347 research outputs found

    FastPay: High-Performance Byzantine Fault Tolerant Settlement

    Get PDF
    FastPay allows a set of distributed authorities, some of which are Byzantine, to maintain a high-integrity and availability settlement system for pre-funded payments. It can be used to settle payments in a native unit of value (crypto-currency), or as a financial side-infrastructure to support retail payments in fiat currencies. FastPay is based on Byzantine Consistent Broadcast as its core primitive, foregoing the expenses of full atomic commit channels (consensus). The resulting system has low-latency for both confirmation and payment finality. Remarkably, each authority can be sharded across many machines to allow unbounded horizontal scalability. Our experiments demonstrate intra-continental confirmation latency of less than 100ms, making FastPay applicable to point of sale payments. In laboratory environments, we achieve over 80,000 transactions per second with 20 authorities---surpassing the requirements of current retail card payment networks, while significantly increasing their robustness

    Hardening Cassandra Against Byzantine Failures

    Get PDF

    Diverse intrusion-tolerant database replication

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2012A combinação da replicação de bases de dados com mecanismos de tolerância a falhas bizantinas ainda é um campo de pesquisa recente com projetos a surgirem nestes últimos anos. No entanto, a maioria dos protótipos desenvolvidos ou se focam em problemas muito específicos, ou são baseados em suposições que são muito difíceis de garantir numa situação do mundo real, como por exemplo ter um componente confiável. Nesta tese apresentamos DivDB, um sistema de replicação de bases de dados diverso e tolerante a intrusões. O sistema está desenhado para ser incorporado dentro de um driver JDBC, o qual irá abstrair o utilizador de qualquer complexidade adicional dos mecanismos de tolerância a falhas bizantinas. O DivDB baseia-se na combinação de máquinas de estados replicadas com um algoritmo de processamento de transações, a fim de melhorar o seu desempenho. Para além disso, no DivDB é possível ligar cada réplica a um sistema de gestão de base de dados diferente, proporcionando assim diversidade ao sistema. Propusemos, resolvemos e implementamos três problemas em aberto, existentes na conceção de um sistema de gestão de base de dados replicado: autenticação, processamento de transações e transferência de estado. Estas características torna o DivDB exclusivo, pois é o único sistema que compreende essas três funcionalidades implementadas num sistema de base de dados replicado. A nossa implementação é suficientemente robusta para funcionar de forma segura num simples sistema de processamento de transações online. Para testar isso, utilizou-se o TPC-C, uma ferramenta de benchmarking que simula esse tipo de ambientes.The combination of database replication with Byzantine fault tolerance mechanism is a recent field of research with projects appearing in the last few years. However most of the prototypes produced are either focused on very specific problems or are based on assumptions that are very hard to accomplish in a real world scenario (e.g., trusted component). In this thesis we present DivDB, a Diverse Intrusion-Tolerant Database Replication system. It is designed to be incorporated inside a JDBC driver so that it abstracts the user from any added complexity from Byzantine Fault Tolerance mechanism. DivDB is based in State Machine Replication combined with a transaction handling algorithm in order to enhance its performance. DivDB is also able to have different database systems connected at each replica, enabling to achieve diversity. We proposed, solved and implemented three open problems in the design of a replicated database system: authentication, transaction handling and state-transfer. This makes DivDB unique since it is the only system that comprises all these three features in a single database replication system. Our implementation is robust enough to operate reliably in a simple Online Transaction Processing system. To test that, we used TPC-C, a benchmark tool that simulates that kind of environments

    Building global and scalable systems with atomic multicast

    Get PDF
    The rise of worldwide Internet-scale services demands large distributed systems. Indeed, when handling several millions of users, it is common to operate thousands of servers spread across the globe. Here, replication plays a central role, as it contributes to improve the user experience by hiding failures and by providing acceptable latency. In this thesis, we claim that atomic multicast, with strong and well-defined properties, is the appropriate abstraction to efficiently design and implement globally scalable distributed systems. Internet-scale services rely on data partitioning and replication to provide scalable performance and high availability. Moreover, to reduce user-perceived response times and tolerate disasters (i.e., the failure of a whole datacenter), services are increasingly becoming geographically distributed. Data partitioning and replication, combined with local and geographical distribution, introduce daunting challenges, including the need to carefully order requests among replicas and partitions. One way to tackle this problem is to use group communication primitives that encapsulate order requirements. While replication is a common technique used to design such reliable distributed systems, to cope with the requirements of modern cloud based ``always-on'' applications, replication protocols must additionally allow for throughput scalability and dynamic reconfiguration, that is, on-demand replacement or provisioning of system resources. We propose a dynamic atomic multicast protocol which fulfills these requirements. It allows to dynamically add and remove resources to an online replicated state machine and to recover crashed processes. Major efforts have been spent in recent years to improve the performance, scalability and reliability of distributed systems. In order to hide the complexity of designing distributed applications, many proposals provide efficient high-level communication abstractions. Since the implementation of a production-ready system based on this abstraction is still a major task, we further propose to expose our protocol to developers in the form of distributed data structures. B-trees for example, are commonly used in different kinds of applications, including database indexes or file systems. Providing a distributed, fault-tolerant and scalable data structure would help developers to integrate their applications in a distribution transparent manner. This work describes how to build reliable and scalable distributed systems based on atomic multicast and demonstrates their capabilities by an implementation of a distributed ordered map that supports dynamic re-partitioning and fast recovery. To substantiate our claim, we ported an existing SQL database atop of our distributed lock-free data structure. Here, replication plays a central role, as it contributes to improve the user experience by hiding failures and by providing acceptable latency. In this thesis, we claim that atomic multicast, with strong and well-defined properties, is the appropriate abstraction to efficiently design and implement globally scalable distributed systems. Internet-scale services rely on data partitioning and replication to provide scalable performance and high availability. Moreover, to reduce user-perceived response times and tolerate disasters (i.e., the failure of a whole datacenter), services are increasingly becoming geographically distributed. Data partitioning and replication, combined with local and geographical distribution, introduce daunting challenges, including the need to carefully order requests among replicas and partitions. One way to tackle this problem is to use group communication primitives that encapsulate order requirements. While replication is a common technique used to design such reliable distributed systems, to cope with the requirements of modern cloud based ``always-on'' applications, replication protocols must additionally allow for throughput scalability and dynamic reconfiguration, that is, on-demand replacement or provisioning of system resources. We propose a dynamic atomic multicast protocol which fulfills these requirements. It allows to dynamically add and remove resources to an online replicated state machine and to recover crashed processes. Major efforts have been spent in recent years to improve the performance, scalability and reliability of distributed systems. In order to hide the complexity of designing distributed applications, many proposals provide efficient high-level communication abstractions. Since the implementation of a production-ready system based on this abstraction is still a major task, we further propose to expose our protocol to developers in the form of distributed data structures. B- trees for example, are commonly used in different kinds of applications, including database indexes or file systems. Providing a distributed, fault-tolerant and scalable data structure would help developers to integrate their applications in a distribution transparent manner. This work describes how to build reliable and scalable distributed systems based on atomic multicast and demonstrates their capabilities by an implementation of a distributed ordered map that supports dynamic re-partitioning and fast recovery. To substantiate our claim, we ported an existing SQL database atop of our distributed lock-free data structure

    SPIRT: A Fault-Tolerant and Reliable Peer-to-Peer Serverless ML Training Architecture

    Full text link
    The advent of serverless computing has ushered in notable advancements in distributed machine learning, particularly within parameter server-based architectures. Yet, the integration of serverless features within peer-to-peer (P2P) distributed networks remains largely uncharted. In this paper, we introduce SPIRT, a fault-tolerant, reliable, and secure serverless P2P ML training architecture. designed to bridge this existing gap. Capitalizing on the inherent robustness and reliability innate to P2P systems, SPIRT employs RedisAI for in-database operations, leading to an 82\% reduction in the time required for model updates and gradient averaging across a variety of models and batch sizes. This architecture showcases resilience against peer failures and adeptly manages the integration of new peers, thereby highlighting its fault-tolerant characteristics and scalability. Furthermore, SPIRT ensures secure communication between peers, enhancing the reliability of distributed machine learning tasks. Even in the face of Byzantine attacks, the system's robust aggregation algorithms maintain high levels of accuracy. These findings illuminate the promising potential of serverless architectures in P2P distributed machine learning, offering a significant stride towards the development of more efficient, scalable, and resilient applications

    Multi-Shot Distributed Transaction Commit

    Get PDF
    Atomic Commit Problem (ACP) is a single-shot agreement problem similar to consensus, meant to model the properties of transaction commit protocols in fault-prone distributed systems. We argue that ACP is too restrictive to capture the complexities of modern transactional data stores, where commit protocols are integrated with concurrency control, and their executions for different transactions are interdependent. As an alternative, we introduce Transaction Certification Service (TCS), a new formal problem that captures safety guarantees of multi-shot transaction commit protocols with integrated concurrency control. TCS is parameterized by a certification function that can be instantiated to support common isolation levels, such as serializability and snapshot isolation. We then derive a provably correct crash-resilient protocol for implementing TCS through successive refinement. Our protocol achieves a better time complexity than mainstream approaches that layer two-phase commit on top of Paxos-style replication
    corecore