329,131 research outputs found

    Business process verification: a Petri Net approach.

    Get PDF
    In this report, we discuss the use of Petri Net language theory for business process modeling. Essentially, the focus is on the opportunities of the modeling technique for analysis and verification. Semantic compatibility, as opposed to syntactic compatibility, is concerned with the meaningfulness of the distributedbusiness process. We start with a description and motivation of different notions of semantically compatible business processes. Further, these different types ofcompatibility are formalized by means of Petri Net language theory. Finally, we describe the foundations of an algorithm that enables us to verify the semantic compatibility in an automated way.Keywords: Petri Net theory; Business Process Modeling; Verification; Semantic Com-patibilityBusiness process modeling; Petri Net theory; Semantic compatibility; Verification; Theory; Business; Processes; Process modeling; Opportunities;

    Deterministic Petri net languages as business process specification language.

    Get PDF
    Today, a wide variety of techniques have been proposed to model the process aspects of business processes. The problem, however, is that many of these are focused on providing a clear graphical representation of the models and give almost no support for complex verification procedures. Alternatively, the use of Petri Nets as a business process modeling language has been repeatedly proposed. In complex business processes the use of Petri Nets has been criticized and the technique is believed to be unable to capture such processes in all aspects. Therefore, in this paper, we introduce the application of Petri Net language theory for business process specification. Petri Net languages are an extension to the Petri Net theory, and they provide a set of techniques to describe complex business processes more efficiently. More specifically, we advocate the application of deterministic Petri Net languages to model the control flow aspects of business processes. The balance between modeling power and analysis possibilities makes deterministic Petri Nets a highly efficient technique, used in a wide range of domains. The proof of their usability, as business process specification language, is given by providing suitable solutions to model the basic and more complex business process patterns [4]. Additionally, some points of particular interest are concisely discussed.Business; Business process modeling; Control; Model; Models; Patterns; Petri Net theory; Power; Process modeling; Processes; Representation; Theory; Verification;

    Designing compliant business processes with obligations and permissions. Business process management workshops.

    Get PDF
    The sequence and timing constraints on the activities in business processes are an important aspect of business process compliance. To date, these constraints are most often implicitly transcribed into control-flow-based process models. This implicit representation of constraints, however, complicates the verification, validation and reuse in business process design. In this paper, we investigate the use of temporal deontic assignments on activities as a means to declaratively capture the control-flow semantics that reside in business regulations and business policies. In particular, we introduce PENELOPE, a language to express temporal rules about the obligations and permissions in a business interaction, and an algorithm to generate compliant sequence-flow-based process models that can be used in business process design.

    BProVe: Tool support for business process verification

    Get PDF
    This demo introduces BProVe, a tool supporting automated verification of Business Process models. BProVe analysis is based on a formal operational semantics defined for the BPMN 2.0 modelling language, and is provided as a freely accessible service that uses open standard formats as input data. Furthermore a plug-in for the Eclipse platform has been developed making available a tool chain supporting users in modelling and visualising, in a friendly manner, the results of the verification. Finally we have conducted a validation through more than one thousand models, showing the effectiveness of our verification tool in practice

    Business Process Variability:a study into process management and verification

    Get PDF
    Business process management (BPM) beheert en optimaliseert bedrijfsprocessen met het doel om productiviteit en bedrijfsprestaties te verhogen. BPM is een snel evoluerend veld door nieuw opkomende vereisten vanuit flexibele bedrijfstakken waar bedrijfsprocessen steeds minder star behoren te zijn. Waar BPM in het verleden specifieke rigide en repetitieve werkeenheden ondersteunde voor de lokale gebruiker, wordt tegenwoordig vereist dat het losgekoppelde processen ondersteunt in cloud configuraties, te midden van vele gebruikers met elk vele verschillende eisen.Zolang het BPM veld een stijgend aantal snel evoluerende bedrijfsprocessen in flexibele bedrijfstakken ondersteunt, moet de evolutie van elk bedrijfsproces aanhoudend correct gedrag vertonen en tevens voldoen aan de opgelegde wet- en regelgeving en interne bedrijfsregels. Om het aanhoudend correct gedrag te ondersteunen van snel evoluerende BP, of de definitie van een breed aantal soortgelijke bedrijfsprocessen, evalueren we de toepassing van formele verificatietechnieken als mogelijke oplossing voor analyse van het juiste gedrag en wettelijk conforme ontwerp van bedrijfsprocessen binnen mogelijke proces families, welke plaatsvindt voorafgaand aan de uitvoering van dat bedrijfsproces.Een innovatieve benadering voor verificatie tijdens de ontwerpfase wordt gepresenteerd. De benadering ondersteunt de verschillende vertakkende en samenvoegende constructies zoals toegestaan in bedrijfsprocesmodellen en hun service composities. Evaluaties met betrekking tot expressiviteit bewijzen dat, anders dan doorgaans toegepaste transitiesystemen, het voorgestelde model bekende bedrijfsprocespatronen juist vastlegt. Verder behoudt het model informatie over de aanwezigheid van parallelle activiteiten en de lokale volgende activiteit: een eigenschap uniek aan de voorgestelde aanpak.Business Process Management (BPM) manages and optimizes business processes with the intent to increase productivity and performance. BPM is a rapidly evolving field due to new requirements emerging at agile branches of business where business processes are required to be less and less rigid. Where BPM supported local user-specific rigid and repetitive units of work in the past, these days it is required to support loosely-coupled processes in cloud configurations among many users with each many different requirements.As the field of BPM continues to manage an increasing number of rapidly evolving business processes in agile environments, the evolution of each business process must continue to always behave in a correct manner and remain compliant with the laws, regulations, and internal business requirements imposed upon it. To manage the correct behavior of quickly evolving business processes, or the definition of a wide variety of similar business processes, we evaluate the application of formal verification techniques as a possible solution for the pre-runtime analysis of the correct behavior and compliant design of business processes within possible process families. A novel approach allowing pre-runtime verification that supports the different branching and merging constructs allowed by business process models and their service compositions is presented. Evaluations on expressive power demonstrate that, other than the generally employed transition systems, the proposed model correctly captures well-known business process patterns. Furthermore, it maintains information on parallel occurrences of activities and the local next activity occurrence: an ability which is unique to the presented approach
    • ā€¦
    corecore