31 research outputs found

    Open-source magnetic resonance imaging : Improving access, science, and education through global collaboration

    Get PDF
    The authors would like to thank all the authors that are sharing their work open-source and all the supporters of the Open Source Imaging Initiative (OSI2). The project (21NRM05 and 22HLT02 A4IM) has received funding from the European Partnership on Metrology, co-financed by the European Union's Horizon Europe Research and Innovation Programme and by the Participating States. This research is funded by dtec.bw- Digitalization and Technology Research Center of the Bundeswehr. dtec.bw is funded by the European Union - NextGeneration EU. Part of the image reconstruction used here was developed by the CCP PETMR and CCP SynerBi (https://www.ccppetmr.ac.uk/), UK EPSRC grants EP/P022200/1, EP/M022587/1 and EP/T026693/1. This work made use of computational support by CoSeC, the Computational Science Centre for Research Communities via CCP-SyneRBI and CCPi. RG Nunes acknowledges funding from Fundação para a Ciência e a Tecnologia (grants UIDP/50009/2020 and LA/P/0083/2020). Ruben Pellicer-Guridi has been funded by the European Union's Marie Skłodowska-Curie project nr. 101030868. Open Access funding enabled and organized by Projekt DEAL.Peer reviewe

    Open‐source magnetic resonance imaging: improving access, science, and education through global collaboration

    Get PDF
    Open-source practices and resources in magnetic resonance imaging (MRI) have increased substantially in recent years. This trend started with software and data being published open-source and, more recently, open-source hardware designs have become increasingly available. These developments towards a culture of sharing and establishing nonexclusive global collaborations have already improved the reproducibility and reusability of code and designs, while providing a more inclusive approach, especially for low-income settings. Community-driven standardization and documentation efforts are further strengthening and expanding these milestones. The future of open-source MRI is bright and we have just started to discover its full collaborative potential. In this review we will give an overview of open-source software and open-source hardware projects in human MRI research

    Development of a Multi-Region Input-Output Database for Policy Applications

    Get PDF
    Countries face different problems depending on factors such as geographical position, climate, wealth, political regime, and natural resources. Given this diversity, it is important that economic, social, and environmental assessments utilise regionally detailed and comprehensive information. However, when examining a particular type of assessment, studies (in most cases) are usually conducted without any regional or sectoral specificity due to the difficulty of creating an inter-regional modelling framework at sub-national levels. A fundamental tool for identifying specific economic characteristics of regions (either global or within a nation) is a multi-region input-output (MRIO) system. Through the understanding of regional economic distribution, sectoral contribution, and inter-regional supply chain network, input-output (I-O) based assessments are capable of providing a comprehensive picture of regional economic structures. However, the creation of an MRIO system is a time-consuming task that requires skill in handling the complexity of data compilation and reconciliation. To this end, finding an alternative method for creating an MRIO database in the most efficient way is necessary. In this thesis, I developed new MRIO databases that utilised virtual laboratory technology: IndoLab, TaiwanLab, SwedenLab, and USLab , and also took part in developing the JapanLab. I then demonstrated the use of these new facilities for addressing research questions surrounding employment multipliers in Indonesia, economic impacts due to natural disasters in Taiwan, regional consumer emissions in Sweden, and the responsibility for food loss in Japan. In addition, I presented the application of a new dataset in the global MRIO database for assessing the carbon footprints of global tourism sectors

    Bridging a Gap Between Research and Production: Contributions to Scheduling and Simulation

    Get PDF
    Large scale distributed computing infrastructures (e.g., data centers, grids, or clouds) are used by scientists from various domains to produce outstanding research results, such as the discovery of the Higgs Boson in High Energy Physics. These infrastructures are also studied by Computer Scientists to produce their own set of scientific results. Ideally, a virtuous circle should exist between Domain and Computer Scientists: the former raising challenges that could be addressed by the latter. Unfortunately, in many occasions, a gap exists that prevents such an ideal and fostering collaboration. This habilitation covers research works conducted in the fields of scheduling and simulation that contribute to the filling of this gap. It discusses the necessary conditions to achieve this goal and details concrete initiatives in this endeavor

    Management of Cloud systems applied to eHealth

    Get PDF
    This thesis explores techniques, models and algorithms for an efficient management of Cloud systems and how to apply them to the healthcare sector in order to improve current treatments. It presents two Cloud-based eHealth applications to telemonitor and control smoke-quitting and hypertensive patients. Different Cloud-based models were obtained and used to develop a Cloudbased infrastructure where these applications are deployed. The results show that these applications improve current treatments and that can be scaled as computing requirements grow. Multiple Cloud architectures and models were analyzed and then implemented using different techniques and scenarios. The Smoking Patient Control (S-PC) tool was deployed and tested in a real environment, showing a 28.4% increase in long-term abstinence. The Hypertension Patient Control (H-PC) tool, was successfully designed and implemented, and the computing boundaries were measuredAquesta tesi explora tèniques, models i algorismes per una gestió eficient en sistemes al Núvol i com aplicar-ho en el sector de la salut per tal de millorar els tractaments actuals. Presenta dues aplicacions de salut electrònica basades en el Núvol per telemonitoritzar i controlar pacients fumadors i hipertensos. S'ha obtingut diferents models basats en el Núvol i s'han utilitzat per a desenvolupar una infraestructura on desplegar aquestes aplicacions. Els resultats mostren que aquestes aplicacions milloren els tractaments actuals així com escalen a mesura que els requeriments computacionals augmenten. Múltiples arquitectures i models han estat analitzats i implementats utilitzant diferents tècniques i escenaris. L'aplicació Smoking Patient Control (S-PC) ha estat desplegada i provada en un entorn real, aconseguint un augment del 28,4% en l'absistinència a llarg termini de pacients fumadors. L'aplicació Hypertension Patient Control (H-PC) ha estat dissenyada i implementada amb èxit, i els seus límits computacionals han estat mesurats.Esta tesis explora ténicas, modelos y algoritmos para una gestión eficiente de sistemas en la Nube y como aplicarlo en el sector de la salud con el fin de mejorar los tratamientos actuales. Presenta dos aplicaciones de salud electrónica basadas en la Nube para telemonitorizar y controlar pacientes fumadores e hipertensos. Se han obtenido diferentes modelos basados en la Nube y se han utilizado para desarrollar una infraestructura donde desplegar estas aplicaciones. Los resultados muestran que estas aplicaciones mejoran los tratamientos actuales así como escalan a medida que los requerimientos computacionales aumentan. Múltiples arquitecturas y modelos han sido analizados e implementados utilizando diferentes técnicas y escenarios. La aplicación Smoking Patient Control (S-PC) se ha desplegado y provado en un entorno real, consiguiendo un aumento del 28,4% en la abstinencia a largo plazo de pacientes fumadores. La aplicación Hypertension Patient Control (H-PC) ha sido diseñada e implementada con éxito, y sus límites computacionales han sido medidos
    corecore