
Weighted Round Robin Configuration for
Worst-Case Delay Optimization in Network-on-Chip

Fahimeh Jafari∗, Axel Jantsch†, and Zhonghai Lu‡
∗Liverpool Hope University, UK
†TU Wien, Vienna, Austria

‡KTH Royal Institute of Technology, Sweden

Abstract—We propose an approach for computing the end-
to-end delay bound of individual variable bit-rate flows in a
FIFO multiplexer with aggregate scheduling under Weighted
Round Robin (WRR) policy. To this end, we use network
calculus to derive per-flow end-to-end equivalent service curves
employed for computing Least Upper Delay Bounds (LUDBs)
of individual flows. Since real time applications are going to
meet guaranteed services with lower delay bounds, we optimize
weights in WRR policy to minimize LUDBs while satisfying
performance constraints. We formulate two constrained de-
lay optimization problems, namely, Minimize-Delay and Multi-
objective optimization. Multi-objective optimization has both total
delay bounds and their variance as minimization objectives. The
proposed optimizations are solved using a genetic algorithm. A
Video Object Plane Decoder (VOPD) case study exhibits 15.4%
reduction of total worst-case delays and 40.3% reduction on the
variance of delays when compared with round robin policy. The
optimization algorithm has low run-time complexity, enabling
quick exploration of large design spaces. We conclude that an
appropriate weight allocation can be a valuable instrument for
delay optimization in on-chip network designs.

Index Terms—Network-on-chip, performance evaluation, net-
work calculus, worst-case delay optimization, weight configura-
tion.

I. INTRODUCTION

Many multi-core Systems on Chip (SoC) require different
levels of service for different applications. Real-time applica-
tions have stringent performance requirements; the correctness
relies not only on the communication result but also the end-
to-end delay bound. A data packet received too late could be
useless. In other words, the Least Upper Delay Bound (LUDB)
for each packet must not exceed its deadline. In such systems,
it is desirable to minimize the end-to-end delay bound of the
traffic streams satisfying their QoS requirements. Therefore,
the first important consideration is to derive the LUDB for a
given communication flow. To this end, based on the Network
Calculus theory [1], we have presented and proved required
theorems in [2] [3]. We then presented a methodology [4]
to consider resource sharing scenarios and also derive end-to-
end Equivalent Service Curve (ESC) and LUDB by applying
the proposed theorems. We assume that all traffic can be
well characterized as flows and scheduled as aggregates which
means multiple flows are scheduled as an aggregate flow.
For a given flow, we study the maximum interference of all
other flows based on the Network Calculus. Our proposed
models [4] have been defined and validated under Round
Robin (RR) policy. RR policy uses the same service level for
each connection while multiple service levels allow to better
adapt to the application requirements by providing different

bandwidth and latency guarantees. A Weighted Round Robin
(WRR) scheduling policy assigns weights to concurrent com-
munications to define multiple service levels. Higher service
levels have greater weights and do not preempt lower ones. It
is important for designers to find appropriate weights in WRR
policy such that the corresponding service levels can support
QoS requirements for each communication connection. It is
desirable to also optimize delay and throughput in the network.

In this paper, we extend our earlier proposed methodology
for RR [4] to WRR policy. We then address an optimization
problem of minimizing the total delay bounds subject to the
performance constraints of the applications running on the
SoC. To avoid unfair services, we consider another objective
for minimizing the variance of delay bounds in different
flows. Minimizing the variance of the delay bounds avoids
an intolerable delay of some flows, caused by processing and
transmission of other flows. As both mentioned objective func-
tions are important for the real-time applications, we formulate
them as a multi-objective problem under QoS constraints.
Finally, we show the benefits of the proposed method and
quantify performance improvement.

Random variables appear in the formulation of the optimiza-
tion problem which causes random objective functions. Such
optimization problems are usually solved by metaheuristic
methods which do not guarantee an optimal solution. However,
they usually find high-quality solutions in reasonable time
[5]. There is a wide variety of metaheuristics like simulated
annealing, tabu search, iterated local search, evolutionary
computation, and genetic algorithms. We compare the perfor-
mance of several metaheuristics (pure random search, markov
monotonous approach, adaptive search, and genetic algorithm)
and conclude that a genetic algorithm based method is most
suitable.

The rest of this paper is organized as follows. Section
II discusses related works. Section III introduces the basics
of Network Calculus. Section IV is devoted to the under-
lying system model and notations in our analysis. Section
V introduces the major features of our formal method for
analyzing the contention scenarios and computation of LUDB
along with an example. The proposed optimization problems
and corresponding solutions are represented in Section VI
and VII. Section VIII implements the algorithms for solving
the proposed optimization problems. Experimental results are
reported in Section IX. Finally, Section X concludes the paper.

II. RELATED WORK

A. Performance Evaluation of Real-time Services

There are different mathematical formalisms for perfor-
mance evaluation in on-chip networks. We have surveyed
four popular techniques along with their applications and
also reviewed their strengths and weaknesses [6]. Most of
the current works use queuing theory-based approaches. For
example, Ben-Itzhak et al. [7] propose an analytical model for
deriving the average end-to-end latency and link utilization
of wormhole NoCs with heterogeneous link capacities and
heterogeneous number of virtual channels per unidirectional
link. Queuing approaches often use probability distributions
like Poisson to model traffic in the network while Poisson
distribution is not appropriate for characterizing all traffic
patterns in NoC applications. Qian et al. [8]–[10] suggest a
methodology for addressing the limitation of assuming traffic
arrivals as Poisson processes. They present analysis for a
general arrival process based on G/G/1 queue model [9]. In
SVR-NoC [8] [10], the proposed analytical model is embedded
into the learning process to form the feature vectors and in turn
consider a more generalized traffic model. Although queuing
approaches have been widely used for performance analysis,
they cannot properly model some significant features, such as
nonstationary, self-similarity, higher order statistics, for NoC-
based multicore platform designs. To overcome this limitation,
Bogdan et al. [11] suggest an approach which analyzes the
traffic dynamics and captures the non-stationary effects of the
NoC workload. They propose QuaLe model [12] based on
statistical physics to analyze the information flow and buffer
usage in NoCs, and also investigate the impact of packet injec-
tion rate and data packet sizes on the multi-fractal spectrum of
traffic. In following up to this work, Bogdan et al. [13] propose
mathematical frameworks for exascale computing in data-
centers-on-a-chip architectures that exploit the NoC paradigm
for interconnecting large number of heterogeneous processing
elements. The frameworks can account and exploit the non-
stationary and multi-fractal characteristics of computation and
communication workloads. To address the problem of distant
and large volume data exchange, Xue and Bogdan [14] present
a user-cooperation network coding strategy for NoCs.

Network calculus is another mathematical approach special-
ized for deriving worst-case performance analysis. Network
calculus is able to model all traffic patterns with bounds defined
by arrival curves. It provides the facility of capturing dynamic
features of the network based on the traffic flows’ shapes.
Network calculus has been applied in a number of papers
for performance analysis of real-time services in networks
with aggregate scheduling. For example, Charny and Boudec
[15] derive a closed-form delay bound in a generic network
assuming a fluid model. An extended model is proposed [16]
to look into packetization effects. The main limitation of these
models is that they work well only for small utilization factors
in a generic network configuration. Lenzini et al. [17] describe
a methodology for obtaining per-flow worst-case delay bound
in tandem networks of rate-latency nodes traversed by leaky-
bucket shaped flows. This method yields better bounds than
those previously proposed. Qian et al. [19] present analytical

models for traffic flows under strict priority queueing and
weighted round robin scheduling in on-chip networks. They
then derive per-flow end-to-end delay bounds using these
models.

All previous works based on network calculus investigate
computing delay bounds only for average behavior of flows
and they do not consider peak behavior, which results in less
accurate bounds. Since a considerable number of real time ap-
plications are transmitted by Variable Bit-Rate (VBR) traffics,
we have proposed a methodology [4] to consider performance
analysis for VBR traffic characterized by (L, p, σ, ρ) in on-chip
networks employing aggregate resource management. This
method achieves more accurate delay bounds. In this paper, we
extend this method to WRR and then regulate weights in each
router to minimize delay bounds while satisfying performance
constraints.

B. Performance Improvement

There exist some previous related works focused on flow-
control, adaptive routing, and also domain isolation based on
non-interfering router microarchitecture. Concer et al. [20] pro-
pose an end-to-end flow control protocol, called Connection-
Then-Credit (CTC), to handle message-dependent deadlocks
in on-chip networks. Although this protocol adds a latency
overhead to the transfer of the message, under some conditions,
the performance of the system can be improved. As CTC is
an extension to the normal credit-based flow control protocol,
Sallam et al. [21] implement both protocols and investigate
implementation trade-offs along with performance analysis.
Joshi and Mutyam [22] consider a prevention flow control
mechanism which satisfies cost/performance constraints in
torus networks while preventing deadlocks by combining pri-
ority arbitration with prevention slot cycling. However, the
mechanism can lead to deadlocks with variable-sized packets.

There are a wide range of adaptive algorithms varying from
partially to fully adaptive and have the potential for improving
system performance [23]–[26]. For instance, Lin and Tang
[23] develop a bufferless routing algorithm and have shown
improvements of up to 10% for average latency when com-
pared to older designs. Najib et al. [24] present a look-ahead
partial adaptive routing for their prior proposed low-latency
NOC router [27]. They show that their algorithm improves
the performance of a baseline design of the router under
imbalanced traffic. Sheng et al. [25] [26] propose a flow control
technique, called Whole Packet Forwarding, which is a VC
re-allocation scheme for fully adaptive routing in wormhole
on-chip networks. They show that fully adaptive routing can
offer higher performance than several partial adaptive routing
algorithms.

Wassel et al. [28] propose SurfNoC which is a low-latency
time-division-multiplexed packet-switched k-ary n-cube net-
work. Channels are scheduled in each dimension of a mesh
network in a pipelined fashion using the dimension-ordered
routing algorithm. Psarras et al. [29] present a non-interfering
VC-based architecture for on-chip networks, called PhaseNoC,
which adopts TDM at the VC level. Applications are mapped
to disjoint sets of VCs to isolate them both inside the router’s

pipeline and at the network level. They also design appropriate
scheduling of flows to reduce area/delay cost in the network.

All above mentioned works consider reducing average la-
tency in different system models while, in this paper, we
calculate worst-case delay bounds under WRR scheduling
policy and deterministic routing and minimize worst case delay
and variance.

III. NETWORK CALCULUS BACKGROUND

Network calculus is a mathematical approach to compute
worst case bounds for guaranteed services in communication
networks [1]. It uses min-plus algebra to convert non-linear
queueing systems into linear systems. The algebra structure
of min-plus is (< ∪ {+∞},∧,+) in which ∧ represents
the minimum operation, f ∧ g = min(f, g). The min-plus
convolution, denoted by ⊗, is defined as (f ⊗ g)(t) =
inf0≤s≤t {f(t− s) + g(s)}; where two functions f and g are
wide-sense increasing functions.

An arrival curve defines an upper bound on the cumulative
arrival process to characterize a traffic flow and a service curve
defines a lower bound on the cumulative service process. In
this paper, we use Traffic SPECification (TSPEC) [35] for
characterizing traffic to look into both the average and peak
behaviors of a flow. With TSPEC, the arrival curve of flow
fj is defined as αj(t) = min(Lj + pjt, σj + ρjt) in which
Lj is the maximum transfer size, pj the peak rate (pj ≥ ρj),
σj the burstiness (σj ≥ Lj), and ρj the average (sustainable)
rate. We denote it as fj ∝ (Lj , pj , σj , ρj). A well-formulated
service model to reflect the service capability of a node is
the rate-latency function defined as βR,T = R(t − T)+,
where R is the minimum service rate and T the maximum
processing latency of the node. We use x+ to denote the
function x+ = x if x > 0;x+ = 0, otherwise. ∨ represents
the maximum operation, f ∨ g = max(f, g). Burst delay
function δT (t) = +∞, if t > T ; δT (t) = 0, otherwise. Affine
function γb,r(t) = b + rt, if t > 0; γb,r(t) = 0, otherwise.
Therefore, δT ⊗ γb,r(t) = b+ r(t− T). � represents the min-
plus deconvolution as (f � g)(t) = sups≥0 {f(t+ s)− g(s)}.

IV. SYSTEM MODEL

We consider a Network-on-Chip (NoC) architecture in
which every node contains a core equipped with a Network
Interface (NI) and a router with input and output channels.
Assumptions are given as follows:

• The NoC architecture can have arbitrary topologies.
• A flow consists of packets and each packet is broken

into flits. We consider the arbitration granularity of one
word with a fixed word length of Lw for all flows. Lw is
assumed to be 1 flit.

• Packets have fixed length and traverse the network in
a best-effort fashion with virtual-cut-through switching
technique using deadlock-free deterministic routing.

• Routers have multiple flit input buffers but no output
buffers.

• The router can have multiple Virtual Channels (VCs)
per in-port. VC allocation is deterministic and each VC
receives an aggregate service.

4r1r 3r2r

8r6r 7r5r

9r

2f

1f

4f

3f

13r 16r

10r 11r9r 12r

15r14r

Fig. 1. An example of a NoC with 16 nodes and 4 flows.

• Buffers are bounded by Eq. (7) and the network is
lossless.

• All traffic is modeled as TSPEC flows f =
TSPEC(L, p, σ, ρ) at the entry into the network.

• To characterize flows based on TSPEC, we assume un-
buffered leaky bucket controllers (regulators) which do
not buffer the packets, but stall the traffic producers or
IPs [18].

• We assume weighted round robin arbitration and model
it by a rate-latency service curve as β = δT ⊗ γ0,R, it is
assumed that ρ ≤ R and p ≥ R, where ρ is the average
rate, p the peak rate, and R the minimum service rate.

• Flows are classified into a pre-specified number of ag-
gregates and traffic of each aggregate is buffered and
transmitted in FIFO order, denoted as FIFO multiplexing.

• Different aggregates are buffered separately and each
aggregate is guaranteed a rate-latency service curve.

• The hardware limits the peak rate to 1 flit/cycle.
Figure 1 depicts an example with 16 nodes and 4 flows.

Multiple flows which share the same buffer and channel in the
same router, for example f1 and f2 in router 2, are scheduled
as an aggregate flow denoted as f{1,2}. The tagged flow is a
flow for which the delay bound is derived and the other flows
which compete with the tagged flow for the same resource
are called contention flows. In the example, if f1 is the tagged
flow, f2, f3, and f4 would be contention flows. Table I presents
notations in this work.

Sub-indices ”(fi, rj)” indicate that they are related to flow fi
in router rj . For instance, α(f1,r2) indicates the arrival curve
of f1 in router r2. Using fsi instead of fi in the sub-index
means that the notation is related to the fsi which can be one
flow or an aggregate flow. For example, β({1,2},r2) refers to
aggregate flow f{1,2} in router r2.

V. LUDB DERIVATION FOR WRR POLICY

To derive a delay bound per flow passing a series of nodes,
one simple way is to sum up the delay bounds at each node,
which results in a loose delay bound. A theorem called Pay
Bursts Only Once is known to give a tighter upper estimate on
delay bounds, when an end-to-end service curve is obtained
prior to delay computations. This accounts for bursts of the
tagged flow only once instead of at each link independently.
This principle also holds in aggregate scheduling networks.

TABLE I
THE LIST OF NOTATIONS

fi Flow i

FRPV
(j,i,k)

The set of flows passing through VC k in physical
channel i of router j

F(j,l,s,k)
The set of flows passing from VC s of input
channel l to output channel k in router j

Input PC# The number assigned to an input physical channel
Output PC# The number assigned to an output physical channel

VC# The number assigned to an input virtual channel
InPC The set of input physical channels in each router
OutPC The set of output physical channels in each router

InV C
The set of input virtual channels in each input
physical channel

Li The maximum transfer size of fi (flits)
pi The peak rate of fi (flits/cycle)
σi The burstiness of fi (flits)
ρi The average rate of fi (flits/cycle)

Src(i) The source node of fi
rj Router j
βj The service curve of rj
R The minimum service rate in a rate-latency service curve

T l The maximum processing latency of the arbiter in
the router (cycles)

THoL The maximum waiting time in the FIFO queue of
the router (cycles)

TTotal The total processing delay which comes from contention
flows the router and equals to the sum of T l and THoL

Drouter Time spent for packet routing decision (cycles)
Lw The word length in the flow (flits)
C The channel capacity (flits/cycle)
CFt The set of contention flows of tagged flow ft

si

The set of joint flows in an aggregate flow (when the
number of elements of si is equal to 1,
there is only a single flow)

fsi An aggregate flow of si

|si|
The cardinality of set si, which is a measure
of the ”number of elements of the set”

FB
(si,rj)

The set of flows which share the same buffer in
router rj with flow fsi

w(j,l,s,k)
The weight assigned to node rj , input Physical
Channel (PC) l, input VC s, and output PC k

LWR The length of a round in WRR policy

To this end, we propose the two following steps to derive the
end-to-end service curve for a tagged flow:
• Step 1: Intra-router ESC: This step derives intra-router

ESCs for each router through which the tagged flow
is passing. Different resource sharing scenarios in each
router are distinguished and intra-router analysis models
are built.

• Step 2: Inter-router ESC: In this step, according to the
intra-router analysis models, we present a set-theoretic
approach which recognizes and investigates different con-
tention scenarios that a flow may experience along its
routing path and in turn derive an end-to-end ESC for the
tagged flow.

For extending our proposed analytical method to weighted
round robin policy, we expand the first step while the second
step is unchanged. Similarly, to support some other arbitration
policies, only the first step must be modified.

A. Intra-router ESC

In this step, we consider three types of resource sharing,
including channel&buffer sharing, channel sharing, and buffer
sharing.

1f

2f

D
E

M
U

X

PC

PC

 2,1f

D
E

M
U

X

Fig. 2. An example of channel&buffer sharing

D
E

M
U

X

2f

1f

DEMUX

Input PC# 1

Input PC# 2

Output PC # 1VC# 0

VC# 0 VC# 1

PC

D
E

M
U

X

VC# 1

Node# 3

Fig. 3. An example of channel sharing

1) Channel&Buffer Sharing: As shown in Figure 2, mul-
tiple flows share both the same buffer and channel in the
router, and are scheduled as a flow called aggregate flow. An
aggregate flow including the tagged flow is named as tagged
aggregate flow. In this case, intra-ESC is derived for the tagged
aggregate flow instead of the tagged flow. In Section V-B, due
to contention scenarios, we will remove contention flows from
the ESC of a tagged aggregate flow in order to extract the ESC
of the tagged flow.

2) Channel Sharing: Figure 3 depicts an example of a
channel shared between two flows f1 and f2. The WRR arbiter
associates a weight w(j,l,s,k) in cycles on each aggregate/single
flow fsi passing from input VC s of input Physical Channel
(PC) l in router rj to output PC k. The value of the weight
assigned to a channel depends on flows passing through that
channel. Then, the router will try to give the flow a period of
w(j,l,s,k) cycles before moving to the next node. In each round,
for a non-empty VC buffer encountered, the router serves up
to corresponding configured weight in cycles. The maximum
length of a round consequently equals to

∑
l,s w(j,l,s,k) cycles,

denoted as LWR. The least service offered to one flow in a VC
is completely dependent on the weight of that VC and the sum
of all other weights. With the WRR scheduling, the worst case
appears for a flow when it just misses its slot in the current
round. Consequently it will have to wait for its slot assigned at
the next round. In the worst case, each flow fsi passing from
input VC s of input PC l in router rj to output PC k will have
to wait up to

(∑
p,q w(j,p,q,k) − w(j,l,s,k)

)
×
(
Lw

C +Drouter

)
cycles before to be served, and get at least a w(j,l,s,k)∑

p,q w(j,p,q,k)
×C

of the channel bandwidth, where C is the channel capacity,

PC

1f

2f

P
C

D
E

M
U

X

P
C

1f

2f

0),(

),(

1

1




l

rf

rf

T

CR

0),(

),(

2

2




l

rf

rf

T

CR

P2P2P2P2...P2P2P1

Fig. 4. An example of buffer sharing

Lw the word length, and Drouter the delay for packet routing
decision in a router. A flow may get more service rate if
other flows use less, but we now know a worst-case lower
bound on the bandwidth. Based on network calculus theory, we
can use the abstraction of service curve to model a weighted
round robin arbiter in router rj for flow fsi as a rate-latency
server β(si,rj) = R(si,rj)(t− T l(si,rj))

+, where R(si,rj) is the
minimum service rate and T l(si,rj) is the maximum processing
latency of the arbiter in router rj for flow fsi . R(si,rj) and
T l(si,rj) are defined as follows:

R(si,rj) =
w(j,l,s,k)∑
p,q w(j,p,q,k)

× C (1)

T l(si,rj) =

(∑
p,q

w(j,p,q,k) − w(j,l,s,k)

)
×
(
Lw
C

+Drouter

)
(2)

In the example of Figure 3:
R(f1,r3) =

w(3,1,0,1)

w(3,1,0,1)+w(3,2,1,1)
× C

T l(f1,r3) = w(3,2,1,1) ×
(
Lw

C +Drouter

)
As aforementioned, the sum of weights of flows sharing

a channel is equal to the round time. Thus, as the value of
round time (the sum of weights) is increased or decreased,
individual flows proportionally get more or less time slots
respectively, which means the weights proportionally increased
or decreased. Therefore, the model is able to adjust the weights
based on the round time.

3) Buffer Sharing: Figure 4 depicts a buffer shared between
two flows f1 and f2. In this type of sharing, we introduce two
kinds of delay for a tagged flow including:
• Head-of-Line delay (HoL) is the maximum waiting time

of the packet in the FIFO queue, which is denoted by
THoL.

• Processing delay is the maximum processing latency of
the router’s arbiter for the flow, which is denoted by T l.

Therefore, total delay for tagged flow fi in router rj is
calculated as TTotal(fi,rj) = THoL(fi,rj) + T l(fi,rj).
T l(fi,rj) and R(fi,rj) can be calculated according to Equation

(2) and (1), respectively. To show how THoL(fi,rj) is calculated,
we consider the example in Figure 4 and assume that f1 is the
tagged flow. As depicted in the figure, THoL(f1,r)

is equal to the

maximum delay for passing packets of flow f2 in the buffer.
According to [1], the maximum delay for flow fj is bounded
by Equation (3).

D̄(fj ,r) = T l(fj ,r) +
Lj + θj(pj −R(fj ,r))

+

R(fj , r)
(3)

where θ = (σ − L)/(p− ρ).
Therefore, THoL(f1,r)

is given as follows:

THoL(f1,r)
= T l(f2,r) − θ2 +

L2 + θ2p2

R(f2,r)
(4)

In the case of more than one flow sharing the same buffer
with the tagged flow, HoL delay for tagged flow fsi in router
rj is calculated as below:

THoL(si,rj) =
∑

∀fc∈FB
(si,rj)

T
HoL(fc)
(si,rj) (5)

where FB(si,rj) is the set of flows which share the same buffer

in router rj with tagged flow fsi . Also THoL(fc)
(si,rj) is given by

T
HoL(fc)
(si,rj) = T l(fc,r) − θc +

Lc + θcpc
R(fc,r)

(6)

Therefore router rj can give flow fsi service bounded by
curve β(si,rj) = δTTotal

(si,rj)
⊗ γ0,R(si,rj)

, where TTotal(si,rj) is equal

to THoL(si,rj) +T l(si,rj) and R(si,rj) is calculated by Equation (1).
We analyze the buffer space threshold for each VC based

on traffic specifications of flows passing through that VC, and
also interference between them. The buffer space threshold for
virtual channel k in physical channel i of router j is given as
below:

B(j,i,k) =
∑

∀fc∈FRPV
(j,i,k)

(
σc + ρcT

p
(fc,rj) +

(
θ − T p(fc,rj)

)+

×
[(
pc −R(fc,rj)

)+ − pc + ρc

])
(7)

where FRPV(j,i,k) is the set of flows passing through VC k in
physical channel i of router j.

B. Inter-router ESC

In this step, we aim to extract ESC of the tagged flow by
removing the contention flows from the ESC of the tagged
aggregate flows. We have described this stage in elaborate
detail through our previous paper [4]. For the sake of complete-
ness, it is explained in the appendix. Algorithm 1 presents the
main steps of deriving the end-to-end ESC for a given tagged
flow. The only difference between this algorithm and the one
presented for RR [4] results from the different methods pro-
posed for calculating intra-router ESCs (Line 9). The algorithm
with all stages, including details of inter-router ESC step, is
presented in Appendix.

Now, we can obtain LUDB from end-to-end ESC according
to the proposed theorem for calculating delay bounds [3]. We
have automated our proposed analytical approach as a tool for
worst-case performance analysis. The weighted RR gives flow
isolation. Each flow is served at its own weight in the worst
case. It is notable that the proposed approach is independent
of the routing algorithm, but the routing algorithm must be
predefined (deterministic).

Algorithm 1 End-to-End ESC Algorithm
1: Find the set of contention flows of tagged flow ft, denoted by
CFt

2: for ∀j ∈ CFt do
3: if Src(j) /∈ Path(t) then
4: Find joiningnode = JoiningPoint(fj)
5: Calculate X = ESC(fj , Src(j), joiningnode)
6: αj = αj �X
7: end if
8: end for
9: Calculate intra-router ESC for WRR based on Section V-A.

10: Calculate inter-router ESC (See Appendix).
11: return end-to-end ESC for tagged flow ft

In our proposed model, σ and ρ represent the congestion
level. The effect of these parameters on delay bounds can
be analyzed by following theorems and formula used in the
proposed approach.

VI. OPTIMIZATION PROBLEM FORMULATION

Latency is one of the most critical challenges for on-chip
interconnection network architectures [30]. However, there
exists a huge search space to explore for minimizing latency.
Thus, to design a low latency on-chip network, designers need
to investigate optimization problems and make appropriate
decisions. The general problem is defined as follows:

General Problem Definition
Given Architecture specifications, application parameters,
and traffic characteristics (e.g. TSPEC in this paper);
Find A set of decision variables;
Such that network delay is minimized and performance
constraints are satisfied.

Decision variables capture application mapping to pro-
cessing cores, traffic regulation parameters (e.g. peak rate,
burstiness, and packet injection rates to the network), switch
architecture, a resource allocation strategy (e.g., bandwidth of
channels, etc.), weight configuration in WRR policy, and a
routing algorithm.

In networks with WRR policy, the weight configuration
for flows can be in conflict because of contention for shared
resources. This makes weight parameters non-trivial and thus,
given single or multiple objectives, a parameter selection be-
comes necessary. In this paper, we find a weight configuration
in WRR policy to minimize total worst-case delay in the
network. Weight allocation is actually a resource allocation
strategy in which a flow with larger weight gets more band-
width or a higher service level. The weight of each non-empty
VC is selected based on traffic specifications of flows passing
through that VC, and to minimize interference between them.
In Section IX, we describe how weights affect the delays of
flows. For example, results for a real-time application show that
an optimized weight allocation leads to about 48.8% reduction
in total worst-case delay compared to a random configuration.
Optimized WRR weight assignment leads to a 81.1% decrease
of delay over a poor weight configuration and 15.4% decrease
over a RR based allocation.

On the other hand, faster transmission is not necessarily
better in a shared communication channel since faster delivery
requires higher link bandwidth reservation and may incur a

larger delay for another contention flow in a shared channel,
leading to an intolerable delay. To avoid throttling some com-
munications, we investigate another objective function which
is minimizing the variance of delay bounds in different flows.
As both mentioned goals are worthwhile for the real-time
applications, we formulate them as a multi-objective problem
in Section VI-B.

A. Delay Optimization

As stated before, our objective is to choose appropriate
weights in a weighted round robin policy, assigned to channels
on the path of flows, so as to minimize the sum of LUDBs
while satisfying acceptable performance in the network. Note
that w(j,l,s,k) = 0 when no flow is passing from virtual channel
s of input channel l to output channel k in router j. Thus, the
delay bound minimization problem, Minimize-Delay, can be
formulated as follows.

Given a set of flows F = {fi ∝ (Li, pi, σi, ρi)}, routing
matrix R, the number of weight cycles LWR, find the weights
in weighted round robin policy as w(j,l,s,k) for ∀i ∈ N , ∀j ∈
InPC, ∀s ∈ InV C, and ∀k ∈ OutPC, such that

min
w(j,l,s,k)

∑
∀fi∈F

Di (8)

subject to:∑
l,s w(j,l,s,k) = LWR ∀j ∈ N ;∀k ∈ OutPC (9)
LWR×

∑
m∈F(j,l,s,k)

ρm

C ≤ w(j,l,s,k) ≤ LWR (10)
∀j ∈ N, ∀l ∈ InPC, ∀s ∈ InV C,∀k ∈ OutPC

where w(j,l,s,k) for ∀j ∈ N , ∀l ∈ InPC, ∀s ∈ InV C, and
∀k ∈ OutPC are optimization variables.

Eq. (8) is the objective function of this optimization problem
which minimizes total LUDBs. Constraint (9) says that the
sum of weights assigned to flows which pass through the
same output channel k in router j, the same weighted round
robin scheduler, is equal to LWR. Although we have assumed
the same value of LWR for all arbiters, the optimization
problem can be easily adapted to different values of the sum
of weights. To reach acceptable performance in the network,
the share of w(j,l,s,k) from LWR should be proportionate to∑

m∈F(j,l,s,k)
ρm

C , where F(j,l,s,k) is the set of flows which pass
through virtual channel s of input channel l to output channel

k in router j. Therefore, we can consider
∑

m∈F(j,l,s,k)
ρm

C as
a criterion of minimum guaranteed performance for flows in

F(j,l,s,k). In this respect, we have
∑

m∈F(j,l,s,k)
ρm

C ≤ w(j,l,s,k)

LWR

which means
LWR×

∑
m∈F(j,l,s,k)

ρm

C ≤ w(j,l,s,k) as stated in
Constraint (10). It is also clear that the value of each weight
should be less than the number of weight cycles which means
w(j,l,s,k) ≤ LWR.

By following the equations described in Section V, the
effect of optimization variables on the objective function of
the defined problem is obvious.

In the literature, problem (8) is called a stochastic and
nonlinear optimization problem [31]. We solve it using genetic
algorithms because of their well-known robustness and ability
to solve large and complex discrete optimization problems.

B. Multi-objective Optimization Problem

In order to avoid an intolerable delay of some flows due
to processing and transmission of other flows, we would like
to find appropriate weights in weighted round robin policy
so that variance of delay bounds in the network is minimized.
Using a general variance formula, we can calculate the variance
of the delay bounds as 1

|F | ×
∑
∀fi∈F (E(D)−Di)

2. Hence,
another optimization problem can be formulated to minimize
both the total delay bounds and their variance while satisfying
the constraints (9) and (10), as follows.

Given a set of flows F = {fi ∝ (Li, pi, σi, ρi)}, routing
matrix R, the number of weight cycles LWR, find the weights
in weighted round robin policy as w(j,l,s,k) for ∀j ∈ N , ∀l ∈
InPC, ∀s ∈ InV C, and ∀k ∈ OutPC, such that

min
w(j,l,s,k)

∑
∀fi∈F

Di (11)

min
w(j,l,s,k)

1

|F |
×
∑
∀fi∈F

(E(D)−Di)
2 (12)

subject to:∑
l,s w(j,l,s,k) = LWR ∀j ∈ N ;∀k ∈ OutPC (13)
LWR×

∑
m∈F(j,l,s,k)

ρm

C ≤ w(j,l,s,k) ≤ LWR (14)
∀j ∈ N, ∀l ∈ InPC, ∀s ∈ InV C,∀k ∈ OutPC

Although the solution of multi-objective optimization prob-
lems consists of a set of solutions, the user needs only one
solution. The decision about which solution is best depends
on the decision maker and there is no universally accepted
definition of optimum as in single-objective optimizations [36].
A multi-objective problem is often solved by composing the
objective function as the weighted sum of the objectives which
is in general known as the weighted-sum or scalarization
method. In this approach, a relative preference factor of the
objectives should be known in advance. In more detail, the
weighted-sum method minimizes a positively weighted sum
of the objectives, that is,

min(γ1f1 + γ2f2) (15)
where γ1 and γ2 are the weighting coefficients representing
the relative importance of the objectives.

The simplicity and efficiency of this method makes it an
appropriate option for solving multi-objective optimizations
with complex and nonsmooth objective functions. Therefore,
we convert our proposed multi-objective problem into a scalar
optimization problem with equal weighting coefficients. Since
the problem is still a nonsmooth and stochastic optimization,
we use the genetic algorithm to solve it.

VII. SOLUTION METHOD

The proposed optimization problems have complex and
highly nonlinear objective functions. Moreover, due to Eq. (1)
and (19), minimization functions of decision variables appear
in the formulation of per-flow LUDBs and consequently in the
objective formulation which cause random objective functions.

Such optimization problems are usually solved by meta-
heuristic methods which make few assumptions about the
problem being solved and do not guarantee an optimal solution.
However, they can usually find a good solution [5].

Algorithm 2 A General Scheme of GA in Pseudo-code
1: P1← Generate random population of n chromosomes
2: Evaluate the fitness f(x) for each x ∈ P1
3: repeat . Create a new population
4: Selection: Select two parents from a population.
5: Crossover: With a crossover probability cross over the

parents to form a new offspring (children).
6: Mutation: With a mutation probability mutate new

offspring at each locus (position in chromosome).
7: Accepting: Place new offspring in a new population
8: until the new population is not complete
9: Use new generated population for a further run.

10: if the end condition is satisfied then
11: return The best solution in current population
12: else
13: Go to step 2
14: end if

Among different types of metaheuristics, we choose genetic
algorithms to solve the proposed optimization problems be-
cause they are most appropriate for large and complex non-
linear models specially where the objective function is dis-
continuous, stochastic, very rugged and complex, noisy, or has
many local optima [37] [38]. Moreover, they have been proven
to be effective in avoiding local optima and discovering the
global optimum in even a problem with very complex objective
functions [37]. GAs tend to be computationally expensive for
the solutions of optimization problems with nonlinear equality
and inequality constraints [38], which do not occur in our
proposed problems. Although a GA does not always find a
global optimum to a problem, it almost always finds high-
quality solutions [37].

GA generates solutions to optimization problems mimicking
the process of natural evolution such as inheritance, muta-
tion, selection, and crossover. Algorithm 2 presents a general
scheme of GA in pseudo-code. The algorithm is started with
an initial population of solutions represented by chromosomes.
A chromosome contains the solution as a set of parameters
in form of genes. A gene is a position or set of positions
in a chromosome, represented as a simple string or other
data structures. The algorithm selects solutions, called parents,
from the population and produces a new solution, called
offspring, to form a new population. Although parents can be
selected in many different ways, the main idea is that better
parents according to their fitness hopefully will produce better
offspring. Crossover and mutation are two basic operators of
GA which produce a new offspring. This process is repeated
until some condition, such as the number of populations or
improvement of the best solution, is satisfied.

A method for encoding potential solutions of the problem
is needed. There are different approaches to encode solutions
like binary encoding, value encoding, permutation encoding,
and tree encoding.

VIII. IMPLEMENTATION

In Section VII, we have discussed why GA is selected for
solving the optimization problems and presented a general
description of GA. This section shows how we have mapped
our proposed optimization problems into the problems which
can be solved by GA. We present Algorithm 3 to detail

Algorithm 3 Genetic Algorithm based Weight Optimization
1: Pop1← Initilization F irstPopulation()
2: Encoded Pop1← Encoding(Pop1)
3: Temp Pop← Encoded Pop1
4: for i=1 to Iteration# do
5: New Pop[0]← Elitism(Lb, Ub)
6: for j=1 to Pop Size do
7: Cross Rate←MersenneTwister()
8: if (Cross Rate ≤ Cross Prob) then
9: Chromosome1← Selection(Lb, Ub)

10: Chromosome2← Selection(Lb, Ub)
11: Offspring ←

Crossover(Chromosome1, Chromosome2)
12: else
13: Offspring ← Selection(Lb, Ub)
14: end if
15: Mut Rate←MersenneTwister()
16: if (Mut Rate ≤Mut Prob) then
17: Offspring ←Mutation(Offspring)
18: end if
19: New Pop[j]← Offspring
20: end for
21: Temp Pop← New Pop
22: end for
23: Decoded Pop← Encoding(Temp Pop)
24: Optimal Weight←Minimum(Decoded Pop)
25: return Optimal Weight

the procedure of deriving optimal weights for the proposed
optimization problems. Objective and constraint functions in
GA are the same as what we have defined for the proposed
optimization problems. Objective functions are implemented
as Fitness function which is called whenever the population is
created or a selection is made from the population. Weights,
which are decision variables, are considered as a vector and
uniquely mapped onto a chromosome. As the proposed op-
timizations have only boundary constraints, these constraints
in GA can be reflected as intervals of chromosomes’ domain.
Parent, which is a chromosome, presents the current solution
for this round and offspring is a new vector generated from
the parent which may be the next solution.

The algorithm uses a binary representation of chromosomes
as fixed-length strings over the alphabet {0, 1}, such that they
are well suited to handle the optimization problems. It uses
function Encoding() to map solutions ~w ∈ W to a binary
string {0, 1}l and defines function Decoding() to do the
reverse. To this end, real-valued vector ~w ∈ <n is presented
by a chromosome in form of a binary string ~x ∈ {0, 1}l.
The chromosome is logically divided into n segments (gene)
of equal length Sgene as (w1...wn), where Sgene is gene
size and l = n × Sgene. Each gene wi is decoded to yield
the corresponding integer value, and the integer value is in
turn linearly mapped to its interval of real values, denoted
as [Lbi, Ubi] ⊂ <, where Lbi and Ubi indicate lower and
upper bound constraints on wi, respectively. In this work, we
use a gray code interpretation of the binary string. The main
advantage of gray codes is that they are different by only one
bit.

Figure 5 shows an example of the decoding process for
string segments of length Sgene = 8 which allows the rep-
resentations of integers {0, 1, ..., 255}. As shown in the figure,

function Decoding() first converts a given gray code to an in-
teger value pi ∈

{
0, ..., 2Sgene − 1

}
and then maps pi linearly

to its corresponding interval [Lbi, Ubi] as Lbi+ Ubi−Lbi
2Sgene−1

×pi.Decoding

Ch

Gene
Chromosome

01100110 00001001 01110111 00101001Chromosome
in Gray Code

Decoding to the integer value

68 14 90 49

[0.1,1] [0.5,1] [0.3,1] [0.1,0.7]

Decimal Value:

[Lb,Ub]

0.34 0.527 0.547 0.215

Linear mapping to the interval [Lb,Ub]

Fig. 5. An example of decoding and linear mapping

After encoding, the algorithm starts producing a new popula-
tion in Line 5-20. Function Elitism() in Line 5 copies the best
chromosome of the current population to the new population,
so the best chromosome found can survive. Elitism can very
rapidly increase performance of GA, because it prevents losing
the best found solution. To create other new offsprings, three
basic operators including selection, crossover, and mutation
are applied as follows.

Selection in GA means how to select parents for crossover
or mutation. The main idea is to select the better parents
in hope that the better parents will produce better offspring.
Thus, function Selection() in the algorithm selects randomly
two chromosomes from the current population, evaluates their
fitness values, and finally returns the one which has the smaller
fitness value as one of parents. Another parent is selected in
the same way.
Cross Prob in Line 8 is the crossover probability which

states how often a crossover is performed. If there is a
crossover, two parents’ chromosomes are selected and off-
spring is made from their crossover. If there is no crossover,
offspring is the exact copy of a chromosome from the old
population. Due to Cross Prob, the new generation is a
mix of offsprings made by crossovers and chromosomes from
the old population. Although crossovers have the tendency to
improve chromosomes, it has been shown to be beneficial to
keep part of the old population.

Crossover selects genes from parents’ chromosomes and
creates a new offspring. There are different ways to make
a crossover. This algorithm chooses randomly two crossover
points and everything before the first point and after the second
point is copied from the first parent and the section between the
two crossover points is copied from the second parent. Figure
6 shows an example of crossover applied in this algorithm (|
denotes the crossover point).

After crossover, mutation is performed. Mut Prob in Line
16 is the mutation probability which states how often a
chromosome is mutated. If mutation is performed, parts of
chromosome are changed. If there is no mutation, the offspring
is copied after crossover without any change. Mutation is
made to prevent an entire population being trapped in a local

Crossover

Chromosome 1: 1011 101000 111010

Chromosome 2: 1100 101001 110011

Offspring: 1011 101001 111010

Mutation

1011101000 11010Offspring:

1010101001 11110Mutated Offspring:

Fig. 6. An example of crossover

optimum. Mutation in Algorithm 3 changes the new offspring
by randomly switching a few bits. It is worth mentioning that
the mutation should not occur very often, because then GA
will convert into a random search. Figure 7 shows an example
of mutation used in the algorithm.

Crossover

1011 101000 111010

1100 101001 110011

Chromosome 1:

Chromosome 2:

1011 101000 111010Offspring:

Mutation

Offspring: 1011101000 111010

Mutated Offspring: 1010101001 111110

Fig. 7. An example of mutation

This process repeats for a specified number of iterations.
As shown in Figure 8, we have developed a tool in C++,

divided into two main sub-tools including End-to-End Delay
Program and Optimization Program. The former derives per-
flow worst-case bounds by applying the proposed formal
approach in Section V. The bounds are represented as functions
of weights in WRR policy. The latter optimizes weights in
WRR policy based on the optimization problem formulated in
Section VI. Input for the first sub-tool includes an application
communication graph, specification of flows, topology graph,
routing matrix, and characteristics of routers. The outputs from
the first sub-tool along with the set of system constraints will
be inputs for the second part. If flows or traffic pattern are
changed, per-flow end-to-end delay bounds and optimization
problem need to be resolved. Since we aim for a design phase
tool, it is executed once for static flows.

IX. EXPERIMENTAL RESULTS

To evaluate the potential of our method, we applied it to
two real applications and a synthetic traffic pattern on a larger
network.

A. VOPD Application

We have applied our model to a real-time multimedia appli-
cation with a random mapping to the tiles of a 4× 4 on-chip
network. Figure 9 shows the task graph and flow mapping of a
Video Object Plane Decoder (VOPD) [39] in which each block
corresponds to an IP and the numbers near the edges represent
the bandwidth (in MBytes/sec) of the data transfer, for a 30
frames/sec MPEG-4 movie with 1920× 1088 resolution [40].
There are 21 communication flows characterized by TSPEC.

Hence, each flow i is characterized by (Li, pi, σi, ρi). The
maximum transfer size and peak rate refer to the real traffic
flow over the flit channel between routers. They are constrained
by the flit channel capacity. Packets may have different burst
sizes. They are sent flit by flit over the flit channel. This means
the maximum transfer size of 1 flit and peak rate 1 flit/cycle.
Therefore, we assume Li and pi for all flows are the same and
equal to 1 flit and 1 flit/cycle, respectively. ρi is determined

Application
- communication pattern
-TSPEC of f lows
- tagged flow

Architecture
- topology
- deterministic routing
- service curve of routers

Input Text File

End-To-End Delay Program

A program automatically derives
formulas for calculating end to endformulas for calculating end-to-end

delay bounds and obtains constraints.

Output Text File
Objective Function Constrains

Optimization Program

Output Text File
- Per flow end-to-end delay
bounds

- Weight Constrains

A program automatically solves
optimization problem based on

the different methods

Output
- Optimal/sub-optimal weights
- Per-flow delay bounds
- Minimal value for sum of end-

to-end delay bounds

Fig. 8. The flow chart of the developed tool

in flits/cycle due to associated bandwidth with flow fi in
Figure 9 and σi varies between 8 and 128 flits for different
flows. The length of a round in WRR scheduling, LWR, is
assumed to be 10 cycles.

1) Delay Optimization: As mentioned before, decision vari-
ables in the proposed optimization problems are the weights on
shared channels. Due to shared channels in VOPD application,
20 weights are formulated in the optimizations as a weight
vector W defined as follows:

W =
(
w(6,3,0,4), w(10,2,0,0), w(14,0,0,2), w(13,3,0,2), w(12,0,0,2),

w(9,4,0,0), w(4,3,0,4), w(4,0,0,2), w(8,2,0,0), w(8,4,0,2),

w(6,2,0,4), w(10,4,0,0), w(14,3,0,2), w(13,1,0,2), w(12,3,0,2),

w(9,3,0,0), w(4,0,0,4), w(4,4,0,2), w(8,4,0,0), w(8,0,0,2)

)
(16)

The ”End-to-End Delay Program” calculates per-flow worst-
case bounds as functions of weights for each flow in VOPD
application and derives corresponding constraints. The ”Op-
timization Program” formulates Minimize-Delay problem and
derives weights for VOPD application.

To show how these weights affect the communication delay,
we consider four different schemes:
• Random Scheme: The weights are selected randomly.
• Round Robin Scheme: The weights have the same values

to represent round robin policy.
• Optimized Scheme: The weights are optimized based on

the optimization problem (8).
• Unoptimized Scheme: The weights are not optimized

and there are many unoptimized configurations. In this
scheme, we allocate weights so as to maximize the
optimization problem (8) instead of minimization.

Then, the total maximum delay are calculated for different
schemes and depicted in Table II. From this table, we can

Variable
length

decoder
70 Run-

length
decoder

362 Inverse
scan

362 AC/DC
prediction

362 iQuant 357 IDCT

Stripe
memory

4927
Up

sampling

VOP
reconstruction

PaddingVOP
memory

353

300

313

94
313

500

Context-based
Arithmetic
decoder

Memory

Down sampling
&

context calculation

157
16

16

Reference
memory

Up
sampling

16
16

16

16

16

1f
2f

3f
5f

4f
6f

8f
7f

9f
10f

11f 12f

13f

14f
15f 16f 17f

18f 19f

20f 21f

IP12 IP11

IP15IP14

IP13

IP0 IP1 IP2 IP3 IP5 IP6

IP4

IP10

IP8

IP7

IP9

Fig. 9. VOPD Application

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

De
la

y
Bo

un
d

(c
yc

le
)

Flow Index

WRR Policy

RR Policy

Fig. 10. Maximum worst-case delay for every flow in VOPD application

see that the optimized scheme leads to about 15.4%, 48.8%,
and 81.1% reduction in total maximum delay when compared
with Round Robin, Random, and Unoptimized schemes, respec-
tively. The results show that although WRR is able to make
better performance in terms of latency than RR scheduling,
if the weights are not allocated properly, it may be worse.
Therefore, an appropriate weight configuration makes WRR
able to reduce total and average maximum delay by balancing
the allocation of shared network bandwidth to different traffic
flows with respect to their specifications and contentions for
shared resources.

To better understand the effects of the weights, per-flow
delay bounds for RR and WRR with the Optimized scheme
are shown in Fig 10. This figure illustrates that flows in WRR
can experience longer or shorter delays than the RR scheme
which depends on the amount of network bandwidth allocated
to each flow (due to the assigned weights). However, from
Table II, we can see that the total and average worst-case delay
are decreased in WRR with the Optimized scheme because the
weights are assigned in a way to minimize total delay, satisfy
performance constraints, and reduce contentions for shared
resources leaving room for other contention interfering flows.
Therefore, WRR can be used to control the per-flow delay
bound by controlling its assigned weight.

It is worth mentioning that RR is a special case of WRR
(all weights equal) and will most likely be found by the
optimization algorithm when it is preferable according to the

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

D
el
ay
 B
o
u
n
d
 (
cy
cl
e)

Flow Index

Model

Simulation

Fig. 11. Comparison of delay bounds from the proposed model and simulator
for VOPD application

defined optimization objectives.
We have investigated the accuracy of the proposed analytical

model with the BookSim simulator in our previous work [4].
However, as we have extended the model to WRR policy, we
compare per-flow delay bounds obtained from the analytical
model and BookSim simulator [32] for the Optimized scheme.
The simulation uses the same assumptions as explained in [4].
As shown in Fig. 11, all delays observed in simulations are
below the LUDB but not too far, suggesting that the analytical
bound is fairly tight since the simulation typically does not
exercise the worst case.

We have also computed the relative errors with respect to

TABLE II
HOW GOOD ARE OPTIMIZED WEIGHTS?

Scheme Type Weight Vector
Total

Worst-case
Delay (cycles)

Average
Worst-case

Delay (cycles)

Optimized (2, 8, 8, 2, 6, 6, 4, 2, 3, 6,
8, 2, 2, 8, 4, 4, 6, 8, 7, 4)

3671 174

Round Robin (5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5)

4237 202

Random (1, 4, 2, 7, 2, 3, 9, 5, 8, 5,
9, 6, 8, 3, 8, 7, 1, 5, 2, 5)

7177 343

Unoptimized (1, 1, 1, 9, 1, 1, 9, 9, 9, 5,
9, 9, 9, 1, 9, 9, 1, 1, 1, 5)

19432 926

simulation results to consider the accuracy of the analytical
model. The calculations show that the maximum and average
relative errors are about 33.33% and 16.3%, respectively.

Monitoring the delay of packets shows that worst-case delay
is much larger than average-case delay, which is reasonable
because worst-case bounds cover corner cases. We have also
noticed that traffic burstiness has the most influence on the
delay distribution. The larger the burstiness, the larger the delay
variance.

2) Multi-objective Optimization: In the multi-objective op-
timization minimizing delay and variance, we have calculated
two parameters: Total Worst-case Delay and Variance listed
in Table III. As can be observed from Table III, Minimize-
Delay problem guarantees that weight allocation is carried out
in favor of minimizing total worst-case delay while there is no
such guarantee for the variance over various flows. In contrast,
the Multi-objective optimization provides a trade-off between
such parameters.

Under the Multi-objective optimization the standard devia-
tion is less than 0.89 of the average delay because variance
is an explicit target for minimization. It is also fairly small
under the Minimize-Delay objective (standard deviation < 1.1
of the average delay) because greater imbalances of flows
(bigger variance) tend to lead to worse contention between
flows and thus to higher average delays. Hence, the Minimize-
Delay algorithm implicitly tends to reduce variance as well.

Although we have assumed the same importance for total
delay and variance in the multi-objective problem by consid-
ering the same weighting coefficients in Equation (15), it is
possible for designers to change the value of the weighting
coefficients γ1 and γ2 to specify another relative importance
of objective functions.

3) Comparing with Other Solution Methods: As a compar-
ative study, we implement three other metaheuristics, namely
Pure Random Search (PRS) [33], Markov Monotonous Ap-
proach (MMA) [34], and Adaptive Search (AS) [34] to compare
them with the genetic algorithm in terms of run-time and effi-
ciency. These algorithms belong to a category of metaheuristics
called trajectory-based methods. A trajectory-based algorithm
works on single solutions at any time, namely, it starts from
an initial state (initial solution) and follows a trajectory to
reach a successor solution which may or may not belong
to the neighborhood of the current solution. Population-based
metaheuristics, on the contrary, deal with a set (a population)
of solutions in each iteration and in turn provide an intrinsic
method for exploring the search space. The way of manipulat-

TABLE III
HOW GOOD IS MULTIOBJECTIVE OPTIMIZATION?

Weight Vector
Total

Worst-case
Delay (cycles)

Variance

Round
Robin

(5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5)

4237 59324.49

Minimize-
Delay

(2, 8, 8, 2, 6, 6, 4, 2, 3, 6,
8, 2, 2, 8, 4, 4, 6, 8, 7, 4)

3671 35416.67

Multi-
objective

(6, 9, 9, 1, 6, 7, 2, 1, 1, 6
4, 1, 1, 9, 4, 3, 8, 1, 1, 6)

4045 29320.71

IP5 IP7 IP6 IP15

IP4 IP8 IP9 IP10

IP3 IP14 IP11 IP2

IP0 IP12 IP13 IP1

IP9 IP1 IP2 IP0

IP10 IP12 IP15 IP13

IP8 IP6 IP3 IP5

IP11 IP7 IP14 IP4

a) b)
Fig. 12. Two different mappings for VOPD application

ing the population has a significant impact on the performance
of these methods. Genetic algorithms belong to this category.
We also extend PRS, MMA, and AS to support a population
of solutions instead of a single solution. Hereby, they produce
m solutions in every iteration and select n solutions for the
next iteration. The extended versions of PRS, MMA, and AS
are called PRS (m + n), MMA (m + n), and AS (m + n).
Table IV presents the iteration number and run time required
for solving the optimization problem (Eq. 8).

The results show that all metaheuristics presented in this
table obtain the same solution for the problem. Therefore, we
can say with some confidence that the solution is of high
quality.

The table shows that the genetic algorithm has a shorter
execution time with fewer iterations. GA is no exhaustive
optimization method. However, as it is well known that GAs
provide an efficient and robust method for solving problems
in which the objective function is discontinuous, nondifferen-
tiable, or highly nonlinear and due to the results from table
IV, we believe that GA is a well suited solution method for
our problem.

4) Comparing with An Optimized Mapping: By this point,
we have considered a random mapping for VOPD application
as shown in Fig. 12a). To show how a good mapping affect
the results from our approach, we take the optimized mapping
shown in Fig. 12b) from PERMAP algorithm [42]. Table V
presents Total Worst-case Delay parameter derived from our
approach for different scenarios on these two mappings. As it
can be seen, applying our technique along with a good mapping
can give much better results in terms of delay minimization.

TABLE IV
COMPARISON OF THE RUN TIME FOR DIFFERENT METHODS

Optimal point obtained by the methods

Optimal Weight Vector Total Delay
(2, 8, 8, 2, 6, 6, 4, 2, 3, 6, 8, 2, 2, 8, 4, 4, 6, 8, 7, 4) 3671 cycles

Performance in different methods

Iteration# Time (sec)
PRS 100, 000 2.71
MMA 100, 000 2.8
AS 100, 000 2.85
PRS (10 + 10) 5, 000 13
MMA (10 + 10) 5, 000 13.37
AS (10 + 10) 5, 000 12.83
GA 250 1.05

5 0 1 2

6710

11

12

13

15

16
17

182021 22 23

24

3 4

89

14

19

H263 Encoder

MP3 Encoder MP3 Decoder

H263 Decoder
1f
2f

3f
4f 6f5f 7f

8f 9f
10f

11f
13f12f 14f

15f

16f

18f

17f

19f

20f

21f22f

22f

20 16

10 0 5

7 1 18

IP1

4

23

13

14

24

9

21 22 17 IP1193

6 2 11 8 12

15

a) b)
Fig. 13. MMS Application

B. Mutlimedia Application

We have evaluated our method for a generic MultiMedia
System (MMS). MMS is an integrated video/audio system
which includes an H263 video encoder, an H263 video de-
coder, an MP3 audio encoder, and an MP3 audio decoder. This
application can be partitioned into 40 concurrent tasks and then
these tasks are assigned onto 25 selected IPs [43]. These IPs
range from DSPs, generic processors, and embedded DRAMs
to customized application specific integrated circuits (ASICs).
Real video and audio clips are used as inputs to derive the
communication patterns among these IPs. Fig. 13a) reveals the
communication task graph of this system [43]. We have applied
the PERMAP algorithm [42] to get an optimized mapping for
this system as shown in Fig. 13b).

Due to shared channels in the MMS application, weight
vector W consisting of 37 weights is defined as below:

W =
(
w(16,1,0,0), w(15,3,0,2), w(15,0,0,2), w(5,3,0,0), w(14,4,0,2),

w(19,1,0,2), w(18,4,0,2), w(18,3,0,2), w(13,2,0,4), w(23,3,0,0),

w(14,1,0,4), w(10,2,0,4), w(1,0,0,4), w(1,3,0,4), w(11,4,0,0),

w(6,0,0,3), w(13,1,0,0), w(8,2,0,0), w(2,4,0,0), w(21,3,0,0),

w(16,4,0,0), w(15,4,0,2), w(5,4,0,0), w(14,0,0,2), w(19,4,0,2),

w(18,0,0,2), w(13,3,0,4), w(23,2,0,0), w(14,2,0,4), w(10,0,0,4),

w(1,1,0,4), w(11,2,0,0), w(6,1,0,3), w(13,4,0,0), w(8,4,0,0),

w(2,1,0,0), w(21,2,0,0)

)
(17)

Fig. 14 depicts delay bounds for each flow under the
RR policy and the optimized WRR scheme with Minimize-
Delay. Although flows in WRR can experience longer or
shorter delays than under the RR scheme, the optimized WRR
scheme guarantees an appropriate weight allocation in terms

TABLE V
COMPARISON OF TOTAL WORST-CASE DELAY WITH THE RANDOM AND

OPTIMIZED MAPPINGS

Random Mapping PERMAP Mapping
Round Robin 4237 2385
Minimize-Delay 3671 2159
Multi-objective 4045 2544

Min Delay‐RR

Min Multi‐RR

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

D
el
ay
 B
o
u
n
d
 (
cy
cl
e)

Flow Index

WRR Policy

RR Policy

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

D
el
ay
 B
o
u
n
d
 (
cy
cl
e)

Flow Index

WRR Policy

RR Policy

Fig. 14. Maximum worst-case delay for every flow in MMS application

of minimizing total worst-case delay.

For more detail, we have presented two parameters Total
Worst-case Delay and Variance for different defined scenarios
in Table VI. As explained before, Minimize-Delay problem
allocates weights such that guarantees total worst-case delay
minimization and Multi-objective problem provide a trade-off
between these two parameters.

TABLE VI
COMPARISON AMONG DIFFERENT SCENARIOS FOR MMS APPLICATION

Weight Vector
Total

Worst-case
Delay (cycles)

Variance

Random
Scheme

(5, 4, 4, 7, 9, 3, 1, 1, 9, 9, 7, 4,
5, 2, 4, 2, 9, 9, 2, 5, 5, 2, 3, 1, 7
8, 1, 1, 3, 6, 3, 6, 8, 1, 1, 8, 5)

13509 671014

Round
Robin

(5, 3, 3, 5, 5, 5, 3, 3, 5, 5, 5, 5,
3, 3, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5
4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5)

4783 26324.9

Minimize-
Delay

(5, 3, 4, 7, 2, 8, 1, 4, 5, 4, 7, 5,
5, 2, 4, 2, 1, 4, 2, 5, 5, 3, 3, 8, 2
5, 5, 6, 3, 5, 3, 6, 8, 9, 6, 8, 5)

4034 14832.5

Multi-
objective

(9, 1, 1, 8, 2, 8, 1, 4, 4, 4, 2, 9,
1, 1, 1, 5, 1, 1, 6, 1, 1, 8, 2, 8, 2
5, 6, 6, 8, 1, 8, 9, 5, 9, 9, 4, 9)

4855 10628.4

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

D
e
la
y
B
o
u
n
d
 (
cy
cl
e
)

Flow Index

WRR Policy

RR Policy

Fig. 15. Maximum worst-case delay for every flow under transpose traffic
pattern

C. Transpose Traffic Pattern

To investigate a larger network, we experiment a 8 × 8
mesh network under the transpose traffic pattern with 56
communication flows. The values of L and p are assumed
1 flit and 1 flit/cycle, respectively. For different flows, ρ
varies between 0.001 and 0.03 flits/cycle, and σ between 2
and 128 flits. Table VII presents the source and destination
of flows along with the index assigned to them.

Similar to previous case studies, we depict per-flow worst-
case delay bounds for RR policy and the optimized WRR
scheme in Fig. 15. Regarding this figure, it is apparent that
some flows in the optimized WRR policy may suffer longer
delays than RR scheme. However, total delay bound in the
optimized WRR scheme is equal to 17610 cycles while it is
19761 cycles in RR scheme. These values confirm that an
appropriate weight allocation can guarantee total delay bound
minimization in the network.

X. CONCLUSIONS

We have extended our earlier proposed methodology [4]
for deriving per-flow delay bounds under RR policy to WRR
scheduling and then compared them. We have developed
algorithms to automate analysis steps. It is notable that the
proposed methodologies for both RR and WRR do not deal
with the back-pressure, but we have calculated the buffer size
thresholds to make sure the back-pressure does not occur in the
network. Based on these analytical models, we have presented
two optimization problems for weight allocation in WRR
scheduling, one for minimizing the total worst-case delays and
one for minimizing both total worst-case delays and their vari-
ance under performance requirements to control per-flow delay
bounds. We have also demonstrated that the proposed model
exerts significant impact on communication performance. The
algorithm for solving the proposed minimization problems
runs very fast. For the case study, the optimized solution is
found within about one second. The contribution of this paper
is providing a performance evaluation tool for designers to
make a good decision at the design phase. The algorithm can
be performed at run time as it is quite fast but it needs a
control infrastructure to get feedback from the network and
distribute the results. On the other hand modifying weights at
run time is not easy. The way of applying the algorithm at
run time can be considered as a future work. In the future,
we intend to investigate other scheduling policies. We also
plan to extend the proposed analytical method in case of back-

pressure in the network. Zhao and Lu [41] propose analytical
models to derive worst-case bounds for constant bit rate
flows due to back-pressure in the network. The current work
does not consider speculative VC-allocation/switch allocation
techniques. Extending the model to adjust these techniques
can be considered as another future work. In this paper, we
have assumed virtual-cut-through switching as the model is
suitable for NoCs with small packets only. Small packet NoCs
are a relevant and important, even in practice. Extension of the
model to support wormhole routing is under our investigation.
There are currently some papers in our group on wormhole
routing but they consider only average behavior of flows [19]
[44].

REFERENCES

[1] J. Y. L. Boudec and P. Thiran, ”Network Calculus: A Theory of Determin-
istic Queuing Systems for the Internet”, Number 2050 in LNCS, 2004.

[2] F. Jafari, A. Jantsch, and Z. Lu, ”Output Process of Variable Bit-Rate
Flows in On-Chip Networks Based on Aggregate Scheduling”, in Proc.
of the International Conference on Computer Design (ICCD), pp. 445-
446, 2011.

[3] F. Jafari, A. Jantsch, Z. Lu, ”Worst-Case Delay Analysis of Variable Bit-
Rate Flows in Network-on-Chip with Aggregate Scheduling”, in Proc. of
Design, Automation and Test in Europe Conference (DATE), pp. 538-541,
2012.

[4] F. Jafari, Z. Lu, and A. Jantsch, ”Least Upper Delay Bound for VBR
Flows in Networks-on-Chip with Virtual Channels”, ACM Transactions
on Design Automation of Electronic Systems (TODAES), Vol. 20, No. 3,
Article No. 35, June 2015.

[5] C. Blum and A. Roli, ”Metaheuristics in combinatorial optimization:
Overview and conceptual comparison”, ACM Comput. Surv., Vol. 35, No.
3, pp. 268-308, 2003.

[6] A. E. Kiasari, A. E., Jantsch, A., and Z. Lu, Mathematical formalisms for
performance evaluation of networks-on-chip, ACM Computing Surveys.
Vol. 45, No. 3, Article No. 38, 2013.

[7] Y. Ben-Itzhak, I. Cidon, A. Kolodny, Average latency and link utilization
analysis of heterogeneous wormhole NoCs, Integration, the VLSI Journal,
Vol. 51, Issue C, pp. 92-106, 2015

[8] Qian et al. ”A Support Vector Regression (SVR) based Latency Model
for Network-on-Chip (NoC) Architectures”, IEEE Transactions on CAD,
Vol. PP, No. 99, pp. 1

[9] Qian et al. ”A comprehensive and accurate latency model for Network-
on-Chip performance analysis,” in Proc. of Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 323-328, 2014.

[10] Qian et al. ”SVR-NoC: a performance analysis tool for network-on-chips
using learning-based support vector regression model”. In Proc. of Design,
Automation and Test in Europe (DATE), pp. 354-357, 2013.

[11] P. Bogdan, M. Kas, R. Marculescu, O. Mutlu, ”QuaLe: A Quantum-
Leap Inspired Model for Non-stationary Analysis of NoC Traffic in Chip
Multi-processors”, in Proc. of the International Symposium on Networks-
on-Chip (NOCS), pp. 241-248, 2010

TABLE VII
THE LIST OF FLOWS UNDER TRANSPOSE TRAFFIC PATTERN

f1 : 0 −→ 63 f15 : 19 −→ 37 f29 : 63 −→ 0 f43 : 37 −→ 19
f2 : 1 −→ 55 f16 : 18 −→ 45 f30 : 55 −→ 1 f44 : 45 −→ 18
f3 : 2 −→ 47 f17 : 17 −→ 53 f31 : 47 −→ 2 f45 : 53 −→ 17
f4 : 3 −→ 39 f18 : 16 −→ 61 f32 : 39 −→ 3 f46 : 61 −→ 16
f5 : 4 −→ 31 f19 : 27 −→ 36 f33 : 31 −→ 4 f47 : 36 −→ 27
f6 : 5 −→ 23 f20 : 26 −→ 44 f34 : 23 −→ 5 f48 : 44 −→ 26
f7 : 6 −→ 15 f21 : 25 −→ 52 f35 : 15 −→ 6 f49 : 52 −→ 25
f8 : 13 −→ 22 f22 : 24 −→ 60 f36 : 22 −→ 13 f50 : 60 −→ 24
f9 : 12 −→ 30 f23 : 34 −→ 43 f37 : 30 −→ 12 f51 : 43 −→ 34
f10 : 11 −→ 38 f24 : 33 −→ 51 f38 : 38 −→ 11 f52 : 51 −→ 33
f11 : 20 −→ 29 f25 : 32 −→ 59 f39 : 29 −→ 20 f53 : 59 −→ 32
f12 : 10 −→ 46 f26 : 41 −→ 50 f40 : 46 −→ 10 f54 : 50 −→ 41
f13 : 9 −→ 54 f27 : 40 −→ 58 f41 : 54 −→ 9 f55 : 58 −→ 40
f14 : 8 −→ 62 f28 : 48 −→ 57 f42 : 62 −→ 8 f56 : 57 −→ 48

[12] P. Bogdan, R. Marculescu, ”Workload Characterization and Its impact
on Multicore Platform Design”, in Proc. of Hardware/software codesign
and system synthesis (CODES+ISSS), pp. 231-240, 2010.

[13] P. Bogdan, ”Mathematical Modeling and Control of Multifractal Work-
loads for Data-Center-on-a-Chip Optimization”, in Proc. of Symposium
on Networks-on-Chip (NOCS), Article No. 21, 2015.

[14] Y. Xue and P. Bogdan, ”User Cooperation Network Coding Approach
for NoC Performance Improvement”, in Proc. of Symposium on Networks-
on-Chip (NOCS) Article No. 17, 2015.

[15] A. Charny and J.L. Boudec, ”Delay Bounds in a Network with Aggregate
Scheduling”, in Proc. of QofIS, pp.1-13, 2000,

[16] Y. Jiang, ”Delay bounds for a network of guaranteed rate servers with
FIFO aggregation”, Computer Networks, Vol. 40, No. 6, pp. 683-694,
2002.

[17] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea, ”Tight end-to-
end per-flow delay bounds in fifo multiplexing sink-tree networks”,
Performance Evaluation, Vol. 63, No. 9, pp. 956-987, 2006.

[18] F. Jafari, Z. Lu, A. Jantsch, and M. H. Yaghmaee, ”Buffer Optimization
in network-on-Chip through Flow Regulation”, IEEE Transactions on
CAD, Vol. 29, No. 12, pp. 1973-1986, 2010.

[19] Y. Qian, Z. Lu, and Q. Dou, ”QoS Scheduling for NoCs: Strict Priority
Queueing versus Weighted Round Robin”, in Proc. of the 28th Interna-
tional Conference on Computer Design (ICCD), pp. 52-59, 2010.

[20] N. Concer, L. Bononi, M. Soulie, R. Locatelli and L. Carloni, The
Connection-Then-Credit Flow Control Protocol for Heterogeneous Mul-
ticore Systems-on-Chip. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Sys, Vol. 29, No. 6, pp. 869-882, 2010.

[21] M. Sallam, M. W. El-Kharashi, M. Dessouky, “The Connection-Then-
Credit Flow Control Protocol for Networks-On-Chips: Implementation
Trade-offs”, in Proc. of International Workshop on Network on Chip
Architectures (NoCArc), pp. 25-30, 2014.

[22] A. Joshi, M. Mutyam, “Prevention flow-control for low latency torus
networks-on-chip”, in Proc. of Symposium on Networks on Chip (NoCS),
pp. 41-48, 2011.

[23] J. Lin, X. Lin, L. Tang, “Making-a-stop: A new bufferless routing algo-
rithm for on-chip network,” Journal of Parallel and Distributed Computing,
vol. 72, no. 4, pp. 515-524, Jan. 2012.

[24] N. Najib, A. Monemi, and M.N. Marsono, “Partially adaptive look-
ahead routing for low latency Network-on-Chip”, in Proc. of Research
and Development (SCOReD), pp. 1-5, 2014.

[25] S. Ma, N. E. Jerger, Z. Wang, “Whole packet forwarding: Efficient design
of fully adaptive routing algorithms for networks-on-chip”, in Proc. of
High-Performance Computer Architecture (HPCA), pp. 1-12, 2012.

[26] S. Ma, Z. Wang, N. E. Jerger, L. Shen, N. Xiao, ”Novel Flow Control for
Fully Adaptive Routing in Cache-coherent NoCs”, IEEE Transactions on
Parallel & Distributed Systems, No. 1, pp. 1, doi:10.1109/TPDS.2013.166

[27] A. Monemi, C. Y. Ooi, M. N. Marsono, ”Low Latency Network-
on-Chip Router Microarchitecture Using Request Masking Technique”,
International Journal of Reconfigurable Computing, Vol. 2015, Article
No. 2, 13 pages.

[28] H. M. G. Wassel, Ying Gao, J. K. Oberg, T. Huffmire, R. Kastner,
F. T. Chong, T. Sherwood, ”SurfNoC: a low latency and provably
non-interfering approach to secure networks-on-chip”, in Proc. of the
International Symposium on Computer Architecture (ISCA), pp. 583-594,
2013.

[29] A. Psarras, I. Seitanidis, C. Nicopoulos, G. Dimitrakopoulos,
“PhaseNoC: TDM scheduling at the virtual-channel level for efficient
network traffic isolation”, in Proc. of the Design, Automation & Test in
Europe Conference (DATE), pp. 1090-1095, 2015.

[30] J.D. Owens et al., ”Research Challenges for On-Chip Interconnection
Networks”, IEEE Micro, Vol. 27, No. 5, pp. 96-108, 2007.

[31] D. P. Bertsekas, ”Stochastic optimization problems with nondifferentiable
cost functionals”, Journal of Optimization Theory and Applications, Vol.
12, No. 2, pp. 218-231, 1973.

[32] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, J.
Kim, and W. J. Dally, ”A Detailed and Flexible Cycle-Accurate Network-
on-Chip Simulator”, in Proc. of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pp. 86–96, 2013,

[33] S. H. Brooks, ”A discussion of random methods for seeking maxima”,
The computer journal, Vol. 6, No. 2, 1958.

[34] R. White, ”A survey of random methods for parameter optimization”,
SIMULATION, Vol. 17, pp. 197-205, 1971.

[35] J. Wroclawski, The Use of RSVP with IETF Integrated Services,
September 1997. RFC 2210, IETF.

[36] CA. Coello Coello, ”A comprehensive survey of evolutionary based mul-
tiobjective optimization techniques”, Knowledge and Information systems,
Vol. 1, No. 3, pp. 269-308, 1999.

[37] P. Bajpai and M. Kumar, ”Genetic Algorithm – an Approach to Solve
Global Optimization Problems”, Indian Journal of Computer Science and
Engineering, Vol. 1 No. 3, pp. 199-206.

[38] J. Guan, M. M. Aral, ”Progressive genetic algorithm for solution of
optimization problems with nonlinear equality and inequality constraints”,
Applied Mathematical Modelling, Vol.23, No. 4, pp. 329–343, 1999.

[39] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L.
Benini, G. De Micheli, ”NoC synthesis flow for customized domain
specific multiprocessor systems-on-chip”, IEEE Transaction on Parallel
and Distributed Systems, Vol. 16, No. 2, pp. 113-129, 2005.

[40] E.B. van der Tol and E.G. Jaspers, “Mapping of MPEG4 Decoding on
a Flexible Architecture Platform”, SPIE, Vol. 4674, pp. 1-13, 2002.

[41] X. Zhao and Z. Lu. ”Per-flow Delay Bound Analysis Based on a For-
malized Micro-architectural Model”, in Proc. of ACM/IEEE International
Symposium on Networks-on-Chip (NoCS), 2013.

[42] A. E. Kiasari, S. Hessabi, and H. Sarbazi–Azad, “PERMAP: A Per-
formance–Aware Mapping for Application–Specific SoCs”, in Proc. of
Application–specific Systems, Architectures and Processors (ASAP), pp.
73–78, 2008.

[43] J. Hu, and R. Marculescu, ”Energy-aware mapping for tile-based NoC
architectures under performance constraints”, in Proc. of Asia and South
Pacific Design Automation Conference (ASP-DAC), pp. 233-239, 2003.

[44] Y. Qian, Z. Lu, W. Dou, ”Analysis of Worst-case Delay Bounds for
Best-effort Communication in Wormhole Networks on Chip”, in Proc. of
Symposium on Networks-on-Chip (NOCS), pp. 44-53, 2009.

Fahimeh Jafari received her B.Sc. and M.Sc. de-
grees in Computer Engineering from Ferdowsi Uni-
versity of Mashhad, Iran, in 2002 and 2005, respec-
tively, and Ph.D. degree in Electronic and Computer
Systems from the KTH Royal Institute of Technol-
ogy, Stockholm, Sweden, in 2015. Then, she joined,
as Post-Doctoral Teaching Fellow, the Department
of Mathematics and Computer Science, Liverpool
Hope University, UK, and she is currently Lecturer
(Assistant Professor) at Liverpool Hope University.
Her research interests include design methodologies,

interconnection networks, optimization theory, and performance evaluation.

Axel Jantsch (M’97) received a Dipl.Ing. (1988) and
a Dr. Tech. (1992) degree from TU Wien, Vienna,
Austria. Between 1993 and 1995 he received the Al-
fred Schrödinger scholarship from the Austrian Sci-
ence Foundation for a postdoc at the Royal Institute
of Technology (KTH), Stockholm, Sweden. From
1995 through 1997 he was with Siemens Austria
in Vienna as a system validation engineer. Between
1997 and 2002 he was Associate Professor at KTH,
and from 2002 to 2014 he was full Professor in
Electronic Systems Design at KTH. Since September

2014, he is Professor of Systems on Chips in the Institute of Computer
Technology at the TU Wien. A. Jantsch has published over 300 articles and one
book in the areas of VLSI design and synthesis, system level specification,
modeling and validation, HW/SW codesign and cosynthesis, reconfigurable
computing, and networks on chip, and has more recently turned his attention
to self-awareness in cyber-physical systems.

Zhonghai Lu Zhonghai Lu (M’05) received the
B.Sc. degree in radio and electronics from Beijing
Normal University, Beijing, China, in 1989, and the
M.Sc. degree in system-on-chip design and the Ph.D.
degree in electronic and computer system design,
both from the KTH Royal Institute of Technology,
Stockholm, Sweden, in 2002 and 2007, respectively.

He was an Engineer in the field of electronic and
embedded systems from 1989 to 2000. He was a
Post-Doctoral Researcher at the KTH Royal Institute
of Technology, for two years, where he is currently

an Associate Professor with the Department of Electronics and Embedded
Systems, School for Information and Communication Technology. His current
research interests include on-chip networks, many-core architectures, perfor-
mance analysis, and design automation etc. He has published over 110 peer-
reviewed papers in the above areas.

1f

2f

a)
2r 3r

3f
4r

4f
8r 12r1r 16r

1f 2f

b)

3f 4f
),1(3r

β)},3,1({ 4r
β)},4,3,1({ 8r

β)},4,1({ 12rβ),1(16rβ)},2,1({ 2r
β),1(1r

β

c)

1f 2f 3f

),1(3r
β)},3,1({ 4r

β)},4,3,1({ 8r
β)},4,1({ 12rβ),1(16rβ)},2,1({ 2r

β),1(1r
β

4f 4f ′

d)

1f 2f 3f

),1(3r
β)},3,1({ 4r

β)},3,1({ 8r
β),1(12rβ),1(16rβ)},2,1({ 2r

β),1(1r
β

e)

1f 2f 3f

),1(3r
β)},3,1({ 8,4r

β),1(16.12rβ)},2,1({ 2r
β),1(1r

β

1f

g)),1(16,12,8,4,3,2,1r
β

Fig. 16. An example of end-to-end ESC computation

APPENDIX

This appendix is included for completeness, but is already
published in paper [4].

Here, we show the procedure of deriving end-to-end ESC
for a tagged flow with the help of the example in Figure 1.
Assuming flow f1 is the tagged flow, its routing path is shown
in a tandem of routers in Figure 16(a).

After analyzing per-router resource sharing scenarios and
deriving intra-router ESCs, we can view an analysis model
which keeps per-router ESCs of a tagged flow or tagged
aggregate flow as shown in Figure 16(b). This model is called
aggregate analysis model. In this model, β(si,rj) indicates
that the service curve is related to flow fsi in router rj .
For instance, β({1,2},r2) is the service curve of aggregate
flow f{1,2} in router r2. A set of si’s in a tandem of
routers is denoted as S = {si}. For example, in Figure
16(b), S = {{1}, {1, 2}, {1}, {1, 3}, {1, 3, 4}, {1, 4}, {1}}. It
is notable that the elements should be placed in S with the
same order as in the tandem of routers because the place of
each element effects on the value of some parameters in the
rest of the paper.

We use the theorem of concatenation of network ele-
ments [1] to model nodes sequentially connected and each is
offering a rate-latency service curve to each of the aggregate
flows β(si,rj), j = 1, 2, ..., n as a rate-latency server as follows:

β(si,r1,2,...,n) = β(si,r1) ⊗ β(si,r2) ⊗ ...⊗ β(si,rn)

(18)
where the minimum service rate and the maximum process-

ing latency in an equivalent rate-latency server are defined as
follows:

R(si,r1,2,...,n) = min
(
R(si,r1), R(si,r2), ..., R(si,rn)

)
T l(si,r1,2,...,n) = T l(si,r1) + T l(si,r2) + ...+ T l(si,rn)

(19)

In Figure 16(b), sequentially connected service curves for
the same aggregate flows do not exist. Thus, we can directly
go to the next step which considers contention scenarios.

As illustrated in Figures 16(a), contention flow f2 is nested
in flow f1 and contention flow f3 is crossed with f4. To
consider contentions in this model and obtain inter-router
ESC, we decompose a complex contention scenario to basic
contention patterns and then remove contention flows one by
one. The contention scenarios can be classified into two basic
patterns, namely, nested and crossed. We apply the algebra of
sets to recognize contention scenarios. Convenient notations
are defined through the example in order to facilitate our
discussion. To recognize the contention scenarios, we first
find sm =

{
sx
∣∣|sx| = max (|si|) ;∀si ∈ S

}
, where |sx| is the

cardinality (the number of elements) of set sx. In other words,
sm is sx ∈ S with the maximum cardinality. The service curve,
flow, and router related to sm are denoted as fsm , βm, and rm,
respectively. Thus, these notations in Figure 16(b) are given by
S = {{1}, {1, 2}, {1}, {1, 3}, {1, 3, 4}, {1, 4}, {1}}, sm =
{1, 3, 4}, fsm = f{1,3,4}, rm = r8, and βm = β({1,3,4},r8).

The set placed before sm in S is called sPrev and the set
after that sNext. In this respect, the related aggregate flow,
service curve, and router to sPrev are denoted as fsPrev , βPrev,
and rPrev, respectively. fsNext , βNext, and rNext are related to
sNext as well. Therefore, due to sm ={1,3,4} in Figure 16(b),
sPrev = {1, 3}, βPrev = β({1,3},r4), fsPrev = f{1,3}, rPrev =
r4, sNext = {1, 4}, βNext = β({1,4},r12), fsNext = f{1,4}, and
rNext = r12.

Now, we can recognize contention scenarios as below:
1) if sNext ⊂ sPrev then the contention is nested;

– Remove fsm−(sm∩sNext) from βm

2) else if sPrev ⊂ sNext then the contention is nested;
– Remove fsm−(sm∩sPrev) from βm.

3) else
• if sNext ⊂ sm then the contention is nested;

– Remove fsm−(sm∩sNext) from βm

Algorithm 4 End-to-End ESC Algorithm
1: Find the set of contention flows of tagged flow ft, denoted by
CFt

2: for ∀j ∈ CFt do
3: if Src(j) /∈ Path(t) then
4: Find joiningnode = JoiningPoint(fj)
5: Calculate X = ESC(fj , Src(j), joiningnode)
6: αj = αj �X
7: end if
8: end for
9: Calculate intra-router ESC for WRR based on Section V-A.

10: Calculate β(si1 ,rj1) ⊗ β(si2 ,rj2) ⊗ ...⊗ β(sin ,rjn) if i1 = i2 =

... = in.
11: Find sm =

{
sx
∣∣|sx| = max (|si|) ; ∀si ∈ S

}
.

12: repeat
13: if sPrev ⊂ sNext then
14: Remove fsm−(sm∩sNext) from βm

15: else if sNext ⊂ sPrev then
16: Remove fsm−(sm∩sPrev) from βm.
17: else
18: if sPrev ⊂ sm then
19: Remove fsm−(sm∩sPrev) from βm

20: else if sNext ⊂ sm then
21: Remove fsm−(sm∩sNext) from βm.
22: else
23: Find joiningnode =

JoiningPoint(f(sm−sPrev)).
24: Calculate X =

ESC(f(sm−sPrev), joiningnode, r
Next).

25: ά(sm−sPrev) = α(sm−sPrev) �X
26: Remove f(sm−sPrev) from βm.
27: Remove f́(sm−sPrev) from βNext.
28: end if
29: end if
30: Calculate β(si1 ,rj1) ⊗ β(si2 ,rj2) ⊗ ...⊗ β(sin ,rjn) if

i1 = i2 = ... = in.
31: Find sm.
32: until |sm| 6= 1
33: return end-to-end ESC for tagged flow ft

• else if sPrev ⊂ sm then the contention is nested;
– Remove fsm−(sm∩sPrev) from βm.

• else, it is crossed.
– The problem is strictly transformed to the com-

bination of two nested flows
Regarding Figure 16(b), sm = {1, 3, 4}, sPrev = {1, 3},

and sNext = {1, 4}. Since sPrev is not a subset of sNext,
and vice versa, due to contention recognition procedure, this
case is a crossed contention. There are two cross points, one
between r4 and r8 and the other between r8 and r12. We cut
f4 at the second cross point, i.e., at the ingress of r12, f4 will
be split into two flows, f4 and f́4, as shown in Figure 16(c).
Then the problem is strictly transformed to the combination of
nested flows such that f4 is nested in flow f3 and f́4 in f1. It
is clear that the arrival curve α(f́4,r12) equals to output arrival
curve f4 in router r8, α∗(f4,r8). To compute α∗(f4,r8), we need
to get the ESC of r8 for f4, β(f4,r8). Then, we calculate the
output arrival curve of f4 as α∗(f4,r8) = α(f4,r8)� β(f8,r8) and
remove nested flows f4 and f́4 from the tandem as shown in
Figure 16(d). Deriving output arrival curve and removing the
contention flows are done by applying our proposed Theorems
in [2] [3].

After subtracting each contention flow from the ESC, we
should apply the concatenation theorem again to find more
equivalent servers and reduce the number of service curves.
For instance, after removing contention flows f4 and f́4, the
example looks like Figure 16(d). In this figure, the service
curve of sub-tandem {r4, r8} for aggregate flow f{1,3} is
computed as β({1,3},r4,8) = β({1,3},r4) ⊗ β({1,3},r8) and also
β(1,r12,16) is calculated as β(1,r12) ⊗ β(1,r16). The aggregate
analysis model with new equivalent servers is shown in Figure
16(e).

We similarly repeat contention recognition and convolution
steps until |sm| 6= 1. When |sm| = 1, it means, the end-to-end
ESC of tagged flow is obtained.

Algorithm 4 presents all stages of deriving the end-to-end
ESC for a given tagged flow as described through the example.

	Introduction
	Related Work
	Performance Evaluation of Real-time Services
	Performance Improvement

	Network Calculus Background
	System Model
	LUDB Derivation for WRR Policy
	Intra-router ESC
	Channel&Buffer Sharing
	Channel Sharing
	Buffer Sharing

	Inter-router ESC

	Optimization Problem Formulation
	Delay Optimization
	Multi-objective Optimization Problem

	Solution Method
	Implementation
	Experimental Results
	VOPD Application
	Delay Optimization
	Multi-objective Optimization
	Comparing with Other Solution Methods
	Comparing with An Optimized Mapping

	Mutlimedia Application
	Transpose Traffic Pattern

	Conclusions
	References
	Biographies
	Fahimeh Jafari
	Axel Jantsch
	Zhonghai Lu

	Appendix

