge, while providing the opportunity to compare 

performance to the pre-existent software implementation. Other steps in the 

face authentication application presented in [SPKK05] could be investigated 

in hardware, or they could be left to software. In any case, the performance 

and accuracy of the software and hardware systems could be compared.

A graphical interface, allowing the designer to implement flexible function

als could be developed without much difficulty. The interface would present
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a simple datapath, where the designer could add lookups and selectable data

paths. The contents of the lookups and configuration registers could then be 

set, including multiple different configurations to be tried successively.

Adapting the architecture for a more feature-rich platform would offer some 

more performance improvements. A better transfer interface than USB would 

remove the current bottleneck in terms of reading the results. Faster memories 

that can keep up with the FPGA speed would provide a performance boost. 

Furthermore, extra external memories, or multi-ported memories could be used 

to compute more rotations in parallel.

Another possible area of work would be to design further flexible functional 

blocks using the framework presented in Chapter 5, then employ the system 

to research the efficacy of a large set of functionals for a given novel applica

tion. As yet, there has not been a significant investigation of Trace transform 

functionals that suit specific applications. This hardware architecture serves 

as an ideal platform for making this contribution.

One area of work enabled by this architecture is to research the efficacy 

of multiple computationally simple functionals when compared to the more 

complex ones converted from the software implementation. Given the freedom 

to use more functionals due to the lack of a performance cost, it may make 

more sense to use some simple functionals that suit hardware implementation 

as opposed to some of the complex ones presented in Chapter 5.

Further functionals based on the idea of a weighted sum, and also small 

filter kernels such as Haar wavelets would pose an interesting area of research.
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Such filters are already widely used in computer vision, and could be incorpo

rated into the Trace transform, using the framework presented in this thesis.

It may be worth investigating the performance of the algorithm when only 

applied to 180° of rotations. With the Radon and Hough transforms as well 

as the Trace transform for any functional that does not take into account 

the pixel position in a line, the resultant parameter domain image is odd- 

symmetric. Doing away with the extra rotations would double performance, 

allowing real-time performance for larger images. The effect may well be very 

minimal even for those functionals that do use the pixel position.

It is worth noting some areas where the transform itself could be extended. 

Given the acceleration achieved using hardware, it is now' possible to apply the 

Trace transform to a video stream. This presents an opportunity to investigate 

the temporal properties of the transform, and whether any use can be made 

of these.

Another extension is to use the transform on a processed image with fea

tures extracted using standard methods such as edge-detection. There has also 

been some suggestion that the transform could be applied to small areas of 

images in a similar method to a sliding window filter. This would enable some 

sort of local-feature extraction.

Finally, the histogram generation method presented in Chapter 6 could 

be applied to other fields where live histograms could be useful. One such 

application is real-time estimation of probability density functions, which could 

have wide-ranging applications.
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G lossary

A SSP Application-Specific Standard Platform, e.g., DSPs such as Texas In

struments TMS320 Platform. Processors that are tailored to a specific 

application domain.

B its tream  The data file used to configure an FPGA.

Block R A M  The embedded memory components on a Xilinx FPGA.

C om pu ta tiona l C om plexity  A measure of how complex an algorithm is 

to implement. Typically characterises an algorithm by the number of 

operations with respect to the values of algorithm parameters.

Datapath The path through which data travels in a circuit, including the 

wires, computational elements and registers.

D SP Digital Signal Processing or Digital Signal Processor, e.g. Texas instru

ments TMS320 Platform.

FIFO First-In-First-Out buffer. A buffer that accepts values and propagates 

them through with each cycle, with samples emerging at the other end 

in the order in which they arrived.
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F P G A  Field-Programmable Gate Array. A device that consists of logic and 

routing that is configurable at runtime to implement and arbitrary cir

cuit.

Functional A function that maps a vector function to a single value. In the 

case of the Trace transform, the computation that converts a line to a 

single value in the parameter domain.

G P P  General Purpose Processor, e.g. Intel Pentium 4. A processor with a 

general purpose datapath.

G P U  Graphics Processing Unit, e.g. ATI Radeon Series. A processor with a 

datapath specifically tailored to graphics processing.

H andel-C  An extended version of the ANSI C language with constructs to 

facilitate use in hardware description.

H eterogeneous A rch itec tu re  A device which contains a variety of differ

ent primitive elements, like Slices, embedded multipliers and embedded 

memories.

H M M  Hidden Markov Model. An extension of a standard Markov process, 

but where the state transitions are unknown.

LU T Look-up Table. A circuit element that takes multiple inputs and stores 

the resultant output of a single output logic function.
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M edian  The middle value from a set of samples after they have been ordered 

in terms of magnitude.

Paralellism  Describes portions of an algorithm that iterate a variable over 

multiple values, with each iteration being independent.

P ipelin ing  The process of inserting registers between computational stages. 

This allows the clock period to be shorter and for the circuit to thus 

run faster. Some latency is introduced, but this is negligible for complex 

systems.

R A M  Random-Access Memory. Memory that is read and written to in ran

dom order.

R econfiguration Changing the configuration of an FPGA. Can be during 

runtime (Runtime reconfiguration).

RO M  Read-Only Memory. Memory that has fixed contents and can only be 

read from.

Slice The basic hardware unit on a Xilinx FPGA. Consists of two LUTs and 

some other logic. Used as the basic unit for area measurement.

Synthesis The process of converting the hardware description to a set of 

primitive hardware blocks on the target architecture. Done automatically

in software.



T hreshold ing  Turning an image into a binary image by setting all values 

above the threshold to 1 and all values below to 0.

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description 

Language.

W ordlength  The width of a signal or memory location in bits. An n-bit word 

can accommodate values from 0 to 2V — 1 in unsigned arithmetic.
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