16 research outputs found

    An Investigation into Neuromorphic ICs using Memristor-CMOS Hybrid Circuits

    Full text link
    The memristance of a memristor depends on the amount of charge flowing through it and when current stops flowing through it, it remembers the state. Thus, memristors are extremely suited for implementation of memory units. Memristors find great application in neuromorphic circuits as it is possible to couple memory and processing, compared to traditional Von-Neumann digital architectures where memory and processing are separate. Neural networks have a layered structure where information passes from one layer to another and each of these layers have the possibility of a high degree of parallelism. CMOS-Memristor based neural network accelerators provide a method of speeding up neural networks by making use of this parallelism and analog computation. In this project we have conducted an initial investigation into the current state of the art implementation of memristor based programming circuits. Various memristor programming circuits and basic neuromorphic circuits have been simulated. The next phase of our project revolved around designing basic building blocks which can be used to design neural networks. A memristor bridge based synaptic weighting block, a operational transconductor based summing block were initially designed. We then designed activation function blocks which are used to introduce controlled non-linearity. Blocks for a basic rectified linear unit and a novel implementation for tan-hyperbolic function have been proposed. An artificial neural network has been designed using these blocks to validate and test their performance. We have also used these fundamental blocks to design basic layers of Convolutional Neural Networks. Convolutional Neural Networks are heavily used in image processing applications. The core convolutional block has been designed and it has been used as an image processing kernel to test its performance.Comment: Bachelor's thesi

    Design of Neuromemristive Systems for Visual Information Processing

    Get PDF
    Neuromemristive systems (NMSs) are brain-inspired, adaptive computer architectures based on emerging resistive memory technology (memristors). NMSs adopt a mixed-signal design approach with closely-coupled memory and processing, resulting in high area and energy efficiencies. Previous work suggests that NMSs could even supplant conventional architectures in niche application domains such as visual information processing. However, given the infancy of the field, there are still several obstacles impeding the transition of these systems from theory to practice. This dissertation advances the state of NMS research by addressing open design problems spanning circuit, architecture, and system levels. Novel synapse, neuron, and plasticity circuits are designed to reduce NMSs’ area and power consumption by using current-mode design techniques and exploiting device variability. Circuits are designed in a 45 nm CMOS process with memristor models based on multilevel (W/Ag-chalcogenide/W) and bistable (Ag/GeS2/W) device data. Higher-level behavioral, power, area, and variability models are ported into MATLAB to accelerate the overall simulation time. The circuits designed in this work are integrated into neural network architectures for visual information processing tasks, including feature detection, clustering, and classification. Networks in the NMSs are trained with novel stochastic learning algorithms that achieve 3.5 reduction in circuit area, reduced design complexity, and exhibit similar convergence properties compared to the least-mean-squares algorithm. This work also examines the effects of device-level variations on NMS performance, which has received limited attention in previous work. The impact of device variations is reduced with a partial on-chip training methodology that enables NMSs to be configured with relatively sophisticated algorithms (e.g. resilient backpropagation), while maximizing their area-accuracy tradeoff

    Analog Spiking Neuromorphic Circuits and Systems for Brain- and Nanotechnology-Inspired Cognitive Computing

    Get PDF
    Human society is now facing grand challenges to satisfy the growing demand for computing power, at the same time, sustain energy consumption. By the end of CMOS technology scaling, innovations are required to tackle the challenges in a radically different way. Inspired by the emerging understanding of the computing occurring in a brain and nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing architectures are being investigated. Such a neuromorphic chip that combines CMOS analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as electronics synapses can provide massive neural network parallelism, high density and online learning capability, and hence, paves the path towards a promising solution to future energy-efficient real-time computing systems. However, existing silicon neuron approaches are designed to faithfully reproduce biological neuron dynamics, and hence they are incompatible with the RRAM synapses, or require extensive peripheral circuitry to modulate a synapse, and are thus deficient in learning capability. As a result, they eliminate most of the density advantages gained by the adoption of nanoscale devices, and fail to realize a functional computing system. This dissertation describes novel hardware architectures and neuron circuit designs that synergistically assemble the fundamental and significant elements for brain-inspired computing. Versatile CMOS spiking neurons that combine integrate-and-fire, passive dense RRAM synapses drive capability, dynamic biasing for adaptive power consumption, in situ spike-timing dependent plasticity (STDP) and competitive learning in compact integrated circuit modules are presented. Real-world pattern learning and recognition tasks using the proposed architecture were demonstrated with circuit-level simulations. A test chip was implemented and fabricated to verify the proposed CMOS neuron and hardware architecture, and the subsequent chip measurement results successfully proved the idea. The work described in this dissertation realizes a key building block for large-scale integration of spiking neural network hardware, and then, serves as a step-stone for the building of next-generation energy-efficient brain-inspired cognitive computing systems

    Potential and Challenges of Analog Reconfigurable Computation in Modern and Future CMOS

    Get PDF
    In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.Siirretty Doriast

    Low-temperature amorphous oxide semiconductors for thin-film transistors and memristors: physical insights and applications

    Get PDF
    While amorphous oxides semiconductors (AOS), namely InGaZnO (IGZO), have found market application in the display industry, their disruptive properties permit to envisage for more advanced concepts such as System-on-Panel (SoP) in which AOS devices could be used for addressing (and readout) of sensors and displays, for communication, and even for memory as oxide memristors are candidates for the next-generation memories. This work concerns the application of AOS for these applications considering the low thermal budgets (< 180 °C) required for flexible, low cost and alternative substrates. For maintaining low driving voltages, a sputtered multicomponent/multi-layered high-κ dielectric (Ta2O5+SiO2) was developed for low temperature IGZO TFTs which permitted high performance without sacrificing reliability and stability. Devices’ performance under temperature was investigated and the bias and temperature dependent mobility was modelled and included in TCAD simulation. Even for IGZO compositions yielding very high thermal activation, circuit topologies for counteracting both this and the bias stress effect were suggested. Channel length scaling of the devices was investigated, showing that operation for radio frequency identification (RFID) can be achieved without significant performance deterioration from short channel effects, which are attenuated by the high-κ dielectric, as is shown in TCAD simulation. The applicability of these devices in SoP is then exemplified by suggesting a large area flexible radiation sensing system with on-chip clock-generation, sensor matrix addressing and signal read-out, performed by the IGZO TFTs. Application for paper electronics was also shown, in which TCAD simulation was used to investigate on the unconventional floating gate structure. AOS memristors are also presented, with two distinct operation modes that could be envisaged for data storage or for synaptic applications. Employing typical TFT methodologies and materials, these are ease to integrate in oxide SoP architectures

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    Towards Data Reliable, Low-Power, and Repairable Resistive Random Access Memories

    Get PDF
    A series of breakthroughs in memristive devices have demonstrated the potential of memristor arrays to serve as next generation resistive random access memories (ReRAM), which are fast, low-power, ultra-dense, and non-volatile. However, memristors' unique device characteristics also make them prone to several sources of error. Owing to the stochastic filamentary nature of memristive devices, various recoverable errors can affect the data reliability of a ReRAM. Permanent device failures further limit the lifetime of a ReRAM. This dissertation developed low-power solutions for more reliable and longer-enduring ReRAM systems. In this thesis, we first look into a data reliability issue known as write disturbance. Writing into a memristor in a crossbar could disturb the stored values in other memristors that are on the same memory line as the target cell. Such disturbance is accumulative over time which may lead to complete data corruption. To address this problem, we propose the use of two regular memristors on each word to keep track of the disturbance accumulation and trigger a refresh to restore the weakened data, once it becomes necessary. We also investigate the considerable variation in the write-time characteristics of individual memristors. With such variation, conventional fixed-pulse write schemes not only waste significant energy, but also cannot guarantee reliable completion of the write operations. We address such variation by proposing an adaptive write scheme that adjusts the width of the write pulses for each memristor. Our scheme embeds an online monitor to detect the completion of a write operation and takes into account the parasitic effect of line-shared devices in access-transistor-free memristive arrays. We further investigate the use of this method to shorten the test time of memory march algorithms by eliminating the need of a verifying read right after a write, which is commonly employed in the test sequences of march algorithms.Finally, we propose a novel mechanism to extend the lifetime of a ReRAM by protecting it against hard errors through the exploitation of a unique feature of bipolar memristive devices. Our solution proposes an unorthodox use of complementary resistive switches (a particular implementation of memristive devices) to provide an ``in-place spare'' for each memory cell at negligible extra cost. The in-place spares are then utilized by a repair scheme to repair memristive devices that have failed at a stuck-at-ON state at a page-level granularity. Furthermore, we explore the use of in-place spares in lieu of other memory reliability and yield enhancement solutions, such as error correction codes (ECC) and spare rows. We demonstrate that with the in-place spares, we can yield the same lifetime as a baseline ReRAM with either significantly fewer spare rows or a lighter-weight ECC, both of which can save on energy consumption and area

    Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing

    Get PDF
    Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its nonlinear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both EEG and EMG biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90% and 84% for epileptic seizure detection and EMG prosthetic finger control respectively

    Neuromorphic silicon neuron circuits

    Get PDF
    23 páginas, 21 figuras, 2 tablas.-- et al.Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.This work was supported by the EU ERC grant 257219 (neuroP), the EU ICT FP7 grants 231467 (eMorph), 216777 (NABAB), 231168 (SCANDLE), 15879 (FACETS), by the Swiss National Science Foundation grant 119973 (SoundRec), by the UK EPSRC grant no. EP/C010841/1, by the Spanish grants (with support from the European Regional Development Fund) TEC2006-11730-C03-01 (SAMANTA2), TEC2009-10639-C04-01 (VULCANO) Andalusian grant num. P06TIC01417 (Brain System), and by the Australian Research Council grants num. DP0343654 and num. DP0881219.Peer Reviewe
    corecore