
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

47
0

99
4

B
1

TEPZZ 47Z994B_T
(11) EP 2 470 994 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
09.10.2013 Bulletin 2013/41

(21) Application number: 10763407.3

(22) Date of filing: 13.08.2010

(51) Int Cl.:
G06F 11/20 (2006.01)

(86) International application number:
PCT/GB2010/051347

(87) International publication number:
WO 2011/023979 (03.03.2011 Gazette 2011/09)

(54) IMPROVEMENTS RELATING TO DATABASE REPLICATION

VERBESSERUNGEN IM ZUSAMMENHANG MIT DATENBANKREPLIKATIONEN

AMÉLIORATIONS APPORTÉES À LA RÉPLICATION D’UNE BASE DE DONNÉES

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO SE SI SK SM TR

(30) Priority: 25.08.2009 GB 0914815

(43) Date of publication of application:
04.07.2012 Bulletin 2012/27

(73) Proprietor: THE CITY UNIVERSITY
London EC1V 0HB (GB)

(72) Inventors:
• POPOV, Peter Tonev

London EC1V 0HB (GB)
• STANKOVIC, Vladimir

LondonEC1V 0HB (GB)

(74) Representative: Lawrence, Richard Anthony et al
Keltie LLP
Fleet Place House
2 Fleet Place
London EC4M 7ET (GB)

(56) References cited:
EP-A2- 1 349 085

• ELNIKETY S ET AL: "Database Replication Using
Generalized Snapshot Isolation", RELIABLE
DISTRIBUTED SYSTEMS, 2005. SRDS 2005. 24TH
IEEE SYMPOSIUM ON ORLANDO, FL, USA 26-28
OCT. 2005, PISCATAWAY, NJ, USA,IEEE, 26
October 2005 (2005-10-26), pages 73-84,
XP010854120, ISBN: 978-0-7695-2463-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42628326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EP 2 470 994 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

FIELD OF INVENTION

[0001] The present invention concerns improvements
relating to database replication. More specifically, as-
pects of the present invention relate to a fault-tolerant
node and a method for avoiding non-deterministic be-
haviour in the management of synchronous database
systems.

DISCUSSION OF PRIOR ART

[0002] Current database replication solutions, in both
academia and industry, are primarily based on the crash
failure assumption, whereby it is assumed that the un-
derlying building blocks, i.e. Relational Database Man-
agement Systems (RDBMSs), fail in a detectable way,
leaving a copy of a correct database state for use in re-
covery. The conventional approach in database systems
is to use a plurality of non-diverse replicas - RDBMSs
from the same vendor - for mainly availability and scal-
ability improvement. This is regarded as a suitable ap-
proach to addressing failure under the crash failure as-
sumption, as use of a sufficient number of replicas toler-
ates crash failures and manages increased load from
client applications for improved performance. The validity
of this assumption has, however, been refuted in the re-
cent work by Gashi et al. [Gashi, Popov et al. 2007] and
subsequently in [Vandiver 2008]. Many of the software
faults examined in these two studies caused systematic,
non-crash failures, a category ignored by most standard
implementations of fault-tolerant database replication so-
lutions. The non-crash failures of RDBMS products are
likely to be causing some of the following anomalies: re-
turning incorrect results to the client application, incor-
rectly modifying data items in the database, arbitrarily
halting a transaction or failing to execute an operation
and raise an exception. These failure modes are typically
associated with synchronous systems, that is, systems
which either deliver a result in a predefined amount of
time or are considered to have failed (timeout occurs).
[0003] The work of Gashi et al [Gashi, Popov et al.
2007] was based on two studies of samples of bug reports
for four popular off-the-shelf SQL RDBMS products: Or-
acle, Microsoft SQL, PostgreSQL and Interbase; plus lat-
er releases of two of them: PostgreSQL and Firebird (an
open source descendant of the InterBase database serv-
er). Each bug report contains a description of the bug
and a bug script for reproducing the failure (the erroneous
behaviour that the reporter of the bug observed). The
results of the studies indicate that the bugs causing fail-
ures in more than two diverse RDBMSs are rare - only a
few bugs affected two RDBMSs and none affected more
than two. Thus, a very high detection rate (ranging from
94% to 100%) is achievable when using just a simple
configuration with two diverse servers. Another very im-
portant finding was that crash failure assumption is un-

justified. The authors showed that the majority of the col-
lected bugs belonged to the incorrect results category,
causing incorrect outputs without crashing the RDBMS
products (approximately 66% of the bugs caused incor-
rect results failures, while roughly just 18% caused crash
failures).
[0004] Similarly to the work by Gashi et al., the work
in [Vandiver 2008] experimented with the faults reported
for three well-known RDBMSs: DB2, Oracle and MySQL.
The results show that for all three products over 50% of
the bugs cause non-crash failures; resulting, for example,
in incorrect results returned to a client or incorrectly mod-
ified database items.
[0005] The unfounded assumption that only crash-fail-
ures are observed in RDBMSs has lead to development
of a multitude of solutions which are based on asymmetric
processing of database transactions (see Appendix A).
Inherent to asymmetric processing is the inability to cope
with non-crash failures; e.g. if a replica is faulty, the client
connected to this replica can obtain a wrong result or
incorrect values could be propagated into the state of the
correct replicas (see Figure 1).
[0006] Figure 1 illustrates the impossibility of incorrect
result detection by a middleware-based database repli-
cation protocol using asymmetric transaction execution
(the steps shown with dashed lines are not part of the
protocol). The figure shows the execution of a read op-
eration (read(x)) in a replicated database system con-
sisting of three replicas Rx, Ry and Rz. The execution
steps are as follows: the client sends 1 the read operation
to the middleware, M; the middleware forwards 2 the re-
quest to only one replica, Rx; Rx executes the request
and sends 3 the result to the middleware and middleware
notifies 4 the client of the result. If Rx is faulty, an incorrect
response will be forwarded to the client with no possibility
for detection, since the execution of the read operation
is executed on only one replica. On contrary, if all replicas
were sent 2, 2a, 2b the read request it would be possible
for middleware to adjudicate the responses sent 3, 3a,
3b by all replicas and detect the incorrect Rx response.
[0007] The family of multicast replication protocols is
generally used for implementing asymmetric transaction
processing. These protocols use a GCS (Group Com-
munications System), which makes it possible for any
replica to send a message to all other replicas (including
itself) with the guarantee that the message will be deliv-
ered if no failures occur. Furthermore, GCS is capable
of guaranteeing totally ordered messages: if two replicas
receive messages m and m’, they both receive the mes-
sages in the same order. In fact, a GCS may offer a range
of different guarantees and total ordering is one of the
more expensive options. The known DB replication so-
lutions rely on GCS being configured to offer total order-
ing. The principal steps behind a multicast replication pro-
tocol are as follows: a transaction Ti is submitted to one,
local replica (all other replicas are called remote for Ti);
the local replica executes completely the transaction and
extracts the results of all the modifying operations in a

1 2

EP 2 470 994 B1

3

5

10

15

20

25

30

35

40

45

50

55

writeset; in the end of transaction Ti’s writeset is sent to
all remote replicas in total order using the underlying
GCS; upon receiving the Ti’s writeset every replica in-
stalls the writeset in the same total order imposed by the
GCS. The installation of the writesets in the same total
order is necessary to avoid data inconsistencies due to
non-determinism on the replicas. Otherwise, if the total
order was not respected it would be possible for two rep-
licas to install overlapping writesets in a different order,
which would result in an inconsistent state of the repli-
cated system. Some examples of multicast-based repli-
cation protocols used with RDBMSs providing snapshot
isolation (see Appendix A) are described in [Lin, Kemme
et al. 2005] and [Kemme and Wu 2005]. [Elnikety, S., W.
Zwaenepoel, et al. 2005] provides discussion of fault-
tolerant database replication using snapshot isolation ap-
proaches - a master database is replicated to a plurality
of replica databases, such that any past snapshot can
be used for snapshot isolation, wherein if update trans-
actions update the same item, then the transaction that
commits first succeeds in updating the item and the other
transaction is aborted.
[0008] EP 1349085 teaches a database replication ar-
rangement in which update collisions are resolved by
switching from a synchronous replication mode to an
asynchronous replication mode. EP 1349085 does not
teach the use of snapshot isolation in the context of con-
current transactions.
[0009] Two recent database replication protocols are
built on a more general failure model than crash failures:
HRDB (Heterogeneous Replicated DataBase) [Vandiver
2008] and Byzantium [Preguiça, Rodrigues et al. 2008]
approaches. HRDB’s SES (Snapshot Epoch Scheduling)
protocol and Byzantium are of particular interest because
they assume, that the underlying replicas guarantee
snapshot isolation. Both HRDB and Byzantium assume
that an arbitrary failure can occur, i.e. a Byzantine failure
model (described for the first time in [Lamport, Shostak
et al. 1982]) is assumed. This failure model is the most
general one, where beside crash failures, for example,
incorrect results of read and write operations are also
allowed; even malicious behaviour by the replicas such
as sending conflicting messages to the other replicas are
allowed by the Byzantine failure model.
[0010] Both HRDB and Byzantium are primary/ sec-
ondary, middleware- based replication protocols, which
tolerate non- crash failures by voting on the results com-
ing from different replicas. Figure 2 illustrates the generic
primary/ secondary database replication approach. The
Client (C) first sends 21 the operations {op1, , ..., opk,
... , opn} of the transaction Ti to the Primary replica (P)
for execution, and only once the Primary executes the
operations it forwards 22a, 22b them to the Secondaries
{S1, ..., Sm} . Therefore, in both protocols, write opera-
tions are firstly executed on one (primary) replica and
only then sent to the secondary replicas in order to guar-
antee replica consistency- in this way the conflicting op-
erations are executed in the same order (the one im-

posed by the primary) on all replicas and thus non- de-
terminism between conflicting modifying transactions are
avoided. However, in this way no parallelism in the exe-
cution of the same write operations between the primary
on the one hand and secondary replicas on the other
hand is allowed; as a result the total duration of a trans-
action may be significantly prolonged (as shown in Figure
3) even in the arguably more common case when no
write- write conflicts (see appendix A) occur between the
concurrently executing transactions.
[0011] Although both HRDB and Byzantium use a pri-
mary/secondary approach, there is a difference between
the two as to when the primary forwards the (write) op-
erations for execution to the secondaries. In HRDB every
write operation is sent to the secondaries as soon as it
is completed on the primary (possibly after its concurren-
cy control mechanism resolves the conflicts between
concurrent write operations), see Figure 3. The read op-
erations in HRDB, on the other hand, are executed in
parallel on primary and secondary replicas.
[0012] More specifically, Figure 3 shows a timing dia-
gram of the execution of a write operation in HRDB
scheme consisting of the primary (P) and two secondary
replicas (S1 and S2) . The meaning of the callouts is as
follows: the middleware (M) sends 31 the write operation,
w (x), to the primary replica for execution; once the pri-
mary has executed the write, it notifies 32 the middleware
by sending it the result of w (x) ; middleware forwards
33a, 33b the write operation to the secondary replicas
for execution. Performance overhead ensues because
the write operation is not executed in parallel between
the primary and the secondary replicas. As a result, the
operation duration as perceived by the middleware is pro-
longed (Tw(x)

Sequential), as opposed to it being shorter due
to parallel execution on all replicas (Tw(x)

Parallel) . The
execution order in the primary/ secondary scheme caus-
es transactions to retain the write locks for longer and
this leads to an increased likelihood of a write- write con-
flict with the other concurrent transactions. Even though
HRDB (as well as Byzantium) uses database systems
which offer snapshot isolation, the low level implemen-
tation of the concurrency control mechanisms in these
database systems still relies on the use of locking mech-
anisms on shared resources by multiple concurrent us-
ers.
[0013] The situation with Byzantium is different in a
number of respects. First, all operations, both reads and
writes, of a transaction are executed on the primary rep-
lica (the work in [Preguiça, N., R. Rodrigues, et al. 2008]
uses the term "coordinator replica" for the primary) and
the respective responses collected for future use. Also,
different from HRDB, Byzantium assumes that different
transactions are assigned to different coordinator repli-
cas. Subsequently, the commit phase is initiated and only
then all operations and the respective results are forward-
ed by the primary to the secondaries for validation: the
secondaries then execute all operations and compare
them with the responses of the primary. In this way no

3 4

EP 2 470 994 B1

4

5

10

15

20

25

30

35

40

45

50

55

parallelism between the operations’ execution on the
primary and the secondaries exist, which makes this
scheme inferior in terms of response time in comparison
with HRDB.
[0014] More specifically, Figure 4 shows the timing di-
agram of executing transaction Ti, consisting of three op-
erations: w (y), r (x) and r (z), on three Byzantium replicas
(P, S1 and S2) . The transaction duration is prolonged
because all the operations are first executed on the pri-
mary replica and only then forwarded to the secondaries.
Hence, instead of the transaction execution being paral-
lelised on all replicas and its duration dictated by the slow-
est one (A Ti (MAX (Ti

P, Ti
S1, Ti

S2)), in this case second-
ary replica S2 is the slowest), the duration is the sum of
the primary’s and the slower secondary processing
(ΔTi

Sequential) .
[0015] The HRDB approach does not compare the re-
sponses from the read operations; albeit this possibility
is discussed in [Vandiver 2008]. The Byzantium protocol,
on the other hand, includes the validation of the results
coming from all types of operations.
[0016] Compared to conventional database replication
approaches, the HRDB and Byzantium approaches are
complex and slow. It is, thus, desirable to develop an
approach for processing of database transactions which
is not limited to the crash failure assumption but which
allows more economical and efficient operation than the
HRDB and Byzantium approaches.

SUMMARY OF THE INVENTION

[0017] Accordingly, the invention provides a fault- tol-
erant node for synchronous heterogenous database rep-
lication whereby the fault- tolerant node is adapted to
carry out a series of database transactions generated by
a processor executing a computer program at the fault-
tolerant node, wherein the fault- tolerant node comprises
at least two relational database management systems,
the systems being instances of different relational data-
base management system products which provide snap-
shot isolation between concurrent transactions and each
system comprising a database and a database manage-
ment component, wherein for each database transaction,
operation instructions are provided concurrently to each
of the systems to carry out operations on their respective
databases and to provide respective responses; wherein
the responses generated by the systems either comprise
an operation result or an exception, and where only one
of the systems is configured with a NOWAIT exception
function enabled which returns an exception when it is
detected that two or more concurrent transactions are
attempting to modify the same data item and the other
systems are configured with the NOWAIT exception func-
tion disabled, whereby the fault- tolerant node is adapted
to detect that two or more concurrent transactions are
attempting to modify the same data item and to block one
or more of the transactions to ensure that all systems
apply the same order of modification of the data item by

the concurrent transactions.
[0018] With such an approach, the consequences of
non-deterministic behaviour of the systems are avoided.
Such a node is capable of tolerating crash failures and
incorrect results by the replicas. This also allows for a
solution which is faster than prior art protocols such as
HRDB and Byzantium.
[0019] A set of operation instructions may include a
begin instruction, a commit instruction and an abort in-
struction for control of execution of a transaction. Advan-
tageously, only one transaction can execute a begin in-
struction or a commit instruction at a time for all the sys-
tems. When an exception is received as an operation
result from one of the systems, the fault-tolerant node
provides an abort instruction for that transaction for all
the systems. In one preferred arrangement, execution of
a begin operation for a transaction comprises setting a
variable indicating that the transaction is not, or no longer,
aborted, and by acquiring control of commit and begin
operations so that no other begin or commit operation
can take place until the begin operation is completed. In
one arrangement, execution of a commit operation for a
transaction comprises confirming that the transaction
has not been marked to be aborted, determining that the
operation results from the systems allow a transaction
results to be provided, determining that the operation re-
sults are consistent, and by acquiring control of commit
and begin operations so that no other begin or commit
operation can take place until the commit operation is
completed.
[0020] The set of operations comprises a read opera-
tion and a write operation, and in executing a write op-
eration the node extracts a write set on which operations
are performed before the transaction is committed. When
all systems have failed to provide a result to a read op-
eration or a write operation within a predetermined time,
fault-tolerant node raises an exception.
[0021] In one preferred arrangement, the fault-tolerant
node comprises a transaction manager to control the ex-
ecution of the operations for one transaction in each of
the systems and a replica manager for each of the sys-
tems used to execute a transaction to provide operations
to its associated system, wherein for each transaction,
the transaction manager provides operations required for
execution of the transaction into a queue for each system
managed by the replica manager for that system, wherein
the operations are provided to each system from the
queue by the replica manager for that system.
[0022] Preferably, the fault- tolerant node comprises a
comparator function to compare operation results re-
ceived from the systems to enable the fault- tolerant node
to determine whether the transaction has completed suc-
cessfully. The fault- tolerant node may then abort the
transaction if the comparator function indicates a mis-
match between operation results received from different
systems. This arrangement contributes to the achieved
dependability of the node, as it enables the recognition
of many cases of a failure.

5 6

EP 2 470 994 B1

5

5

10

15

20

25

30

35

40

45

50

55

[0023] In one preferred arrangement (an optimistic re-
gime of operation), the fault-tolerant node returns the first
operation result received from any of the systems to the
computer program, and provides a further message to
the computer program if the transaction aborts or if the
operation results received from all the systems are not
consistent (e.g. typically identical, or considered to be
identical when the internal representation of data in the
different systems introduces small differences even for
the same data). Alternatively, in a pessimistic regime of
operation, the fault-tolerant node returns an operation
result to the computer program only when the operation
results from all the systems have been received and eval-
uated by the fault-tolerant node.
[0024] In the fault-tolerant node described above, the
different relational database management system prod-
ucts may comprise two or more systems that implement
snapshot isolation between concurrent transactions,
such as Oracle, Microsoft SQL 2005 or later, Post-
greSQL, Interbase and Firebird.
[0025] In a further aspect, the invention provides a da-
tabase server comprising a fault-tolerant node as set out
above. Such a database server can be provided as part
of any computational system in which it is necessary or
desirable for one or more databases to achieve the per-
formance resulting from use of embodiments of the in-
vention.
[0026] In a further aspect, the invention provides a
method for performing a synchronous heterogenous da-
tabase replication, for a series of database transactions
provided by a processor executing a computer program,
at a fault-tolerant node comprising at least two relational
database management systems, the systems being in-
stances of different relational database management
system products which provide snapshot isolation with
each system comprising a database and a database
management component, the method comprising: re-
ceiving a database transaction at the fault-tolerant node;
providing operation instructions for the database trans-
action concurrently to each of the systems to carry out
operations on their respective databases and to provide
respective responses; the systems each generating a
response to an operation instruction which comprises an
operation result or an exception, wherein only one of the
systems is configured with a NOWAIT exception function
enabled such that that system returns an exception when
it is detected that two or more concurrent transactions
are attempting to modify the same data item and the other
systems are configured with the NOWAIT exception func-
tion disabled; whereby the fault-tolerant node detects
that two or more concurrent transactions are attempting
to modify the same data item and allows the transaction
that accesses the data item first on the system with NOW-
AIT enabled to proceed on all the systems, and prevents
execution of all the other transactions attempting to mod-
ify the same data item on all the systems, thereby achiev-
ing that all systems apply the same order of modification
of the data item by the concurrent transactions.

[0027] In embodiments, there is provided a fault-toler-
ant node for avoiding non-deterministic behaviour in data
management whereby a processor executes a computer
program to generate a series of database transactions
to be carried out at the fault-tolerant node, the fault-tol-
erant node comprising at least two relational database
management systems, the systems being instances of
different relational database management system prod-
ucts and each comprising a database and a database
management component, wherein for each database
transaction, operation instructions are provided concur-
rently to each of the systems to carry out operations on
their respective databases and to provide operation re-
sults; wherein the fault-tolerant node compares operation
results generated by the systems to validate the result
of the database transaction.

BRIEF DESCRIPTION OF THE FIGURES

[0028] Embodiments of the invention are described be-
low, by way of example, with reference to the accompa-
nying Figures, of which:

Figure 1 illustrates a generic middleware-based da-
tabase replication protocol using asymmetric trans-
action execution and demonstrates the impossibility
of incorrect result detection in such systems;

Figure 2 illustrates a generic primary/secondary ap-
proach to database replication;

Figure 3 shows a timing diagram of the execution of
a write operation in the prior art HRDB scheme;

Figure 4 shows a timing diagram of executing a trans-
action with one write and two read operations on
three replicas in a prior art Byzantium scheme;

Figure 5 shows an embodiment of a fault-tolerant
node (FT-node) as a UML Component diagram;

Figure 6 illustrates a transaction context for the FT-
node of Figure 5 as a UML Class diagram;

Figure 7 illustrates the establishment and destruc-
tion of a connection associated with a transaction in
the FT-node of Figure 5;

Figure 8 illustrates the interaction related to the
processing of an operation by the FT-node of Figure
5;

Figure 9 shows the interaction between a RepMan-
ager object and respective RDBMSs in the FT-node
of Figure 5;

Figure 10 shows a UML sequence diagram of com-
mitting a transaction in the FT-node of Figure 5;

7 8

EP 2 470 994 B1

6

5

10

15

20

25

30

35

40

45

50

55

Figure 11 shows interaction related to the compari-
son of responses received from RDBMSs in the FT-
node of Figure 5;

Figure 12 shows a procedure of exception handling
by middleware in the FT-node of Figure 5;

Figure 13 shows pseudo code illustrating the execu-
tion of the DivRep protocol on a TraManager as used
in the FT-node of Figure 5;

Figure 14 shows pseudo code illustrating the execu-
tion of the DivRep protocol on a RepManager as
used in the FT-node of Figure 5;

Figure 15 shows a timing diagram of the execution
of a transaction using the DivRep protocol as shown
in Figure 13;

Figure 16 shows a timing diagram of a conventional
ROWAA scheme for snapshot isolation replication
based on reliable multicast;

Figure 17 illustrates generally distributed transac-
tions which comprise execution of one or more op-
erations that, individually or as a group, update
and/or read data on two or more distinct nodes of a
replicated database;

Figure 18 shows a timing diagram showing generally
the use of Strict 2-Phase Locking concurrency con-
trol and first-updater-wins and first-committer-wins
rules for enforcing Snapshot Isolation;

Figure 19 shows generally an example of a concur-
rency control mechanism, based on Strict 2-Phase
Locking, enforcing Snapshot Isolation on a central-
ised, non-replicated database;

Figure 20 shows generally an example of different
transaction serialisation decisions made by the con-
currency control mechanisms, based on Strict 2-
Phase Locking, of two RDBMSs in a replicated da-
tabase;

Figure 21 is a schematic block diagram which shows
generally the interaction between clients and repli-
cated DBs;

Figure 22 shows generally the competition between
two concurrent transactions competing for a data
item while executing in a replicated database system
with two replicas; and

Figure 23 shows a high-level schematic representa-
tion of a Group Communication Scheme (GCS) used
for consistent database replication in a general rep-
lication scheme with multiple replicas.

DETAILED DESCRIPTION OF EMBODIMENTS

[0029] An embodiment of an approach to database
replication will now be described, for which diverse (i.e.
different by design, developed by different software ven-
dors) relational database management systems (RD-
BMSs) are used which offer snapshot isolation between
concurrent transactions. This is a departure from the prior
art, where non-diverse databases have always been con-
sidered to be adequate for database replication, in order
to cope with the software failures and guarantee consist-
ency of the data on all replicas. Database replication as-
sumed in the present embodiment is of "share nothing"
type, where each RDBMS interacts with its own, full copy
of the database. This is in contrast to some widespread
commercial solutions such as Real Application Cluster
(RAC) from Oracle (http://www.oracle.com/technology/
products/database/clustering/index.html) which uses
"share all" approach, where one copy of the database is
shared by a cluster of RDBMSs. In this embodiment da-
tabase transactions are directed to a specially construct-
ed node (hereafter called an FT-node) which is tolerant
of certain database faults. Such an FT-node is schemat-
ically represented in Figure 5.
[0030] Figure 5 is a UML (Unified Modelling Language)
Component diagram of an FT-node 50. An FT-node is
an instantiation of a database server which embodies
aspects of the invention. Referring to Figure 5, it can be
seen that the FT-node (FT stands for fault-tolerant) con-
sists of three software components: RDBMS1 51,
RDBMS2 52 and Middleware 53. The components
RDBMS1 51 and RDBMS2 52 consist of the software
responsible for data management (SQL engines) and the
data itself (in the form of tables, views, stored procedures,
triggers, etc. stored in one or multiple computer files) as
required by the respective SQL server engine. The com-
ponent Middleware 53 consists of three components: a
DivRep protocol module 54, a Diagnostic module 55 and
a Multicast protocol module 56. The DivRep protocol 54
module utiises a DivRep protocol which is a replication
protocol, that works with the diverse (heterogeneous) da-
tabases, RDBMS1 and RDBMS2, via the interfaces each
of them provides (SQL API 1, WS API 1 (shown by ref-
erence numbers 51a and 51b provided by RDBMS1, and
SQL API 2, WS API 2(shown by reference numbers 52a
and 52b) provided by RDBMS 2).
[0031] In the arrangement shown in Figure 5, there are
two RDBMSs present. For many practical purposes, ef-
fective embodiments will be provided using two RD-
BMSs, each of a different type (for example, one Oracle
and one Microsoft SQL 2005). In some cases, it may be
desirable to use a further RDBMS - this may, for example,
improve further the prospect of detecting simultaneous
and identical failures of more than one RDBMS.
[0032] The interaction between the components of the
FT-node 50 consists of the Middleware 53 sending op-
erations to the RDBMSs 51, 52, and the RDBMSs 51, 52
responding to these by either confirming that the opera-

9 10

EP 2 470 994 B1

7

5

10

15

20

25

30

35

40

45

50

55

tion has been completed successfully or instead report-
ing an abnormal completion of the operation. The oper-
ations offered by the SQL API allow for managing data
objects in databases (the so called Data Definition Lan-
guage (DDL) operations, such as creating/deleting/mod-
ifying tables, views, etc.) and also for data (content) man-
agement (i.e. selecting data from and inserting/deleting/
modifying data in the existing objects, referred to as Data
Manipulation Language (DML) operations). Another set
of operations is typically offered by off-the-shelf RDBMSs
to control the privileges of different users to manipulate
the data objects (such as GRANT and REVOKE, fre-
quently referred to as Data Control Language operations)
- while these may be used in embodiments of the inven-
tion, they are not of significance to the FT-node function-
ality described here and will not be described further be-
low.
[0033] SQL API (as represented by 57x, 51a and 52a)
offer also a set of operations for connecting external
agents 57, 57n (e.g. application software) to RDBMSs
51, 52 (establishing connections), managing transac-
tions (i.e. a set of operations treated by the engine as an
atomic whole as defined in Appendix A) such as begin,
commit or abort a transaction. A set of operations in the
SQL API allow for setting the isolation level between the
transactions. In the particular case, it is assumed that the
RDBMSs offer support for snapshot isolation between
the transactions (see Appendix A).
[0034] When an operation is completed successfully,
the RDBMSs 51, 52 will return, via the SQL API, either
the requested data (in the case of a read operation) or a
notification that the operation is completed successfully
(e.g. in the case of inserting new data, the RDBMS will
typically return the number of newly inserted rows). In
case no result is received, within a predefined amount of
time (timeout occurs), DivRep protocol module 54 raises
a timeout exception.
[0035] When an operation is completed abnormally,
the RDBMS 51, 52 wil typically raise an exception (i.e. a
signal) to the Middleware 53 detailing the problem (e.g.
that the SQL syntax of the submitted operation is incor-
rect). Of the many possible exceptions, it is assumed
here that at least one of the RDBMSs 51, 52 used in the
FT-node 50 offers a NOWAIT exception feature (herein-
after also referred to as ’a NOWAIT exception’) immedi-
ately upon detection by that RDBMS that two concurrent
transactions attempt to modify the same data item (e.g.
to alter the same row in the same table of the same da-
tabase). The feature is typically implemented as part of
the first phase of a 2-phase lock protocol (see Appendix
A for discussion of a conventional 2-phase locking pro-
tocol): the transaction, which finds the write lock on a
record taken by another transaction will be interrupted
by a NOWAIT exception and the modifications of the par-
ticular record by the interrupted transaction will be dis-
carded by the SQL server engine, on which the interrupt-
ed transaction is executed. Many off-the-shelf products
(e.g. Oracle, PostgreSQL, Firebird, etc.) offer the func-

tionality of a NOWAIT exception feature, albeit imple-
mented differently and for different purposes than de-
scribed here.
[0036] WS API 51b, 52b offer ways for the agent con-
nected to the RDBMS to extract the write sets, (hence
the term WS API is used) of a transaction. Typically, WS
API is not a standard feature of an off-the-shelf RDBMS.
If a RDBMS is to be used which does not have this fea-
ture, custom-built software for write set extraction needs
to be added either by modifying the SQL engines or by
adding a module, which uses proprietary features of the
respective SQL engine. The format of the write sets may
vary, but a reasonable approximation is to think of them
as if they were stored in a separate table (as the trans-
action modifies the data), from which the agent can read
using the transaction ID as a parameter. The ability to
modify the SQL engines or to add such a module will be
well within the ability of the skilled addressee following
this specification and so is not described further herein.
[0037] The components SW 1 to SW n (shown by ref-
erence numbers 57 and 57n) represent the client appli-
cations interacting with the FT-node 50. The Client SQL
API 57x, provided by the Middleware 53, offers function-
ality similar to that offered by the SQL API 51a and 52a:
DMUDDL operations plus the functionality for establish-
ing a connection and transaction management. In effect,
for the client applications 57, 57n the Middleware 53 ap-
pears as an RDBMS with its own SQL API, e.g. a su-
perset of the SQL API of one of the RDBMSs used in the
replication, thus allowing for porting existing applications
for work with an FT node 50 without modification.
[0038] The Diag API 55a provides for the interaction
between the DivRep protocol module 54 and the Diag-
nostic module 55. Once a failure is detected by the Di-
vRep protocol module 54, the Diagnostic module 55 is
invoked to analyse the failed RDBMS (e.g. "rephrasing
rules" [Gashi and Popov 2006] are one possible diagno-
sis mechanism).
[0039] The MC API 56a allows for the interaction be-
tween the DivRep Protocol module 54 and the Multicast
Protocol module 56. The DivRep Protocol module 54
communicates the decisions reached about conflicting
transactions inside the respective FT-node 50 to the Mul-
ticast Protocol module 56, which in turn ensures that
these decisions are reconciled with the decisions from
all other FT-nodes in the system. Once the decisions are
reconciled, all the transactions are applied consistently
on all FT-nodes. Besides guaranteeing data consistency
across FT-nodes, the use of Multicast Protocol for FT-
node replication increases the scalability of the overall
system through the use of asymmetric processing (see
Discussion of Prior Art and Appendix A). The particulars
of the Multicast Protocol module 56, the associated MC
API 56a, and the interaction between Multicast Protocol
modules 58 across FT-nodes (represented with the
dashed arrowed lines in Figure 5) are not necessary for
understanding the basic functionality of the FT-node and
therefore are not discussed further here.

11 12

EP 2 470 994 B1

8

5

10

15

20

25

30

35

40

45

50

55

[0040] Figure 6 illustrates the contexts (i.e. the data
structures) created within the Middleware component,
which allow for a transaction originating from the partic-
ular client to be mapped into transactions with the
RDBMS1 and RDBMS2. More specifically, Figure 6
shows a UML class diagram illustrating the transaction
context, maintained in the Middleware component for
each transaction created by a client application.
[0041] An implicit assumption is made in the Figure 6
that there wil be a single transaction per connection (in-
dicated by the 1-to-1 association between the classes
Connection and TraManager), which simplifies the de-
scription of the embodiments of the present invention.
Although such 1-to-1 mapping between connections and
transactions is widely used in practice, in many cases
multiple transactions can share the same connection, a
case which would require a trivial extension of the dia-
gram and the Client SQL API 61 to allow for the transac-
tion ID to be used as a parameter in all Client SQL API
operations.
[0042] Informally, the operation of the FT- node 60 can
be described as follows. The client (e.g. a software ap-
plication) first establishes a connection to a named da-
tabase by sending a request via the Client SQL API 61
to the Middleware (Connect operation) . A Connection
object 62 is created, which in turn instantiates a TraMan-
ager object 63 and sets a transaction ID unique across
all concurrent transactions. This object then instantiates
a series of objects which would hold the operations, which
make up the transaction (shown in the diagram as a UML
composition with a Statement class) and the respective
responses received from each of the RDBMSs on oper-
ations’ completion. The responses are stored in instanc-
es of the class Response, which in turn may be either a
ReadSet (in case a read operation is executed) or a
WriteSet (in case a modifying operation is executed) .
Every response consists of a non- zero number of Da-
taRecords. The class TraManager includes (modelled as
a UML aggregation association) two dedicated classes
(RepManager1 and RepManager2 both derived from the
class RDBMSBuffer holding the operations as sent to
and the responses returned by the respective RDBMSs.
The communication of the Middleware with the RDBMSs
is undertaken by the RepManager objects 64, 65, which
use the interfaces as defined in Figure 5 (SQL API and
WS API associated with the respective RDBMS) .
[0043] The instances of TraManager 63,
RepManager1 64 and RepManager2 65 are run concur-
rently in separate execution threads. If multiple transac-
tions are run concurrently, multiple instances of the class-
es shown above will be created in the Middleware com-
ponent, one set of instances including the triplet of
threads (TraManager 63, RepManager1 64 and
RepManager2 65) per transaction. Due to multithreading
so achieved, the middleware allows for concurrent exe-
cution of transactions.
[0044] A degree of synchronisation between the trans-
actions is achieved at transaction "edges" (Begin and

Commit/Abort operation): the Begin and Commit opera-
tions of a transaction are serialised (i.e. their executions
are mutually exclusive (mutex) among TraManager ob-
jects). This is supported by defining the methods Begin
and Commit in the TraManager class as static, as per
UML specification. The protocol does not require a mutex
for the Abort operations. This concurrency control can
be developed further by executing several edges simul-
taneously (in ’epochs’), but this will be discussed below
in consideration of variations to this embodiment.
[0045] The Client SQL API defines two "data" func-
tions, Read (Statement String) and Write (Statement
String), which allow for any DML operation to be submit-
ted to the middleware; the latter function also allows for
a DDL operation to be submitted. It should be noted that
typically the DDL operations (e.g. an operation that mod-
ifies a database table structure) are not mixed with DML
operations, but are instead executed in separate trans-
actions. The Client SQL API defines also 3 transaction
control operations - Begin, Abort and Commit.
[0046] When a data operation is submitted via the Cli-
ent SQL API it is propagated to the respective buffers
(RepManager1 and RepManager2) and explicitly stored
in the Statement object with the attribute "isRead" set to
"true" in the case of a ReadStatement operation. The
TraManager object 63 serves as a gateway to pass the
operations from the Client SQL API to the respective
queues of operations maintained by RepManager1 64
and RepManager2 65 (in the respective Statement ob-
jects held in the RepManager objects). The actual
processing of the operations from the queue is left to the
RepManager objects 64, 65 (run in their own threads).
The RepManager would pull from the queue one opera-
tion at a time and submit it for execution by the respective
RDBMS via its SQL API. The RDBMS may either suc-
cessfully complete the operation, in which case the Rep-
Manager will fetch the respective response (either via
the SQL API in case of a read operation or via WS API
in case of a write operation) and store these in the re-
spective Response object associated with the success-
fully executed operation, or the RDBMS may fail to exe-
cute the operation successfully, in which case an excep-
tion will be returned to the RepManager. The TraManager
object 63 will monitor the Response objects associated
with the last submitted operation (using its attribute size,
which indicates the number of operations in the transac-
tion queue). Once a Response is received, the TraMan-
ager object 63 returns it to the client application. Note
that the Response class has an attribute exception of
type String. In the normal case this attribute will be set
to an empty String.
[0047] In case of an exception being raised by the re-
spective RDBMS (e.g. as a result of incorrect syntax of
an SQL operation or a write-write conflict) the attribute
will get set to a meaningful value, e.g. "Incorrect syntax".
In this case, the response returned to the client applica-
tion will return a Response object (e.g. a ReadSet object
in case of a read operation), which will carry the exception

13 14

EP 2 470 994 B1

9

5

10

15

20

25

30

35

40

45

50

55

raised. The TraManager can implement different modes
of operation, which will affect the point in time when a
response is returned to a client application. If the Middle-
ware is configured to work in pessimistic mode, the re-
sponse will be returned after both RepManager1 and
RepManager2 have returned their responses, these
have been adjudicated by the comparison (see the Com-
pareResponses() function shown in Figure 11 and de-
scribed later) and no discrepancy has been detected. If
instead the Middleware is configured to work in optimistic
mode, as soon as a response is returned by either
RepManager1 or RepManager2, it is returned to the cli-
ent application. The adjudication on the two responses
is applied when both become available. The client will be
notified if a discrepancy is detected upon adjudication
completion.
[0048] In case of an exception, the respective Rep-
Manager will set its Boolean attribute "isException-
Raised" to "true" and stop pulling operations from its
queue, even if more operations are waiting to be proc-
essed.
[0049] The TraManager class contains a function
called CompareResponses, which is activated when re-
sponses (Response objects) from both RDBMSs to the
same statement are collected. This operation returns
"true", if the responses are identical and "false", if the
responses differ. In the latter case (non-identical re-
sponses), the TraManager object 63 would access the
operation Diagnose() of the DiagAPI interface for diag-
nosing which of RDBMS 1 and RDBMS 2 has failed. De-
tails of the diagnosis are beyond the scope of the present
embodiment, but it is envisaged that a solution based on
’rephrasing rules’ [Gashi and Popov 2006] is possible. If
the diagnosis is successful, the operation Diagnose() will
return the ID of the RDBMS, which has been identified
to have failed (e.g. 1 for RDBMS 1 and 2 for RDBMS 2,
3 for both failing and 0 - if the diagnosis failed). The di-
agnosis outcome may be interpreted in different ways
(the variations are scrutinised further below). For in-
stance, a successful diagnosis may lead to blocking the
operation of the failed RDBMS from further processing
(i.e. reducing the FT node to a single RDBMS). Unsuc-
cessful diagnosis may lead to fail-stopping the FT-node,
i.e. all connections are abnormally dosed by the middle-
ware as if the FT-node has crashed.
[0050] A further variation of the CompareResponses()
operation is setting a timeout (not shown) for the respons-
es to be collected. If the timeout is exceeded it will serve
as a trigger for diagnosing the RDBMS, which failed to
provide a response. Such timeouts provide a mechanism
for detecting crash failures of the RDBMSs and faults in
the Middleware implementation, which would lead to fail-
ing to collect a response from the respective RDBMS.
[0051] The TraManager object 63 will also monitor
whether either RepManager1 64 or RepManager2 65
have received exceptions from the respective RDBMS
(e.g. NOWAIT exception defined above or other such as
a deadlock (see Appendix A for explanation) between

concurrent transactions, etc.). If this is detected, then the
TraManager will abort the transactions on both servers,
using the Abort operations of the respective SQL API. In
contrast with the Begin/Commit operations the Abort op-
erations do not have to be synchronised with the opera-
tion "edges" of the other transactions (i.e. their respective
TraManager objects).
[0052] When a Commit operation is submitted via the
Client SQL API, the Connection passes it on to the Wait-
Commit() operation of the TraManager object, which will
wait until both RepManagers have processed in full their
respective queues of operations and then will enter the
static method (i.e. the mutex) Commit() of the TraMan-
ager for committing the transactions on RDBMSs (by in-
voking the Commit() operation of the SQL APIs).
[0053] The interactions summarised above will now be
described in further detail with reference to standard UML
sequence diagrams.
[0054] Figure 7 illustrates a typical interaction of es-
tablishing a connection, in which the objects associated
with a transaction are created. The details related to in-
stantiating and destruction of the RepManager object
parts - the queues of Statement/Response, have been
omitted for ease of understanding. The objects and the
invocation of their respective methods (shown as mes-
sages) are displayed in the diagram. More specifically,
Figure 7 is a UML sequence diagram related to estab-
lishing and destroying a connection between an external
agent (application software) and the Middleware. The up-
per half of the diagram shows establishing a connection,
while the lower part dosing a connection, As a result of
closing a connection the objects are destroyed (indicated
by the crosses at the bottom of the vertical bars (UML’s
lifelines) showing the lifecycle of the respective objects).
[0055] Figure 8 shows the interaction related to
processing an operation by the FT node, focussing on
how the operations submitted for execution by client ap-
plications get stored in the respective queues of Rep-
Manager objects 84, 85. More specifically, Figure 8 is a
sequence diagram showing how a DML statement (a
read or a write operation) gets placed in the RepManager
queues for passing to the RDBMSs for further execution.
The upper part of the figure represents the read operation
and the lower part the write operation.
[0056] The fragments 87a, 87b, 88a, 88b (procedures)
with the tag ref StatementExecution 1 and StatementEx-
ecution 2 shown in Figure 8 are described in greater detail
in Figure 9, which details how an operation in the Rep-
Manager queues gets passed on for processing by the
RDBMSs. Similarly, CompareResponses procedure
86a, 86b is described in greater detail in Figure 11.
[0057] Figure 9 is a UML sequence diagram, which
shows the interaction between the RepManager object
91 and the respective RDBMSs. Depending on the type
of operation upon its completion either a ReadSet gets
returned to the RepManager or a WriteSet gets fetched
by the RepManager from the WS API 93. In addition, for
a write operation it is shown explicitly (in the try fragment)

15 16

EP 2 470 994 B1

10

5

10

15

20

25

30

35

40

45

50

55

the possibility for an exception to be raised by the server
(e.g. a NOWAIT exception), which if observed would lead
to setting to "true" the isExceptionRaised flag (attribute)
of the respective RepManager.
[0058] In Figure 9, the detailed interaction between the
RepManager object with its parts, the Response object
and of the Response object with its parts (the DataRecord
object (s)), for storing the data returned as a result of
executing the operation, have been omitted as these are
mere details of how the innovation can be implemented,
which would be within the knowledge and capability of
the skilled addressee.
[0059] Figure 10 shows a UML sequence diagram of
committing a transaction. A Commit operation gets sub-
mitted by an agent, which then gets relayed to the Tra-
Manager object 103 (its WaitCommit() operation). The
TraManager 103 waits until both its RepManagers ob-
jects 106, 107 have processed in full their respective
queues, upon which enters its own static (mutex) oper-
ation Commit() within which Commit() is submitted to
both RDBMSs. At this stage, the databases are modified
(a Write operation carried out only on the extracted write-
set is now applied to the actual database from which it
was extracted). SQL API Commits are invoked concur-
rently and TraManager object 103 waits for commits to
complete by both RDBMSs, and RepManager queues
are cleared by the ClearStatements operations 108 (the
fragment (procedure) at the bottom of Figure 10.).
[0060] Invoking the SQL API Commits are shown as
asynchronous operations. However, TraManager object
103 does wait for the commit to complete - successful
completion of both commits is needed for the RepMan-
ager queues to be cleared by the ClearStatements op-
erations 108 (the fragment (procedure) at the bottom of
Figure 10.)
[0061] An important feature of the present embodiment
is that the responses of the replicas are compared, which
offers ways of detecting non-crash failures (discrepancy
of the results obtained from RDBMSs). The interaction
between objects related to comparison is shown in Figure
11 and described below.
[0062] Figure 11 is a sequence diagram showing the
interaction related to comparison of the Responses from
the RDBMSs. The comparison is carried out once the
responses from both RDBMSs to the same operation
have been received (the TraManager object 111 moni-
tors the value of the attribute isCompleted of the same
operation in both RepManager1 112 and RepManager2
113) and when both are set to "true" the operation Com-
pareResponses() as shown in Figures 6 and 8 of the
TraManager object is invoked. In the case a discrepancy
is detected, the TraManager object 111 invokes the op-
eration Diagnose() of the Diag API 114 (part of the Diag-
nostic module as shown in Figure 6. It is to be noted that
the "membership" of the attribute isCompleted in the re-
spective RepManagers is implicit from the diagram in Fig-
ure 6. The semantics of the part of the UML diagram
consisting of Statement, RDBMSBuffer and RepManag-

ers is as follows: every object of the class RDBMSBuffer
consists of, among other attributes, a number of State-
ment objects (possibly zero). The classes RepManager1
and RepManager2 are specialisations ("subclasses") of
the general class RDBMSBuffer, and as such they inherit
all the attributes that the general class contains. Thus,
they each contain (the reference to) the isCompleted at-
tribute of every respective Statement object.
[0063] The interaction beyond invoking the Diagnose
() operation is not discussed further here, but is discussed
further below when variations to this embodiment are
considered.
[0064] Figure 12 shows the procedure of exception
handling by the Middleware. More specifically, Figure 12
shows a UML sequence diagram of an exception handler
used in the DivRep replication protocol. The operations
Abort() are executed concurrently, TraManager waits un-
til the aborts are completed by the respective RDBMSs.
[0065] The logic presented here is minimalistic - any
exception raised by either RDBMS 1 or RDBMS 2 leads
to aborting the transactions on both RDBMSs. Although
more refined algorithms of exception handling are pos-
sible, the one presented here is sufficient for achieving
consistent operation on both RDBMSs.
[0066] A formal description of the operation of DivRep
is provided, by supplying a pseudo-code of the replication
protocol used by the DivRep module. This pseudo-code
is shown in Figures 13 and 14, and is discussed with
reference to these Figures below.
[0067] As mentioned in the previous section, the Di-
vRep module executes on Transaction Managers (re-
ferred to as TraManagers, see pseudo code shown in
Figure 13, which illustrates the execution of the DivRep
protocol on a TraManager) - there is one TraManager
serving each client, as well as on Replication Managers
(referred to as RepManager, see pseudo code shown in
Figure 14, which illustrates the execution of the DivRep
protocol on a RepManager) - there are n RepManagers
per each TraManager, where n is the number of RDBMSs
deployed in an FT-node (n=2 in the embodiment de-
scribed above but can be any integer greater than 1. The
execution of this embodiment of the replication protocol
(Figures 13 and 14) assumes that every transaction sub-
mitted by a client consists of a transaction begin opera-
tion, a non-zero number of read or write operations (a
write operation is either a DML or DDL operation) and
finishes with a oommit or an abort operation.
[0068] In this embodiment of the replication protocol,
the following features have been set to enable successful
execution of the replication protocol:

• One of the replicas is configured with NOWAIT ex-
ception parameter enabled. The other replicas are
configured with NOWAIT exception disabled (the im-
portance of this is described below).

• The TraManager is instantiated; a connection exists
between the client executing a transaction and the
TraManager object.

17 18

EP 2 470 994 B1

11

5

10

15

20

25

30

35

40

45

50

55

• It is assumed that every client is "well-behaved" in
that it submits operations with dearly defined trans-
action boundaries: each transaction starts with a be-
gin operation, followed by a number of reads and
writes and in the end it either commits or aborts.

• Crashes of replicas are detected by putting timeouts
in RepManagers, on any of the read or write opera-
tions. If timeouts occur they will result in the expected
responses being set to represent exceptions by the
RepManagers. Similarly, for the commits and aborts
timeouts are set up by the TraManagers.

[0069] A TraManager accepts transaction operations
submitted by a particular client. It deals in a specific way
with every operation depending on its type, e.g. transac-
tion boundary operations (begins, aborts and commits)
are treated differently than the read and write operations.
If an exception occurs during the processing of a trans-
action, TraManager notifies the client after indicating that
the transaction needs to abort (set transaction to abort).
As a result, the Abort function is triggered - the function
submits aborts to all RDBMSs (abort operation for each
RDBMS is executed in a separate thread) through the
respective SQL API without sending them first to the Rep-
Managers.
[0070] The execution of a begin operation includes the
following steps: first, the variable indicating that a partic-
ular transaction should abort is reset, i.e. its value is set
to false; then the global mutex, contended for by all Tra-
Managers, is acquired; the begin operation is sent to all
RDBMSs for transaction snapshots to be created - this
is done directly through each replica’s SQL API, without
sending it first to RepManagers. No commit or begin op-
eration can execute unless the TraManager holds the
mutex, and thus consistent snapshots (unchanged by
any other transaction commit) are taken on all replicas;
the global mutex is released; and finally the control is
returned to the client. If at any time during the processing
of the begin operation an exception is raised, the trans-
action abort is flagged, which subsequently will trigger
the Abort function.
[0071] The execution of a read or a write operation is
treated in the same way in TraManager. First, the oper-
ation is placed in the queues of all RepManagers. Once
the fastest response is received (i.e. an RDBMS has suc-
cessfully executed the operation passed to it by the re-
spective RepManager), it is returned to the client. If an
exception is received, however, the transaction is set to
abort, triggering the Abort function. Without occurrence
of an exception, the processing continues by TraManag-
er waiting for the responses from all RDBMSs. Once all
of them are collected, the Comparator function is initiat-
ed. Similarly to Abort function, the Comparator executes
asynchronously with TraManager and the respective
RepManagers. It compares the corresponding respons-
es from all RDBMSs and if it finds a mismatch between
results the transaction abort is set, indicating to the client
that "data inconsistency" exception has occurred.

[0072] If the client submits an abort operation, the Tra-
Manager triggers the Abort function by setting transaction
abort.
[0073] Once the commit operation is submitted, the
TraManager checks if a transaction abort has been al-
ready set. If it has not, once the votes from all replicas
(confirming that all reads and writes have finished) and
the Comparator vote (confirming no result mismatch was
found) are collected, the mutex is acquired. Similarly to
the execution of the begin operation, no commit or begin
from other transactions can execute while the TraMan-
ager holds the mutex. This guarantees that the order of
the commits and begins is the same on all replicas. After
all replicas have acknowledged that the commit has been
executed, the mutex is released. The queues of the Rep-
Managers are then cleared, preparing them for the exe-
cution of the following transaction, and the control is re-
turned to the client.
[0074] Figure 15 shows a timing diagram of the
execution of transaction T, using DivRep protocol as
described in Figure 13. The Middleware (M) sends 151a,
151b the operations (op1, ...opn) to the two replicas (S1
and S2) as they arrive from the client application (to
preserve the clarity of the figure, middleware M is
depicted as sending all the operations in a batch to the
replicas; in DivRep, instead, the middleware sends
operations successively, as soon as they are received
from the client) . The execution of the operations takes
place in parallel on the two replicas, and thus the
response time (ΔTi

Parallel) of T, is, in general case, shorter
then if HRDB (see Figure 3) or Byzantium approach (see
Figure 4) was used. The transaction duration is likely to
be prolonged due to the use of the Comparator Function
(this detail is not.shown in Figure 15) . The actual delay
is, however, likely to be minimal because the results’
comparison in DivRep is performed in parallel with the
operations’ executions on the replicas (assuming the
protocol is configured in the optimistic regime as
described above), and thus all but the result of the last
operation (opn) might have been compared before the
slower server completes all operations. The assumption
of the minimal delay is, of course, dependant on the
performance characteristics of the Comparator Function
and the sizes of the results to be compared. Note that
the only two, "peer" replicas are shown to be executing
the transaction in DivRep- no notion of the local, i.e.
primary replica, exists as is the case in HRDB and
Byzantium.
[0075] The part of the DivRep protocol executed on
RepManagers (shown in Figure 14) is simpler than the
execution on the TraManagers - Replica Managers ex-
ecute only read and write operations. As long as there
are unexecuted operations in a particular RepManager
queue and the corresponding transaction is not set to
abort, the processing proceeds as follows. If it is a read
operation, the operation is sent to the RDBMS, the re-
sponse (either data or the exception due to unsuccessful
execution) is fetched and returned to the TraManager.

19 20

EP 2 470 994 B1

12

5

10

15

20

25

30

35

40

45

50

55

The processing of the write operation differs from the
processing of a read in that RepManager has to explicitly
initiate the extraction of the WriteSet. The WriteSet, iden-
tically to the result of a read operation, is sent to the Com-
parator function of the TraManager for validation.
[0076] Going back to the configuration of the system
prior to execution of the DivRep protocol, the asymmetric
configuration of the replicas (one is configured with a
NOWAIT exception enabled while all other replicas have
a NOWAIT exception disabled) is important. This em-
bodiment uses a NOWAIT exception feature as a mech-
anism of immediate reporting the write-write conflicts by
one of the RDBMSs, not both. Thus write-write conflicts
will typically be reported by a single replica while on the
other replicas, transaction blocking will take place in case
of write-write conflicts. The exception handler, provided
for NOWAIT exceptions, implements for one of the rep-
licas a mechanism, which resolves consistently the con-
sequences of non-determinism between RDBMS 1 and
RDBMS 2.
[0077] Had both replicas been allowed to report imme-
diately a write-write conflict would have led to unneces-
sarily high abort rate. For instance, had both RDBMS 1
and RDBMS 2 used NOWAIT any race between two
transactions, which without NOWAIT would have led to
a deadlock (see Appendix A) might have led to NOWAIT
exceptions being raised against both transactions. Typ-
ically, this would have led to aborting both transactions
by the DivRep protocol, while aborting only one would
have sufficed and the second transaction could have pro-
ceeded.
[0078] Furthermore, the hierarchical data structure
used to implement the DivRep protocol is important and
advantageous. The above- described embodiment spe-
cifically shows how the responsibiities for the different
operations (data manipulation vs. transaction control) are
handled by a transaction manager thread (TraManager)
and the replica management threads (RepManager) .
The embodiment also describes how once the state of a
transaction is set to abort, the transaction manager (Tra-
Manager) will efficiently block any further operations wait-
ing in the RepManager queues of the replica managers,
thereby leading to fast response times once an abort con-
dition is detected.
[0079] One further important characteristic of the
present embodiment relates to the functionality between
the client and the middleware application. The DivRep
replication protocol described above communicates ex-
ceptions from Middleware to the client applications as
they occur, and thus client applications respond faster to
a situation when transaction aborts occur. This commu-
nication is important because the client application needs
to be aware as soon as possible that a transaction cannot
be committed. Without this communication, the unnec-
essary processing of the client application would likely
lead to more read or write operations being sent to the
middleware before the transaction is eventually aborted.
[0080] The embodiment described above will now be

compared with solutions based on other approaches.
[0081] There are various solutions based on the ’read
once write all available’ (ROWAA) approach, which in-
clude the solutions for snapshot isolation based on reli-
able multicast. Unlike these solutions, the embodiment
described above provides a defence against a class of
failures wider than the crash failures targeted by the
ROWAA solutions. As Figure 16 dearly shows, the ROW-
AA solutions execute the read statements on a single
replica and assume that if a response is received from
the replica it is correct. As empirical studies indicate, such
an assumption is unjustifiable. With respect to the write
operations, although in ROWAA solutions the modifying
operations are applied to all replicas, their correctness
is not adjudicated beyond the assumed crash failure
model.
[0082] Referring to Figure 16 in greater detail, a timing
diagram of a typical ROWAA for snapshot isolation rep-
lication based on reliable multicast, is shown. The trans-
action execution time consists of 4 parts: the time it takes
the local transaction to complete all operations of the
transaction, T (op1, ... opn), the time for the middleware
to multicast the write sets (WS) accumulated by the local
replicas, TMC (WS), the time it takes the remote replicas
to validate the WS, TWS validation and the time it takes the
remote replicas to apply the WS, TWS application.
[0083] In contrast, DivRep of the embodiment de-
scribed above offers a comparator function, CompareRe-
sponses (), which allows for any discrepancies between
the responses to be detected and acted upon. If at least
one replica works correctly, and the diagnosis is success-
ful some failures may be masked. If diagnosis is not suc-
cessful (it is unclear if there is a correct replica), the mid-
dleware may at least detect a problem, and as a minimum
may record it, or preferably will report to the client appli-
cation that the FT- node failed to complete the operation.
[0084] The solutions with snapshot isolation surveyed
in the section ’Prior Art’ deal with write sets in a different
way from the DivRep protocol described above. The
known solutions for databases with support for snapshot
isolation based on reliable multicast (e.g. Middle- R, [Pat-
ino- Martinez, Jimenez- Peris et al. 2005]) minimise the
number of messages exchanged between the replicas
by exchanging the write sets of the transactions as a
single message. The replica designated to serve as a
"local" replica, collects the write sets produced by the
modifying operations of the transaction and propagates
them when the local replica is ready to commit.
[0085] In effect, this prior art method is a specific im-
plementation of the Primary/Secondary scheme, in which
there are two distinct parts in the processing of each
transaction as shown in Figure 2. The "local" replica ex-
ecutes the transaction in full, while the other replicas
process only the WriteSet multicast by the "local" replica.
In contrast with the standard primary/secondary arrange-
ment, solutions similar to Middle-R require a "validation"
phase by all the replicas of the write sets being multicast,
the implementation of which is not defined in sufficient

21 22

EP 2 470 994 B1

13

5

10

15

20

25

30

35

40

45

50

55

detail to allow for any educated guess on how expensive
this validation can be in comparison with the cost of mul-
ticasting a message. In any case, the transaction duration
with multicast is likely to be longer than if the transactions
were executed in parallel.
[0086] Note that in multicast-based solutions the rep-
licas will complete the transactions at different times and,
if a new client connects to the replicated database, the
data that this client will ’see’ (via the snapshot of the da-
tabase it will take) depends on which replica it is con-
nected to. In the example case shown in Figure 16, a
new client connected 164 at time t to either the "local" or
"remote1" replica will see the effects from the transaction
detailed in the diagram. If the client, however, connects
to replica "remote2" it will not see the effect of the trans-
action, since this transaction is yet to be committed. This
’feature’ may seem insignificant - after all the client will
never interact with more than one replica. In some ex-
treme scenarios, however, e.g. as a result of using a pool
of connections, the client may end up being connected
to different replicas for successive transactions. Then this
client may be affected by the phenomenon identified
above: the transactions which this client successfully
committed on the initial local replica (initial local replica
transactions) may be still in progress by the replica to
which this client has been connected for the subsequent
transactions (subsequent local replica transactions). As
a result, the client may be unable to ’see’ the data that
the transactions (i.e. the initial local replica transactions)
have written to the database - this could happen not be-
cause the data have been changed by another transac-
tion, but simply due to the particular way the multicast-
based replication protocol is optimised. In contrast, Di-
vRep protocol of the present invention does not suffer
from a similar deficiency. Since the transaction edges
are processed in atomic operations, the creation of a new
snapshot is impossible until all previous transactions
have been committed on all replicas.
[0087] As indicated above, HRDB and Byzantium also
possess protocols which use diverse replicas. Differenc-
es between the embodiment described above, with its
DivRep protocol, and these schemes and their protocols
are considered below. In all three cases concern is given
to the effects of non-crash failures of the RDBMSs. The
failure models used by the other schemes, however, are
different. HRDB and Byzantium target the so called Byz-
antine failures - the most general known type of misbe-
haviour in distributed systems, an example of which are
replicated databases.
[0088] In the protocol of the embodiment described
above failures are targeted, for the existence of which
there is empirical evidence: significant proportion of fail-
ures observed with several RDBMSs summarised in the
section Prior Art are non-crash failures. More importantly,
the empirical studies show that using diverse (heteroge-
neous) RDBMSs makes detecting such failures very like-
ly. Although these failures nominally can be called Byz-
antine failures (any failure is a special case of Byzantine

failure), they fall short of malicious behaviour such as
sending different messages to different participants in a
distributed system, a unique characteristic of Byzantine
failures. It is the malicious aspect of Byzantine failures
(behaviour) that makes Byzantine failure very extensive
to tolerate. Opting for tolerating Byzantine failures may
seem an advantage, but it has its cost. Unless there is
evidence that Byzantine failures are a likely problem, tol-
erating them may be an expensive and unnecessary lux-
ury. Byzantine behaviour is inherent in some cases of
distributed systems (e.g. the behaviour of a sensor read
by distributed applications may be adequately modelled
as Byzantine behaviour). However, there is no empirical
evidence of such behaviour for RDBMSs. For RDBMSs
with snapshot isolation, there is no obvious mechanism
to promote Byzantine failures: once a snapshot is taken
the data remains stable until another snapshot is taken.
The proposers of HRDB and Byzantium justify the deci-
sion to use the Byzantine failure model with evidence
that crash failure model is implausible.
[0089] The cost of tolerating Byzantine behaviour is
high. HRDB and Byzantium introduce a degree of redun-
dancy required for a Byzantine agreement to become
possible - at least 4 participants (3 replicas + a coordi-
nator middleware) sufficient to tolerate a single Byzantine
fault. In the absence of empirical evidence that the Byz-
antine behaviour may occur, solutions tolerating such be-
haviour can be seen as unnecessary ’extensive’.
[0090] Instead the DivRep protocol set out for the em-
bodiment above takes a more "economical" approach
and requires 2 RDBMS + a replication middleware, suf-
ficient to detect a single failure. In fact, the DivRep pro-
tocol of the embodiment described would tolerate non-
crash failures of one of the used RDBMSs. As far as the
Middleware is concerned, it is assumed to be free of de-
sign faults (i.e. is correct by design) and for it, a crash
failure model is sufficient (similar to the assumption made
by HRDB for the respective middleware, referred to as
Coordinator). This assumption is plausible, as the proto-
col is relatively sample and its correctness can be proven
formally.
[0091] In the embodiment described, if the middleware
crashes then the entire FT-node becomes unavailable.
The person skilled in the art would be able to provide an
appropriate solution to enable alternative resources in
the event of such a failure - one such approach would be
to use a standard ’fail-over’ solution (e.g. as in passive
replication using a primary-backup, also called leader-
follower, scheme [Mullender 1993]) sufficient for tolerat-
ing crash failures.
[0092] The differences between HRDB and the DivRep
protocol of the embodiment set out above have been
outlined previously. Both HRDB and Byzantium use a
variant of the Primary/Secondary scheme (see Figures
2 and 3). As a result, the transaction is prolonged by
serial execution of operations on the primary and the sec-
ondaries. The scheme avoids non-determinism between
the primary and the secondary replicas, but in cases with

23 24

EP 2 470 994 B1

14

5

10

15

20

25

30

35

40

45

50

55

high likelihood of write-write conflicts, the longer the
transactions the greater the chance of a conflict on the
primary, i.e. high abort rate. In the cases when the like-
lihood of write-write conflicts is low, avoiding non-deter-
minism with the use of primary/secondary scheme brings
very little to no advantage but incurs a significant increase
of the response time. Indeed, in the extreme case of no
write-write conflicts non-determinism in the replicas con-
figured with snapshot isolation has no effect on concur-
rency control. Thus with such workload of operations se-
rialising the execution of the (write) operations on the
primary and the secondaries is not necessary, and so
the performance overhead is not justified.
[0093] In the DivRep protocol described above the op-
erations are executed in parallel on all replicas - in the
version described, the protocol is optimistic in the sense
that it assumes implicitly that there will be no write-write
conflicts between the transactions. Therefore, if indeed
the write-write conflicts are infrequent in the workload,
the DivRep protocol described above would offer better
performance than HRDB. If write-write conflicts do occur,
non-determinism between the replicas might lead to dif-
ferent orders of transactions on different replicas. The
DivRep protocol overcomes the problem using NOWAIT,
the specific feature enabled on one of the RDBMSs for
consistent resolution of the conflict (by aborting the same
transaction on all replicas) and allowing the same trans-
action to eventually become ready to commit. In summa-
ry, the difference between the DivRep protocol on the
one hand and HRDB/Byzantium protocols on the other
hand is in the way the effects of non-determinism are
dealt with: the DivRep protocol allows for non-determin-
ism and overcomes its effects when this is needed. HRDB
and Byzantium protocols instead merely avoid the effects
of non-determinism at the cost of performance overhead.
[0094] Handling NOWAIT exceptions leads to perform-
ance overhead, too. However, whilst this performance
overhead is application specific, it is almost always less
than the performance overhead incurred by the use of
primary/secondary scheme used by the HRDB protocol
with a small number of RDBMSs. DivRep is likely, there-
fore, to be faster than HRDB in certain applications, e.g.
where there is a low abort rate.
[0095] The Byzantium replication protocol, as dis-
cussed in the Prior Art section, is worse in terms of per-
formance than the HRDB protocol as the operations are
executed on the secondaries only once the primary has
completed all the operations of a transaction. Thus, the
DivRep protocol is highly likely to outperform the Byzan-
tium protocol in a wider range of operational conditions.
[0096] Variations to the embodiment described above
will now be discussed.
[0097] The DivRep protocol described above offers
several regimes of operation. The pessimistic regime of
operation requires comparison of the responses from
RDBMS1 and RDBMS2 and only if no discrepancy is
detected will a response be returned to the client. A dis-
advantage of this scheme is that the slower RDBMS may

take much longer to produce a response. The optimistic
regime, instead, will return the first response received
from either RDBMS 1 or RDBMS 2, optimistically assum-
ing that no mismatch between the responses will occur
later when both have been received and adjudicated.
[0098] There is a scope for improving performance in
processing the edges of transactions. This may be
achieved by executing several non-conflicting transac-
tion edges inside a single mutex, possibly in different
orders on two RDBMSs. Firstly, if multiple transactions
are ready to commit (i.e. the client application has sub-
mitted a commit to the respective transactions), these
can be executed in the same mutex (the order of the
commits might be different on two RDBMSs without com-
promising the consistency of the replicas, since the sit-
uation represents non-conflicting transactions executed
in parallel). Secondly, multiple begins can be executed
in the same mutex, as they will merely cause the same
snapshot of the data to be used in multiple transactions
(the order of the begins might be different on two RD-
BMSs without compromising the consistency of the rep-
licas). The relative order between commits and begins,
however, has to be the same on all RDBMSs.
[0099] The replication protocol described above can
be applied with a range of error handling mechanisms,
which are briefly discussed below.
[0100] In case a discrepancy is detected between the
responses by the RDBMSs, the replication protocol may
use a diagnosis module to determine which of the two
replicas has failed. The embodiment described here in-
tentionally does not commit to a particular diagnostic rou-
tine as different diagnosis techniques can be applied in
different embodiments. One possibility which is consid-
ered is the use of ’rephrasing rules’ [Gashi and Popov
2006], in which the diagnosis module would ’rephrase’
the operations (SQL statements), which have resulted in
different responses by the RDBMSs. This approach is
described below purely by way of an illustrative example.
As a result of rephrasing, statement invariants (i.e. logi-
cally equivalent operations) are derived using the redun-
dancy built in the SQL. The diagnosis consists of sub-
mitting to the RDBMSs invariants of the operations. For
example, a statement may be placed in a stored proce-
dure and then the stored procedure executed instead of
submitting the SQL statement. Then the middleware will
compare the responses received for invariants with those
obtained for the original statements. If a qualified majority
among the responses (for the original statements and
their invariants) is reached, then the ’correct’ response
wil be known and in some cases the failed RDBMS will
have been identified. For instance, if an RDBMS ’chang-
es’ its response between the original response and the
invariants produced for it, then it is dearly faulty. Of
course, the diagnosis may fail, e.g. a qualified majority
is achieved on an incorrect response, but this will typically
require majority of the RDBMSs to fail on the particular
statement, a situation which is highly unlikely.
[0101] Options are available in different embodiments

25 26

EP 2 470 994 B1

15

5

10

15

20

25

30

35

40

45

50

55

in respect of confinement of errors: when discrepancy is
detected, the respective transaction on the failed RDBMS
can be aborted. Submitting to the RDBMS an invariant
of the operation, which has triggered the failure, and ob-
taining a ’correct’ response from this RDBMS will be a
sufficient error confinement measure, provided the fail-
ure did not affect the ACID properties of the RDBMS (i.e.
the failure did not outlive the transaction context). An al-
ternative would be to degrade gracefully the affected FT-
node to a single replica (i.e. switch off the failed RDBMS
from processing any further operations coming from the
connected client applications) and subject (possibly after
a reboot) the failed RDBMS to scrutiny targeted at iden-
tifying whether the error propagated beyond the transac-
tion where the discrepancy occurred by comparing the
database on the failed RDBMS with the database of an
RDBMS which remains operational within the FT node.
[0102] FT- node recovery from a graceful degradation
is another aspect which may be achieved in different
ways in different implementations of the replication pro-
tocol described above. The choice of a particular recov-
ery policy will be dictated by the trade- offs to be struck
between availability and thoroughness of the recovery.
Several options are possible:

- putting the repaired RDBMS (i.e. which has been
switched off the FT-node and subjected to various
checks) into a ’catch up’ mode, in which a recovery
routine would extract from the operational RDBMS
of the FT-node a valid snapshot of the databases
being recovered and apply these to the databases
of the RDBMS being repaired.

- another option would be placing the FT node in a
degraded mode to configure the correctly functioning
RDBMS for operation in such a way as to store all
the database changes (write sets) applied to this RD-
BMS in a form suitable for use by the failed RDBMS
(e.g. write log). Once the failed RDBMS is ready for
a recovery (after a reboot and successful completion
of the checks envisaged in error confinement) the
write sets from the write log wil be applied to the
RDBMS being repaired. Such an arrangement will
allow for restoring the state of the recovered RDBMS
fast (i.e. a fast ’catch up’) by applying the changes
which have occurred since this RDBMS has been
switched off the FT node, instead of applying the
whole valid database snapshot as described above,
in the first recovery option.

Appendix A - Concepts and Background

Transactions

[0103] Database transactions are logical units of work
within a relational database management system (RD-
BMS) that are treated reliably and independently of each
other. A transaction represents a unit of interaction with
an RDBMS and consists of any number of read and write

operations and finishes with either commit or abort. Let
D = {x1, x2, ... xn} be a representation of data items stored
in a database and let r(xk) and w(xk) be a read and a write
operation on data item xk: xk ∈ D respectively, and let c
and a be the commit and abort operations. A transaction
Ti is defined [Bernstein, Hadzilacos et al. 1987] to be a
partial order with ordering relation "<i" where:

1) Ti # {ri(xk), wi(xk) | x ∈ D} ∪ {ai ci};
2) ai ∈ Ti iff ci ∉ Ti;
3) let o be ai or ci, whichever is in Ti, for all other
operations o’ ∈ Ti: o’<i o; and
4) if ri(xk), wi(xk) ∈ T, then either ri(xk) <i wi(xk) or wi
(xk) <i ri(xk);

[0104] The meaning of the conditions 1) to 4) above is
as follows: Condition 1) describes the types of opera-
tions, Condition 2) indicates that either an abort or a com-
mit is part of a transaction, but not both; Condition 3)
indicates the order of operations such that commit or
abort (whichever occurs) must follow all other operations
in the transaction and Condition 4) indicates that opera-
tions on a common database item must be ordered in a
particular way.
[0105] An inplicit assumption is made in the above
model: a transaction writes a particular data item only
once. This is the reason why in the Condition 4) a pair of
write operations is not considered.
[0106] The first formal discussion of database trans-
action properties can be found in [Gray 1981]. Since then
a standard approach has emerged in the literature
through ACID properties. The acronym ACID stands for
the following:

- Atomicity - ability to guarantee that either all of the
tasks of a transaction are performed or none of them
is.

- Consistency - ability to preserve the legal states im-
posed by the integrity constraints. More informally,
this means that no rules are broken as a conse-
quence of transaction execution.

- Isolation - ability to make operations in a transaction
appear isolated from (all) other operations executed
by concurrent transactions.

- Durability - ability to guarantee that changes made
by a transaction are permanent once the transaction
successfully completes (commits).

[0107] Figure 17 shows distributed transactions, which
comprise execution of one or more operations that, indi-
vidually or as a group, update and/or read data on two
or more distinct nodes of a replicated database. A dis-
tributed transaction must provide ACID properties among
multiple participating databases, which are commonly
dispersed among different physical locations. More spe-
cifically. Figure 17 illustrates execution of a distributed
transaction, Ti, in a replicated database. Each operation,
op ∈ {opi,1, ..., opi,k, ... opi, n(i)}, of the transaction Ti is

27 28

EP 2 470 994 B1

16

5

10

15

20

25

30

35

40

45

50

55

initiated at client C and sent to all replicas {RA, RB, ...
Rx} in the replicated database. Each of the operations
can be one of the following: database item read, database
item write, transaction abort or transaction commit. The
interaction between the client and the replicated data-
base is simplistic in that it excludes the mechanism that
enables the client to perceive the replicated database as
a single entity (typically this would be implemented by a
middleware) . Also, the interaction of other, concurrently
executing clients and the replicated database is not
shown in the figure.

Isolation Levels

[0108] Concurrency control mechanisms in RDBMSs
ensure that transactions execute concurrently without vi-
olating data integrity of a database. A property of con-
currency control mechanisms is the provision of different
degrees of isolation between the transactions’ execu-
tions - these mechanisms determine when the modifica-
tions of one transaction become visible to other, concur-
rent transactions. However they should also prevent con-
current executions which exhibit worse performance than
a serial execution (Second Law of Concurrency Control
[Gray and Reuter 1993]). A component in an RDBMS,
referenced to as scheduler, manages the overlapping
executions of transactions. A scheduler receives opera-
tions from users and makes sure that they are executed
in a correct way, according to the specified isolation level
(s).
[0109] Out of all ACID properties, the isolation property
is of particular interest. The isolation property has ap-
peared for the first time under the term Degrees of Con-
sistency in [Gray, Lorie et al. 1975]. Different types of
isolation have been proposed. The ANSI SQL standard
specifies four levels of isolation [ANSI 1992]: serializable,
repeatable read, read committed and read uncommitted.
The highest level of isolation is the serializable level,
which requires every history of transaction executions
(i.e. the order in which the operations of the different
transactions are executed) to be equivalent to a serial
history, i.e. in a serializable history, transactions appear
to have executed one after another without overlapping.
Lower isolation levels are less restrictive but they can
introduce inconsistencies during transaction executions,
i.e. they offer better performance at the expense of com-
promising consistency. Due to its impact on system per-
formance, isolation is the most frequently relaxed ACID
property. The trade-off between data consistency and
performance is an inherent part of any RDBMS’s concur-
rency control mechanism.
[0110] The ANSI SQL isolation levels have been criti-
cised in [Berenson, Bernstein et al. 1995] and [Adya, Lisk-
ov et al. 2000] because they do not accurately capture
the isolation levels offered by many RDBMS products.
The work in these two papers has shown that the three
phenomena defined by ANSI SQL for characterising the
isolation property are ambiguous and they fail to distin-

guish between all possible anomalous behaviours of dif-
ferent isolation levels. Therefore, the work in [Berenson,
Bernstein et al. 1995] defines an additional isolation level,
snapshot isolation (SI), which is offered in leading com-
mercial and open-source database systems (Oracle, Mi-
crosoft SQL Server, with certain variations, Sybase,
PostgreSQL etc.).

Snapshot Isolation (SI)

[0111] SI is the isolation level assumed in the database
products used in the DivRep protocol of the present in-
vention. It is commonly implemented using extensions
of multiversion mixed method described in [Bernstein,
Hadzilacos et al. 1987], and the ANSI SQL standard plac-
es it between the two strictest isolation levels, repeatable
read and serializable isolation level. A transaction exe-
cuting in snapshot isolation operates on a snapshot of
committed data, which is obtained when transaction be-
gins; the changes of the transactions committed after the
begin are invisible to the transaction. Snapshot isolation
guarantees that all reads of a transaction see a consistent
snapshot of the database (i.e. repeatable read is
achieved). Additionally, any write performed during the
transaction will be seen by subsequent reads within that
same transaction. In case a write-write conflict occurs
between transactions (i.e. when write operation(s) of two
or more concurrent transactions attempt to modify the
same data item(s)) at most one of these can be commit-
ted. The other transactions, involved in the write-write
conflict have to be aborted. An attempt by a client appli-
cation to commit more than one transaction involved in
a write-write conflict typically leads to the RDBMS over-
riding the client commit and aborting all but one of the
write-write conflicting transactions.
[0112] In general, concurrent transactions are defined
as follows: for a begin operation, b, and a commit oper-
ation, c, where bi, ci ∈ Ti and cj ∈ Tj, the two transactions,
Ti and Tj, are considered to be concurrent if the following
holds: bi < cj < ci.
[0113] Snapshot isolation has the advantage of avoid-
ing conflicts between read-read and read-write opera-
tions - the executions of any pair of concurrent read op-
erations, or any pair of concurrent read and write oper-
ation never conflict. These properties improve perform-
ance and make SI more appealing than the traditional
serializable isolation level. This is particularly evident in
the workloads characterised with long-running read-only
transactions and short modifying transactions.
[0114] Most RDBMSs which offer the snapshot isola-
tion level use Strict- 2- Phase- Locking (S2PL) . In the
first phase, the transaction acquires exclusive locks for
writing data items. These locks are released in the sec-
ond phase, only once the transaction has finished with a
commit or abort. Instead of waiting for a transaction com-
mit and using first- committer- wins rule, these concur-
rency control mechanisms commonly check for write-
write conflicts at the time the transaction executes a write

29 30

EP 2 470 994 B1

17

5

10

15

20

25

30

35

40

45

50

55

operation and apply the first- updater- wins rule [Fekete,
O’Neil et al. 2004] . This mechanism is now explained in
more detail below.
[0115] In order to write a data item y, transaction Ti has
to obtain an exclusive lock on y. There are two possible
cases:

a) if the lock is available, Ti performs a version check
against the executions of the concurrent transac-
tions. Two outcomes are likely: if a concurrent trans-
action had modified the same data item and it had
already committed, Ti has to abort (if first-updater-
wins rule is used Ti aborts as soon as it tries to modify
the data item; or if first-committer-wins rule is used
Ti aborts when it attempts to commit, see Figure 18,
Case a)); otherwise it performs the operation.

b) If the lock is unavailable, because another trans-
action Tj has an exclusive access, Ti is blocked. If Tj
commits, Ti will have to abort (similarly to the Case
a) above, if first-updater-wins rule is used Ti aborts
as soon as Tj has committed, or if first-committer-
wins rule is used Ti aborts when it attempts to com-
mit), see Figure 18, Case b)). On contrary, if Tj
aborts, Ti will be granted the exclusive lock on y so
that it can proceed and potentially commit success-
fully if no conflicts with other concurrent transactions
occur.

[0116] If the first-updater-wins rule is used, in either of
the above cases a) or b), the key is that the version checks
are performed at the time Ti attempts to create a version,
and not when it attempts to commit. This is called a ver-
sion-creation-time conflict check.
[0117] Figure 18 is a timing diagram showing the use
of Strict 2- Phase Locking concurrency control and first-
updater- wins and first- committer- wins rules for enforc-
ing Snapshot Isolation. Case a) shows that transaction
Ti is aborted after the concurrent transaction Tj modified
a same data item (y) and committed 181- the abort occurs
either, as soon as Ti attempts to write the data item y
(first- updater- wins rule) 182 or when Ti attempts to com-
mit (first- committer- wins rule) 183. Case b) shows that
Ti is aborted after the concurrent transaction Tj modified
184 a same data item, y, and committed- the abort occurs
either as soon as Tj commits 185 (first- updater- wins
rule) while Ti is waiting to acquire the lock, or when the
Ti attempts to commit (first- committer- wins rule) 186.

Database Replication

[0118] Database replication is a process of sharing da-
ta between redundant resources, which typically belong
to a system of physically distributed nodes (commonly
referred to as replicas). A replicated database system
implements either a full replication (every node stores a
copy of all data items) or a partial replication (each node
has a subset of data items). The present invention is con-

cerned with the former.
[0119] Database replication is a thoroughly studied
subject. Two main challenges of database replication are
concurrency control and replica control. The former aims
at isolating transactions with conflicting operations (see
Figure 19), while the latter ensures the consistency of
data on all replicas (see Figure 20). The need for replica
control arises due to the inherent non-determinism in the
execution of transaction operations on different replicas
- the data stored on different replicas, which are initially
consistent, could diverge because differently ordered
message sequences are supplied to each replica. This
happens, for example, as a result of the operating sys-
tems, on top of which the replicas are running, scheduling
the transaction operations in different, non-deterministic
order.
[0120] Referring now to Figure 19, an example of a
concurrency control mechanism, based on Strict 2-
Phase Locking, enforcing Snapshot Isolation on a cen-
tralised, non-replicated database, is shown. Three clients
(C1, C2 and C3) execute respective transactions (Ti, Tj
and Tk) 191a, 191b, 191c to concurrently access the da-
tabase. Ti reads data item x, and writes data items y; Tj
reads and writes data item z and Tk writes data items y
and z and reads data item x. Therefore, the transactions
Ti and Tj both conflict with transaction Tk (write-write con-
flicts between the Ti and Tk ensue because both trans-
actions attempt to write data item y, and similarly between
Tj and Tk due to the concurrent writing of the data item
z). The execution of each transaction proceeds from right
to left, e.g. the first operation in each transaction (the
respective begin operations: bi, bj and bk) are depicted
in the rightmost positions of the respective clients’
queues. Each client sends the operations of the respec-
tive transaction to the database, which in turn uses the
concurrency control mechanism to place the operations
in a particular order 192 (one such possibility is shown
in the figure).
[0121] Transaction Ti is the first to acquire the lock for
writing data item y (the third callout from the right indi-
cates that wi(y) is the first modification of the data item y
in the database queue). As a result, Tk will be blocked
waiting for the lock on y (indicated by the leftmost callout),
and thus once Ti
commits, Tk must abort according to the rules of Snap-
shot Isolation. As a consequence of Tk aborting, the third
transaction, Tj, will end the waiting for the write lock on
data item z (indicated by the second callout from the right)
and subsequently commit - once Tk aborts, all its modi-
fications are
discarded and the lock on all data items released (includ-
ing the lock on the data item z, shown to be initially ac-
quired with the rightmost callout), and thus Tj is allowed
to make the changes to z and then commit successfully
193.
[0122] Figure 20 illustrates an example of different
transaction serialisation decisions made by the concur-
rency control mechanisms, based on Strict 2-Phase

31 32

EP 2 470 994 B1

18

5

10

15

20

25

30

35

40

45

50

55

Locking, of two RDBMSs in a replicated database. Three
clients (C1, C2 and C3) execute respective transactions
(Ti, Tj and Tk) to concurrently access the database, pro-
viding these operations to replica RA 201a, 201b, 201c
and to replica RB 202a, 202b, 202c. Ti reads data item
x, and writes data items y; Tj reads and writes data item
z and Tk writes data items y and z and reads data item
x The concurrency control mechanism on replica RA
schedules 202a the operations of the three transactions
in a particular order: Ti and Tj are committed, and Tk is
aborted 203a (as explained in Figure 19). The order of
operations execution is scheduled differently 202b on
replica RB, and as a result Tk is the only transaction to
commit since it is the first to acquire the locks for both y
and z 203b. To avoid installing inconsistent data on the
two databases, due to different serialisation order by rep-
licas’ concurrency control mechanisms, a replica control
protocol must be in place.
[0123] There are different parameters that can be used
for classification of database replication protocols [Gray,
Helland et al. 1996], [Salas, Jimenez-Peris et al. 2006],
such as:

1) the place where the write operations (initially) take
place;
2) the time when the write operations take place;
3) the number of messages exchanged; and
4) the assumed concurrency control mechanism etc.

[0124] Parameter 1) divides the solutions into primary/
secondary and update everywhere approaches. The pri-
mary/secondary approach designates only one replica
to accept the writes. By contrast, in the update every-
where approaches, writes are executed on all (available)
replicas. The forwarding of updates to remote replicas
incurs an overhead in the primary copy approach while
the most common challenge in update everywhere rep-
lication is conflict resolution.
[0125] The second parameter, 2), divides the solutions
into eager and lazy replication. Eager solutions guaran-
tee that the writes are propagated to all replicas before
transaction commit. This has a negative impact on sys-
tem performance, but ensures database consistency in
a straightforward way. Lazy solutions perform writes on
remote replicas after commit. They offer proved perform-
ance at the possible expense of compromising database
consistency. If two transactions update different copies
for the same data item with different values, data become
inconsistent. The inconsistencies are eventually recon-
ciled outside the boundaries of the initial transactions.
[0126] Another classification of database replication
protocols identifies two broad groups: black- box (com-
monly referred to as middleware- based), and white- box
(commonly referred to as kernel- based) approaches.
The protocols of the former group are easier to develop
and can be maintained independently from the database
servers they operate on. On the other hand, they are at
a disadvantage because no access to the potentially use-

ful concurrency control mechanism of the database serv-
er kernel is available. Thus, concurrency/ replica control
might need to be performed on a coarser level of gran-
ularity. In addition, there exist gray- box protocols which
combine the black- box approaches with a (limited) set
of features from database server kernels [Jimenez- Peris
and Patino- Martinez 2003], [Patino- Marfinez, Jinenez-
Peris et al. 2005] .

ROWAA-Based Replication

[0127] Eager replication protocols have been based
on the read-one/write-all ROWA(A) approach [Bernstein,
Hadzilacos et al. 1987]. While read operations are exe-
cuted only at one replica (asymmetric reading) in ROWA
(A), updates are performed on all (available) replicas.
[0128] As suggested in [Kemme 2000] one of the draw-
backs of traditional ROWAA solutions is the message
overhead. If the updates of a transaction are executed
immediately on all replicas, an update message involves
a request and an acknowledgement per each copy of
data item. Clearly, this will have a significant impact on
the scalability of this approach. It is also the case that
aborting a transaction will cost less if the update has been
executed only on a single replica than if the updates have
been immediately propagated to all replicas.
[0129] Deferred writing [Bernstein, Hadziacos et al.
1987] was proposed as an alternative to immediate writ-
ing employed in early versions of eager, update any-
where protocols. All the writes are executed on one (local)
replica and at the end of a transaction they are bundled
together in one message and sent to all other (remote)
replicas. Deferred writing, however, exhibits an overhead
because the commitment of each transaction will be de-
layed by possible large volume of writes to be executed
on the remote replicas in the end of the transaction. The
execution of writes in the critical path is somewhat min-
imised with the use of WriteSets - the modifications to
data items made by a transaction on the local replica are
extracted and propagated to the remote replicas in a sin-
gle message to be applied on each (asymmetric writing),
instead of executing full SQL operations. This drawback
does not exist when using immediate writing approach
where processing of the writes happens in parallel on all
replicas.
[0130] Another drawback of deferred writing is that de-
tection of possible conflicts among transactions is de-
layed. While immediate writing might detect conflict dur-
ing the execution of transactions, the conflict detection
is performed at the end of transaction executions when
deferred writing is the technique of choice.

Correctness in Replicated Databases

[0131] The strongest correctness criterion for replicat-
ed databases is 1-copy serializability (1-copy SR) [Bern-
stein, Hadzilacos et al. 1987]. It represents an extension
of the conflict-serializability defined for centralized data-

33 34

EP 2 470 994 B1

19

5

10

15

20

25

30

35

40

45

50

55

bases. The criterion states that a replication protocol en-
sures 1-copy SR if for any interleaved execution of trans-
actions there is an equivalent serial execution of those
transactions performed on the logical copy of the data-
base, see Figure 21. More specifically, Figure 21 is a
schematic block diagram representing the interaction be-
tween clients 211 and replicated DBs 213a..n. The rep-
licated databases appear to clients as one logical entity
213.
[0132] Lin et al. [Lin, Kemme et al. 2005] defined cri-
teria for correctness of replicated databases when each
of the underlying replicas offers snapshot isolation. The
correctness criterion, referred to as 1- copy snapshot iso-
lation (1- copy- SI) , guarantees that an execution of
transactions over a set of replicas produces a global
schedule that is equivalent to a schedule produced by a
centralised database system which offers snapshot iso-
lation.
[0133] Similarly to 1-copy-SI, Elnikety et al. [Elnikety,
Zwaenepoel et al. 2005] defined Generalised Snapshot
Isolation (GSI) - a correctness criterion for replicated da-
tabases that offer snapshot isolation. GSI is an extension
to the snapshot isolation as found in centralized databas-
es. The authors formalize the "centralized" snapshot iso-
lation and refer to it as Conventional Snapshot Isolation
(CSI).
[0134] The DivRep protocol of the present invention
assumes that underlying databases offer snapshot iso-
lation and thus the latter two correctness criteria, 1-copy
SI and GSI, apply to the present invention.

Conflicts and Deadlocks

[0135] Earlier sections indicated how conflicts be-
tween concurrent transactions can ensue. Certain data-
base replication solutions are prone to a specific conflict
situation - distributed deadlock. This happens if the lock
for a data item is acquired in different order on different
replicas. Figure 22 shows two concurrent transactions
T1 and T2, which are competing for data item A, while
executing in a replicated database system with two rep-
licas Rx and Ry. The order of lock requests by T1 and T2
is different on the two replicas, i.e. T2 is blocked 224
waiting for T1 on Rx and vice versa is true on Ry. As a
result, in the replication schemes where a transaction
commits only after all the replicas are ready to do so,
the transactions would be deadlocked without possibility
to progress further, unless a dedicated deadlock detec-
tion mechanism of the distributed database protocol is in
place to resolve the conflict.
[0136] It has been suggested that group communica-
tion systems (GCS) [Hadzilacos and Toueg 1993] be
used as a means of reducing conflicts and avoiding dead-
locks as well as ensuring consistent data on multiple rep-
licas. A GCS makes it possible for any replica to send a
message to all other replicas (including itself) with the
guarantee that the message will be delivered if no failures
occur. These systems are capable of ensuring that a

message multicast in a group will be delivered in the
same, system-wide total order on all group members, i.e.
database replicas. This holds for the sender of the mes-
sage too. Many replication protocols, e.g., [Agrawal,
Alonso et al. 1997], [Kemme and Alonso 2000] combine
group communication primitives with an asymmetric
writes technique, in which, usually, the write operations
of a transaction are executed on one replica, grouped in
one message (WriteSet) and delivered to all the replicas
in the same total order, see Figure 23. The installation
of the WriteSets in the same total order is necessary to
avoid data inconsistencies due to non-determinism of the
replicas. Otherwise, if the total order was not respected
it would be possible that two replicas install overlapping
WriteSets in a different order, which would result in an
inconsistent state of the replicated system.
[0137] Referring to Figure 23 in greater detail, a high-
level schematic representation of a Group Communica-
tion System (GCS) 231 used for consistent database rep-
lication is shown. Figure 23 shows three concurrent,
modifying transactions, Tk, Ti and Tj, are being executed
on the three replicas, Rx, Ry, Rz, respectively. Each trans-
action execution comprises the following: transaction op-
erations, reads and writes, are executed on the local rep-
lica (not shown in the figure); the results of the write op-
erations are extracted in a WriteSet (WS) and sent 232i,
232j, 232k to the underlying GCS 231; the GCS delivers
233 the WriteSets in the consistent, total order on all rep-
licas. The total order is not necessarily the same as the
order in which the WriteSets are received by the GCS.

Transaction Atomicity

[0138] In replicated databases atomicity of a transac-
tion has to be guaranteed - it is necessary to make sure
that all replicas terminate the transaction in the same
way, i.e. all replicas either commit or abort a transaction.
As described in [Weismann, Pedone et al. 2000] there
are two techniques to ensure transaction atomicity in a
replicated database system: voting and non-voting tech-
nique. Voting techniques, traditionally, use atomic com-
mitment protocols to terminate transactions. A well-
known variant of the atomic commitment protocol is the
2-Phase Commit (2PC) protocol [Skeen 1981]. The phas-
es of a 2PC protocol could be summarised as follows:

- A coordinator sends a request to each replica for a
vote (to commit or abort).

- Upon receiving the request each replica replies with
a message, YES (commit) or NO (abort). If the vote
is NO the replica aborts the execution.

- Upon collecting all the votes, the coordinator decides
on the outcome of the transaction:

o If all replicas have voted YES, the coordinator
notifies the replicas to commit.

35 36

EP 2 470 994 B1

20

5

10

15

20

25

30

35

40

45

50

55

o If a replica voted NO, the coordinator notifies
the replicas to abort.

- Upon receiving the notification (commit or abort)
from the coordinator, a replica decides accordingly.

References

[0139]

[Adya, A., B. Liskov, et al. 2000] "Generalized Snap-
shot Isolation Levels". IEEE International Confer-
ence on Data Engineering (ICDE) San Diego, CA.
[Agrawal, D., G. Alonso, et al. 1997] "Exploiting
Atomic Broadcast in Replicated Databases". In Pro-
ceedings of EuroPar (EuroPar’97), Passau (Germa-
ny) .
[ANSI 1992] "ANSI X3.135-1992", American Nation-
al Standard for Information Systems.
[Berenson, H., P. Bernstein, et al. 1995] "A Critique
of ANSI SQL Isolation Levels". SIGMOD internation-
al Conference on Management of Data, San Jose,
California, United States, ACM Press New York, NY,
USA.
[Bernstein, A., V. Hadzilacos, et al. 1987] "Concur-
rency Control and Recovery in Database Systems".
Reading, Mass., Addison-Wesley.
[Elnikety, S., W. Zwaenepoel, et al. 2005] "Database
Replication Using Generalized Snapshot Isolation".
Proceedings of the 24th IEEE Symposium on Reli-
able Distributed Systems (SRDS’05), IEEE Compu-
ter Society, pages 73- 84.
[Fekete, A., E. O’Neil, et al. 2004] "A read-only trans-
action anomaly under snapshot isolation" ACM SIG-
MOD Record 33(3): 12-14.
[Gashi, I. and P. Popov 2006] "Rephrasing Rules for
Off-the-Shelf SQL Database Servers". Sixth Euro-
pean Dependable Computing Conference, 2006.
EDCC ’06..
[Gashi, I., P. Popov, et al. 2007] "Fault tolerance via
diversity for off-the-shelf products: a study with SQL
database server" IEEE Transactions on Dependable
and Secure Computing.
[Gray, J. 1981] "The Transaction Concept: Virtues
and Limitations". 7th International Conference on
Very Large Data Bases (VLDB), Cannes, France,
IEEE Computer Society.
[Gray, J., R. Lorie, et al. 1975] "Granularity of locks
and degrees of consistency in a shared data base".
"IFIP Working Conference on Modelling of Data
Base Management Systems". Freudenstadt.
[Gray, J. and A. Reuter 1993] "Transaction
processing : concepts and techniques", Morgan
Kaufmann.
[Hadzilacos, V. and S. Toueg 1993] "Fault-tolerant
broadcast and related problems". Distributed Sys-
tems. S. Mullander, Addison-Wesley: 97-145.
[Jimenez- Peris, R. and M. Patino- Martinez 2003]

"D5: Transaction Support", ADAPT Middleware
Technologies for Adaptive and Composable Distrib-
uted Components: 20.
[Kemme, B. 2000] "Database Replication fo Clusters
of Workstations". "Swiss Federal Institute of Tech-
nology". Zurich: 145.
[Kemme, B. and G. Alonso 2000] "Don’t be lazy, be
consistent: Postgres-R, a new way to implement Da-
tabase Replication". Int. Conf. on Very Large Data-
bases (VLDB), Cairo, Egypt.
[Kemme, B. and S. Wu 2005] "Postgres- R (SI) :
Combining Replica Control with Concurrency Con-
trol based on Snapshot Isolation". International Con-
ference on Data Engineering, Tokyo, Japan, IEEE
Computer Society.
[Lamport, L., R. Shostak, et al. 1982] "The Byzantine
Generals Problem" ACM Transactions on Program-
ming Language and Systems (TOPLAS) 4(3):
382-401.
[Lin, Y., B. Kemme, et al. 2005] "Middleware Based
Data Replication Providing Snapshot Isolation".
ACM SIGMOD International Conference on Man-
agement of Data, Baltimore, Maryland, ACM Press.
[Mullender, S. 1993] "Distributed Systems". New
York, USA, ACM Press/Addison-Wesley Publishing
Co.
[Patino- Martinez, M., R. Jimenez- Peris, et al. 2005]
"MIDDLE- R: Consistent database replication at the
middleware level" ACM Transactions on Computer
Systems (TOCS) 23 (4) : 375- 423.
[Preguiça, N., R. Rodrigues, et al. 2008] "Byzantium:
Byzantine-Fault-Tolerant Database Replication Pro-
viding Snapshot Isolation". Fourth Workshop on Hot
Topics in System Dependability.
[Skeen, D. 1981] "Nonblocking commit protocols".
Proceedings of ACM SIGMOD International confer-
ence on management of data, Ann Arbor, Michigan,
ACM Press, New York, NY, USA.
[Vandiver, B. 2008] "Detecting and Tolerating Byz-
antine Faults in Database Systems". "Programming
Methodology Group". Boston, Massachusetts Insti-
tute of Technology. PhD: 176.
[Weismann, M., F. Pedone, et al. 2000] "Database
Replication Techniques: a Three Parameter Classi-
fication". 19th IEEE Symposium on Reliable Distrib-
uted Systems (SRDS’00), Numberg, Germany,
IEEE.

Claims

1. A fault-tolerant node for synchronous heterogenous
database replication whereby the fault-tolerant node
(50) is adapted to carry out a series of database
transactions generated by a processor executing a
computer program at the fault-tolerant node (50),
wherein the fault-tolerant node (50) comprises at
least two relational database management systems

37 38

EP 2 470 994 B1

21

5

10

15

20

25

30

35

40

45

50

55

(51, 52), the systems being instances of different re-
lational database management system products
which provide snapshot isolation between concur-
rent transactions and each system (51, 52) compris-
ing a database and a database management com-
ponent, wherein for each database transaction, op-
eration instructions are provided concurrently to
each of the systems to carry out operations on their
respective databases and to provide respective re-
sponses;
wherein the responses generated by the systems
either comprise an operation result or an exception,
and where only one of the systems is configured with
a NOWAIT exception function enabled which returns
an exception when it is detected that two or more
concurrent transactions are attempting to modify the
same data item and the other systems are configured
with the NOWAIT exception function disabled,
whereby the fault-tolerant node (50) is adapted to
detect that two or more concurrent transactions are
attempting to modify the same data item and to block
one or more of the transactions to ensure that all
systems apply the same order of modification of the
data item by the concurrent transactions.

2. A fault-tolerant node as claimed in claim 1, wherein
a set of operation instructions includes a begin in-
struction, a commit instruction and an abort instruc-
tion for control of execution of a transaction and fur-
ther comprises a read operation and a write opera-
tion, and wherein in executing a write operation the
node first extracts a write set on which operations
are performed before the transaction is committed
and wherein the fault-tolerant node treats a failure
to provide an operation result to a read operation or
a write operation within a predetermined time as an
exception.

3. A fault-tolerant node as claimed in claim 1 or claim
2, wherein the fault-tolerant node (50) comprises a
transaction manager (63) to control the execution of
the operations for one transaction in each of the sys-
tems and a replica manager (64, 65) for each of the
systems used to execute a transaction to provide
operations to its associated system, wherein for each
transaction, the transaction manager (63) provides
operations required for execution of the transaction
into a queue for each system managed by the replica
manager (64, 65) for that system, wherein the oper-
ations are provided to each system from the queue
by the replica manager for that system.

4. A fault-tolerant node as claimed in any preceding
claim, wherein the fault-tolerant node (50) comprises
a comparator function to compare operation results
received from the systems to enable the fault-toler-
ant node to determine whether the transaction has
completed successfully.

5. A fault-tolerant node as claimed in claim 4 wherein
a set of operation instructions includes a begin in-
structions, a commit instruction and an abort instruc-
tion for control of execution of a transaction and
wherein only one transaction can execute a begin
instructions or a commit instruction at a time for all
the systems , whereby on mismatch between the op-
eration results received from the systems the fault-
tolerant node (50) raises an exception to abort the
transaction.

6. A fault-tolerant node as claimed in any preceding
claim, wherein either the fault-tolerant node returns
the first operation result received from any of the
systems to the computer program, and provides a
further message to the computer program if the
transaction aborts, or the fault tolerant node returns
an operation result to the computer program only
when the operation results from all the systems have
been received and evaluated by the fault tolerant
node.

7. A database server comprising a fault tolerant node
as claimed in any of claims 1 to 6.

8. A method for performing a synchronous heteroge-
nous database replication, for a series of database
transactions provided by a processor executing a
computer program, at a fault-tolerant node (50) com-
prising at least two relational database management
systems (51, 52), the systems being instances of
different relational database management system
products which provide snapshot isolation with each
system comprising a database and a database man-
agement component, the method comprising:

receiving a database transaction at the fault-tol-
erant node (50);
providing operation instructions for the database
transaction concurrently to each of the systems
(51, 52) to carry out operations on their respec-
tive databases and to provide respective re-
sponses;
the systems each generating a response to an
operation instruction which comprises an oper-
ation result or an exception, wherein only one
of the systems is configured with a NOWAIT ex-
ception function enabled such that that system
returns an exception when it is detected that two
or more concurrent transactions are attempting
to modify the same data item and the other sys-
tems are configured with the NOWAIT exception
function disabled;
whereby the fault-tolerant node (50) detects that
two or more concurrent transactions are at-
tempting to modify the same data item and al-
lows the transactions that accesses the data
item first on the system with NOWAIT enabled

39 40

EP 2 470 994 B1

22

5

10

15

20

25

30

35

40

45

50

55

to proceed on all the systems, and prevents ex-
ecution of all the other transactions attempting
to modify the same data item on all the systems,
thereby achieving that all systems apply the
same order of modification of the data item by
the concurrent transactions.

9. A method as claimed in claim 8, wherein a set of
operation instructions includes a begin instruction, a
commit instruction and an abort instruction for control
of execution of a transaction and wherein only one
transaction can execute a begin instruction or a com-
mit instruction at a time for all the systems.

10. A method as claimed in claim 9, wherein when an
exception is received as an operation result from one
of the systems, the fault-tolerant node (50) provides
an abort instruction for that transaction for all the
systems.

11. A method as claimed in claim 9 or claim 10, wherein
execution of a commit operation for a transaction
comprises determining whether the transaction has
been aborted, determining that the operation results
from the systems allow a transaction result to be pro-
vided, and by acquiring control of commit and begin
operations so that no other begin or commit opera-
tion can take place until the begin operation is com-
pleted and wherein execution of a begin operation
for a transaction comprises setting a variable indi-
cating that the transaction is not aborted, and by ac-
quiring control of commit and begin operations so
that no other begin or commit operation can take
place until the begin operation is completed.

12. A method as claimed in any of claims 9 to 11, wherein
the set of operations comprises a read operation and
a write operation, and wherein in executing a write
operation the node first extracts a write set on which
operations are performed before the transaction is
committed.

13. A method as claimed in claim 12, wherein the fault-
tolerant node treats a failure to provide an operation
result to a read operation or a write operation within
a predetermined time as an exception.

14. A method as claimed in any of claims 8 to 13, further
comprising comparing operation results received
from the systems to enable the fault-tolerant node
to determine whether the transaction has completed
successfully and further comprising aborting the
transaction if the step of comparing operation results
indicates a mismatch between operation results re-
ceived from different systems.

15. A method as claimed in any of claims 8 to 14, further
comprising either returning the first operation result

received from any of the systems to the computer
program, and providing a further message to the
computer program if the transaction aborts or return-
ing an operation result to the computer program only
when the operation results from all the systems have
been received and evaluated by the fault tolerant
node (50).

Patentansprüche

1. Fehlertoleranter Knoten für synchrone heterogene
Datenbankreplikation, wodurch der fehlertolerante
Knoten (50) angepasst ist, um eine Reihe von Da-
tenbanktransaktionen, die von einem ein Computer-
programm ausführenden Prozessor erzeugt wer-
den, am fehlertoleranten Knoten (50) durchzufüh-
ren, wobei der fehlertolerante Knoten (50) minde-
stens zwei Verwaltungssysteme für relationale Da-
tenbanken (51, 52) umfasst, wobei die Systeme In-
stanzen unterschiedlicher Produkte von Verwal-
tungssystemen für relationale Datenbanken sind,
die Snapshot-Isolation zwischen gleichzeitigen
Transaktionen bereitstellen, und jedes System (51,
52) eine Datenbank und eine Datenbankverwal-
tungskomponente umfasst, wobei für jede Daten-
banktransaktion Vorgangsbefehle für jedes der Sy-
steme gleichzeitig bereitgestellt werden, um Vorgän-
ge in ihren jeweiligen Datenbanken durchzuführen
und jeweilige Antworten bereitzustellen; wobei die
durch die Systeme erzeugten Antworten entweder
ein Vorgangsergebnis oder eine Ausnahme umfas-
sen, und wobei nur eines der Systeme mit einer ak-
tivierten NOWAIT-Ausnahmefunktion konfiguriert
ist, die eine Ausnahme zurückgibt, wenn erkannt
wird, dass zwei oder mehr gleichzeitige Transaktio-
nen gerade versuchen, dasselbe Datenelement zu
modifizieren, und die anderen Systeme mit der de-
aktivierten NOWAIT-Ausnahmefunktion konfiguriert
sind, wodurch der fehlertolerante Knoten (50) ange-
passt ist, um zu erkennen, dass zwei oder mehr
gleichzeitige Transaktionen gerade versuchen, das-
selbe Datenelement zu modifizieren und eine oder
mehr der Transaktionen zu blockieren, um sicherzu-
stellen, dass alle Systeme dieselbe Reihenfolge der
Modifikation des Datenelements durch die gleichzei-
tigen Transaktionen anwenden.

2. Fehlertoleranter Knoten nach Anspruch 1, wobei ein
Satz von Vorgangsbefehlen einen Begin-Befehl, ei-
nen Commit-Befehl und einen Abort-Befehl zur
Steuerung der Ausführung einer Transaktion enthält
und ferner einen Lesevorgang und einen Schreib-
vorgang umfasst, und wobei der Knoten beim Aus-
führen eines Schreibvorgangs zuerst ein Write-Set
extrahiert, gemäß dem Vorgänge umgesetzt wer-
den, bevor für die Transaktion ein Commit ausge-
führt wird, und wobei der fehlertolerante Knoten eine

41 42

EP 2 470 994 B1

23

5

10

15

20

25

30

35

40

45

50

55

Nichtbereitstellung eines Vorgangsergebnisses für
einen Lesevorgang oder einen Schreibvorgang in-
nerhalb eines vorbestimmten Zeitraums als Ausnah-
me behandelt.

3. Fehlertoleranter Knoten nach Anspruch 1 oder An-
spruch 2, wobei der fehlertolerante Knoten (50) ei-
nen Transaktionsverwalter (63) zum Steuern der
Ausführung der Vorgänge für eine Transaktion in je-
dem der Systeme und einen Replikatverwalter (64,
65) für jedes der Systeme umfasst, die genutzt wer-
den, um eine Transaktion auszuführen, um Vorgän-
ge für ihr assoziiertes System bereitzustellen, wobei
der Transaktionsverwalter (63) für jede Transaktion
Vorgänge, die zur Ausführung der Transaktion er-
forderlich sind, in eine Warteschlange für jedes Sy-
stem, die vom Replikatverwalter (64, 65) für dieses
System verwaltet wird, bereitstellt, wobei die Vor-
gänge für jedes System aus der Warteschlange
durch den Replikatverwalter für dieses System be-
reitgestellt werden.

4. Fehlertoleranter Knoten nach einem vorhergehen-
den Anspruch, wobei der fehlertolerante Knoten (50)
eine Vergleicherfunktion umfasst, um von den Sy-
stemen her empfangene Vorgangsergebnisse zu
vergleichen, um zu ermöglichen, dass der fehlerto-
lerante Knoten bestimmt, ob die Transaktion erfolg-
reich abgeschlossen wurde.

5. Fehlertoleranter Knoten nach Anspruch 4, wobei ein
Satz von Vorgangsbefehlen einen Begin-Befehl, ei-
nen Commit-Befehl und einen Abort-Befehl zur
Steuerung der Ausführung einer Transaktion enthält
und wobei jeweils nur eine Transaktion einen Begin-
Befehl oder einen Commit-Befehl für alle Systeme
ausführen kann, wodurch der fehlertolerante Knoten
(50) bei einer Nichtübereinstimmung zwischen den
von den Systemen her empfangenen Vorgangser-
gebnissen eine Ausnahme auslöst, um die Transak-
tion abzubrechen.

6. Fehlertoleranter Knoten nach einem vorhergehen-
den Anspruch, wobei entweder der fehlertolerante
Knoten das von einem beliebigen der Systeme her
empfangene erste Vorgangsergebnis an das Com-
puterprogramm zurückgibt und für das Computer-
programm eine weitere Nachricht bereitstellt, falls
die Transaktion abgebrochen wird, oder der fehler-
tolerante Knoten ein Vorgangsergebnis an das Com-
puterprogramm nurzurückgibt, wenn die Vorgangs-
ergebnisse von allen Systemen her durch den feh-
lertoleranten Knoten empfangen und bewertet wur-
den.

7. Datenbankserver, der einen fehlertoleranten Knoten
nach einem der Ansprüche 1 bis 6 umfasst.

8. Verfahren zum Umsetzen einer synchronen hetero-
genen Datenbankreplikation, für eine Reihe von Da-
tenbanktransaktionen, die von einem ein Computer-
programm ausführenden Prozessor bereitgestellt
werden, an einem fehlertoleranten Knoten (50), der
mindestens zwei Verwaltungssysteme für relationa-
le Datenbanken (51, 52) umfasst, wobei die Systeme
Instanzen unterschiedlicher Produkte von Verwal-
tungssystemen für relationale Datenbanken sind,
die Snapshot-Isolation bereitstellen, wobei jedes Sy-
stem eine Datenbank und eine Datenbankverwal-
tungskomponente umfasst, wobei das Verfahren
Folgendes umfasst:

Empfangen einer Datenbanktransaktion am
fehlertoleranten Knoten (50);
gleichzeitiges Bereitstellen von Vorgangsbefeh-
len für die Datenbanktransaktion für jedes der
Systeme (51, 52), um Vorgänge in ihren jewei-
ligen Datenbanken durchzuführen und jeweilige
Antworten bereitzustellen;
wobei die Systeme je eine Antwort auf einen
Vorgangsbefehl erzeugen, die ein Vorgangser-
gebnis oder eine Ausnahme umfasst, wobei nur
eines der Systeme mit einer aktivierten NO-
WAIT-Ausnahmefunktion konfiguriert ist, so-
dass das System eine Ausnahme zurückgibt,
wenn erkannt wird, dass zwei oder mehr gleich-
zeitige Transaktionen gerade versuchen, das-
selbe Datenelement zu modifizieren, und die an-
deren Systeme mit der deaktivierten NOWAIT-
Ausnahmefunktion konfiguriert sind;
wodurch der fehlertolerante Knoten (50) er-
kennt, dass zwei oder mehr gleichzeitige Trans-
aktionen gerade versuchen, dasselbe Daten-
element zu modifizieren, und zulässt, dass die
Transaktionen, die auf das Datenelement im Sy-
stem zuerst zugreifen, wenn NOWAIT aktiviert
ist, in allen Systemen fortfahren, und die Aus-
führung aller anderen Transaktionen verhindert,
die gerade versuchen, dasselbe Datenelement
in allen Systemen zu modifizieren, wodurch er-
reicht wird, dass alle Systeme dieselbe Reihen-
folge der Modifikation des Datenelements durch
die gleichzeitigen Transaktionen anwenden.

9. Verfahren nach Anspruch 8, wobei ein Satz von Vor-
gangsbefehlen einen Begin-Befehl, einen Commit-
Befehl und einen Abort-Befehl zur Steuerung der
Ausführung einer Transaktion enthält und wobei je-
weils nur eine Transaktion einen Begin-Befehl oder
einen Commit-Befehl für alle Systeme ausführen
kann.

10. Verfahren nach Anspruch 9, wobei, wenn von einem
der Systeme her eine Ausnahme als Vorgangser-
gebnis empfangen wird, der fehlertolerante Knoten
(50) einen Abort-Befehl für diese Transaktion für alle

43 44

EP 2 470 994 B1

24

5

10

15

20

25

30

35

40

45

50

55

Systeme bereitstellt.

11. Verfahren nach Anspruch 9 oder Anspruch 10, wobei
die Ausführung eines Commit-Vorgangs für eine
Transaktion Bestimmen umfasst, ob die Transaktion
abgebrochen wurde, Bestimmen, dass die Vor-
gangsergebnisse von den Systemen her zulassen,
dass ein Transaktionsergebnis bereitgestellt wird,
und durch Übernehmen der Steuerung von Commit-
und Begin-Vorgängen, sodass kein anderer Begin-
oder Commit-Vorgang erfolgen kann, bis der Begin-
Vorgang abgeschlossen ist, und wobei die Ausfüh-
rung eines Begin-Vorgangs für eine Transaktion Set-
zen einer Variable umfasst, die anzeigt, dass die
Transaktion nicht abgebrochen ist, und durch Über-
nehmen der Steuerung von Commit- und Begin-Vor-
gängen, sodass kein anderer Begin- oder Commit-
Vorgang erfolgen kann, bis der Begin-Vorgang ab-
geschlossen ist.

12. Verfahren nach einem der Ansprüche 9 bis 11, wobei
der Satz von Vorgängen einen Lesevorgang und ei-
nen Schreibvorgang umfasst, und wobei der Knoten
beim Ausführen eines Schreibvorgangs zuerst ein
Write-Set extrahiert, gemäß dem Vorgänge umge-
setzt werden, bevor für die Transaktion ein Commit
ausgeführt wird.

13. Verfahren nach Anspruch 12, wobei der fehlertole-
rante Knoten eine Nichtbereitstellung eines Vor-
gangsergebnisses für einen Lesevorgang oder ei-
nen Schreibvorgang innerhalb eines vorbestimmten
Zeitraums als Ausnahme behandelt.

14. Verfahren nach einem der Ansprüche 8 bis 13, das
ferner Vergleichen von von den Systemen her emp-
fangenen Vorgangsergebnissen umfasst, um zu er-
möglichen, dass der fehlertolerante Knoten be-
stimmt, ob die Transaktion erfolgreich abgeschlos-
sen wurde, und das ferner Abbrechen der Transak-
tion umfasst, falls der Schritt des Vergleichens von
Vorgangsergebnissen eine Nichtübereinstimmung
zwischen von unterschiedlichen Systemen her emp-
fangenen Vorgangsergebnissen anzeigt.

15. Verfahren nach einem der Ansprüche 8 bis 14, das
ferner entweder Zurückgeben des von einem belie-
bigen der Systeme her empfangenen ersten Vor-
gangsergebnisses an das Computerprogramm und
Bereitstellen einer weiteren Nachricht für das Com-
puterprogramm, falls die Transaktion abgebrochen
wird, oder Zurückgeben eines Vorgangsergebnis-
ses an das Computerprogramm nur, wenn die Vor-
gangsergebnisse von allen Systemen her durch den
fehlertoleranten Knoten (50) empfangen und bewer-
tet wurden, umfasst.

Revendications

1. Noeud tolérant les défaillances pour réplication de
base de données hétérogène synchrone où le noeud
tolérant les défaillances (50) est adapté pour réaliser
une série de transactions de base de données gé-
nérée par un processeur exécutant un programme
informatique au niveau du noeud tolérant les dé-
faillances (50), dans lequel le noeud tolérant les dé-
faillances (50) comprend au moins deux systèmes
de gestion de base de données relationnelle (51,
52), les systèmes étant des exemples de différents
produits de système de gestion de base de données
relationnelle qui fournissent un isolement instantané
entre des transactions simultanées et chaque sys-
tème (51, 52) comprenant une base de données et
une composante de gestion de base de données,
dans lequel pour chaque transaction de base de don-
nées, des instructions d’opération sont fournies si-
multanément à chacun des systèmes pour réaliser
des opérations sur leur base de données respective
et pour fournir des réponses respectives ;
dans lequel les réponses générées par les systèmes
comprennent soit un résultat d’opération, soit une
exception, et où seul l’un des systèmes est configuré
avec une fonction d’exception NOWAIT (PAS D’AT-
TENTE) activée qui renvoie une exception lors de la
détection que deux transactions simultanées ou plus
tentent de modifier la même donnée et les autres
systèmes sont configurés avec la fonction d’excep-
tion NOWAIT désactivée, moyennant quoi le noeud
tolérant les défaillances (50) est adapté pour détec-
ter que deux transactions simultanées ou plus ten-
tent de modifier la même donnée et pour bloquer
une ou plusieurs des transactions afin de garantir
que tous les systèmes appliquent le même ordre de
modification de la donnée par les transactions simul-
tanées.

2. Noeud tolérant les défaillances selon la revendica-
tion 1, dans lequel un ensemble d’instructions d’opé-
ration comprend une instruction de démarrage, une
instruction d’archivage et une instruction d’abandon
afin de commander l’exécution d’une transaction et
comprend en outre une opération de lecture et une
opération d’écriture, et dans lequel lors d’une exé-
cution d’une opération d’écriture, le noeud extrait
d’abord un ensemble d’écriture sur lequel des opé-
rations sont réalisées avant que la transaction ne
soit archivée et dans lequel le noeud tolérant les dé-
faillances traite un échec de la fourniture d’un résul-
tat d’opération à une opération de lecture ou une
opération d’écriture dans une période prédétermi-
née en tant qu’exception.

3. Noeud tolérant les défaillances selon la revendica-
tion 1 ou la revendication 2, dans lequel le noeud
tolérant les défaillances (50) comprend un gestion-

45 46

EP 2 470 994 B1

25

5

10

15

20

25

30

35

40

45

50

55

naire de transactions (63) afin de commander l’exé-
cution des opérations pour une transaction dans
chacun des systèmes et un gestionnaire de réplique
(64, 65) pour chacun des systèmes utilisés pour exé-
cuter une transaction afin de fournir des opérations
à son système associé, dans lequel pour chaque
transaction, le gestionnaire de transactions (63)
fournit les opérations nécessaires à l’exécution de
la transaction dans une file d’attente pour chaque
système géré par le gestionnaire de réplique (64,
65) pour ce système, dans lequel les opérations sont
fournies à chaque système à partir de la file d’attente
par le gestionnaire de réplique pour ce système.

4. Noeud tolérant les défaillances selon l’une quelcon-
que des revendications précédentes, dans lequel le
noeud tolérant les défaillances (50) comprend une
fonction de comparateur afin de comparer les résul-
tats d’opération reçus en provenance des systèmes
afin de permettre au noeud tolérant les défaillances
de déterminer si la transaction s’est terminée avec
succès.

5. Noeud tolérant les défaillances selon la revendica-
tion 4, dans lequel un ensemble d’instructions d’opé-
ration comprend une instruction de démarrage, une
instruction d’archivage et une instruction d’abandon
afin de commander l’exécution d’une transaction et
dans lequel seule une transaction peut exécuter une
instruction de démarrage ou une instruction d’archi-
vage à la fois pour tous les systèmes, moyennant
quoi lors d’un défaut de correspondance entre les
résultats d’opération reçus en provenance des sys-
tèmes, le noeud tolérant les défaillances (50) déclen-
che une exception afin d’abandonner la transaction.

6. Noeud tolérant les défaillances selon l’une quelcon-
que des revendications précédentes, dans lequel
soit le noeud tolérant les défaillances renvoie le pre-
mier résultat d’opération reçu en provenance de l’un
quelconque des systèmes au programme informati-
que, et fournit un message supplémentaire au pro-
gramme informatique si la transaction est abandon-
née, soit le noeud tolérant les défaillances renvoie
un résultat d’opération au programme informatique
uniquement lorsque les résultats d’opération en pro-
venance de tous les systèmes ont été reçus et ana-
lysés par le noeud tolérant les défaillances.

7. Serveur de base de données comprenant un noeud
tolérant les défaillances selon l’une quelconque des
revendications 1 à 6.

8. Procédé de réalisation d’une réplication de base de
données hétérogène synchrone, pour une série de
transactions de base de données fournie par un pro-
cesseur exécutant un programme informatique, au
niveau d’un noeud tolérant les défaillances (50) com-

prenant au moins deux systèmes de gestion de base
de données relationnelle (51, 52), les systèmes étant
des exemples de différents produits de système de
gestion de base de données relationnelle qui four-
nissent un isolement instantané, chaque système
comprenant une base de données et une compo-
sante de gestion de base de données, le procédé
comprenant :

la réception d’une transaction de base de don-
nées au niveau du noeud tolérant les défaillan-
ces (50) ;
la fourniture d’instructions d’opération pour la
transaction de base de données simultanément
à chacun des systèmes (51, 52) pour réaliser
des opérations sur leurs bases de données res-
pectives et fournir des réponses respectives ;
les systèmes générant chacun une réponse à
une instruction d’opération qui comprend un ré-
sultat d’opération ou une exception, où seul un
des systèmes est configuré avec une fonction
d’exception NOWAIT activée de sorte que le
système renvoie une exception lors de la détec-
tion que deux transactions simultanées ou plus
tentent de modifier la même donnée et les autres
systèmes sont configurés avec la fonction d’ex-
ception NOWAIT désactivée ;
moyennant quoi le noeud tolérant les défaillan-
ces (50) détecte que deux transactions simulta-
nées ou plus tentent de modifier la même don-
née et permet aux transactions qui accèdent à
la donnée en premier sur le système avec la
fonction NOWAIT activée de continuer sur tous
les systèmes, et empêche l’exécution de toutes
les autres transactions tentant de modifier la mê-
me donnée sur tous les systèmes, permettant
ainsi l’application par tous les systèmes du mê-
me ordre de modification de la donnée par les
transactions simultanées.

9. Procédé selon la revendication 8, dans lequel un en-
semble d’instructions d’opération comprend une ins-
truction de démarrage, une instruction d’archivage
et une instruction d’abandon afin de commander
l’exécution d’une transaction et dans lequel seule
une transaction peut exécuter une transaction de dé-
marrage ou une transaction d’archivage à la fois pour
tous les systèmes.

10. Procédé selon la revendication 9, dans lequel lors-
qu’une exception est reçue en tant que résultat
d’opération en provenance de l’un des systèmes, le
noeud tolérant les défaillances (50) fournit une ins-
truction d’abandon pour cette transaction pour tous
les systèmes.

11. Procédé selon la revendication 9 ou 10, dans lequel
l’exécution d’une opération d’archivage pour une

47 48

EP 2 470 994 B1

26

5

10

15

20

25

30

35

40

45

50

55

transaction comprend le fait de déterminer si la tran-
saction a été abandonnée, de déterminer que les
résultats d’opération en provenance des systèmes
permettent de fournir un résultat de transaction, et
d’acquérir une commande des opérations d’archiva-
ge et de démarrage de sorte qu’aucune autre opé-
ration d’archivage ou de démarrage ne peut avoir
lieu jusqu’à ce que l’opération de démarrage soit ter-
minée et dans lequel l’exécution d’une opération de
démarrage pour une transaction comprend l’établis-
sement d’une variable indiquant que la transaction
n’est pas abandonnée, et d’acquérir la commande
des opérations de démarrage et d’archivage de sorte
qu’aucune autre opération de démarrage ou d’archi-
vage ne peut avoir lieu jusqu’à ce que l’opération de
démarrage soit terminée.

12. Procédé selon l’une quelconque des revendications
9 à 11, dans lequel l’ensemble d’opérations com-
prend une opération de lecture et une opération
d’écriture, et dans lequel lors de l’exécution d’une
opération d’écriture, le noeud extrait d’abord un en-
semble d’écriture sur lequel des opérations sont réa-
lisées avant que la transaction ne soit archivée.

13. Procédé selon la revendication 12, dans lequel le
noeud tolérant les défaillances traite un échec de la
fourniture d’un résultat d’opération à une opération
de lecture ou une opération d’écriture dans une pé-
riode prédéterminée en tant qu’exception.

14. Procédé selon l’une quelconque des revendications
8 à 13, comprenant en outre la comparaison de ré-
sultats d’opération reçus en provenance des systè-
mes afin de permettre au noeud tolérant les dé-
faillances de déterminer si la transaction s’est termi-
née avec succès et comprenant en outre l’abandon
de la transaction si l’étape de comparaison des ré-
sultats d’opération indique un défaut de correspon-
dance entre les résultats d’opération reçus en pro-
venance des différents systèmes.

15. Procédé selon l’une quelconque des revendications
8 à 14, comprenant en outre soit le renvoi du premier
résultat d’opération en provenance de l’un quelcon-
que des systèmes au programme informatique, et
la fourniture d’un message supplémentaire au pro-
gramme informatique si la transaction est abandon-
née, soit le renvoi d’un résultat d’opération au pro-
gramme informatique uniquement lorsque les résul-
tats d’opération en provenance de tous les systèmes
ont été reçus et analysés par le noeud tolérant les
défaillances (50).

49 50

EP 2 470 994 B1

27

EP 2 470 994 B1

28

EP 2 470 994 B1

29

EP 2 470 994 B1

30

EP 2 470 994 B1

31

EP 2 470 994 B1

32

EP 2 470 994 B1

33

EP 2 470 994 B1

34

EP 2 470 994 B1

35

EP 2 470 994 B1

36

EP 2 470 994 B1

37

EP 2 470 994 B1

38

EP 2 470 994 B1

39

EP 2 470 994 B1

40

EP 2 470 994 B1

41

EP 2 470 994 B1

42

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 1349085 A [0008]

Non-patent literature cited in the description

• ADYA, A. ; B. LISKOV et al. Generalized Snapshot
Isolation Levels. IEEE International Conference on
Data Engineering (ICDE, 2000 [0139]

• AGRAWAL, D. ; G. ALONSO et al. Exploiting Atomic
Broadcast in Replicated Databases. Proceedings of
EuroPar (EuroPar’97, 1997 [0139]

• ANSI X3.135-1992. American National Standard for
Information Systems, 1992 [0139]

• A Critique of ANSI SQL Isolation Levels. BEREN-
SON, H. ; P. BERNSTEIN et al. SIGMOD interna-
tional Conference on Management of Data. ACM
Press, 1995 [0139]

• Concurrency Control and Recovery in Database Sys-
tems. BERNSTEIN, A. ; V. HADZILACOS et al.
Reading, Mass. Addison-Wesley, 1987 [0139]

• Database Replication Using Generalized Snapshot
Isolation. ELNIKETY, S. ; W. ZWAENEPOEL et al.
Proceedings of the 24th IEEE Symposium on Relia-
ble Distributed Systems (SRDS’05. IEEE Computer
Society, 2005, 73-84 [0139]

• FEKETE, A. ; E. O’NEIL et al. A read-only transac-
tion anomaly under snapshot isolation. ACM SIG-
MOD Record, 2004, vol. 33 (3), 12-14 [0139]

• GASHI, I. ; P. POPOV. Rephrasing Rules for
Off-the-Shelf SQL Database Servers. Sixth Europe-
an Dependable Computing Conference, 2006. EDCC
’06, 2006 [0139]

• GASHI, I. ; P. POPOV et al. Fault tolerance via di-
versity for off-the-shelf products: a study with SQL
database server. IEEE Transactions on Dependable
and Secure Computing, 2007 [0139]

• The Transaction Concept: Virtues and Limitations.
GRAY, J. 7th International Conference on Very Large
Data Bases (VLDB. IEEE Computer Society, 1981
[0139]

• GRAY, J. ; R. LORIE et al. Granularity of locks and
degrees of consistency in a shared data base. IFIP
Working Conference on Modelling of Data Base Man-
agement Systems, 1975 [0139]

• GRAY, J. ; A. REUTER. Transaction processing :
concepts and techniques. Morgan Kaufmann, 1993
[0139]

• Fault-tolerant broadcast and related problems.
HADZILACOS, V. ; S. TOUEG. Distributed Systems.
Addison-Wesley, 1993, 97-145 [0139]

• JIMENEZ-PERIS, R. ; M. PATINO-MARTINEZ. D5:
Transaction Support. ADAPT Middleware Technolo-
gies for Adaptive and Composable Distributed Com-
ponents, 2003, 20 [0139]

• KEMME, B. Database Replication fo Clusters of
Workstations. Swiss Federal Institute of Technology,
2000, 145 [0139]

• KEMME, B. ; G. ALONSO. Don’t be lazy, be consist-
ent: Postgres-R, a new way to implement Database
Replication. Int. Conf. on Very Large Databases
(VLDB, 2000 [0139]

• Postgres-R(SI): Combining Replica Control with Con-
currency Control based on Snapshot Isolation.
KEMME, B. ; S. WU. International Conference on Da-
ta Engineering. IEEE Computer Society, 2005 [0139]

• LAMPORT, L. ; R. SHOSTAK et al. The Byzantine
Generals Problem. ACM Transactions on Program-
ming Language and Systems (TOPLAS, 1982, vol. 4
(3), 382-401 [0139]

• Middleware Based Data Replication Providing Snap-
shot Isolation. LIN, Y. ; B. KEMME et al. ACM SIG-
MOD International Conference on Management of
Data, Baltimore. ACM Press, 2005 [0139]

• MULLENDER, S. Distributed Systems. ACM
Press/Addison-Wesley Publishing Co, 1993 [0139]

• PATINO-MARTINEZ, M. ; R. JIMENEZ-PERIS et al.
MIDDLE-R: Consistent database replication at the
middleware level. ACM Transactions on Computer
Systems (TOCS), 2005, vol. 23 (4), 375-423 [0139]

• PREGUIÇA, N. ; R. RODRIGUES et al. Byzantium:
Byzantine-Fault-Tolerant Database Replication Pro-
viding Snapshot Isolation. Fourth Workshop on Hot
Topics in System Dependability, 2008 [0139]

• Nonblocking commit protocols. SKEEN, D. Proceed-
ings of ACM SIGMOD International conference on
management of data. ACM Press, 1981 [0139]

• Detecting and Tolerating Byzantine Faults in Data-
base Systems. VANDIVER, B. Programming Meth-
odology Group. Massachusetts Institute of Technol-
ogy, 2008, 176 [0139]

EP 2 470 994 B1

43

• WEISMANN, M. ; F. PEDONE et al. Database Rep-
lication Techniques: a Three Parameter Classifica-
tion. 19th IEEE Symposium on Reliable Distributed
Systems (SRDS’00, 2000 [0139]

	bibliography
	description
	claims
	drawings

