249 research outputs found

    A framework to maximise the communicative power of knowledge visualisations

    Get PDF
    Knowledge visualisation, in the field of information systems, is both a process and a product, informed by the closely aligned fields of information visualisation and knowledg management. Knowledge visualisation has untapped potential within the purview of knowledge communication. Even so, knowledge visualisations are infrequently deployed due to a lack of evidence-based guidance. To improve this situation, we carried out a systematic literature review to derive a number of “lenses” that can be used to reveal the essential perspectives to feed into the visualisation production process.We propose a conceptual framework which incorporates these lenses to guide producers of knowledge visualisations. This framework uses the different lenses to reveal critical perspectives that need to be considered during the design process. We conclude by demonstrating how this framework could be used to produce an effective knowledge visualisation

    Vesyla-II: An Algorithm Library Development Tool for Synchoros VLSI Design Style

    Full text link
    High-level synthesis (HLS) has been researched for decades and is still limited to fast FPGA prototyping and algorithmic RTL generation. A feasible end-to-end system-level synthesis solution has never been rigorously proven. Modularity and composability are the keys to enabling such a system-level synthesis framework that bridges the huge gap between system-level specification and physical level design. It implies that 1) modules in each abstraction level should be physically composable without any irregular glue logic involved and 2) the cost of each module in each abstraction level is accurately predictable. The ultimate reasons that limit how far the conventional HLS can go are precisely that it cannot generate modular designs that are physically composable and cannot accurately predict the cost of its design. In this paper, we propose Vesyla, not as yet another HLS tool, but as a synthesis tool that positions itself in a promising end-to-end synthesis framework and preserving its ability to generate physically composable modular design and to accurately predict its cost metrics. We present in the paper how Vesyla is constructed focusing on the novel platform it targets and the internal data structures that highlights the uniqueness of Vesyla. We also show how Vesyla will be positioned in the end-to-end synchoros synthesis framework called SiLago

    High performance IPC hardware accelerator and communication network for MPSoCs

    Get PDF
    In this paper, we explain a configurable IPC module for multimedia MPSoCs, which was implemented in a MPW chip that include three ARM7 CPU cores. According to the test results for an M-JPEG and a H.264 decoder, its IPC synchronization overheads are not more than 1% when the synchronization period is about 5000 cycles.This work was supported by the IC Design Education Center (IDEC) in KAIST, and the Seoul R&BD Program

    Adaptive Knobs for Resource Efficient Computing

    Get PDF
    Performance demands of emerging domains such as artificial intelligence, machine learning and vision, Internet-of-things etc., continue to grow. Meeting such requirements on modern multi/many core systems with higher power densities, fixed power and energy budgets, and thermal constraints exacerbates the run-time management challenge. This leaves an open problem on extracting the required performance within the power and energy limits, while also ensuring thermal safety. Existing architectural solutions including asymmetric and heterogeneous cores and custom acceleration improve performance-per-watt in specific design time and static scenarios. However, satisfying applications’ performance requirements under dynamic and unknown workload scenarios subject to varying system dynamics of power, temperature and energy requires intelligent run-time management. Adaptive strategies are necessary for maximizing resource efficiency, considering i) diverse requirements and characteristics of concurrent applications, ii) dynamic workload variation, iii) core-level heterogeneity and iv) power, thermal and energy constraints. This dissertation proposes such adaptive techniques for efficient run-time resource management to maximize performance within fixed budgets under unknown and dynamic workload scenarios. Resource management strategies proposed in this dissertation comprehensively consider application and workload characteristics and variable effect of power actuation on performance for pro-active and appropriate allocation decisions. Specific contributions include i) run-time mapping approach to improve power budgets for higher throughput, ii) thermal aware performance boosting for efficient utilization of power budget and higher performance, iii) approximation as a run-time knob exploiting accuracy performance trade-offs for maximizing performance under power caps at minimal loss of accuracy and iv) co-ordinated approximation for heterogeneous systems through joint actuation of dynamic approximation and power knobs for performance guarantees with minimal power consumption. The approaches presented in this dissertation focus on adapting existing mapping techniques, performance boosting strategies, software and dynamic approximations to meet the performance requirements, simultaneously considering system constraints. The proposed strategies are compared against relevant state-of-the-art run-time management frameworks to qualitatively evaluate their efficacy

    Heterogeneous network-on-chip design through evolutionary computing

    Get PDF
    This article explores the use of biologically inspired evolutionary computational techniques for designing and optimising heterogeneous network-on-chip (NoC) architectures, where the nodes of the NoC-based chip multiprocessor exhibit different properties such as performance, energy, temperature, area and communication bandwidth. Focusing primarily on array-dominated applications and heterogeneous execution environments, the proposed approach tries to optimise the distribution of the nodes for a given NoC area under the constraints present in the environment. This article is the first one, to our knowledge, that explores the possibility of employing evolutionary computational techniques for optimally placing the heterogeneous nodes in an NoC. We also compare our approach with an optimal integer linear programming (ILP) approach using a commercial ILP tool. The results collected so far are very encouraging and indicate that the proposed approach generates close results to the ILP-based approach with minimal execution latencies. © 2010 Taylor & Francis

    Weighted Round Robin Configuration for Worst-Case Delay Optimization in Network-on-Chip

    Get PDF
    We propose an approach for computing the end-to-end delay bound of individual variable bit-rate flows in a FIFO multiplexer with aggregate scheduling under Weighted Round Robin (WRR) policy. To this end, we use network calculus to derive per-flow end-to-end equivalent service curves employed for computing Least Upper Delay Bounds (LUDBs) of individual flows. Since real time applications are going to meet guaranteed services with lower delay bounds, we optimize weights in WRR policy to minimize LUDBs while satisfying performance constraints. We formulate two constrained delay optimization problems, namely, Minimize-Delay and Multiobjective optimization. Multi-objective optimization has both total delay bounds and their variance as minimization objectives. The proposed optimizations are solved using a genetic algorithm. A Video Object Plane Decoder (VOPD) case study exhibits 15.4% reduction of total worst-case delays and 40.3% reduction on the variance of delays when compared with round robin policy. The optimization algorithm has low run-time complexity, enabling quick exploration of large design spaces. We conclude that an appropriate weight allocation can be a valuable instrument for delay optimization in on-chip network designs
    corecore