691 research outputs found

    Report of MIRACLE team for the Ad-Hoc track in CLEF 2006

    Get PDF
    This paper presents the 2006 MIRACLE’s team approach to the AdHoc Information Retrieval track. The experiments for this campaign keep on testing our IR approach. First, a baseline set of runs is obtained, including standard components: stemming, transforming, filtering, entities detection and extracting, and others. Then, a extended set of runs is obtained using several types of combinations of these baseline runs. The improvements introduced for this campaign have been a few ones: we have used an entity recognition and indexing prototype tool into our tokenizing scheme, and we have run more combining experiments for the robust multilingual case than in previous campaigns. However, no significative improvements have been achieved. For the this campaign, runs were submitted for the following languages and tracks: - Monolingual: Bulgarian, French, Hungarian, and Portuguese. - Bilingual: English to Bulgarian, French, Hungarian, and Portuguese; Spanish to French and Portuguese; and French to Portuguese. - Robust monolingual: German, English, Spanish, French, Italian, and Dutch. - Robust bilingual: English to German, Italian to Spanish, and French to Dutch. - Robust multilingual: English to robust monolingual languages. We still need to work harder to improve some aspects of our processing scheme, being the most important, to our knowledge, the entities recognition and normalization

    Report of MIRACLE team for the Ad-Hoc track in CLEF 2007

    Get PDF
    This paper presents the 2007 MIRACLE’s team approach to the AdHoc Information Retrieval track. The work carried out for this campaign has been reduced to monolingual experiments, in the standard and in the robust tracks. No new approaches have been attempted in this campaign, following the procedures established in our participation in previous campaigns. For this campaign, runs were submitted for the following languages and tracks: - Monolingual: Bulgarian, Hungarian, and Czech. - Robust monolingual: French, English and Portuguese. There is still some room for improvement around multilingual named entities recognition

    MIRACLE at ImageCLEFanot 2007: Machine Learning Experiments on Medical Image Annotation

    Full text link
    This paper describes the participation of MIRACLE research consortium at the ImageCLEF Medical Image Annotation task of ImageCLEF 2007. Our areas of expertise do not include image analysis, thus we approach this task as a machine-learning problem, regardless of the domain. FIRE is used as a black-box algorithm to extract different groups of image features that are later used for training different classifiers in order to predict the IRMA code. Three types of classifiers are built. The first type is a single classifier that predicts the complete IRMA code. The second type is a two level classifier composed of four classifiers that individually predict each axis of the IRMA code. The third type is similar to the second one but predicts a combined pair of axes. The main idea behind the definition of our experiments is to evaluate whether an axis-by-axis prediction is better than a prediction by pairs of axes or the complete code, or vice versa. We submitted 30 experiments to be evaluated and results are disappointing compared to other groups. However, the main conclusion that can be drawn from the experiments is that, irrespective of the selected image features, the axis-by-axis prediction achieves more accurate results not only than the prediction of a combined pair of axes but also, in turn, than the prediction of the complete IRMA code. In addition, data normalization seems to improve the predictions and vector-based features are preferred over histogram-based ones

    GeoCLEF 2007: the CLEF 2007 cross-language geographic information retrieval track overview

    Get PDF
    GeoCLEF ran as a regular track for the second time within the Cross Language Evaluation Forum (CLEF) 2007. The purpose of GeoCLEF is to test and evaluate cross-language geographic information retrieval (GIR): retrieval for topics with a geographic specification. GeoCLEF 2007 consisted of two sub tasks. A search task ran for the third time and a query classification task was organized for the first. For the GeoCLEF 2007 search task, twenty-five search topics were defined by the organizing groups for searching English, German, Portuguese and Spanish document collections. All topics were translated into English, Indonesian, Portuguese, Spanish and German. Several topics in 2007 were geographically challenging. Thirteen groups submitted 108 runs. The groups used a variety of approaches. For the classification task, a query log from a search engine was provided and the groups needed to identify the queries with a geographic scope and the geographic components within the local queries

    MIRACLE Progress in Monolingual Information Retrieval at Ad-Hoc CLEF 2007

    Full text link
    This paper presents the 2007 MIRACLE’s team approach to the Ad-Hoc Information Retrieval track. The main work carried out for this campaign has been around monolingual experiments, in the standard and in the robust tracks. The most important contributions have been the general introduction of automatic named-entities extraction and the use of Wikipedia resources. For the2007 campaign, runs were submitted for the following languages and tracks: a) Monolingual: Bulgarian, Hungarian, and Czech. b) Robust monolingual: French, English and Portuguese

    Finding answers to questions, in text collections or web, in open domain or specialty domains

    Get PDF
    International audienceThis chapter is dedicated to factual question answering, i.e. extracting precise and exact answers to question given in natural language from texts. A question in natural language gives more information than a bag of word query (i.e. a query made of a list of words), and provides clues for finding precise answers. We will first focus on the presentation of the underlying problems mainly due to the existence of linguistic variations between questions and their answerable pieces of texts for selecting relevant passages and extracting reliable answers. We will first present how to answer factual question in open domain. We will also present answering questions in specialty domain as it requires dealing with semi-structured knowledge and specialized terminologies, and can lead to different applications, as information management in corporations for example. Searching answers on the Web constitutes another application frame and introduces specificities linked to Web redundancy or collaborative usage. Besides, the Web is also multilingual, and a challenging problem consists in searching answers in target language documents other than the source language of the question. For all these topics, we present main approaches and the remaining problems

    Experiences from the ImageCLEF Medical Retrieval and Annotation Tasks

    Get PDF
    The medical tasks in ImageCLEF have been run every year from 2004-2018 and many different tasks and data sets have been used over these years. The created resources are being used by many researchers well beyond the actual evaluation campaigns and are allowing to compare the performance of many techniques on the same grounds and in a reproducible way. Many of the larger data sets are from the medical literature, as such images are easier to obtain and to share than clinical data, which was used in a few smaller ImageCLEF challenges that are specifically marked with the disease type and anatomic region. This chapter describes the main results of the various tasks over the years, including data, participants, types of tasks evaluated and also the lessons learned in organizing such tasks for the scientific community

    ImageCLEF 2019: Multimedia Retrieval in Lifelogging, Medical, Nature, and Security Applications

    Get PDF
    This paper presents an overview of the foreseen ImageCLEF 2019 lab that will be organized as part of the Conference and Labs of the Evaluation Forum - CLEF Labs 2019. ImageCLEF is an ongoing evaluation initiative (started in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In 2019, the 17th edition of ImageCLEF will run four main tasks: (i) a Lifelog task (videos, images and other sources) about daily activities understanding, retrieval and summarization, (ii) a Medical task that groups three previous tasks (caption analysis, tuberculosis prediction, and medical visual question answering) with newer data, (iii) a new Coral task about segmenting and labeling collections of coral images for 3D modeling, and (iv) a new Security task addressing the problems of automatically identifying forged content and retrieve hidden information. The strong participation, with over 100 research groups registering and 31 submitting results for the tasks in 2018 shows an important interest in this benchmarking campaign and we expect the new tasks to attract at least as many researchers for 2019
    corecore