7,326 research outputs found
Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers.
Clinical and neuropathological characteristics associated with G4C2 repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, are highly variable. To gain insight on the molecular basis for the heterogeneity among C9ORF72 mutation carriers, we evaluated associations between features of disease and levels of two abundantly expressed "c9RAN proteins" produced by repeat-associated non-ATG (RAN) translation of the expanded repeat. For these studies, we took a departure from traditional immunohistochemical approaches and instead employed immunoassays to quantitatively measure poly(GP) and poly(GA) levels in cerebellum, frontal cortex, motor cortex, and/or hippocampus from 55 C9ORF72 mutation carriers [12 patients with ALS, 24 with frontotemporal lobar degeneration (FTLD) and 19 with FTLD with motor neuron disease (FTLD-MND)]. We additionally investigated associations between levels of poly(GP) or poly(GA) and cognitive impairment in 15 C9ORF72 ALS patients for whom neuropsychological data were available. Among the neuroanatomical regions investigated, poly(GP) levels were highest in the cerebellum. In this same region, associations between poly(GP) and both neuropathological and clinical features were detected. Specifically, cerebellar poly(GP) levels were significantly lower in patients with ALS compared to patients with FTLD or FTLD-MND. Furthermore, cerebellar poly(GP) associated with cognitive score in our cohort of 15 patients. In the cerebellum, poly(GA) levels similarly trended lower in the ALS subgroup compared to FTLD or FTLD-MND subgroups, but no association between cerebellar poly(GA) and cognitive score was detected. Both cerebellar poly(GP) and poly(GA) associated with C9ORF72 variant 3 mRNA expression, but not variant 1 expression, repeat size, disease onset, or survival after onset. Overall, these data indicate that cerebellar abnormalities, as evidenced by poly(GP) accumulation, associate with neuropathological and clinical phenotypes, in particular cognitive impairment, of C9ORF72 mutation carriers
The C9ORF72 mutation brings more answers and more questions.
The clinical, neuropsychiatric and neuroimaging features of patients who carry the important new C9ORF72 mutation are discussed in this special series of Alzheimer's Research & Therapy. First reported in November 2011, the C9ORF72 mutation is the most common mutation associated with both frontotemporal dementia and amyotrophic lateral sclerosis in the Western hemisphere and Europe. It is a gene with strong penetrance, and the vast majority of subjects with the C9ORF72 mutation die from a neurodegenerative condition. The most common clinical manifestation of disease in gene carriers is behavioral variant frontotemporal dementia. An extremely long hexanucleotide repeat (usually greater than 400), appears to lead to ribonucleic acid aggregates within the nucleus and suppression of gene expression. Finding therapies for C9ORF72 will be difficult and require novel therapeutic approaches that involve suppression of the expression of the C9ORF72 repeat
Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two apparently distinct neurodegenerative diseases, the former characterized by selective loss of motor neurons in the brain and spinal cord and the latter characterized by selective atrophy of frontal and temporal lobes. Over the years, however, growing evidence from clinical, pathological and genetic findings has suggested that ALS and FTD belong to the same clinic-pathological spectrum disorder. This concept has been further supported by the identification of the most common genetic cause for both diseases, an aberrantly expanded hexanucleotide repeat GGGGCC/ CCCCGG sequence located in a non-coding region of the gene C9orf72. Three hypotheses have been proposed to explain how this repeats expansion causes diseases: 1) C9orf72 haploinsufficiency-expanded repeats interfere with transcription or translation of the gene, leading to decreased expression of the C9orf72 protein; 2) RNA gain of function-RNA foci formed by sense and antisense transcripts of expanded repeats interact and sequester essential RNA binding proteins, causing neurotoxicity; 3) Repeat associated non-ATG initiated (RAN) translation of expanded sense GGGGCC and antisense CCCCGG repeats produces potential toxic dipeptide repeat protein (DPR). In this review, we assess current evidence supporting or arguing against each proposed mechanism in C9 ALS/FTD disease pathogenesis. Additionally, controversial findings are also discussed. Lastly, we discuss the possibility that the three pathogenic mechanisms are not mutually exclusive and all three might be involved in disease
C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins
An expanded GGGGCC repeat in C9orf72 is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. A fundamental question is whether toxicity is driven by the repeat RNA itself and/or by dipeptide repeat proteins generated by repeat-associated, non-ATG translation. To address this question we developed in vitro and in vivo models to dissect repeat RNA and dipeptide repeat protein toxicity. Expression of pure repeats in Drosophila caused adult-onset neurodegeneration attributable to poly-(glycine-arginine) proteins. Thus, expanded repeats promoted neurodegeneration through neurotoxic proteins. Expression of individual dipeptide repeat proteins with a non-GGGGCC RNA sequence showed both poly-(glycine-arginine) and poly-(proline-arginine) proteins caused neurodegeneration. These findings are consistent with a dual toxicity mechanism, whereby both arginine-rich proteins and repeat RNA contribute to C9orf72-mediated neurodegeneration
Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways
Amyotrophic lateral sclerosis (ALS) is a devastating
neurological disease with no effective treatment
available. An increasing number of genetic causes of ALS
are being identified, but how these genetic defects lead to
motor neuron degeneration and to which extent they affect
common cellular pathways remains incompletely understood.
To address these questions, we performed an interactomic
analysis to identify binding partners of wild-type
(WT) and ALS-associated mutant versions of ATXN2,
C9orf72, FUS, OPTN, TDP-43 and UBQLN2 in neuronal
cells. This analysis identified several known but also many
novel binding partners of these proteins
CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.
Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases
Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum
Amyotrophic lateral sclerosis (ALS) and behavioural variant frontotemporal dementia (bvFTD) are multisystem neurodegenerative disorders that manifest overlapping cognitive, neuropsychiatric and motor features. The cerebellum has long been known to be crucial for intact motor function although emerging evidence over the past decade has attributed cognitive and neuropsychiatric processes to this structure. The current study set out i) to establish the integrity of cerebellar subregions in the amyotrophic lateral sclerosis-behavioural variant frontotemporal dementia spectrum (ALS-bvFTD) and ii) determine whether specific cerebellar atrophy regions are associated with cognitive, neuropsychiatric and motor symptoms in the patients. Seventy-eight patients diagnosed with ALS, ALS-bvFTD, behavioural variant frontotemporal dementia (bvFTD), most without C9ORF72 gene abnormalities, and healthy controls were investigated. Participants underwent cognitive, neuropsychiatric and functional evaluation as well as structural imaging using voxel-based morphometry (VBM) to examine the grey matter subregions of the cerebellar lobules, vermis and crus. VBM analyses revealed: i) significant grey matter atrophy in the cerebellum across the whole ALS-bvFTD continuum; ii) atrophy predominantly of the superior cerebellum and crus in bvFTD patients, atrophy of the inferior cerebellum and vermis in ALS patients, while ALS-bvFTD patients had both patterns of atrophy. Post-hoc covariance analyses revealed that cognitive and neuropsychiatric symptoms were particularly associated with atrophy of the crus and superior lobule, while motor symptoms were more associated with atrophy of the inferior lobules. Taken together, these findings indicate an important role of the cerebellum in the ALS-bvFTD disease spectrum, with all three clinical phenotypes demonstrating specific patterns of subregional atrophy that associated with different symptomology
Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration
Mutations in the gene coding for Sequestosome 1 (SQSTM1) have been genetically associated with amyotrophic lateral sclerosis (ALS) and Paget disease of bone. In the present study, we analyzed the SQSTM1 coding sequence for mutations in an extended cohort of 1,808 patients with frontotemporal lobar degeneration (FTLD), ascertained within the European Early-Onset Dementia consortium. As control dataset, we sequenced 1,625 European control individuals and analyzed whole-exome sequence data of 2,274 German individuals (total n = 3,899). Association of rare SQSTM1 mutations was calculated in a meta-analysis of 4,332 FTLD and 10,240 control alleles. We identified 25 coding variants in FTLD patients of which 10 have not been described. Fifteen mutations were absent in the control individuals (carrier frequency < 0.00026) whilst the others were rare in both patients and control individuals. When pooling all variants with a minor allele frequency < 0.01, an overall frequency of 3.2 % was calculated in patients. Rare variant association analysis between patients and controls showed no difference over the whole protein, but suggested that rare mutations clustering in the UBA domain of SQSTM1 may influence disease susceptibility by doubling the risk for FTLD (RR = 2.18 [95 % CI 1.24-3.85]; corrected p value = 0.042). Detailed histopathology demonstrated that mutations in SQSTM1 associate with widespread neuronal and glial phospho-TDP-43 pathology. With this study, we provide further evidence for a putative role of rare mutations in SQSTM1 in the genetic etiology of FTLD and showed that, comparable to other FTLD/ALS genes, SQSTM1 mutations are associated with TDP-43 pathology
Atypical parkinsonism: An Update.
Purpose of review: This update discusses novel aspects on genetics, diagnosis, and treatments of atypical parkinsonism published over the past 2 years. Recent findings: A genome-wide association study identified new genetic risk factors for progressive supranuclear palsy and new genetic conditions presenting with atypical parkinsonism have been described. The clinical criteria for diagnosis of corticobasal degeneration have been revised, and for progressive supranuclear palsy are under revision. Novel molecular techniques to identify possible biomarkers, as in other neurodegenerative disorders, have started being studied on atypical parkinsonian conditions, and although preliminary results seem promising, further studies are urgently warranted. Therapeutic trials based on disease-specific targets have shown no clinical improvement. Summary: The knowledge obtained recently on atypical parkinsonian conditions points out the major deficits in this field. With the expanding phenotypical spectrum of atypical parkinsonian conditions, the early identification of patients has become difficult. The inability of conventional methods to identify these disorders earlier and better than clinicians, and the recent failure of promising therapeutic compounds, highlight the fact that the lack of biomarkers is probably the greatest limitation for developing treatments for these disorders. Thus, current and future research in this direction will be crucial
Recommended from our members
Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with loss of nuclear transactive response DNA-binding protein 43 (TDP-43). Here we identify that TDP-43 regulates expression of the neuronal growth-associated factor stathmin-2. Lowered TDP-43 levels, which reduce its binding to sites within the first intron of stathmin-2 pre-messenger RNA, uncover a cryptic polyadenylation site whose utilization produces a truncated, non-functional mRNA. Reduced stathmin-2 expression is found in neurons trans-differentiated from patient fibroblasts expressing an ALS-causing TDP-43 mutation, in motor cortex and spinal motor neurons from patients with sporadic ALS and familial ALS with GGGGCC repeat expansion in the C9orf72 gene, and in induced pluripotent stem cell (iPSC)-derived motor neurons depleted of TDP-43. Remarkably, while reduction in TDP-43 is shown to inhibit axonal regeneration of iPSC-derived motor neurons, rescue of stathmin-2 expression restores axonal regenerative capacity. Thus, premature polyadenylation-mediated reduction in stathmin-2 is a hallmark of ALS-FTD that functionally links reduced nuclear TDP-43 function to enhanced neuronal vulnerability
- …