

 University of Groningen

Business Process Variability
Groefsema, Heerko

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Groefsema, H. (2016). Business Process Variability: a study into process management and verification.
Rijksuniversiteit Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/9d23dd6a-74d6-45b1-b476-0fb69ea25db0

Business Process Variability

A Study into Process Management and Verification

Heerko Groefsema

This research was supported by the University of Groningen and the Netherlands
Organization for Scientific Research (NWO) under project number 638.001.207 whithin
the scope of the Jacquard program.

Published by: University of Groningen
Groningen, The Netherlands

Printed by: NetzoDruk Groningen B.V.
Groningen, The Netherlands

ISBN: 978-90-367-9237-0 (book)
978-90-367-9236-3 (e-book)

© 2016, Heerko Groefsema

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys-

tem of any nature, or transmitted in any form or by any means, electronic, mechanical, now

known or hereafter invented, including photocopying or recording, without prior written

permission of the author.

Business Process Variability
A Study into Process Management and Verification

Proefschrift

ter verkrijging van de graad van doctor aan de
Rijksuniversiteit Groningen

op gezag van de
rector magnificus prof. dr. E. Sterken

en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op

vrijdag 23 december 2016 om 12.45 uur

door

Heerko Groefsema

geboren op 16 augustus 1983
te Groningen

Promotor
Prof. dr. ir. M. Aiello

Beoordelingscommissie
Prof. dr. ir. W.M.P. van der Aalst
Prof. dr. W.J.A.M. van den Heuvel
Prof. dr. ir. J.C. Wortmann

Contents

Acknowledgements xiii

1 Introduction 1

1.1 Variability and Formal Verification . 4

1.2 Problem Statement . 9

1.3 Methodology . 11

1.4 Contents . 13

1.5 Related Publications . 14

2 Background 17

2.1 Business Process Modeling and Management 17

2.2 Business Process Formalization . 21

2.3 Formal Verification . 27

3 State of the Art 37

3.1 Business Process Soundness . 37

3.2 Business Process Compliance . 39

viii Contents

3.3 Business Process Variability . 41

3.4 Discussion . 44

4 Case Study Description and Formalization 47

4.1 Case 1: Telecommunications Customer Support 48

4.2 Case 2: Local Dutch e-Government . 53

4.3 Case 3: Bouncer Registration . 61

4.4 Discussion . 64

5 Verification Requirements 67

5.1 Model Requirements . 67

5.2 Specification Requirements . 69

5.3 Evolutionary Requirements . 77

5.4 Discussion . 79

6 Business Process Verification 83

6.1 Verifiable Model . 83

6.2 Specification Semantics . 87

6.3 Specification Interpretation . 88

6.4 Verification over Groups and Roles . 89

6.5 Verification over Conditions . 90

6.6 Inheritance of Specification Sets . 92

6.7 Model Reduction . 95

6.8 Discussion . 96

Contents ix

7 Verification Specifications 101

7.1 Visualization . 102

7.2 Soundness Specifications . 104

7.3 Preventive Compliance Specifications 105

7.4 Variability Specifications . 107

7.5 Discussion . 110

8 Automated Specification Assembly 113

8.1 Prime Event Structures . 114

8.2 Prefix Unfoldings . 115

8.3 Execution and Elementary Loop Identification 118

8.4 Compound event structures . 121

8.5 Specification Assembly . 122

8.6 Discussion . 124

9 Implementation 127

9.1 Features . 127

9.2 Extensibility . 132

10 Evaluation 139

10.1 Expressive Power . 139

10.2 Performance Evaluation . 143

10.3 Requirements Analysis . 146

10.4 Case Study (continued) . 149

x Contents

11 Conclusion 159

11.1 Summary . 160

11.2 Contributions . 162

11.3 Results . 163

11.4 Limitations . 167

11.5 Implications & Future Work . 170

Appendices 173

A Business Process Model & Notation 173

B BPMN BPD CPN Formalization . 178

Abbreviations 187

English Summary 191

Nederlandse Samenvatting 195

Bibliography 199

Acknowledgements

Finally. The end result of a long period of study and research is starting to take
shape. What a journey it has been. A journey of persistence, continuous iteration,
and will. A journey on an international level while remaining in one place. A
journey where I had to balance my strength between work and leisure every day.
A journey which I could never have begun or continued without the support of
others. In my case this is even more true than other cases. I would like to reflect on
those people that have supported and helped me throughout this period.

Firstly, I would like to express my gratitude to my advisor, Prof. dr. ir. Marco
Aiello, for his continuing support throughout my Ph.D. study, for his guidance, his
knowledge, his unending patience, and for his positive opinion towards my work,
which was always much more positive than my own.

I would like to thank the members of my assessment committee, Prof. dr. ir.
Hans Wortmann for his willingness to include me in the SaS-LeG project, Prof. dr.
Willem-Jan van den Heuvel for his positive feedback, and most notably Prof. dr. ir.
Wil van der Aalst for his generous amount of valuable insights and feedback.

I would like to thank Prof. dr. Serge Daan, the former dean, Prof. dr. Henk Broer,
the former scientific director, Prof. dr. ir. Paris Avgeriou, Hans van der Aa from
the home ventilation centre of the UMCG, Evelyn Haandrikman and Hedwig Wit-
teveen from USG Restart, Lourens Boomsma, and Janieta de Jong for their support
during and after my application process and their continuing confidence.

I would like to thank Prof. dr. Wim Hesselink and Prof. dr. Gerard Renardel de
Lavalette for their guidance into methods of formal verification which made this
work possible.

xiv Acknowledgements

I would like to thank my trusty co-authors, Nick van Beest and Pavel Bulanov for
their close and seamless cooperation, even while lately residing in entirely different
time zones, and Doina Bucur for her edged insights. Without their discussion and
input I could not have achieved the content presented here.

For her continuing care, I would like to thank Ineke Schelhaas. Without her initial
support and care, I would never have had the opportunity to start my Ph.D. studies.

Elie El-Khoury, Mahir Can Doganay, and Ilche Georgievski, my different room-
mates over the years, I would like to thank for their support, care, and many fun
discussions, being it about games, football, or TV shows. I would also like to thank
Eirini Kaldeli, Viktoriya Degeler, Tuan Anh Nguyen, Ehsan Ullah Warriach, Frank
Blaauw, Fatimah Alsaif, Ang Sha, and Laura Fiorini for those days they would help
out when the regular roommates were not available. Without all of your willing-
ness to help and care, I could not have achieved this milestone.

I would like to thank the other members of the distributed systems group, Alexan-
der Lazovik, Andrea Pagani, Ando Emerencia, Faris Nizamic, Brian Setz, Azkario
Rizky Pratama, Talko Dijkhuis, and administrative staff member, Esmee Elshof, for
their input, encouragement, and fun discussions.

Finally, I would like to thank my parents and brother for all those years of care,
support, and encouragement throughout my Ph.D. studies and life in general.

– Heerko Groefsema

CHAPTER 1

Introduction

Computer science is no more about computers than astronomy is about telescopes.

– Edsger W. Dijkstra

Business processes are collaborations between actors, i.e. someone or something
that performs an activity or task. In a business process, each actor fulfills one or
more activities with the aim of ultimately achieving a specific, value-added goal
driven by the outside world (Ko, 2009). Take, for example, your typical parcel de-
livery service. When you send someone a package, you first drop it off at your
local service point. Trucks pick up all packages from the service point and deliver
it to a distribution hub where the packages are sorted by destination. Your package
is then moved to the distribution hub of its destination, planned into a delivery
route, and delivered at its destination. This, seemingly simple, business process is
an immense collaboration of a large number of actors, including the service point
employee, the truck driver, the automated sorting systems, and the delivery man.
Its goal is delivering your package. It is value-added because this process is offered
to you in exchange for a relatively small shipping fee, as well as the value of re-
ceiving a parcel. The process is driven by you, or your wish to have your package
delivered at its destination without actually going there yourself. Note, however,
that each step described in this, seemingly simple, business process can be broken
down into a multitude of smaller activities or tasks, which can be described by a
business process of its own.

2 Chapter 1. Introduction

Se
rv

ic
e

Po
in

t
Tr

an
sp

o
rt

er
D

is
tr

ib
u

ti
o

n
 H

u
b

D
el

iv
er

y
M

an

Collect

Parcel

Transport

Parcel

Sort Parcel

by Hub

N
o
t

a
t

d
e

liv
e

ry
 H

u
b

Schedule

Delivery

Deliver

Parcel

F
a

ile
d

 d
e

liv
e

ry

Figure 1.1: Generalized parcel delivery process.

Chapter 1. Introduction 3

Business processes are typically represented by business process models. Business
process models are then directed graphs where nodes represent activities, events, or
gateways. The edges of the graph define the order among the nodes. Gateways di-
verge or converge multiple edges. Different gateways diverge and converge edges
by alternate sets of rules. Exclusive gateways activate a single activity based on con-
ditions on outward edges after an activity on an inward edge completed, parallel
gateways activate all activities on outward edges after all activities on inward edges
completed, and inclusive gateways activate some activities based on conditions on
outward edges after the activated activities on inward edges completed.

Figure 1.1, for example, depicts the parcel delivery process example discussed ear-
lier as a business process model. In this model, activities are represented by rounded
boxes, events by circles, and gateways by diamonds. Actors are represented by
rectangular areas within which activities, events, and gateways are modeled. An
activity that is modeled within an area of an actor, is performed by that actor. The
business process begins at the circular start event modeled at the top of the figure,
moves down through the activities and decision points performed by the different
actors, and finally terminates at the thick bordered circular end event modeled at
the bottom of the figure.

Business processes can be automated using business process or workflow manage-
ment systems. An automated business process, or workflow (van der Aalst et al.,
2003b), is modeled as a consecutive set of activities or tasks with decision points
allowing for different outcomes. Different tasks can be assigned to one or more
actors. A workflow can be either fully automated, or require human input. Most
importantly, however, workflows can be monitored and managed.

The emergence of Service-Oriented Architectures and standards such as Web Ser-
vices has accelerated the trend and opened a wide range of automation and inte-
gration possibilities (Papazoglou and van den Heuvel, 2007). As a result, business
processes are increasingly being represented and designed as service compositions.
Instead of modeling business processes as local and rigid sets of consecutive ac-
tivities, service compositions define business processes as collections of loosely-
coupled services that represent the business flow of the business process. Corre-
spondingly, each activity is implemented as an independent, self-contained, and
well-defined modular service.

Business process management is a field which aims of increasing productivity and
performance of companies by managing their business processes. Management

4 1.1. Variability and Formal Verification

of business processes can be useful at many different levels. For example, to in-
crease productivity by streamlining the process, to avoid issues caused by faulty
or erroneous process design and enactment, or to continually ensure compliance of
processes to rules and regulations.

Originally designed to support local, user-specific, rigid, and repetitive units of
work, business process management must adapt to support loosely-coupled pro-
cesses in agile service oriented environments with many different users that each
have customization and personalization requirements. The need to adapt processes
to instances and changes becomes concrete with the notion of variability, which first
emerged in software engineering. In software engineering, variability refers to the
possibility of changes in software products and models (Sinnema et al., 2006). In
the context of business process management, variability indicates that parts of a
business process remain variable, or not fully defined, in order to support different
versions of the same process depending on the intended use or execution context.

As the field of business process management continues to manage an increasing
number of rapidly evolving customized business processes in agile service oriented
environments, the evolution of each business process must continue to always be-
have in a correct manner and remain compliant with the laws, regulations, and in-
ternal business requirements. To manage the correct behavior of quickly evolving
business processes, and the definition of a wide variety of similar business pro-
cesses, we evaluate the application of formal verification techniques as a possible
solution for the pre-runtime analysis of the correct behavior and compliant design
of business processes within process families. Specifically, we focus on design-time
solutions using existing and well-supported formal verification techniques.

1.1 Variability and Formal Verification
Formal verification entails proving or disproving the correctness of a system mo-
del with respect to a formal specification using formal methods of mathematics.
When employing formal verification, a system model – often represented by a la-
beled transition system – is verified against a formal specification in the form of a
set of logic formulas. One approach towards formal verification is model checking.
When model checking, a system model is automatically, systematically, and ex-
haustively explored while each explored state is verified for compliance with the
formal specification. Business process verification is the act of determining whether
a business process model complies with a set of formal correctness properties. For-

Chapter 1. Introduction 5

mal verification of business process models is of interest to a number of applica-
tion areas, including checking for basic business process correctness (i.e. business
process soundness (van der Aalst, 1997)), business process compliance (Groefsema
and van Beest, 2015; Groefsema et al., 2016), and business process variability (Aiello
et al., 2010; Groefsema and Bucur, 2013). Although business process variability may
not seem to relate to formal verification directly, there has been a trend of defining
business processes using declarative techniques to support flexible process defini-
tions (van der Aalst and Pesic, 2006; Pesic and van der Aalst, 2006). Then, when
applying this to design-time process families, business process variability becomes
the problem of verifying whether a business process is a legal member of a pro-
cess family. This, in turn, introduces new challenges to the formal verification of
business processes.

View List of

Rooms

View Room

Details
Book Room[Book]

[Abort]

Register

Booking in

System

Show Error

Message

Figure 1.2: Room booking example

To explain each application area, we shall consider a deceptively simple workflow
to book a meeting room in your average office building. Figure 1.2 illustrates the
process. To book a meeting room, the user first views a list of available rooms,
selects a room, and views the details of that room. The user then decides to book the
room, or abort to restart the process. If the user decides to book the selected room,
the system attempts to book the room and registers it in the system. In case the
attempt fails, because someone else booked the room while the user was inspecting
the details, an error event is triggered and an error message is displayed.

1.1.1 Soundness
Business process correctnesss verification entails the verification of basic properties
such as reachability and termination. Reachability of a business activity requires an
execution path to exist leading to that activity starting from the initial activities. A
termination property requires that all possible execution traces reach a final state.
Business process soundness, a property originally proposed in the area of Petri Net

6 1.1. Variability and Formal Verification

verification (van der Aalst, 1997), is known as the combination of these two prop-
erties plus a third: the absence of related running activities at process termination
(i.e., proper completion). Avoiding the deployment of erroneous processes that do
not conform with these properties is obviously advantageous, as erroneously de-
signed business processes may lead to failed executions or execution errors, and,
ultimately, disgruntled customers or employees (Bi and Zhao, 2004).

View List of

Rooms

View Room

Details
Book Room[Book]

[Abort]

Register

Booking in

System

Show Error

Message

Figure 1.3: Erroneous business process example

For example, the room booking process illustrated in Figure 1.3 is erroneous. It
is erroneous because the depicted process fails to satisfy the termination property.
The termination property requires all execution traces to terminate. The depicted
process, however, will never terminate because the merging gateway expects all
incoming branches to finishing execution before activating the end event, while
only one of these branches will ever be activated. This simple, but easy to make,
design error can be easily caught through formal verification techniques.

1.1.2 Compliance
Business process compliance aims to confirm that a business process adheres to a
set of rules imposed on that process. Rules can, for example, be imposed upon a
process by international regulations, national law, or internal business rules. Where
soundness verification aims at the verification of a limited set of requirements to
verify reachability, termination, and possibly proper completion (van der Aalst,
2000) – compliance verification requires verification of a broad set of specifications.

Take, for example, international banking. In international banking, every transac-
tion must be checked for possible international sanctions against the persons, coun-
tries, companies, and banks, involved in the entire transaction. If a bank fails to do
so, or can not demonstrate the checks were indeed performed correctly, it may face
serious financial penalties.

Chapter 1. Introduction 7

Existing techniques perform compliance verification at different stages of the busi-
ness process lifecycle, during process design, enactment of its composition, or di-
agnosis. Monitoring techniques are deployed during process enactment, utilizing
the runtime trace of a service composition to check if a model is executing correctly.
Auditing techniques are deployed during the diagnosis phase and adopt, for exam-
ple, process mining to verify if a service composition has been executed correctly.

Naturally, monitoring and auditing techniques are after the fact techniques, mean-
ing that issues will only ever be detected after they already have occurred. As a
result, expensive rollbacks or compensating actions are required to undo any erro-
neous execution before the application of sanctions. In case of auditing techniques,
the damage has been done, and only a full rollback can be attempted. In case of
monitoring techniques, compensating actions can not guarantee correct behavior
unless they are taken immediately. When compensating actions will be taken at
a later stage of the business process, monitoring techniques enter an incompliant
state where they are unable to know or guarantee whether such a compensating
action will actually be taken. To overcome such undesirable occurrences, we focus
on preventative approaches (Elgammal et al., 2010b). Preventative approaches are
design-time, and aim to prevent issues from ever occurring or prove that compen-
sating actions will always be taken when encountering issues. Preventative com-
pliance verification can be state-based or event-based. That is, compliance can be
verified by finding illegal states within the process, or by finding a series of illegal
steps leading up to such a state.

For example, our room booking example could feature the requirement that when
a user chooses to book a viewed room, it must always result in a booked room.
Obviously, this specification fails for the example process illustrated in Figure 1.2
since there may be a booking error which does not result in a booked room.

1.1.3 Variability
Business Process Management is evolving rapidly due to emerging mass customiza-
tion and personalization trends, the need for adaptation to varying business and ex-
ecution contexts, and the wider availability of service-based infrastructures. Where
business process management originally supported local, user-specific, rigid, and
repetitive units of work, now it is required to support loosely-coupled processes in
agile service oriented environments and many different users with many different
requirements. Variability is an abstraction and management method that addresses
a number of the related issues.

8 1.1. Variability and Formal Verification

In the domain of software engineering, variability refers to the possibility of chan-
ges in software products and models (Sinnema et al., 2006). When introduced to
the domain of business process management, it indicates that parts of a business
process remain either open to change, or not fully defined, in order to support
several versions of the same process depending on the intended use or execution
context (Aiello et al., 2010). Currently, when multiple similar business processes
are required, they either exist as one large process definition using intricate branch-
ing descriptions or in multiple separate process definitions. This makes readability
and maintainability a major problem in case of processes with intricate branching
routes, or creates redundancy issues in case of multiple separate process defini-
tions (Sun et al., 2010; Aiello et al., 2010).

(a)

(b)

(c)

View List of

Rooms

View Room

Details
Book Room[Book]

[Abort]

Register

Booking in

System

Show Error

Message

View List of

Rooms

View Room

Details
Book Room[Book]

[Abort]

Register

Booking in

System

Show Error

Message

View List of

Rooms

View Room

Details
Book Room[Book]

[Abort]

Register

Booking in

System

Lock Room

Details

Unlock

Room

Details

Figure 1.4: Variability example

By introducing variability to the area of business process management, support is
introduced for both re-usability and flexibility, ameliorating the readability, main-
tainability, and redundancy issues. Multiple similar but different process instances,
called variants, may be based upon a single re-usable process by applying several
changes as allowed by the variability, and may then possibly be adapted at run-
time due to this same flexible nature.

Chapter 1. Introduction 9

The room booking business process, for example, can be modeled in many different
ways. Figure 1.4 illustrates three possible variants. The first process model, variant
(a), equals the process illustrated in Figure 1.2. Variant (b) changes the process
slightly by returning the user to the room details after it failed to book that room.
Finally, variant (c) avoids any booking errors by denying other users booking access
while a room is being booked. Note, however, that this final variant would pass the
example compliance specification given in the previous section.

Variability can be introduced to the area of business process management using
imperative or declarative approaches (Schonenberg et al., 2008; Aiello et al., 2010).
Where imperative approaches exactly specify possible change, declarative approa-
ches constrain the process behavior, allowing any change within those constraints.
When mapping these to design- and run-time, we notice four possible directions
when applying variability to business process management. Most research cur-
rently focuses on the areas of imperative/design-time and declarative/run-time
(Groefsema et al., 2011, 2012). Declarative approaches offer a number of advan-
tages. Since declarative approaches constrain the allowed behavior, instead of spec-
ifying it directly, the approach inherently allows quickly more variability. In addi-
tion, since imperative approaches exactly specify all possible change, they require
all possible change to be known in advance. Declarative approaches do not require
such knowledge. Therefore, we focus on the approach where variability is offered
as a declarative extension of pre-runtime, preventative, event-based compliance
verification. Using this approach, a business process is part of a family of business
processes if it is compliant with a set of specifications belonging to that business
process family. A business process of that family is applicable to change as long as
the changed process remains compliant with this set of specifications.

1.2 Problem Statement
Now that the application areas have been set, we identify the open challenges.
Balko et al. (2009) present a set of open research challenges in the field of business
process extensibility and/or variability. Of this set we highlight the five challenges
which relate to the problems discussed in this document:

• Reference process conformance: The ability to verify whether a process
extension/variant conforms to, or complies with, a reference process.

• Reference process patchability: The ability to patch, update, or change the
reference process such that all change is automatically propagated to every
extension/variant that is based on that reference process.

10 1.2. Problem Statement

• Extension mining: The ability to automatically detect manual ad-hoc devia-
tions from the reference process and automatically derive extensions.

• Stacked extensions: The ability to define parent-child relations between both
different reference processes and/or different extensions.

• Design-time usability: The ability to design reference processes and exten-
sions/variants with support of toolsets.

In this document, we focus on the challenges of reference process conformance,
stacked extensions, and design-time usability. Although the challenges of reference
process patchability and extension mining are not discussed directly, they are re-
lated to the artifacts and techniques presented throughout the document. These
challenges are related in such a way that they can be solved when combining those
artifacts and techniques with techniques outside of the scope of this document,
such as versioning and ad-hoc deviation detection.

Formal verification entails proving or disproving whether a system model conforms
to a formal specification. When applying this to the challenges, we notice a clear
similarity in the challenge to verify whether a process variant conforms to a reference
process. In other words, by defining a reference process as a formal specification,
and a process variant as a system model, it must be possible to formally prove
conformance through model checking. At the same time, we also notice similarities
between this approach and business process compliance verification. Therefore, to
provide support for all five challenges, we propose business process variability as
an extension of design-time, preventative, business process compliance verification
using model checking. Our goal is to assess the feasibility of this approach by
proposing models and techniques for it. Consequently, we arrive at the following
main research question:

To which extent can formal verification through model checking be used to sup-
port verification of business processes variability as an extension of design-
time, preventative, business process compliance?

The research question specifies the consolidation of a number of research areas,
namely those of business process variability, preventative compliance, and formal
verification through model checking, and then asks to which extent this merger is
feasible. To answer this complex question, we specify a number of sub-questions:

1. Which goals for design-time business process verification can be identified?

Chapter 1. Introduction 11

To fully understand the research question, we must first identify the goals of
business process verification. As soon as the goals are known, we can also
identify the requirements for verification.

2. What system model adequately represents the business process for variability verifi-
cation?

Formal verification through model checking verifies a system model against
a formal specification. To be able to verify reference process conformance, we
must therefore identify which system model accurately describes a business
process. With an accurate and full system model we will not be forced to
make certain concessions at later stages of our research.

3. In which manner can the system model be reduced without relevant information loss?

Although a full and accurate system model is required, it does pose issues
when its state space becomes too large to verify through model checking. To
keep the system model verifiable through model checking, we must first keep
the system model from expanding too quickly, and secondly allow reductions
of the state space without losing any required information.

4. What can be verified using well-supported specification languages?

To support reference process conformance, patchability, and stacking, we must
first identify what and how much of a reference process can be described
through a combination of the well-supported specification languages and a
full and accurate system model.

5. In which way can specifications be obtained automatically?

To support both the automatic procurement of specifications for reference
process conformance verification, and the automated detection of manual ad-
hoc deviations, we must device a way to automatically obtain specifications.

6. For which business processes is the resulting system model verifiable?

Finally, to answer the feasibility of the approach proposed in the research
question, we must identify to which extent business processes are verifiable.

1.3 Methodology
The research is triggered by both the known challenges described in (Balko et al.,
2009), as well as observations in practice. In addition, parallels between the known
challenges and well-supported techniques can be drawn. Knowing that there clearly

12 1.3. Methodology

Figure 1.5: The design science research methodology. Source: (Peffers et al., 2007).

is a lack of artifacts that address the issues, we propose the design of new artifacts
that bridge the gap between the challenges and well-supported techniques.

The design science research methodology as described by Peffers et al. (2007) pro-
vides a clear overview of the steps required for designing new artifacts. The me-
thodology is illustrated in Figure 1.5. Since, in our case, the design of new artifacts
is triggered by known challenges and observations in practice and simultaneously
aims to evaluate the feasibility of well-supported techniques towards its solution,
the methodology features both a problem centered initiation where the problem is
first identified and motivated, and an objective centered solution where the objec-
tives of a solution are defined. After these initial steps, the artifacts are designed
and developed, demonstrated as a solution, and evaluated towards its applicability.
And, finally, the results are communicated.

The research presented in this document follows the design science research metho-
dology as depicted in Figure 1.6. The research initiation is discussed in Chapters 4
and 5, where we first identify the issues observed in practice through a set of three
case studies, before defining the objectives in a detailed requirements analysis. The
design of the artifacts is discussed in Chapters 6, 7, and 8, where we define both the
models and specifications needed to support business process variability as an ex-
tension of preventative compliance verification. The development of the artifacts is
presented in Chapter 9. Finally, the artifacts are demonstrated using the presented
case studies and evaluated for expressive power, performance, and requirements
satisfaction in Chapter 10.

Chapter 1. Introduction 13

Identify problem

Define objectives

Design solution

Demonstrate solution

Evaluate solution

Case study 1 Case study 2 Case study 3

Chapter

4

Chapter

5

Chapters

6-8

Chapter

9

Chapter

10

Part 1: Initiation

Part 2: Design

Part 3: Development & Evaluation

Develop solution

Figure 1.6: Research method in relation to the presented text.

1.4 Contents
The remainder of the document is structured as follows. Chapter 2, details the re-
quired background in the areas of business process management, business process
formalization, and formal verification. Chapter 3, discusses the state of the art.
Chapter 4 presents three case studies towards business process compliance and
variability. The first case study details a customer support process resulting from a
compliance study at an Australian telecommunications provider. The second case
discusses a variability study throughout a number of Dutch municipalities. And,
the third case, features a collaborative business process. Finally, Chapter 5 lists the
requirements towards business process verification.

The second part of the document details the design of the artifacts. In Chapter 6
a novel mapping of business process models to a system model is presented. The
resulting model allows the verification of preventative compliance and variability
using well-known temporal logics and model checking techniques while providing
full insight into parallel executing branches and the local next activity invocation.
Furthermore, the mapping causes limited state explosion, and allows for signifi-

14 1.5. Related Publications

cant further model reduction. Next, Chapter 7 matches the set of requirements to
specifications applicable to the presented model. Finally, Chapter 8 presents an ap-
proach to apply these specifications and automatically obtain reference processes.
At the same time, the approach is also capable of incorporating ad-hoc runtime
deviations of business processes.

The third part of the document features the implementation, demonstration, and
evaluation of the presented artifacts. Chapter 9 presents the resulting tool chain.
The tool features business process modeling abilities, saving and loading, auto-
mated generation of the system model required for verification, automated verifica-
tion using one of multiple model checkers, and transparent visual and textual feed-
back of the generated models and verification results. Chapter 10 then proceeds
with the evaluation and demonstration of the presented artifacts, by first evaluat-
ing the expressive power of the proposed system model, then evaluating perfor-
mance of the generation of different complexities of system models, performing a
requirements analysis, and finally demonstrating the applicability of the proposed
artifacts on the relevant case studies.

Finally, Chapter 11 concludes the presented work by presenting a detailed discus-
sion of the research while evaluating each of the presented research questions.

1.5 Related Publications
The work presented in this document has been realized in collaboration with a
number of other researchers. In particular, Marco Aiello, Nick van Beest, Pavel
Bulanov, Luciano Garcı́a-Bañuelos, and Doina Bucur.

The basis of the research is primarily described in (Aiello et al., 2010) and (Groef-
sema and Bucur, 2013), while the development is described in (Groefsema et al.,
2011), (Groefsema et al., 2012), (Groefsema and van Beest, 2015), (Groefsema et al.,
2016) and (van Beest et al., 2016). The implementation is supported by (Groefsema
et al., 2011b), (Groefsema and van Beest, 2015), and (Groefsema et al., 2016). And,
finally, the evaluation is described in (Groefsema and van Beest, 2015), (Groefsema
et al., 2016), and (van Beest et al., 2016).

N.R.T.P. van Beest, H. Groefsema, L. Garcı́a-Bañuelos, and M. Aiello. Variability in
business processes: automatically obtaining a generic specification. In prepara-
tion, 2016.

Chapter 1. Introduction 15

H. Groefsema, N.R.T.P. van Beest, and M. Aiello. A formal model for compliance
verification of service compositions. IEEE Transactions on Services Computing,
2016. To appear.

H. Groefsema and N.R.T.P. van Beest. Design-time compliance of service composi-
tions in dynamic service environments. In Int. Conf. on Service Oriented Computing
& Applications, pages 108–115, 2015.

H. Groefsema and D. Bucur. A survey of formal business process verification: From
soundness to variability. In International Symposium on Business Modeling and Soft-
ware Design, pages 198–203, 2013.

H. Groefsema, P. Bulanov, and M. Aiello. Imperative versus declarative process
variability: Why choose? Technical Report JBI 2011-12-6, University of Gronin-
gen, dec 2012.

H. Groefsema, P. Bulanov, and M. Aiello. Declarative enhancement framework for
business processes. In Int. Conf. Service-Oriented Computing (ICSOC), pages 495–
504, 2011a.

H. Groefsema, P. Bulanov, and M. Aiello. Business process variability: A tool for
declarative template design. In International Conference on Service-Oriented Com-
puting - Demo Track, pages 241–242, 2011b.

M. Aiello, P. Bulanov, and H. Groefsema. Requirements and tools for variability
management. In IEEE Workshop on Requirement Engineering for Services at IEEE
COMPSAC, 2010.

CHAPTER 2

Background

People think that computer science is the art of geniuses but the actual reality is
the opposite, just many people doing things that build on eachother, like a wall of
mini stones.

– Donald Knuth

Business process management already is a cross-disciplinary field in itself. It in-
cludes paradigms from, among others, economics, organization management the-
ory, computer science, mathematics, philosophy, and even linguistics (Ko, 2009).
The work described herein is positioned at the intersection of three fields of re-
search, specifically those of business process management, business process for-
malization, and formal verification. As a direct result, the work presented here
requires the necessary background from all three fields of research.

2.1 Business Process Modeling and Management
Business process management (BPM) is a field of operations management which
focuses on the business processes within a company. By managing business pro-
cesses BPM aims to increase the productivity and performance of a company.

18 2.1. Business Process Modeling and Management

2.1.1 Business Process Modeling
Business processes (BP) are collaborations between actors, each fulfilling roles to
perform tasks or activities, with the aim to achieve a specific value-added goal
driven by the outside world (Ko, 2009). In this regard, a BP consists of a collection
of tasks, or structured activities performed in a specific order by actors fulfilling
roles. When roles and actors are spread over multiple entities, the business pro-
cess is called a collaborative business processes (CBP), or simply, a collaboration
(Ko, 2009). BP can be automated using workflow management systems (WfMS)
or, more modern, business process management systems (BPMS). Hence, an auto-
mated business process is referred to as a workflow (van der Aalst et al., 2003b).

To summarize, informally, a process is a tuple P = (SA,F), where:

• SA is a finite set of structured activities,

• F defines the control flow over SA, i.e., its order.

Business processes are represented by BP models. BP models are defined through
several specification techniques, most notably, through imperative and declarative
specification of models.

Imperative Specification
The imperative specification technique is the most common form of specification
when modeling BP. Imperative specifications are intuitive due to their focus on
how a task is performed. In its most basic form, an imperatively defined BP model
is a directed graph. Structured activities are represented by vertices of the graph.
The edges of the graph define the order among the structured activities. Gateways
are introduced to diverge or converge multiple edges. Different gateways diverge
and converge edges by different sets of rules (e.g. activating either one or all tasks
on outward edges after either one or all tasks on inward edges completed). Al-
though gateways are, just like structured activities, nodes of the graph, they do not
represent units of work and are part of the control flow instead.

Summarizing, an imperative process model is a triple PI = (SA,G, F), where:

• SA is a finite set of structured activities,

• G = Ga ∪Go ∪Gx is a set of gateways, consisting of and, or, and xor gateways,
respectively,

• F = Ft ∪ Fg is a set of edges, where:

Chapter 2. Background 19

• Ft : (SA\{⊗})→ SA is a finite set of edges which assign a next state for each
structured activity,

• Fg : G → 2SA is a finite set of edges which assign a nonempty set of next
states for each gateway.

Declarative Specification
The declarative specification technique of BP is gaining in popularity within the
scientific community. This fact can mainly be attributed to its highly flexible na-
ture. Instead of focusing on how a task is performed, like imperatively specified
processes, it focuses on what tasks are performed (Schonenberg et al., 2008). In its
most basic form, a declaratively defined BP model consist of a set of tasks and a set
of constraints (e.g., temporal logic formulas) enforcing some possible ordering on
the set of tasks.

Summarizing, a declarative process model is a tuple PD = (SA,F), where:

• SA is a finite set of structured activities,

• F is a finite set of control flow constraints.

2.1.2 Standards
BP are supported by a variety of standards. These standards can be categorized
into two broad groups: modeling standards and programming standards. Modeling
standards include formalizations towards the notation of BP in the form of mod-
els. Programming standards include formalizations aimed at the enactment and
serialization of workflows. The most notable modeling standards consist of the
Unified Modeling Language (UML) Activity Diagrams (OMG, 2015) and the Busi-
ness Process Model and Notation (BPMN) standard’s Business Process Diagram
(BPD) (OMG, 2011). The most used enactment standard is the Web Service Busi-
ness Process Execution Language (WS-BPEL) (Arkin et al., 2007).

In this thesis the BPMN BPD is used to model all BP. BPMN BPD are imperatively
specified BP models and consist of a graph conceived from flow objects and con-
necting objects annotated with data, artifacts, and swim lanes. Flow objects include
a myriad of tasks (e.g. activities, sub-processes, or transactions), events (e.g. start
events, end events, or intermediate throwing and catching events), and gateways
(e.g. exclusive, inclusive, parallel, or event-based gateways). Connecting objects in-
clude sequence flows, conditional flows, and default flows. BPD can be annotated
with data objects and data stores representing the flow and storage of information

20 2.1. Business Process Modeling and Management

or artifacts such as groups. Finally, pools represent participants and can be subdi-
vided into lanes to embody roles. Elements within a pool or lane are performed by
the role attached to that pool or lane. Enclosed within Appendix A a comprehen-
sive list of BPMN BPD elements and their function can be found. Although BPD
are at the basis of all techniques presented within this document, note that all the
represented techniques can easily be applied to other modeling and programming
standards such as the UML Activity Diagram or WS-BPEL processes.

View List of

Rooms

View Room

Details
Book Room[Book]

[Abort]

Register

Booking in

System

Show Error

Message

Figure 2.1: BPMN BPD example

Figure 2.1 illustrates a BPMN BPD describing a process for the booking of meeting
rooms. The illustrated BPD includes tasks, gateways, events, and sequence flows
(represented by rounded rectangles, diamonds, circles, and arrows respectively).
When the process is initiated, the user reviews a list of rooms. Upon selecting a
room, the room details are shown. The user then decides to either book this room or
exit the process (upon which the user can simply restart it to select another room).
If the user decides to continue, the system attempts to book the room. If successful,
the user is notified that the room has been booked and the process is terminated. If
an error occurs during the booking process, due to, for example, someone booking
the room in the meantime, the user is notified and the process is terminated.

2.1.3 Management
A business process is a collaboration with the aim to achieve a specific value-added
goal driven by external need. BPM manages and optimizes the business processes
of a company with the aim to significantly increase the productivity and perfor-
mance of that company. Figure 2.2 illustrates the process. The four phases of the
BPM life-cycle consist of (van der Aalst et al., 2003b):

• Process Design. The business process is (re-)designed.

• System Configuration. The enactment system is configured to execute the
designed business process.

Chapter 2. Background 21

Process Design

System
 C

o
n

figu
ratio

n

Process Enactment

D
ia

gn
o

si
s

Figure 2.2: The BPM Life-cycle. Source: (van der Aalst et al., 2003b)

• Process Enactment. The implemented business process is executed.

• Diagnosis. The business process is monitored, simulated, or mined in order
to identify and solve issues or find optimization possibilities.

BPM is considered the second evolution of workflow management (WfM) (van der
Aalst et al., 2003b). Where WfM originally focused on the design, configuration,
and enactment of workflows, BPM introduces the additional concept of diagnosis.
During diagnosis, business processes are monitored, simulated, or otherwise ob-
served in order to identify and solve issues or to identify opportunities for process
optimization. In this document, we will primarily focus on the design and diagno-
sis phases of the BPM life-cycle to support automated design-time variability and
compliance verification of business process models.

2.2 Business Process Formalization
Business process modeling techniques are often informal, that is, they often lack
formally defined semantics (van der Aalst et al., 2003b). As a result, these modeling
techniques are hardly suitable for any formal analysis. Models defined using such
an informal business process modeling technique must, therefore, be formalized
before formal analysis can contribute adequate results.

22 2.2. Business Process Formalization

2.2.1 Petri Nets
Place/transition nets, or Petri nets, are mathematical models for the description of
distributed systems (Petri, 1966). Petri nets are directed bigraphs with nodes con-
sisting of places and transitions. Transitions within Petri nets represent events while
places represent conditions. Arcs form weighted directed edges between place and
transition pairs. Places may contain tokens. A distribution of tokens over places is
called a marking. Unlike most business process modeling techniques, Petri nets do
possess a formally defined semantics while offering a graphical notation. A Petri
net is defined as follows (Petri, 1966; Reisig and Rozenberg, 1998):

Definition 2.2.1 (Net). A net is a triple N = (P, T,A), where:

• P is a finite set of places,

• T is a finite set of transitions, such that P ∩ T = ∅,

• A ⊆ P × T ∪ T × P is a finite set of arcs.

Definition 2.2.2 (Petri Net). A Petri net is a triple PN = (N,M,W), where:

• N = (P, T,A) is a net (Definition 2.2.1),

• M : P → Z is a place multiset, the marking, where Z is a countable set,

• W : A→ Z is an arc multiset, the weight of the arc.

1

1

1
1

2

1

2

1

1

1

1

1

p0 t0

p1

p2

p3

p4

p5

t2

t3

t4

t1

Figure 2.3: Petri net example

Figure 2.3 illustrates a Petri net in its graphical notation where bars represent transi-
tions, circles represent places, and dots at circles represent the distribution of tokens
over places. Places with an arc that run to (from) a transition are called the input
(output) places of that transition. For a transition t, we write •t and t• for the set
of in- and output places, respectively. A transition may occur when it is enabled,
i.e., when all of its input places contain more or an equal amount of tokens than

Chapter 2. Background 23

the weight at the connecting arc. When a transition occurs it consumes tokens at
its input places and produces tokens at its output places. The number of tokens
consumed/produced at a place corresponds to the weight of the connecting arc. For
example, transition t0 of Figure 2.3 is enabled because its input place p0 contains a
token. It may then occur, consuming the token at p0 and producing one token at p1
and two tokens at p2.

2.2.2 Petri Net analysis
One analysis tool used with Petri nets is the reachability graph (RG). A RG is a tran-
sition system obtained through the firing rule. Starting from the initial markingM0,
states are created for each encountered marking while enabled binding elements
occur to generate new markings. The RG of a Petri net is defined as follows (Huber
et al., 1986):

Definition 2.2.3 (Reachability Graph). The reachability graph of a Petri net with mark-
ings M0, ...,Mn is a rooted directed graph G = (V,E, v0), where:

• V = {M0, ...,Mn} is the set of vertices,

• v0 = M0 is the root node,

• E = {(Mi, t,Mj) | Mi ∈ V ∧Mi
t−→ Mj} is the set of edges, where each edge

represents the firing of a transition t at a marking Mi such that a marking Mj is
produced.

1p0
1p1+

2p2

2p2+

1p3

1p1+

1p4

1p3+

1p4
1p5

t0

t3 t2
t4

t2
t3

t1

t1

Figure 2.4: Reachability graph example

Nodes of the RG represent the different possible markings of the Petri net, i.e.,
the distribution of tokens over places. The initial distribution of tokens, or initial
marking forms the root node. Edges represent the occurrence of transitions and the

24 2.2. Business Process Formalization

related changes in the distribution of tokens over places. Figure 2.4 illustrates the
RG of the Petri net and initial marking depicted in Figure 2.3.

2.2.3 Colored Petri Nets
Colored Petri nets (CPN) extend the normal class of Petri nets with the ability to
attach information, called colors, to tokens. The color of a token can be inspected
and modified by occurring transitions. A CPN is defined as follows (Jensen, 1981):

Definition 2.2.4 (Colored Petri Net). A Colored Petri Net is a 9-tuple
CPN = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0), where:

• Σ is a finite set of non-empty types, called color sets,

• P is a finite set of places,

• T is a finite set of transitions,

• A is a finite set of arcs such that P ∩ T = P ∩A = T ∩A = ∅,

• Nf is a node function defined from A over P × T ∪ T × P ,

• Cf is a color function defined from P into Σ,

• Gf is a guard function defined from T into expressions such that
∀t ∈ T : [Type(Gf (t)) = Bool ∧ Type(V ar(Gf (t))) ⊆ Σ],

• Ef is an arc expression function defined from A into expressions such that
∀a ∈ A : [Type(Ef (a)) = Cf (p(a))MS ∧ Type(V ar(Ef (a))) ⊆ Σ]

where p(a) is the place of Nf (a),

• M0, the initial marking, is a function defined on P , such that
M(p) ∈ [C(p)→ N]f for all p ∈ P .

The CPN state, often referred to as the marking of CPN, is a function M defined
on P , such that M(p) ∈ [Cf (p) → N]f for all p ∈ P . Let p be a place and t a
transition. Elements ofCf (p) are called colors. p is an input place (output place) for t iff
(p, t) ∈ Nf ((t, p) ∈ Nf) (Jensen, 1981). Every CPN is paired with an initial marking
M0. Transitions of a CPN may occur in order to change the marking of the CPN per
the firing rule (Jensen, 1981). Places containing tokens in a marking enable possible
binding elements (t, b), consisting of a transition t and a binding b of variables of
t. A binding element is enabled if and only if enough tokens of the correct color
are present at the input places of transition t and its guard evaluates true. More
formally, iff ∀p ∈ P : Ef (p, t)〈b〉 6 M(p). An enabled binding element may

Chapter 2. Background 25

occur, changing the marking, by removing tokens from the input places of t and
adding tokens to the output places of t as dictated by the arc evaluation function.
Then, a multiset Y of binding elements (t, b), or a step, is enabled iff ∀p ∈ P :∑

(t,b)∈Y Ef (p, t)〈b〉 6 M(p), or if the sum of the binding elements is enabled. The
occurrence of a step Y at a marking Mi produces a new marking Mj as denoted by
Mi

Y−→ Mj . All possible states of a CPN can be obtained from the initial marking
through the firing rule.

2.2.4 Workflow Nets
Petri nets are a popular method used for the formalization and analysis of business
process models. Petri nets were first introduced as an analysis tool for business
processes through the application of Workflow nets (WF-net) (van der Aalst, 1997).
A WF-net is a Petri net where transitions represent activities and the control flow of
the WF-net is represented by the distribution of tokens at places, i.e., its marking.
A WF-net is defined as follows (van der Aalst, 1997):

Definition 2.2.5 (Workflow net). A net N = (P, T,A) (Definition 2.2.1) is a workflow
net iff:

• i ∈ P is a source place with ∀t ∈ T : (t, i) 6∈ A,

• o ∈ P is a sink place with ∀t ∈ T : (o, t) 6∈ A,

• if we add a transition t∗ to T and the arcs (t∗, i) and (o, t∗) to A, then the resulting
net is strongly connected, meaning that for every pair of nodes x ∈ P ∪ T and
y ∈ P ∪ T there exists a directed path from x to y.

Further formalization was introduced by adding support for Or-joins and cancela-
tion regions (Wynn et al., 2009), and a basic translation from processes described
using the BPMN standard to WF-nets was introduced in (Dijkman et al., 2008).

Figure 2.5 illustrates the process depicted in Figure 2.1 for the booking of meeting
rooms as a WF-net. The start and end events are represented by the source and
sink places respectively, activities are represented by transitions, and places are
added to determine the control flow. Additionally, a silent transition, i.e., a transition
without an attached action (generally represented by a black transition), is required
in order to support the option of aborting the booking of the selected room. Silent
transitions offer a generic solution to support the behavior of different gates when
representing BP using Petri nets (Dijkman et al., 2008).

26 2.2. Business Process Formalization

View List

of Rooms

View Room

Details

Book

Room

Register

Booking in

System

Error

Event

Show

Error

Message

Figure 2.5: WF-net example

2.2.5 Workflow Patterns
The workflow pattern initiative aims to provide a conceptual basis for process tech-
nology (van der Aalst et al., 2003a). It offers an exhaustive list of patterns that
should be supported by BP modeling and enactment techniques. The list of pat-
terns is primarily used to select the most suitable BP modeling specifications or
enactment systems for a specific task based on their pattern support, but can also
be used as a reference for the definition of new, or updated versions of, such mod-
eling specifications or enactment systems. In addition, they can be used as a basis
for the development of tools.

The set of workflow patterns consists of five broad categories, specifically those re-
garding data, resource, exception handling, and, most notably, the control flow of
BPs. Control flow patterns include those patterns related to the control flow de-
pendencies between tasks (van der Aalst et al., 2003a). That is, it includes patterns
describing the sequence, parallelism, choice, and synchronization of tasks within
BPs. These patterns are described in an imperative way and represented by CPN
models. Initially, the workflow patterns contained 20 patterns which describe the
control flow of BP (van der Aalst et al., 2003a). The list of control flow patterns was
later revisited and extended to over 40 patterns of which several list one or more
alternatives (Russell et al., 2007).

Throughout this document we use the control flow patterns to formalize BP as CPN
through the pattern mapping presented in Appendix B. In this way, the patterns
provide a well-supported, specification independent, and formal foundation for
the presented research and toolset.

Chapter 2. Background 27

2.3 Formal Verification
Validation and verification are procedures used to investigate whether a software
or hardware product fulfills its intended purpose. Validation investigates if the
specified product fulfills the needs of the user, that is, it tries to answer the question
if the correct product is being made. Verification, on the other hand, investigates if
the product conforms to its specifications – or, in other words, whether the product
is being made correctly. When applying formal methods of mathematics to verifica-
tion, the procedure is called formal verification. Formal verification entails proving
or disproving the correctness of a system model with respect to a formal specifica-
tion using formal methods of mathematics. When employing formal verification, a
system model – often represented by a labeled transition system – is verified against
a formal specification in the form of a set of logic formulas. One approach towards
formal verification is model checking. When model checking a system model is au-
tomatically, systematically, and exhaustively explored while each explored state is
verified to be compliant with the formal specification. Next, the system models and
fomal specifications used for the formal verification of business process models in
the remainder of the text are introduced.

2.3.1 System Models
During formal verification, a system model – often a labeled transition system (LTS)
– is verified against specifications of interest. An LTS is a directed graph where
nodes represent different states of the system and edges represent state transi-
tions. Two labeling functions may exist over an LTS; a labeling function over nodes
maps states with those properties that hold at that state, while a labeling function
over edges maps state transitions with the actions which cause the state change.
When considering model checking, the resulting model is sometimes called a state
graph. Other, more specific, system models used in the domain of model check-
ing are Kripke structures (Clarke et al., 1999) and Büchi automata (Büchi, 1962). A
Kripke structure is an LTS with a labeling function over its nodes. Kripke struc-
tures are often used to interpret temporal logics. A Kripke structure is defined as
follows (Clarke et al., 1999).

Definition 2.3.1 (Kripke structure). Let AP be a set of atomic propositions. A Kripke
structure K over AP is a quadruple K = (S, S0, R, L), where:

• S is a finite set of states,

• S0 ⊆ S is a set of initial states,

28 2.3. Formal Verification

• R ⊆ S × S is a transition relation such that it is left-total, meaning that for each
s ∈ S there exists a state s′ ∈ S such that (s, s′) ∈ R,

• L : S → 2AP is a labeling function with the set of atomic propositions that are true
in that state.

Büchi automata, on the other hand, are a form of automaton with a labeling func-
tion over its edges. Additionally, Büchi automata define an acceptance function
which only accepts those runs of the automaton which visits one of a set of accept-
ing states infinitely often. In the domain of model checking, Büchi automata are
used to represent linear temporal logics. A non-deterministic Büchi automaton is
defined as follows (Büchi, 1962).

Definition 2.3.2 (Non-deterministic Büchi automaton). Let Σ be a finite alphabet
and Σω the infinite set of words over Σ. A Büchi automaton over Σ is a quadruple A =

(Q, I,∆, F), where:

• Q is a finite set of states,

• I ⊆ Q is a set of initial states,

• ∆ ⊆ Q× Σ×Q is a transition relation,

• F ⊆ Q is a set of accepting states.

A run of a Büchi automaton is an infinite word ω = α1α2... as an infinite sequence
of states π = q0q1q2... such that q0 ∈ I and (qi, αi+1, qi+1) ∈ ∆ for i 6 0. A run of
a Büchi automaton is said to be accepting iff inf(π)∩F 6= ∅ where inf(π) = {q | q
occurs infinitely often in π}. Kripke structures can be converted to Büchi automata
through the following definition.

Definition 2.3.3. Let AP be a set of atomic propositions, Σ a finite alphabet, and K =

(S, S0, R, L) a Kripke structure over AP . The Büchi automaton A = (Q, I,∆, F) over Σ

of the Kripke structure K is:

• Q = S ∪ {q0} is the set of Kripke structure states with an additional initial state q0,

• I = {q0} is the initial state q0,

• Σ = 2AP is the set of words obtained from the atomic propositions,

• (q, v, q′) ∈ ∆ if (s, s′) ∈ R and v = L(q′) is the set of transitions obtained from the
Kripke structure relations and labeling function,

• (q0, v, q
′) ∈ ∆ if q′ ∈ S0 and v = L(q′) is the set of transitions from the initial state

q0 to the initial states obtained from the Kripke structure initial states,

• F = S ∪ {q0} is the set of accepting states.

Chapter 2. Background 29

2.3.2 Formal Specifications
Kripke structures are used to interpret temporal logics. Temporal logics are for-
malisms that are able to reason about the temporal succession of states within sys-
tem models. Often used with formal verification, temporal logics can specify events
over sequences of states or states in tree-like structures. Linear-time temporal logics
specify properties (e.g., the universality of a certain state property, and the order of
states) over states occurring on process execution paths. Branching-time temporal
logics extends this set of temporal operators with path quantifiers, such that for-
mulas can specify properties over branching executions (i.e. computation trees). In
this way, linear-time temporal logics treat time as if each moment only has one dis-
tinct future, while branching-time temporal logics allow time to split into multiple
possible futures. The most notable temporal logics include Linear-time Temporal
Logic (LTL) (Pnueli, 1977), Computation Tree Logic (CTL) (Emerson and Halpern,
1982), and their superset Computation Tree Logic* (CTL*) (Clarke et al., 1999).

Linear-time Temporal Logic
LTL specifies temporal operators over sequences of states known as paths (Pnueli,
1977). A path π = s0s1s2..., defined on a Kripke structure, is an infinite sequence of
states such that (si, si+1) ∈ R for i 6 0.

Definition 2.3.4 (LTL syntax). The language of well-formed LTL formulas is generated
by the following grammar, assuming p ∈ AP :

φ ::= > | ⊥ | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | φ⇒ φ | φ⇔ φ |
Xφ | Gφ | Fφ | φ U φ

LTL is equipped with four temporal operators:
– Xφ Nexttime: φ has to hold at the next state.
– Gφ Globally: φ has to hold at all states of the subsequent path.
– Fφ Future: φ has to hold at the current or a future state.
– φ U φ′ Until: φ has to hold until φ′, which holds at a future state

or the current state itself.

Definition 2.3.5 (Semantics of LTL). π, si |= φ means that the formula φ holds for the
path π = s0s1s2... at state si. The relation |= is defined inductively as follows:
π, si |= > iff π, si 6|= ⊥
π, si |= p iff p ∈ L(si)

π, si |= ¬φ iff π, si 6|= φ

π, si |= φ ∨ φ′ iff π, si |= φ ∨ π, si |= φ′

π, si |= X φ iff π, si+1 |= φ

π, si |= φ U φ′ iff ∃m : (m > 0 ∧ π, si+m |= φ′ ∧ ∀n : (0 6 n < m : π, si+n |= φ))

30 2.3. Formal Verification

Further LTL operators can be obtained through the following equivalences:
Fφ ≡ true U φ

Gφ ≡ ¬F¬φ

p

p

q

q

p

p

p

q

p

p

Figure 2.6: Linear-time Temporal Logics example

For example, Figure 2.6 depicts a Kripke structure where we evaluate the LTL for-
mula Fq. Note that when applying LTL to Kripke structures, a formula must hold
for all possible paths from every initial node in order to evaluate true. The for-
mula Fq holds at the model since every path from the double bordered initial node
includes a future state where q holds, i.e. the dashed states.

Linear-time Temporal Logics with Past-time Modalities
Linear-time Temporal Logics with Past-time Modalities (PLTL) introduces past-
time operators to LTL (Markey, 2003). Adding past-time operators to LTL does not
increase its expressiveness, but does make the logic exponentially more succinct.

Definition 2.3.6 (PLTL syntax). The language of well-formed PLTL formulas is generated
by the following grammar, assuming p ∈ AP :

φ ::= > | ⊥ | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | φ⇒ φ | φ⇔ φ |
Xφ | Gφ | Fφ | φ U φ |
Yφ | Hφ | Oφ | φ S φ

Chapter 2. Background 31

PLTL introduces four new temporal operators:
– Yφ Previous-time: φ has to hold at the previous state.
– Hφ Historically: φ has to hold at all states of the preceding

path.
– Oφ Once: φ has to hold at the current or a preceding state.
– φ S φ′ Since: φ has to hold since a point where φ′ holds, which

holds at a past state or the current state itself.

Definition 2.3.7 (Semantics of PLTL). PLTL inherits all semantics from LTL. π, si |= φ

means that the formula φ holds for the path π = s0s1s2... at state si. The relation |= is
defined inductively as follows:
π, si |= Y φ iff i > 1 ∧ π, si−1 |= φ

π, si |= φ S φ′ iff ∃m : (0 > m 6 i ∧ π, si−m |= φ′ ∧ ∀n : (m < n 6 i : π, sn |= φ))

p

p

q

p

p

p

p

q

p

p

Figure 2.7: Linear-time Temporal Logics with Past-time Modalities example

Further PLTL operators can be obtained through the following equivalences:
Oφ ≡ true S φ
Hφ ≡ ¬O¬φ

Figure 2.7, for example, depicts a model on which the PLTL formula Hq is evalu-
ated. The formula Hq holds at the depicted model since all paths from the initial
node include a historical, previous, state where q holds.

32 2.3. Formal Verification

Computational Tree Logic*
The branching-time temporal logic CTL* augments LTL with two operators over
paths to specify whether some or all branches possess properties starting at the
current state (Clarke et al., 1999). CTL* defines the following operators over paths:

– Aψ All: ψ holds on all paths flowing from the current state.
– Eψ Exists: ψ holds on at least one path flowing from the current state.

Definition 2.3.8 (CTL* syntax). The language of well-formed CTL* formulas is generated
by the following grammar, assuming p ∈ AP :

Φ ::= > | ⊥ | p | (¬Φ) | (Φ ∧ Φ) | (Φ ∨ Φ) | Φ⇒ Φ | Φ⇔ Φ | Eφ | Aφ
φ ::= Φ | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | φ⇒ φ | φ⇔ φ | Xφ | Gφ | Fφ | [φ U φ]

Definition 2.3.9 (Semantics of CTL*). CTL* inherits the semantics of its operators from
LTL, excluding >, ⊥, and p. π |= φ means that the formula φ holds for the path π =

s0s1s2... at state s0. Additionallly, M, si |= φ means that the formula φ holds at state si of
the model M . When the model M is understood, si |= φ is written instead. The relation |=
is defined inductively as follows:
π |= Φ iff s0 |= Φ

si |= > iff si 6|= ⊥
si |= p iff p ∈ L(si)

si |= ¬Φ iff si 6|= Φ

si |= Φ ∨ Φ′ iff si |= Φ ∨ si |= Φ′

si |= E φ iff ∃π : π = s0... | s0 = si ∧ π |= φ

Further CTL* operators can be obtained through the following equivalences:
Fφ ≡ true U φ

Gφ ≡ ¬F¬φ
Aφ ≡ ¬E¬φ

For example, one can evaluate the CTL* formula EFGq on the model depicted in
Figure 2.8. The formula clearly holds at the model since there exists a path from the
initial node which includes a future state where q holds indefinitely.

Computational Tree Logic
The branching-time temporal logic CTL is a subset of CTL* (Emerson and Halpern,
1982). Instead of allowing arbitrary combinations of temporal operators and oper-
ators over paths, CTL pairs each temporal operator with an operator over paths.

Chapter 2. Background 33

p

p

q

p

p

p

p

q

p

p

Figure 2.8: Computation Tree Logic* example

Definition 2.3.10 (CTL syntax). The language of well-formed CTL formulas is generated
by the following grammar, assuming p ∈ AP :

φ ::= > | ⊥ | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | φ⇒ φ | φ⇔ φ |
AXφ | EXφ | AGφ | EGφ | AFφ | EFφ | A[φ U φ] | E[φ U φ]

Definition 2.3.11 (Semantics of CTL). M, si |= φ means that the formula φ holds at
state si of the model M . When the model M is understood, si |= φ is written instead. The
relation |= is defined inductively as follows:
si |= > iff si 6|= ⊥
si |= p iff p ∈ L(si)

si |= ¬φ iff si 6|= φ

si |= φ ∨ φ′ iff si |= φ ∨ si |= φ′

si |= EX φ iff ∃(si, si+1) ∈ R | si+1 |= φ)

si |= EG φ iff ∃π = si, si+1, si+2, ... | ∀n : (n > 0 ∧ si+n |= φ)

si |= E[φ U φ′] iff ∃π = si, si+1, si+2, ... |
∃m : (m > 0 ∧ si+m |= φ′ ∧ ∀n : (0 6 n < m : si+n |= φ))

Further CTL operators can be obtained through the following equivalences:
EFφ ≡ E[true U φ]

AFφ ≡ ¬EG¬φ
AXφ ≡ ¬EX¬φ
AGφ ≡ ¬EF¬φ
A[φ U φ′] ≡ ¬(E[¬φ′ U ¬(φ ∨ φ′)] ∨ EG¬φ′)

34 2.3. Formal Verification

p

p

q

p

p

p

p

q

p

p

Figure 2.9: Computation Tree Logic example

For example, Figure 2.9 depicts a Kripke structure upon which the CTL formula
EFq is evaluated. The formula holds at the model since there exists a path from the
initial node which includes a future state where q holds. Actually, two such paths
exist, as indicated by the dashed states, although the formula only requires one.

CHAPTER 3

State of the Art

You’ve got to want to be in this incredible feedback loop where you get the world-
class people to tell you what you’re doing wrong.

– Bill Gates

The area of BP verification has been the focus of a large amount of research. Existing
research can be placed within three broad categories: (1) the verification of the
correctness of a BP, known as BP soundness, (2) the verification of adherence of a BP
to a set of rules, known as BP compliance, and (3), the verification of adherence of a
BP to a flexible or adaptable specification, known as BP variability.

3.1 Business Process Soundness
Business process soundness is known as the combination of three properties: (1)
the BP must complete (i.e., termination), (2) the absence of unreachable activities,
and (3) the absence of other running activities upon termination (i.e., proper com-
pletion) (van der Aalst, 1998; Wynn et al., 2009). Soundness verification aims at
verifying these three basic properties. A more relaxed notion of soundness exists as
well. Known as weak soundness, it relaxes the requirement to complete in such a
way that, when started, it must be possible to complete a BP merely in some cases.
In (Trčka et al., 2009), three completion patterns are defined: mandatory (i.e., all
paths must complete), optional (i.e., from every state there exists a path which com-

38 3.1. Business Process Soundness

pletes), and possible completion (i.e, there exists a path which completes). These
diminished version of soundness are introduced in order to verify soundness over
BP with infinite state spaces (Wynn et al., 2009).

van der Aalst (1998) first introduced soundness to the field of BPM when translat-
ing BP into workflow nets. Later, (Wynn et al., 2009) perfected the approach by
allowing Or-joins and cancelation regions. Finally, (van der Aalst et al., 2011) pro-
vides an overview of the different notions of soundness and shows that, although
all notions are decidable for workflow nets, they become undecidable for most ex-
tensions of workflow nets. Petri nets have since been used by many in the field
as intermediate formalisms in order to formalize BP. For example, (van Dongen
et al., 2007), use it to formalize Event-driven Process Chains (EPC) before verifying
soundness using state space analysis. Similarly, Masalagiu et al. (2009) appliy Petri
nets as formalization of BPMN BPD when verifying soundness. And, Corradini
et al. (2015) apply a class of Petri net to unfold business compositions for analysis
and verification.

Another popular method towards soundness verification is the direct implemen-
tation of the process into the input language of a model checker. The described
process is then internally converted into a labeled transition system by the model
checker. Work that take this approach include those of (Karamanolis et al., 2000;
Koehler et al., 2002; Nakajima, 2006) and (Masalagiu et al., 2009). However, since
input languages are often designed to describe software programs, the approach
is prone to requiring extra states. As a result, without carefully mapping of the
process into the input language, unnecessary states are quickly introduced. For
example, in (Nakajima, 2002), it is reported that the intermediate mapping causes
a simple process of five activities and four transitions to be mapped to 201 states
and 586 transitions in the internal state machine of the model checker. Similarly,
Kherbouche et al. (2013) reports mapping a process consisting of four activities to
over 115000 states using the same model checker.

Since many verification approaches only support acyclic BP, Choi and Zhao (2005)
propose decomposing cyclic BP into non-cyclic subgraphs in order to detect dead-
locks within feedback loops.

Other approaches towards soundness verification include propositional logic based
verification (Bi and Zhao, 2004). By transforming the control flow of BP to propo-
sitional logic, deadlocks, reachability, proper completion, and infinite cycles can be
asserted. Weber et al. (2010) proposes semantic annotations to verify soundness

Chapter 3. State of the Art 39

through pre-and post-condition verification for each task. Finally, Ma et al. (2008)
propose the use of π-calculus to encode BP for soundness verification.

3.2 Business Process Compliance
Compliance verification aims to prove or disprove whether a BP adheres to a set of
rules that has been imposed on it through, for example, law, regulation, or business
requirements. Where soundness verification aims at the verification of a limited set
of requirements to verify reachability, termination, and possibly proper completion
(van der Aalst, 2000) – compliance verification requires the verification of a broad
set of specifications.

Existing techniques perform compliance verification at different stages of the BP
lifecycle, during process design, enactment, or diagnosis (Figure 2.2). Monitoring
techniques are deployed during process enactment to utilize the runtime trace of a
BP to check whether a model is executing correctly. Existing monitoring techniques
include, for example, (Chesani et al., 2009). Auditing techniques are deployed dur-
ing the process diagnosis phase and adopt, for example, process mining techniques
to verify if a BP has been executed correctly. Notable auditing techniques include
those presented in (Ghose and Koliadis, 2007; Ly et al., 2011), and (Schunselaar
et al., 2012a).

Naturally, monitoring and auditing techniques are after the fact techniques, mean-
ing that issues will only ever be detected after they already have occurred. As a
result, rollbacks are required in order to undo any erroneous execution before the
application of possible sanctions. Hence, where possible, a preventative approach
is preferred. Preventative approaches are deployed during design-time, aiming to
prevent issues from ever occurring.

Existing preventative approaches include both formal and informal ones. Formal
approaches utilize both a formal representation of the used model and a formal
specification. Informal approaches are those that lack either a formal representa-
tion of the used model, a formal specification, or both. For example, an approach
directly verifying CTL based specifications on a BP, without the proper support for
different branching options through gateways, is considered to be informal. In-
formal techniques include (Awad et al., 2008) due to its incomplete reduction rules,
and (Pulvermueller et al., 2010) due to the direct application of temporal logic upon
the process model without taking into account different types of gates.

40 3.2. Business Process Compliance

In (Elgammal et al., 2010a, 2014) well-known temporal logics are evaluated for suit-
ability of preventative BP compliance verification. Although such an evaluation is
extremely important for the selection of temporal logics for compliance verification,
it is important to evaluate them with respect to the used model.

Other approaches introduce new or newly extended formal specifications. For ex-
ample, Governatori et al. (2006), and Goedertier and Vanthienen (2006) both intro-
duce deontics logics to formulate compliance specifications, Bulanov et al. (2011)
propose Temporal Process Logics (TPL), a modal propositional logic that is able
to reason about possible process executions, Gerede and Su (2007) propose a CTL
based language, while Deutsch et al. (2009) proposes a first-order extension of LTL
to verify all possible process executions of artifact-centric systems. Finally, D’Aprile
et al. (2011) propose an extension of LTL to verify compliance based on answer
set programming. However, by introducing new or extended logics the power of
known and accomplished logics as well as their supporting model checkers can not
be exploited.

In order to simplify the challenge of formal preventative compliance verification,
techniques often limit their application to acyclic models, i.e., models that do not
include arbitrary cycles or loops. Acyclic compliance techniques include, for exam-
ple, (Ghose and Koliadis, 2007; Weber et al., 2008; Favre and Hagen, 2010; Montali
et al., 2010). Arbitrary cycles are indeed a problematic, but very powerful, feature
of BPM which can not simply be overlooked.

Further approaches encode service composition in such a way that a large amount
of overhead is included within the state space of the model. This effect can often be
traced to the decision of directly encoding service compositions into the modeling
language of a model checker without careful analysis of the effect of the encoding
on the internal state machine of the model checker. Approaches of this kind in-
clude, (Janssen et al., 1998; Latvala and Heljanko, 2000; Eshuis and Wieringa, 2004;
Anderson et al., 2005; Fisteus et al., 2005; Bianculli et al., 2007), and (Kheldoun et al.,
2015). For example, (Kheldoun et al., 2015) produces 247 states for a high level Petri
net consisting of ten transitions and thirteen places, without parallelism.

Formal preventative compliance verification is achieved by obtaining a formal mo-
del (e.g. Kripke structure, Definition 2.3.1) from the BP model. Parallel branch-
ing constructs are then supported by interleaving concurrently executing branches.
Some approaches, however, disregard parallel information entirely. Such approa-
ches include, for example, (Feja et al., 2009).

Chapter 3. State of the Art 41

Other approaches do interleave parallel branches correctly, but interleave to such
an extent that concurrent executions are linearized entirely, parallel information
is lost, and duplicate states, with accompanying state explosion, are introduced.
Such approaches include (Foster et al., 2003; Fu et al., 2004), and (Liu et al., 2007).
Parallelism is an important aspect of BPM, therefore information towards possible
parallel execution can be of particular importance to compliance verification.

Elgammal et al. (2012) propose an integrated approach using both design- and run-
time techniques. The approach builds upon CRL, a logic grounded in LTL, and
guarded automata introduced in (Fu et al., 2004) for preventative design-time com-
pliance verification, and Xpath expressions for runtime compliance verification.

In (Latvala and Heljanko, 2000), a translation from Petri nets to Kripke structures
is proposed. By introducing intermediate states to the Kripke structure for each
transition, the approach is able to define fairness conditions concerning the firing
of transitions.

Finally, Esparza (1993) proposes an approach towards Petri net verification based
on net unfolding. However, the approach bases its verification on the marking of
the net (i.e., tokens at places). Instead, we are interested in the firing of transitions.
Although the enabling of transitions can be obtained from the marking of a net,
it introduces the same issue as verification over a reachability graph; a transition
may be enabled without ever actually occurring. As a result, a stronger sense of
transition enabling is required.

3.3 Business Process Variability
In software engineering, variability refers to the possibility of changes in software
products and models (Sinnema et al., 2006). In the context of BPM, variability in-
dicates that parts of a BP remain variable in order to support different versions of
the same BP depending on the intended use or execution context. BP variability
is closely related to design-time process adaptability and runtime process flexibility,
which both support process change. Existing approaches that offer process change
can be subdivided into those allowing change within imperatively specified BP and
those allowing change through underspecification by using a declarative approach
(van der Aalst and Jablonski, 2000; Marin et al., 2013; Schonenberg et al., 2008).

When offering design-time change within imperatively specified BP, many existing
approaches apply principles directly from variability as used within software prod-

42 3.3. Business Process Variability

uct lines – such as feature modeling and variation points (Sinnema et al., 2006). A
software product line consists of a family of closely related software products with a
single generic implementation. Differences between each product within the prod-
uct line are described using feature models. When creating a variant, the relevant
features are selected and integrated at, so called, variation points within the generic
implementation. When applying this principle to BP adaptability, the generic im-
plementation is provided by an imperatively specified BP with included varia-
tion points. Approaches using these principles include (van der Aalst et al., 2005;
Schnieders and Puhlmann, 2006; Chang and Kim, 2007; Rosemann and van der
Aalst, 2007; van Eijndhoven et al., 2008; Gottschalk et al., 2008, 2009; Razavian and
Khosravi, 2008; Sun and Aiello, 2008; Hadaytullah et al., 2009; La Rosa, 2009) and
(Nguyen et al., 2011). On the other hand, Hallerbach et al. (2008) employs the same
principles to offer change during process enactment. Of course, a single generic
model incorporating all possible variations can contain configurations which lead
to unsound processes. To address this problem, van der Aalst et al. (2012) propose a
verification approach which is able to characterize all feasible configurations at de-
sign-time, while in (van der Aalst et al., 2010), the authors propose configurations
which are able to maintain correctness.

In order to obtain generic models, (Schunselaar et al., 2012c, 2014; La Rosa et al.,
2010, 2013), and (Bulanov et al., 2011) propose process merger. When applying
this approach, variants are merged into a single generic model using a number of
different techniques such as a new temporal process logic TPL, or CoSeNets. Like-
wise, Buijs et al. (2013) propose and evaluate four merging techniques to describe a
family of BP variants using configurable process models.

Alternatively, van der Aalst and Basten (2002) utilize principles from object-ori-
ented programming languages to define process inheritance. Inheritance is a mech-
anism which allows a subclass to inherit features from a superclass. When applied
to BP, inhertance defines a bisimilarity relation over two process models. A pro-
cess model is a subclass of another process model when the subclass and super-
class are bisimilar under certain conditions. Milani et al. (2016), on the other hand,
propose a decomposition based method using sub-processes which decides which
parts should be modeled together, and which should not.

Design-time change within imperatively specified BP, however, require all possible
features to be modeled in advance. As a result, all features must be known in ad-
vance. In addition, some features may have relations with other features (e.g., be
exclusive or prerequired) which must be modeled. Declarative process specifica-

Chapter 3. State of the Art 43

tions, on the other hand, do not require this knowledge to be modeled in advance.
Therefore, we focus on declarative process specifications for generic templates of
process families and and the automatic merging of variants into process family
templates with varying degrees of variability.

Declarative process specifications offer change naturally through underspecifica-
tion. Anything not specifically specified is subject to possible change. Numerous
declarative approaches exist, of which most focus on supporting change during
process enactment. Existing approaches consist of both formal and informal ap-
proaches. Informal approaches are those that lack either a formal representation of
the used model, a formal specification, or both. Informal approaches include the
work of Sadiq et al. (2005) which propose an algorithmic approach, and Pascalau
et al. (2011) which extend the compliance work in (Awad et al., 2008) which suf-
fers from informal reduction rules. Other approaches offer change by specifying
pre-and post-conditions for structured activities. Any change is allowed, as long as
pre-conditions are met and post-conditions can be met. Such approaches include
(Rychkova et al., 2008) and (Dadam and Reichert, 2009).

Existing formal approaches employ temporal logics to define the control flow of BP
during process enactment. Any change is allowed, as long as the temporal logic
specifications are not violated. Approaches include (Pesic and van der Aalst, 2006;
van der Aalst and Pesic, 2006; Demeyer et al., 2010; Hildebrandt and Mukkamala,
2011). Maggi et al. (2011) extend upon (Pesic and van der Aalst, 2006) in order
to support change pre-runtime, but report verification issues when encountering
arbitrary cycles. Finally, Schunselaar et al. (2012b) extend upon (Pesic and van der
Aalst, 2006) with configurable inclusion of activities and specifications.

Finally, De Giacomo et al. (2015) extend the well-known imperative BPMN BPD
specification with declarative flow control in order to develop a truly declarative
BP specification. However, the approach does not consider parallel behavior or
runtime consequences of the notation. For example, insertable tasks can be re-
peated any number of times, or simply avoided all together. In other words, tasks
are either entirely optional, or required without any option for change. Having
a required task which can be included in different places of the BP is simply not
possible, and considering parallel support would only increase these issues.

Although declarative process specifications overcome the difficulties of imperative
variability – which require knowledge of all change in advance – their abstract na-
ture does introduce design difficulties which the intuitive imperative specification

44 3.4. Discussion

does not face. In this document, we alleviate these issues by applying declarative
specifications over imperative designs. In other words, we verify compliance of
imperative specifications to declaratively specified process families.

3.4 Discussion
When analyzing the state of the art, we conclude that the verification of BP sound-
ness has been perfected through the application of Petri nets. In fact, Petri nets have
been found to be a popular tool when formalizing BP.

Secondly, current BP compliance approaches aim largely at after-the-fact auditing
or the runtime monitoring of BP. Although certainly important, these techniques
can never prevent issues of non-compliance, and can, as a best case scenario, only
lead to rollbacks of work that has already been performed. Existing preventive
approaches, on the other hand, either limit model behavior, severely impacting
the powerful features supported by BP modeling languages, or suffer from limited
support from known and accomplished model checkers because of state space re-
quirements or the application of new, or newly extended, logics. However, while
specifications have been extended to support the powerful features of BP model-
ing languages, little research has been devoted to exploring their support through
translation of the model itself.

Thirdly, BP variability is most often supported at design-time using an imperative
approach. Variability, however, has never been seen as an extension of preventive
BP compliance verification. Even though the required specification rules show re-
markable similarities. Although some declarative approaches exist, they are either
naive, or are aimed at providing BP flexibility for linear runtime executions.

Finally, when model checking is involved, verification is often aimed at specific
modeling languages and it involves a direct translation into the input language
of the model checker. In these cases, the approach focuses mainly on the correct
specification of the BP using that modeling language, i.e., soundness with respect to
the modeling language, and not BP compliance verification or variability. Because
of this focus, a large amount of states, unimportant to BP compliance verification
or variability, are introduced.

Within the remainder of this thesis, we explore the support of BP verification and
variability through the application of model checking. We provide means for the
support of formal verification of powerful BP modeling language features through

Chapter 3. State of the Art 45

the combined power of existing specification languages and proper model transla-
tion using Petri nets as a formalization step. In addition, we provide design-time
variability mechanisms as an extension to preventive compliance verification.

CHAPTER 4

Case Study Description and

Formalization

The rise of Google, the rise of Facebook, the rise of Apple, I think are proof that
there is a place for computer science as something that solves problems that people
face every day.

– Eric Schmidt

We present three case studies to serve as complex real world examples of BP veri-
fication. The first case entails a customer support process resulting from a compli-
ance study at an Australian telecommunications provider which must comply to
the Telecommunications Consumer Protections (TCP) code of conduct. The second
case consists of a variability study throughout a number of Dutch municipalities
which all are required by law to offer the same service to its residents, but tai-
lored to local needs. Finally, the third case consists of a collaborative BP taken from
(Corradini et al., 2015). We select these three cases to demonstrate the complexi-
ties of compliance verification, business process variability, and verification under
collaborative concurrency. Each case is discussed and subsequently formalized by
translating it to CPN according to the translation process described in Appendix B.
To improve readability of the resulting CPN, the weight and color of the depicted
arcs have been omitted. Unless stated otherwise, all arcs carry the weight 1‘c.

48 4.1. Case 1: Telecommunications Customer Support

4.1 Case 1: Telecommunications Customer Support
To illustrate the complexities of preventative compliance verification, a real life
case-study, concerning customer support at an Australian telecommunications com-
pany, is presented. The customer support process is depicted in Figure 4.1.

The process starts when a complaint from a customer is received. The complaint is
registered in the system and the customer is called back immediately or later, de-
pending on the urgency of the complaint. If no further contact can be established
with the customer, the complaint is closed in the system and, in case the complaint
concerns a Telecommunications Industry Ombudsman (TIO) complaint, the com-
plaint is reported.

If contact is established with the customer, the issue is confirmed and the complaint
is recorded. In case of a billing dispute, the credit management is suspended. If the
issue can be easily resolved, the customer is informed of an offer to resolve the
issue. The customer can accept or decline the offer. In case the customer does
not accept the offer, a new offer can be provided if available, or the customer can
escalate the issue.

If the complaint is more complicated to resolve, the customer is advised about the
timeframe required to resolve the issue and possible available times of the customer
are discussed. Subsequently, non-technical issues are investigated and technical
issues are forwarded to Level 2 (L2) support. When a solution is available, it is
presented to the customer to be accepted or declined. If there is a possible delay,
the customer is notified.

Using the conversion provided in Appendix B, the customer support BPMN BPD
depicted in Figure 4.1 is translated into a CPN. The resulting CPN is depicted
graphically in Figure 4.2.

Chapter 4. Case Study Description and Formalization 49

[n
o

 a
d

d
it
io

n
a

l

o
ff
e

r]

[n
o

t
u

rg
e

n
t]

[u
rg

e
n

t]

[n
o

 c
o

n
ta

c
t]

C
lo

s
e

c
o

m
p

la
in

t
in

C
R

M

R
e

p
o

rt
 t
o

 T
IO

[N
o

n
 T

IO
 c

o
m

p
la

in
t]

[c
o

n
ta

c
t]

S
u

s
p

e
n

d

c
re

d
it

m
a

n
a

g
e

m
e

n
t

[No dispute in billing]

In
v
e

s
ti
g

a
te

 i
s
s
u

e

q
u

ic
k
ly

 t
o

 s
e

e
 i
f

e
a

s
ily

 r
e

s
o

lv
e

d

C
la

s
s
if
y
 i
s
s
u

e

a
n

d
 d

e
te

rm
in

e

s
ta

n
d

a
rd

 p
ro

c
e

s
s

a
n

d
 t
im

e
fr

a
m

e
s

A
d

v
is

e
 c

u
s
to

m
e

r

o
f
p

ro
c
e

s
s
 a

n
d

ti
m

e
fr

a
m

e
s

C
o

n
fi
rm

c
u

s
to

m
e

r
c
o

n
ta

c
t

d
e

ta
ils

 a
n

d

a
v
a

ila
b

le
 t
im

e
s

P
ro

v
id

e
 e

n
g

in
e

c
o

n
ta

c
t
d

e
ta

ils

In
v
e

s
ti
g

a
te

is
s
u

e

F
o

rm
u

la
te

re
s
o

lu
ti
o

n
 a

n
d

 f
ix

b
ill

in
g

 e
rr

o
rs

S
e

e
k

c
u

s
to

m
e

r

a
c
c
e

p
ta

n
c
e

A
d

v
is

e
 o

p
ti
o

n

to
 r

e
v
ie

w
 o

r

e
s
c
a

la
ti
o

n

R
e

c
o

rd

o
u

tc
o

m
e

C
lo

s
e

c
o

m
p

la
in

t

[a
d

m
in

 c
o

m
p

la
in

t]

[no delay]

R
e

c
o

rd

in
fo

rm
a

ti
o

n
 a

b
o

u
t

p
o

s
s
ib

le
 d

e
la

y

[d
e

la
y
]

A
d

v
is

e

c
u

s
to

m
e

r
to

e
s
c
a

la
te

O
ff
e

r
in

te
ri
m

s
o

lu
ti
o

n

F
o

rw
a

rd
 t
o

 L
2

s
u

p
p

o
rt

 f
o

r
te

c
h

in
v
e

s
ti
g

a
ti
o

n

[n
o

t
e

a
s
ily

 r
e

s
o

lv
e

d
]

[t
e

c
h

 f
a

u
lt
]

[n
o

n
-C

S
G

 s
e

rv
ic

e
]

[offer accepted]

[o
ff
e

r
n

o
t

a
c
c
e

p
te

d
]

[additional offer]

R
e

g
is

te
r

c
o

m
p

la
in

t

M
a

k
e

 e
n

q
u

ir
y

c
a

ll

im
m

e
d

ia
te

ly

M
a

k
e

 e
n

q
u

ir
y

c
a

ll
w

it
h

in
 4

8

h
o

u
rs

C
h

e
c
k
 i
f

d
is

p
u

te
d

a
m

o
u

n
t

C
o

n
fi
rm

is
s
u

e

R
e

c
o

rd

c
o

m
p

la
in

t

In
fo

rm

c
u

s
to

m
e

r
o

f

o
ff
e

r

Fi
gu

re
4.

1:
Th

e
cu

st
om

er
su

pp
or

tp
ro

ce
ss

.

50 4.1. Case 1: Telecommunications Customer Support

a
:

i
f

[
u
r
g
e
n
t
]

1
'
c

e
l
s
e

0
'
c

b
:

i
f

¬
[
u
r
g
e
n
t
]

1
'
c

e
l
s
e

0
'
c

c
:

i
f

¬
[
c
o
n
t
a
c
t
]

1
'
c

e
l
s
e

0
'
c

d
:

i
f

[
c
o
n
t
a
c
t
]

1
'
c

e
l
s
e

0
'
c

e
:

i
f

[
T
I
O

c
o
m
p
l
a
i
n
t
]

1
'
c

e
l
s
e

0
'
c

f
:

i
f

¬
[
T
I
O

c
o
m
p
l
a
i
n
t
]

1
'
c

e
l
s
e

0
'
c

g
:

i
f

[
d
i
s
p
u
t
e

i
n

b
i
l
l
i
n
g
]

1
'
c

e
l
s
e

0
'
c

h
:

i
f

¬
[
d
i
s
p
u
t
e

i
n

b
i
l
l
i
n
g
]

1
'
c

e
l
s
e

0
'
c

i
:

i
f

[
e
a
s
i
l
y

r
e
s
o
l
v
e
d
]

1
'
c

e
l
s
e

0
'
c

j
:

i
f

¬
[
e
a
s
i
l
y

r
e
s
o
l
v
e
d
]

1
'
c

e
l
s
e

0
'
c

k
:

i
f

[
a
d
m
i
n

c
o
m
p
l
a
i
n
t
]

1
'
c

e
l
s
e

0
'
c

l
:

i
f

[
t
e
c
h

f
a
u
l
t
]

1
'
c

e
l
s
e

0
'
c

m
:

i
f

¬
[
t
e
c
h

f
a
u
l
t
]

&
&

[
a
d
m
i
n

c
o
m
p
l
a
i
n
t
]

1
'
c

e
l
s
e

0
'
c

n
:

i
f

¬
[
a
d
m
i
n

c
o
m
p
l
a
i
n
t
]

&
&

[
t
e
c
h

f
a
u
l
t
]

1
'
c

e
l
s
e

0
'
c

o
:

i
f

[
C
S
G
]

1
'
c

e
l
s
e

0
'
c

p
:

i
f

¬
[
C
S
G
]

1
'
c

e
l
s
e

0
'
c

q
:

i
f

¬
[
d
e
l
a
y
]

1
'
c

e
l
s
e

0
'
c

r
:

i
f

[
d
e
l
a
y
]

1
'
c

e
l
s
e

0
'
c

s
:

i
f

[
o
f
f
e
r

a
c
c
e
p
t
e
d
]

1
'
c

e
l
s
e

0
'
c

t
:

i
f

¬
[
o
f
f
e
r

a
c
c
e
p
t
e
d
]

1
'
c

e
l
s
e

0
'
c

u
:

i
f

[
a
d
d
i
t
i
o
n
a
l

o
f
f
e
r
]

1
'
c

e
l
s
e

0
'
c

v
:

i
f

¬
[
a
d
d
i
t
i
o
n
a
l

o
f
f
e
r
]

1
'
c

e
l
s
e

0
'
c

p
0

[b
]t0

R
e

g
is

te
r

c
o

m
p

la
in

t
in

 R
T

p
2

t2

M
a

k
e

e
n

q
u

ir
y

c
a

ll

p
3

p
5

t1

M
a

k
e

e
n

q
u

ir
y
 c

a
ll

im
m

e
d

ia
te

ly

[a
]

p
1

t3

C
lo

s
e

c
o

m
p

la
in

t

in
 C

R
M

t4

R
e

p
o

rt

to
 T

IO

S
ile

n
t

[c
]

p
4

[d
]

p
7

[e
]

p
6

[f
]

t5
C

o
n

fi
rm

is
s
u

e

t6
R

e
c
o

rd

c
o

m
p

la
in

t

t7

C
h

e
c
k
 i
f

d
is

p
u

te
d

a
m

o
u

n
t

p
8

p
9

p
1

0

t8

S
u

s
p

e
n

d

c
re

d
it

m
a

n
a

g
e

m
e

n
t

[g
]

p
1

1

[h
]

t1
1

S
e

e
k

c
u

s
to

m
e

r

a
c
c
e

p
ta

n
c
e

[s
]

[t
]p

1
4

p
1

6

t1
4

R
e

c
o

rd

o
u

tc
o

m
e

p
1

7

t1
5

C
lo

s
e

c
o

m
p

la
in

t

p
1

5

t1
3

A
d

v
is

e

c
u

s
to

m
e

r
to

e
s
c
a

la
te

A
d

v
is

e
 o

p
ti
o

n

to
 r

e
v
ie

w
 o

r

e
s
c
a

la
te

[v
] t1

2

e
n

d
s
ta

rt
s
ta

rt
E

n
d [u

]

1
'c

Chapter 4. Case Study Description and Formalization 51

t9

In
v
e

s
ti
g

a
te

 i
s
s
u

e

q
u

ic
k
ly

 t
o

d
e

te
rm

in
e

 i
f

e
a

s
ily

 r
e

s
o

lv
e

d

[i
]

p
1

2

[j
]

p
1

8

t1
6

C
la

s
s
if
y
 i
s
s
u

e

a
n

d
 d

e
te

rm
in

e

s
ta

n
d

a
rd

 p
ro

c
e

s
s

a
n

d
 t
im

e
fr

a
m

e
s

t1
7

A
d

v
is

e
 c

u
s
to

m
e

r

o
f
p

ro
c
e

s
s
 a

n
d

ti
m

e
fr

a
m

e
s

t1
8

C
o

n
fi
rm

 c
u

s
to

m
e

r

c
o

n
ta

c
t
d

e
ta

ils
 a

n
d

a
v
a

ila
b

le
 t
im

e
s

P
ro

v
id

e
 e

n
g

in
e

c
o

n
ta

c
t
d

e
ta

ils

p
2

2

[l
]

p
1

9

p
2

0

p
2

1

t1
0

In
fo

rm
 c

u
s
to

m
e

r

o
f
o

ff
e

r
a

n
d

re
c
o

rd
 d

e
ta

ils

p
1

3

p
2

6

[k
]

t1
9

t2
2

In
v
e

s
ti
g

a
te

is
s
u

e

p
2

3
t2

0

O
ff
e

r

in
te

ri
m

s
o

lu
ti
o

n
[o

]

p
2

4

[p
]

t2
1

F
o

rw
a

rd
 t
o

 L
2

s
u

p
p

o
rt

 f
o

r
te

c
h

in
v
e

s
ti
g

a
ti
o

n

p
2

8

t2
4

R
e

c
o

rd

in
fo

rm
a

ti
o

n
 a

b
o

u
t

p
o

s
s
ib

le
 d

e
la

y

[r
]

[q
]

t2
3

F
o

rm
u

la
te

re
s
o

lu
ti
o

n
 a

n
d

 f
ix

b
ill

in
g

 e
rr

o
rs

[n
]

[m
]

p
2

7

p
2

5

S
ile

n
t

Fi
gu

re
4.

2:
Th

e
co

m
pl

ai
nt

pr
oc

es
s

as
C

PN
.

52 4.1. Case 1: Telecommunications Customer Support

To ensure good service and fair outcomes for all consumers of telecommunica-
tions products in Australia, all service providers whom supply telecommunications
products to customers in Australia are required to comply to the Telecommunica-
tions Consumer Protections (TCP) code of conduct. The code is registered by the
Australian Communications and Media Authority (ACMA), which has appropri-
ate powers of enforcement. As a result, the customer support process as described
above has to comply with a number of rules in order to meet the code of conduct.
A number of those rules are enumerated below and used later to evaluate our me-
thodology. Rules eight and nine are not part of the TCP code, but can be inferred to
verify a number of control-flow requirements.

Table 4.1: TCP Compliance Rules.

Compliance Rule
1. Resolutions to complaints should always be checked for acceptance

with the customer, unless there is no contact with the customer.
2. Offers are either accepted or the customer is advised to escalate.
3. A complaint that is confirmed is recorded immediately.
4. Once a complaint has been confirmed, its outcome is always recorded.
5. Once a complaint has been confirmed, possible delays are recorded and

communicated to the customer.
6. All issues are covered prior to formulating a resolution.
7. Escalated complaint are immediately recorded.
8. When both technical and non-technical issues are involved in a com-

plaint, they must be solved in parallel.
9. After the complaint category is determined, a resolution must always

be provided to the customer.

Chapter 4. Case Study Description and Formalization 53

4.2 Case 2: Local Dutch e-Government
The Netherlands consists of 418 municipalities which all differ greatly. Because of
this, each municipality is allowed to operate independently according to their local
requirements. However, all the municipalities have to provide the same services
and execute the same laws. An example of such a law which is heavily subjected to
local needs is the WMO (Wet maatschappelijke ondersteuning, Social Support Act,
2006), a law providing needing citizens with support ranging from wheelchairs,
help at home to home accessibility improvement.

Figures 4.3 through 4.8 illustrate the main process flows of the WMO process ob-
served at three distinct municipalities, and their CPN versions obtained by apply-
ing the conversion process provided in Appendix B. The illustrated processes were
obtained through interviews with different municipalities located in the Northern
area of the Netherlands (van Beest et al., 2010, 2012). Municipalities interviewed
ranged in size, population, income, and differed in being urban or rural.

Figure 4.3 depicts the simplest variant of the three WMO processes. The process
starts with an application procedure which determines if the request made by the
citizen falls under the WMO law. If this is not the case, the citizen is advised by
the municipality employee towards his next steps. When the request made by the
citizen does fall under the WMO law, the application is accepted, and a decision
whether to approve the requested provision is made based upon the intake, pos-
sible requests of medical advice, and a possible home visit. The request is then
either approved or rejected. In case of a positive decision, the requested provision
is either arranged directly for the citizen, or a personal budget is assigned in case
of personal care. In case of a negative decision, the citizen can appeal the deci-
sion. If the appeal is found to have merit, the decision is revised and the process is
renewed. Figure 4.4 illustrates the same process as a CPN.

Figure 4.5 depicts a second variant of the WMO process. The main difference of this
variant, with respect to the variant illustrated in Figure 4.3, is the option to approve
the requested provision in part. When this option is taken, further medical advice
may be acquired. When the medical advice declares that the citizen qualifies for
the requested provision in full, the decision to approve in part is revised. Another
difference is included after the reverse decision option in case of an appeal. Instead
of renewing the process, this variant only revisits the approve or reject options.
Finally, an activity is included to provide the citizen with information in case a per-
sonal budget is assigned. The CPN version of this variant is depicted in Figure 4.6.

54 4.2. Case 2: Local Dutch e-Government

Decision

More medical
advice

Intake and
application

Acquire
requirements

Forward to
supplier

Home visit

Medical
advice

Provide
information
and advice

Check on correct
use of personal

budget

Handle invoice

+

Receive
delivery

confirmation

Appeal

+

Check citizen
response

Assign
personal
budget

Assign
provision

Approve

Reject

Affirm decision

Revise
decision

Figure 4.3: WMO Provision Request Process of Municipality A.

Chapter 4. Case Study Description and Formalization 55

B

Provide

information

and advice

C

D

E

Medical

advice

Home visit

More medical

advice

F Decision

G Approve

H
Assign

provision

I
Acquire

requirements

J
Forward to

supplier

K

Receive

delivery

confirmation

L
Handle

invoice

end

M

N

Assign

personal

budget

Check on correct

use of personal

budget

Reject

OP

Check citizen

response

Q

Appeal

R

S

Revise

decision

Affirm

decision

start

1'c

A

Intake and

application

Figure 4.4: WMO Provision Request CPN of Municipality A.

56 4.2. Case 2: Local Dutch e-Government

More medical
advice

Intake and
application

Medical
advice

Provide
information
and advice

Home visit

Acquire
requirements

Forward to
supplier

Handle invoice

+

Receive
delivery

confirmation

Provide
information

Check on correct
use of personal

budget

Appeal

+

Check citizen
response

Approve

Decision

Approve in
part

Qualifies for
provision

Reject

Affirm decision

Revise
decision

Assign
provision

Assign
personal
budget

Figure 4.5: WMO Provision Request Process of Municipality B.

Chapter 4. Case Study Description and Formalization 57

B

Provide

information

and advice

C

D

E

Medical

advice

Home visit

More

medical

advice

F Decision

G Approve

H
Assign

provision

I
Acquire

requirements

J
Forward to

supplier

K

Receive

delivery

confirmation

L
Handle

invoice

end

M

N

Assign

personal

budget

Check on correct

use of personal

budget

Reject

OP

Check citizen

response

Q

Appeal

R

S

Revise

decision

Affirm

decision

T

Approve

in part

U

Qualifies

for

provision

Provide

information
V

start

1'c

A

Intake and

application

Figure 4.6: WMO Provision Request CPN of Municipality B.

58 4.2. Case 2: Local Dutch e-Government

Provide
information
and advice

Intake and
application

Check DEP
information

Provide DEP
provision

Medical
advice

Home visitFile research

Inform about
rejection

Decision

Appeal

+

Check correct use
of personal budget

Provide
information

Forward to
supplier

Receive
delivery

confirmation

Handle invoice

+

Check citizen
response

Assign
personal
budget

Assign
provision

DEP provided
provision

Reject

Approve

Approve in
part

Revise
decision

Affirm decision

Revise
decision

Verify decision

Figure 4.7: WMO Provision Request Process of Municipality C.

Chapter 4. Case Study Description and Formalization 59

start

1'c

A

Intake and

application

B

Provide

information

and advice

CDY
Medical

advice
Home visit

File

research

F Decision

G Approve

H
Assign

provision

I
Acquire

requirements

J
Forward to

supplier

K

Receive

delivery

confirmation

L
Handle

invoice

end

M

N

Assign

personal

budget

Check on correct

use of personal

budget

Reject

OP

Check citizen

response

Q

Appeal

R

S

Revise

decision

Affirm

decision

W

Check DEP

information

X

Provide DEP

provision

Z
Verify

decision

Revise

decision
Za

T

Approve

in part

V
Provide

information

Inform about

rejection
Zc

Zb
DEP provided

provision

Figure 4.8: WMO Provision Request CPN of Municipality C.

60 4.2. Case 2: Local Dutch e-Government

A third variant of the WMO process is illustrated in Figure 4.7 and demonstrates
a large amount of diversity. The CPN version of this variant is depicted in Fig-
ure 4.8. In this variant, a new branch is introduced for Directly Executable Provi-
sions (DEP). In case of DEP, the requested provision is directly provided without
taking the long decision making procedure. The information gathering process be-
fore making a decision also includes an option to do file research. In addition, each
activity during this process can be performed an arbitrary number of times and
in any order. All decisions in this variant are verified as well, and can be revised
before the official approval or rejection. Similar to the second variant, an option
to approve in part is included. In this case, however, the option is included af-
ter the rejection of the initially requested provision. Similar to the second variant,
the citizen is also provided with information in case a personal budget is assigned.
In addition, a rejection is explained after a failed appeal by a citizen. And finally,
the activity of acquiring requirements of any assigned provision is handled by the
supplier without involvement of the municipality.

When analyzing the three respective BP illustrated in Figures 4.3 through 4.8, we
can clearly see the same generic process flow in all three versions of the WMO pro-
cess. Beginning at the intake and application, the generic process flow continues
through decision, approval, and finally the assignment of either the requested pro-
vision or a personal budget. Similar generic process flows can be seen at the alter-
nate information and advice path and the reject/appeal path. Variations appear at
the information gathering stage of the process, where the file research, home visit,
and medical advice activities contribute to understanding the background of the
citizens making the WMO provision request. Other variations appear through ad-
ditional paths for approval in part, simple provision requests (i.e., DEP requests),
and decision verification. And, finally, the simplest variations appear through the
inclusion of additional informative activities in existing paths.

Chapter 4. Case Study Description and Formalization 61

4.3 Case 3: Bouncer Registration
Collaborative BP (CBP) are BP where actors and roles are spread over multiple
entities. For example, Figure 4.9 depicts a BPMN CBP featuring the national reg-
istration of bouncers originally published by Corradini et al. (2015). Bouncers are
employed by nightclubs and other venues to control crowds.

The registration process features three roles: (A) the requester that applies for regis-
tration, (B) the prefecture handling the request, and (C) the police which perform a
background check of the requester. Each role performs its assigned activities in
order to arrive at the decision to authorize or inhibit the registration of the re-
quester as a bouncer. They collaborate by each performing activities in separate
BP, while communicating through messages depicted as message flows in the CBP
of Figure 4.9. First, the requester makes a registration request. The prefecture re-
ceives the request, initiates the procedure, and proceeds to request a profile check
from the police. The prefecture communicates the relevant laws with the requester,
before proceeding to check the documents. If needed, the prefecture will request
further documentation from the requester, before analyzing the documents. Mean-
while, the police will check for any impediment and report them to the prefecture.
The prefecture then takes a decision based on the documents and police report,
and either provides authorization or inhibition of registration of the requester as a
bouncer. (Corradini et al., 2015)

Note that the original process published by Corradini et al. (2015) contained a cycle
where the prefecture could repeatedly request further documentation from the re-
quester. However, since the approach presented by Corradini et al. (2015) removes
cycles by decoupling any backward looping flow during the Petri net conversion,
we remove the loop in order to arrive at a fair comparison of the approaches. Us-
ing the conversion provided in Appendix B, the CBP of the bouncer registration is
translated to a CPN. Figure 4.10 depicts the resulting CPN graphically.

62 4.3. Case 3: Bouncer Registration

R
e
g
is

tr
a
tio

n

re
q
u
e
s
t

Requester Prefecture Police

C
o
m

pl
e
te

d
o
cu

m
e
n
ts

P
ro

vi
d
e

d
o
cu

m
e
n
ts

R
e
ce

iv
e

a
u
th

o
ri
za

tio
n

o
r
in

h
ib

iti
o
n

R
e
q
u
es

t
in

s
ta

nt
ia

tio
n

C
o
m

m
u
n
ic

a
ti

o
n

C
h
e
ck

d
o
cu

m
e
n
ts

A
sk

 f
o
r

in
te

g
ra

tio
n

C
h
e
ck

in

te
g
ra

tio
n

A
n
a
ly

ze

d
o
cu

m
e
n
ts

T
ak

e

d
e
ci

si
o
n

P
ro

vi
d
e

a
u
th

o
ri
za

tio
n

o
r
in

h
ib

iti
o
n

C
h
e
ck

 p
ro

fil
e

C
h
e
ck

im

p
e
d
im

e
n
t

Fi
gu

re
4.

9:
Bo

un
ce

r
R

eg
is

tr
at

io
n

BP
M

N
M

od
el

(C
or

ra
di

ni
et

al
.,

20
15

).

Chapter 4. Case Study Description and Formalization 63

st
a
rt

1
'c

A

R
e
g
is

tr
a
tio

n

re
q
u
e
s
t

B
C

C
o
m

pl
e
te

d
o
cu

m
e
n
ts

D

P
ro

vi
d
e

d
o
cu

m
e
n
ts

E
e
n
d

R
e
ce

iv
e

a
u
th

o
ri
za

tio
n

o
r
in

h
ib

iti
o
n

st
a
rt

1
'c

F
G

H

R
e
q
u
es

t
in

s
ta

nt
ia

tio
n

C
o
m

m
u
n
ic

a
ti

o
n

C
h
e
ck

d
o
cu

m
e
n
ts

I

A
sk

 f
o
r

in
te

g
ra

tio
n

J

C
h
e
ck

in

te
g
ra

tio
n

K

A
n
a
ly

ze

d
o
cu

m
e
n
ts

L
M

N

T
ak

e

d
e
ci

si
o
n

P
ro

vi
d
e

a
u
th

o
ri
za

tio
n

o
r
in

h
ib

iti
o
n

e
n
d

st
a
rt

1
'c

O
P

e
n
d

C
h
e
ck

 p
ro

fil
e

C
h
e
ck

im

p
e
d
im

e
n
t

Fi
gu

re
4.

10
:B

ou
nc

er
R

eg
is

tr
at

io
n

C
PN

.

64 4.4. Discussion

4.4 Discussion
The presented case studies illustrate several scenarios found in real life. Although
simplified for illustrative purposes, they each represent the general process flow
found at business or government. We select these three cases because they each
illustrate different sets of complications concerning design-time BP verification.

The first case, telecommunications customer support, represents a compliance case
where a large amount of conditional paths motivate different outcomes. The sec-
ond case, local Dutch e-government, represents a variability case where local needs
drive very similar, yet individually tailored, decision making. Finally, the last case,
bouncer registration, represents a highly concurrent case where multiple entities
work in parallel to complete a single task.

Even though the cases illustrate different issues, they also demonstrate certain sim-
ilarities. For example, each case describes BP with many different complex path-
ways, and consist mainly of the simplest constructs. Most complexity, therefore,
can be traced to the many exclusive conditions contained within each BP. The many
conditions, however, often prompt unstructured BP design (i.e., the use of multiple
end events, incorrect forking and merging, etc).

Little concurrency is included when considering the individual business processes
described by each case. Even when concurrency could be easily included by in-
clusive branching, the paths are described through intricate paths with exclusive
choices within loops instead (e.g. the file research, home visit, and medical advice
activities of Figure 4.7). Whether this is the result of inexperienced design or delib-
erate choice is unknown, but the fact remains that the process flow would have had
increased efficiency when concurrency had been introduced.

Due to the simple constructs used to describe each BP, the formalization of the BP
using CPN is straightforward. Even though several BP required a number of addi-
tional (silent) transitions to describe the control flow, their complexity is maintained
at a minimum. More complex constructs can be described, but at the cost of increas-
ing the complexity of the resulting CPN. And, in turn, increase the complexity of
any subsequent verification.

CHAPTER 5

Verification Requirements

Premature optimization is the root of all evil in programming.

– Donald Knuth

As formal verification of BP at design-time includes several different goals, require-
ments vary greatly. For example, where some soundness verification frameworks
focus solely on reachability of structured activities and process termination, other
frameworks aim to verify the correctness of a specification. At the same time, some
compliance verification frameworks aim to verify compliance conditions over the
events of BP, whie others aim to verify conditions over the state of the BP. Addi-
tionally, with the convergence of BPM and service-orientation of recent years, re-
quirements related to service-orientation have made their way into BP verification.
With each of these aims, a different set of requirements is applicable on both the
model and specifications used for verification. We describe the requirements based
upon the verification of the process described by the BP itself and not an individual
specification or implementation.

5.1 Model Requirements
Requirements on the model describe the various features which the verifiable mo-
del must be able to describe. Without support, BP which include these features can
not be verified, or only be verified in part. BP offer a very powerful range of ex-

68 5.1. Model Requirements

pressive features such as structured and unstructured cycles, exclusive, inclusive,
and parallel branching, and different event handling mechanisms. Existing frame-
works, however, often neglect to fully support many of the more powerful features
possible within a model in order to simplify the task of verification. We assume
support for the basic features and iterate through the problematic requirements.

Requirement 5.1.1 (Unsound Processes). Verification frameworks must be able to
verify business processes that are not sound.

Existing verification frameworks often limit support to structured processes only.
Structured processes are processes which, for example, only include matching gates
with matching number of forking and joining branches. Although structured pro-
cesses allow for easier verification and should always be used when possible, many
in use processes are described in an unstructured manner. Verification frameworks
must be able to support both structured and unstructured models.

Requirement 5.1.2 (Parallel Branching). Verification frameworks must be able to verify
parallel behavior within business processes, including inclusive branching.

Verification frameworks must be able to express different branching constructs within
its model in such a way that parallel behavior remains visible during verification.
Although some frameworks do claim to support parallel behavior (Foster et al.,
2003; Liu et al., 2007), the behavior is often described in such a way that it is not
visible to the verification process.

Requirement 5.1.3 (Arbitrary Cycles). Verification frameworks must be able to verify
business processes that include arbitrary cycles.

Verification frameworks must be able to express its specifications in the presence of
arbitrary cycles without them severely affecting the outcome of those specifications
due to the possibility of infinitely looping. For example, a scheduling specification
stating a response from a structured activity may return true after evaluation of
a path without an arbitrary cycle. However, after an arbitrary cycle is included
within the same path between the effect and response structured activities, the
same specification will always be evaluated as being false. This behavior is caused
by the possibility of infinite looping within the arbitrary cycle. Indeed, when the
arbitrary cycle is executed an infinite many times after the effect structured activ-
ity, the further ahead responding structured activity is never actually reached. A
natural and correct conclusion when verifying software programs or electronic cir-
cuits – but, in the case of the verification of BP, this is highly unwanted behavior.

Chapter 5. Verification Requirements 69

Unlike certain software processes or electronic circuits, BP are, at most, long living
and will always terminate. Arbitrary cycles, therefore, will never execute infinitely
many times. BP will either terminate correctly, or terminate with an error causing a
possible rollback.

Requirement 5.1.4 (Intermediary Events). Verification frameworks must be able to
verify business processes that include intermediary events.

Verification frameworks must be able to express inline events within its model.
Events include simple message flows to error catching events with complex com-
pensation handlers attached.

5.2 Specification Requirements
Formal verification of business process models is of interest to a number of differ-
ent applications, including checking for basic process correctness, business com-
pliance, and process variability. Basic process correctness, or soundness as it is
sometimes called, aims at verifying the basic properties of BP, including reacha-
bility and absence of deadlocks. Compliance verification aims to prove whether a
process complies with a set of business rules, laws, or regulations. Variability ex-
tends this notion by allowing parts of a BP to remain variable, or not fully defined,
in order to support different versions. Different versions are then verified against
its specification in order to verify whether the changed version remains within the
context of its specification and business rules.

5.2.1 Soundness
The first goal of BP verification consists of verifying basic properties such as reach-
ability and termination. Reachability of a business activity requires an execution
path to exist leading to that activity starting from the initial activities. A termina-
tion property requires that all possible execution traces terminate. Business process
soundness, a property originally proposed in the area of Petri Net verification, is
known as the combination of these two properties plus a third: the absence of re-
lated running activities at process termination (i.e., proper completion) (van der
Aalst, 1997). Avoiding the deployment of erroneous processes that do not conform
with these properties is obviously advantageous: “[erroneously] designed workflow
models can result in failed workflow processes, execution errors, and disgruntled customers
and employees” (Bi and Zhao, 2004).

70 5.2. Specification Requirements

Requirement 5.2.1 (Reachability). Every structured activity included within a BP must
be reachable trough the execution of a sequence of structured activities.

Requirement 5.2.2 (Termination). All possible fair execution traces within a BP always
eventually terminate (i.e., no deadlocks).

Requirement 5.2.3 (Proper Completion). Upon BP termination no structured activities
within a BP remain in an executing state.

5.2.2 Compliance
The second goal of BP verification consists of verifying the compliance of a BP
against a set of norms, laws, and/or regulations. BP compliance entails the veri-
fication of (A) the occurrence of structured activities and their effects, (B) the order
of execution of structured activities and their effects, (C) resource allocation (e.g.
which roles and users perform which structured activities), and (D) time related
constraints, while (E) under condition of possible data values. Design-time com-
pliance verification aims at preemptive verification of BP, and therefore is limited
to the verification of structured activity occurrence, order, and role allocation. Al-
though time related conditions could be verified based upon estimations of time,
true verification of compliance towards time related constraints can, naturally, only
be accomplished by after the fact process mining or runtime monitoring techniques.
Similarly, user information towards resource allocation verification is only available
during or after BP enactment. At design-time, user information can be extracted
from the different assigned roles at most.

Requirement 5.2.4 (Occurrence). Occurrence specifications force the execution of
structured activities within the BP. Compliance frameworks must be able to express the
following occurrence specifications over elements of the BP:

(i) Absence: The structured activity, or its effect, does not occur.

(ii) Universality: The structured activity, or its effect, holds.

(iii) Existence: The structured activity occurs, or its effect holds, in the future.

(iv) Bounded Existence: The structured activity occurs, or its effect holds, a limited
number of times.

Requirement 5.2.5 (Ordering). Ordering specifications force the order of execution
of structured activities within the BP. Compliance frameworks must be able to express the
following ordering specifications over elements of the BP:

Chapter 5. Verification Requirements 71

(i) Precedence: The structured activity occurs, or its effect holds, before (the effect of)
another structured activity.

(ii) Response: The structured activity occurs, or its effect holds, after (the effect of)
another structured activity.

The compliance requirements towards the occurrence and ordering of structured
activities are adapted from the property specification patterns of finite state verifi-
cation (Dwyer et al., 1999) and (Elgammal et al., 2010a, 2014). The patterns towards
occurrence include absence, universality, existence, and bounded existence. These
patterns describe that some state or event does not hold, holds throughout, hold
eventually, or holds a specific number of times, respectively. The ordering speci-
fications include precedence and response patterns. These patterns describe that
some state or event occurs before or after another state or event. In the case of BP
compliance verification, the evaluated state or event is represented by the struc-
tured activities of the BP (event) or their effects (state).

Occurrence and ordering specifications are applied using scopes. Scopes define re-
gions of the system where a specification must hold, and include either globally,
before (the effect of) another structured activity, after (the effect of) another struc-
tured activity, between (the effect of) two structured activities, or after and until
(the effect of) two structured activities. In addition, the ordering specifications can
be extended to support precedence and response chains. In this case, a number of
ordered (effects of) structured activities is preceded by, or responding to, the trig-
gering event or state.

Requirement 5.2.6 (Resource Specifications). Resource specifications force the execu-
tion of structured activities within the process to be linked to a certain resource. Compliance
frameworks must be able to express the following resource specifications over elements of the
BP:

(i) Always performed by role: The structured activity is always performed by the
given role.

(ii) Performed by role: The structured activity is (sometimes) performed by the given
role.

(iii) Never performed by role: The structured activity is never performed by the given
role.

Resource specifications require structured activities to be performed by certain roles
during enactment. In this way, structured activities can be required to be performed

72 5.2. Specification Requirements

by users with different tasks assigned to them. For example, an employee processes
an order, while a manger performs a last check.

Requirement 5.2.7 (Data Conditions). All specifications must be verifiable under data
conditions. Compliance frameworks must be able to express the following data conditions
over specifications:

(i) Holds always: The specification holds under all data values.

(ii) Holds when: The specification holds under a given set of data values (e.g. x > 10).

Data Conditions allow specifications to be applied to only those execution paths
under which these data conditions hold. Take, for example, a specification stating
that if an order over a certain sum is placed, a downpayment is required. This
specification can only be supported when data conditions are supported.

5.2.3 Variability
The third goal of BP verification, variability, builds upon compliance. In the con-
text of BPM, variability indicates that parts of a business process remain variable,
or not fully defined, in order to support different versions of the same process de-
pending on the intended use or execution context (Aiello et al., 2010). Variability
aims to support different versions of the same process. This includes support of
process families at design-time, when a new process variant can be derived from a
generic process, and process flexibility or adaptability at runtime, where a generic
process can be adapted. BP variability can be specified in two different ways. The
first, imperative variability, employs the use of variation points to provide differ-
ent options at specific points in a process. The second, declarative variability, uses
specifications like those of compliance to specify how each version of a process
should behave. Explicit variability management consists in the ability to enumer-
ate the possible variations. The expressive power requirements provide an indication
of what must be possible to express for a variation in a process.

Imperative Variability
Imperative structural adaptation consists of atomic operations which, when executed
in a specific predefined sequence, rearrange a BP to form a specific variant. Multiple
predefined sequences of atomic operations may exist, which may or may not be
compatible with each other, to form different variants. Imperative variability must
support the following requirements to enable the full set of BP changes:

Chapter 5. Verification Requirements 73

Requirement 5.2.8 (Atomic Structural Adaptation). Imperative variability frame-
works must be able to express the following self-explanatory atomic structural adaptions to
the BP:

(i) Insert process fragment.

(ii) Delete process fragment.

(iii) Move process fragment.

(iv) Replace process fragment.

(v) Swap process fragments.

(vi) Copy process fragment.

(vii) Extract sub-process.

(viii) Inline sub-process.

(ix) Embed process fragment in loop.

(x) Parallelize process fragments.

(xi) Embed process fragment in conditional branch.

(xii) Add control dependency.

(xiii) Remove control dependency.

(xiv) Update condition.

Extended from (Weber et al., 2008), atomic structural adaptions form the basis of
any imperative variability framework. Each atomic structural adaptation enables
essential operations which together can completely rearrange a BP into one of its
variants. An imperative variability framework should be able to group sets of
atomic structural adaptions on specific process fragments which, when executed
in a specific order, allow a variation at a specific point within the BP. A number of
selected variations then form a specific variant.

Requirement 5.2.9 (Atomic Resource Adaptation). Imperative variability frameworks
must be able to express the following self-explanatory atomic resource adaptions to the BP:

(i) Assign process fragment to role.

(ii) Retract process fragment from role.

Where atomic structural adaptation allows modification of the execution paths of
the BP, atomic resource adaptation allows an imperative variability framework to

74 5.2. Specification Requirements

change the role assigned to process fragments. Instead of allowing change to how
things are done, atomic resource adaptation allows change to who executes the BP.

Requirement 5.2.10 (Variation Relation). Variability frameworks must be able to ex-
press the dependencies between different imperative structural and/or resource changes.

Multiple predefined sequences of atomic operations may exist to form different
variations at specific points within the BP. Different variations, however, may or
may not be compatible with each other, or require a specific order in which they
must be applied. Dependencies such as these are called variation relations (Sinnema
et al., 2006). Imperative variability frameworks must be able to specify variation
relations in order to be able to support the full range of possible variants.

A variability management framework should allow the process designer to express
the above imperative structural adaptation requirements.

Declarative Variability
Declarative specifications consists of rules expressing variations by declaring the bor-
ders which limit the possible process modifications. Unlike atomic structural chan-
ges which indicate imperatively what can vary, a declarative specification limits the
borders of changes explicitly. Initially, all possible modifications are allowed within
the BP. As specifications are included, modification is being limited. The more spec-
ifications are included, the more the BP is being defined, and the less modification
is allowed. Declarative variability frameworks must support the following require-
ments:

Requirement 5.2.11 (Inclusion Specifications). Declarative variability frameworks
must be able to express the following declarative inclusion specifications over elements of
the BP:

(i) Include: The structured activity must be included in the variant.

(ii) Prerequisite: The structured activity must be included in the variant if some other
structured activity is included.

(iii) Substitution: The structured activity must be included in the variant if some other
structured activity is not included.

(iv) Corequisite: The structured activity must be included in the variant if an other
structured activity is included as well, and vice versa.

(v) Causal selection: The structured activity may only be included in the variant if
some other structured activity is included.

Chapter 5. Verification Requirements 75

Extended from (Sadiq et al., 2005) and (Lu et al., 2009), inclusion specifications force
the inclusion of structured activities within the variant. That is, under a certain con-
dition, they require a structured activity to be present in some execution path of the
process. Inclusion specifications are of particular importance to variability. Instead
of enforcing the execution of a structured activity, as is often the case with compli-
ance verification, inclusion specifications only enforce the inclusion of structured
activities without requiring their execution. For example, the substitution specifi-
cation (Requirement 5.2.11.iii) forces the inclusion of a structured activity within
the variant if some other structured activity is not included. In this way, at least
one of the structured activities is included.

Requirement 5.2.12 (Exclusion Specifications). Declarative variability frameworks
must be able to express the following declarative exclusion specifications over elements of
the BP:

(i) Exclude: The structured activity may not be included within the variant.

(ii) Exclusion: The structured activity may not be included in the variant if some other
structured activity is included.

(iii) Admittance: The structured activity may not be included in the variant if some other
structured activity is not included.

(iv) Exclusive choice: The structured activity may be included in the variant if some
other structured activity is not included, and vice versa.

Extended from (Dwyer et al., 1999; Sadiq et al., 2005; Lu et al., 2009) and (Elgam-
mal et al., 2010a, 2014), exclusion specifications force the exclusion of structured
activities within the variant. That is, under a certain condition, they require a struc-
tured activity to be absent from all paths of the process. For example, Require-
ment 5.2.12.ii species that a structured activity may not be included in the variant if
another is included. In other words, the one structured activity excludes the other.

Requirement 5.2.13 (Execution Specifications). Execution specifications force the
execution of structured activities within the variant. Declarative variability frameworks
must be able to express the following declarative execution specifications over elements of
the BP:

(i) Execute: The structured activity must be included in all execution paths of the vari-
ant.

(ii) Requirement: The structured activity must be included in all execution paths of the
variant when an other structured activity is included.

76 5.2. Specification Requirements

(iii) Replacement: The structured activity must be included in all execution paths of the
variant if some other structured activity is not included.

(iv) Backup: The structured activity must be included in all execution paths of the vari-
ant if some other structured activity is not included in all execution paths.

(v) Causal execution: The structured activity must be included in all execution paths
of the variant when an other structured activity is included, or not included at all.

Extended from (Dwyer et al., 1999) and (Elgammal et al., 2010a, 2014), Execution
specifications pose conditions on the presence of structured activities in all execu-
tion paths of the variant. That is, they force the execution of the structured ac-
tivity during process enactment. For example, the backup specification (Require-
ment 5.2.13.iv) requires a structured activity to be always executed if an other struc-
tured activity is not always executed. In this way, the specification enforces some
form of safety as one of the structured activities is guaranteed to be performed.

Requirement 5.2.14 (Option Specifications). Option specifications force alternate
paths around structured activities within the variant. Declarative variability frameworks
must be able to express the following declarative specifications over options in the BP:

(i) Option: The structured activity may not be included in all execution paths of the
variant.

(ii) Avoidance: The structured activity may not be included in all execution paths of the
variant when an other structured activity is included.

Option specifications force alternate execution paths around structured activities.
For example, Requirement 5.2.14.i forces that a structured activity is not always
executed. That is, the execution of the structured activity is optional.

Requirement 5.2.15 (Scheduling Specifications). Scheduling specifications force a
temporal relation among the execution of structured activities within the process. Declar-
ative variability frameworks must be able to express the following declarative scheduling
specifications over elements of the BP:

(i) Response: The structured activity is eventually followed by an other structured
activity in every execution path.

(ii) Exists response: The structured activity is eventually followed by an other struc-
tured activity in some execution path.

(iii) Immediate response: The structured activity is immediately followed by an other
structured activity in every execution path.

Chapter 5. Verification Requirements 77

(iv) Exists immediate response: The structured activity is immediately followed by an
other structured activity in some execution path.

(v) No response: The structured activity is not followed by an other structured activity
in every execution path.

(vi) Exists no response: The structured activity is not followed by an other structured
activity in some execution path.

(vii) No immediate response: The structured activity is not immediately followed by an
other structured activity in every execution path.

(viii) Exists no immediate response: The structured activity is not immediately followed
by an other structured activity in some execution path.

(ix) Coexecution: The structured activity is eventually followed by an other structured
activity in every execution path, or vise versa.

(x) Cooccurrence: The structured activity is eventually followed by an other structured
activity in some execution path, or vise versa.

(xi) Parallel execution: The structured activities are executed in parallel.

(xii) Exclusive execution: The structured activities are never executed both in every
execution path.

Extended from (Dwyer et al., 1999; Pesic and van der Aalst, 2006) and (Elgammal
et al., 2010a, 2014), scheduling specifications enforce a specific ordering between
structured activities. Although many of the listed scheduling specifications are
similar to compliance or enactment specifications and enforce the order of execu-
tion in every execution path, variability allows the same to be specified over some
execution paths. Furthermore, variability can require structured activities to both
be included, but be performed in exclusive paths, or be performed in parallel (Re-
quirements 5.2.15.xi and 5.2.15.xii).

A variability management framework should allow the process designer to express
the above declarative specifications.

5.3 Evolutionary Requirements
From the compliance and variability management point of view, a set of changes
made to rules is an evolution if such changes are permanent. This translates into the
following requirements.

78 5.3. Evolutionary Requirements

Requirement 5.3.1 (Business Process Design). BP must always be designed using the
latest set of rules.

Updates to rules or reference processes may occur randomly over long periods of
time, or in high sequence. With every update, variants should always be based
upon the latest rules.

Requirement 5.3.2 (Business Process Evolution). BP must be redesigned when they
are non-compliant with the latest set of rules.

BP must be updated when changes to the reference process or rules have been
made. For example, consider a change made to a reference process where an option
must be formally considered for each case by law. This change must then be propa-
gated to all variants in such a way that this structured activity is enforced and must
be included.

Requirement 5.3.3 (Evolution of Process Instances). Running process instances must
be redesigned when they are non-compliant with the latest set of rules.

Running instances should be updated when changes to the reference process or
rules (for example through law) have been made. All changes to the reference pro-
cess or rules should be propagated to all running instances of the BP. Consider
again the case where a structured activity must be formally considered for each
case. Now also assume that there exists a running instance of this variant. Such
running instances should also be adopted in such a way that it includes the struc-
tured activity if possible.

Requirement 5.3.4 (Soundness). Verification frameworks must guarantee continued
soundness of a BP from one version to another.

Process soundness enforces the correctness of a BP. Process soundness includes
reachability, termination, and proper completion requirements (i.e. no structured
activities within the BP remain in an executing state upon termination). Naturally,
a BP must remain sound after process redesign.

Requirement 5.3.5 (Compliance). Verification frameworks must guarantee continued
compliance of a BP after evolution.

Process compliance is the requirement of a BP to comply to a set of norms, laws,
and/or regulations. Variants must remain compliant even after redesign. Verifica-
tion frameworks, therefore, must incorporate mechanisms to ensure compliance of
BP before deployment.

Chapter 5. Verification Requirements 79

5.4 Discussion
When evaluating the requirements for BP against the state of the art described in
Chapter 3, we immediately notice the lack of model support. Where the speci-
fication requirements are often extensively compiled, requirements regarding the
model – upon which the specifications are to be interpreted – are often neglected or
even omitted. The effect is twofold.

First, specification support is often implied but upon further review not actually
supported consistently throughout the model. One large offender is the proposed
use of the next operator, X , for the verification of an immediate response. The
issue originates from the often discarded notion of stuttering. Stuttering, within
models, occurs when two or more systems are modeled concurrently. A single step
in the state of one of the systems may take multiple steps in the concurrent mo-
del as the other systems may take several steps in the interim. The steps that one
system makes, in the concurrent model, are therefore being stuttered as the other
concurrently executing systems are allowed to take steps in between. Normally,
this issue is avoided when modeling concurrent systems by simply seeing the next
operator, X , as a global next, i.e., a next step between all concurrently executing
systems. And, when there is no concurrency, it can simply be used as the normal
local next, within the one system. Business processes, however, can inherently be
both non-concurrent and concurrent within a single model due to the multiple par-
allel branching mechanisms available to the modeler. As a result, the next operator,
X , returns inconsistent results between concurrent and non-concurrent regions of
a BP. Returning global results in the first, and seemingly local results in the other,
often causing discrepancies within the interpretation of the results. Other offenders
include reductions on the model which cause lack of support of multiple operators,
or combinations of operators, without formally addressing the implications on the
specifications and the use of these operators.

Second, requirements on the model are easily neglected in favor of simplistic, and
often faulty, model reductions. For example, the stuttering issue with the next op-
erator is often solved by not allowing parallel branching, or by simply interpreting
parallel branching as exclusive branching. Although this solves the issue of the
state explosion caused by interleaving concurrent branches, it can hardly claim to
support fully the class of models described by BP standards. And, in the second
case, may even return false results as only one of the parallel branches counts as
being executed. Another common example entails the decoupling, or unwinding,
of arbitrary cycles while claiming full loop support. Naturally, any point of decou-

80 5.4. Discussion

pling, even after unwinding the cycle a set number of times, causes incorrect or
inconsistent returns of formal specifications.

When comparing the requirements for declarative specifications to the state of the
art, we immediately notice that execution and non-exist scheduling specifications
are favored over all others. This preference can be traced back to the verification
of linear execution traces for either compliance verification or the specification of
highly flexible BP. For design-time verification of variability, however, additional
specifications are required to describe behavior over and between single paths.

Next, we define models and specifications solving many of these issues in a formal
and correct manner.

CHAPTER 6

Business Process Verification

Controlling complexity is the essence of computer programming.

– Brian Kernighan

Formal verification entails the evaluation of a specification on a model, e.g., the
evaluation of a temporal logic formula on a transition system such as a Kripke
structure (Definition 2.3.1). In order to obtain a Kripke structure from a formalized
BP, in the form of a CPN (Definition 2.2.4), the CPN is processed in a way similar
to that of the reachability graph (Definition 2.2.3). However, where the reachabil-
ity graph fails to maintain essential BP information regarding parallel and forking
behavior, this model must maintain all BP information while keeping the required
state space to a minimum (Groefsema and van Beest, 2015; Groefsema et al., 2016).

6.1 Verifiable Model
When describing business processes, transitions in CPN relate directly to activities.
A common technique for converting CPN into transition systems entails the inclu-
sion of transitions as states in the transition system upon their occurrence. While
traversing the CPN from its initial marking M0, while they occur, transitions are
continuously added as states. A major drawback of this technique occurs when
transitions are encountered multiple times during, for example, the interleaving of
parallel paths. In such cases, the approach causes the inclusion of multiple copies

84 6.1. Verifiable Model

of the same state. Due to this, an enormous amount of duplicate states is created.
Instead, we define a verifiable model which only includes states for each marking
and each set of binding elements that are not just enabled, but will occur at that
marking. This set of parallel enabled binding elements at a marking is formalized
in Definition 6.1.1.

Definition 6.1.1 (Parallel Enabled Binding Elements). The sets of all possible parallel
enabled binding elements Ypar(M) at a markingM is obtained through the following steps:

• Y (M) = {(t, b) | ∀p ∈ P : Ef (p, t)〈b〉 6 M(p)} is the set of binding elements
enabled at a marking M .

• Ysim(M) = {Y | Y ∈ P(Y (M)) ∧ ∀p ∈ P :
∑

(t,b)∈Y Ef (p, t)〈b〉 6 M(p)} are
the sets of possible binding elements Y that may occur simultaneous at marking M ,
with P(Y (M)) being the power set of enabled binding elements.

• Ypar(M) = {Y | Y ∈ Ysim(M) ∧ ∀Y ′ ∈ Ysim(M) : Y 6⊂ Y ′ ∧ Y 6= ∅} are the
largest sets of parallel enabled binding elements Y obtained from Ysim(M).

In order to obtain a verifiable system model from the markings of a CPN, we first
specify what the places containing tokens in a marking represent. Places contain-
ing tokens at a marking M allow binding elements (t, b) to be enabled. A binding
element is enabled iff ∀p ∈ P : Ef (p, t)〈b〉 6 M(p). Then, a multiset Y of bind-
ing elements (t, b), or a step, is enabled iff ∀p ∈ P :

∑
(t,b)∈Y Ef (p, t)〈b〉 6 M(p),

or if the sum of the binding elements is enabled. The occurrence of a step Y at a
marking Mi produces a new marking Mj as denoted by Mi

Y−→ Mj . The enabled
powerset Ysim(M) of the enabled binding elements represents the set of possible
parallel occurrences. Then, by taking those sets which are no subset of other sets of
the enabled powerset, we find the different sets Ypar(M) of binding elements that
may occur at that marking. Once a binding element of such a set occurs, the other
elements of that set will occur in the future. This set, Ypar(M), is used in upcoming
definitions to determine the different labelings when multiple sets of binding oc-
currences can occur simultaneously at a marking while advancing between states.

Using these conventions, we convert a colored Petri net CPN into a Kripke structure
K by creating states at each marking Mi for each set of binding elements that can
occur concurrently at a marking Mi, and then having each binding element occur
individually to find possible next states. Although binding elements could occur
simultaneous, allowing these would only provide for additional relations, creating
shorter paths between existing states when interleaving. Even though CPN could
theoretically reach an infinite number of markings, the use of the sound and safe

Chapter 6. Business Process Verification 85

workflow patterns restrict the CPN in such a way that it always produces a number
of markings that is finite. The verifiable system model of a business process model,
called the transition graph, is formalized in Definition 6.1.2.

Definition 6.1.2 (Transition Graph). Let AP be a set of atomic propositions. The tran-
sition graph of a CPN with markings M0, ...,Mn is a Kripke structure K = (S, S0, R, L)

over AP , with:

• AP = {M0, ...,Mn} ∪ {(t, b) ∈ Y | Y ∈ Ypar(M0) ∪ ... ∪ Ypar(Mn)},

• S = {sYi | Y ∈ Ypar(Mi) : 0 6 i 6 n},

• S0 = {sY0 | Y ∈ Ypar(M0)},

• L(sYi) = {Mi} ∪ Y ,

• R = {(si, sj) | (t, b) ∈ L(si) ∧Mi ∈ L(si) ∧Mj ∈ L(sj) ∧Mi
(t,b)−−−→Mj}. 1

Definition 6.1.2 introduces a novel conversion from the marking of the CPN to a
model including the occurrence of binding elements. That is, the model is de-
veloped from both state and event (i.e. occurrence) information. When a state is
labeled with a binding element, it can be interpreted as that binding element cur-
rently occurring. Binding elements, however, can be found as occurring over mul-
tiple states. A binding element has only occurred (i.e. finished occurring) when it
is occurring at one state and not occurring at the next state. Binding elements oc-
cur concurrently during interleaving of parallel branches. In such cases, states are
labeled with multiple binding elements. Although the transition graph is a graph
containing states with labels over the markings M0, ...,Mn and steps (t, b), only the
steps (t, b) are used as verification propositions. The reason is twofold, first, it al-
lows for greater model reduction later on, and second, the verification purposes
listed in Chapter 5 only require (t, b). When b is understood, we simply write t
(such as with business process models translated from workflow patterns where
only one functional binding b = 〈c〉 is used).

Figure 6.1 depicts the transition graph resulting from this conversion process on the
CPN of the customer support process presented in Section 4.1. Although bindings
are abstracted away in the examples to increase readability, they formally do exist
in the models. As such, any information included within the model within complex

1Although Definition 6.1.2 uses elements from the definition itself to define R (i.e. the labeling func-
tion L), this is merely done to produce a more concise and readable definition.

86 6.1. Verifiable Model

start t0

t24

t12

t20

t1

t22

t2

t21

t9

t23

t22,

t21

t3

t5

t22,

t20

t4

t17

end

t18

t15

t7

t19

t14t6

t8

t11

t16

t13

t10

t22

Figure 6.1: The customer support process from Section 4.1 as a Kripke structure.

bindings, such as data, is maintained within the transition graph (though, possibly,
at the cost of model size and performance).

Even though states are labeled with markings M0, ...,Mn, these should not be used
as propositions when verifying by means of the transition graph. The markings are
only included in the transition graph to obtain a correct model (i.e. to detect the dif-
ference between a marking where a step (t, b) is enabled without additional tokens
at places and a similar marking with additional tokens unrelated to (t, b)). When
verifying over markings, using the well-known reachability graph is preferred. The
reachability graph can equally be obtained from the transition graph.

Definition 6.1.3 (Reachability Graph of a Transition Graph). Let AP be a set of atomic
propositions. The reachability graph of the Transition Graph K = (S, S0, R, L) over AP is
a rooted directed graph G = (V,E, v0), with:

• V = {Mi | si ∈ S : Mi ∈ L(si)} is the set of vertices,

• v0 = M0 | s0 ∈ S0 : M0 ∈ L(s0) is the root node,

• E = {(Mi, (t, b),Mj) | (si, sj) ∈ R ∧ Mi ∈ L(si) ∧ Mj ∈ L(sj) ∧ (t, b) =

L(si) \ L(sj) \Mi} is the set of edges.

Chapter 6. Business Process Verification 87

Labeled Transition Systems

Business Process Models

Petri net
Def.
2.2.3

RG
Def.
2.2.4

Kripke.
Def.
2.3.1

Stutter
equival.
Kripke

[Browne et. al. 1988]

Definition 6.1.2

Definition 6.1.3

Business
process

[Aalst et. al. 2003]

Figure 6.2: Model Conversion.

Definition 6.1.3 completes the cycle of model conversions as depicted in Figure 6.2.
Together with earlier definitions, Definition 6.1.3 allows a CPN to be transformed
into a transition graph, which then can be transformed into a reachability graph.

6.2 Specification Semantics
The semantics of CTL can be defined upon the possible executions of a CPN. An
occurrence path of a CPN is a sequence of sets of enabled transitions that can occur

concurrently π = y1, y2, ... with yi ∈ Ypar(Mi) and Mi
(ti,bi)∈yi−−−−−−→ Mi+1 for i > 0.

Here, yi ∈ Ypar(Mi) (Definition 6.1.1) are versions of the marking Mi where differ-
ent sets of binding elements are enabled (i.e. those that can occur simultaneously).
A binding element (t, b) is occurring at yi iff (t, b) ∈ yi. The semantics of CTL on the
possible executions of a colored Petri net is defined using the minimal set of CTL
operators {¬,∨, EX,EG,EU}:

Definition 6.2.1 (CTL semantics on Reachability Graphs).
G, yi |= φ means that the formula φ holds at yi ∈ Ypar(Mi) of marking Mi of the reacha-
bility graphG. When the modelG is understood, yi |= φ is written instead. The steps (t, b)

form the propositions of the language of CTL. When b is understood, t is written only. The
relation |= is defined inductively as follows:
yi |= (t, b) iff (t, b) ∈ yi
yi |= ¬φ iff yi 6|= φ

yi |= φ ∨ φ′ iff yi |= φ or yi |= φ′

yi |= EX φ iff ∃π = yi, yi+1, ... | yi+1 |= φ

yi |= EG φ iff ∃π = yi, yi+1, yi+2, ... | ∀n : (n > 0 ∧ yi+n |= φ)

yi |= E[φ U φ′] iff ∃π = yi, yi+1, yi+2, ... |
∃m : (m > 0 ∧ yi+m |= φ′ ∧ ∀n : (0 6 n < m : yi+n |= φ))

88 6.3. Specification Interpretation

6.3 Specification Interpretation
Let Φ be a set of formulas. G, yi |= Φ iff for each φ ∈ Φ it holds that G, yi |= φ. Then,
a set of formulas Φ is consistent if Φ 6` ⊥.

Lemma 6.3.1 (Lindenbaum’s Lemma). For each consistent set Φ, there is a maximally
consistent set Φ′ such that Φ ⊆ Φ′. In other words, every consistent set Φ can be extended
to a maximally consistent set.

Lemma 6.3.2 (Truth Lemma). For any CTL formula φ: G, yi |= φ iff φ ∈ yi.

Proof. The proof is by structural induction on φ. If φ consists of a propositional
letter (t, b) then by Definition 6.2.1. If φ is in the form φ1∨φ2 then by Definition 6.2.1
yi |= φ1 or yi |= φ2, and φ1 ∈ yi or φ2 ∈ yi. If φ is of the form ¬φ, then yi 6|= φ, and
φ 6∈ yi. If φ is of the form EXφ, then ∃π = yi, yi+1, ... | yi+1 |= φ, and thus φ ∈ yi+1.
If φ is of the form EGφ, then ∃π = yi, yi+1, yi+2... | ∀n : (n > 0 ∧ yi+n |= φ), and
thus ∀n : (n > 0 ∧ φ ∈ yi+n). The case where φ is of the form E[φ1 U φ2] follows
similarly.

Theorem 6.3.1. Every maximally consistent set Φ has a model, i.e., there is a model G and
state yi such that for all φ ∈ Φ, G, yi |= φ.

Proof. Suppose that Φ is a consistent set. By the Lindenbaum’s Lemma, there is a
maximally consistent set Φ′ such that Φ ⊆ Φ′. Then, by the Truth Lemma, for each
φ ∈ Φ′, we have G,Φ′ |= φ. Then, every formula in Φ is true at Φ′ in the graph.

Theorem 6.3.2. If Φ |= φ then Φ ` φ.

Proof. Ad absurdum, suppose that Φ 6` φ. Then, Φ ∪ {¬φ} is consistent. By the
above theorem, there is a model of Φ ∪ {¬φ}. Hence, Φ 6|= φ

Verification of a formula φ on the possible executions of a CPN proves that φ does
or does not hold at a certain point of its execution. More specifically, a formula φ
may or may not hold at a version yi ∈ Ypar(Mi) of marking Mi (Definition 6.1.1).
When a step (t, b) holds at yi, that step is occurring. When a formula φ holds at all
versions yi ∈ Ypar(Mi) of a marking Mi, it can be written that Mi |= φ.

Using the definitions above, CTL specifications can be used to verify BP. BP can be
translated into CPN, which in turn can be simulated to obtain a transition graph

Chapter 6. Business Process Verification 89

Labeled Transition Systems

Business Process Models

RG
Def.
2.2.4

Kripke.
Def.
2.3.1

Stutter
equival.
Kripke

[Browne et. al. 1988]

Definition 6.2.1

Business
process

Petri net
Def.
2.2.3

Figure 6.3: Specification Interpretation.

upon which the branching time temporal logic CTL can be interpreted (Figure 6.3).
This interpretation can then be understood upon the possible executions of the CPN
as expressed by its reachability graph – and, in turn, upon the CPN and BP.

6.4 Verification over Groups and Roles
BP modeling standards feature several techniques to bind activities to roles which
must perform those activities. For example, BPMN BPD’s offers grouplike struc-
tures known as pools and swimlanes. Pools represent major entities within the
BPD, such as organizations, while swimlanes inside those pools represent roles or
functions within that organization. When modeling the BP, the normal process flow
is included within the pools and lanes of the BPD. Activities within swimlanes of
pools are then assigned to the role within the organization that is assigned to that
swimlane. To verify over pools, lanes, and other groups, we propose an additional
layer of labels within the transition graph.

Definition 6.4.1 (Labeled Colored Petri Net). A labeled colored Petri net is a quintuple
LN = (N,Gl, Rl, Lg, Lr), where:

• N = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0) is a colored Petri net (Definition 2.2.4),

• Gl is a set of group labels,

• Rl is a set of role labels,

• Lg : T → G2
l is a labeling function that labels transitions with the labels of the

groups it belongs to,

• Lr : T → R2
l is a labeling function that labels transitions with the labels of the roles

which are assigned to the transition.

90 6.5. Verification over Conditions

While BPD activities directly correspond to transitions of a CPN, groups within
BPD do not correspond to any such an element. Instead, the transitions correspond-
ing to the grouped elements within the BPD receive additional labels which mark
them as belonging to those groups, e.g., if transition t is part of a pool with label o0
and swimlame r0, then Lr(t) = {o0, r0}.

Definition 6.4.2 (Labeled Transition Graph). Let LN = (N,Gl, Rl, Lg, Lr) be a la-
beled colored Petri net, AP a set of atomic propositions, and K = (S, S0, R, L) the transi-
tion graph of N over AP . Then, K is a labeled transition graph, iff:

• Gl ⊆ AP the group labels Gl are included in AP

• ∀r ∈ Rl,∀t ∈ T : (t, r) ∈ AP the role labels are included in AP ,

• ∀si ∈ S, ∀(t, b) ∈ L(si) : Lg(t) ⊆ L(si),

• ∀si ∈ S, ∀(t, b) ∈ L(si),∀r ∈ Lr(t) : (t, r) ∈ L(si).

The labeled transition graph includes group labels Lg(t) at each state of the transi-
tion graph where the transition t is labeled using binding elements (t, b). In other
words, if a transition belonging to one or more groups is occurring at a state within
the transition graph, then that state is also labeled with the group labels to which
that transition belongs. Specifications can then be interpreted over those group la-
bels. For example, the CTL specification AG(g1 ⇒ AFg2) can be used to verify if
the elements within group g1 are always followed by any element of group g2.

Similarly, role labels are included as atomic propositions for any possible pair of
role and transition. All possible pairs are included to support the verification of
transitions not being performed by roles. States labeled with binding element (t, b),
of which t is performed by r are labeled with (t, r). For example, the CTL specifica-
tion AG((t, b) ⇒ (t, r)) can be used to verify if transition t is always performed by
role r (i.e., t falls in swimlane r).

For the sake of simplicity, we shall refrain from referring to the labeled versions of
the colored Petri net or transition graph in the remainder of the document. Instead,
when verifying over roles or otherwise grouped activities, we assume the labeled
versions of these graphs are in effect.

6.5 Verification over Conditions
Although the transition graph is an extremely powerful model when used to inter-
pret CTL specifications over possible execution paths, it lacks support for specifi-

Chapter 6. Business Process Verification 91

cation interpretation over conditions on conditional branches. The markings of a
CPN, M0, ...,Mn, include every possible marking after the occurrence of a binding
element (t, b), even if the occurrence of (t, b) can lead to different markings due to
conditions on its in- and outgoing arcs. As the transition graph is directly based on
the set of markings M0, ...,Mn, it includes any possible state caused by conditions
on the CPN its arcs. Although, at first sight, one could use a form of labeling on
the states of the transition graph to represent conditions as they hold throughout
paths of the CPN, this again would cause uncertainties as paths merge – or, other-
wise, cause further state explosion. Instead, we propose verification of conditional
specifications on transition graphs with related conditions.

Definition 6.5.1 (Conditional CTL). Let φ be a CTL specification and c a Boolean con-
dition, then [c]φ is a CTL specification which must hold only under condition of c holding.

A conditional CTL specification [c]φ is a CTL formula which must only hold under
condition of c, that is, if c holds, then φ must hold. For [c]φ, we read when c, then
also φ. When [true]φ, we simply write φ. For example, the customer complaint
process (Figure 4.2) could feature a specification which requires that when contact
is made, the complaint is always recorded, i.e., the conditional CTL specification
[contact]AFt6.

Definition 6.5.2 (Conditional Transition Graph). LetK be a transition graph of a CPN
with markings M0, ...,Mn, and c a Boolean condition, then K[c] is the transition graph

which excludes those markings Mi, as states in S, and steps Mi
(t,b)−−−→ Mj . as relations in

R, which are not reachable under condition c.

A conditional transition graph K[c| is a transition graph which is limited with re-
spect to those executions of the CPN for which the condition c holds. Then, con-
ditional specifications [c]φ must be evaluated on the conditional transition graph
which is limited to the same condition as the specification prescribes, i.e., K[c].
More formally, K[c] |= [c]φ.

For example, Figure 6.4 illustrates the conditional transition graph K[contact] of
the customer support process presented in Section 4.1. The conditional CTL speci-
fication [contact]AFt6 can be evaluated on this structure, and evaluates to true. In
contrast, the same specification (AFt6) would not hold on the full, non conditional,
structure depicted in Figure 6.1 because, in case of no contact, the issue can not be
resolved, and thus, not be recorded.

92 6.6. Inheritance of Specification Sets

start t0

t24

t12

t20

t1

t22

t2

t21

t9

t23

t22,
t21

t5

t22,
t20

t17

end

t18

t15

t7

t19

t14t6

t8

t11

t16

t13

t10

t22

Figure 6.4: The customer support process from Section 4.1 as a conditional Kripke structure.

6.6 Inheritance of Specification Sets
Model checking verifies a system model against a specification of interest. By al-
lowing sets of specifications to be defined, we enable the definition of BP with a
high degree of allowed change. Model checking can then be used to verify whether
a BP complies with a set of specifications through its transition graph.

Definition 6.6.1 (Template Process). A template process TP is a triple TP = (N,AP, F),
where:

• N is a colored Petri net N = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0),

• AP ⊆ T is a set of atomic propositions,

• F is a set of CTL formulas overAP which all evaluate to true on the transition graph
K of N .

Template processes consist of three parts: a CPN, a set of atomic propositions con-
taining transitions of the CPN (i.e. a set of events and activities of the business
process which the CPN describes), and a set of temporal logic formulas over the

Chapter 6. Business Process Verification 93

atomic propositions. Although the definition specifies a CPN as the process type,
in reality it can also feature any process specification which can be translated into a
CPN similar to to the methods specified in Appendix B.

BP can be based on a template process. A CPN N ′ = (P ′, T ′, C ′,W ′,M ′0) is based
on a template process iff ∃t ∈ T ′ : t ∈ AP ⊆ T – or, in other words, if it shares
elements with the template process. Then, a CPN N ′, that is based on the template
process TP , is compliant with TP iff all formulas f ∈ F of TP evaluate true on
the transition graph K ′ of N ′. A CPN that is compliant with its template process is
called a variant of the template process.

Definition 6.6.2 (Variant). A CPN N ′ = (Σ′, P ′, T ′, A′, N ′f , C
′
f , G

′
f , E

′
f ,M

′
0) is a vari-

ant of template process TP = (N,AP, F) iff:

• ∃t ∈ T ′ : t ∈ AP ⊆ T ,

• All formulas f ∈ F evaluate to true on the transition graph K ′ of N ′.

As variants are CPN (or business processes internally translated to CPN) which
adhere to all the constraints of the template process TP , they may replace the CPN
N of the template process. In such a case, the variant becomes the template process.
Continuing this trend, the CPN N of a template process TP = (N,AP, F) can be a
variant of another template process TP ′ = (N ′, AP ′, F ′). As a result, the CPN N

adheres to the formulas from both templates f ∈ F ∪ F ′ over AP ∪ AP ′. Then, a
template process TP is a subtemplate of another template process TP ′ when the
subtemplate TP extends the set of formulas and the set of atomic propositions of
TP ′. More formally:

Definition 6.6.3 (Subtemplate). A template TP = (N,AP, F) is a subtemplate of
TP ′ = (N ′, AP ′, F ′), iff:

• AP ′ ⊆ AP is in the set of atomic propositions,

• F ′ ⊆ F is in the set of formulas,

• All formulas f ∈ F evaluate true on the transition graph K of N .

We say that a template process TP = (N,AP, F) is a child of another template pro-
cess TP ′ if all atomic propositions AP ′ ⊆ AP and formulas F ′ ⊆ F of the template
process TP ′ are in TP and all formulas evaluate to true. Dually, TP ′ is the parent

94 6.6. Inheritance of Specification Sets

of ST . Two template processes are siblings when they share a parent. Note that
subtemplates may also inherit from multiple parents. Although, the subtemplate
is defined as containing the formulas and atomic propositions of its template pro-
cess at initialization, in practice the sets should remain separate until verification.
The result is a directional graph of template processes where changes at the top of
the graph are automatically propagated down through a myriad of children to the
actual verification of variants.

Governmental WMO Template (law) Governmental Services Templates

VNG WMO Template

Municipality 1 Variant

Local Services Template

Municipality 2 Variants Municipality 3 Variant

Siblings

Parent/child
National
Government

Municipalities

Association of
Municipalities

Figure 6.5: Templates and Variants

Figure 6.5 illustrates how templates, subtemplates, and variants could be employed
in the domain described by the case study. In this example, the national govern-
ment publishes a template describing the WMO law, as well as a set of templates
describing the use of governmental services (Top left in the Figure). A cooperation
of municipalities then bundles these resources and refines the process as a subtem-
plate which each municipality then may inherit to implement one or more variants
for local deployment (center of the figure). As soon as one of the templates is up-
dated, each variant could automatically issue a re-verification routine before a new
instance of the process is executed, ensuring continued adherence after updates.

Chapter 6. Business Process Verification 95

6.7 Model Reduction
The transition graph can be reduced before the model is verified by model check-
ing. As model checking techniques verify models with given specifications in an
exhaustive fashion, any reduction of the model benefits performance.

Model reduction can be achieved through the removal of unused atomic propo-
sitions and model equivalence under the absence of the nexttime operator, other-
wise known as equivalence with respect to stuttering (Browne et al., 1988). Equiv-
alence with respect to stuttering is a useful notion when considering concurrent
systems– or, in our case, concurrently executing branches. In such cases it may be
dangerous to evaluate the nexttime operator, X , as it refers to the next global state
(i.e. the typical interleaved execution of concurrent programs or branches) and
not the next local state (i.e. the execution of one such program or branch) (Lam-
port, 1983). Instead, when one considers the nexttime operator, one actually means
to describe that something occurs before other local occurrences– which, in turn,
can be specified easily using the other operators. For example, the until opera-
tor can be used on the transition graph to specify the next local occurrence (e.g.
AG(t20 ⇒ A[t20 U t21]) can be used to specify that t20 is followed by t21 in every
execution branch of the compliant process depicted in Figure 6.1). To offer a par-
allel interleaving safe evaluation of the nexttime operator, any nexttime operator is
parsed into an until operator. As an additional benefit, without having to evaluate
the nexttime operator, the model can be significantly reduced before verification
through the notion of equivalence with respect to stuttering.

A finite Kripke structure K can be uniquely identified by a single CTL formula
FK (Browne et al., 1988). As a result, FK can be used to evaluate the equivalence
of other Kripke structures K ′ to K. When considering FK without nexttime opera-
tors, the equivalence of K ′ can be evaluated with respect to stuttering. Two Kripke
structures K and K ′ are equivalent with respect to stuttering if all paths from the
initial states s0 ∈ S0 of K are stutter equivalent with the paths from the initial
states s′0 ∈ S′0 of K ′ and vice versa. Two paths are stutter equivalent, as denoted
by π ∼st π′, if both paths can be partitioned into blocks of states π = k0, k1, ... and
π′ = k′0, k

′
1, .. such that ∀s ∈ ki,∀s′ ∈ k′i : L(s) = L(s′) for i > 0 (Groote and

Vaandrager, 1990).

To reduce the model, first those atomic propositions not used by specifications, with
the exception of those relating to events, are removed. Then, the atomic proposi-
tions related to markings are removed from the labels of all states and the set AP

96 6.8. Discussion

such that Mi 6∈ AP and ∀s ∈ S : Mi 6∈ L(s) for 0 6 i 6 n. Finally, a stutter equiva-
lent model with respect to the used atomic propositions is obtained. Although the
removed labels are needed during the conversion process to ensure unique states
to be generated, they can be removed at this point because they are not used by
specifications or because specifications should only be expressed using bindings
on activities or events of the business process (i.e. transitions) and not its progres-
sion information (i.e. marking).

start t0

t24t22

t21 t23

t22,

t21

t3

t5

end

t19

t14

t6

t11

t13

t10

t22

Figure 6.6: The customer support process from Section 4.1 as a reduced Kripke structure
w.r.t the atomic propositions required by the compliance specifications.

Figure 6.6 depicts the stutter equivalent model of the Kripke structure depicted in
Figure 6.1 after the removal of the unused atomic propositions. Note that several
unlabeled states remain. These can not be removed, as it would affect the eval-
uation of formulas (e.g. AG(t19 ⇒ A[(t19 ∨ t21 ∨ t22) U t23]) would incorrectly
evaluate true).

6.8 Discussion
The introduction of the transition graph presents a novel model for the formal ver-
ification of BP. Where other models capture events (i.e. occurrences of binding el-
ements in CPN) as atomic actions, we see them as continuous actions over subse-
quent states. In doing so, we capture parallel execution information, as well as the
local next, i.e., the next event in individual branches, be they exclusive or parallel.
Using the branching-time temporal logic CTL, we can specify temporal relations,
verify them on the transition graph, and interpret them on the possible executions
of the CPN.

Chapter 6. Business Process Verification 97

An additional layer of labeling on both the CPN as well as the transition graph pro-
vides verification options over previously unsupported BPMN BPD groups. Both
groups of structured activities and grouplike structures, such as pools and swim-
lanes, can be used for verification. The implications are twofold. Firstly, by verify-
ing over groups, specifications can make statements over multiple elements simul-
taneously. For example, the CTL specification AG(p ⇒ AFg), where g is a group
containing q and r, specifies that p is always eventually followed by an element en-
closed within g – i.e., q or r. Secondly, we can verify whether an element is enclosed
within a group. In doing so, it is possible for a CTL specification to verify whether
a structured activity is performed by a certain role. For example, the CTL specifica-
tion AG((p∧ s)∨¬p) verifies whether p is always contained within the swimlane s
– and, thus, is performed by the role of s.

Conditions are an important feature of BP to provide flow control of branching
constructs. Although the specification logic CTL is a branching-time temporal logic,
it is unable to interpret over such conditions. However, by allowing specifications
to be paired with conditions, and allowing those specifications to be verified on
transition graphs generated under those conditions, we enable an additional layer
of expressiveness without demanding additional functionality from models and
specifications, or their supporting model checkers.

Inheritance is provided through a parent-child relation over specifications. In doing
so, we provide declarative design-time variability support as an extension of com-
pliance verification. By specifying a BP using declarative compliance-like specifi-
cations within a template, and then allowing variants to be based upon such a tem-
plate, we can employ formal verification and model checking to verify whether the
variant BP adheres to the specification rules provided within the parent template.

Formal verification using model checking techniques verifies models against spec-
ifications in an exhaustive manner. By providing model reduction, we gain on per-
formance. Model reduction is achieved through the application of model equiva-
lence with respect to stuttering. This is possible because of the absence of the next-
time operator, which is dangerous when evaluated within concurrently executing
branches. Any, by specifications unused, atomic propositions are removed from the
model before the model is reduced by equivalence with respect to stuttering. The
result is a model that is optimized with respect to the atomic propositions used for
verification. In addition, this process makes it possible to achieve further reduction
by splitting specifications into smaller sets, each with less total atomic propositions.
Each set of specifications is then veried on a reduced model specific to that set.

98 6.8. Discussion

When applied together, the presented techniques allow for design-time compliance
and variability verification over BP containing parallel, local next, group, role, and
condition information while using a model with extensive model reduction.

CHAPTER 7

Verification Specifications

The effective exploitation of his powers of abstraction must be regarded as one of
the most vital activities of a competent programmer.

– Edsger W. Dijkstra

The specification of rules over business processes is not without difficulties. Not
only is the process of specifying rules difficult when using temporal logics, but also
the relations between rules themselves can quickly overwhelm. In addition, we
find a clear gap between traditional imperative BP design and the declarative rule
based design offered by compliance and variability (Aiello et al., 2010). Where the
behavior of imperatively designed BP are easily interpreted, declarative BP must
be interpreted with the ability to evaluate alternative and exceptional situations.

Variability is commonly offered to imperatively designed BP through feature mod-
eling and variation points (Sun and Aiello, 2008). Although extremely powerful
and straightforward to understand when requiring low amounts of variability, the
method quickly encounters difficulties when having to deal with the high amounts
of variability offered by flexible declarative process definitions. At the same time,
the declarative style of BP definition fares extremely well when dealing with highly
flexible BP, but would require an amount of rules incomprehensible to any user
when designing a process with low amounts of variability (Groefsema et al., 2012).

102 7.1. Visualization

Declarative specifications are rule based specifications over (groups of) structured
activities in BP. We define declarative specifications for BP soundness, compliance,
and high variability. Each specification is (A) related to specific requirements de-
scribed in Chapter 5, (B) defined using the temporal logic CTL, and (C) includes a
visual element, where applicable.

To ease the application of specifications, other BP compliance and flexibility ap-
proaches included visual elements in the form of connectors and labels to support
their application (van der Aalst and Pesic, 2006; Awad et al., 2008). We continue
this trend while recognizing that – although this approach is very effective for BP
compliance or BP variability when considering extremely flexible BP – it requires
additional support when considering BP variability with low amounts of flexibility.

7.1 Visualization
Declarative specifications enforce temporal conditions on the presence of struc-
tured activities within possible executions of a BP. To ease design and readability
of specifications, each specification can be represented both in a formal way (e.g.
by a CTL formula) and in a visual way. Since existing visualization languages are
either designed towards compliance verification of interleaved linear executions
of BP (Awad et al., 2008), or designed to define flexibile linear interleaved BP ex-
ecutions (van der Aalst and Pesic, 2006; Pesic and van der Aalst, 2006), they lack
support for the most loosely defined variability specification requirements (e.g.,
Requirement 5.2.11.ii) as well as support for different branching requirements (e.g.,
Requirement 5.2.15.ii), parallel requirements (e.g., Requirement 5.2.15.xi), and con-
sistent immediate response requirements throughout the model (e.g., Requirement
5.2.15.iii). Because of this, a new visualization language is required for declarative
BP variability. The visualization of the formal representation is presented through
the rules described below.

Specifications consists visually of a set of labels. Labels are either applied directly
to (groups of) structured activities or part of connectors. Labels are shapes of trian-
gles , squares , or diamonds that can be either open or filled:

• Triangles signify presence in some paths (open) or all (filled).

• Squares signify absence in some paths (open) or all (filled).

• Diamonds signify presence in exclusive (open) or parallel (filled) paths.

For example, a structured activity that is labeled with an open triangle must be
present in at least one execution path, and a group containing multiple structured

Chapter 7. Verification Specifications 103

activities that is labeled with a closed triangle enforces that in every execution
path one of the structured activities contained within the group must be present.

Connectors enforce temporal relations between the presence of two (groups of)
structured activities in execution paths. Where labels on (groups of) structured ac-
tivities represent basic constraints on the process, connectors describe complicated
conditions and effects. Connectors can be uni- or bi-directional.

Uni-directional connectors specify a condition and effect relation between its source
and target. Uni-directional connectors contain a filled circle at its source, possi-
bly followed by a number of labels, which together specify the condition of the
connector. If no further labels are specified as part of the condition, the condition
describes encountering the source in an execution path. An open circle specifies
a relation between a structured activity and a role performing that activity instead.
The effect of the connector is described by labels at its target. Connectors can either
consist of a solid or dashed line. The effect of a connector with a solid line mult
hold immediately, whereas the effect of a connector with a dashed line mult hold
eventually. When multiple labels are specified as part of the condition, each label
is paired with a corresponding effect label at its target, of which only applicable
effects are applied (i.e. those corresponding to conditions that hold). For example,
Figure 7.1 depicts the step by step interpretation of a connector which specifies that
when x is larger than zero, and the activity p is absent from the process, the activity
q must be absent as well, and when p is present, q must be too.

p q

Source Target

Source condition Effect

Global condition

If p is absent in all paths then q must be absent in all paths

If p is present in some path then q must be present in some path

[x > 0]

Line dash

If x > 0 then

Globally/Eventually

Figure 7.1: Visualization Example

Bi-directional connectors have a circle at the center of the connector with its con-

104 7.2. Soundness Specifications

ditions and effects facing outwards both ways. Bi-directional connectors can be
interpreted as two uni-directional connectors joined at its conditions, with a filled
circle specifying that the conditions and effects on each side must both be satis-
fied, and an open circle specifying that the conditions and effects on one of the
sides must be satisfied instead.

7.2 Soundness Specifications
Soundness specifications include specifications for the verification of the correct-
ness of BP. Specifications include those verifying reachability of states, process ter-
mination, and proper process completion.

Specifications 7.2.1 (Reachability). Let N = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0) be a
CPN. The reachability of structured activities t ∈ T within N is determined by evaluating
the following specifications on K = (S, S0, R, L) the transition graph of N :

Requirement Specification Visual element
5.2.1 Reachability EF t N/A

The reachability of individual structured activities can be verified using Specifica-
tion 7.2.1. A structured activity, as represented by a transition t ∈ T of the CPN N ,
is reachable iff there exists a path within the transition graph K of N where even-
tually t holds. When Specification 7.2.1 evaluates to false for a transition t ∈ T then
there exists no marking (i.e. distribution of tokens over places P) in the CPN N

where t is enabled and would occur eventually.

Specifications 7.2.2 (Termination). Let N = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0) be a
CPN. The termination of N is determined by evaluating the following specifications on
K = (S, S0, R, L) the transition graph of N :

Requirement Specification Visual element
5.2.2 Termination AF end N/A
5.2.2 Weak termination EF end N/A
5.2.2 Weak termination (alt.) ¬E[¬end U (¬EF end∧¬end)] N/A

The termination of a BP, represented by a CPN N , can be verified against Spec-
ification 7.2.2. Specification 7.2.2 includes three different formulas which denote
termination. The first, AFend denotes whether a transition associated with an end
event is always eventually encountered in every execution path. Since this formula
fails when encountering loops in the Kripke structure, an additional two formu-
las are included. These weak termination formulas denote whether there exists an

Chapter 7. Verification Specifications 105

execution path where a transition associated with an end event is eventually en-
countered, and whether this is the case at each reachable state1, respectively.

Specifications 7.2.3 (Proper completion). Let N = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0)

be a CPN. The proper completion of N is determined by evaluating the following specifica-
tions on K = (S, S0, R, L) the transition graph of N :

Requirement Specification Visual element
5.2.3 Proper Completion AG(end⇒ AXAG ¬end) N/A

The proper completion of a BP, represented by a CPN N , can be verified against
Specification 7.2.3. Specification 7.2.3 denotes whether, after encountering a state
associated with an end event, no such a state is encountered again. Whenever this
formula evaluates to false, there exists an interleaving of concurrently executing
paths involving the end event. In other words, there exists an execution where a
structured activity is being executed concurrently to the invocation of the end event
and the BP is not properly completed.

7.3 Preventive Compliance Specifications
Preventive compliance verification verifies whether a BP is compliant with a set
of rules represented by compliance specifications. Preventive compliance specifi-
cations include specifications on the occurrence of structured activities and their
effects, the order of execution of structured activities and their effects, and resource
allocation (e.g. which roles perform which structured activities), while under con-
dition of possible data values. Although the binding elements captured by the
transition graph could capture the effects of the execution of structured activities
within its binding, we have found that many such effects and related rules can be
inferred from events pertaining to the BP. We, therefore, focus on the occurrence of
events and related rules.

Specifications 7.3.1 (Occurrence). Let N = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0) be a
CPN. The occurrence of structured activities t ∈ T within N is determined by evaluating
the following specifications on K = (S, S0, R, L) the transition graph of N :

1This formula is equivalent to A[EF end W end], where W is the lesser known Unless operator.

106 7.3. Preventive Compliance Specifications

Requirement Specification Visual element
5.2.4.i Absence AG ¬t
5.2.4.ii Universality AG t N/A
5.2.4.iii Existence AF t

5.2.4.iv Bounded existence ¬EF (¬t ∧ EX(t ∧ EF (¬t ∧
EX(t ∧ EF (¬t ∧ EX(t))))))

N/A

The compliance specifications towards the occurrence of structured activities are
compiled from the property specification patterns of finite state verification (Dwyer
et al., 1999). Four formulas pertaining to the occurrence of structured activities
t ∈ T are included in Specification 7.3.1 and verify the absence, universality, ex-
istence, and bounded existence of a structured activity, respectively. Although
universality and bounded existence are described as being evaluated over a sin-
gle t ∈ T , their evaluation would only result in useful feedback when evaluating
over sets of structured activities as described in Section 6.4.

Specifications 7.3.2 (Ordering). Let N = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0) be a CPN.
The ordering of structured activities ti ∈ T within N is determined by evaluating the
following specifications on K = (S, S0, R, L) the transition graph of N :

Requirement Specification Visual element
5.2.5.i Precedence ¬E[¬t0 U t1]

5.2.5.ii Response AG(t0 ⇒ AF t1)

The compliance specificationd towards the ordering of structured activities are also
compiled from the property specification patterns of finite state verification (Dwyer
et al., 1999). Two formulas specifying the order between two structured activities
t0, t1 ∈ T are included in Specification 7.3.2. The first describes a precedence rela-
tion which specifies that t0 must precede any occurrence of t1. Similarly, the second
describes a response relation specifying that any occurrence of t0 must eventually
be followed by an occurrence of t1. Although seemingly similar, the two formulas
behave entirely different around branching and merger of exclusive paths, as well
as in their indirect inclusion requirements of t0 and t1 respectively.

Specifications 7.3.3 (Resource Specifications). Let LN = (N,Gl, Rl, Lg, Lr) be a
labeled CPN. Resource specifications over structured activities t ∈ T within N , roles
r ∈ Rl, and (t, r) ∈ AP are determined by evaluating the following specifications on
K = (S, S0, R, L) the labeled transition graph of N :

Chapter 7. Verification Specifications 107

Requirement Specification Visual element
5.2.6.i Always performed by role AG(t⇒ (t, r))

5.2.6.ii Performed by role EF (t⇒ (t, r))

5.2.6.ii Never performed by role AG(t⇒ ¬(t, r))

Resource specifications include specifications on the roles that perform specific
structured activities. Specification 7.3.3 includes three resource related formulas
that verify whether a structured activity t ∈ T is performed by role r ∈ Rl either
always, at least once, or never.

Specifications 7.3.4 (Data Conditions). Let N = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0) be
a CPN, c a condition related toN ,K = (S, S0, R, L) the transition graph ofN , andK[c] =

(S, S0, R, L) the conditional transition graph of N . The specification φ is determined by
evaluating the following:

Requirement Specification Visual element
5.2.7.i Holds always K |= φ N/A
5.2.5.ii Holds when K[c] |= [c]φ N/A

Instead of including additional formulas, Specification 7.3.4 adds an additional
layer of expressive power to all other specifications by allowing specifications to
be evaluated under condition of (ranges of) data values. Verification of formulas
over data conditions [c]φ increases the expressive power of a formula by evaluating
that formula φ on a Kripke structureK which only includes states that are reachable
under condition of c.

7.4 Variability Specifications
Variability verification extends preventive compliance verification by defining sets
of specifications to describe the core operations of a BP. As a result, variability ver-
ification allows BP to be designed and redesigned with several implementations as
long as the set of specifications evaluates to true. Potentially, many different BP can
be designed and implemented for local specific use from the exact same set of spec-
ifications describing the generic case. Although we focus on redesign during the
process design phase (Figure 2.2), the same principles could, in theory, be applied
to support BP redesign during process enactment as long as already executed and
currently executing sections of the BP remain unaltered.

Specifications 7.4.1 (Inclusion Specifications).
Let N = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0) be a CPN. The inclusion of structured activ-

108 7.4. Variability Specifications

ities ti ∈ T within N is determined by evaluating the following specifications on K =

(S, S0, R, L) the transition graph of N :

Requirement Specification Visual element
5.2.11.i Include EF t0

5.2.11.ii Prerequisite EF t0 ⇒ EF t1

5.2.11.iii Substitution AG ¬t0 ⇒ EF t1

5.2.11.iv Corequisite (EF t0 ⇒ EF t1) ∧
(EF t1 ⇒ EF t0)

5.2.11.v Causal selection (EF t0 ⇒ EF t1) ∧
(AG ¬t0 ⇒ AG ¬t1)

Inclusion specifications enforce the inclusion of (sets of) structured activities. Spec-
ification 7.4.1 includes five selection formulas. The first formula enforces the simple
inclusion of structured activities, while the other four enforce more complex inclu-
sion relations between structured activities. Note, that inclusion does not equal
existence (Specification 7.3.1). That is, the selection of a structured activity does not
require its execution during process enactment and only requires its occurrence in
at least one possible execution path.

Specifications 7.4.2 (Exclusion Specifications).
Let N = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0) be a CPN. The exclusion of structured activ-
ities ti ∈ T within N is determined by evaluating the following specifications on K =

(S, S0, R, L) the transition graph of N :

Requirement Specification Visual element
5.2.12.i Exclude AG ¬t0
5.2.12.ii Exclusion EF t0 ⇒ AG ¬t1
5.2.12.iii Admittance AG ¬t0 ⇒ AG ¬t1
5.2.12.iv Exclusive choice (EF t0 ⇒ AG ¬t1) ∧

(EF t1 ⇒ AG ¬t0)

Exclusion specifications enforce the exclusion of structured activities. Specifica-
tion 7.4.2 includes four selection formulas. The first formula enforces the simple
exclusion of structured activities, while the other three enforce exclusion relations
between structured activities.

Specifications 7.4.3 (Execution Specifications).
Let N = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0) be a CPN. The execution of structured activ-
ities ti ∈ T within N is determined by evaluating the following specifications on K =

(S, S0, R, L) the transition graph of N :

Chapter 7. Verification Specifications 109

Requirement Specification Visual element
5.2.13.i Execute AF t0

5.2.13.ii Requirement EF t0 ⇒ AF t1

5.2.13.iii Replacement AG ¬t0 ⇒ AF t1

5.2.13.iv Backup EG ¬t0 ⇒ AF t1

5.2.13.v Causal execution (EF t0 ⇒ AF t1) ∧
(AG ¬t0 ⇒ AG ¬t1)

Execution specifications enforce requirements on the execution of structured activ-
ities. That is, they require that structured activities are encountered in all possible
execution paths. Specification 7.4.3 includes five execution formulas. Similar to
earlier specifications, the first formula enforces the simple execution of structured
activities, while the other four enforce more complex execution relations between
structured activities.

Specifications 7.4.4 (Option Specifications).
Let N = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0) be a CPN. The optional execution of structured
activities ti ∈ T within N is determined by evaluating the following specifications on
K = (S, S0, R, L) the transition graph of N :

Requirement Specification Visual element
5.2.14.i Option EG ¬t0
5.2.14.ii Avoidance EF t0 ⇒ EG ¬t1

Specification 7.4.4 includes two option formulas. Similar to execution specifica-
tions, option specifications enforce requirements on the execution of structured ac-
tivities. However, instead of enforcing the occurrence of structured activities in all
possible execution paths, option specifications enforce that structured activities do
not occur in all execution paths. For example, a structured activity with both in-
clude (Specification 7.4.1.i) and option (Specification 7.4.4.i) must occur in a path,
but not all. As a result, the structured activity is truly optional to execute.

Specifications 7.4.5 (Scheduling Specifications).
Let N = (Σ, P, T,A,Nf , Cf , Gf , Ef ,M0) be a CPN. The scheduling of structured activ-
ities ti ∈ T within N is determined by evaluating the following specifications on K =

(S, S0, R, L) the transition graph of N :

Requirement Specification Visual element
5.2.15.i Response AG(t0 ⇒ AF t1)

5.2.15.ii Exists response AG(t0 ⇒ EF t1)

110 7.5. Discussion

5.2.15.iii Immediate response AG(t0 ⇒ A[t0 U t1])

5.2.15.iv Exists immediate response AG(t0 ⇒ E[t0 U t1])

5.2.15.v No response AG(t0 ⇒ AG¬t1)

5.2.15.vi Exists no response AG(t0 ⇒ EG¬t1)

5.2.15.vii No immediate response AG(t0 ⇒ ¬E[t0 U t1])

5.2.15.viii Exists no imm. response AG(t0 ⇒ ¬A[t0 U t1])

5.2.15.ix Coexecution AG(t0 ⇒ AF t1) ∨
AG(t1 ⇒ AF t0)

5.2.15.x Cooccurence AG(t0 ⇒ EF t1) ∨
AG(t1 ⇒ EF t0)

5.2.15.xi Parallel execution EF (t0 ∧ t1)

5.2.15.xii Exclusive execution AG(t0 ⇒ AG¬t1) ∧
AG(t1 ⇒ AG¬t0)

Scheduling specifications enforce requirements on the order of execution between
structured activities. Specification 7.4.5 includes twelve scheduling formulas, which
range from requiring a simple response to requiring parallel execution.

7.5 Discussion
Formal verification is a technique where a model and specification are used in con-
cert to verify a system. The model describes the system, while the specification de-
scribes the required behavior. The required behavior is then verified on the model.
However, that which is not described by the model, can never be verified by a spec-
ification. When evaluating the area of formal verification of BP models, we often
see a large discrepancy between what models describe (and, thus, what behavior
can be verified by a specification). In case of verification of the soundness of model-
ing languages, every detail is described by the model and any related specification
can be verified. The models themselves, however, quickly consist of uncountable
many states. In case of the verification of BP compliance and variability, all these
detailed states are unnecessary. However, the information captured by models spe-
cific to compliance often capture too little information. For example, the immediate
response and parallel execution specifications (Specifications 7.4.5.iii and xi) are of-
ten left unsupported when capturing concurrent behavior of executing branches.

Through the definition of the transition graph we allow a large set of event-based
specifications. The transition graph supports specifications towards the verifica-
tion of soundness, compliance, and variability. However, since the transition graph

Chapter 7. Verification Specifications 111

is Petri net-based, and soundness verification is solved for Petri net definitions
(van der Aalst, 1998; Wynn et al., 2009), we decide to perform soundness verifi-
cation on the Petri net as a preprocessing step instead. The benefits are twofold.
First, soundness specifications allow for limited reduction of the transition graph
as every atomic proposition must be used for the verification of reachability of each
structured activity. Without these specifications, unused atomic propositions can
be removed, and model reduction can be applied to greater effect. Second, with a
sound Petri net, the transition graph can be formed programmatically under saver
conditions. This way, the BP is first verified for soundness, and then transformed
to a transition graph and verified against compliance and variability specifications.

For example, by applying the specification patterns defined throughout this chap-
ter, we can interpret the TCP compliance rules from the telecommunications cus-
tomer support case (Table 4.1) to form the CTL specifications of Table 7.2.

Table 7.2: TCP Compliance Rules as CTL specifications.

CTL Formula Specification
1. !E[!(t11 ∨ t3) U end] 7.3.2.i

AF(end) 7.4.3.i
2. AG(t10 ⇒ AF(t13 ∨ t14)) 7.4.5.i
3. AG(t5 ⇒ A[t5 U t6]) 7.4.5.iii
4. AG(t5 ⇒ AF(t14)) 7.4.5.i
5. AG(t5 ⇒ EF(t24)) 7.4.5.ii
6. !EF(t21 ∧ t23) 7.4.5.xi

!EF(t22 ∧ t23) 7.4.5.xi
7. AG(t13 ⇒ A[t13 U t14]) 7.4.5.iii
8. EF(t21 ∧ t22) 7.4.5.xi
9. AG(t19 ⇒ EF(t23)) 7.4.5.ii

CHAPTER 8

Automated Specification Assembly

Even perfect program verification can only establish that a program meets its
specification. [. . .] Much of the essence of building a program is in fact the
debugging of the specification.

– Fred Brooks

Business processes, or process families, with large amounts of variability are easily
described using the earlier presented methods, however, processes with smaller
amounts of variability require a significant number of specifications to describe
using the same declarative techniques. In other words, as the amount of variability
decreases, the set of specifications increases dramatically when using declarative
techniques. Often this set becomes so large that it is impossible to define manually.

To support both declarative definitions of BP with low amounts of variability and
automated detection and incorporation of ad-hoc runtime deviations of BP, we pro-
pose a method which uses sets of source BP to automatically generate the required
specifications. That is, we allow the input of a set of source BP describing the al-
lowed variants, consolidate this set into a single structure defining the combined
relations between the included structured activities, and output a set of specifica-
tions describing those variants, and any possible variant in between.

114 8.1. Prime Event Structures

Source BP can either be previously designed imperative BP variants (McMillan and
Probst, 1995; Esparza et al., 1996), or be mined from execution traces of previous
executions of BP variants (van Beest et al., 2015). The result is a set of specifica-
tions applicable within a template process (Definition 6.6.1) together with one of
the source BP. The proposed technique can be applied to describe either entire BP,
or sections within BP that must not allow any change in the form of sub-processes.

8.1 Prime Event Structures
From the perspective of a declarative specification, the allowed control-flow is spec-
ified by the relations between activities with respect to their allowed or constrained
behavior. That is, what activities are required, what activity sequences are not al-
lowed in one run (conflict), which activities can be executed in parallel, etc. As
such, so-called behavioral relations are required to be obtained from each input mo-
del in order to be combined into a set of common behavioral relations that together
represent the generic process model.

Event structures are specifically designed to obtain and represent these relations be-
tween event occurrences in a process. Therefore, we convert each input process to
an event structure, which are subsequently merged with the aim of generating a
generic set of behavioral relations that together can be converted into a variability
specification which describes a family of BP.

A Prime event structure (Nielsen et al., 1981) is a graph of events, where each
event e represents the occurrence of a task or activity in the business process. As
such, multiple occurrences of the same activity are represented by different events.
Events can have the following binary behavior relations: i) Causality (e < e′) in-
dicates that event e is a prerequisite for e′; ii) Conflict (e#e′) implies that e and e′

cannot occur in the same run; iii) Concurrency (e ‖ e′) indicates that no order can be
established between e and e′. This can be defined formally as follows:

Definition 8.1.1 (Labeled Prime Event Structure (Nielsen et al., 1981)). A Labeled
Prime Event Structure over the set of event labels L is the tuple E = 〈E,6,#, λ〉 where:

• E is a set of events,
• λ : E → L is a labeling function.
• 6 ⊆ E × E is a partial order, referred to as causality relation,
• # ⊆ E × E is an irreflexive, symmetric conflict relation,
• ‖ : E2\(< ∪ <−1 ∪#) is the concurrency relation, where< denotes the irreflexive

causality relation.

Chapter 8. Automated Specification Assembly 115

The conflict relation satisfies the principle of conflict heredity, i.e. e#e′ ∧ e′ 6 e′′ ⇒
e#e′′ for e, e′, e′′ ∈ E.

The sets of events that can occur together in an execution of the system underlying
the event structure system represent the possible “states” in the execution context
of that system and are referred to as configurations. A set of events C ⊆ E is a
configuration iff (i) C is causally closed: for each event e ∈ C, the configuration C
also contains all causal predecessors of e, i.e. ∀e′ ∈ E, e ∈ C : e′ 6 e ⇒ e′ ∈ C,
and (ii) C is conflict free: C does not contain any pair of events in mutual conflict,
i.e. ∀e, e′ ∈ C ⇒ ¬(e#e′). An event e is an extension of a configuration C, denoted
C ⊕ e, iff C ∪ {e} is also a configuration.

A local configuration of an event e is defined as dee , {e′ | e′ 6 e}. The strict causes
of an event e are defined as de) , dee \ {e}. Two events e1 and e2 are in immediate
conflict, denoted e1#µe2, iff e1#e2 and they are both possible extensions of the same
configurations, which can be verified by checking if de1) ∪ de2e and de1e ∪ de2) are
both configurations or not.

8.2 Prefix Unfoldings
A branching process is an alternative class of Petri nets that explicitly represents all
partially-ordered runs of the original net in a single tree-like structure (Engelfriet,
1991; Esparza, 1994). A run of a net is a partially-ordered set of events that can occur
in one execution of that net. Branching processes are intimately related with prime
event structures, as they explicitly represent the same set of behavioral relations,
which is formally shown in the following definition.

Definition 8.2.1. Let N = (P, T,A) be a net and x, y ∈ P ∪ T two nodes in N .

• x and y are causal, written x <N y, iff (x, y) ∈ A+,
• x and y are in conflict, denoted x #N y, iff ∃ t, t′ ∈ T : t 6= t′ ∧ •t ∩ •t′ 6=
∅ ∧ (t, x), (t′, y) ∈ A∗,

• x and y are concurrent, denoted x ‖N y, iff neither x <N y, nor y <N x, nor
x#Ny.

Subsequently, a branching process can now be defined formally as follows (Es-
parza, 1994):

116 8.2. Prefix Unfoldings

Definition 8.2.2. Let N = (P, T,A,M0) be a Petri net. The branching process β =

(B,E,G, ρ) of N is the net (B,E,G), where:

• B is the set of conditions,

• E is the set of events,

• G denotes the flow relation of the branching process,

and is defined by the inductive rules in Figure 8.1. The rules also define the function ρ :

B ∪E → P ∪T that maps each node in β to a node in N . Given the set X ⊆ B ∪E, %(X)

is a shorthand for {ρ(x) | x ∈ X}.

p ∈M0

b = 〈∅, p〉 ∈ B ρ(b) = p

t ∈ T B′ ⊆ B B′2 ⊆ ‖β %(B′) = •t
e = 〈B′, t〉 ∈ E ρ(e) = t

e = 〈B′, t〉 ∈ E t• = {p1, . . . , pn}
bi = 〈t′, pi〉 ∈ B ρ(bi) = pi

Figure 8.1: Inductive construction of a branching process

Min(β) denotes the set of minimal elements of B ∪E with respect to the transitive
closure ofG. As such,Min(β) corresponds to the set of places in the initial marking
of N , i.e., %(Min(β)) = M0. Labels on a net N can be carried over to its branching
process β by composing λ and ρ, i.e., λβ , λN ◦ ρ.

The behavioral relations derived from the branching process generate a prime event
structure (Nielsen et al., 1981). Transitions in the branching process correspond to
events in the event structure. Subsequently, we can extrapolate the notion of config-
uration prime event structures to branching processes. Given a branching process
β = (Bβ , Eβ , Gβ , λβ) of a marked net N , the event structure E of N is defined as
E(N) , (Eβ ,6β ∩ E2

β ,#β ∩ E2
β , λβ |Eβ)1. In (Armas-Cervantes et al., 2016), it is

shown that silent events can be removed in a behavior-preserving manner, under
the notion of visible-pomset equivalence.2

The branching process of a Petri net with cycles is potentially infinite. For safe nets,
however a prefix of a branching process fully encodes the behavior of the original

1We use A2 to denote the cartesian product of a set A.
2This holds if every sink event in the event structure is a visible event, which can be ensured by

adding a dummy labeled final event to the Petri net from which the event structure is generated.

Chapter 8. Automated Specification Assembly 117

net, as shown in (McMillan and Probst, 1995). Such a prefix is referred to as the
complete prefix unfolding of a net. We use βm to denote a maximal branching process
and βf to denote a complete prefix unfolding of βm.

Definition 8.2.3. Let βm = (Bm, Em, Gm, ρm) be the maximal, possibly infinite branch-
ing process of the net system N .

• A local configuration dee of an event e in a branching process is the set of events
that causally precede e, i.e. dee = {e′ ∈ Em | (e′, e) ∈ G∗m}.

• The reachable marking of a local configuration, denoted Mark(dee), is the set of
places in N that get marked after all the transitions in %(dee) fire.

• An adequate order � is a strict well-founded partial order on local configurations,
such that dee ⊂ de′e implies dee� de′e3.

• An event e of a branching process is a cutoff event if there exists a corresponding
event e′, such that Mark(dee) = Mark(de′e) and de′e� dee. The pair cutoff/corre-
sponding events (e, e′) is referred to as a cc-pair.

• Let Ef ⊆ Em be the set of events of βm such that e ∈ Ef iff no event e′ <βm e is a
cutoff event. A complete prefix unfolding βf is the subnet of βm having Ef as set
of events.

A cutoff-corresponding pair is called a cc-pair. The isomorphism on the future of
the events in a cc-pair (e, f), that is dee⇑ and dfe⇑, will be denoted as I(dee,dfe).

To represent the behavior specified by a business process model, we use the prime
event structure derived from the complete prefix unfolding of the corresponding
Petri net, which is referred to as the PES prefix unfolding of a model.

Definition 8.2.4. Let βf = (Bf , Ef , Gf , ρ) be the complete prefix unfolding of the net
system N , with labelling function λβ . Let Ef ⊆ Ef be the set of events of βf such that
e ∈ Ef iff e is labelled (i.e. λβ(e) 6= τ), or e is cutoff or corresponding event. The PES
prefix unfolding of N , denoted E(N):

E(N) , (Ef ,6β ∩ Ef
2
,#β ∩ Ef

2
, λβ |Ef)

It is easy to see that the computation of a PES prefix unfolding is the same as for
a regular prime event structure except that we keep track of cc-pairs, and we do
not abstract away a silent event when such event is either a cutoff event or a corre-
sponding event.

3Several definitions of adequate order exist; we use the one defined in (Esparza et al., 2002), because it
has been shown to generate compact unfoldings.

118 8.3. Execution and Elementary Loop Identification

8.3 Execution and Elementary Loop Identification
As a result of the PES prefix unfolding, some configurations are not explicitly repre-
sented. For these cases, we use the “shift” operation on net unfoldings introduced
in (Esparza, 1994), to facilitate the exploration of configurations. Given a cc-pair
(e, f), we can “shift” from one configuration to the other, as the futures of dee and
dfe are isomorphic. The shift operation is essentially a “step” function that allows
to move from one configuration to another. This intuition is captured in the follow-
ing definition:

Definition 8.3.1. Let (e, f) be a cc-pair of the PES prefix E and I(dee,dfe) the isomorphism
from dee⇑ to dfe⇑. Moreover, let C be a configuration of E . The (e, f)-shift of C, denoted
S(e,f)(C):

S(e,f)(C) = dfe ∪ I(dee,dfe)(C \ dee)

S(e,f)(C) is a backward shift iff dfe ⊂ dee, that is, the corresponding event f is in-
cluded in the local configuration of the cutoff event e, otherwise S(e,f)(C) is called
a forward shift. Moreover, an event e is a backward cutoff event iff it entails a back-
ward shift. Intuitively, a backward shift “moves back” to a configuration that has
already been observed in the past of the run. Overloading the notation, we use the
following variant:

Se(C) =

{
C if e is not a cutoff event
S(e,corr(e))(C) otherwise

The shift operation is sufficient to identify the subsequent relations of cutoff events.
However, in case of cycles, eventually the same cutoff event will be visited again
and this relation cannot be inferred from the existing relations. Consequently, we
require a graph of configurations and configuration extensions, for which we rely
on the notion of partially ordered multisets (pomset) (Pratt, 1986). A pomset is a di-
rected acyclic graph where the nodes are configurations, and the edges represent
direct causality relations between configurations. Each edge is labeled by an event.
As a pomset represents one possible execution, it does not contain conflict relations.
The behavior of a PES can be characterized by the set of pomsets it induces.

When the PES prefix captures cyclic behavior via cc-pairs, the set of induced pom-
sets is infinite. This can be resolved by extracting a set of elementary pomsets that
collectively cover all the possible pomsets induced by a PES prefix, similar to the
notion of elementary paths. As such, every cycle is unfolded such that it is tra-
versed only once.

Chapter 8. Automated Specification Assembly 119

By successively applying configuration extensions and shift operations on the PES
prefix, we obtain a so-called expanded prefix, which is a directed acyclic graph re-
flecting the configuration extension relation. Although we do not explicitly build
the entire expanded prefix for the entire PES, we are implicitly using it in order to
identify loop relations between events. Figure 8.2 shows two PES prefix unfoldings
with cyclic behavior, one with one loop entry (a) and one with two loop entries
(b). The red dashed arrows depict the shift from the cutoff events to their respec-
tive corresponding events. We will subsequently use these examples to explain the
prefix expansion for identifying loop relations.

a0:A

a1:B

a2:C

a3 :τ a4 :τ

a5:D

(a) Single entry cycle

a0:A

a1 :τ a2 :τ

a3:B a4:C

a5 :τ a6 :τ a7 :τ a8 :τ

a9:D

(b) Double entry cycle

Figure 8.2: PES prefix unfoldings of cyclic models

To identify the set of events that are part of an elementary loop, we need to obtain
the full loop configuration, denoted by CL. For the PES prefix unfolding in Fig-
ure 8.2a, it is easy to see that CL = {a1, a2, a4}, whereas for the PES prefix unfolding
in Figure 8.2b, CL = {a1, a2, a3, a4, a6, a7}. Note that these configurations include
all cc-pairs involved in the loop as well.

For that purpose, we adapt Algorithm 1 from (Garcı́a-Bañuelos et al., 2015) to com-
pute the set of elementary pomsets of a PES prefix. The function FINDEPOMSETS

adds one path (or branch) to the expanded prefix every time an elementary pomset
is found (in lines 13 and 20). The events in the resulting expanded prefix are not
explicitly represented in the PES prefix. However, considering the order obtained
by the depth first traversal followed by FINDEPOMSET, the value of conf is always
unique, as conf is finitely extended by a different event until a complete configura-
tion is found or until a duplicate event occurs. Using sconf, i.e. the shifted version
of conf, cycles can be identified. In line 11, we check whether the shift has already
been observed. If so, each identified full loop configuration CL (defined by n conf

\ entryCauses) is stored in cycles (line 12), which represents a complete set of full
loop configurations upon completion of FINDEPOMSETS. Using the identified loop

120 8.3. Execution and Elementary Loop Identification

Algorithm 1 Identification of elementary pomsets
1: procedure FINDEPOMSETS(conf, sconf, causes, visited, var cycles, var runs)

2: APPEND(visited, (conf, sconf, causes))

3: for (sconf e−→ n sconf) do
4: n conf← conf ∪ {e}
5: if e is cutoff event then
6: n sconf← S(n sconf)

7: n causes← n sconf \{corr(e)}
8: else
9: n causes← conf

10: end if
11: if ∃(entryConf, n sconf, entryCauses) ∈ visited ∧ n sconf ∩ ‖[e] = ∅ then
12: cycles← cycles ∪ {(n conf \ entryCauses, entryConf)}
13: ADDBRANCHTOEXPPREFIX(visited)

14: else
15: FINDEPOMSETS(n conf, n sconf, n causes, visited, cycles, runs)

16: end if
17: end for
18: if sconf is a maximal configuration then
19: runs← runs ∪ {conf}
20: ADDBRANCHTOEXPPREFIX(visited)

21: end if
22: REMOVELAST(visited)

23: end procedure

configurations, we determine which events are in a loop relation (i.e., events e and
e′ for which there is a path from e to e′ and a path from e′ to e).4

First, we require the notion of the directly follows relation. Two events ei and ej are
directly following if they are directly causal or if there exists a path from ei to ej ,
where any intermediate event on that path is a τ transition. Formally: ei <d ej , iff
ei < ej ∧ ∀ek ∈ E : ei < ek < ej =⇒ λ(ek) = τ . Moreover, we write ei 6d ej iff
ei <d ej ∨ ei = ej .

Two events ei, ej ∈ CL are in a causal loop relation, denoted ei " ej , iff ei <d ej ∨
∃ek ∈ CL : ek is cutoff ∧ ei 6d ek ∧ corr(ek) 6d ej . Two events ei, ej ∈ CL are in an
inverse causal loop relation, denoted ei # ej , iff ej " ei.

4The completeness and correctness of Algorithm 1 can be derived from the proofs for algorithms for
identifying elementary cycles as presented in (Tiernan, 1970; Szwarcfiter and Lauer, 1976).

Chapter 8. Automated Specification Assembly 121

8.4 Compound event structures
To capture the generic behavior between multiple business processes, we merge the
behavior of each input process by combining each input PES prefix unfolding into a
Compound Prime Event Structure (CPES). Armed with the PES prefix unfolding and
causal loop relation defined above, a CPES can be formally defined as follows:

Definition 8.4.1 (Compound Prime Event Structure). Let V = {E(N0), ..., E(Nn)} be
a set of PES prefix unfoldings. A compound prime event structure over V is a quadruple
EV = (EV ,

t−→,−→,
−→
T), where:

• EV =
⋃

E(Ni)∈V

Ei is the combined set of events, with E(Ni) = (Ei,6i,#i, λi),

• t−→= {<d,6,",8,#, ‖,9,#,>, >d} defines the possible types of relations be-
tween the set of events, where:

– ei <d ej denotes a directly follows relation, such that ei < ej ∧∀ek ∈ E : ei <

ek < ej =⇒ λ(ek) = τ .

– e >d e
′ denotes an inverse directly follows relation, such that e′ <d e,

– e 6 e′ denotes a causality relation,

– e > e′ denotes an inverse causality relation, such that e′ 6 e,

– e8 e′ denotes a left side undefined relation, such that for a PES prefix unfold-
ing E(Ni) : e′ ∈ Ei, e 6∈ Ei,

– e 9 e′ denotes a right side undefined relation, such that for a PES prefix un-
folding E(Ni) : e ∈ Ei, e′ 6∈ Ei,

– e " e′ denotes a causal loop relation, such that for a PES prefix unfolding
E(Ni) : e, e′ ∈ CL ∧ (e <d e′ ∨ ∃ek ∈ CL : ek is cutoff ∧ e 6d
ek ∧ corr(ek) 6d e′).

– e # e′ denotes an inverse causal loop relation, such that for a PES prefix un-
folding E(Ni) : e′ " e.

• −→= EV×
t−→ ×EV is the set of relations existing between all events e, e′ ∈ EV ,

•
−→
T (e, e′) = {t | (e, t, e′) ∈→} ⊆ t−→ is a function that returns the set of relation types
which exist between two events e, e′ ∈ EV .

A CPES EV over a set of PES prefix unfoldings V = {E0, ..., En} combines the set
of events and relations from all PES prefix unfoldings. Since the sets of events of
the PES prefix unfoldings in V do not necessarily fully overlap, additional relations

122 8.5. Specification Assembly

are introduced for cases where an event exists in one PES prefix unfolding while in
the other it does not. Similarly, loop relations are included to differentiate between
causal and inverse causal relations originating from a single PES prefix unfolding or
multiple PES prefix unfoldings. As a result of the combination, two events e, e′ ∈
EV of the CPES may maintain multiple relations of different types. That is, the
function

−→
T (e, e′) may return any subset of t−→, except for the empty set.

8.5 Specification Assembly
To obtain an extendible set of rules, which define a family of processes, we take
the CPES and use its function

−→
T (e, e′) to automatically assemble different sets of

specifications that together describe the process family.

Definition 8.5.1 (Variability Specification). Let EV = (EV ,
t−→,−→,

−→
T) be a combined

labeled prime event structure over V = {E0, ..., En}. A variability specification over EV is
a set of CTL specifications V = Viresp ∪ Viprec ∪ Veiresp ∪ Veresp ∪ Vconf ∪ Vpar, where:

• Viresp = {AG(e⇒ A[(e∨ s) U (
∨
E′)]) | e ∈ EV ,∀e′ ∈ E′ ⊆ EV : (e,<, e′) ∈→

} is the set of immediate response CTL specifications,

• Viprec = {¬E[¬(
∨
E′) U e] | e ∈ EV ,∀e′ ∈ E′ ⊆ EV : (e,′<, e) ∈→} is the set of

precedence CTL specifications,

• Veiresp = {AG(e ⇒ E[(e ∨ s) U e′]) | e, e′ ∈ EV :
−→
T (e, e′) = {<} ∨

−→
T (e, e′) =

{<,8}∨
−→
T (e, e′) = {<,"}∨

−→
T (e, e′) = {<,8,"}} is the set of exists immediate

response CTL specifications,

• Veresp = {AG(e ⇒ EFe′) | e, e′ ∈ EV :
−→
T (e, e′) = {6} ∨

−→
T (e, e′) = {<,6

} ∨
−→
T (e, e′) = {6,8} ∨

−→
T (e, e′) = {<,6,8}} is the set of exists response CTL

specifications,

• Vconf = {AG(e ⇒ AG¬e′) | e, e′ ∈ EV :
−→
T (e, e′) = {#}} is the set of exclusive

execution, or conflict, CTL specifications,

• Vpar = {EF (e ∧ e′) | e, e′ ∈ EV :
−→
T (e, e′) = {‖} ∧

−→
T (e′, e) = {‖}} is the set of

parallel execution CTL specifications,

A variability specification V is a set of CTL specifications which defines a family
of related BP that offer different features and/or orders of execution. The set con-
sists of multiple subsets. The first two sets, Vresp and Vprec, define the basic execu-
tion paths by enumerating response and precedence relations. The following two

Chapter 8. Automated Specification Assembly 123

sets, Veiresp and Veresp, define the mandatory paths between events. The fifth set,
Vconf , defines the conflict relations. Although the CTL specification only defines a
conflict in a single direction (i.e., from e to e′), the symmetry of the # relation is
maintained within the combined prime event structure, which ensures the inclu-
sion of the specification in the other direction. Finally, the sixth set, Vpar, defines
the parallel execution specifications, i.e., specifications which define that the events
in different parallel paths are both executed. Since the parallel execution CTL spec-
ification is symmetric in itself, the concurrency relation between events must hold
in both directions as well.

Although the set Veresp is required to define paths with variable sections, it can be
reduced heavily. In its current form, Veresp contains for each event specifications to
every response from every event in any path, even if this path is already described
through a set of different specifications in Veresp ∪ Vieresp. For example, consider
the path π = e0, e1, ..., en for which the relations ei < ei+1 are described in Veiresp
for 0 6 i < n and i 6= 1. In other words, every relation is included in Veiresp except
e1 < e2 (e.g. because some other event can be inserted between e1 and e2). The set
Veresp would then contain rules for every ei 6 ej relation with 0 6 i < j 6 n in the
compound prime event structure. However, in this case, the rule for the relation
e0 6 en would be redundant because it is already described by the set of rules for
e0 < e1 6 e2 < ... < en in Veresp∪Vieresp. Actually, in this case, all rules in Veresp are
redundant except for the rule for e1 6 e2. We therefore remove from the set Veresp
any rule that can be described by a set of relations in Veresp∪Vieresp. This reduction,
however, can only be performed after the set of rules described by Veresp ∪ Vieresp
is known. More formally:

Definition 8.5.2 (Veresp reduction). Let Veresp be the set of exists response specifications
over the combined labeled prime event structure EV = (EV ,

t−→,−→,
−→
T). A reduced Veresp

is a set of CTL specifications Veresp = Veresp \ {AG(e ⇒ EFe′) | (e, e′) ∈ Rf : (∃e′′ ∈
EV : e 6= e′ 6= e′′ ∧ (e, e′′) ∈ R ∧ (e′′, e′) ∈ R)}, with:

• R = Rf ∪Rn is the set of causality relations consisting of:

• Rf = {(e, e′) | e, e′ ∈ EV :
−→
T (e, e′) = {6} ∨

−→
T (e, e′) = {<,6} ∨

−→
T (e, e′) = {6

,8} ∨
−→
T (e, e′) = {<,6,8}} the set of eventual causality relations,

• Rn = {(e, e′) | e, e′ ∈ EV :
−→
T (e, e′) = {<} ∨

−→
T (e, e′) = {<,8} ∨

−→
T (e, e′) =

{<,"} ∨
−→
T (e, e′) = {<,8,"}} the set of immediate causality relations.

The resulting set of specifications, V , is considered to be the basic set of spec-
ifications required to define a coherent, yet variable, family of BP. Other, more

124 8.6. Discussion

strict, specifications can, however, be included easily. For example, the set Vexcl =

{EFe⇒ AG¬e′ | e, e′ ∈ EV :
−→
T (e, e′) = {9}} could be included to enforce the ex-

clusion of unrelated events, i.e., the exclusion of events that did not appear together
in any prime event structure Ei ∈ V . In this way, specifications can be introduced
for each result of

−→
T (e, e′) as subsets of t−→= {<,6,#, ‖,8,9}. For example, the

results of
−→
T (e, e′) = {#,8},

−→
T (e, e′) = {#,9}, and

−→
T (e, e′) = {#,8,9} could

be used to introduce additional conflict relations. However, as additional specifi-
cations are introduced, the variability specification V becomes stricter, allowing a
smaller range of variants. The decision of introducing additional specifications is,
therefore, left to be considered on a per case basis.

8.6 Discussion
The introduction of the compound labeled prime event structure offers novel in-
sights into the merging of BP. Where others merge BP at the control flow level,
we combine BP at the level of relations between events, or structured activities. In
doing so, we allow every different set of resulting relations between events to be an-
alyzed and acted upon differently in a generic way. The compound labeled prime
event structure can be constructed from either runtime traces of BP or imperatively
designed BP. Any number of BP can be merged. For example, the relational behav-
ior of a single BP can be merged from its runtime traces, or the relational behavior
of a set of related imperative BP designs can be merged.

The variability specification, in turn, builds upon the compound labeled prime
event structure to provide an automated and generic method to define BP in a
declarative manner. Each set of relations defined by the compound labeled prime
event structure can be assigned a distinct specification which describes the defined
relations. However, instead of defining specifications for each possible set, we de-
fine the minimal set of relational specifications to support a consistent yet variable
declarative definition. Due to the extensible nature of the set, further specifications
can then be easily introduced to define a stricter declarative definition. The method
can be applied to both single BP and multiple related BP.

This generic definition of relations through CTL specifications is only possible be-
cause of the definition of the transition graph (Definition 6.1.2) and its direct sup-
port for the parallel behavior of events and the next local occurrence of events.
Without support for parallel behavior, the concurrent relation could not be defined
without severely limiting BP definitions in other areas (e.g., the definition of ar-

Chapter 8. Automated Specification Assembly 125

bitrary cycles). More importantly, without support for the next local occurrence of
events, the next occurrence would return different results for parallel branches than
non-parallel branches, and only future occurrences could be captured correctly. The
relations between events, as described by prime event structures, could therefore
only be defined in a very limited manner.

CHAPTER 9

Implementation

Everybody [...] should learn how to program a computer because it teaches you
how to think.

– Steve Jobs

The Verification extension for Business Process Modeling Tool (VxBPM) is a BP
modeling tool which provides the verification techniques presented throughout the
previous chapters. The tool is written using the Java programming language and
features BPMN BPD design abilities, saving and loading to XPDL format, auto-
mated pattern-based model transformation to CPN, automated generation of the
Kripke structures required for verification, automated verification using one of
multiple model checkers, and transparent visual and textual feedback of the gener-
ated models and verification results.

9.1 Features
The VxBPM tool offers the user three main views of the BP, providing the user
with transparent feedback on the verification process. The main views include the
BPMN BPD modeling view, the CPN view, and the Kripke structure view. Other,
minor views, include the textual output of the main views, a list of specifications in
textual form, and the raw in- and output of the called model checker.

128 9.1. Features

9.1.1 BPMN BPD design

Figure 9.1: VxBPM’s BPMN BPD Modeling View.

Figure 9.1 illustrates the BPMN BPD modeling view of the VxBPM tool. The mod-
eling view consists of three areas, the modeling palette, the modeling panel, and
the properties panel. The modeling palette on the left contains a list of basic BP ele-
ments which can be dragged on the central modeling panel, including the connector-
based specifications introduced in Chapter 7. For example, the grey exists response
arrow between n4 and n5 may highlight green or red after verification, depending
on verification results. Further elements can be accessed through the context menu
of each basic element. Finally, the properties of (and variables used by) each ele-
ment can be changed in the properties panel to the right. Element specific specifica-
tions can be added here as well. Possible specifications include both normal specifi-
cations as well as conditional specifications relating to conditional (i.e. partial w.r.t.
that condition) transition graphs as presented in Definitions 6.5.1 and 6.5.2.

The minor views can be seen at the bottom, and include console output, a list of
variables and possible values for verification, textual output of the CPN and (con-
ditional) Kripke structure(s), the raw in- and output of the selected model checker
per (conditional) Kripke structure, and a list of specifications and their results per
(conditional) Kripke structure.

Chapter 9. Implementation 129

9.1.2 Petri net Transformation

Figure 9.2: VxBPM’s CPN View.

The CPN view of the VxBPM tool is depicted in Figure 9.2. This view is automat-
ically populated by a workflow pattern-based transformation of the BPMN BPD
depicted in the modeling view. Each element depicted in the BPMN BPD is di-
rectly mapped to a set of CPN elements in the CPN view. For the purpose of clarity,
the bounding boxes of the mapped elements have been enabled. In addition to
the pattern-based transformation, groups, pools, and swimlanes are converted us-
ing an additional labeling function over the CPN elements as presented in Defini-
tion 6.4.1. Since the view is populated automatically, only diagram related settings
can be changed. As a result, manual modeling of the CPN is also not possible. For
further details on the workflow pattern-based transformation, see Appendix B.

9.1.3 Kripke structure Generation
Figure 9.3 depicts the Kripke structure view of the VxBPM tool. The Kripke struc-
ture view is populated automatically through an implementation of the transition
graph as presented in Definitions 6.1.2 and 6.4.2. In case of conditional specifica-
tions, a separate Kripke structure is generated for each set of different conditions
and is paired with the specifications carrying that condition. Specifications that
do not carry conditions are evaluated on the full model (i.e. the transition graph

130 9.1. Features

Figure 9.3: VxBPM’s Kripke structure View.

that is not limited by any condition). Each of the generated Kripke structures can
be inspected in this view. In addition, the user is able to specify whether reduc-
tion is applied. When reduction is applied, each Kripke structure is reduced by
removing, from each state, those atomic propositions that are not evaluated by any
specification paired with this specific Kripke structure and, subsequently, applying
reduction through equivalence with respect to stuttering as detailed in section 6.7.

9.1.4 Model Verification
The actual verification of the generated Kripke structures is performed by one of
multiple model checkers. Although the specifications can, in theory, be directly
evaluated on the related Kripke structures, model checkers often do not allow a di-
rect implementation of labeled transition systems. Model checkers verify systems
defined in the modeling language of the model checker. These modeling languages
range from forms of code similar to programming languages, which are then trans-
lated to transition systems, to simple transition systems themselves. To provide
verification results using the presented models, the Kripke structure is automati-
cally translated into the modeling language of the selected model checker which
subsequently verifies the specifications paired with that Kripke structure.

Chapter 9. Implementation 131

NuSMV2 (Cimatti et al., 2002) and NuXMV (Cavada et al., 2014) are symbolic mo-
del checkers supporting both CTL and LTL based formulas. NuSMV2 is an exten-
sion to SMV, which first implemented model verification based on BDD. NuXMV
extends NuSMV2 with SAT- and SMT-based algorithms. The modeling language
of both NuSMV2 and NuXMV allows the user to specify a state-based labeled tran-
sition system for direct verification, which is highly preferred when implementing
a Kripke structure. The conversion from a Kripke structure to the modeling lan-
guage of these model checkers is explained, such that temporal logic formulas can
be verified automatically.

For the purpose of implementing a Kripke structure, the modeling language of Nu-
SMV2 and NuXMV consists of a module with four distinct blocks. The first, VAR,
defines the states of the transition system. The second, DEFINE, specifies each vari-
able and assigns them to the states in which they are true. The third, ASSIGN, first
defines the set of initial states and then specifies next states using the next function.
In the final block, a set of temporal logic formulas and fairness conditions is listed.
In case of the implementation of a Kripke structure M = (S, I,R, L) with atomic
propositions AP , the VAR block specifies all states s ∈ S, the DEFINE block spec-
ifies each variable v ∈ AP and assigns it to states s ∈ S for which v ∈ L(s). The
ASSIGN block lists the initial states s ∈ I and then specifies each relation (s, s′) ∈ R
as next(s) := s’. Finally, a list of temporal logic formulas and fairness conditions is in-
cluded. In order to avoid issues with loops, justice fairness conditions are included.
Justice conditions are considered to be true infinitely many times in fair paths. As
such, infinite loops are omitted using justice conditions which state that loops may
not repeat an infinite number of times.

For example, Listing 9.1 contains the NuSMV2/NuXMV code of the room booking
process detailed in the previous views of Figures 9.1 through 9.3. Note that the
model reduction step was not applied at the Kripke structure view, resulting in a
full output of the model with all states and atomic propositions.

Listing 9.1: Model Checker Code for the Room Booking Process.

MODULE main

VAR

s t a t e :{ S0 , S1 , S2 , S3 , S4 , S5 , S6 , S7 , S8 , S9 } ;
DEFINE

s t a r t := (s t a t e = S0) ;

t5n3 := (s t a t e = S1) ;

t4n4 := (s t a t e = S2) ;

t1n6 := (s t a t e = S3) ;

132 9.2. Extensibility

t2 := (s t a t e = S8) ;

t3n5 := (s t a t e = S9) ;

t6n2 := (s t a t e = S4) ;

s i l e n t := (s t a t e = S5) ;

end := (s t a t e = S6) ;

ASSIGN

i n i t (s t a t e) := {S0 } ;
next (s t a t e) :=

case

s t a t e = S0 : {S1 } ;
s t a t e = S1 : {S2 } ;
s t a t e = S2 : {S3 , S8 , S5 } ;
s t a t e = S3 : {S4 } ;
s t a t e = S8 : {S9 } ;
s t a t e = S9 : {S5 } ;
s t a t e = S4 : {S5 } ;
s t a t e = S5 : {S6 } ;
s t a t e = S6 : {S7 } ;
s t a t e = S7 : {S7 } ;

e sac ;

CTLSPEC AG(t4n4 −> EF t3n5) ;

As the models are passed to the selected model checker, results of the verification
process are interpreted automatically by the VxBPM tool and displayed both in a
textual and visual manner. Textually, the results for each specification is listed per
(conditional) Kripke structure. Visually, each element related to a specification (i.e.
the connector or (group) of activities) is colored green when evaluated true, red
when evaluated false, or grey when failed to be evaluated due to an error.

9.2 Extensibility
The VxBPM tool is fully configurable and extensible in four directions: (1) support
for different modeling specifications, (2) support for different or alternative pattern-
based CPN transformations, (3) support for additional or alternative verification
specifications and languages, and (4) support for additional model checking tools
which may offer different verification features and/or specification languages.

9.2.1 Modeling Specifications
VxBPM directly supports the BPMN modeling specification (see Appendix A). Dif-
ferent specifications, however, can be introduced through a set of eXtensible Mark-

Chapter 9. Implementation 133

up Language (XML) documents and element shapes describing the input elements
(input-elements.xml), their styles (bpmn-style.xml), and palette window elements (palet-
elements.xml). For example, the XML regarding the BPMN activity element is de-
picted in Listings 9.2 and 9.3. Listing 9.2 describes the basic element, its palette
information, shape, and the CPN workflow pattern it maps to, while Listing 9.3
describes the complex elements listed in the context menu (See Figure 9.1).

Listing 9.2: input-elements.xml for the BPMN Activity Element.

<inputElement id=”a c t i v i t y ”>

<name>Act iv i ty</name>

<CPNElement>Act iv i ty</CPNElement>

<BPMNName>a c t i v i t y </BPMNName>

<width>60</width>

<height>30</height>

<connec t i ons maxIncoming=”1” maxOutgoing=”1” minIncoming=”1”

minOutgoing=”1”/>

<paletIconPath>Task . png</paletIconPath>

<shapePath>Task . shape</shapePath>

<s t y l eP r op e r t i e s ></s t y l eP r op e r t i e s>

<genId>n{x}</genId>

<name v i s i b l e=”true ” ed i t a b l e=”true”></name>

</inputElement>

Listing 9.3: palet-elements.xml for the BPMN Activity Element.

<paletElement>

<name>Act iv i ty</name>

<paletIconPath>Task . png</paletIconPath>

<inputElements>

<inputElement>a c t i v i t y </inputElement>

<inputElement>loopWhile</inputElement>

<inputElement>loopRepeat</inputElement>

<inputElement>miVariant</inputElement>

<inputElement>ac t i v i t yEr r o r </inputElement>

<inputElement>act iv i tyIntermediateEventCompensat ion

</inputElement>

</inputElements>

</paletElement>

9.2.2 Pattern Transformations
The modeling specification elements used in VxBPM’s modeling view are directly
transformed in the CPN view through a workflow pattern mapping (See Appendix B).

134 9.2. Extensibility

Although VxBPM supports most patterns directly, other alternative patterns can be
supported by adding additional workflow pattern mappings as XML documents
and enabling that mapping in the input-elements.xml document (Listing 9.2).

Listing 9.4: Workflow Pattern Mapping of the BPMN activity Element.

<CPNElement id=”Act i v i ty”>

<incomingElements>

<incomingElement>p1</incomingElement>

</incomingElements>

<outgoingElements>

<outgoingElement>t1</outgoingElement>

</outgoingElements>

<incomingMessageElement>t1</incomingMessageElement>

<outgoingMessageElement>t1</outgoingMessageElement>

<eventElementId>p1</eventElementId>

<places>

<p lace id=”p1” x=”0” y=”0”/>

</p laces>

<t r a n s i t i o n s>

<t r a n s i t i o n id=”t1 ” x=”1” y=”0” name=”t {x}{ id}”/>
</t r a n s i t i o n s>

<arcs>

<arc id=”a1” from=”p1” to=”t1”/>

</arcs>

</CPNElement>

For example, Listing 9.4 contains the XML document defining the workflow pattern
used to map BPMN activities to CPN elements. The document lists the places,
transitions, and arcs used to describe the pattern, their relevant placement, and
interactions with other patterns (e.g. in- or outward sequence or message flows).

9.2.3 Verification Specifications
As different model checkers support different specification languages, the specifica-
tions offered by VxBPM differ per enabled model checker. All specifications offered
by VxBPM are described in two XML documents. The first document, specification-
languages.xml, lists all specifications per specification language (e.g. CTL or LTL)
and type (i.e. those directly applied to elements or those applied through connec-
tors). The second document, arrows.xml, describes the visualization of each spec-
ification listed. For example, Listings 9.5 and 9.6 contain the XML definition and
visualization of the CTL response specification (Specification 7.3.1.ii).

Chapter 9. Implementation 135

Listing 9.5: specification-languages.xml for the CTL Response Specification.

<spec i f i c a t i onLanguage s>

<spec i f i c a t i onLanguage>

<id>CTL</id>

<name>CTL</name>

<con s t r a i n t s>

. . .

<!−−a lwaysFina l ly−−>
<c on s t r a i n t id=”CTL alwaysFinal ly”>

<arrowId>a lwaysFina l ly</arrowId>

<formulas>

<formula>AG($p −> AF $q)</formula>

</formulas>

</cons t ra in t>

. . .

</con s t r a i n t s>

</spec i f i c a t i onLanguage>

</spec i f i c a t i onLanguage s>

Listing 9.6: arrows.xml Visualization for the Response Specification.

<!−−AlwaysFinal ly−−>
<arrow id=”a lwaysF ina l l y ” name=”AlwaysFinal ly ” dashed=”true”>

<sourceShapes>

<shape>e c l i p s e F i l l e d </shape>

</sourceShapes>

<centerShapes>

</centerShapes>

<targetShapes>

<shape>arrowEastFi l l ed</shape>

</targetShapes>

</arrow>

9.2.4 Model Checkers
VxBPM supports both the NuSMV2 (Cimatti et al., 2002) and NuXMV (Cavada
et al., 2014) model checkers , which support a wide range of verification tech-
niques and specification languages. The model checkers, their locations, and sup-
ported specification languages are listed in the model-checkers.xml document (List-
ing 9.7). Other model checkers, which may support different techniques and speci-
fication languages can, however, easily be supported by adding an additional mo-
del checker to the model-checkers.xml document, implementing the AbstractChecker

136 9.2. Extensibility

class for that model checker, and implementing the Formula class for any unimple-
mented specification languages.

Listing 9.7: model-checkers.xml for the NuXMV Model Checker.

<modelCheckers>

<ModelChecker>

<id>NuXMV</id>

<name>NuXMV</name>

<l o ca t i on>c : /NuXMV. exe</l o ca t i on>

<spec i f i c a t i onLanguage s>

<sp e c i f i c a t i onLanguage format=”CTLSPEC {c};”>CTL</

spec i f i c a t i onLanguage>

<sp e c i f i c a t i onLanguage format=”LTLSPEC {c};”> j u s t i c e </

spec i f i c a t i onLanguage>

<sp e c i f i c a t i onLanguage format=”JUSTICE {c};”>LTL</

spec i f i c a t i onLanguage>

</spec i f i c a t i onLanguage s>

</ModelChecker>

. . .

<modelCheckers>

CHAPTER 10

Evaluation

Part of the inhumanity of the computer is that, once it is competently programmed
and working smoothly, it is completely honest.

– Isaac Asimov

The presented approach is not only able to return valuable compliance results, but
it also allows greater insight into concurrently executing branches – while limiting
model size and time to generate. To demonstrate this, we analyze its expressive
power and performance.

In addition, we evaluate the approach against the requirements of Chapter 5 and
consider the different case studies presented in Chapter 4.

10.1 Expressive Power
The expressive power of the transition graph while using CTL is evaluated through
its application on four workflow patterns (van der Aalst et al., 2003b) and compared
to relevant related work, i.e., formal cyclic preventative approaches. The approa-
ches are categorized into three types of graphs: the reachability graph (Huber et al.,
1986), the transition occurrence graph (i.e. a graph where transitions are included
upon their occurrence) similar to the approaches of (Liu et al., 2007) and (Foster
et al., 2003), and a version of the reachability graph where states are labeled with

140 10.1. Expressive Power

enabled transitions (i.e., the enabled graph), similar in effect to (Esparza, 1993). The
control-flow constructs used for comparison are deferred choice, exclusive choice,
parallel split, and interleaved routing.

Figure 10.1 depicts the deferred choice and exclusive choice construct together with
their representations using the four different graphs. Although the deferred and ex-
clusive choice are different constructs, both fulfill a similar role; a choice of paths
depending on some event or condition. After the occurrence of transition a, either
transition b or c occurs. This functionality can indeed be seen in both the transi-
tion and occurrence graphs. The enabled graph, however, poses a problem when
representing the deferred choice. After transition a is enabled, both b and c are

c

c

c b

c

c a

a

b

c

a

b

c

a b,c

a

b

c

c b

ac

If !p 1'c

If p 1'c

c c

a

b

c

a b

c

a

b

a

b

c

a

c

Transition Graph

Reachability Graph

Enabled Graph

Occurrence Graph

Deferred choice Exclusive choice

Figure 10.1: Graph comparison of the deferred and exclusive choice constructs.

Chapter 10. Evaluation 141

enabled simultaneously. Without a way to foresee which of these two transitions
actually occurs, verification of any logic formula on this graph can only guarantee
the enabled state of transitions and never its occurrence. Although the reachability
graph, in principle, produces correct graphs where after the occurrence of transi-
tion a either b or c occurs, its representation of the exclusive choice pattern does
introduce issues with verification of branching time temporal logics. For example,
the response formula AG(a ⇒ EFb) (a is eventually followed by b in some path)
would evaluate to false because the occurrence of a on the lower branch which is
followed only by c. While the formula would evaluate true for the upper branch, it
would evaluate false in its entirety due to the false result of the lower branch. This
undesired behavior is introduced because the reachability graph is treating the oc-

c a

c c

c b

c

c

c

d

c

c

c

c

b,c

b

c

a d

a

b

c b

c

d

b,c

b

c

a d

b

c

a d

b

c

c a

c c

c b

c

c

c

d

c

c

c

c

c

c

c c

a

b

c

d

b

c

a

b

c b

c

d

b,c

b

c

a d

b

c

a d

b

c

Parallel split Interleaved routing

Transition Graph

Reachability Graph

Enabled Graph

Occurrence Graph

Figure 10.2: Graph comparison of parallel split and interleaved routing constructs.

142 10.1. Expressive Power

currence of transition a with the boolean p evaluating true as a different occurrence
of transition a with p evaluating false. In reality, when looking at the pattern, it is
not the transition that differs, but the conditions on the outward arcs. The occur-
ring transition executes the same with different values of p. Indeed, when mapping
this pattern to a BPMN model, activity a would precede the exclusive choice gate
which then splits into two paths leading to either activity b or c. A functionality
which the reachability graph clearly does not represent correctly.

Figure 10.2 depicts the parallel split/join and interleaved routing patterns and their
representations using the four different graphs. Although the two patterns look
similar, their behavior is different. Where the parallel split/join pattern splits into
two parallel executing branches which only synchronize at the join, the interleaved
routing performs some form of synchronization during execution of each branch
such that no two transitions can occur in parallel, but does so without inferring
an explicit occurrence order between branches. In essence, the occurrence of the
transitions on the different branches is interleaved. The functionality of these two
patterns can indeed be seen in the transition graph. When representing the par-
allel split using the transition graph, transition b and c start occurring in parallel,
after which either b or c has finished occurring (i.e. has occurred) and the other
remains in an occurring state until it also has finished occurring and synchronizes
into d. Furthermore, when representing the interleaved routing pattern, the transi-
tion graph indeed linearizes the occurring transitions on each branch as specified.
For the remaining graphs one immediately notices an issue of expressive power. In-
deed, the remaining graphs each represent both patterns with the exact same graph,
even through the patterns behave in very different ways. For the enabled graph
this means that the interleaved routing construct is not being linearized because,
naturally, both transition b and c are enabled even though they may not occur si-
multaneously. In case of both the reachability graph and the occurrence graph, the
parallel split/join construct is linearized as well. As the occurrence of transitions b
and c is being linearized, any parallel occurrence information as well as local next
occurrence information is lost. Where the transition graph can be used to verify
that transitions b and c can occur in parallel by verifying the existence of both la-
bels at one state (i.e. EF (b∧ c)), the reachability and occurrence graphs can only be
used to verify whether transitions b and c occur until d (i.e. AG(a⇒ A[(b∨ c) U d]).
Even when using LTL including always and exists path mechanisms, specifications
can only verify that sometimes transition b occurs before transition c and vice versa
(i.e. ∃G(c ⇒ Fb) and ∃G(b ⇒ Fc)), a specification which could also be satisfied by
a simple loop. The same is true for the local next occurrence, which can be ver-

Chapter 10. Evaluation 143

ified using the transition graph by verifying whether a label holds until the next
(i.e. AG(b ⇒ E[b U d])). A specification which correctly holds for the parallel split
pattern and not for the interleaved routing pattern when considering the transition
graph. Again, the other graphs fail to capture the difference.

As the transition graph can be used to verify parallel and local next occurrences, it
bridges a clear gap in the expressive power required for verification of BP.

10.2 Performance Evaluation
The performance of the approach was first evaluated by executing an implemen-
tation of Definition 6.1.2 on the case study. Performance tests were attained using
a system with an Intel Core I7-4771 CPU at 3.50 GHz, 32 GB of memory, running
Windows 7 x64 and Java 7. The results are shown in Table 10.1.

Table 10.1: Conversion and reduction algorithm results of the telecom processes.

Kripke structure Red. Kripke structure Performance
|S| |R| |AP | |S| |R| |AP | Conversion Reduction
33 49 26 24 35 15 29 ms 1 ms

The case consists of 33 states and 48 transitions in its original form. After reduc-
tion with respect to the relevant AP used in the formulas, the amount of states is
reduced by 27% and the transitions by 29%. However, it is clear from the table
that the required execution time for the proposed conversion and reduction is neg-
ligible when applied to the real-life case. The customer support process, although
consisting of a realistic amount of services, does not comprise excessively complex
control-flow structures. In fact, it is (like many compositions), predominantly se-
quential. As such, the effect on performance remains rather limited.

To test the algorithm with respect to performance under increasing concurrency
within parallel branches, the approach was subsequently evaluated by executing
an implementation of Definition 6.1.2 on artificial service compositions (Groefsema
and van Beest, 2015; Groefsema et al., 2016). These artificial compositions were
specifically generated for performance evaluation purposes by specifying a gate
type, number of branches, and branch length. The results can be found in Ta-
bles 10.2 and 10.3.

Table 10.2 displays information on the performance and results of the conversion
process. Its columns describe the case number, the composition (containing se-

144 10.2. Performance Evaluation

Table 10.2: Conversion algorithm results of compositions
with n branches of m activities.

Composition Kripke structure Performance
Type n m |S| |R| |AP | Conversion
1 SEQ 1 5 8 8 7 3 ms
2 XOR 2 5 13 14 12 3 ms
3 XOR 3 5 18 20 17 3 ms
4 XOR 4 5 23 26 22 3 ms
9 AND 2 5 38 63 12 4 ms
10 AND 3 5 218 543 17 27 ms
11 AND 4 5 1298 4323 22 96 ms
5 SEQ 1 50 53 53 52 5 ms
6 XOR 2 50 103 104 102 12 ms
7 XOR 3 50 153 155 152 16 ms
8 XOR 4 50 203 206 202 22 ms
13 AND 2 50 2603 5103 102 102 ms
14 AND 3 50 132653 390153 152 1.853ms
18 AND 4 50 6765203 26530203 202 184.758 ms
12 AND 4 8 6563 23331 34 214 ms
15 AND 3 80 531443 1574643 242 10.903 ms
17 AND 4 30 923523 3574923 122 20.345 ms
19 AND 5 15 1048578 4915203 77 22.444 ms
16 AND 3 100 1030303 3060303 302 25.023 ms
20 AND 6 10 1771563 9663063 62 44.364 ms
21 AND 7 8 4782971 29760699 58 158.008 ms

quence/exclusive/parallel branching, the number of branches n, and number of
services per branch m), the resulting Kripke structure (number of states S, relations
R, and atomic propositions AP), and the performance of the conversion algorithm.

Test cases 1-8 demonstrate that sequential compositions and compositions includ-
ing exclusive paths are of no concern to the conversion performance, as they are
converted within milliseconds. However, processes including parallel regions in-
troduce an increased complexity. This increased complexity is introduced due to
the interleaving of concurrent services on parallel branches. Although the inter-
leaving is highly efficient due to the lack of complete linearization, it does produce∏n
i=1(mi + 1) states, where mi is the length of branch number i out of n branches

(for equal branch lengths the complexity is (m+1)n). This is confirmed by test cases
9-11, which show that parallel interleavings of equal sizes to the exclusive compo-
sitions (cases 2-4) are converted within 96 milliseconds. When increasing the length
of the branches in test cases 13-14, and 18 from 5 to 50 services, the time to convert is
increased to 102 milliseconds for two branches, 1.8 seconds for three branches, and
185 seconds for four branches. Finally, test cases 15-17 and 19-21 demonstrate that
compositions with extremely large parallel sections of 56 to 300 services are con-

Chapter 10. Evaluation 145

Table 10.3: Reduction algorithm results of compositions with n branches of m activities
after reduction by 50% of randomly chosen atomic propositions.

Reduced Kripke structure Performance
|S| |R| |AP | Reduction
1 6 (25%) 6 (25%) 4 0 ms
2 10 (23%) 11 (21%) 6 0 ms
3 15 (17%) 17 (15%) 9 0 ms
4 19 (17%) 22 (15%) 11 0 ms
9 15 (61%) 22 (65%) 6 1 ms
10 67 (69%) 148 (73%) 9 10 ms
11 403 (69%) 1245 (71%) 11 78 ms
5 37 (30%) 37 (30%) 26 2 ms
6 76 (26%) 77 (26%) 51 2 ms
7 114 (25%) 116 (25%) 76 4 ms
8 151 (26%) 154 (25%) 101 5 ms
13 1409 (46%) 2741 (46%) 51 90 ms
14 50823 (62%) 148319 (62%) 76 704 ms
18 1915203 (72%) 7454605 (72%) 101 37.294 ms
12 2523 (62%) 8716 (63%) 17 100 ms
15 207363 (61%) 612122 (61%) 121 2.297 ms
17 241227 (74%) 924885 (74%) 61 4.481 ms
19 168003 (84%) 762205 (84%) 39 6.714 ms
16 453603 (66%) 1344692 (66%) 151 3.548 ms
20 396903 (88%) 2100427 (88%) 31 12.519 ms
21 774147 (84%) 4577290 (85%) 29 43.765 ms

verted in 10 to 158 seconds. However, as the number of parallel branches increases,
there is a severe limit on the length of the branches supported. This is due to the
fact that the number of branches n is the largest factor of the complexity formula.
Although extremely large interleavings require several minutes to compute, this is
negligible when verifying pre-runtime.

Next, we evaluate the model reduction algorithm. Model reduction is achieved
through the removal of atomic propositions that are not relevant to specifications
and equivalence with respect to stuttering. In order to evaluate the degree of re-
duction, we randomly remove 50% of atomic propositions of the cases listed in
Table 10.2 before applying the reduction algorithm. Table 10.3 displays informa-
tion on the resulting reduced Kripke structure (number of states S and percentage
of original, relations R and percentage of original, and number of remaining atomic
propositions AP) and the time it took to reduce the model. Note that reduced
Kripke structure sizes may vary due to the random removal of atomic propositions.

Test cases 1-8, which contain sequential compositions and compositions including
exclusive paths, are of no concern to the performance of the reduction algorithm
either. These compositions are reduced within 0 to 5 milliseconds. Compositions

146 10.3. Requirements Analysis

including parallel regions display the greatest reduction results. When increasing
the number of parallel branches, reduction effects increase accordingly. Test cases
9-11 demonstrate that parallel interleavings of average sizes are reduced within 78
milliseconds. Increasing the length of the branches from 5 to 50 services increases
the time to reduce to 90 milliseconds, 704 milliseconds, and 37 seconds for compo-
sitions with two, three, and four branches respectively.

The effect of model reduction displays varying results. Because sequential compo-
sitions generate relatively simple Kripke structures, model reduction shows limited
effects with reductions of 15% to 30%. For sequential compositions, the worst case
reduction with less than half of the AP removed is 0%. Processes with parallel inter-
leaved paths, however, show a much larger effect with a 46% to 72% reduction. In
this case, while the size of the Kripke structures increases with additional branches,
model reduction naturally gains increased effect due to the particular applied inter-
leaving. Because transition occurrence is interleaved with concurrent information,
and not entirely sequentialized, reduction with regard to equivalence under stut-
tering gains increased effect. With each removed atomic proposition, a significant
amount of interleaved states is reduced. Compositions including extremely large
sections of parallel interleavings demonstrate reductions between 61% and 88%.

Although the resulting interleaving is responsible for a state explosion, this is of
little concern for compositions with average and even large parallel areas. Nor-
mal sized compositions are generated and ready to be verified instantly. Extremely
large parallel areas do introduce increased complexity. However, when a limited
number of atomic propositions from these areas is used, these still can be reduced
significantly and used for verification pre-runtime. Furthermore, when a model
does turn out to be too large for model checking, our approach allows to split for-
mulas into multiple sets, each resulting in a much smaller reduced Kripke structure.
Each formula set can then be checked on its respective Kripke reduction, which re-
sults in a significant performance gain. In this respect, the size of the reduced mo-
del is directly related to the number of atomic propositions used within the set of
formulas. As a result, the verification is possible even for business processes with
extremely large amounts of concurrency.

10.3 Requirements Analysis
To evaluate the proposed approach, we survey the requirements detailed in Chap-
ter 5 and analyze whether and how each requirement is satisfied. Table 10.4 lists the

Chapter 10. Evaluation 147

Table 10.4: Requirements analysis of the Presented Approach.

Requirement

Model
5.1.1 Unstructured processes 7

5.1.2 Parallel branching 3

5.1.3 Arbitrary cycles 3

5.1.4 Intermediary events 3

Soundness
5.2.1 Reachability 3

5.2.2 Termination 3

5.2.3 Proper Completion 3

Compliance
Occurrence
5.2.4.i Absence 3

5.2.4.ii Universality 7

5.2.4.iii Existence 3

5.2.4.iv Bounded existence 7

Ordering
5.2.5.i Precedence 3

5.2.5.ii Response 3

Resource specifications
5.2.6.i Always performed by 3

5.2.6.ii Performed by 3

5.2.6.ii Never performed by 3

Data conditions
5.2.7.i Holds always 3

5.2.7.ii Holds when 3

Requirement

Declarative Variability
Inclusion
5.2.11.i Include 3

5.2.11.ii Prerequisite 3

5.2.11.iii Substitution 3

5.2.11.iv Corequisite 3

5.2.11.v Causal selection 3

Exclusion
5.2.12.i Exclude 3

5.2.12.ii Exclusion 3

5.2.12.iii Admittance 3

5.2.12.iv Exclusive choice 3

Execution
5.2.13.i Execute 3

5.2.13.ii Requirement 3

5.2.13.iii Replacement 3

5.2.13.iv Backup 3

5.2.13.v Causal execution 3

Option
5.2.14.i Option 3

5.2.14.ii Avoidance 3

Scheduling
5.2.15.i Response 3

5.2.15.ii Exists reponse 3

5.2.15.iii Immediate response 3

5.2.15.iv Exists immediate response 3

5.2.15.v No response 3

5.2.15.vi Exists no response 3

5.2.15.vii No immediate response 3

5.2.15.viii Exists no immediate response 3

5.2.15.ix Coexecution 3

5.2.15.x Cooccurrence 3

5.2.15.xi Parallel execution 3

5.2.15.xii Exclusive execution 3

148 10.3. Requirements Analysis

relevant requirements for both the model and specifications related to soundness,
compliance, and variability. Requirements that are directly supported are marked
with a 3, while those that are not directly supported are marked with a 7.

When evaluating the requirements related to the model, we notice that all require-
ments are satisfied except for the support of unstructured processes. Although
most forms of unstructured processes do not present difficulties, there is one excep-
tion. In theory, the proposed model (i.e. the transition graph, see Definition 6.1.2)
can become infinite. That is, in situations where a place of the CPN receives an
infinite number of tokens over an infinite number of occurrences of the same set of
transitions, the model will require an infinite number of states and relations as well.
For example, a BP with a parallel branch leading into a loop that merges before the
previously encountered parallel fork will produce such a result, and will not pro-
duce a model for verification. However, this can be easily overcome by collapsing
the infinite amount of tokens at places into a single infinite value.

The requirements related to soundness specifications, on the other hand, have all
been satisfied. However, the reachability specification presents some downsides. In
order to evaluate the reachability of each structured activity, a reachability specifi-
cation must be included for every structured activity. As a result, all atomic propo-
sitions related to all structured activities are being evaluated upon the model, deny-
ing the model the possibility of significant reduction. For the smaller models this
is not an issue. Large models with large parallel regions, however, will produce a
significant amount of states for verification.

The requirements related to the compliance specifications are all satisfied, except
for those evaluating universality and bounded existence. Although both specifi-
cations can certainly be evaluated using the presented approach, their evaluation
would not give the user valuable insights into the workings of the BP. This issue di-
rectly relates to the type of model that was proposed. That is, the transition graph
(Definition 6.1.2) is an event-based model (i.e., it captures the event of structured ac-
tivities occurring as transitions in the CPN) and not a state-based model (i.e, a mo-
del capturing the underlying data as structured activities occur). When evaluating
universality, one seeks to verify whether the value of a piece of data remains univer-
sally true, and not whether a set of structured activities keep occuring universally.
Bounded existence, on the other hand, seeks to evaluate whether one structured ac-
tivity occurrence exists multiple times. Since the transition graph treats structured
activity occurrences as single states, among which cycles are allowed, the bounded
existence will not be able to evaluate its bound (i.e., the bound is always infinite).

Chapter 10. Evaluation 149

The requirements related to variability specifications are all satisfied. Since the pro-
posed approach is inherently declarative based, only those requirements related to
declarative variability were evaluated.

The evolutionary requirements are all not directly satisfied. Most are, however,
satisfied as soon as some form of versioning is introduced. In this case, once a
new version of a template process is detected, variants must be reverified for com-
pliance. The evolution of process instances (Requirement 5.3.3), however, is not
satisfied since illegal behavior could already have been performed, as well as due
to issues caused by the so called dynamic change bug (Ellis et al., 1995). In both
cases rollbacks may be required to undo unwarranted behavior.

10.4 Case Study (continued)
In order to evaluate the proposed techniques, they are applied to the three case
studies presented in Chapter 4. The first case study, the telecommunications cus-
tomer support process, was used throughout Chapter 6 as a running example. The
case is continued and finally verified for compliance with the specifications ob-
tained from the TCP code of conduct. The second case, local Dutch eGovernment, is
used to evaluate the automated generation of specifications, as well as the complex-
ity of the resulting specification set. And finally, the third case, bouncer registration,
is used to evaluate the application of the proposed techniques on collaborative BP.

10.4.1 Case 1: Telecommunications Customer Support
Listing 10.1 contains the code passed to the model checker when considering the
customer support process as presented in Section 4.1. This code is obtained by
taking the CPN depicted in Figure 4.2, generating the transition graph to form Fig-
ure 6.1, reducing the model to get Figure 6.6, and translating that to NuSMV2/
NuXMV input code. In addition, the specifications listed in Section 4.1 were trans-
lated to CTL in Table 7.2 and included for verification. Finally, a fairness condition
is included to dismiss infinite loops from the set of valid verification paths.

Listing 10.1: Model Checker Code for the Customer Support Process.

MODULE main

VAR

s t a t e :{ S0 , S1 , S2 , S4 , S5 , S6 , S7 , S9 , S10 , S11 , S16 , S17 ,

S18 , S19 , S20 , S21 , S22 , S26 , S28 , S30 , S31 , S35 , S37 , S43 } ;

DEFINE

150 10.4. Case Study (continued)

s t a r t := (s t a t e = S0) ;

t0 := (s t a t e = S1) ;

t3 := (s t a t e = S4) ;

t5 := (s t a t e = S9) ;

t6 := (s t a t e = S10) ;

t10 := (s t a t e = S43) ;

t11 := (s t a t e = S18) ;

t13 := (s t a t e = S20) ;

t14 := (s t a t e = S21) ;

t19 := (s t a t e = S16) ;

t21 := (s t a t e = S31) | (s t a t e = S37) ;

t22 := (s t a t e = S28) | (s t a t e = S35) | (s t a t e = S37) ;

t23 := (s t a t e = S17) ;

t24 := (s t a t e = S26) ;

end := (s t a t e = S5) ;

loop := (s t a t e = S18) | (s t a t e = S19) ;

ASSIGN

i n i t (s t a t e) := {S0 } ;
next (s t a t e) :=

case

s t a t e = S0 : {S1 } ;
s t a t e = S1 : {S2 } ;
s t a t e = S2 : {S4 , S9 } ;
s t a t e = S4 : {S5 , S7 } ;
s t a t e = S5 : {S6 } ;
s t a t e = S6 : {S6 } ;
s t a t e = S7 : {S5 } ;
s t a t e = S9 : {S10 } ;
s t a t e = S10 : {S11 } ;
s t a t e = S11 : {S16 , S43 } ;
s t a t e = S16 : {S17 , S28 , S30 , S35 } ;
s t a t e = S17 : {S18 , S26 } ;
s t a t e = S18 : {S19 , S21 } ;
s t a t e = S19 : {S18 , S20 } ;
s t a t e = S20 : {S21 } ;
s t a t e = S21 : {S22 } ;
s t a t e = S22 : {S5 } ;
s t a t e = S26 : {S18 } ;
s t a t e = S28 : {S17 } ;
s t a t e = S30 : {S31 } ;
s t a t e = S31 : {S17 } ;
s t a t e = S35 : {S30 , S37 } ;
s t a t e = S37 : {S28 , S31 } ;
s t a t e = S43 : {S18 } ;

e sac ;

FAIRNESS ! loop ;

Chapter 10. Evaluation 151

CTLSPEC !E [! (t11 | t3) U end] & AF(end) ;

CTLSPEC AG(t10 −> AF(t13 | t14)) ;

CTLSPEC AG(t5 −> A[t5 U t6]) ;

CTLSPEC AG(t5 −> AF(t14)) ;

CTLSPEC AG(t5 −> EF(t24)) ;

CTLSPEC !EF(t21 & t23) & !EF(t22 & t23) ;

CTLSPEC AG(t13 −> A[t13 U t14]) ;

CTLSPEC EF(t21 & t22) ;

CTLSPEC AG(t19 −> EF(t23)) ;

The resulting model is subsequently offered to NuSMV2/NuXMV in order to auto-
matically verify its compliance with the rules specified in Section 4.1. Table 10.5 lists
the results of model checking. The first two specifications returned false, signifying
compliance issues. These two rules state that a complaint can result in multiple suc-
cessive offers and that complaints should always result in an offer unless there is no
contact with the complaining party. When inspecting the process, it is indeed clear
that offers only take place in certain branches of the process where there has been
contact with the customer. Additionally, it is true that the customer is informed
of an offer only once, and that when this offer is rejected customer acceptance is
sought multiple times for this offer without any possibility of revision of the offer.

Table 10.5: TCP Compliance Rules as CTL specifications.

CTL Formula Result
1. !E[!(t11 ∨ t3) U end]

7
AF(end)

2. AG(t10 ⇒ AF(t13 ∨ t14)) 7

3. AG(t5 ⇒ A[t5 U t6]) 3

4. AG(t5 ⇒ AF(t14)) 3

5. AG(t5 ⇒ EF(t24)) 3

6. !EF(t21 ∧ t23)
3

!EF(t22 ∧ t23)

7. AG(t13 ⇒ A[t13 U t14]) 3

8. EF(t21 ∧ t22) 3

9. AG(t19 ⇒ EF(t23)) 3

10.4.2 Case 2: Local Dutch e-Government
The automated generation of specifications is realized using an implementation of
the algorithms and definitions presented in Chapter 8 which take as input a set of

152 10.4. Case Study (continued)

process models in PNML format.1 Its output is a set of unique rules, as formally de-
fined in Definition 8.5.1 and 8.5.2. Using this implementation, we conduct a quanti-
tative evaluation of the proposed method, using three real-life process models from
local e-Government in the Netherlands (Section 4.2). We assess the performance
and number of produced variability rules for each category.

Rule Sets
To evaluate the variability rules generated by our method, we use the model of
Municipality A as the general case, where Municipality B and Municipality C are
variants. Table 10.6 provides an overview of the rules generated for the individual
models. For each model, all existing response relations can be covered by Veiresp,
as there is only one model involved and, hence, no variability. Consequently, V rederesp

equals 0 for each individual model. Furthermore, none of the models have con-
current activities, hence Vpar equals 0 for each individual model. Municipality C
has the most activities, of which the majority is involved in (multiple) loops. This
is represented by the much higher Veiresp and Vconf rules, particularly when com-
pared to the involved events. Note that, although the rules and events of Veresp are
shown in the table, they are not included in the total as they comprise duplicate
and overlapping rules and could, therefore, be omitted in favor of V rederesp.

Table 10.6: Output of variability specifications for each individual process.

Model # Viresp Viprec Veiresp (Veresp) V rederesp Vconf Vpar Total

A
Rules 20 20 31 (195) 0 54 0 125
Events 21 21 21 (21) 0 10 0 21

B
Rules 23 23 38 (219) 0 88 0 172
Events 24 24 24 (24) 0 22 0 24

C
Rules 28 28 52 (346) 0 140 0 248
Events 29 29 29 (29) 0 26 0 29

Subsequently, we have created three distinct variability specifications. The first
specification combines Municipality A and Municipality B, which show low vari-
ability (i.e., the amount and complexity of the differences between the two models
is relatively low). The second specification concerns Municipality A and Munici-
pality C, which show high variability (i.e., the amount and complexity of the differ-
ences between the two models is relatively high). The third specification combines
all three models.

Table 10.7 provides an overview of the sets of variability rules produced for each of
the three variability specifications. Although Veresp is shown in the table, it is not

1For a detailed description of the PNML standard, see http://www.pnml.org/

Chapter 10. Evaluation 153

included in the total amount of rules, as the reduction (i.e. V rederesp) is used instead.
It is easy to see that the amount of immediate response and precedence rules (i.e.
Viresp and Viprec) is dependent on the amount of rules of the most complicated
model in the specification. The amount of conflict rules (i.e. Vconf) are dependent
on the model with the least amount of conflicts, as those are restrictive and should
adhere to the least restrictive model (Municipality A). The reduction of Veresp is
significant, reducing the amount of required response rules by more than 99% for
all specifications.

Table 10.7: Output of variability specifications composed of different processes.

Spec Models # Viresp Viprec Veiresp (Veresp) V rederesp Vconf Vpar Total

1 A, B
Rules 23 23 33 (223) 1 54 0 134
Events 24 24 24 (24) 2 10 0 24

2 A, C
Rules 29 29 36 (276) 2 54 0 150
Events 30 30 29 (29) 4 10 0 30

3 A, B, C
Rules 30 30 36 (297) 2 54 0 152
Events 31 31 28 (30) 4 10 0 31

Clearly, an increasing variability and complexity results in a gradually increasing
number of rules. Furthermore, Municipality C differs much more from Munici-
pality A than Municipality B does, which is clearly shown by the number of rules
resulting from the case featuring Municipality A and C. The amount of rules here
are almost identical to the amount of rules required for the third case involving all
models. Consequently, it can be observed that most of Municipality B fits within
the behavior of both Municipality A and Municipality C, as the addition of Munic-
ipality B to the variability case hardly changes the required amount of rules.

Table 10.8 shows the percentage of overlapping rules between two specifications.
Specifications 1 and 2 only show a total overlap of 75%, i.e., 75% of the rules are
common between both specifications. In particular the immediate response and
precedence show relatively low overlap (52% and 43%) respectively. This is because
most of these rules overlap only in part as additional events are included as a pre-
ceding or responding event. However, the overlap of the exist immediate response
and exist response (Veiresp, Veresp and V rederesp) are relatively high. This shows that,
although both specifications have different exact paths, eventually similar activities
are executed. This strongly supports the case of the necessity of such variability
specifications, as roughly the processes are similar across different municipalities,
but differ with respect to details and municipality specific policies. Consequently,
a generic specification (like specification 3) allows for support of all variants, while
maintaining the common required control-flow.

154 10.4. Case Study (continued)

Table 10.8: Amount of overlapping rules between different variability specifications.

Specifications Viresp Viprec Veiresp (Veresp) V rederesp Vconf Vpar Total

1 (A, B) vs 2 (A, C) 52% 43% 73% (85%) 100% 100% N.A. 75%
1 (A, B) vs 3 (A, B, C) 61% 57% 82% (95%) 100% 100% N.A. 81%
2 (A, C) vs 3 (A, B, C) 69% 55% 92% (99%) 100% 100% N.A. 83%

Performance
For each variability case, the execution times were captured for each component of
the procedure. The performance analysis was executed using a laptop with Intel
i7 2.5GHz, running JVM 8 with 16GB of allocated memory. To eliminate load time
from the measures, we executed each test five times and recorded average times of
three executions, removing the fastest and the slowest executions. In all cases, the
generation of the variability specification completed within 0.1 sec. Table 10.9 pro-
vides an overview of the execution times. Although the execution times of Veresp
are shown in the table, they are not included in the total execution time as they
comprise duplicate and overlapping rules and could, therefore, be omitted in favor
of V rederesp.

The construction of the compound labeled event structure (denoted by C-PES in the
table) included the unfolding of each Petri net into a prime event structure as well
as the subsequent building of the sets of compound behavior relations. From these
compound behavior relations, the sets of variability rules could be easily derived.
Consequently, the largest portion of the total time was dedicated to the construction
of the compound labeled event structure, where the time required for the respective
variability rules was comparatively negligible.

Furthermore, it can be observed that the cases with higher variability resulted in a
slightly longer time for generation of the compound labeled event structure, but did
not have a significant effect on the generation of the rules. This could be explained
by the fact that the generation of the rules is linear in the amount of compound
relations specific to the set of rules to be generated. The computational complex-
ity of generating those compound relations, however, is part of the computational
complexity of the construction of the compound labeled event structure.

However, even for the compound labeled event structure, performance seems to
deteriorate only slightly despite a significant increase in the complexity of the mod-
els to be included (i.e. involving multiple nested loops).

Chapter 10. Evaluation 155

Table 10.9: Performance of rules generation for each variability specification.

Models C-PES Viresp Viprec Veiresp (Veresp) V rederesp Vconf Vpar Total

A, B 57ms 0.2ms 0.1ms 0.1ms (0.4ms) 2.2ms 0.0ms 0.0ms 60ms
A, C 63ms 0.2ms 0.1ms 0.1ms (0.6ms) 2.7ms 0.1ms 0.0ms 66ms
A, B, C 73ms 0.2ms 0.2ms 0.1ms (0.7ms) 3.1ms 0.1ms 0.0ms 77ms

This can be explained by the theoretical complexity of the entire method. The com-
plexity of the transformation step of each Petri net is defined by O((|B|ζ)ζ), where
B is the set of places (conditions) of the unfolding and ζ is the maximal size of the
presets of the transitions in the original net (Esparza et al., 1996). The subsequent
transformation of the complete prefix unfolding into an event structure is linear
time using the concurrency relation during the computation of the unfolding. Fi-
nally, the complexity of the construction of the compound behavior relation sets
from Definition 8.4.1 is defined byO(|EV |2). As such, the total complexity is domi-
nated by the transformation step from each Petri net to its respective unfolding and
subsequent event structure, and, therefore, the amount of input processes involved
in the specification.

10.4.3 Case 3: Bouncer Registration
The bouncer registration process is implemented in order to evaluate the effective-
ness of the presented techniques when verifying properties over CBP. Since CPB are
separate BP with messages as its only synchronization points, the CBP as a whole
features a high amount of concurrency. The bouncer registration process, as de-
scribed in Section 4.3, was implemented using the CPN depicted in Figure 4.10 and
compared against the techniques examined by Corradini et al. (2015). Table 10.10
features the results.

Table 10.10: Comparison of CBP verification techniques (Corradini et al., 2015).

Approach States Relations

Unfolding 50 48
(Corradini et al., 2015)
Stutter Optimized Transition Graph 134 356
(Groefsema et al., 2016)
Transition Graph 151 392
(Groefsema et al., 2016)
PIPE 638 1666
(Corradini et al., 2015)

Of the three techniques, unfolding (Corradini et al., 2015) easily produces the least
number of states and relations. Unfolding, however, fails to evaluate all concurrent

156 10.4. Case Study (continued)

executions of the Petri net while evaluating the reachable markings (McMillan and
Probst, 1995). Although this fact makes unfolding highly suitable for soundness
verification, compliance and variability verification suffer from this lack of infor-
mation. In addition, cycles are removed by decoupling any backward looping arcs,
causing further loss of information. The proposed transition graph, however, does
not suffer from such issues, while severely limiting the state space compared to
the PIPE based approach (Corradini et al., 2015). Stutter optimization reduces the
state space even further due to the two silent transitions used in the CPN of Fig-
ure 4.10. Note that no unused atomic propositions were removed before obtaining
a transition graph that is equivalent with respect to stuttering. As a result, further
optimization is available.

CHAPTER 11

Conclusion

The best thing about a boolean is even if you are wrong, you are only off by a bit.

– Anonymous

The main contribution of the presented work entails the evaluation of formal veri-
fication as an approach to business process variability. The central notion revolves
around the fact that a BP variant must conform to a reference process. When com-
paring this to formal verification, we notice a clear similarity in that a model must
conform to a formal specification. In other words, a reference process is the spec-
ification to which the model of a BP variant must comply. This, in turn, reflects
approaches taken in the field of BP compliance verification. As a result, variabil-
ity must be an extension of preventative compliance verification. One approach
to formal verification is that of model checking. Supported by a large scientific
community, model checking is a technique where a system model is automatically,
systematically, and exhaustively explored while each exlored state is verified to be
compliant with the specification. As a result, we must be able to verify whether a
BP variant conforms to a reference process using model checking. To evaluate these
statements, we defined the goals and developed the artifacts to support business
process variability as an extension of formal preventative compliance verification
through model checking.

160 11.1. Summary

11.1 Summary
In Chapter 2, we first discussed the background of BPM and formal verification. We
introduced the informal models of BPM, the formal models for verification, and
a branch of logics commonly used for specifications. In addition, we introduced
a way of BP formalization using Petri nets to bridge the initial gap between the
informal specification of BP models and the formal models used for verification.

In Chapter 3, we discussed the state of the art on the three goals of BP verification:
BP soundness, compliance, and variability. Here, we noticed that BP soundness
was solved through the same approaches used for BP formalization. In addition,
we noticed that existing models used towards preventative BP compliance were ei-
ther over-specifying the model, causing extreme amounts of overhead for the pur-
pose of variability verification, or under-specifying the model in such a way that
relevant information, like concurrent execution or the next execution in a branch,
was lacking. At the same time, we noticed that the approaches towards compliance
and variability either focused on runtime verification, consisted of design-time ap-
proaches with insufficient support of concurrent behavior, or defined new or newly
extended logics which severely limits support by the field of model checking.

In Chapter 4, we step-wise introduced the scope of the problem through a series
of real-life case studies. The first case study describes a compliance study at an
Australian telecommunications provider which must comply to the Telecommu-
nications Consumer Protections (TCP) code of conduct. The second case study
extends the issue with that of variability, and details a number of Dutch munici-
palities which all are required by law to offer the same service to its residents, but
tailored to local needs. Finally, the third case study increases the complexity of the
problem by detailing a collaborative BP, where multiple BP occur concurrently.

In Chapter 5, we specified the requirements towards design-time BP verification.
We specified both requirements for the model, as well as the specifications with
respect to BP soundness, compliance, and variability. When taking the set of re-
quirements to evaluate the level of requirement satisfaction throughout the state
of the art, the lack of model support is evident. Where the specification require-
ments are often extensively compiled, requirements regarding the model – upon
which the specifications are to be interpreted – are often neglected or even omitted,
causing incorrect or incomplete support.

Chapter 11. Conclusion 161

In Chapter 6, we presented a novel mapping of business process models to a system
model. The resulting model allows the verification of preventative compliance and
variability using well-known temporal logics and model checking techniques while
providing full insight into parallel executing branches and the local next activity
invocation. Furthermore, the mapping causes limited state explosion, and allows
for significant further model reduction. In addition, we present an approach that
allows verification using conditions, and define inheritance of specification sets.

In Chapter 7, we matched the set of requirements to specifications applicable to the
presented model. To support the design of reference processes, visualization rules
were specified that apply to each specification.

In Chapter 8, we presented an approach to apply the presented specifications and
automatically obtain reference processes from sets of BP models. The approach not
only captures the exact behavior of each presented model, but also that of models
that exists in between those presented. Furthermore, the approach is extensible,
allowing for more strict, or more loose, definitions. At the same time, the approach
is also capable of incorporating ad-hoc runtime deviations of business processes by
allowing the input of mined runtime traces in addition to the presented models.

In Chapter 9, we introduced a tool that supports full insight of the full verification
process. The tool not only allows for the visual design of BPMN BPD (Appendix A)
and the visual specifications presented in Chapter 7, but also supports configura-
tion of the pattern-based formalization process as presented in Appendix B, the
generation of the reduced (conditional) system model(s) as presented in Chapter 6,
and the specification verification results. Furthermore, the tool is extensible and
allows further specification, formalization, and modeling options to be defined.

Finally, in Chapter 10, we evaluated and demonstrated the presented artifacts. We
established the expressive power of the system model (Chapter 6) by comparing the
output of different types of system models when applied to a number of complex
workflow patterns. Next, we determined that the performance of the system mo-
del is sufficient to provide instant results for small to large models. In addition, we
established that the reduction techniques display considerable effects on the fore-
most source of state space inflation; parallel interleavings. The reduction technique
even increases in effect as the number of parallel branches increases. Furthermore,
the system models can be reduced to trivial sizes as the number of atomic propo-
sitions is kept low – by, for example, splitting the number of specifications using
the same set of atomic propositions into separate manageable sets and verifying

162 11.2. Contributions

those on a system model reduced with respect to that set of atomic propositions.
We then evaluated the combination of the model and specifications against the set
of requirements and found most of these satisfied. Finally, we demonstrated the
applicability of the designed artifacts on the case studies presented in Chapter 4.

11.2 Contributions
Recalling the set of requirement of Balko et al. (2009), we consider the contribution
of the presented work.

• Reference process conformance
Reference process conformance is the ability to verify whether a process vari-
ant conforms to a reference process, and is directly supported. By defining a
reference process as a BP model that includes a set of temporal logic specifica-
tions which formally define conformance of variants, and presenting variants
as system models by a novel conversion process, variants are formally veri-
fied for conformance using well-supported model checking techniques.

• Reference process patchability
Reference process patchability is the ability to patch, update, or change the
reference process such that all changes are automatically propagated to every
variant that is based on that reference process. Although not directly sup-
ported, reference processes do include a set of formal specifications that de-
fine conformance of variants. This set of specifications can simply be patched,
updated, or changed without issues. Then, when versioning is introduced,
variants only require a single re-verification after a patch is applied. In case
the verification fails, the variant is illegal and should be re-evaluated.

• Extension mining
Extension, or variant, mining is the ability to automatically detect manual ad-
hoc deviations from a BP model and automatically derive extensions/vari-
ants. Although the detection of manual ad-hoc changes itself is out of the
scope of this document, the automatic derivation of extensions/variants is
related to the presented techniques of Chapter 8. This ability is supported by
allowing mined runtime traces as input to the specification mining technique
presented in Chapter 8. In case of manual ad-hoc deviations from a BP model,
the original model and the mined trace of the deviation can be used as input.
The output, then, is a set of reference process specifications which describe
the combined behavior.

Chapter 11. Conclusion 163

• Stacked extensions
Stacked extensions describes the ability to define parent-child relations be-
tween both different reference processes and/or different extensions. This
ability is supported by the definition of reference process conformance as sets
of formal specifications. Reference processes can simply inherit the set of
formal specifications of other reference processes. In this case, the model in-
cluded in the reference process must not only adhere to its own specifications,
but also to the inherited specifications. Furthermore, both variants and refer-
ence processes may choose to adhere to multiple other reference processes.
Reference processes that contain contradictory specifications will, however,
not produce any variants.

• Design-time usability
Design-time usability refers to the support of toolsets to design reference pro-
cesses and variants. We contributed with tooling that allows not only the
visual design of specifications over new and existing BPMN BPD, but also of-
fers full insight into the underlying verification process. That is, each step in
the verification process from BPMN BPD with visual specifications, to CPN,
to reduced Kripke structures, to model checker input, to model checker out-
put, to logic specification, and back to visual element can be inspected by the
user. Furthermore, the tool is fully extensible, allowing for more and alter-
native CPN pattern mappings, different specifications using different logics,
and different model checkers.

11.3 Results
To address the open challenges, we specified a main research question and sub-
questions in Chapter 1. We discuss our answers to each sub-question before dis-
cussing the outcome of the main research question.

1. Which goals for design-time business process verification can be identified?

Three goals of design-time BP verification can be identified: soundness veri-
fication, compliance verification, and variability verification. Soundness ver-
ification aims to verify the correctness of BP by testing three basic properties:
reachability, termination, and proper completion. Compliance verification,
on the other hand, aims to verify whether a BP complies with a specification.
The goal can be either to test for illegal states (using state-based verification),

164 11.3. Results

to test for a series of illegal steps (using event-based verification), or to test
whether an implementation matches the design. Finally, variability verifica-
tion aims to verify whether a BP variant conforms with a reference process.
The goal is to test for series of steps as specified by the reference process. Since
they have similar goals, variability verification can be seen as an extension of
event-based compliance verification.

2. What system model adequately represents the business process for variability verifi-
cation?

Since variability verification can be viewed as an extension of event-based
compliance verification, an event-based system model is required. Most exist-
ing event-based system models, however, have issues with concurrency. First,
the state space of the system model increases dramatically when encounter-
ing parallel executing branches. Second, any parallel execution is linearized
completely, removing parallel execution information. And, finally, the system
model behaves differently when describing parallel executing branches. That
is, the next operator behaves as a global next (i.e., the next occurrence from
all concurrently executing branches) when returning results from parallel in-
terleaved branches, while returning seemingly local next results from non-
parallel braches. Since BP define the order between structural activities in
both parallel and non-parallel branches, this different behavior is undesirable
and difficult to grasp due to its inconsistency.

The transition graph (Definition 6.1.2) solves these issues through a novel con-
version that introduces an event-based labeling to a state-based model. The
resulting interleaving retains parallel execution information, while also offer-
ing consistent local next information through the until operator. At the same
time, it also captures correct behavior of different, but similarly behaving,
gateways. Furthermore, the required state space is smaller when encounter-
ing parallel executing branches. The result is a system model with increased
expressive power that requires less state space.

3. In which manner can the system model be reduced without relevant information loss?

Both existing system models and the transition graph (Definition 6.1.2) cap-
ture global next information, i.e., information on the next occurrence from
all concurrently executing branches. However, where existing system models
rely on this information to also offer local next information (when there are no
concurrently executing branches), the transition graph does not. Instead, the
transition graph features consistent local next information through the until

Chapter 11. Conclusion 165

operator. In fact, this local next information is often more relevant than that
of the global next. As a result, the global next information can often be seen
as being superfluous, or causing overhead.

When removing the (global) next information, the resulting system model is
equivalent with respect to stuttering. At the same time, any irrelevant la-
beling can be safely removed from the system model without the need for
(global) next information. The resulting system model demonstrates increas-
ing reductions as the number of concurrently executing branches increases.
In fact, the reduced system model often becomes trivial when the number of
used atomic propositions is kept low.

4. What can be verified using well-supported specification languages?

Well-supported specification languages are specification languages that are
supported by model checking tools, and include languages such as linear-
time temporal logic (LTL) and the branching-time temporal logic computa-
tion tree logic (CTL). Since we aim to verify over structural activities in differ-
ent branches of BP, a branching-time temporal logic, such as CTL, is required.

When evaluating the specification requirements on expressivity against pos-
sible CTL specifications, we notice that all requirements are supported except
those which are inherently state-based specifications. A natural consequence
from the event-based nature of the system model. For example, the univer-
sality specification states that some condition must universally hold. A con-
dition which is irregular for the changing nature of the event-based system
model. On the other hand, specifications of a state-based nature can often be
implied from a series of events leading up to such a state.

5. In which way can specifications be obtained automatically?

Most specifications either define inclusion information of structural activities,
or define ordering information of structural activities. To automatically obtain
specifications from (sets of) source BP or runtime execution traces, a model is
required that captures exactly this information. Labeled prime event struc-
tures (PES) are such a model.

However, to obtain specifications that contain variability from sets of source
BP or runtime execution traces, the inclusion and ordering information must
first be consolidated into a compound model. From this compound PES (Defi-
nition 8.4.1), specifications can then be obtained directly using a simple trans-
lation (Definition 8.5.1). This direct translation, however, is only possible

166 11.3. Results

when verified on a system model which maintains consistent local next infor-
mation throughout the model, such as the transition graph (Definition 6.1.2).
Without consistent local next information, next information is difficult to cap-
ture within parallel regions.

6. For which business processes is the resulting system model verifiable?

Although the transition graph requires a smaller state space than other system
models, there certainly is a limit to what BP can verified. When obtaining the
system model, each and every possible state and relation is calculated before
reductions are applied. When evaluating large, or erroneously designed, par-
allel regions, the number of states and relations can increase drastically. This
is especially the case for increasing numbers of parallel branches. Although
the length of each parallel branch also has an impact, it is far less severe. To
counteract the effect, reductions gain superior results for increasing numbers
of parallel branches. Furthermore, the reduction method allows formulas to
be split into multiple sets, each resulting in a much smaller reduced system
model. Each formula set can then be verified against its respective model re-
duction. In this respect, the size of the reduced model is directly related to the
number of atomic propositions used within the set of formulas. As a result,
even BP with extremely large parallel regions can be verified, as long as the
set of atomic propositions can be kept low within sets of formulas and the
number of parallel branches remains reasonable (e.g. see Table 10.2).

Now that each sub-question has been answered, only the main research question
remains to be considered.

To which extent can formal verification through model checking be used to sup-
port verification of business processes variability as an extension of design-
time, preventative, business process compliance?

The main research question asks us to consider two elements. First, to which extent
can business process variability be seen as an extension of design-time, preventative, busi-
ness process compliance? And, secondly, to which extent can formal verification through
model checking be used to support the verification of such business process variability?

BP variability can be seen as an extension of design-time, preventative, BP compli-
ance, but only when the compliance verification is event-based. Since BP variability
concerns itself with different versions of orderings of activities (i.e., events) within

Chapter 11. Conclusion 167

BP, an event-based system model and specification is required. Most BP compliance
verification methods, however, aim to verify state-based system models against
state-based specifications. And most, do not do preventative verification, but ver-
ification during or after execution. Those that do preventative verification, often
aim to verify the implementation of a BP against a BP model and generally incur in
large amounts of overhead when considering variability verification purposes. As
a result, a new optimized event-based system model, with corresponding event-
based specifications, was proposed and evaluated for preventative compliance and
variability verification. Results show that the proposed event-based system mo-
del is suitable for BP compliance verification and, as an extension, suitable for BP
variability verification.

Formal verification through model checking can be used to support the verification
of business process variability, but only for system models whose state space can be
computed and reduced. BP models which contain extremely large parallel regions,
or parallel branching with many branches, do remain difficult to compute. Re-
duction algorithms demonstrate promising results, exhibiting increased effect with
each additional parallel branch, but can only perform when limited sets of atomic
propositions can be used within sets of specifications.

11.4 Limitations
The presented artifacts and techniques solve several issues, but also feature several
limitations. We discuss the most prominent limitations of data and time related
specifications, specifications stretching over multiple models, and the application
of logics with with past-time modalities.

Data and resources are important features of BP. However, values of data can scale
up to infinite values and thus severely limit the application of verification through
model checking. Although compliance verification may be interested in values of
data throughout the control flow of BP, variability verification is only interested in
the structure of BP found through the control flow. As a result, data values are only
considered when multiple different markings of a CPN can be reached through dif-
ferent data values to reveal the full structure of the BP within the transition graph,
and only in such a way that different states are revealed. The same considerations
hold for specifications, which may hold for specific sets of states which are reach-
able under certain data conditions.

168 11.4. Limitations

However, since the transition graph captures not only the different markings of a
CPN but also the parallel enabled binding elements, and because CPN allow com-
plex data as colors and functions over colors bound to transition occurrences, ver-
ification using data values can be achieved using the transition graph directly. In
this case, one would simply require a more complex CPN as input. This may, how-
ever, increase the state space and performance of the transition graph due to the
wide range of complex bindings introduced, as well as, severely limit the effect of
the reduction technique. In addition, it would require additional tool support.

Most runtime compliance verification techniques include mechanisms to verify or
track the progress of BP with respect to time. This is included because many specifi-
cations exist towards BP or activity completion within a given timeframe. Although
timed automata and modal logics exist (Alur and Dill, 1994) and could provide
valuable insights into the timed progress of BP, real compliance timed values can
only ever be obtained at runtime and thus not supported through the presented
design-time artifacts and techniques.

Although the presented artifacts and techniques allow specifications over multiple
concurrent BP and, in some cases, specifications stretching sub-processes by means
of multiple specifications, not all inter-process specifications are supported. For
example, a compliance specification stating that a complaint must be escalated by
immediately initiating a separate BP and closing the current complaint process can
only be verified by runtime compliance techniques.

Although the transition graph as a system model solves many variability related
issues such as the verification of local next and parallel occurrences, it does have
its limitations with respect to Linear-time Temporal Logics with Past-time Modali-

c
a

c
d

c
b

c

c c

f

c

c

c

c
b,d

b,e

c,d

a c,e

c
c

c

c c
e d

b

c

e

f

Figure 11.1: Parallel CPN pattern and related transition graph.

Chapter 11. Conclusion 169

ties (PLTL). PLTL considers not only specifications over consecutive states, but also
over previous states. Verification over previous states, however, behaves differ-
ently from that of subsequent states. In fact, it exhibits one of the same issues as
verification over consequent states when considering most other system models.

Consider, for example, the parallel CPN pattern and resulting transition graph de-
picted in Figure 11.1. When considering previous information within the inter-
leaving, all information seems to be present, including local previous occurrence
information. This is, however, not the case for the state f . Although the transition
f is always directly locally preceded by c (and e) in the CPN pattern, the transition
graph does not reflect this. An argument could be made that this is correct behavior
due to the synchronization occurring at f , but for structural verification of BP using
past-time modalities, this is inconsistent behavior.

One possible solution is the labeling of tokens that do not enable a transition in the
current marking with their previously enabled transition. Consider, for example,
the marking highlighted in Figure 11.1 where one token exists on the place before
transition c and one exists on the place after transition e. At this marking transition
c is enabled, but not transition f . As a result, the state in the transition graph is
normally only labeled with c, but now also with e, the transition which produced
the token. The result is highlighted in Figure 11.2. As an additional benefit, the re-
sulting graph can be reduced through model equivalence with respect to stuttering,
removing the tail of the interleaving entirely. The effect on other patterns, however,
should be explored further before applying such a solution.

b,d

b,e

c,d

a c,e

c,d

b,e

c,e

c,e

f b,d

b,e

c,d

a c,e f

Figure 11.2: Transition graph supporting past-time modalities and related reduction.

170 11.5. Implications & Future Work

11.5 Implications & Future Work
Although the artifacts presented throughout the previous chapters are mainly fo-
cused toward BP and BPM, we believe that the main impact of the presented re-
search will be in the area of service oriented architectures, and specifically that of
service compositions. The presented artifacts are particularly valuable in support
of highly changeable environments featuring mass customization and personaliza-
tion. The presented research forms the foundation of highly variable, customizable,
and personalizable service-based software.

By applying specification sets, service compositions can be defined as incomplete,
yet customizable templates. These templates can then be inherited and combined
with other templates to form larger customizable templates. A personalized im-
plementation can then be verified, in a formal way, to adhere to this structure of
templates. An update, anywhere in the structure of templates, may trigger re-
verification and may invalidate any personalized implementation or allow more
customization and personalization options. In this way, services can be composed
with an incredible amount of customizabilty and personalization while at the same
time remaining compliant with regulations.

Furthermore, the automated assembly of specification sets with high variability,
from either input processes, or runtime traces, also has implications for automated
composition of variable service compositions. In very much the same way as that
these specification sets are assembled, rules for automated composition of service
compositions with a high degree of variability, customizability, and personaliza-
tion can be created. In addition, runtime adaptations of such a composition can be
detected and automatically incorporated in the original rule set.

In addition to the results presented in the previous chapters, the transition graph,
its specification interpretation, and related artifacts, offer the formal foundation
required to accomplish these goals.

Appendices

A Business Process Model & Notation
The Business Process Model and Notation (BPMN) standard (OMG, 2011) describes
a number of diagrams that are of use within the area of business process manage-
ment. BPMN diagrams include Business Process Diagrams (BPD), Collaboration
Diagrams, Choreography Diagrams, and Conversation Diagrams. The presented
work, however, primarily focuses on the BPD and collaboration diagrams (i.e., col-
laborative business processes, or CBP) of the BPMN standard.

BPMN BPD can be either private (internal) or public processes. Private processes
describe internal processes, whereas public processes describe the interactions be-
tween a private process and another participant. BPMN CBP, on the other hand,
describe the interaction between two entities, each represented by its own BPD.

BPMN BPD and CBP are flow diagrams consisting of a large number of different
elements. Tables A.1 through A.6 list each element visually. Table A.1 lists the
BPMN events by type and trigger. The approaches presented within this thesis
only describe events without specifying its trigger type and assume the general
case. Note, however, that events with cancellation or termination triggers should be
handled carefully. Table A.2 lists the possible activities as tasks and sub-processes,
while Table A.3 lists the different gateways. Again, if no type is specified, one
may assume the general case. Table A.4 lists the different flows as sequence flows,
message flows and associations. Since associations do not affect the control flow of
BP, the approaches presented within this document focuses on the other flows only.
Finally, Tables A.5 and A.6 list additional BP annotations in the form of groups and
data objects respectively.

174 A. Business Process Model & Notation

Ta
bl

e
A

.1
:B

PM
N

ev
en

ts
.

N
o
n
e

M
e
ss
a
g
e

T
im
er

E
rr
o
r

C
a
n
ce
l

C
o
m
p
en
s
a
ti
o
n

C
o
n
d
it
io
n
a
l

L
in
k

S
ig
n
a
l
M
u
lt
ip
le

E
sc
a
la
ti
o
n

P
a
ra
ll
e
l

m
u
lt
ip
le

T
e
rm
in
a
te

St
ar

t
e

ve
n

t
(I

n
te

rr
u

p
ti

n
g

)

St
ar

t
e

ve
n

t
(N

o
n

-i
n

te
rr

u
p

ti
n

g)

In
te

rm
ed

ia
te

ca

tc
h

in
g

e
ve

n
t

(I
n

te
rr

u
p

ti
n

g
)

In
te

rm
ed

ia
te

ca

tc
h

in
g

e
ve

n
t

(N
o

n
-i

n
te

rr
u

p
ti

n
g)

In
te

rm
ed

ia
te

th

ro
w

in
g

e
ve

n
t

(I
n

te
rr

u
p

ti
n

g
)

E
n

d
 e

ve
n

t
(I

n
te

rr
u

p
ti

n
g

)

Appendices 175

Ta
bl

e
A

.2
:B

PM
N

ac
ti

vi
ti

es
.

N
o
n
e

C
a
ll

L
o
o
p

M
u
lt
i-
in
st
a
n
c
e

(p
a
ra
ll
e
l)

M
u
lt
i-
in
st
a
n
c
e

(s
e
q
u
en
ti
a
l)

C
o
m
p
en
s
a
ti
o
n

A
d
-h
o
c

T
ra
n
s
a
ct
io
n

Ta
sk

Su
b
-p
ro
ce
ss

Ta
bl

e
A

.3
:B

PM
N

ga
te

w
ay

s.

E
x
cl
u
si
v
e

E
x
cl
u
si
v
e

P
a
ra
ll
e
l

In
cl
u
si
v
e

C
o
m
p
le
x

G
a
te
w
a
y

(D
a
ta
-b
as
ed

)

G
a
te
w
a
y

(E
ve
n
t-
b
as
ed

)

176 A. Business Process Model & Notation

Ta
bl

e
A

.4
:B

PM
N

flo
w

s.

N
o
rm
a
l

C
o
n
d
it
io
n
a
l

D
e
fa
u
lt

O
n
e-
d
ir
e
c
ti
o
n
a
l
B
i-
d
ir
e
c
ti
o
n
a
l

Se
q

u
en

ce
 f

lo
w

M
e

ss
a

ge
 f

lo
w

A
ss

o
ci

at
io

n

M
e
ss
a
g
e

Appendices 177

Ta
bl

e
A

.5
:B

PM
N

gr
ou

ps
.

G
ro
u
p

P
o
o
l/
La
n
e

G
ro
u
p

Ta
bl

e
A

.6
:B

PM
N

da
ta

ob
je

ct
s.

D
a
ta

St
o
re

O
b
je
ct

C
o
lle
ct
io
n

178 B. BPMN BPD CPN Formalization

B BPMN BPD CPN Formalization
For the conversion of BPMN BPD to CPN, we provide a translation. The transla-
tion is based on the workflow patterns as defined in (van der Aalst et al., 2003b) and
similar to the basic Petri net conversion of Dijkman et al. (2008). However, in some
cases, additions are required in order to provide a generic translation of the respec-
tive BPMN element. Tables B.1 through B.6, provide an overview of the conversion
of BPMN elements to CPN constructs. Patterns within service compositions can be
easily identified by its description, motivation, context, and CPN overview. Pat-
terns are then applied together using their CPN overviews to form the CPN of a
BPMN BPD.

In general, BPMN sequence flows are represented by arcs in the CPN and activities
are represented by a place connected to a transition. In the table, the elements,
tokens, and weights that are part of the constructs are indicated with black lines
and black text, whereas the surrounding elements (depicted where necessary for
clarity) are represented with grey dotted lines. This is necessary, because in some
cases the translation is not represented by a separate construct in CPN. Rather, it
affects the preceding or succeeding elements.

To avoid any unnecessary complexity, the patterns have been adapted to use one
color (e.g. complex merge variants). At the same time, intermediate catching events
have been changed to occur once (or a set number of times) in order to avoid an in-
finite number of possible markings. Naturally, these changes do not affect labelings
of states in the transition graph (Chapter 6).

In some cases it may be necessary to intoduce additional places and transitions
(e.g. for consecutive forks and/or merges or the complex merge). In these cases,
the introduced transitions are silent and do not perform actions. When used, silent
transitions are depicted by solid black transitions and labeled s. Note that specifi-
cations may need to adjust for s (e.g. AG(t0 ⇒ [(t0 ∨ s) U t1]) in case of Specifica-
tion 7.4.5.iii).

Table B.1 contains the conversion of the basic elements. Sequence flows are repre-
sented by arcs with a weight of 1‘c between a source transition and a target place.
Activities, collapsed sub-processes, start-, end-, and intermediate throwing-events
are all represented by place/transition pairs, with the exception that the start event
features a token on its place, the end event features a sink place, and the intermedi-
ate throwing event may feature an outward message flow.

Appendices 179

Table B.2 contains the conversion of several variants of intermediate catching events.
The first row features the general inline intermediate catching event which may re-
ceive a message flow. When the intermediate catching event receives a message
flow, it is a blocking event. When it does not feature a message flow, it is a non-
blocking event instead. The second row features an intermediate catching event
which receives an external message, and behaves similar to the start event. Finally,
the third and fourth rows feature blocking and non-blocking versions of interme-
diate catching events attached to activities, respectively.

Tables B.3 through B.5 contain the conversions of the different fork and merge con-
structs. Table B.3 contains the conversion of the basic fork constructs; the exclusive
fork, parallel fork, inclusive fork, and deferred choice. The conversions of the first
three are very similar and all fork from the previous element’s transition. They
differ only in the conditions on the outward arcs. The conversion of the deferred
choice, instead, collapses the places of the first elements on all branches into one
place. When this place receives a token, the first element of an arbitrary branch will
take the token and occur, blocking the other branches. Table B.4 contains the con-
version of the basic merge constructs; the exclusive merge, parallel merge, and in-
clusive merge. The first row features the conversion of the exclusive merge, which
simply merges on the place of the next element. The second row features the con-
version of the parallel merge, which synchronizes all inward branches by provid-
ing as many places to the next element as there are inward branches. Only when
all places contain tokens, the next element may occur. Finally, the third row con-
tains the conversion of the inclusive merge. The inclusive merge behaves similar
to the parallel merge, except for the fact that it allows each branch to be bypassed.
Table B.5 contains two conversions for the complex merge. The complex merge
features an n out of m merge on the next element which only occurs if n out of m
branches have provided a token. The first row features the simple variant of this
construct, while the second row features a variant save for use within cycles.

Finally, Table B.6 contains conversions for repeated executions of activities and
message events. The first row features the conversion of a repeated execution of an
activity in the form of a structured while loop, the second row features a structured
repeat loop, and the third row features a multiple instance variant for repeated ex-
ecution of an activity where the activities are executed in parallel. The fourth, and
last, row features the conversion of message flows between throwing and catching
intermediate events or activities.

180 B. BPMN BPD CPN Formalization

Ta
bl

e
B.

1:
C

on
ve

rs
io

n
of

BP
M

N
el

em
en

ts
in

to
C

PN
co

ns
tr

uc
ts

ba
se

d
on

th
e

w
or

kfl
ow

pa
tt

er
ns

as
de

fin
ed

in
(v

an
de

r
A

al
st

et
al

.,
20

03
b)

.

p
a

c
a

st
a
rt

c
st

a
rt

p
e

n
d

1
'c

a a
p

a
c

a

S
e
q
u
e
n
ce

 F
lo

w
c

B
P

M
N

 E
le

m
e
n
t

C
P

N
 T

ra
n

s
la

ti
o
n

T
as

k
/
A

ct
iv

ity

S
u
b
-p

ro
c
e
ss

B
P

M
N

 S
y
m

b
o

l

T
op

-l
e
v
e
l

S
ta

rt
 E

ve
n
t

T
op

-l
e
v
e
l

E
n
d
 E

ve
n
t

e
n
d

c
p

si
n

k
c

c
c c

c

c

c

p
i

c
i

i
In

te
rm

e
d
ia

te

T
hr

o
w

in
g
 E

ve
n
t

c
c

c

Appendices 181

Ta
bl

e
B.

2:
C

on
ve

rs
io

n
of

BP
M

N
el

em
en

ts
in

to
C

PN
co

ns
tr

uc
ts

(c
on

ti
nu

ed
).

p
i

c
i i

c

a
p

a
c

a i
c

a
p

a
c

a

c

i

B
P

M
N

 E
le

m
e
n
t

C
P

N
 T

ra
n

s
la

ti
o
n

B
P

M
N

 S
y
m

b
o

l

In
te

rm
e
d
ia

te

C
a
tc

h
in

g
 E

v
en

t

i

p
i

c

1
'c

c
c

c

c
c c

c

If
 e

xc
 1

`c
 e

ls
e
 0

`c

182 B. BPMN BPD CPN Formalization

Ta
bl

e
B.

3:
C

on
ve

rs
io

n
of

BP
M

N
el

em
en

ts
in

to
C

PN
co

ns
tr

uc
ts

(c
on

ti
nu

ed
).

B
P

M
N

 E
le

m
e
n
t

C
P

N
 T

ra
n

s
la

ti
o
n

B
P

M
N

 S
y
m

b
o

l

If
 p

 0
'c

 e
ls

e
 1

'c

If
 p

 1
'c

 e
ls

e
 0

'c

cc

If
 q

 1
'c

 e
ls

e
 0

'c

If
 p

 1
'c

 e
ls

e
 0

'c
p qp ¬p

E
xc

lu
si

ve
 F

or
k

P
a
ra

lle
l
F
o
rk

In
cl

u
si

v
e
 F

o
rk

D
e
fe

rr
e
d
 c

h
o
ic

e
p

a
/b

c
a b

c

c

c c

a b

a
p

a
a

c
c

a a

p
a

a
c

c

p
a

a
c

c

Appendices 183

Ta
bl

e
B.

4:
C

on
ve

rs
io

n
of

BP
M

N
el

em
en

ts
in

to
C

PN
co

ns
tr

uc
ts

(c
on

ti
nu

ed
).

B
P

M
N

 E
le

m
e
n
t

C
P

N
 T

ra
n

s
la

ti
o
n

B
P

M
N

 S
y
m

b
o

l

cc

p
n

c

a

p
n
+

1
c

p
e

c

e

p
e
+

1
c

If
 p

 t
h
e
n
 0

'c
 e

ls
e
 1

'c

If
 q

 t
h
e
n
 0

'c
 e

ls
e
 1

'c

c c

c

c c

c

E
xc

lu
si

ve
 M

e
rg

e

P
a
ra

lle
l
M

e
rg

e

S
tr

u
ct

u
re

d

In
cl

u
si

v
e
 F

or
k

a
n
d
 M

e
rg

e

a

e

p q

If
 q

 1
'c

 e
ls

e
 0

'c

If
 p

 1
'c

 e
ls

e
 0

'c

p
b

p
d

b d

c c

b d

a
p

a
a

c
c

p
a

a
c

c
a

184 B. BPMN BPD CPN Formalization

Ta
bl

e
B.

5:
C

on
ve

rs
io

n
of

BP
M

N
el

em
en

ts
in

to
C

PN
co

ns
tr

uc
ts

(c
on

ti
nu

ed
).

B
P

M
N

 E
le

m
e
n
t

C
P

N
 T

ra
n

s
la

ti
o
n

B
P

M
N

 S
y
m

b
o

l

c

p
b

c

c

c
n
'c

b

p
x
+

1

p
x

(m
-n

)
c

c
c

c

c
C

o
m

pl
e
x

M
e
rg

e

c
a 1

c

c

p
b

c

n
'c

p
x+
1

p
x

(m
-n
)
c

c

c
c

c

c c

c

c

c

c

c

c

p
1

p
m

a m

b
c

c

b b
a 1 a m

cc

Appendices 185

Ta
bl

e
B.

6:
C

on
ve

rs
io

n
of

BP
M

N
el

em
en

ts
in

to
C

PN
co

ns
tr

uc
ts

(c
on

ti
nu

ed
).

B
P

M
N

 E
le

m
e
n
t

C
P

N
 T

ra
n

s
la

ti
o
n

B
P

M
N

 S
y
m

b
o

l

 b
p

b
c

c
a

p
d

c

If
 p

 1
'c

 e
ls

e
0'

c

If
 p

 0
'c

 e
ls

e
1'

c

p
b

c
b

c

If
 p

 0
'c

 e
ls

e
1'

c

If
 p

 1
'c

 e
ls

e
0'

c

If
 p

 0
'c

 e
ls

e
1'

c

If
 p

 1
'c

 e
ls

e
0'

c

S
tr

u
ct

u
re

d
 L

o
o
p

(W
h
ile

)

S
tr

u
ct

u
re

d
 L

o
o
p

(R
e
p
e
at

)

b

p
b

c
b

p
d

n
 c

d
c

n
 c

M
I
V

a
ri
a
n
t
2

b

M
e
ss

a
g
e
 b

e
tw

e
e
n

a
ct

iv
ite

s
 o

r
e
ve

n
ts

i i2p
mc c

d
p

a

c

b
d

a
c

d
a

c
a

p
a

i i2

c c

c
p

a
c

c
p

a2
c

c c

Abbreviations

BP Business Process
BPD Business Process Diagram
BPEL (Web Service) Business Process Execution Language
BPM Business Process Management
BPMN Business Process Model and Notation
BPMS Business Process Management System
CBP Collaborative Business Process
CPN Colored PN
CTL Computation Tree Logic
CTL* Computation Tree Logic*
CTL-X CTL minus the nexttime operator
ICT Information and Communication Technology
IT Information Technology
LTL Linear Temporal Logic
LTS Labeled Transition System
CPES Compound PES
PES (Labeled) Prime Event Structure
PLTL LTL with Past-time Modalities/Past-time LTL
Pomset Partially ordered multiset
PN Petri Net
RG Reachability Graph
SOA Service Oriented Architecture
TG Transition Graph
UML Unified Modeling Language
WfM Workflow Management
WfMS Workflow Management System

188 Abbreviations

WF-net Workflow Net
WS-BPEL Web Service Business Process Execution Language
WS-CDL Web Service Choreography Description Language
XML eXtensible Markup Language

English Summary

Business Processes (BP) are collaborations that aim to achieve certain value-added
goals driven by external needs. Business Process Management (BPM) manages
and optimizes BP with the intent to increase productivity and performance. BPM
is a rapidly evolving field due to new requirements emerging at agile branches
of business where BP are required to be less and less rigid. The advent of web
services and service-orientation drives this evolution even further. Where BPM
supported local user-specific rigid and repetitive units of work in the past, these
days it is required to support loosely-coupled processes in cloud configurations
among many users with each many different requirements.

As the field of BPM continues to manage an increasing number of rapidly evolving
BP in agile environments, the evolution of each BP must continue to always behave
in a correct manner and remain compliant with the laws, regulations, and internal
business requirements imposed upon it. To manage the correct behavior of quickly
evolving BP, or the definition of a wide variety of similar BP, we evaluate the appli-
cation of formal verification techniques as a possible solution for the pre-runtime
analysis of the correct behavior and compliant design of BP within possible pro-
cess families. Formal verification entails proving or disproving the correctness of a
system model with respect to a formal specification using formal methods of math-
ematics. When employing formal verification, a system model – often represented
by a labeled transition system – is verified against a formal specification in the
form of a set of logic formulas. One approach towards formal verification is model
checking. When model checking a system model is automatically, systematically,
and exhaustively explored while each exlored state is verified to be compliant with
the formal specification.

192 Summary

A series of three case studies from business and government demonstrate the is-
sues. First, a customer support process of an Australian telecommunications provi-
der details the difficulties of compliant design while under enforcement of national
regulations such as the Telecommunications Consumer Protections (TCP) code of
conduct. Second, a study throughout a number of Dutch municipalities which all
are required by law to offer the same service to its residents, but tailored to local
needs, details how a large set of similar BP are defined locally and independently
without regulation. Finally, a collaborative BP between multiple separate entities
illustrates design with extreme concurrency.

A novel approach allowing pre-runtime verification that supports the different
branching and merging constructs allowed by BP models and their service com-
positions is presented. A BP is first formulated as a colored Petri net (Jensen, 1981)
(CPN) through the application of workflow patterns (van der Aalst et al., 2003b).
The CPN is then translated into a Kripke structure (Emerson and Halpern, 1982)
using a novel model conversion which maintains both parallelization information
as well as information on the next local activity occurrence within individual paral-
lel branches or processes (i.e. the local next). Since Kripke structures are transition
systems used to interpret temporal logics, the model allows verification of control
flow specifications over activity occurrences within BP. Furthermore, the resulting
Kripke structure can be reduced before verification.

The state of the art is analyzed and a comprehensive set of specification require-
ments is compiled and extended from related work towards formal verification and
BP compliance. The set of requirements is defined as temporal logic specifications
and features visualization elements for visual design. In addition, an approach to-
wards the automated generation of specifications from either a series of related BP
or runtime traces of BP is presented.

The Verification extension for Business Process Modeling Tool (VxBPM) imple-
ments the main concepts. The tool is written using the Java programming language
and features BP design using the Business Process Model & Notation standard,
automated pattern-based model transformation to CPN, automated generation of
the Kripke structures required for verification, automated verification using one of
multiple model checkers, and transparent visual and textual feedback of the gener-
ated models and verification results.

Evaluations on expressive power demonstrate that, other than the generally em-
ployed transition systems, the proposed model correctly captures well-known BP

Summary 193

patterns. Furthermore, it maintains information on parallel occurrences of activities
and the local next activity occurrence: an ability which is unique to the presented
approach. Evaluations on performance confirm that the conversion algorithm per-
forms well, even for BP with exceedingly large parallel branching. Moreover, very
large BP can be significantly reduced before actual verification. Furthermore, the
approach allows to split specifications in multiple sets, each resulting in a much
smaller reduced Kripke structure. Each specification set can then be verified on
its respective Kripke reduction, which results in a significant performance gain.
As such, the size of the reduced model is directly related to the number of atomic
propositions used within the set of formulas. Finally, the application of the pre-
sented approaches on the relevant case studies further demonstrate the applica-
bility of formal verification as a solution of the analysis of correct and compliant
behavior of BP within possible process families.

Nederlandse Samenvatting

Bedrijfsprocessen (BP) zijn collaboraties met de intentie om bepaalde, door de bui-
tenwereld gedreven, waarde vermeerderende doelstellingen te behalen. Business
process management (BPM) beheert en optimaliseert BP met het doel om produc-
tiviteit en bedrijfsprestaties te verhogen. BPM is een snel evoluerend veld door
nieuw opkomende vereisten vanuit flexibele bedrijfstakken waar BP steeds minder
star behoren te zijn. De opkomst van web services en service-orientatie drijft deze
evolutie zelfs nog verder. Waar BPM in het verleden specifieke rigide en repetitieve
werkeenheden ondersteunde voor de lokale gebruiker, wordt tegenwoordig vereist
dat het losgekoppelde processen ondersteunt in cloud configuraties, te midden van
vele gebruikers met elk vele verschillende eisen.

Zolang het BPM veld een stijgend aantal snel evoluerende BP in flexibele bedrijfs-
takken ondersteunt, moet de evolutie van elk BP aanhoudend correct gedrag ver-
tonen en tevens voldoen aan de opgelegde wet- en regelgeving en interne bedrijfs-
regels. Om het aanhoudend correct gedrag te ondersteunen van snel evoluerende
BP, of de definitie van een breed aantal soortgelijke BP, evalueren we de toepass-
ing van formele verificatietechnieken als mogelijke oplossing voor analyse van het
juiste gedrag en wettelijk conforme ontwerp van BP binnen mogelijke proces fam-
ilies, welke plaatsvindt voorafgaand aan de uitvoering van dat BP. Formele veri-
ficatie omvat het al dan niet bewijzen van de juistheid van een systeemmodel ten
opzichte van een formele specificatie met behulp van formele wiskundige meth-
oden. Bij de toepassing van formele verificatie wordt een systeem model, vaak
weergegeven met een gelabeld transitie systeem, geverifieerd tegen een formele
specificatie in de vorm van een reeks logische formules. Eén aanpak voor formele
verificatie is model checking. Bij model checking wordt een systeem model op een
automatische, systematische en uitputtende manier onderzocht, terwijl elke onder-
zochte staat wordt gecontroleerd op overeenstemming met de formele specificatie.

196 Samenvatting

Een reeks van drie case studies uit het bedrijfsleven en de overheid demonstreren
de problematiek. De eerste case study omvat een klantenservice proces van een
Australische telecomprovider, en beschrijft de moeilijkheden van conform ontwerp
terwijl het onder handhaving van nationale regelgeving staat (i.e. de Telecommu-
nications Consumer Protections (TCP) gedragscode). De tweede case study om-
vat een onderzoek binnen een aantal Nederlandse gemeenten. Deze gemeenten
zijn wettelijk verplicht dezelfde service te bieden aan haar inwoners, maar dan
afgestemd op lokale behoeften. Hetgeen resulteert in een groot aantal soortgelijke
BP welke lokaal en onafhankelijk van elkaar worden gedefinieerd zonder reguler-
ing. Tot slot illustreert de derde case study een coöperatief BP, tussen meerdere
afzonderlijke entiteiten, een ontwerp met extreme parallel uitvoerende processen.

Een innovatieve benadering voor verificatie tijdens de ontwerpfase wordt gepre-
senteerd. De benadering ondersteunt de verschillende vertakkende en samenvoe-
gende constructies zoals toegestaan in BP-modellen en hun service composities.
Een BP wordt eerst geformuleerd als een colored Petrinet (Jensen, 1981) (CPN) door
middel van het toepassen van workflow patronen (van der Aalst et al., 2003b). Ver-
volgens wordt de CPN vertaald naar een Kripke structuur (Emerson and Halpern,
1982) met behulp van een innovatieve vertaling, die zowel parallellisatie informatie
handhaaft, alsmede informatie over de aanwezigheid van de volgende lokale ac-
tiviteit in individuele parallelle takken of processen (d.w.z. de plaatselijk volgende
aanwezigheid). Aangezien Kripke structuren transitie systemen zijn, die worden
gebruikt om temporele logica te interpreteren, kan het model worden ingezet voor
de verificatie van control-flow specificaties over activiteiten en hun uitvoer bin-
nen het BP. Bovendien kan de resulterende Kripke structuur worden gereduceerd,
voorafgaand aan de verificatie.

De state of the art wordt geanalyseerd en een uitgebreide verzameling van spec-
ificatie vereisten wordt verzameld en uitgebreid vanuit de literatuur op het ge-
bied van formele verificatie en BP compliance. De vereisten worden gedefinieerd
als temporele logica specificaties, welke visualisatie elementen bevatten voor een
grafische weergave van het ontwerp. Bovendien wordt een aanpak voor het au-
tomatisch genereren van de specificaties vanuit zowel een reeks verwante BP als
uitgevoerde BP gepresenteerd.

De Verificatie extensie voor Business Process Modeling Tool (VxBPM) implemen-
teert de belangrijkste concepten. De tool is geschreven met behulp van de program-
meertaal Java en voorziet in BP ontwerp met behulp van de Business Process Model
& Notation standaard, automatische model transformatie naar CPN gebaseerd op

Samenvatting 197

patronen, geautomatiseerde generatie van de Kripke structuren die nodig zijn voor
verificatie, automatische verificatie via een model checker en transparante visuele
en tekstuele feedback van de gegenereerde modellen en verificatieresultaten.

Evaluaties met betrekking tot expressiviteit bewijzen dat, anders dan doorgaans
toegepaste transitiesystemen, het voorgestelde model bekende BP patronen juist
vastlegt. Verder behoudt het model informatie over de aanwezigheid van par-
allelle activiteiten en de lokale volgende activiteit: een eigenschap uniek aan de
voorgestelde aanpak. Evaluaties inzake de prestaties en snelheid bevestigen dat
het conversie-algoritme goed presteert, zelfs voor BP met bijzonder grote parallelle
vertakkingen. Bovendien kunnen zeer grote BP aanzienlijk worden gereduceerd
voorafgaand aan de eigenlijke verificatie. Tevens laat de voorgestelde aanpak toe
dat specificaties in meerdere sets worden opgedeeld, elk resulterend in een veel
kleinere gereduceerde Kripke structuur. Elke specificatie set kan dan worden gev-
erifieerd op zijn respectieve Kripke reductie, wat resulteert in een significante pres-
tatiewinst. Als zodanig is de omvang van het gereduceerde model direct gere-
lateerd aan het aantal atomaire proposities gebruikt binnen de set van formules.
Tenslotte toont de toepassing van de voorgestelde benaderingen op de desbetref-
fende case studies aan dat formele verificatie als een oplossing voor de analyse van
het juist en conform gedrag van BP in mogelijke proces families toepasbaar is.

Bibliography

M. Aiello, P. Bulanov, and H. Groefsema. Requirements and tools for variability
management. In IEEE Workshop on Requirement Engineering for Services at IEEE
COMPSAC, 2010.

R. Alur and D.L. Dill. A theory of timed automata. Theoretical computer science, 126
(2):183–235, 1994.

B.B. Anderson, J.V. Hansen, P.B. Lowry, and S.L. Summers. Model checking for
E-business control and assurance. IEEE Transactions on Systems, Man, and Cyber-
netics, 35(3):445–450, 2005.

A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. Liu, S. Thatte,
P. Yendluri, and A. Yiu. Web services business process execution language ver-
sion 2.0, 2007. WS-BPEL TC OASIS, April 2007.

A. Armas-Cervantes, P. Baldan, M. Dumas, and L. Garcı́a-Bañuelos. Diagnosing
behavioral differences between business process models: An approach based on
event structures. Information Systems, 56:304–325, 2016.

A. Awad, G. Decker, and M. Weske. Efficient compliance checking using BPMN-
Q and temporal logic. In Business Process Management, BPM ’08, pages 326–341.
Springer, 2008.

S. Balko, A.H.M. ter Hofstede, A.P. Barros, M. La Rosa, and M.J. Adams. Controlled
flexibility and lifecycle management of business processes through extensibility.
Technical report, QUT, Australia, 2009.

H.H. Bi and J.L. Zhao. Applying propositional logic to workflow verification. In-
formation Technology and Management, 5:293–318, 2004.

200 Bibliography

D. Bianculli, C. Ghezzi, and P. Spoletini. A model checking approach to verify
BPEL4WS workflows. In Int. Conf. on Service-Oriented Computing and Applications,
pages 13–20, 2007.

M.C. Browne, E.M. Clarke, and O. Grümberg. Characterizing finite kripke struc-
tures in propositional temporal logic. Theoretical Computer Science, 59(1-2):115–
131, July 1988.

J.R. Büchi. On a Decision Method in Restricted Second-Order Arithmetic. In In-
ternational Congress on Logic, Methodology, and Philosophy of Science, pages 1–11.
Stanford University Press, 1962.

J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. Mining configurable
process models from collections of event logs. In Business Process Management,
pages 33–48. Springer, 2013.

P. Bulanov, A. Lazovik, and M. Aiello. Business process customization using pro-
cess merging techniques. In Service-Oriented Computing (ICSOC), pages 1–4. IEEE,
2011.

R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M/ Roveri, and S. Tonetta. The nuxmv symbolic model checker. In Int. Conf. on
Computer Aided Verification, pages 334–342, 2014.

S.H. Chang and S.D. Kim. A variability modeling method for adaptable services in
service-oriented computing. In Int. Software Product Line Conference, pages 261–
268. IEEE, 2007.

F. Chesani, P. Mello, M. Montali, and P. Torroni. Web services and formal meth-
ods. In Web Services and Formal Methods, volume 5387 of Lecture Notes in Computer
Science, chapter Verification of Choreographies During Execution Using the Re-
active Event Calculus, pages 55–72. Springer, 2009.

Y. Choi and J.L. Zhao. Decomposition-based verification of cyclic workflows. In
Automated Technology for Verification and Analysis, pages 84–98. Springer, 2005.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In Int. Conf. on Computer Aided Verification (CAV 2002), volume
2404 of LNCS, Copenhagen, Denmark, July 2002. Springer.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, Cam-
bridge, Massachusetts and London, UK, 1999.

Bibliography 201

F. Corradini, A. Polini, and B. Re. Inter-organizational business process verification
in public administration. Business Process Management Journal, 21(5):1040–1065,
2015.

P. Dadam and M. Reichert. The adept project: a decade of research and devel-
opment for robust and flexible process support. Computer Science - R&D, 23(2):
81–97, 2009.

D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G.L. Pozzato, and D. Thesei-
der Dupre. Verifying compliance of business processes with temporal answer
sets, 2011.

G. De Giacomo, M. Dumas, F.M. Maggi, and M. Montali. Declarative process mod-
eling in bpmn. In Int. Conf. on Advanced Information Systems Engineering (CAISE),
pages 84–100. Springer, 2015.

R. Demeyer, M. van Assche, L. Langevine, and W. Vanhoof. Declarative workflows
to efficiently manage flexible and advanced business processes. In international
ACM SIGPLAN symposium on Principles and practice of declarative programming,
pages 209–218. ACM, 2010.

A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-centric
business processes. In Int. Conf. on Database Theory, ICDT, pages 252–267. ACM,
2009. ISBN 978-1-60558-423-2.

R.M. Dijkman, M. Dumas, and C. Ouyang. Semantics and analysis of business
process models in bpmn. Information and Software Technology, 50(12):1281–1294,
2008.

M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in property specifications for
finite-state verification. In Int. Conf. on Software Engineering, pages 411–420. IEEE,
1999.

A. Elgammal, O. Türetken, W.J.A.M. van den Heuvel, and M. Papazoglou. On the
formal specification of regulatory compliance: a comparative analysis. In Int.
Conf. Service-Oriented Computing (ICSOC), pages 27–38. Springer, 2010a.

A. Elgammal, O. Türetken, W.J.A.M. van den Heuvel, M. Papazoglou, and et al. To-
wards a comprehensive design-time compliance management: A roadmap. Tech-
nical report, Tilburg University, School of Economics and Management, 2010b.

202 Bibliography

A. Elgammal, S. Sebahi, O. Türetken, M.S. Hacid, M. Papazoglou, and W.J.A.M.
van den Heuvel. Business process compliance management: an integrated proac-
tive approach. In Int. Conf. on Advanced Information Systems Engineering (CAISE),
2012.

A. Elgammal, O. Türetken, W.J.A.M. van den Heuvel, and M. Papazoglou. Formal-
izing and appling compliance patterns for business process compliance. Software
& Systems Modeling, pages 1–28, 2014.

C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow sys-
tems. In Proceedings of conference on Organizational computing systems, pages 10–21.
ACM, 1995.

E.A. Emerson and J.Y. Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. In Proc. of the 14th annual ACM symposium on
Theory of computing, pages 169–180, 1982.

J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575–591, 1991.

R. Eshuis and R. Wieringa. Tool support for verifying uml activity diagrams. IEEE
Transactions on Software Engineering, 30(7):437–447, 2004.

J. Esparza. Model checking using net unfoldings. In TAPSOFT’93: Theory and Prac-
tice of Software Development, volume 668 of Lecture Notes in Computer Science, pages
613–628. Springer Berlin Heidelberg, 1993.

J. Esparza. Model checking using net unfoldings. Sci. Comput. Program., 23(2-3):
151–195, 1994.

J Esparza, S. Römer, and W. Vogler. An improvement of mcmillan’s unfolding al-
gorithm. In International Workshop on Tools and Algorithms for the Construction and
Analysis of Systems, pages 87–106. Springer, 1996.

J. Esparza, S. Römer, and W. Vogler. An improvement of mcmillan’s unfolding
algorithm. Formal Methods in System Design, 20(3):285–310, 2002.

C. Favre and V. Hagen. Symbolic execution of acyclic workflow graphs. In Business
Process Management, volume 6336 of Lecture Notes in Computer Science, pages 260–
275. Springer Berlin Heidelberg, 2010.

S. Feja, A. Speck, and E. Pulvermüller. Business process verification. In GI Jahresta-
gung, pages 4037–4051, 2009.

Bibliography 203

J.A. Fisteus, L.S. Fernández, and C.D. Kloos. Applying model checking to
BPEL4WS business collaborations. In Proceedings of the 2005 ACM Symposium
on Applied Computing, SAC ’05, pages 826–830. ACM, 2005.

H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of web
service compositions. In IEEE Int. Conf. on Automated Software Engineering (ASE),
pages 152–163, 2003.

X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In Int. Conf.
on World Wide Web, pages 621–630. ACM, 2004.

L. Garcı́a-Bañuelos, N.R.T.P. van Beest, M. Dumas, and M. La Rosa. Complete and
interpretable conformance checking of business processes. Technical report, BPM
Center, 2015.

C.E. Gerede and J. Su. Specification and verification of artifact behaviors in business
process models. In Int. Conf. Service-Oriented Computing (ICSOC), volume 4749 of
LNCS, pages 181–192. Springer, 2007. ISBN 978-3-540-74973-8.

A. Ghose and G. Koliadis. Auditing business process compliance. In Service-
Oriented Computing (ICSOC), pages 169–180. Springer, 2007. ISBN 978-3-540-
74973-8.

S. Goedertier and J. Vanthienen. Designing compliant business processes with obli-
gations and permissions. In Proc. Int. Conf. on Business Process Management Work-
shops, BPM, pages 5–14. Springer, 2006. ISBN 3-540-38444-8, 978-3-540-38444-1.

F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa. Config-
urable workflow models. International Journal on Cooperative Information Systems,
17(2):177–221, 2008.

F. Gottschalk, T.A.C. Wagemakers, M.H. Jansen-Vullers, W.M.P. van der Aalst, and
M. La Rosa. Configurable process models: Experiences from a municipality case
study. In Int. Conf. on Advanced Information Systems Engineering (CAISE), pages
486–500. Springer, 2009.

G. Governatori, Z. Milosevic, and S.W. Sadiq. Compliance checking between busi-
ness processes and business contracts. In Int. Conf. on Enterprise Distributed Object
Computing Conference, pages 221–232. IEEE, 2006.

H. Groefsema and D. Bucur. A survey of formal business process verification: From
soundness to variability. In International Symposium on Business Modeling and Soft-
ware Design, pages 198–203, 2013.

204 Bibliography

H. Groefsema and N.R.T.P. van Beest. Design-time compliance of service composi-
tions in dynamic service environments. In Int. Conf. on Service Oriented Computing
& Applications, pages 108–115, 2015.

H. Groefsema, P. Bulanov, and M. Aiello. Declarative enhancement framework for
business processes. In Int. Conf. Service-Oriented Computing (ICSOC), pages 495–
504, 2011.

H. Groefsema, P. Bulanov, and M. Aiello. Imperative versus declarative process
variability: Why choose? Technical Report JBI 2011-12-6, University of Gronin-
gen, dec 2012.

H. Groefsema, N.R.T.P. van Beest, and M. Aiello. A formal model for compliance
verification of service compositions. IEEE Transactions on Services Computing,
2016. To appear.

J.F. Groote and F.W. Vaandrager. An efficient algorithm for branching bisimulation
and stuttering equivalence. In ICALP ’90, pages 626–638, 1990.

H. Hadaytullah, K. Koskimies, and T. Systa. Using model customization for vari-
ability management in service compositions. In IEEE Int. Conf. on Web Services
(ICWS 2009), pages 687–694, 2009.

A. Hallerbach, T. Bauer, and M. Reichert. Managing process variants in the process
lifecycle. In Int. Conf. on Enterprise Information Systems (ICEIS’08), pages 154–161,
June 2008.

T.T. Hildebrandt and R.R. Mukkamala. Declarative event-based workflow as dis-
tributed dynamic condition response graphs. arXiv preprint arXiv:1110.4161,
2011.

P. Huber, A.M. Jensen, L.O. Jepsen, and K. Jensen. Reachability trees for high-level
petri nets. Theoretical Computer Science, 45(3):261–292, 1986.

W. Janssen, R. Mateescu, S. Mauw, and J. Springintveld. Verifying business pro-
cesses using SPIN. In Proc. of the 4th Int. SPIN Workshop, pages 21–36, 1998.

K. Jensen. Coloured Petri Nets and the invariant-method. Theoretical Computer
Science, 14(3):317 – 336, 1981.

C.T. Karamanolis, D. Giannakopoulou, J. Magee, and S.M. Wheater. Model check-
ing of workflow schemas. In Int. Conf. on Enterprise Distributed Object Computing,
EDOC ’00, pages 170–181. IEEE Computer Society, 2000.

Bibliography 205

A. Kheldoun, K. Barkaoui, and M. Ioualalen. Specification and verification of com-
plex business processes - a high-level petri net-based approach. In Business Pro-
cess Management, volume 9253 of Lecture Notes in Computer Science, pages 55–71.
Springer International Publishing, 2015.

O.M. Kherbouche, A. Ahmad, and H. Basson. Using model checking to control
the structural errors in bpmn models. In IEEE Int. Conf. on Research Challenges in
Information Science (RCIS 2013), pages 1–12, 2013.

R.K.L. Ko. A computer scientist’s introductory guide to business process manage-
ment (bpm). Crossroads, 15(4):4:11–4:18, June 2009.

J. Koehler, G. Tirenni, and S. Kumaran. From business process model to consistent
implementation: a case for formal verification methods. In Int. Conf. on Enterprise
Distributed Object Computing Conference, pages 96–106, 2002.

M. La Rosa. Managing variability in process-aware information systems. PhD thesis,
Queensland University of Technology Brisbane, Australia 25, 2009.

M. La Rosa, M. Dumas, R. Uba, and R.M. Dijkman. Merging business process
models. In OTM Confederated International Conferences” On the Move to Meaningful
Internet Systems”, pages 96–113. Springer, 2010.

M. La Rosa, M. Dumas, R. Uba, and R.M. Dijkman. Business process model merg-
ing: An approach to business process consolidation. ACM Transactions on Software
Engineering and Methodology, 22(2):11, 2013.

L. Lamport. What good is temporal logic? In IFIP congress, volume 83, pages
657–668, 1983.

T. Latvala and K. Heljanko. Coping with strong fairness. Fundamenta Informaticae,
43(1-4):175–193, 2000.

Y. Liu, S. Müller, and K. Xu. A static compliance-checking framework for business
process models. IBM Systems Journal, 46:335–361, 2007.

R. Lu, S. Sadiq, and G. Governatori. On managing business processes variants. Data
and Knowledge Engineering, 68(7):642–664, 2009. ISSN 0169-023X.

L.T. Ly, S. Rinderle-Ma, D. Knuplesch, and P. Dadam. Monitoring business process
compliance using compliance rule graphs. In Proc. Confederated Int. Conf. On the
move to meaningful internet systems - Volume I, OTM, pages 82–99. Springer-Verlag,
2011.

206 Bibliography

S. Ma, L. Zhang, and J. He. Towards formalization and verification of unified busi-
ness process model based on pi calculus. In Int. Conf. on Software Engineering
Research, Management and Applications(SERA ’08), pages 93–101, Aug 2008.

F.M. Maggi, M. Montali, M. Westergaard, and W.M.P. van der Aalst. Monitoring
business constraints with linear temporal logic: An approach based on colored
automata. In Business Process Management, pages 132–147. Springer, 2011.

M. Marin, R. Hull, and R. Vaculı́n. Data centric bpm and the emerging case man-
agement standard: A short survey. In Business Process Management Workshops,
pages 24–30. Springer, 2013.

N. Markey. Temporal logic with past is exponentially more succinct. EATCS Bul-
letin, 79:122–128, 2003.

C. Masalagiu, W.N. Chin, S. Andrei, and V. Alaiba. A rigorous methodology for
specification and verification of business processes. Formal Aspects of Computing,
21(5):495–510, 2009.

K. L. McMillan and D. K. Probst. A technique of state space search based on un-
folding. Formal Methods in System Design, 6(1):45–65, 1995.

F. Milani, M. Dumas, N. Ahmed, and R. Matulevičius. Modelling families of busi-
ness process variants: A decomposition driven method. Information Systems, 56:
55–72, 2016.

M. Montali, P. Torroni, F. Chesani, P. Mello, M. Alberti, and E. Lamma. Abductive
logic programming as an effective technology for the static verification of declar-
ative business processes. Fundamenta Informaticae, 102(3-4):325–361, 2010. ISSN
0169-2968.

S. Nakajima. Verification of Web service flows with model-checking techniques. In
Proc. 1st Int. Symp. on Cyber Worlds, pages 378–385, 2002. doi: 10.1109/CW.2002.
1180904.

S. Nakajima. Model-checking behavioral specification of bpel applications. Electron.
Notes Theoretical Computer Science, 151(2):89–105, May 2006.

T. Nguyen, A. Colman, and J. Han. Modeling and managing variability in process-
based service compositions. In Int. Conf. Service-Oriented Computing (ICSOC),
pages 404–420. Springer, 2011.

M. Nielsen, G.D. Plotkin, and G. Winskel. Petri Nets, Event Structures and Do-
mains, Part I. Theoretical Computer Science, 13:85–108, 1981.

Bibliography 207

OMG. Business process model and notation (BPMN) version 2.0, 2011.

OMG. Omg unified modeling language (OMG UML) version 2.5, 2015.

M. Papazoglou and W.J.A.M. van den Heuvel. Service oriented architectures: ap-
proaches, technologies and research issues. The VLDB journal, 16(3):389–415,
2007.

E. Pascalau, A. Awad, S. Sakr, and M. Weske. Partial process models to manage
business process variants. International Journal of Business Process Integration and
Management, 5(3):240–256, 2011.

K. Peffers, T. Tuunanen, M.A. Rothenberger, and S. Chatterjee. A design science
research methodology for information systems research. Journal of Management
Information Systems, 24(3):45–77, 2007.

M. Pesic and W.M.P. van der Aalst. A declarative approach for flexible business
processes management. In Business Process Management Workshops, pages 169–
180. Springer, 2006.

C.A. Petri. Communication with automata. PhD thesis, Universität Hamburg, 1966.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Sym-
posium on Foundations of Computer Science, pages 46–57. IEEE Computer Society,
1977.

V. Pratt. Modeling concurrency with partial orders. International Journal of Parallel
Programming, 15(1):33–71, 1986.

E. Pulvermueller, S. Feja, and A. Speck. Developer-friendly verification of process-
based systems. Knowledge Based Systems, 23(7):667–676, 2010.

M. Razavian and R. Khosravi. Modeling variability in business process models
using UML. In Int. Conf. on Information Technology: New Generations, pages 82–87.
IEEE, 2008.

W. Reisig and G. Rozenberg. Lectures on petri nets i: basic models: advances in petri
nets. Springer Science & Business Media, 1998.

M. Rosemann and W.M.P. van der Aalst. A configurable reference modelling lan-
guage. Information Systems, 32(1):1–23, 2007.

N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar. Workflow
control-flow patterns: A revised view (2006). Technical Report BPM-06-22, BPM
Center, 2007.

208 Bibliography

I. Rychkova, G. Regev, and A. Wegmann. Using declarative specifications in busi-
ness process design. International Journal on Computational Science and Applications,
5(3b):45–68, 2008.

S.W. Sadiq, M.E. Orlowska, and W. Sadiq. Specification and validation of process
constraints for flexible workflows. Information Systems, 30(5):349–378, 2005.

A. Schnieders and F. Puhlmann. Variability mechanisms in e-business process fam-
ilies. In Proc. Int. Conf. on Business Information Systems, volume 85, pages 583–601.
2006.

H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W.M.P. van der Aalst. Pro-
cess flexibility: A survey of contemporary approaches. In Advances in Enterprise
Engineering I, pages 16–30. Springer Berlin Heidelberg, 2008.

D.M.M. Schunselaar, F.M. Maggi, and N. Sidorova. Patterns for a log-based
strengthening of declarative compliance models. In Int. Conf. on Integrated Formal
Methods, pages 327–342. Springer, 2012a.

D.M.M. Schunselaar, F.M. Maggi, N. Sidorova, and W.M.P. van der Aalst. Config-
urable declare: designing customisable flexible process models. In OTM Confed-
erated International Conferences” On the Move to Meaningful Internet Systems”, pages
20–37. Springer, 2012b.

D.M.M. Schunselaar, E. Verbeek, W.M.P. van der Aalst, and H.A. Raijers. Creating
sound and reversible configurable process models using cosenets. In International
Conference on Business Information Systems, pages 24–35. Springer, 2012c.

D.M.M. Schunselaar, H.M.W. Verbeek, W.M.P. van der Aalst, and H.A. Reijers. Pe-
tra: A tool for analysing a process family. In PNSE@ Petri Nets, pages 269–288,
2014.

M. Sinnema, S. Deelstra, and P. Hoekstra. The covamof derivation process. In Int.
Conf. on Reuse of Off-the-shelf Components, LNCS, pages 101–114. Springer-Verlag,
2006.

C. Sun and M. Aiello. Towards variable service compositions using VxBPEL. In
High Confidence Software Reuse in Large Systems, pages 257–261, 2008.

C. Sun, R. Rossing, M. Sinnema, P. Bulanov, and M. Aiello. Modelling and manag-
ing the variability of web service-based systems. Journal of Systems and Software,
83:502–516, 2010.

Bibliography 209

J.L. Szwarcfiter and P.E. Lauer. A search strategy for the elementary cycles of a
directed graph. BIT Numerical Mathematics, 16(2):192–204, 1976.

J.C. Tiernan. An Efficient Search Algorithm to Find the Elementary Circuits of a
Graph. Communications of the ACM, 13(12):722–726, 1970.

N. Trčka, W.M.P. van Der Aalst, and N. Sidorova. Data-flow anti-patterns: Discov-
ering data-flow errors in workflows. In Int. Conf. on Advanced Information Systems
Engineering (CAISE), volume 5565 of Lecture Notes in Computer Science, pages 425–
439. Springer-Verlag, 2009.

N.R.T.P. van Beest, P. Bulanov, J.C. Wortmann, and A. Lazovik. Resolving busi-
ness process interference via dynamic reconfiguration. In 8th International Con-
ference on Service Oriented Computing (ICSOC-2010), volume 6470/2010, pages 47–
60. Lecture Notes in Computer Science, 2010.

N.R.T.P. van Beest, P. Bulanov, J.C. Wortmann, and A. Lazovik. Automated runtime
repair of business processes. Technical report, University of Groningen, 2012.

N.R.T.P. van Beest, M. Dumas, L. Garcı́a-Bañuelos, and M. La Rosa. Log delta anal-
ysis: Interpretable differencing of business process event logs. In Business Process
Management, pages 386–405. Springer International Publishing, 2015.

W.M.P. van der Aalst. Verification of workflow nets. In Application and Theory of
Petri Nets 1997, volume 1248 of Lecture Notes in Computer Science, pages 407–426.
Springer Berlin Heidelberg, 1997.

W.M.P.. van der Aalst. The application of petri nets to workflow management. The
Journal of Circuits, Systems and Computers, 8:21–66, 1998.

W.M.P. van der Aalst. Workflow verification: Finding control-flow errors us-
ing petri-net-based techniques. In Business Process Management, pages 161–183.
Springer, 2000.

W.M.P. van der Aalst and T. Basten. Inheritance of workflows: an approach to
tackling problems related to change. Theoretical Computer Science, 270(1):125–203,
2002.

W.M.P. van der Aalst and S. Jablonski. Dealing with workflow change: identifi-
cation of issues and solutions. Computer systems science and engineering, 15(5):
267–276, 2000.

W.M.P. van der Aalst and M. Pesic. DecSerFlow: Towards a truly declarative service
flow language. Springer, 2006.

210 Bibliography

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14:5–51, 2003a.

W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske. Business process man-
agement: A survey. In Business Process Management, pages 1–12. Springer-Verlag,
2003b.

W.M.P. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann, and M.H. Jansen-
Vullers. Configurable process models as a basis for reference modeling. In Busi-
ness Process Management, pages 512–518. Springer, 2005.

W.M.P. van der Aalst, M. Dumas, F. Gottschalk, A.H.M. Ter Hofstede, M. La Rosa,
and Jan Mendling. Preserving correctness during business process model config-
uration. Formal Aspects of Computing, 22(3-4):459–482, 2010.

W.M.P. van der Aalst, Kees M. van Hee, A.H.M. ter Hofstede, Natalia Sidorova,
H.M.W. Verbeek, M. Voorhoeve, and M.T. Wynn. Soundness of workflow nets:
classification, decidability, and analysis. Formal Aspects of Computing, 23(3):333–
363, 2011.

W.M.P. van der Aalst, N. Lohmann, and M. La Rosa. Ensuring correctness during
process configuration via partner synthesis. Information Systems, 37(6):574–592,
2012.

B.F. van Dongen, M.H. Jansen-Vullers, H.M.W. Verbeek, and W.M.P. van der Aalst.
Verification of the sap reference models using epc reduction, state-space analysis,
and invariants. Computer and Industry, 58(6):578–601, August 2007.

T. van Eijndhoven, M.E. Iacob, and M.L. Ponisio. Achieving business process flex-
ibility with business rules. In Enterprise Distributed Object Computing Conference,
pages 95–104. IEEE, 2008.

B. Weber, M. Reichert, and S. Rinderle-Ma. Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data and
Knowledge Engineering, 66:438–466, 2008.

I. Weber, J. Hoffmann, and J. Mendling. Beyond soundness: on the verification of
semantic business process models. Distributed and Parallel Databases, 27:271–343,
2010.

M.T. Wynn, H.M.W. Verbeek, W.M.P. van der Aalst, A.H.M. ter Hofstede, and
D. Edmond. Business process verification – finally a reality! Business Process
Management Journal, 15(1):74–92, 2009.

