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Reservoir computing (RC) is gaining traction in several signal processing domains, owing

to its non-linear stateful computation, spatiotemporal encoding, and reduced training

complexity over recurrent neural networks (RNNs). Previous studies have shown the

effectiveness of software-based RCs for a wide spectrum of applications. A parallel

body of work indicates that realizing RNN architectures using custom integrated circuits

and reconfigurable hardware platforms yields significant improvements in power and

latency. In this research, we propose a neuromemristive RC architecture, with doubly

twisted toroidal structure, that is validated for biosignal processing applications. We

exploit the device mismatch to implement the random weight distributions within

the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A

comprehensive analysis is performed to compare the efficiency of the neuromemristive

RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations.

Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks

are used for validating the RC designs. The proposed RC architecture demonstrated an

accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control,

respectively.

Keywords: neuromemristive systems, reservoir computing, memristors, process variations, epileptic seizure

detection and prediction, EMG signal processing, neuromorphic hardware, neuromorphic
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1. INTRODUCTION

Neuromorphic computing has been envisioned as a highly efficient processing platform by
several scientists such as Von Helmholtz (1867), Faggin, and Mead (1990). Since then several
approaches toward modeling computation in biological neural systems have been demonstrated
with both spiking and non-spiking neurons. The common models for computations, such as
the deterministic Turing machines or attractor neural networks, do not particularly carry out
computations on continuous streams of inputs. Hopfield’s groundbreaking work on Recurrent
Neural Networks (RNN; Hopfield, 1982) toWerbos’s training the gradients of the RNN to compute
with backpropagation through time (Werbos, 1990), address the complex temporal machine
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learning tasks. However, the challenge in using RNNs is a
very unstable relationship between the parameters and the
dynamics of the hidden states, referred to as the “fading or
exploding gradients.” Thereby, the application of RNNs to
real-world signal processing is limited. Recently, Hessian-Free
optimizers (Martens, 2010) and RNNs with gated connections
(Sutskever et al., 2011) are proposed to apply them to challenging
sequence problems. It is important to explore models that
capture the complex dynamical responses on spatiotemporal
scales with heterogeneous components and easily applied to
real-world problems, which are earmarks for an intelligent
system. One significant advancement in this direction is the
proposal to leave RNNs untrained and then later process
using a simple classification/regression technique. This idea
was developed in tandem by two independent research groups,
Jaeger (Jaeger, 2001; Jaeger and Haas, 2004) as the Echo
State Network and Maass as the Liquid State Machine (Maass
et al., 2002; Buonomano and Maass, 2009). Collectively these
models are referred to as reservoir computing (RC). The
reservoir can also be viewed as a complex non-linear dynamic
filter where the input is projected onto a high dimensional
temporal map. The RC is strongly inspired by the excitatory
and inhibitory networks of the cerebral cortex which are
inherently unstable. Neurophysiologists have demonstrated that
the excitatory networks generate further excitation (simple
and predictable) and the inhibitory networks generate non-
linear effects (complex). Networks that are built from both
inhibitory and excitatory elements can self-organize and
generate complex properties (Buzsaki, 2006). Such continuous
perturbations are possible in the cortex due to the diversity of the
components (neurons and synapses) and the specificity of their
connections.

Several research groups are studying the theory, modeling,
and software realizations of the reservoirs in real-world
applications (e.g., object recognition, speech recognition, robotic
movement control, dynamic pattern classification, and chaotic
time-series generation). Heterogeneous software realizations of
reservoirs demonstrate that the performance of these networks
either equal or outperform the state-of-the-art machine learning
techniques, within a given set of constraints. Though there is a
growing body of research in the algorithmic study, none of the
existing work explores a comprehensive hardware architecture
for an energy efficient reservoir. A reconfigurable hardware
architecture can significantly improve the power dissipation, area
efficiency, and portability of the reservoirs. In current literature,
there are hardware implementations of the reservoirs which
are primarily digital (Schrauwen et al., 2007; Merkel et al.,
2014). Few research groups have also explored stochastic bit-
streams and mixed-signal designs for the reservoir (Schürmann
et al., 2004; Verstraeten et al., 2005). However, these designs
are emulating a layer of the ESN or LSM and not the overall
design. Moreover, in a large scale ESN the number of synapses
and neurons grow significantly and require devices such as
memristors to realize these primary components in an energy
efficient manner. In this research, we propose scalable and
reconfigurable neuromemristive architectures for the reservoirs
with specific focus on the biosignal processing applications.

Neuromemristive systems (NMSs) are brain-inspired,
adaptive computer architectures based on emerging resistive
memory technology (memristors).The specific memristor model
used in this NMS is a semi-empirical model derived from the
works of Simmons (Simmons, 1963; Simmons and Verderber,
1967), and Mott and Gurney (1940). Detailed description of the
model is presented in Section 5.1. The core building blocks of an
NMS are memristor based synapse, neuron, and learning circuits.
The ESN architecture leverages these primitive blocks for area
and power efficiency. An in-depth comparison of the proposed
ESN architectures in pure digital and mixed-signal designs is
validated for two different benchmarks, Electroencephalogram
(EEG) and Electromyogram (EMG) biosignal datasets. Specific
contributions of this research are: (i) design of a toroidal ESN
architecture with hybrid topology; (ii) digital realization of the
ESN architecture, ported onto different FPGA platforms; (iii)
mixed-signal design of the ESN architecture with subthreshold
circuits; (iv) new bipolar input synapse that leverages mismatch;
(v) analyze the impact of random mismatch-based synapses on
the area and power of the ESN; and (vi) performance and power
analysis of the digital and mixed signal realizations of the ESN.
All design abstractions of the ESN architecture are verified and
tested for the EEG and EMG biosignals with applications in
epileptic seizure detection and prosthetic finger control.

The rest of the paper is organized as follows: Section
2 discusses the theory and background of the reservoirs
(particularly ESNs), Section 3 presents the proposed ESN
architecture and the different topologies, Section 4 discusses the
digital implementation of the proposed ESN architectures along
with the portability to custom FPGA fabrics, Section 5 presents
new mixed signal circuit building blocks for the ESN architecture
and explores their design space, Section 6 discusses the biosignal
benchmarks used for validation, Section 7 entails results and
detailed analysis of the proposed ESN architecture, and Section
8 concludes the work.

2. ECHO STATE NETWORK: THEORY AND
BACKGROUND

Echo State Network (ESN) is a class of reservoir computing
model presented by Jaeger (2001). ESNs are considered as
partially-trained artificial neural networks (ANNs) with a
recurrent network topology. They are used for spatiotemporal
signal processing problems. The ESN model is inspired by the
emerging dynamics of how the brain handles temporal stimuli.
It consists of an input layer, a reservoir layer, and an output
layer (see Figure 1A). The reservoir layer, is the heart of the
network, with rich recurrent connections. These connections are
randomly generated and each connection has a random weight
associated with it. Once generated, these random weights are
never changed during training or testing phases of the network.
The output layer of the ESN linearly combines the desired
output signal from the rich variety of excited reservoir layer
signals. The central idea is that only the output layer weights
have to be trained, using simple linear regression algorithms.
ESN provides a high performance mathematical framework for
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FIGURE 1 | (A) Echo State Network consists of three layers: input layer,

reservoir layer, and output layer. (B) Echo State Network abstract structure.

How signals propagate through the ESN and the effects of different weight

sets in the network.

solving a number of problems. Specifically, they can be applied to
recurrent artificial neural networks without internal noise. ESNs
have simplified training algorithms compared to other recurrent
ANNs and are more efficient than kernel-based methods (e.g.,
Support Vector Machines) due to their ability to incorporate
temporal stimuli (LukošEvičIus and Jaeger, 2009). Because of
its recurrent connections, the output of the reservoir depends
on the current input state and all previous input states within
the system memory. The recurrent network topology of the
reservoir enables feature extraction of spatiotemporal signals.
This property has been used in several application domains such
as motion identification (Ishu et al., 2004), natural language
analysis (Tong et al., 2007), and speech recognition (Skowronski
and Harris, 2007).

2.1. Training Algorithm
Three main sets of weights are associated with the ESNs (see
Figure 1B). The weights at the input and reservoir layers are
randomly generated. These layers are used to extract temporal
features of the input signal. They can be thought of as an internal
pre-process step that prepares the signal for the actual processing
layer where the classification is learned at the readout layer.
Figure 1B also shows the propagation of the signals through
the ESNs. The input signal to the ESN u(n) is pre-processed at
the input and reservoir layers to extract the temporal feature
signal x(n) which is fed to the readout layer to complete the
classification process. Considering that the input and reservoir
layers are not actual parts of this process, their weights are not
trained, which makes training the ESNs much easier than other
types of RNNs.

The goal of the training algorithm is to calculate the weights
at the output layer based on the dynamic response (states) of the

reservoir layer (Jaeger, 2002). The states of the reservoir layer are
calculated based on the input vectors and the weights of the input
and reservoir layer as shown in Equation (1).

x[n+ 1] = f res (Winu[n+ 1]+Wxx[n]) (1)

where u[n] is the ESN input,Win is the weightmatrix between the
input layer and reservoir layer, Wx is the weight matrix between
the neurons within the reservoir layer, and f res is the reservoir
layer’s activation function.

The states of the reservoir layer for all input vectors are used as
an input to a supervised training to calculate the output weights
Wout. There are several linear regression methods to calculate the
weights at the output layer. This work uses normal equation to
implement the supervised training of the ESN (Figure 1B).

Wout = (YX′)(XX′)
−1

(2)

where X is a matrix concatenating all states of the reservoir layer
and Y is a matrix of all training outputs.

The process for training the ESN can be explained through the
following steps:

1. At initialization, randomly generate the weights for the input
and reservoir layers (Win andWx).

2. Drive the next input vector u[n+ 1] to the input layer.
3. Calculate the response of the reservoir layer using (1).
4. Save the response in a matrix (X).
5. Repeat steps 2–4 for all input vectors.
6. Calculate output weights based on normal Equation (2).

Once the weights of the output layer are calculated, the network
is ready and the state of the reservoir layer is used to calculate the
output of the network as shown in Equation (3).

y[n+ 1] = f out (Woutx[n+ 1]) (3)

where y(n + 1) is the output of the network, Wout is the
weight matrix at the readout layer and f out is the readout layer’s
activation function.

3. PROPOSED ESN TOPOLOGY AND
ARCHITECTURE

ESN topology refers to the interconnection pattern between
reservoir neurons1. Few topologies for reservoir were presented
in the literature (Rodan and Tino, 2011). The ESN uses either
fully or randomly connected reservoir layer topology (Jaeger,
2001). The shape of these topologies and their degree of
connectivity is defined by the reservoir layer weight matrix Wx,
where the weights of the unconnected links are set to zero. Such a
randommethod to generate topologies for the reservoir layer has
design constraints. It requires several trials to find the appropriate
topology for a given application. It is non-trivial to regenerate
these connections dynamically; and it requires saving all the

1The term neuron is used to refer to a node or cell in the ESN. The term node is

used to refer to an electrical node or a node in the network architecture.
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connections. There is no guarantee that the generated pattern will
be the best choice for the target application (Rodan and Tino,
2011). Moreover, the highly connected random topology is too
complex to implement in hardware where routing complexity,
area overhead, and power consumption are significantly high.
Thereby, simple reservoir topologies are desirable for hardware
implementation of the ESN.

In the ring topology presented in Rodan and Tino (2011),
the reservoir layer neurons are connected in a ring shape where
the output of each neuron is connected to only the neighboring
neuron (Figure 2A). Equation (4) is used to calculate the state of
a single neuron x(s) in the reservoir layer at a certain time step
n. This equation can be generalized to calculate the state of the
entire reservoir layer as shown in Equation (5).

x(s)[n] = f res(Win(s)U[n]+Wring(s)x(s− 1)[n− 1]) (4)

where x(s)[n] is the state of neuron s at time step n.Win(s) is the
input weight associated with the neuron s. U[n] is the input at
time step n.Wring(s) is the reservoir weight between the neurons
s and s− 1. x(s− 1)[n− 1] is the state of the neuron s− 1 at the
previous time step n− 1.

X[n] = f res(Winu[n]+Wring

≫

X[n− 1]
≪

) (5)

whereX[n] is the state of all neurons in the reservoir layer at time
step n. Win is the input weights matrix. Wring is the reservoir

weight vector (one weight for each neuron).
≫

X[n− 1]
≪

refers to

the state of all neurons in the reservoir layer at time step n − 1
rotated by one.

This topology provides low degree of connectivity in the
network but has high network diameter and average distance
between reservoir neurons. For a ring reservoir layer that has
N number of neurons the diameter is N− 1 and the average
distance is 2

3N. This high diameter causes delay in the response of
the reservoir to the changes in the input. Such delay is undesirable
in biosignal information processing applications.

Simple updates to the ring topology can fix the high diameter
and average distance values. Adding different shortcut links
in the reservoir layer decreases these values but it will result
in an unbalanced network, where the distance between the
neurons will vary depending on their location from the shortcut
links. Using uniform connection links achieves constant distance

between all neurons. Combining the ring topology, shown in
Figure 2A, with the center neuron topology, shown in Figure 2B,
may give the network balanced uniform shortcut links that
increase the connections between neurons and improve network
properties. Figure 2C shows the proposed hybrid reservoir
topology. This topology has low diameter and average distance
compared to the ring topology. The diameter is 2 and the average
distance is less than 2. The reservoir is tightly connected and is
more sensitive to the changes in the input of the network. The
state of the reservoir is calculated using Equations (6) and (7).
Equation (6) is used to calculate the state of the center neuron
which is used to calculate the state of the whole reservoir using
Equation (7).

Xc = WupX[n− 1] (6)

where Xc is the state of the center neuron. Wup is the weight
vector of synapses from the reservoir layer neurons to the center
neuron.

X[n] = f res(Winu[n]+WdownXc+Wring

≫

X[n− 1]
≪

) (7)

where Wdown is the weight vector of synapses from the center
neuron to the reservoir layer neurons.

In terms of complexity, the hybrid topology has two extra
synapses per neuron compared to the ring topology. These
synapses connect the neurons of the reservoir layer with the
center neuron. The idea behind using the center neuron is to
provide each neuron in the reservoir layer with information
about the state of the whole reservoir. It emulates the fully
connected topology in which each neuron has full access to all
neurons within the reservoir layer.

The hybrid topology consists of four main groups of synaptic
links: input set, output set, ring set, and center neuron set (see
Figures 2C, 3). The input, output, and center sets connect each
individual neuron in the reservoir to the three key neurons of the
network: the input, output, and central neurons. Simultaneously,
the ring set connects the reservoir neurons in a daisy chain (each
neuron connects to its two neighbors in the ring). One link
that passes through all the neurons in the reservoir layer in a
ring shape can be used for each set to distribute these signals.
This implies that four rings can implement all the required
connections of the hybrid topology as shown in Figure 3A. This
figure shows two types of ring connections. The first type is
used for the input, output, and center neuron connections. These

FIGURE 2 | (A) ESN with ring reservoir topology. Each reservoir neuron has two inputs and one output. (B) ESN with center neuron topology. Reservoir neurons are

connected to one center neuron that works as a hub. (C) ESN with hybrid topology. Each neuron has three inputs and one output.
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FIGURE 3 | (A) Hybrid topology implemented as four rings. The rings are color coded based on Figure 2. Purple ring is used for the connections between the input

layer and the reservoir layer. Green ring is used for the ring topology connections. Red ring is used for the center neuron connections. Orange ring is used for the

connections between the reservoir layer and the output layer. (B) 5 x 5 doubly twisted toroidal network used to implement a 25 neurons hybrid reservoir. Dual links are

used in this toroidal architecture to implement the four ring connection patterns required for the hybrid reservoir topology. The internal structure of each node in utilized

toroidal architecture is shown. Each node contains a reservoir neuron along with all associated synaptic links.

rings pass by the reservoir neurons which are connected to the
rings through synaptic links. This means that each ring caries
single electrical signal. The second ring type is used for the
ring topology (the green ring). This ring pass through reservoir
neurons. Any point of this ring has its own electrical signal that
is different from any other point. The rings in Figure 3A are
color coded to be consistent with Figure 2C that shows the hybrid
topology.

3.1. Doubly Twisted Toroidal Architecture
The doubly twisted toroidal architecture provides the ring
connection pattern required for the hybrid topology shown in
Figure 3B. This figure also shows the internal structure of each
node in the proposed architecture. Each node in this architecture
represents a neuron in the hybrid reservoir topology along with
its four associated synapses: input, output, ring, and center
neuron. The links in Figure 3B are color coded according to
Figure 3A. Purple ring is used for the connections between the
input neuron and the reservoir neurons. Orange ring is used for
the connections between the reservoir neurons and the output
neuron. Green ring is used for the ring topology connections.
Red ring is used for the center neuron connections. Two types of

synaptic links are used to connect reservoir neurons to the center
neuron ring connection: Wup and Wdown. Wup synaptic links
are used to carry signals from reservoir neurons to the center
neuron. These signals are summed at the center neuron and then
distributed back to the reservoir neurons using Wdown synaptic
links. For further information about the center neuron, refer to
Equations (6) and (7).

In general, the doubly twisted toroidal architecture is
reconfigurable and allows easy portability with few additional
switching elements. An advantage in this case is the doubly
twisted toroidal architecture’s inherent connection pattern, which
enables direct mapping of the hybrid topology without any
additional switching elements. This makes the doubly twisted
toroidal architecture simple compared to the other toroidal
architectures, e.g., 2-D mesh, both in terms of the required
resources and design complexity, where no multiplexers or
switches are used to route the signals. One caveat is that
the doubly twisted toroidal architecture configured for hybrid
topology cannot be reused to implement other reservoir
topologies. However, scalability is still provided by the twisted
toroidal architecture where any size of reservoir can be
implemented. There is a one-to-one relationship between the
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nodes in the doubly twisted toroidal architecture to the neurons
in the reservoir. The total number of input links to each reservoir
neuron is four (see Figure 3A). A node with a dual link doubly
twisted toroidal architecture has eight links. Of the eight links,
four links are used as input links to the neuron while the
remaining are used as output links. The following two sections
present the digital and mixed-signal implementations of this
architecture.

4. DIGITAL ESN DESIGN

The digital architecture of the ESN is optimized for
reconfigurable platforms, without sacrificing its performance.
The network operation was described fully parallel instead
of partially sequential. This addresses the real-time input
data streams, which have little delay associated with the
consequent input and capture any spatial characteristics in the
input data. Activation functions are designed with piece-wise
approximations instead of using look-up tables. This design
choice saves the total number of memory elements significantly,
as the echo state network uses four weights per each reservoir
neuron. In the high level model, the network functioned off
of a delta cycle increment. The delta increment steps are
simulation steps that do not advance nominal time and help in
synchronizing all the parallel computations occurring within a
timestep. For the digital design, registers were added between
each neuron in the reservoir to produce constant results in
simulation and hardware realization, otherwise, signals would
constantly propagate throughout the reservoir asynchronously
with untested behavior. The goal was to closely match the high
level architecture model to the reconfigurable implementation so
the analysis is valid for scaled networks.

Figure 4 shows the general RTL diagram for a neuron in
the network. Each neuron has three inputs that come from the
network inputs, the previous neuron in the hybrid topology and a
center neuron. The weights are stored in flip-flops and use a fixed
point notation of 10 integer bits and 20 fractional bits, Q(10.20).
These weights are multiplied by each output using Q(10.20) bit
multipliers and then summed using 3 Q(10.20)-bit adders. For
the neuron activation, the tanh function is used by implementing
a piece-wise linear approximation that can be seen in Equation
(8). The linear approximation was chosen to only have slopes that
were powers of two to allow for shifts instead of multiplier units.
Since the piece-wise function has five decision boundaries, three
2-1 Q(10.20) input MUXs were used as can be seen in the RTL
diagram. The final step was applied to add a stronger temporal
aspect to the network by making a neuron output a function
of its current activation threshold and the previous activation
threshold. This is done by summing the current neuron at time t
with the previous result at time t−1 after applying a scaling factor
α such that X(t) = αX(t)+ (α − 1)X(t− 1). The previous input
is scaled by 1− α while the current is scaled by α. For simplicity
in hardware, the α-value was chosen to be 0.5 which allowed
to shift right instead of using a multiplier before the fixed-point
adder. The final registers are used to store the value to allow for
this temporal calculation. Table 1 shows the resource utilization
and power consumption for one reservoir neuron across three

FPGA implementations with power broken down by synaptic
multiplication, tanh activation, synaptic sum, and total.

[H]tanh(x) = 1 when x > 1.5

= x/2+ 0.25 when 0.5 > x > 1.5

= x when − 0.5 > x > 0.5 (8)

= x/2− 0.25 when − 1.5 > x > −0.5

= −1 otherwise

The output neuron is built in much the same way, except it
takes as input the output from every neuron in the reservoir, not
including the center neuron. As such, the addition tree used is
log2(reservoirsize). Also, the activation function used is the linear
output of the synaptic summation, so no additional logic is used
for activation or the temporal aspect mentioned earlier.

5. MIXED SIGNAL DESIGN OF THE
RESERVOIR

The digital ESN design presented in the last section has good
performance and is easy to port onto commercial off the shelf
components (FPGAs). However, these realizations have large
energy and area overheads owing to the limitations of the
resource availability on the FPGAs. In this section, we propose
an efficient ESN design that capitalizes on the inherent dynamics
of simple mixed-signal circuits. First, we give a brief overview
of the semi-empirical memristor device model that was used
in this work. Then, we show that current-mode differential
amplifiers operating in subthreshold have a natural hyperbolic
tangent behavior. This result is well-known (Mead, 1989) and
is summarized here for convenience. Then, we explore the
possibility of using mismatch in closely-spaced transistors to
implement the random weight distributions within the reservoir.
This method is shown to be area efficient when the required
weight resolution is high. Finally, we present a novel ESN readout
layer based on a memristor crossbar circuit. The crossbar’s high
density enables full connectivity from the reservoir to the output
layer at a low area cost.

5.1. Memristor Device Model
Memristors are two-terminal devices that have a state-dependent
conductance (Chua, 1971, 2011; Chua and Kang, 1976). In
this work, we use a semi-empirical memristor model derived
from the works of Simmons (Simmons, 1963; Simmons and
Verderber, 1967) and Mott and Gurney (1940). The memristor
current is assumed to be dominated by tunneling, leading to the
exponential I–V relationship:

im =







(

1− γ + gγ
)

Gmoff ξ+1 sinh
(

vm
ξ+1

)

, vm ≥ 0
(

1− γ + gγ
)

Gmoff ξ−1 sinh
(

vm
ξ−1

)

, vm < 0
, (9)
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FIGURE 4 | RTL level diagram of a reservoir neuron in the digital ESN implementation. All directions of signals are from left to right.

TABLE 1 | FPGA resource utilization and power consumption for hidden neuron on three FPGA.

FPGA Clock (nS) LUTs FF Mult(mW) Tanh(mW) Sum(mW) Total(mW)

Virtex5-LX110T 2.4 199 16 6.7 0.14 6.31 28.19

Virtex6-LX550TL 2.28 247 11 7.68 2.61 4.58 27.15

Spartan-6-LX150T 5.30 248 12 3.34 1.47 2.17 15.63

1γ

1t
= χ

(

vm(t)
)

=







ξ+4 sinh
(

ξ+5 vm(t)− ξ+6 Vtp

)

fwin (γ ) , vm > Vtp

ξ−4 sinh
(

ξ−5 vm(t)− ξ−6 Vtp

)

fwin (γ ) , vm < Vtn

0, otherwise

,(10)

where ξ
+(−)
i are fitting parameters, Vtp and Vtn are the positive

and negative threshold voltages, and fwin is a window function
that ensures γ does not become larger than 1 or smaller than 0.
The window function is expressed as

fwin (γ ) =











exp
[

−ξ+2
(

γ − ξ+3
]) 1−γ

1−ξ+3
, vm ≥ 0, γ ≥ ξ+3

exp
[

ξ−2
(

γ − ξ−3
)] γ

ξ−3
, vm < 0, γ ≤ ξ−3

1, otherwise

,

(11)

where ξ
+(−)
i are fitting parameters. Empirical models similar to

the one presented above are able to fit a wide range of device
characteristics (Yakopcic et al., 2013). In this work, the model is
fit to experimental results from W/Ag-chalcogenide/W devices
which show reproducible incremental conductance switching
(Oblea, 2010).

5.2. Reservoir Neuron Circuits
In general, reservoir computing methods may employ one of
many different activation functions in the reservoir layer. ESNs
generally use activation functions with sigmoid shapes, which
may be unipolar (with a range between 0 and +1) or bipolar
(with a range between –1 and +1). In multi-layer perceptron
networks, it has been shown that bipolar functions, such as tanh,
yield better accuracy (compared to unipolar activation functions)
for classification tasks (Karlik and Olgac, 2010). In this work,
we’ve found that tanh activation functions also result in richer
reservoir dynamics leading to better classification accuracies
in ESNs. Implementing a tanh activation function is straight
forward using a differential amplifier biased in weak inversion
(subthreshold; Mead, 1990). The neuron circuit schematic is
shown in Figure 5A. It is easy to show that the neuron output is

ix ≡ ix+ − ix− = Imaxtanh

(

isRin

2nVT

)

, (12)

where VT is the thermal voltage and n is a process-related
constant which is≈1.2 for 45 nm CMOS technology. In all of the
simulations and results that follow, Imax is chosen to be 1 nA. The
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current-voltage relationship is shown in Figure 5B. The model in
Equation (12) is compared to HSPICE simulation, showing good
accuracy. Slight deviations from the model are likely due to short
channel effects not considered in Equation (12). For example, a
single-MOSFET current source with minimum sizing was used
to reduce area, which results in channel length modulation. This
effect could be reduced by increasing the current source’s channel
length or using a cascode mirror. However, this would result in
an increased area cost. In total, the area of the neuron is

Aneuron ≈ 5Amatch, (13)

where Amatch is the area of a MOSFET with a small standard
deviation in its threshold voltage. Larger devices will have smaller
standard deviations (Pelgrom, 1989). It can be shown that the
standard deviation of Vth ≈ 14% when minimum sizing is
used (W = 45 nm and L = 45 nm). In this work, we use a
value of Amatch that gives a standard deviation below 5%, which

occurs when the device area is 10× minimal sizing. Therefore,
Amatch ≈ 20250 nm2. In addition to the area, the neuron power
consumption can be modeled as

Pneuron ≈ ImaxVDD. (14)

Here, we have assumed that the neuron’s static power dominates
the total power consumption.

5.3. Reservoir Synapse Circuits
The most straightforward way to implement a synapse circuit
compatible with the neuron described above is shown in
Figure 6A. The synapse is a differential input, single-ended
output design. The two inputs are driven by the scaled positive
and negative outputs of the pre-synaptic neuron. Concretely,
if the two PMOS mirror transistors have perfect matching
properties, then the positive (negative) output of the pre-synaptic
neuron ixj+ (ixj−) is scaled by a factor βp2/βp1, giving rise to

FIGURE 5 | (A) Hyperbolic tangent neuron circuit and (B) its current-voltage relationship.

FIGURE 6 | Schematic of (A) a deterministic current-mode constant weight synapse circuit and (B) the proposed synapse circuit that leverages

process variations.

Frontiers in Neuroscience | www.frontiersin.org 8 February 2016 | Volume 9 | Article 502

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kudithipudi et al. Neuromemristive Reservoirs

the source current i1. Similarly, ixj− (ixj+) is scaled by a factor
βn2/βn1, giving rise to the sink current i2. Then, the output of
the synapse isij is i1 − i2. If wij ≡ βp2/βp1 = βn2/βn1, then the
synaptic output current will be

isij = wijixj . (15)

Note that, if ixj+ (ixj−) is mirrored through the PMOS mirror
and ixj− (ixj+) is mirrored through the NMOS mirror, then
wij will be positive (negative). Therefore, one may randomly
connect each synapse in the reservoir to the positive or negative
output of a neuron (with both cases having 50% likelihood) to
get a distribution of positive and negative weights. Furthermore,
the size ratios βp1/βp2 = βn1/βn2 can be generated from a
uniform or normal distribution to get the desired probability
density function for the weights. The area cost of this approach
depends on two factors. First, there will be a minimum sizing
(W/L)min and related area Amatch for each transistor that is
governed by the desired level of matching in the current mirrors.
The second factor governing the synaptic area cost is their weight
distribution. Note that this distribution will be discrete since the
weight values are determined by MOSFET geometry ratios. Let
wres be the resolution of the distribution. Furthermore, let each
weight be a multiple of wres such that wij = kijwres, where kij ∈ N

(i.e., weights are evenly-spaced). Now, the expected synapse area
for a particular weight distribution will be

E
[

ABaseline
synapse

]

= 2AmatchE





kij

gcd
(

1
wres

, kij

)



 , (16)

where gcd (·) is the greatest common divisor. Equation (16)
accounts for the fact that the minimum synapse size will be
2Amatch, since the circuit is composed of two MOSFETs. It also
takes into account that the sign of the input MOSFETs of the two
current mirrors that define the synapse will affect the synaptic
area. For example, consider the case where the weight resolution
is wres = 1/100. For a weight to have a value of wij = 1/100,
the input MOSFETs should have areas of 100Amatch, while the
output MOSFETs have areas of Amatch. For the same resolution,
to have a weight of wij = 1, the input and output synapses could
both have areas of 100Amatch, but it is much more area-efficient
for them to all have areas of Amatch. In other words, the area
assumed in Equation (16) is the minimum possible area to get the
desired weight values and meet the minimum area requirement
for matching.

Unfortunately, Equation (16) indicates that it is not feasible,
due to the large area impact, to implement high-resolution
weights using the circuit in Figure 6A. Instead, our approach
is to leverage the effects of transistor mismatch to achieve a
random weight distribution in the ESN input and reservoir
layers. This idea has been explored previously by Yao et al.
(2013) in an extreme learning machine (ELM) implementation
with unipolar input (inputs to the synapse are strictly positive
or negative) synapses. Here, we expand on their work by (i)
proposing a bipolar input synapse that leverages mismatch and
(ii) analyzing the impact of random mismatch-based synapses

on the area and power of the network. The proposed circuit is
shown in Figure 6B. Similar to the synapse circuit in Figure 6A,
the proposed design has a differential input and single-ended
output. However, now the two inputs are driven by the scaled
positive or negative output of the pre-synaptic neuron, as well as
the scaled maximum current Imax. The circuit leverages random
mismatches in the transistor threshold voltages Vth and gain
factors β due to process variations. All of the circuits operate in
subthreshold, so MOSFET drain currents are exponential in the
threshold voltage and linear in the gain factor. Therefore, we can
simplify our analyses by only considering variations in threshold
voltage. For the NMOS current mirror in Figure 6B, we define
w1ij as

w1ij ≡
iout

iin
=

isij−

ixj−
=

βn2

βn1
e

1Vth
nVT (17)

where 1Vth is a Gaussian random variable that quantifies
the difference between two closely-spaced transistors’ threshold
voltages, n is a process-related constant which is ≈1.2, and VT is
the thermal voltage (≈26 mV at room temperature). Note that,
by definition, w1ij will be lognormally distributed. Similarly, for
for the PMOS mirror, we define w2ij as

w2ij ≡
iout

iin
=

isij+

Imax
=

βp2

βp1
e

1Vth
nVT , (18)

where w2ij is also lognormally distributed. Finally, combining
Equations (17) and (18) yields

isij = isij+ − isij− = w2ij Imax − w1ij ixj−. (19)

Now, we’d like to express isij in terms of a single weight value.
Using the fact that Imax = ixj+ + ixj−, we can rewrite Equation
(19) as

isij =

(

1

2
w1ij + 1w

)

(

ixj+ + ixj−
)

− w1ij ixj− (20)

=
1

2

(

ixj+ − ixj−
)

w1ij + Imax1w = ioutwij + Imaxbij.

Now, the synaptic output current is written as the pre-synaptic
neuron’s output times a lognormally distributed weight value plus
a bias term. The bias term bij = w2ij−0.5w1ij will be distributed as
the difference of two lognormally distributed random variables.

The random weight distribution within the reservoir can
be adjusted by modifying the sizes and gain factor ratios
for transistors M1–M4. Summarizing the analysis above, and
assuming we have

|wij| ∼ lnN

(

ln
βn2

2βn1
,
A2
Vth

WL

)

(21)

where lnN is the lognormal distribution, and AVth
is a constant

that determines the standard deviation of threshold voltage
mismatch in closely-spaced transistors (Pelgrom, 1989). For the
45 nm low power predictive technology model (PTM) used in
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this work, AVth
= 4mV·µm. We see from Equation (21) that the

spread of the weight distribution (as well as the bias distribution)
can be tuned by increasing the area of the transistors used in the
current mirrors. Figure 7 shows the distributions of weights and
biases in the reservoir using when transistors are minimally sized
(i.e., W = L = 45 nm). The simulated results were produced
using 10,000 Monte Carlo simulations in HSPICE, where each
of the two current mirrors in Figure 6B (M1–M4) had randomly
mismatched threshold voltages with 0 mean and a variance
of A2

Vth
/(WL). The distribution models (discussed above) show

excellent agreement with the simulations.
The area of the proposed synapse is

A
Proposed
synapse = 2Amatch + 4Avar = Amatch (2+ 4a) , (22)

where Avar is the area of the transistors M1–M4, and a ≡

Avar/Amatch. Figure 8 compares the mean area of the baseline
synapse and the proposed synapse for three different weight
distributions over multiple resolutions. In each case, the
maximum area of the proposed synapse occurs when Avar =

Amatch (a = 1), resulting in an area of 6Amatch. In Figure 8A,
the weights of the baseline synapse are distributed uniformly

between –1 and +1. Note that the roughness in the baseline curves
comes from the gcd in Equation (16). For low weight resolutions
(e.g., 1/wres < 10), the baseline design is actually more area
efficient than the proposed variation-based synapse. However,
as the weight resolution increases, the baseline synapse’s area
becomes very large. Similar results are shown for the cases when
the baseline weights are distributed normally (µ = 0, σ = 0.1)
and lognormally (µ = 0, σ = 2.85), as shown in Figures 8B,C,
respectively. In addition to the area, we can also model the power
consumption of the proposed synapse circuit, which will be

Psynapseij = (VDD + VSS) Imaxηj

+
(

vsi + VSS

)

Imaxηjw1ij

+
(

VDD − vsi
)

Imaxw2ij

+ (VDD + VSS) Imax

+ vsi
(

Imaxw2ij − Imaxηjw1ij

)

,

(23)

where vsi is the voltage at the synapse output node (input to the
post-synaptic neuron) and ηj is the activity factor of the pre-
synaptic neuron, which can be estimated as 0.5. The first four
terms account for the currents flowing through M1, M2, M3,

FIGURE 7 | Monte Carlo analyses showing the distributions of (A) random weights and (B) random biases associated with the synapse design in

Figure 6B.

FIGURE 8 | Mean areas vs. the weight resolution for the baseline and proposed synapses circuits in Figure 6 where the baseline design was

distributed (A) uniformly between −1 and +1, (B) normally with 0 mean and std = 0.1, and (C) lognormally with 0 mean and std = 2.85. In each case, the

proposed synapse design’s maximum area (6Amatch) is shown as a reference.
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and M4, respectively (Figure 6B). The last term accounts for the
current flowing into the post-synaptic neuron. Recall that the
neuron’s input stage is a resistor with one terminal grounded.
Combining like terms leads to a simplified expression for the
power consumption given as

Psynapseij = VDDImax

(

2ηj + ηjw1ij + w2ij + 2
)

. (24)

Here, we have used the fact that VDD = VSS.

5.4. Readout Layer and Training Circuits
The ESN readout layer leverages the non-volatility and plasticity
of memristors to store and adjust the output weight values. The
circuit connecting the reservoir to an output neuron is shown
in Figure 9. A memristor crossbar is used to implement the
synaptic weights at a low area cost. There are two memristors
for each reservoir output, represented as ideal current sources.
One memristor (top row) inhibits the output, while the other
one (bottom row) excites the output. This allows each synaptic
weight to achieve both positive and negative weight states. If we
let R1 = R2 = R, then the output voltage vi is given as

vi =

N
∑

j= 0

ixjwij, (25)

where wij is

wij =
Gm+j − Gm−j

Gm+j + Gm−j
R. (26)

Here, Gm+j refers to the bottom-row memristor for a particular
input column j. Similarly, Gm−j refers to the top-row memristor
for a particular input column j. The memristor states can be
adjusted by connecting each crossbar row to ground and each
crossbar column to a write voltage vwj. Pulses are applied to the
columns using the stochastic least-mean-squares (SLMS; Merkel
and Kudithipudi, 2014) algorithm to train the output layer. The
area of the output layer can be approximated as

Aoutput ≈ NMAmatch + 9Amatch. (27)

In Equation (27),M is the number of ESN outputs. Here, we have
assumed a seven-transistor opamp (differential stage followed
by a common source gain stage). The resistances in the opamp
circuit can be implemented using memritors to reduce the on-
chip area cost. Furthermore, we assume that the reservoir outputs
and opamp will dominate the total area. Finally, the power
consumption for the output layer is

Poutput ≈ ηNMImaxVDD + 2MIbiasVDD. (28)

The first term is from the reservoir outputs feeding into the
output layer weights. The second term is for the opamp, where
Ibias = 0.1µA, which is used to bias both stages. The area and
power of the circuits discussed in this section are compared to a
digital (FPGA) implementation in Section 7.

FIGURE 9 | Readout circuit for a single ESN output. A memristor

crossbar provides trainable weights to the linear output neuron.

6. BIOSIGNAL BENCHMARKS

Electroencephalogram (EEG) and Electromyogram (EMG) are
the two bioelectrical signals used in this study. Datum for both
these signals is collected using sensors and differential amplifiers.
The case studies we explored for these two signals are epileptic
seizure detection (EEG) and control of prosthetic fingers using
EMG. However, the proposed models are generic and can be
applied to other disorders and therapeutic diagnostic studies.
Epilepsy is the fourthmost common neurological disorder, where
one in 26 people will develop this disorder at sometime in
their life (Sirven, 2015).There are a few therapeutic interventions
possible for treating seizures. However, detecting the onset
of a seizure, by automatic monitoring of EEG data, will aid
the doctors/emergency responders to provide appropriate drug
dosage based on the remaining epileptic activity. The common
pattern in the case of seizures is that the brains electrical signals
repeat themselves (Sirven, 2015). The EEG dataset we have used
in this research was presented in (Andrzejak et al., 2001). It
consists of 500 single-channel EEG segments of 23.6 s recorded
at sampling rate of 173.61Hz. The dataset was divided into five
sets (denoted A–E), each set contains 100 EEG segments. The
set A, which contains surface EEG recordings of five healthy
volunteers, and E which contains seizure activity segments taken
from five patients, were used in this research. The dataset is
publicly available at (Andrzejak et al., 2001).

Electromyography (EMG) is a medical procedure to measure
and record the action potential of the skeletal muscles which
are neurologically or electrically stimulated (Keenan et al., 2006).
The EMG contains information about the physical state of the
neuromuscular system such as unit recruitment and firing and
motion intention (Keenan et al., 2006). This work classifies
EMG signals based on arm finger motion. The idea is to use
the resulting information as input signals for prosthetic finger
control. The EMG dataset used in this project is presented in
Khushaba and Kodagoda (2012). It contains surface EMG signals
recorded from six male and two female subjects aged between 20
and 35 years. These are healthy volunteers with no neurological
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or muscular disorders. The EMG signals were recorded while
the subjects were moving their limbs and fingers according
to a predefined procedure. Eight surface EMG electrodes were
used to collect the data. The electrodes were placed across the
circumference of the forearm. The signals were amplified to
a total gain of 1000. They are sampled using 12-bits ADC at
sampling rate of 4 kHz. The signals are band filtered between 20
and 450Hz. The dataset is divided into 15 classes based on finger
movements. It contains three EMG segments of each subject per
class. Five classes representing individual finger movements are
used in this project.

7. RESULTS AND ANALYSIS

7.1. Epileptic Seizure Detection
Two hundred EEG segments (160 for training and 40 for testing)
are used for epileptic seizure detection. The normalized absolute
values of these segments are fed into the ESN. The output of the
ESN is compared against a threshold value to calculate the final
binary output.

Two ESN topologies are used for epileptic seizure detection:
ring topology and hybrid topology. Several simulations were
conducted for each topology to find the best reservoir size
and alpha value that give the highest classification accuracy.
The accuracy is calculated as a ratio of the time the output is
correct to the total simulation time. Figure 10 shows the testing
accuracy vs. reservoir size and alpha for the ring and random
topologies. In both topologies, the accuracy increases as the
reservoir size increases. However, the accuracy stabilizes within
a range once the reservoir size exceeds 100 neurons. Results
also showed that changing alpha value does not have as much

affect on the accuracy. In general, alpha value of 0.5 works for
the two topologies. The maximum accuracy achieved is ≈ 86
and ≈ 90% for the ring and hybrid topology, respectively.
The extra synaptic connections within the reservoir layer of the
hybrid topology helps increasing the accuracy. These connections
increase signal exchange between reservoir neurons and provide
more information about the overall situation of the reservoir to
each neuron which increases the response of the reservoir to the
changes in the input.

Three FPGA devices were utilized for testing the RTL design
of the ESN architecture. The RTL implementation of the ESN has
30 neuron with a fixed point format of Q(10.22). The hardware

FIGURE 11 | The effects of the number of neurons within the reservoir

and alpha on the testing accuracy of finger motion recognition using

hybrid topology.

FIGURE 10 | Epileptic seizure detection accuracy vs.the reservoir size and alpha for (A) Ring topology with maximum accuracy of 86% and (B) Hybrid

topology with maximum accuracy of 90%.

TABLE 2 | FPGA resource utilization for 30 neuron reservoir implementation on three different FPGAs.

FPGA Clock (ns) LUTs Flip-Flop DSP Utilization Power (mW)

Virtex5-LX110T 44.782 50,698 2894 150 73% 125.36

Virtex6-LX550TL 37.960 12,946 2900 150 5% 47.76

Spartan-6LP-LX150T 84.221 13,173 2907 150 14% 26.7
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FIGURE 12 | Confusion matrix of finger classification from surface EMG signals using 300 neurons hybrid reservoir for (A) training with accuracy of

87% and (B) testing with accuracy of 84%.

FIGURE 13 | Kernel results vs. different reservoir sizes for hybrid topology reservoir testing (A) EEG and (B) EMG signals. The boxes represent the 25th

and 75th percentiles of the measurements. The whiskers represents values out of this 25–75th percentiles. Since the percentiles range is centered in (B), the sizes of

the boxes in (B) are very small (just a line that represent the mean of the range).
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FIGURE 14 | Lyapunov’s exponent results vs. different reservoir sizes for hybrid topology reservoir testing (A) EEG and (B) EMG signals. The boxes

represent the 25th and 75th percentiles of the measurements. The whiskers represent values outside the 25–75th percentiles.

model achieved 67.4% accuracy averaged over 10 runs at 30
neurons in the reservoir. This accuracy is comparable to the
accuracy achieved in the behavioral model that has the same size.
Table 2 shows the clock and resource utilization of three different
tested FPGA devices.

7.2. Prosthetic Finger Control
Five classes of individual finger motions are used in this work.
Each class contains 24 EMG segments of length 20 s. The
segments are divided into smaller parts of length 4 s. This will
increase the total number of segments to 120 per class. Hundred
segments are used for training while the rest 20 segments are
used for testing. The hybrid ESN topology is used for finger
motion classification. Eight input neurons are used (one neuron
for each EMG channel) while five neurons are used for the output
(one neuron per class). The output signals of these neurons are
processed using winner-take all method to calculate the final
binary output. The performance of the hybrid topology was
analyzed to find the best parametric values. Several simulations
were conducted over varied reservoir size and alpha values. The

accuracy is calculated as a ratio between the number of trails the
classification is correct to the total number of trails. Figure 11
shows the test accuracy vs. reservoir size and alpha. The average
accuracy of 10 trials for each combination of size and alpha is
showed in this Figure. The accuracy increase as the size of the
reservoir increase for the sizes lower than 300 neuron. However,
the accuracy stabilizes in a range for the larger reservoir sizes. The
maximum training and testing accuracy achieved is 87 and 84%,
respectively. Figure 12 shows confusion matrices of classification
accuracy of training and testing.

7.3. Metrics for Evaluating ESN
The performance of the reservoir is dependent on the randomly
generated weights of the reservoir and several other parameters
such as alpha and reservoir size. Finding the best values for these
parameters has been an open question. The overall performance
of the reservoir has been used to study effect of these parameters.
This requires a complete training of the reservoir for a specific
application, which takes long time and requires more processing
resources. Further more the best parameter values may vary
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FIGURE 15 | Power consumption vs. reservoir size of four ESN

topologies: one way ring, two way ring, hybrid, and random on log

scale plot. The one way ring topology has lower power consumption

compared to the other topologies while the random topology has higher

power consumption compared to the other topologies.

TABLE 3 | Power consumption of digital and mixed signal

implementations of 30 neurons hybrid reservoir.

Design Power (mW)

Virtex5-LX110T 125.36

Virtex6-LX550TL 47.76

Spartan-6LP-LX150T 26.7

Mixed Signal 0.202E − 3

depending on the targeted application. More general metrics
that are independent from the target output are required to test
the reservoir. These reservoir metrics are measurements of the
quality of the reservoir. Several metrics have been proposed in
the literature (Gibbons, 2010; Norton and Ventura, 2010). Chrol-
Cannon et al. (Chrol-Cannon and Jin, 2014) compared the ability
of four reservoir metrics to measure the performance of several
reservoir topologies. The reservoir metrics used in their study
are: class separation, kernel quality, Lyapunov’s exponent, and
spectral radius. Results show that kernel quality and Lyapunov’s
exponent strongly correlate with reservoir performance. These
two metrics are used in this work for reservoir sizes varying from
10 to 100 neurons, over 100 trials.

7.4. Kernel Quality
Kernel quality is a measure of the linear separability of the
reservoir. It is first presented in Legenstein andMaass (2007) and
revisited by Busing Büsing et al. (2010), and Chrol-Cannon et al.
(Chrol-Cannon and Jin, 2014) as a practical reservoir metric. The
reservoir response to the whole set of input vectors is used to
calculate this metric. The whole reservoir states are concatenated
in a matrix M where each column in M represents reservoir

response to one input vector. The kernel quality is calculated by
taking the rank of this matrix. It represents the network freedom
to represent each input stimulus differently. The target kernel
value is equal to the size of the reservoir which means that
each reservoir neuron generates its unique response that can’t be
regenerated by using linear combinations of the responses of the
other neurons. Reservoirs with optimal separability will have a
high kernel quality.

Figure 13 shows kernel quality results for the hybrid reservoir
topology processing EEG and EMG signals. Themedian of kernel
quality values are close to the target for different reservoir sizes
for both EEG and EMG signals. Results show that there is
variation in the kernel quality values especially for reservoir sizes
larger than 50 neurons. This variation is a result of the randomly
generated weight for the input and reservoir synapse where low
kernel quality value could be a result of unsuitable set of random
weights. In general, the kernel quality value for EMG data seems
more stable compared to that of the EEG data. The nature of the
input signals can be leading to this slight difference between the
EEG and EMG.

7.5. Lyapunov’s Exponent
Lyapunov’s exponent is a measure of the chaos in the dynamic
response of the reservoir. This metric was formulated in Gibbons
(2010). Equation (29) is used to calculate Lyapunov’s exponent
value. Positive values of this metric represent the chaotic
dynamic region while negative values represent the stable region.
Since the optimal reservoir performance occurs at the edge
of chaos (Natschläger, 2005), Lyapunov’s exponent of zero is
desirable.

λ(t) = k

N
∑

n=1

ln





∥

∥

∥
xj(t)− xĵ(t)

∥

∥

∥

∥

∥

∥
uj(t)− uĵ(t)

∥

∥

∥



 (29)

where N is the total number of test cases used for the calculation,
k is an undetermined scale factor that is varies based on the
type and number of input vectors used in the computation.
In this research k is chosen to be 1. uj(t) is an input to the
reservoir at time step t. uĵ(t) is the nearest neighbor to uj(t).

xj(t) and xĵ(t) are the reservoir response to uj(t) and uĵ(t),

respectively. Figure 14 shows Lyapunov’s exponent results for
the hybrid reservoir topology processing EEG and EMG signals.
Results showed that the values of this metric are higher than
zero for EEG signals while it showed that they are around
zero for EMG signals. This means that the hybrid topology
has more chaotic response to the EEG signals compared to
the response of the EMG signals. It also showed that the size
of the reservoir processing the EEG signals has low effect on
the value of Lyapunov’s exponent compared to the reservoir
processing the EMG signals. As in kernel quality, there is
variation in the values of Lyapunov’s exponent and this is also
attributed to the random weights of the input and reservoir
synapses.

7.6. Power
Power dissipation of four different reservoir topologies is
quantitatively calculated using Equations (14), (23), and (28).
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The maximum current Imax, VDD, and activity factor η used in
the calculation are 1 nA, 0.55 V, and 0.5, respectively. Figure 15
shows the power dissipation of these reservoir topologies, one
way ring, two way ring, hybrid, and random with 50% degree
of connectivity over different reservoir sizes on a log scale plot.
The power dissipation of the one way ring, two way ring, and
hybrid topologies is in several micro watts. Results showed
that the one way ring topology has lower power consumption
compared to the two way ring and hybrid topologies. This is
attributed to the small number of synapses that the one way ring
topology has where each reservoir layer neuron has only one
synapse. Results also showed that the relation between power
dissipation of these three topologies and reservoir size is linear.
This implies that there is no power dissipation overhead for
increasing the size of the reservoir. The random topology has
higher power dissipation (in several milliwatts) because it has a
high number of synapses compared to the other topologies. It
also showed that the power dissipation of the random topology
is exponentially related to the size of the reservoir. For this
reason the random topology is not desired for the hardware
implementation.

Table 3 compares power consumption of both digital and
mixed signal implementations of the 30 neurons hybrid reservoir.
The performance of the digital realization is limited by the
resources and logic blocks available on the FPGAs, with the
Spartan-6LP-LX150T platform consuming the lowest power. As
expected, using custom subthreshold circuits in the mixed-signal
ESN design curtailed the power dissipation the most. These
power savings, shown here, are within acceptable limits for
power-constrained embedded platforms.

8. CONCLUSIONS

This research underpins that a scalable neuromemristive ESN
architecture for power constrained applications is feasible. A
double twisted toroidal ESN architecture with multichannel
links is shown to achieve a classification accuracy of 90
and 84% for epileptic seizure detection and prosthetic finger
control, respectively. The quality of the reservoir in the ESN is
analyzed using kernel quality and Lyapunov’s exponent metrics.
Hardware realization of the ESN architecture was studied in
two parts, a digital implementation and a mixed-mode design.
Employing mismatches in transistors threshold voltages to
design subthreshold bipolar synapses, yielded a good random
distribution of weights in the ESN input and reservoir layer.
Further, the power profile of the mixed-signal design is low
for all the topologies due to the subthreshold NMS primitive
circuits. Overall, the proposed architecture is generic and can also
be validated for other biosignal processing applications. In the
future, there is a need to developmetrics that meet multiple target
criteria for the hardware RC architectures.
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