7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Business Process Variability
Groefsema, Heerko

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Groefsema, H. (2016). Business Process Variability: a study into process management and verification.
Rijksuniversiteit Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-06-2022

https://research.rug.nl/en/publications/9d23dd6a-74d6-45b1-b476-0fb69ea25db0

Business Process Variability

A Study into Process Management and Verification

Heerko Groefsema

This research was supported by the University of Groningen and the Netherlands
Organization for Scientific Research (NWO) under project number 638.001.207 whithin
the scope of the Jacquard program.

R, Software Engineering
NYWO acgmrd

Netherlands Organisation for Scientific Research

Published by: University of Groningen
Groningen, The Netherlands

Printed by: NetzoDruk Groningen B.V.
Groningen, The Netherlands

ISBN: 978-90-367-9237-0 (book)
978-90-367-9236-3 (e-book)

© 2016, Heerko Groefsema

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys-
tem of any nature, or transmitted in any form or by any means, electronic, mechanical, now
known or hereafter invented, including photocopying or recording, without prior written

permission of the author.

rijksuniversiteit
/ groningen

Business Process Variability

A Study into Process Management and Verification

Proefschrift

ter verkrijging van de graad van doctor aan de
Rijksuniversiteit Groningen
op gezag van de
rector magnificus prof. dr. E. Sterken
en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op

vrijdag 23 december 2016 om 12.45 uur
door

Heerko Groefsema

geboren op 16 augustus 1983
te Groningen

Promotor
Prof. dr. ir. M. Aiello

Beoordelingscommissie

Prof. dr. ir. W.M.P. van der Aalst
Prof. dr. W.J.A.M. van den Heuvel
Prof. dr. ir. J.C. Wortmann

Contents

Acknowledgements

1 Introduction
1.1 Variability and Formal Verification
1.2 Problem Statement
1.3 Methodology
14 Contents

1.5 Related Publications

2 Background
2.1 Business Process Modeling and Management
2.2 Business Process Formalization

2.3 Formal Verification

3 State of the Art
3.1 Business ProcessSoundness

3.2 Business Process Compliance

xiii

11

13

14

17

17

21

27

37

viii

Contents

3.3 Business Process Variability,

34 DISCUSSION v v v i e e e e e e e e

Case Study Description and Formalization

41 Case 1: Telecommunications Customer Support
42 Case2: Local Dutch e-Government
43 Case 3: Bouncer Registration

44 Discussiono e e e

Verification Requirements

51 Model Requirements
5.2 Specification Requirements,
5.3 Evolutionary Requirements

54 DISCUSSION . . v v v v v o e e e e e e e e e

Business Process Verification

6.1 VerifiableModel o
6.2 Specification Semantics L L L Lo
6.3 Specification Interpretation
6.4 Verification over GroupsandRoles
6.5 Verification over Conditions
6.6 Inheritance of SpecificationSets o000
6.7 ModelReduction

6.8 DisScuSSion e e

47

48

53

61

64

67

67

69

77

79

83

Contents

7 Verification Specifications 101
71 Visualization Lo oo 102
7.2 Soundness Specifications oL 104
7.3 Preventive Compliance Specifications 105
7.4 Variability Specifications L o oL 107
75 Discussion 110
8 Automated Specification Assembly 113
8.1 PrimeEventStructures oL 114
8.2 PrefixUnfoldings 115
8.3 Execution and Elementary Loop Identification 118
8.4 Compoundeventstructures 121
8.5 Specification Assemblyo 122
8.6 Discussion 124
9 Implementation 127
9.1 Features 127
9.2 Extensibility 132
10 Evaluation 139
10.1 Expressive Power 139
10.2 Performance Evaluation 143
10.3 Requirements Analysis 146

10.4 Case Study (continued) 149

Contents

11 Conclusion
11.1 Summary
11.2 Contributions
113 Results
114 Limitations

11.5 Implications & Future Work . .

Appendices

A Business Process Model & Notation

B BPMN BPD CPN Formalization

Abbreviations

English Summary

Nederlandse Samenvatting

Bibliography

159

160

162

163

167

170

173

173

178

187

191

195

199

Acknowledgements

Finally. The end result of a long period of study and research is starting to take
shape. What a journey it has been. A journey of persistence, continuous iteration,
and will. A journey on an international level while remaining in one place. A
journey where I had to balance my strength between work and leisure every day.
A journey which I could never have begun or continued without the support of
others. In my case this is even more true than other cases. I would like to reflect on
those people that have supported and helped me throughout this period.

Firstly, I would like to express my gratitude to my advisor, Prof. dr. ir. Marco
Aiello, for his continuing support throughout my Ph.D. study, for his guidance, his
knowledge, his unending patience, and for his positive opinion towards my work,
which was always much more positive than my own.

I would like to thank the members of my assessment committee, Prof. dr. ir.
Hans Wortmann for his willingness to include me in the SaS-LeG project, Prof. dr.
Willem-Jan van den Heuvel for his positive feedback, and most notably Prof. dr. ir.
Wil van der Aalst for his generous amount of valuable insights and feedback.

I'would like to thank Prof. dr. Serge Daan, the former dean, Prof. dr. Henk Broer,
the former scientific director, Prof. dr. ir. Paris Avgeriou, Hans van der Aa from
the home ventilation centre of the UMCG, Evelyn Haandrikman and Hedwig Wit-
teveen from USG Restart, Lourens Boomsma, and Janieta de Jong for their support
during and after my application process and their continuing confidence.

I would like to thank Prof. dr. Wim Hesselink and Prof. dr. Gerard Renardel de
Lavalette for their guidance into methods of formal verification which made this
work possible.

Acknowledgements

I would like to thank my trusty co-authors, Nick van Beest and Pavel Bulanov for

their close and seamless cooperation, even while lately residing in entirely different
time zones, and Doina Bucur for her edged insights. Without their discussion and
input I could not have achieved the content presented here.

For her continuing care, I would like to thank Ineke Schelhaas. Without her initial
support and care, I would never have had the opportunity to start my Ph.D. studies.

Elie El-Khoury, Mahir Can Doganay, and Ilche Georgievski, my different room-
mates over the years, I would like to thank for their support, care, and many fun
discussions, being it about games, football, or TV shows. I would also like to thank
Eirini Kaldeli, Viktoriya Degeler, Tuan Anh Nguyen, Ehsan Ullah Warriach, Frank
Blaauw, Fatimah Alsaif, Ang Sha, and Laura Fiorini for those days they would help
out when the regular roommates were not available. Without all of your willing-
ness to help and care, I could not have achieved this milestone.

I would like to thank the other members of the distributed systems group, Alexan-
der Lazovik, Andrea Pagani, Ando Emerencia, Faris Nizamic, Brian Setz, Azkario
Rizky Pratama, Talko Dijkhuis, and administrative staff member, Esmee Elshof, for
their input, encouragement, and fun discussions.

Finally, I would like to thank my parents and brother for all those years of care,
support, and encouragement throughout my Ph.D. studies and life in general.

— Heerko Groefsema

CHAPTER 1

Introduction

Computer science is no more about computers than astronomy is about telescopes.

— Edsger W. Dijkstra

Business processes are collaborations between actors, i.e. someone or something
that performs an activity or task. In a business process, each actor fulfills one or
more activities with the aim of ultimately achieving a specific, value-added goal
driven by the outside world (Ko, 2009). Take, for example, your typical parcel de-
livery service. When you send someone a package, you first drop it off at your
local service point. Trucks pick up all packages from the service point and deliver
it to a distribution hub where the packages are sorted by destination. Your package
is then moved to the distribution hub of its destination, planned into a delivery
route, and delivered at its destination. This, seemingly simple, business process is
an immense collaboration of a large number of actors, including the service point
employee, the truck driver, the automated sorting systems, and the delivery man.
Its goal is delivering your package. It is value-added because this process is offered
to you in exchange for a relatively small shipping fee, as well as the value of re-
ceiving a parcel. The process is driven by you, or your wish to have your package
delivered at its destination without actually going there yourself. Note, however,
that each step described in this, seemingly simple, business process can be broken
down into a multitude of smaller activities or tasks, which can be described by a
business process of its own.

Chapter 1. Introduction

O

Collect
Parcel

Service Point

Transporter

Transport
Parcel

PR S

Sort Parcel
by Hub

Not at delivery Hub

Distribution Hub

Schedule
Delivery

)

S T

Deliver
Parcel

Failed delivery

Delivery Man

Figure 1.1: Generalized parcel delivery process.

Chapter 1. Introduction

Business processes are typically represented by business process models. Business

process models are then directed graphs where nodes represent activities, events, or
gateways. The edges of the graph define the order among the nodes. Gateways di-
verge or converge multiple edges. Different gateways diverge and converge edges
by alternate sets of rules. Exclusive gateways activate a single activity based on con-
ditions on outward edges after an activity on an inward edge completed, parallel
gateways activate all activities on outward edges after all activities on inward edges
completed, and inclusive gateways activate some activities based on conditions on
outward edges after the activated activities on inward edges completed.

Figure 1.1, for example, depicts the parcel delivery process example discussed ear-
lier as a business process model. In this model, activities are represented by rounded
boxes, events by circles, and gateways by diamonds. Actors are represented by
rectangular areas within which activities, events, and gateways are modeled. An
activity that is modeled within an area of an actor, is performed by that actor. The
business process begins at the circular start event modeled at the top of the figure,
moves down through the activities and decision points performed by the different
actors, and finally terminates at the thick bordered circular end event modeled at
the bottom of the figure.

Business processes can be automated using business process or workflow manage-
ment systems. An automated business process, or workflow (van der Aalst et al.,
2003b), is modeled as a consecutive set of activities or tasks with decision points
allowing for different outcomes. Different tasks can be assigned to one or more
actors. A workflow can be either fully automated, or require human input. Most
importantly, however, workflows can be monitored and managed.

The emergence of Service-Oriented Architectures and standards such as Web Ser-
vices has accelerated the trend and opened a wide range of automation and inte-
gration possibilities (Papazoglou and van den Heuvel, 2007). As a result, business
processes are increasingly being represented and designed as service compositions.
Instead of modeling business processes as local and rigid sets of consecutive ac-
tivities, service compositions define business processes as collections of loosely-
coupled services that represent the business flow of the business process. Corre-
spondingly, each activity is implemented as an independent, self-contained, and
well-defined modular service.

Business process management is a field which aims of increasing productivity and
performance of companies by managing their business processes. Management

1.1. Variability and Formal Verification

of business processes can be useful at many different levels. For example, to in-
crease productivity by streamlining the process, to avoid issues caused by faulty
or erroneous process design and enactment, or to continually ensure compliance of
processes to rules and regulations.

Originally designed to support local, user-specific, rigid, and repetitive units of
work, business process management must adapt to support loosely-coupled pro-
cesses in agile service oriented environments with many different users that each
have customization and personalization requirements. The need to adapt processes
to instances and changes becomes concrete with the notion of variability, which first
emerged in software engineering. In software engineering, variability refers to the
possibility of changes in software products and models (Sinnema et al., 2006). In
the context of business process management, variability indicates that parts of a
business process remain variable, or not fully defined, in order to support different
versions of the same process depending on the intended use or execution context.

As the field of business process management continues to manage an increasing
number of rapidly evolving customized business processes in agile service oriented
environments, the evolution of each business process must continue to always be-
have in a correct manner and remain compliant with the laws, regulations, and in-
ternal business requirements. To manage the correct behavior of quickly evolving
business processes, and the definition of a wide variety of similar business pro-
cesses, we evaluate the application of formal verification techniques as a possible
solution for the pre-runtime analysis of the correct behavior and compliant design
of business processes within process families. Specifically, we focus on design-time
solutions using existing and well-supported formal verification techniques.

1.1 Variability and Formal Verification

Formal verification entails proving or disproving the correctness of a system mo-
del with respect to a formal specification using formal methods of mathematics.
When employing formal verification, a system model — often represented by a la-
beled transition system - is verified against a formal specification in the form of a
set of logic formulas. One approach towards formal verification is model checking.
When model checking, a system model is automatically, systematically, and ex-
haustively explored while each explored state is verified for compliance with the
formal specification. Business process verification is the act of determining whether
a business process model complies with a set of formal correctness properties. For-

Chapter 1. Introduction

mal verification of business process models is of interest to a number of applica-

tion areas, including checking for basic business process correctness (i.e. business
process soundness (van der Aalst, 1997)), business process compliance (Groefsema
and van Beest, 2015; Groefsema et al., 2016), and business process variability (Aiello
etal., 2010; Groefsema and Bucur, 2013). Although business process variability may
not seem to relate to formal verification directly, there has been a trend of defining
business processes using declarative techniques to support flexible process defini-
tions (van der Aalst and Pesic, 2006; Pesic and van der Aalst, 2006). Then, when
applying this to design-time process families, business process variability becomes
the problem of verifying whether a business process is a legal member of a pro-
cess family. This, in turn, introduces new challenges to the formal verification of
business processes.

[Abort]

]]) Register
View List of View Room [Book]H Book Room Booking in
Rooms Details
System

Show Error
Message

Figure 1.2: Room booking example

To explain each application area, we shall consider a deceptively simple workflow
to book a meeting room in your average office building. Figure 1.2 illustrates the
process. To book a meeting room, the user first views a list of available rooms,
selects a room, and views the details of that room. The user then decides to book the
room, or abort to restart the process. If the user decides to book the selected room,
the system attempts to book the room and registers it in the system. In case the
attempt fails, because someone else booked the room while the user was inspecting
the details, an error event is triggered and an error message is displayed.

1.1.1 Soundness

Business process correctnesss verification entails the verification of basic properties
such as reachability and termination. Reachability of a business activity requires an
execution path to exist leading to that activity starting from the initial activities. A
termination property requires that all possible execution traces reach a final state.
Business process soundness, a property originally proposed in the area of Petri Net

n 1.1. Variability and Formal Verification

verification (van der Aalst, 1997), is known as the combination of these two prop-
erties plus a third: the absence of related running activities at process termination
(i-e., proper completion). Avoiding the deployment of erroneous processes that do
not conform with these properties is obviously advantageous, as erroneously de-
signed business processes may lead to failed executions or execution errors, and,
ultimately, disgruntled customers or employees (Bi and Zhao, 2004).

[Abort}

y . . Register
H View List of H View R_oom [Book]y Book Room Booking in + —»O
Rooms Details
System

Show Error
Message

Figure 1.3: Erroneous business process example

For example, the room booking process illustrated in Figure 1.3 is erroneous. It
is erroneous because the depicted process fails to satisfy the termination property.
The termination property requires all execution traces to terminate. The depicted
process, however, will never terminate because the merging gateway expects all
incoming branches to finishing execution before activating the end event, while
only one of these branches will ever be activated. This simple, but easy to make,
design error can be easily caught through formal verification techniques.

1.1.2 Compliance

Business process compliance aims to confirm that a business process adheres to a
set of rules imposed on that process. Rules can, for example, be imposed upon a
process by international regulations, national law, or internal business rules. Where
soundness verification aims at the verification of a limited set of requirements to
verify reachability, termination, and possibly proper completion (van der Aalst,
2000) — compliance verification requires verification of a broad set of specifications.

Take, for example, international banking. In international banking, every transac-
tion must be checked for possible international sanctions against the persons, coun-
tries, companies, and banks, involved in the entire transaction. If a bank fails to do
so, or can not demonstrate the checks were indeed performed correctly, it may face
serious financial penalties.

Chapter 1. Introduction

Existing techniques perform compliance verification at different stages of the busi-

ness process lifecycle, during process design, enactment of its composition, or di-
agnosis. Monitoring techniques are deployed during process enactment, utilizing
the runtime trace of a service composition to check if a model is executing correctly.
Auditing techniques are deployed during the diagnosis phase and adopt, for exam-
ple, process mining to verify if a service composition has been executed correctly.

Naturally, monitoring and auditing techniques are after the fact techniques, mean-
ing that issues will only ever be detected after they already have occurred. As a
result, expensive rollbacks or compensating actions are required to undo any erro-
neous execution before the application of sanctions. In case of auditing techniques,
the damage has been done, and only a full rollback can be attempted. In case of
monitoring techniques, compensating actions can not guarantee correct behavior
unless they are taken immediately. When compensating actions will be taken at
a later stage of the business process, monitoring techniques enter an incompliant
state where they are unable to know or guarantee whether such a compensating
action will actually be taken. To overcome such undesirable occurrences, we focus
on preventative approaches (Elgammal et al., 2010b). Preventative approaches are
design-time, and aim to prevent issues from ever occurring or prove that compen-
sating actions will always be taken when encountering issues. Preventative com-
pliance verification can be state-based or event-based. That is, compliance can be
verified by finding illegal states within the process, or by finding a series of illegal
steps leading up to such a state.

For example, our room booking example could feature the requirement that when
a user chooses to book a viewed room, it must always result in a booked room.
Obviously, this specification fails for the example process illustrated in Figure 1.2
since there may be a booking error which does not result in a booked room.

1.1.3 Variability

Business Process Management is evolving rapidly due to emerging mass customiza-
tion and personalization trends, the need for adaptation to varying business and ex-
ecution contexts, and the wider availability of service-based infrastructures. Where
business process management originally supported local, user-specific, rigid, and
repetitive units of work, now it is required to support loosely-coupled processes in
agile service oriented environments and many different users with many different
requirements. Variability is an abstraction and management method that addresses
a number of the related issues.

“ 1.1. Variability and Formal Verification

In the domain of software engineering, variability refers to the possibility of chan-
ges in software products and models (Sinnema et al., 2006). When introduced to
the domain of business process management, it indicates that parts of a business
process remain either open to change, or not fully defined, in order to support
several versions of the same process depending on the intended use or execution
context (Aiello et al., 2010). Currently, when multiple similar business processes
are required, they either exist as one large process definition using intricate branch-
ing descriptions or in multiple separate process definitions. This makes readability
and maintainability a major problem in case of processes with intricate branching
routes, or creates redundancy issues in case of multiple separate process defini-
tions (Sun et al., 2010; Aiello et al., 2010).

[Abort]

Register
Book Room Booking in
System

View List of
Rooms

Message

(@)

[Abort}

Register
Booking in
System

View List of
ooms

(b)
View List of Lock Room View Room B0k
Rooms Details Details Book?
(c]

)

n

Show Error
Message

[Abort}

Register
Booking in
System

Unlock
Room
Details

Figure 1.4: Variability example

By introducing variability to the area of business process management, support is
introduced for both re-usability and flexibility, ameliorating the readability, main-
tainability, and redundancy issues. Multiple similar but different process instances,
called variants, may be based upon a single re-usable process by applying several
changes as allowed by the variability, and may then possibly be adapted at run-
time due to this same flexible nature.

Chapter 1. Introduction

The room booking business process, for example, can be modeled in many different

ways. Figure 1.4 illustrates three possible variants. The first process model, variant
(a), equals the process illustrated in Figure 1.2. Variant (b) changes the process
slightly by returning the user to the room details after it failed to book that room.
Finally, variant (c) avoids any booking errors by denying other users booking access
while a room is being booked. Note, however, that this final variant would pass the
example compliance specification given in the previous section.

Variability can be introduced to the area of business process management using
imperative or declarative approaches (Schonenberg et al., 2008; Aiello et al., 2010).
Where imperative approaches exactly specify possible change, declarative approa-
ches constrain the process behavior, allowing any change within those constraints.
When mapping these to design- and run-time, we notice four possible directions
when applying variability to business process management. Most research cur-
rently focuses on the areas of imperative/design-time and declarative/run-time
(Groefsema et al., 2011, 2012). Declarative approaches offer a number of advan-
tages. Since declarative approaches constrain the allowed behavior, instead of spec-
ifying it directly, the approach inherently allows quickly more variability. In addi-
tion, since imperative approaches exactly specify all possible change, they require
all possible change to be known in advance. Declarative approaches do not require
such knowledge. Therefore, we focus on the approach where variability is offered
as a declarative extension of pre-runtime, preventative, event-based compliance
verification. Using this approach, a business process is part of a family of business
processes if it is compliant with a set of specifications belonging to that business
process family. A business process of that family is applicable to change as long as
the changed process remains compliant with this set of specifications.

1.2 Problem Statement

Now that the application areas have been set, we identify the open challenges.
Balko et al. (2009) present a set of open research challenges in the field of business
process extensibility and /or variability. Of this set we highlight the five challenges
which relate to the problems discussed in this document:

* Reference process conformance: The ability to verify whether a process
extension/variant conforms to, or complies with, a reference process.

* Reference process patchability: The ability to patch, update, or change the
reference process such that all change is automatically propagated to every
extension/variant that is based on that reference process.

1.2. Problem Statement

¢ Extension mining: The ability to automatically detect manual ad-hoc devia-

tions from the reference process and automatically derive extensions.

* Stacked extensions: The ability to define parent-child relations between both
different reference processes and/or different extensions.

* Design-time usability: The ability to design reference processes and exten-
sions/variants with support of toolsets.

In this document, we focus on the challenges of reference process conformance,
stacked extensions, and design-time usability. Although the challenges of reference
process patchability and extension mining are not discussed directly, they are re-
lated to the artifacts and techniques presented throughout the document. These
challenges are related in such a way that they can be solved when combining those
artifacts and techniques with techniques outside of the scope of this document,
such as versioning and ad-hoc deviation detection.

Formal verification entails proving or disproving whether a system model conforms
to a formal specification. When applying this to the challenges, we notice a clear
similarity in the challenge to verify whether a process variant conforms to a reference
process. In other words, by defining a reference process as a formal specification,
and a process variant as a system model, it must be possible to formally prove
conformance through model checking. At the same time, we also notice similarities
between this approach and business process compliance verification. Therefore, to
provide support for all five challenges, we propose business process variability as
an extension of design-time, preventative, business process compliance verification
using model checking. Our goal is to assess the feasibility of this approach by
proposing models and techniques for it. Consequently, we arrive at the following
main research question:

To which extent can formal verification through model checking be used to sup-
port verification of business processes variability as an extension of design-
time, preventative, business process compliance?

The research question specifies the consolidation of a number of research areas,
namely those of business process variability, preventative compliance, and formal
verification through model checking, and then asks to which extent this merger is
feasible. To answer this complex question, we specify a number of sub-questions:

1. Which goals for design-time business process verification can be identified?

Chapter 1. Introduction

To fully understand the research question, we must first identify the goals of

business process verification. As soon as the goals are known, we can also
identify the requirements for verification.

2. What system model adequately represents the business process for variability verifi-
cation?

Formal verification through model checking verifies a system model against
a formal specification. To be able to verify reference process conformance, we
must therefore identify which system model accurately describes a business
process. With an accurate and full system model we will not be forced to
make certain concessions at later stages of our research.

3. In which manner can the system model be reduced without relevant information loss?

Although a full and accurate system model is required, it does pose issues
when its state space becomes too large to verify through model checking. To
keep the system model verifiable through model checking, we must first keep
the system model from expanding too quickly, and secondly allow reductions
of the state space without losing any required information.

4. What can be verified using well-supported specification languages?

To support reference process conformance, patchability, and stacking, we must
first identify what and how much of a reference process can be described
through a combination of the well-supported specification languages and a
full and accurate system model.

5. In which way can specifications be obtained automatically?

To support both the automatic procurement of specifications for reference
process conformance verification, and the automated detection of manual ad-
hoc deviations, we must device a way to automatically obtain specifications.

6. For which business processes is the resulting system model verifiable?

Finally, to answer the feasibility of the approach proposed in the research
question, we must identify to which extent business processes are verifiable.

1.3 Methodology

The research is triggered by both the known challenges described in (Balko et al.,
2009), as well as observations in practice. In addition, parallels between the known
challenges and well-supported techniques can be drawn. Knowing that there clearly

1.3. Methodology

Process Iteration

Identify > Define > Design& [P Demonstration [P Evaluaton [P Communication
Problem Objectives of Development @«
‘ ° ° 2
& Motivate " a Solution - , 8 Find suitable % o Ol;sﬂeer:; Vgow zg Scholarty
Nominal process Define problem e Artifact k] context g e, £3 publications
g Whatwoulda | & H <2 efficient 53
sequence Show 2 better artifact | = 2 " 43 22
importance £ accomplish? X Useartifactto | 2 S Iterate backto | Q X Professional
e solve problem g design publications
3
T

Problem- Objective- Design & Client/
Centered Centered Development Context

Centered Initiated

Initiation Solution .
Initiation

Possible Research Entry Points

Figure 1.5: The design science research methodology. Source: (Peffers et al., 2007).

is a lack of artifacts that address the issues, we propose the design of new artifacts
that bridge the gap between the challenges and well-supported techniques.

The design science research methodology as described by Peffers et al. (2007) pro-
vides a clear overview of the steps required for designing new artifacts. The me-
thodology is illustrated in Figure 1.5. Since, in our case, the design of new artifacts
is triggered by known challenges and observations in practice and simultaneously
aims to evaluate the feasibility of well-supported techniques towards its solution,
the methodology features both a problem centered initiation where the problem is
first identified and motivated, and an objective centered solution where the objec-
tives of a solution are defined. After these initial steps, the artifacts are designed
and developed, demonstrated as a solution, and evaluated towards its applicability.
And, finally, the results are communicated.

The research presented in this document follows the design science research metho-
dology as depicted in Figure 1.6. The research initiation is discussed in Chapters 4
and 5, where we first identify the issues observed in practice through a set of three
case studies, before defining the objectives in a detailed requirements analysis. The
design of the artifacts is discussed in Chapters 6, 7, and 8, where we define both the
models and specifications needed to support business process variability as an ex-
tension of preventative compliance verification. The development of the artifacts is
presented in Chapter 9. Finally, the artifacts are demonstrated using the presented
case studies and evaluated for expressive power, performance, and requirements
satisfaction in Chapter 10.

Chapter 1. Introduction

Part 1: Initiation
Identify problem
Chapter
Case study 1 Case study 2 Case study 3 4
I I I
v v v
Define objectives } Chaspter
Part 2: Design A 4
. . Chapters
Design solution < 6-8
Part 3: Development & Evaluation
. } Chapt
Develop solution agp e
Demonstrate solution
¢ Chapter
10
Evaluate solution

Figure 1.6: Research method in relation to the presented text.

1.4 Contents

The remainder of the document is structured as follows. Chapter 2, details the re-
quired background in the areas of business process management, business process
formalization, and formal verification. Chapter 3, discusses the state of the art.
Chapter 4 presents three case studies towards business process compliance and
variability. The first case study details a customer support process resulting from a
compliance study at an Australian telecommunications provider. The second case
discusses a variability study throughout a number of Dutch municipalities. And,
the third case, features a collaborative business process. Finally, Chapter 5 lists the

requirements towards business process verification.

The second part of the document details the design of the artifacts. In Chapter 6
a novel mapping of business process models to a system model is presented. The
resulting model allows the verification of preventative compliance and variability
using well-known temporal logics and model checking techniques while providing
full insight into parallel executing branches and the local next activity invocation.
Furthermore, the mapping causes limited state explosion, and allows for signifi-

1.5. Related Publications

cant further model reduction. Next, Chapter 7 matches the set of requirements to

specifications applicable to the presented model. Finally, Chapter 8 presents an ap-
proach to apply these specifications and automatically obtain reference processes.
At the same time, the approach is also capable of incorporating ad-hoc runtime
deviations of business processes.

The third part of the document features the implementation, demonstration, and
evaluation of the presented artifacts. Chapter 9 presents the resulting tool chain.
The tool features business process modeling abilities, saving and loading, auto-
mated generation of the system model required for verification, automated verifica-
tion using one of multiple model checkers, and transparent visual and textual feed-
back of the generated models and verification results. Chapter 10 then proceeds
with the evaluation and demonstration of the presented artifacts, by first evaluat-
ing the expressive power of the proposed system model, then evaluating perfor-
mance of the generation of different complexities of system models, performing a
requirements analysis, and finally demonstrating the applicability of the proposed
artifacts on the relevant case studies.

Finally, Chapter 11 concludes the presented work by presenting a detailed discus-
sion of the research while evaluating each of the presented research questions.

1.5 Related Publications

The work presented in this document has been realized in collaboration with a
number of other researchers. In particular, Marco Aiello, Nick van Beest, Pavel
Bulanov, Luciano Garcia-Bafuelos, and Doina Bucur.

The basis of the research is primarily described in (Aiello et al., 2010) and (Groef-
sema and Bucur, 2013), while the development is described in (Groefsema et al.,
2011), (Groefsema et al., 2012), (Groefsema and van Beest, 2015), (Groefsema et al.,
2016) and (van Beest et al., 2016). The implementation is supported by (Groefsema
et al., 2011b), (Groefsema and van Beest, 2015), and (Groefsema et al., 2016). And,
finally, the evaluation is described in (Groefsema and van Beest, 2015), (Groefsema
etal., 2016), and (van Beest et al., 2016).

N.R.T.P. van Beest, H. Groefsema, L. Garcia-Bafiuelos, and M. Aiello. Variability in
business processes: automatically obtaining a generic specification. In prepara-
tion, 2016.

Chapter 1. Introduction

H. Groefsema, N.R.T.P. van Beest, and M. Aiello. A formal model for compliance
verification of service compositions. IEEE Transactions on Services Computing,
2016. To appear.

H. Groefsema and N.R.T.P. van Beest. Design-time compliance of service composi-
tions in dynamic service environments. In Int. Conf. on Service Oriented Computing
& Applications, pages 108-115, 2015.

H. Groefsema and D. Bucur. A survey of formal business process verification: From
soundness to variability. In International Symposium on Business Modeling and Soft-
ware Design, pages 198-203, 2013.

H. Groefsema, P. Bulanov, and M. Aiello. Imperative versus declarative process
variability: Why choose? Technical Report JBI 2011-12-6, University of Gronin-
gen, dec 2012.

H. Groefsema, P. Bulanov, and M. Aiello. Declarative enhancement framework for
business processes. In Int. Conf. Service-Oriented Computing (ICSOC), pages 495—
504, 2011a.

H. Groefsema, P. Bulanov, and M. Aiello. Business process variability: A tool for
declarative template design. In International Conference on Service-Oriented Com-
puting - Demo Track, pages 241-242, 2011b.

M. Aiello, P. Bulanov, and H. Groefsema. Requirements and tools for variability
management. In IEEE Workshop on Requirement Engineering for Services at IEEE
COMPSAC, 2010.

CHAPTER 2

Background

People think that computer science is the art of geniuses but the actual reality is
the opposite, just many people doing things that build on eachother, like a wall of
mini stones.

— Donald Knuth

Business process management already is a cross-disciplinary field in itself. It in-
cludes paradigms from, among others, economics, organization management the-
ory, computer science, mathematics, philosophy, and even linguistics (Ko, 2009).
The work described herein is positioned at the intersection of three fields of re-
search, specifically those of business process management, business process for-
malization, and formal verification. As a direct result, the work presented here
requires the necessary background from all three fields of research.

2.1 Business Process Modeling and Management

Business process management (BPM) is a field of operations management which
focuses on the business processes within a company. By managing business pro-
cesses BPM aims to increase the productivity and performance of a company.

2.1. Business Process Modeling and Management

2.1.1 Business Process Modeling

Business processes (BP) are collaborations between actors, each fulfilling roles to
perform tasks or activities, with the aim to achieve a specific value-added goal
driven by the outside world (Ko, 2009). In this regard, a BP consists of a collection
of tasks, or structured activities performed in a specific order by actors fulfilling
roles. When roles and actors are spread over multiple entities, the business pro-
cess is called a collaborative business processes (CBP), or simply, a collaboration
(Ko, 2009). BP can be automated using workflow management systems (WfMS)
or, more modern, business process management systems (BPMS). Hence, an auto-
mated business process is referred to as a workflow (van der Aalst et al., 2003b).

To summarize, informally, a process is a tuple P = (S A, F'), where:

e S A is a finite set of structured activities,

e [’ defines the control flow over S 4, i.e., its order.

Business processes are represented by BP models. BP models are defined through
several specification techniques, most notably, through imperative and declarative
specification of models.

Imperative Specification

The imperative specification technique is the most common form of specification
when modeling BP. Imperative specifications are intuitive due to their focus on
how a task is performed. In its most basic form, an imperatively defined BP model
is a directed graph. Structured activities are represented by vertices of the graph.
The edges of the graph define the order among the structured activities. Gateways
are introduced to diverge or converge multiple edges. Different gateways diverge
and converge edges by different sets of rules (e.g. activating either one or all tasks
on outward edges after either one or all tasks on inward edges completed). Al-
though gateways are, just like structured activities, nodes of the graph, they do not
represent units of work and are part of the control flow instead.

Summarizing, an imperative process model is a triple P; = (SA, G, F'), where:

e S A is a finite set of structured activities,

* G =G,UG,UG, is a set of gateways, consisting of and, or, and xor gateways,
respectively,

* ['= F, U F,is a set of edges, where:

Chapter 2. Background

e F;: (SA\{®}) — SAis a finite set of edges which assign a next state for each

structured activity,

e F, : G — 254 is a finite set of edges which assign a nonempty set of next
states for each gateway.

Declarative Specification

The declarative specification technique of BP is gaining in popularity within the
scientific community. This fact can mainly be attributed to its highly flexible na-
ture. Instead of focusing on how a task is performed, like imperatively specified
processes, it focuses on what tasks are performed (Schonenberg et al., 2008). In its
most basic form, a declaratively defined BP model consist of a set of tasks and a set
of constraints (e.g., temporal logic formulas) enforcing some possible ordering on
the set of tasks.

Summarizing, a declarative process model is a tuple Pp = (SA, F'), where:

e SAis a finite set of structured activities,

* F'is a finite set of control flow constraints.

2.1.2 Standards

BP are supported by a variety of standards. These standards can be categorized
into two broad groups: modeling standards and programming standards. Modeling
standards include formalizations towards the notation of BP in the form of mod-
els. Programming standards include formalizations aimed at the enactment and
serialization of workflows. The most notable modeling standards consist of the
Unified Modeling Language (UML) Activity Diagrams (OMG, 2015) and the Busi-
ness Process Model and Notation (BPMN) standard’s Business Process Diagram
(BPD) (OMG, 2011). The most used enactment standard is the Web Service Busi-
ness Process Execution Language (WS-BPEL) (Arkin et al., 2007).

In this thesis the BPMN BPD is used to model all BP. BPMN BPD are imperatively
specified BP models and consist of a graph conceived from flow objects and con-
necting objects annotated with data, artifacts, and swim lanes. Flow objects include
a myriad of tasks (e.g. activities, sub-processes, or transactions), events (e.g. start
events, end events, or intermediate throwing and catching events), and gateways
(e.g. exclusive, inclusive, parallel, or event-based gateways). Connecting objects in-
clude sequence flows, conditional flows, and default flows. BPD can be annotated
with data objects and data stores representing the flow and storage of information

2.1. Business Process Modeling and Management

or artifacts such as groups. Finally, pools represent participants and can be subdi-
vided into lanes to embody roles. Elements within a pool or lane are performed by
the role attached to that pool or lane. Enclosed within Appendix A a comprehen-
sive list of BPMN BPD elements and their function can be found. Although BPD
are at the basis of all techniques presented within this document, note that all the
represented techniques can easily be applied to other modeling and programming
standards such as the UML Activity Diagram or WS-BPEL processes.

[Abort]

]]) Register
View List of View Room [Book}» Book Room Booking in
Rooms Details
System

Show Error
Message

Figure 2.1: BPMN BPD example

Figure 2.1 illustrates a BPMN BPD describing a process for the booking of meeting
rooms. The illustrated BPD includes tasks, gateways, events, and sequence flows
(represented by rounded rectangles, diamonds, circles, and arrows respectively).
When the process is initiated, the user reviews a list of rooms. Upon selecting a
room, the room details are shown. The user then decides to either book this room or
exit the process (upon which the user can simply restart it to select another room).
If the user decides to continue, the system attempts to book the room. If successful,
the user is notified that the room has been booked and the process is terminated. If
an error occurs during the booking process, due to, for example, someone booking
the room in the meantime, the user is notified and the process is terminated.

2.1.3 Management

A business process is a collaboration with the aim to achieve a specific value-added
goal driven by external need. BPM manages and optimizes the business processes
of a company with the aim to significantly increase the productivity and perfor-
mance of that company. Figure 2.2 illustrates the process. The four phases of the
BPM life-cycle consist of (van der Aalst et al., 2003b):

* Process Design. The business process is (re-)designed.

¢ System Configuration. The enactment system is configured to execute the
designed business process.

Chapter 2. Background

Process Design

Diagnosis
uolzesndipuo) waisAs

Process Enactment

Figure 2.2: The BPM Life-cycle. Source: (van der Aalst et al., 2003b)

® Process Enactment. The implemented business process is executed.

¢ Diagnosis. The business process is monitored, simulated, or mined in order
to identify and solve issues or find optimization possibilities.

BPM is considered the second evolution of workflow management (WfM) (van der
Aalst et al., 2003b). Where WM originally focused on the design, configuration,
and enactment of workflows, BPM introduces the additional concept of diagnosis.
During diagnosis, business processes are monitored, simulated, or otherwise ob-
served in order to identify and solve issues or to identify opportunities for process
optimization. In this document, we will primarily focus on the design and diagno-
sis phases of the BPM life-cycle to support automated design-time variability and
compliance verification of business process models.

2.2 Business Process Formalization

Business process modeling techniques are often informal, that is, they often lack
formally defined semantics (van der Aalst et al., 2003b). As a result, these modeling
techniques are hardly suitable for any formal analysis. Models defined using such
an informal business process modeling technique must, therefore, be formalized
before formal analysis can contribute adequate results.

2.2. Business Process Formalization

2.21 Petri Nets

Place/transition nets, or Petri nets, are mathematical models for the description of
distributed systems (Petri, 1966). Petri nets are directed bigraphs with nodes con-
sisting of places and transitions. Transitions within Petri nets represent events while
places represent conditions. Arcs form weighted directed edges between place and
transition pairs. Places may contain tokens. A distribution of tokens over places is
called a marking. Unlike most business process modeling techniques, Petri nets do
possess a formally defined semantics while offering a graphical notation. A Petri
net is defined as follows (Petri, 1966; Reisig and Rozenberg, 1998):

Definition 2.2.1 (Net). A net is a triple N = (P, T, A), where:

* P s a finite set of places,
e T isa finite set of transitions, such that PNT = {),
¢ AC P xTUT x P is afinite set of arcs.

Definition 2.2.2 (Petri Net). A Petri net is a triple PN = (N, M, W), where:
* N = (P,T,A)isanet (Definition 2.2.1),
* M : P — Zisa place multiset, the marking, where Z is a countable set,

o W : A — Zisan arc multiset, the weight of the arc.

Figure 2.3: Petri net example

Figure 2.3 illustrates a Petri net in its graphical notation where bars represent transi-
tions, circles represent places, and dots at circles represent the distribution of tokens
over places. Places with an arc that run to (from) a transition are called the input
(output) places of that transition. For a transition ¢, we write o¢ and te for the set
of in- and output places, respectively. A transition may occur when it is enabled,
i.e.,, when all of its input places contain more or an equal amount of tokens than

Chapter 2. Background

the weight at the connecting arc. When a transition occurs it consumes tokens at

its input places and produces tokens at its output places. The number of tokens
consumed /produced at a place corresponds to the weight of the connecting arc. For
example, transition ¢, of Figure 2.3 is enabled because its input place py contains a
token. It may then occur, consuming the token at py and producing one token at p;
and two tokens at ps.

2.2.2 Petri Net analysis

One analysis tool used with Petri nets is the reachability graph (RG). A RG is a tran-
sition system obtained through the firing rule. Starting from the initial marking My,
states are created for each encountered marking while enabled binding elements
occur to generate new markings. The RG of a Petri net is defined as follows (Huber
et al., 1986):

Definition 2.2.3 (Reachability Graph). The reachability graph of a Petri net with mark-
ings Moy, ..., My, is a rooted directed graph G = (V, E, vy), where:

o V ={My,..., M, } is the set of vertices,

® vg = My is the root node,

* B ={(M;,t,M;) | M; € VANM, 4 M;} is the set of edges, where each edge
represents the firing of a transition t at a marking M; such that a marking M; is
produced.

t

Figure 2.4: Reachability graph example

Nodes of the RG represent the different possible markings of the Petri net, i.e.,
the distribution of tokens over places. The initial distribution of tokens, or initial
marking forms the root node. Edges represent the occurrence of transitions and the

2.2. Business Process Formalization

related changes in the distribution of tokens over places. Figure 2.4 illustrates the
RG of the Petri net and initial marking depicted in Figure 2.3.

2.2.3 Colored Petri Nets

Colored Petri nets (CPN) extend the normal class of Petri nets with the ability to
attach information, called colors, to tokens. The color of a token can be inspected
and modified by occurring transitions. A CPN is defined as follows (Jensen, 1981):

Definition 2.2.4 (Colored Petri Net). A Colored Petri Net is a 9-tuple
CPN = (EvPaTaAaNfanyGf,Ef,Mo), where:

Y is a finite set of non-empty types, called color sets,

P is a finite set of places,

T is a finite set of transitions,

Ais a finite set of arcs such that PNT =PNA=TNA=10,
* Ny is a node function defined from A over P x TUT x P,
* (' isa color function defined from P into ¥,

¢ Gy is a guard function defined from T into expressions such that
Vt € T : [Type(G¢(t)) = Bool A Type(Var(Gs(t))) C X,

* FE is an arc expression function defined from A into expressions such that
Va € A: [Type(Ey(a) = Cy(p(a))ars A Type(Var(Ey(a))) ¥
where p(a) is the place of N¢(a),

* My, the initial marking, is a function defined on P, such that
M(p) € [C(p) = Ny forallp € P.

The CPN state, often referred to as the marking of CPN, is a function M defined
on P, such that M(p) € [Cy(p) — N]s forall p € P. Let p be a place and ¢ a
transition. Elements of C;(p) are called colors. p is an input place (output place) for ¢ iff
(p,t) € Ny ((t,p) € Ny) (Jensen, 1981). Every CPN is paired with an initial marking
M. Transitions of a CPN may occur in order to change the marking of the CPN per
the firing rule (Jensen, 1981). Places containing tokens in a marking enable possible
binding elements (,b), consisting of a transition ¢ and a binding b of variables of
t. A binding element is enabled if and only if enough tokens of the correct color
are present at the input places of transition ¢ and its guard evaluates true. More
formally, iff Vp € P : E¢(p,t)(b) < M(p). An enabled binding element may

Chapter 2. Background

occur, changing the marking, by removing tokens from the input places of ¢ and

adding tokens to the output places of ¢ as dictated by the arc evaluation function.
Then, a multiset ¥ of binding elements (¢,b), or a step, is enabled iff Vp € P :
Y nyey Er(p,t)(b) < M(p), or if the sum of the binding elements is enabled. The
occurrence of a step Y at a marking M; produces a new marking) as denoted by
M; 5 M ;. All possible states of a CPN can be obtained from the initial marking
through the firing rule.

2.2.4 Workflow Nets

Petri nets are a popular method used for the formalization and analysis of business
process models. Petri nets were first introduced as an analysis tool for business
processes through the application of Workflow nets (WF-net) (van der Aalst, 1997).
A WF-net is a Petri net where transitions represent activities and the control flow of
the WF-net is represented by the distribution of tokens at places, i.e., its marking.
A WF-net is defined as follows (van der Aalst, 1997):

Definition 2.2.5 (Workflow net). A net N = (P, T, A) (Definition 2.2.1) is a workflow
net iff:

® j € Pisasource place with¥Vt € T : (t,i) € A,
* o€ Pisasink placewithVt € T : (o,t) € A4,

* if we add a transition t* to T and the arcs (t*,1) and (o,t*) to A, then the resulting
net is strongly connected, meaning that for every pair of nodes x € P U T and
y € PUT there exists a directed path from x to y.

Further formalization was introduced by adding support for Or-joins and cancela-
tion regions (Wynn et al., 2009), and a basic translation from processes described
using the BPMN standard to WF-nets was introduced in (Dijkman et al., 2008).

Figure 2.5 illustrates the process depicted in Figure 2.1 for the booking of meeting
rooms as a WF-net. The start and end events are represented by the source and
sink places respectively, activities are represented by transitions, and places are
added to determine the control flow. Additionally, a silent transition, i.e., a transition
without an attached action (generally represented by a black transition), is required
in order to support the option of aborting the booking of the selected room. Silent
transitions offer a generic solution to support the behavior of different gates when
representing BP using Petri nets (Dijkman et al., 2008).

2.2. Business Process Formalization

. Register

View List View Room Book Booking in
of Rooms Details Room System
Q () () () (")
N ./ N o
()
N
Error Show
Event Error
Message

Figure 2.5: WF-net example

2.2.5 Workflow Patterns

The workflow pattern initiative aims to provide a conceptual basis for process tech-
nology (van der Aalst et al.,, 2003a). It offers an exhaustive list of patterns that
should be supported by BP modeling and enactment techniques. The list of pat-
terns is primarily used to select the most suitable BP modeling specifications or
enactment systems for a specific task based on their pattern support, but can also
be used as a reference for the definition of new, or updated versions of, such mod-
eling specifications or enactment systems. In addition, they can be used as a basis
for the development of tools.

The set of workflow patterns consists of five broad categories, specifically those re-
garding data, resource, exception handling, and, most notably, the control flow of
BPs. Control flow patterns include those patterns related to the control flow de-
pendencies between tasks (van der Aalst et al., 2003a). That is, it includes patterns
describing the sequence, parallelism, choice, and synchronization of tasks within
BPs. These patterns are described in an imperative way and represented by CPN
models. Initially, the workflow patterns contained 20 patterns which describe the
control flow of BP (van der Aalst et al., 2003a). The list of control flow patterns was
later revisited and extended to over 40 patterns of which several list one or more
alternatives (Russell et al., 2007).

Throughout this document we use the control flow patterns to formalize BP as CPN
through the pattern mapping presented in Appendix B. In this way, the patterns
provide a well-supported, specification independent, and formal foundation for
the presented research and toolset.

Chapter 2. Background

2.3 Formal Verification

Validation and verification are procedures used to investigate whether a software
or hardware product fulfills its intended purpose. Validation investigates if the
specified product fulfills the needs of the user, that is, it tries to answer the question
if the correct product is being made. Verification, on the other hand, investigates if
the product conforms to its specifications — or, in other words, whether the product
is being made correctly. When applying formal methods of mathematics to verifica-
tion, the procedure is called formal verification. Formal verification entails proving
or disproving the correctness of a system model with respect to a formal specifica-
tion using formal methods of mathematics. When employing formal verification, a
system model — often represented by a labeled transition system — is verified against
a formal specification in the form of a set of logic formulas. One approach towards
formal verification is model checking. When model checking a system model is au-
tomatically, systematically, and exhaustively explored while each explored state is
verified to be compliant with the formal specification. Next, the system models and
fomal specifications used for the formal verification of business process models in
the remainder of the text are introduced.

2.3.1 System Models

During formal verification, a system model — often a labeled transition system (LTS)
— is verified against specifications of interest. An LTS is a directed graph where
nodes represent different states of the system and edges represent state transi-
tions. Two labeling functions may exist over an LTS; a labeling function over nodes
maps states with those properties that hold at that state, while a labeling function
over edges maps state transitions with the actions which cause the state change.
When considering model checking, the resulting model is sometimes called a state
graph. Other, more specific, system models used in the domain of model check-
ing are Kripke structures (Clarke et al., 1999) and Biichi automata (Biichi, 1962). A
Kripke structure is an LTS with a labeling function over its nodes. Kripke struc-
tures are often used to interpret temporal logics. A Kripke structure is defined as
follows (Clarke et al., 1999).

Definition 2.3.1 (Kripke structure). Let AP be a set of atomic propositions. A Kripke
structure K over AP is a quadruple K = (S, So, R, L), where:

* Sisa finite set of states,

* Sy C Sisaset of initial states,

2.3. Formal Verification

* R C § x S is a transition relation such that it is left-total, meaning that for each
s € S there exists a state ' € S such that (s,s') € R,

o L:S — 24P isalabeling function with the set of atomic propositions that are true
in that state.

Biichi automata, on the other hand, are a form of automaton with a labeling func-
tion over its edges. Additionally, Biichi automata define an acceptance function
which only accepts those runs of the automaton which visits one of a set of accept-
ing states infinitely often. In the domain of model checking, Biichi automata are
used to represent linear temporal logics. A non-deterministic Biichi automaton is
defined as follows (Biichi, 1962).

Definition 2.3.2 (Non-deterministic Biichi automaton). Let ¥ be a finite alphabet
and ¥“ the infinite set of words over X. A Biichi automaton over ¥ is a quadruple A =
(Q,I,A, F), where:

* @ is a finite set of states,

o | C Qisasetof initial states,

e A C(@Q xX X Q isa transition relation,

* F C @ isaset of accepting states.

A run of a Biichi automaton is an infinite word w = «; ... as an infinite sequence
of states 7 = qoqi1gs... such that o € I and (g;, @;11,¢;+1) € Afori < 0. A run of
a Biichi automaton is said to be accepting iff inf(m)NF # () where inf(7) = {q¢ | ¢
occurs infinitely often in 7}. Kripke structures can be converted to Biichi automata
through the following definition.

Definition 2.3.3. Let AP be a set of atomic propositions, ¥ a finite alphabet, and K =
(S, So, R, L) a Kripke structure over AP. The Biichi automaton A = (Q,I, A, F) over ¥
of the Kripke structure K is:

* QQ = SU{qo} is the set of Kripke structure states with an additional initial state qq,

I = {qo} is the initial state qo,
o 3 = 24P s the set of words obtained from the atomic propositions,

(q,v,¢') € Aif (s,8") € Rand v = L(q') is the set of transitions obtained from the
Kripke structure relations and labeling function,

(qo,v,q") € Aifq’ € Soand v = L(q') is the set of transitions from the initial state
qo to the initial states obtained from the Kripke structure initial states,

F = 58U {qo} is the set of accepting states.

Chapter 2. Background

2.3.2 Formal Specifications

Kripke structures are used to interpret temporal logics. Temporal logics are for-
malisms that are able to reason about the temporal succession of states within sys-
tem models. Often used with formal verification, temporal logics can specify events
over sequences of states or states in tree-like structures. Linear-time temporal logics
specify properties (e.g., the universality of a certain state property, and the order of
states) over states occurring on process execution paths. Branching-time temporal
logics extends this set of temporal operators with path quantifiers, such that for-
mulas can specify properties over branching executions (i.e. computation trees). In
this way, linear-time temporal logics treat time as if each moment only has one dis-
tinct future, while branching-time temporal logics allow time to split into multiple
possible futures. The most notable temporal logics include Linear-time Temporal
Logic (LTL) (Pnueli, 1977), Computation Tree Logic (CTL) (Emerson and Halpern,
1982), and their superset Computation Tree Logic* (CTL*) (Clarke et al., 1999).

Linear-time Temporal Logic

LTL specifies temporal operators over sequences of states known as paths (Pnueli,
1977). A path m = s¢5152..., defined on a Kripke structure, is an infinite sequence of
states such that (s;, s;+1) € R fori < 0.

Definition 2.3.4 (LTL syntax). The language of well-formed LTL formulas is generated
by the following grammar, assuming p € AP:

pu=T[LIp[(=9)[(end)|(dVP)[d=¢|d& 0|
Xp|Go[FoploU

LTL is equipped with four temporal operators:
- X¢ Nexttime: ¢ has to hold at the next state.
- Go Globally: ¢ has to hold at all states of the subsequent path.
- Fo Future: ¢ has to hold at the current or a future state.
- ¢U¢ Until: ¢ has to hold until ¢/, which holds at a future state
or the current state itself.

Definition 2.3.5 (Semantics of LTL). 7, s; = ¢ means that the formula ¢ holds for the
path m = sos1sz... at state s;. The relation |= is defined inductively as follows:

msiET iff s bEL

T, 8 D iff peL(s)

T, 8; | iff msiEP

T8 EoVY iff msiEeVT s EQ

msiEXe if msipEe

msiEQUG iff Im:(mZ0ATSiim EP AR (0<n<m: 7, Sin = ¢))

2.3. Formal Verification

Further LTL operators can be obtained through the following equivalences:
Fo=truelU ¢
G¢ =-F ﬁ¢

Figure 2.6: Linear-time Temporal Logics example

For example, Figure 2.6 depicts a Kripke structure where we evaluate the LTL for-
mula Fq. Note that when applying LTL to Kripke structures, a formula must hold
for all possible paths from every initial node in order to evaluate true. The for-
mula Fg holds at the model since every path from the double bordered initial node
includes a future state where ¢ holds, i.e. the dashed states.

Linear-time Temporal Logics with Past-time Modalities

Linear-time Temporal Logics with Past-time Modalities (PLTL) introduces past-
time operators to LTL (Markey, 2003). Adding past-time operators to LTL does not
increase its expressiveness, but does make the logic exponentially more succinct.

Definition 2.3.6 (PLTL syntax). The language of well-formed PLTL formulas is generated
by the following grammar, assuming p € AP:

¢u=TI|L[pl(=0) | (6AD)|(¢VP)|d=0|d e]
X¢p|Go|FoloUd|
Yo |[He|Og |65 ¢

Chapter 2. Background

PLTL introduces four new temporal operators:

- Yo Previous-time: ¢ has to hold at the previous state.
- Ho¢ Historically: ¢ has to hold at all states of the preceding
path.

- 0O¢ Once: ¢ has to hold at the current or a preceding state.
- ¢S¢ Since: ¢ has to hold since a point where ¢’ holds, which
holds at a past state or the current state itself.

Definition 2.3.7 (Semantics of PLTL). PLTL inherits all semantics from LTL. 7, s; |= ¢
means that the formula ¢ holds for the path 1 = sos12... at state s;. The relation = is
defined inductively as follows:

msiEY ¢ iff i21Amsi1E=¢

T8 EPSE iff Im:(0Zm<IiAT,Siem EX AV (m<n<i:m, s, E¢))

Figure 2.7: Linear-time Temporal Logics with Past-time Modalities example

Further PLTL operators can be obtained through the following equivalences:
O¢ =true S ¢
Ho = ~0-¢

Figure 2.7, for example, depicts a model on which the PLTL formula Hyg is evalu-
ated. The formula Hq holds at the depicted model since all paths from the initial
node include a historical, previous, state where ¢ holds.

2.3. Formal Verification

Computational Tree Logic*

The branching-time temporal logic CTL* augments LTL with two operators over
paths to specify whether some or all branches possess properties starting at the
current state (Clarke et al., 1999). CTL* defines the following operators over paths:
- Ay All: ¢ holds on all paths flowing from the current state.
- E¢ Exists: ¢ holds on at least one path flowing from the current state.

Definition 2.3.8 (CTL* syntax). The language of well-formed CTL* formulas is generated
by the following grammar, assuming p € AP:

Bu=T|L|p|(=®)]| (@AD)|(BVD)| &= d|d < d|Ep|Ad
pu= 0| (=) [(pAP) [(V)| o= |p=¢|Xo|Go|Fo|[p U]

Definition 2.3.9 (Semantics of CTL*). CTL* inherits the semantics of its operators from
LTL, excluding T, L, and p. © |= ¢ means that the formula ¢ holds for the path = =
$08182... at state so. Additionallly, M, s; |= ¢ means that the formula ¢ holds at state s; of
the model M. When the model M is understood, s; |= ¢ is written instead. The relation |=
is defined inductively as follows:

W‘:(I) lff 80):(13

s BT iff siEL

sifEp iff peL(si)

Si‘Zﬁ‘I) lﬁ[Si[;é@

siE®VY iff s;EDPVs =D

siEE¢ iff In:m=s0..|s0=8iATE®

Further CTL* operators can be obtained through the following equivalences:

Fo=truelU ¢
G¢ = ﬁFﬁ¢
Agb = —\E—\¢

For example, one can evaluate the CTL* formula EFGq on the model depicted in
Figure 2.8. The formula clearly holds at the model since there exists a path from the
initial node which includes a future state where ¢ holds indefinitely.

Computational Tree Logic

The branching-time temporal logic CTL is a subset of CTL* (Emerson and Halpern,
1982). Instead of allowing arbitrary combinations of temporal operators and oper-
ators over paths, CTL pairs each temporal operator with an operator over paths.

Chapter 2. Background

Figure 2.8: Computation Tree Logic* example

Definition 2.3.10 (CTL syntax). The language of well-formed CTL formulas is generated
by the following grammar, assuming p € AP:

¢u=TI|LIpl(=9)[(¢AQ)[(eVP)[d=0|d ¢
AX¢ | EX¢ | AGo | EGo | AF$ | EF | Alp U ¢] | E[¢ U ¢]

Definition 2.3.11 (Semantics of CTL). M,s; = ¢ means that the formula ¢ holds at
state s; of the model M. When the model M is understood, s; = ¢ is written instead. The
relation |= is defined inductively as follows:

siFEp iff peL(si)
si = ¢ iff silEo

siE oV iff siFEoVsiEQ
sifEEX ¢ iff 3(sissiv1) € R| sip1 = 9)
s; E EG ¢ iff 3T =5i8i41,Si42, - | VN (M= 0A Siqn = &)
S;): E[¢U¢/] fo dr = SiySi+1ySi42y - |
Im:(mZ0ASiem E AVR: (0< n<m: Siyn E D))

Further CTL operators can be obtained through the following equivalences:
EF¢ = Eltrue U ¢]

AF¢ = —|EG_‘¢
AX(b = ﬁEXﬁ(b
AG¢ = ~EF—¢

Alp U ¢'| = ~(E[=¢' U =(¢ V ¢')] V EG=¢)

2.3. Formal Verification

Figure 2.9: Computation Tree Logic example

For example, Figure 2.9 depicts a Kripke structure upon which the CTL formula
EFqis evaluated. The formula holds at the model since there exists a path from the
initial node which includes a future state where ¢ holds. Actually, two such paths
exist, as indicated by the dashed states, although the formula only requires one.

CHAPTER 3

State of the Art

You've ot to want to be in this incredible feedback loop where you get the world-
class people to tell you what you’re doing wrong.

— Bill Gates

The area of BP verification has been the focus of a large amount of research. Existing
research can be placed within three broad categories: (1) the verification of the
correctness of a BP, known as BP soundness, (2) the verification of adherence of a BP
to a set of rules, known as BP compliance, and (3), the verification of adherence of a
BP to a flexible or adaptable specification, known as BP variability.

3.1 Business Process Soundness

Business process soundness is known as the combination of three properties: (1)
the BP must complete (i.e., termination), (2) the absence of unreachable activities,
and (3) the absence of other running activities upon termination (i.e., proper com-
pletion) (van der Aalst, 1998; Wynn et al., 2009). Soundness verification aims at
verifying these three basic properties. A more relaxed notion of soundness exists as
well. Known as weak soundness, it relaxes the requirement to complete in such a
way that, when started, it must be possible to complete a BP merely in some cases.
In (Tr¢ka et al., 2009), three completion patterns are defined: mandatory (i.e., all
paths must complete), optional (i.e., from every state there exists a path which com-

3.1. Business Process Soundness

pletes), and possible completion (i.e, there exists a path which completes). These

diminished version of soundness are introduced in order to verify soundness over
BP with infinite state spaces (Wynn et al., 2009).

van der Aalst (1998) first introduced soundness to the field of BPM when translat-
ing BP into workflow nets. Later, (Wynn et al., 2009) perfected the approach by
allowing Or-joins and cancelation regions. Finally, (van der Aalst et al., 2011) pro-
vides an overview of the different notions of soundness and shows that, although
all notions are decidable for workflow nets, they become undecidable for most ex-
tensions of workflow nets. Petri nets have since been used by many in the field
as intermediate formalisms in order to formalize BP. For example, (van Dongen
et al., 2007), use it to formalize Event-driven Process Chains (EPC) before verifying
soundness using state space analysis. Similarly, Masalagiu et al. (2009) appliy Petri
nets as formalization of BPMN BPD when verifying soundness. And, Corradini
et al. (2015) apply a class of Petri net to unfold business compositions for analysis
and verification.

Another popular method towards soundness verification is the direct implemen-
tation of the process into the input language of a model checker. The described
process is then internally converted into a labeled transition system by the model
checker. Work that take this approach include those of (Karamanolis et al., 2000;
Koehler et al., 2002; Nakajima, 2006) and (Masalagiu et al., 2009). However, since
input languages are often designed to describe software programs, the approach
is prone to requiring extra states. As a result, without carefully mapping of the
process into the input language, unnecessary states are quickly introduced. For
example, in (Nakajima, 2002), it is reported that the intermediate mapping causes
a simple process of five activities and four transitions to be mapped to 201 states
and 586 transitions in the internal state machine of the model checker. Similarly,
Kherbouche et al. (2013) reports mapping a process consisting of four activities to
over 115000 states using the same model checker.

Since many verification approaches only support acyclic BP, Choi and Zhao (2005)
propose decomposing cyclic BP into non-cyclic subgraphs in order to detect dead-
locks within feedback loops.

Other approaches towards soundness verification include propositional logic based
verification (Bi and Zhao, 2004). By transforming the control flow of BP to propo-
sitional logic, deadlocks, reachability, proper completion, and infinite cycles can be
asserted. Weber et al. (2010) proposes semantic annotations to verify soundness

Chapter 3. State of the Art

through pre-and post-condition verification for each task. Finally, Ma et al. (2008)

propose the use of m-calculus to encode BP for soundness verification.

3.2 Business Process Compliance

Compliance verification aims to prove or disprove whether a BP adheres to a set of
rules that has been imposed on it through, for example, law, regulation, or business
requirements. Where soundness verification aims at the verification of a limited set
of requirements to verify reachability, termination, and possibly proper completion
(van der Aalst, 2000) — compliance verification requires the verification of a broad
set of specifications.

Existing techniques perform compliance verification at different stages of the BP
lifecycle, during process design, enactment, or diagnosis (Figure 2.2). Monitoring
techniques are deployed during process enactment to utilize the runtime trace of a
BP to check whether a model is executing correctly. Existing monitoring techniques
include, for example, (Chesani et al., 2009). Auditing techniques are deployed dur-
ing the process diagnosis phase and adopt, for example, process mining techniques
to verify if a BP has been executed correctly. Notable auditing techniques include
those presented in (Ghose and Koliadis, 2007; Ly et al., 2011), and (Schunselaar
etal., 2012a).

Naturally, monitoring and auditing techniques are after the fact techniques, mean-
ing that issues will only ever be detected after they already have occurred. As a
result, rollbacks are required in order to undo any erroneous execution before the
application of possible sanctions. Hence, where possible, a preventative approach
is preferred. Preventative approaches are deployed during design-time, aiming to
prevent issues from ever occurring.

Existing preventative approaches include both formal and informal ones. Formal
approaches utilize both a formal representation of the used model and a formal
specification. Informal approaches are those that lack either a formal representa-
tion of the used model, a formal specification, or both. For example, an approach
directly verifying CTL based specifications on a BP, without the proper support for
different branching options through gateways, is considered to be informal. In-
formal techniques include (Awad et al., 2008) due to its incomplete reduction rules,
and (Pulvermueller et al., 2010) due to the direct application of temporal logic upon
the process model without taking into account different types of gates.

3.2. Business Process Compliance

In (Elgammal et al., 2010a, 2014) well-known temporal logics are evaluated for suit-
ability of preventative BP compliance verification. Although such an evaluation is
extremely important for the selection of temporal logics for compliance verification,
it is important to evaluate them with respect to the used model.

Other approaches introduce new or newly extended formal specifications. For ex-
ample, Governatori et al. (2006), and Goedertier and Vanthienen (2006) both intro-
duce deontics logics to formulate compliance specifications, Bulanov et al. (2011)
propose Temporal Process Logics (TPL), a modal propositional logic that is able
to reason about possible process executions, Gerede and Su (2007) propose a CTL
based language, while Deutsch et al. (2009) proposes a first-order extension of LTL
to verify all possible process executions of artifact-centric systems. Finally, D’ Aprile
et al. (2011) propose an extension of LTL to verify compliance based on answer
set programming. However, by introducing new or extended logics the power of
known and accomplished logics as well as their supporting model checkers can not
be exploited.

In order to simplify the challenge of formal preventative compliance verification,
techniques often limit their application to acyclic models, i.e., models that do not
include arbitrary cycles or loops. Acyclic compliance techniques include, for exam-
ple, (Ghose and Koliadis, 2007; Weber et al., 2008; Favre and Hagen, 2010; Montali
et al., 2010). Arbitrary cycles are indeed a problematic, but very powerful, feature
of BPM which can not simply be overlooked.

Further approaches encode service composition in such a way that a large amount
of overhead is included within the state space of the model. This effect can often be
traced to the decision of directly encoding service compositions into the modeling
language of a model checker without careful analysis of the effect of the encoding
on the internal state machine of the model checker. Approaches of this kind in-
clude, (Janssen et al., 1998; Latvala and Heljanko, 2000; Eshuis and Wieringa, 2004;
Anderson et al., 2005; Fisteus et al., 2005; Bianculli et al., 2007), and (Kheldoun et al.,
2015). For example, (Kheldoun et al., 2015) produces 247 states for a high level Petri
net consisting of ten transitions and thirteen places, without parallelism.

Formal preventative compliance verification is achieved by obtaining a formal mo-
del (e.g. Kripke structure, Definition 2.3.1) from the BP model. Parallel branch-
ing constructs are then supported by interleaving concurrently executing branches.
Some approaches, however, disregard parallel information entirely. Such approa-
ches include, for example, (Feja et al., 2009).

Chapter 3. State of the Art

Other approaches do interleave parallel branches correctly, but interleave to such

an extent that concurrent executions are linearized entirely, parallel information
is lost, and duplicate states, with accompanying state explosion, are introduced.
Such approaches include (Foster et al., 2003; Fu et al., 2004), and (Liu et al., 2007).
Parallelism is an important aspect of BPM, therefore information towards possible
parallel execution can be of particular importance to compliance verification.

Elgammal et al. (2012) propose an integrated approach using both design- and run-
time techniques. The approach builds upon CRL, a logic grounded in LTL, and
guarded automata introduced in (Fu et al., 2004) for preventative design-time com-
pliance verification, and Xpath expressions for runtime compliance verification.

In (Latvala and Heljanko, 2000), a translation from Petri nets to Kripke structures
is proposed. By introducing intermediate states to the Kripke structure for each
transition, the approach is able to define fairness conditions concerning the firing

of transitions.

Finally, Esparza (1993) proposes an approach towards Petri net verification based
on net unfolding. However, the approach bases its verification on the marking of
the net (i.e., tokens at places). Instead, we are interested in the firing of transitions.
Although the enabling of transitions can be obtained from the marking of a net,
it introduces the same issue as verification over a reachability graph; a transition
may be enabled without ever actually occurring. As a result, a stronger sense of

transition enabling is required.

3.3 Business Process Variability

In software engineering, variability refers to the possibility of changes in software
products and models (Sinnema et al., 2006). In the context of BPM, variability in-
dicates that parts of a BP remain variable in order to support different versions of
the same BP depending on the intended use or execution context. BP variability
is closely related to design-time process adaptability and runtime process flexibility,
which both support process change. Existing approaches that offer process change
can be subdivided into those allowing change within imperatively specified BP and
those allowing change through underspecification by using a declarative approach
(van der Aalst and Jablonski, 2000; Marin et al., 2013; Schonenberg et al., 2008).

When offering design-time change within imperatively specified BP, many existing
approaches apply principles directly from variability as used within software prod-

3.3. Business Process Variability

uct lines — such as feature modeling and variation points (Sinnema et al., 2006). A
software product line consists of a family of closely related software products with a
single generic implementation. Differences between each product within the prod-
uct line are described using feature models. When creating a variant, the relevant
features are selected and integrated at, so called, variation points within the generic
implementation. When applying this principle to BP adaptability, the generic im-
plementation is provided by an imperatively specified BP with included varia-
tion points. Approaches using these principles include (van der Aalst et al., 2005;
Schnieders and Puhlmann, 2006; Chang and Kim, 2007; Rosemann and van der
Aalst, 2007; van Eijndhoven et al., 2008; Gottschalk et al., 2008, 2009; Razavian and
Khosravi, 2008; Sun and Aiello, 2008; Hadaytullah et al., 2009; La Rosa, 2009) and
(Nguyen et al., 2011). On the other hand, Hallerbach et al. (2008) employs the same
principles to offer change during process enactment. Of course, a single generic
model incorporating all possible variations can contain configurations which lead
to unsound processes. To address this problem, van der Aalst et al. (2012) propose a
verification approach which is able to characterize all feasible configurations at de-
sign-time, while in (van der Aalst et al., 2010), the authors propose configurations
which are able to maintain correctness.

In order to obtain generic models, (Schunselaar et al., 2012c, 2014; La Rosa et al.,
2010, 2013), and (Bulanov et al., 2011) propose process merger. When applying
this approach, variants are merged into a single generic model using a number of
different techniques such as a new temporal process logic TPL, or CoSeNets. Like-
wise, Buijs et al. (2013) propose and evaluate four merging techniques to describe a
family of BP variants using configurable process models.

Alternatively, van der Aalst and Basten (2002) utilize principles from object-ori-
ented programming languages to define process inheritance. Inheritance is a mech-
anism which allows a subclass to inherit features from a superclass. When applied
to BP, inhertance defines a bisimilarity relation over two process models. A pro-
cess model is a subclass of another process model when the subclass and super-
class are bisimilar under certain conditions. Milani et al. (2016), on the other hand,
propose a decomposition based method using sub-processes which decides which
parts should be modeled together, and which should not.

Design-time change within imperatively specified BP, however, require all possible
features to be modeled in advance. As a result, all features must be known in ad-
vance. In addition, some features may have relations with other features (e.g., be
exclusive or prerequired) which must be modeled. Declarative process specifica-

Chapter 3. State of the Art

tions, on the other hand, do not require this knowledge to be modeled in advance.

Therefore, we focus on declarative process specifications for generic templates of
process families and and the automatic merging of variants into process family
templates with varying degrees of variability.

Declarative process specifications offer change naturally through underspecifica-
tion. Anything not specifically specified is subject to possible change. Numerous
declarative approaches exist, of which most focus on supporting change during
process enactment. Existing approaches consist of both formal and informal ap-
proaches. Informal approaches are those that lack either a formal representation of
the used model, a formal specification, or both. Informal approaches include the
work of Sadiq et al. (2005) which propose an algorithmic approach, and Pascalau
et al. (2011) which extend the compliance work in (Awad et al., 2008) which suf-
fers from informal reduction rules. Other approaches offer change by specifying
pre-and post-conditions for structured activities. Any change is allowed, as long as
pre-conditions are met and post-conditions can be met. Such approaches include
(Rychkova et al., 2008) and (Dadam and Reichert, 2009).

Existing formal approaches employ temporal logics to define the control flow of BP
during process enactment. Any change is allowed, as long as the temporal logic
specifications are not violated. Approaches include (Pesic and van der Aalst, 2006;
van der Aalst and Pesic, 2006; Demeyer et al., 2010; Hildebrandt and Mukkamala,
2011). Maggi et al. (2011) extend upon (Pesic and van der Aalst, 2006) in order
to support change pre-runtime, but report verification issues when encountering
arbitrary cycles. Finally, Schunselaar et al. (2012b) extend upon (Pesic and van der
Aalst, 2006) with configurable inclusion of activities and specifications.

Finally, De Giacomo et al. (2015) extend the well-known imperative BPMN BPD
specification with declarative flow control in order to develop a truly declarative
BP specification. However, the approach does not consider parallel behavior or
runtime consequences of the notation. For example, insertable tasks can be re-
peated any number of times, or simply avoided all together. In other words, tasks
are either entirely optional, or required without any option for change. Having
a required task which can be included in different places of the BP is simply not
possible, and considering parallel support would only increase these issues.

Although declarative process specifications overcome the difficulties of imperative
variability — which require knowledge of all change in advance — their abstract na-
ture does introduce design difficulties which the intuitive imperative specification

3.4. Discussion

does not face. In this document, we alleviate these issues by applying declarative

specifications over imperative designs. In other words, we verify compliance of
imperative specifications to declaratively specified process families.

3.4 Discussion

When analyzing the state of the art, we conclude that the verification of BP sound-
ness has been perfected through the application of Petri nets. In fact, Petri nets have
been found to be a popular tool when formalizing BP.

Secondly, current BP compliance approaches aim largely at after-the-fact auditing
or the runtime monitoring of BP. Although certainly important, these techniques
can never prevent issues of non-compliance, and can, as a best case scenario, only
lead to rollbacks of work that has already been performed. Existing preventive
approaches, on the other hand, either limit model behavior, severely impacting
the powerful features supported by BP modeling languages, or suffer from limited
support from known and accomplished model checkers because of state space re-
quirements or the application of new, or newly extended, logics. However, while
specifications have been extended to support the powerful features of BP model-
ing languages, little research has been devoted to exploring their support through
translation of the model itself.

Thirdly, BP variability is most often supported at design-time using an imperative
approach. Variability, however, has never been seen as an extension of preventive
BP compliance verification. Even though the required specification rules show re-
markable similarities. Although some declarative approaches exist, they are either

naive, or are aimed at providing BP flexibility for linear runtime executions.

Finally, when model checking is involved, verification is often aimed at specific
modeling languages and it involves a direct translation into the input language
of the model checker. In these cases, the approach focuses mainly on the correct
specification of the BP using that modeling language, i.e., soundness with respect to
the modeling language, and not BP compliance verification or variability. Because
of this focus, a large amount of states, unimportant to BP compliance verification
or variability, are introduced.

Within the remainder of this thesis, we explore the support of BP verification and
variability through the application of model checking. We provide means for the
support of formal verification of powerful BP modeling language features through

Chapter 3. State of the Art 45

the combined power of existing specification languages and proper model transla-
tion using Petri nets as a formalization step. In addition, we provide design-time
variability mechanisms as an extension to preventive compliance verification.

CHAPTER 4

Case Study Description and

Formalization

The rise of Google, the rise of Facebook, the rise of Apple, I think are proof that
there is a place for computer science as something that solves problems that people
face every day.

— Eric Schmidt

We present three case studies to serve as complex real world examples of BP veri-
fication. The first case entails a customer support process resulting from a compli-
ance study at an Australian telecommunications provider which must comply to
the Telecommunications Consumer Protections (TCP) code of conduct. The second
case consists of a variability study throughout a number of Dutch municipalities
which all are required by law to offer the same service to its residents, but tai-
lored to local needs. Finally, the third case consists of a collaborative BP taken from
(Corradini et al., 2015). We select these three cases to demonstrate the complexi-
ties of compliance verification, business process variability, and verification under
collaborative concurrency. Each case is discussed and subsequently formalized by
translating it to CPN according to the translation process described in Appendix B.
To improve readability of the resulting CPN, the weight and color of the depicted
arcs have been omitted. Unless stated otherwise, all arcs carry the weight 1°c.

4.1. Case 1: Telecommunications Customer Support

4.1 Case 1: Telecommunications Customer Support

To illustrate the complexities of preventative compliance verification, a real life
case-study, concerning customer support at an Australian telecommunications com-
pany, is presented. The customer support process is depicted in Figure 4.1.

The process starts when a complaint from a customer is received. The complaint is
registered in the system and the customer is called back immediately or later, de-
pending on the urgency of the complaint. If no further contact can be established
with the customer, the complaint is closed in the system and, in case the complaint
concerns a Telecommunications Industry Ombudsman (TIO) complaint, the com-
plaint is reported.

If contact is established with the customer, the issue is confirmed and the complaint
is recorded. In case of a billing dispute, the credit management is suspended. If the
issue can be easily resolved, the customer is informed of an offer to resolve the
issue. The customer can accept or decline the offer. In case the customer does
not accept the offer, a new offer can be provided if available, or the customer can
escalate the issue.

If the complaint is more complicated to resolve, the customer is advised about the
timeframe required to resolve the issue and possible available times of the customer
are discussed. Subsequently, non-technical issues are investigated and technical
issues are forwarded to Level 2 (L2) support. When a solution is available, it is
presented to the customer to be accepted or declined. If there is a possible delay,
the customer is notified.

Using the conversion provided in Appendix B, the customer support BPMN BPD
depicted in Figure 4.1 is translated into a CPN. The resulting CPN is depicted
graphically in Figure 4.2.

S
S
=

IS
N
S

£

-

o
st
T

=

IS

=
8

B
&

~

O

n

o
A

>
T

=]
=
wn

Q

n

IS
@)
<t

-

Q

g

Qy

IS
<
)

[no delay]

[additional offer]

[paidasoe
1ou Jayo]

'ssad01d y10ddns rowoysno ayy, 1 2InSig

sauwn a|qe|rene
pue sjelap

10BJU0I JBWoIsnd

wayuon

s1019 bui [urejdwos uiwpe]
Xij pue uonnjosal

alejnuuoy

anss|
ayebnsanul

sireyap 10BIU00
aulbua apinoid

®[ap a|qissod uonebnsanul
Noge uonewloul yoa Joj uoddns
P02y 21 01 premioy

uonnjos
Wyl 18I0

EEETET
pue ssasoud Jo
Jawoisno asinpy

[ney yoa]

[821118s8 ©SD-u0U]

sawrelawWN pue

ssa%01d prepuels
auiwisiep pue

anssl Ajisse|n

[panjosas Apisea jou]

1310
JO JBwoISNd <

wioju|

panjosal Ajisea
11885 01 Appinb
anssl ayebnsanu|

@oueydadoe
Jawoisnd
PECS)

uawabeuew
Wpai
puadsng

uone[essa
10 M3IA3I 0)
uondo asinpy

[No dispute in billing]

[1ayo
leuonippe ou]
Sje[edss
0] Jawolsnd
asinpy

[offer accepted]

Junowre
paindsip
#1934

uredwod
[REN]

awoano
piovay

anss|
wiyuod

[rurejdwod Q1L uoN]

[10eru00]

JOBJUOD OUu]
unurejdwod |« e 1

OIL 01 uoday

Customer Support

ications

: Telecommun

4.1. Casel

Lo

souridaooe
Jawoisno
REES]

[n]

alejeosa
0} Jawolsnd e
asinpy

awono
piosay | 7P
rejdwod
as010 ST
" e

aje[eoss
10 M3IAB1 0}
uondo asinpy

[s]

Juswabeuew
Wpas
puadsns

junowre
pandsip
#0840

Jurejdwod
pi029y

anssi
wiyuod

WO ul
OL%%« uredwod
voded 9s0|0

2] € vd e
B0 B0

1)

5,0 9sTd 2,1 [Jd440 TeuoTaTppe]- JT

5,0 9sT® 2,1 [Jd340 TeuoTaTppe] 4T

2,0 9sT® 2,1 [poidedde usjjo]- JT

2,0 @sT® 2,1 [poidedde usjjo] 4T

5,0 9s1d 2,1 [Aerap] 31

5,0 9s1d 2,1 [Aerap]- 4T

5,0 9sTd 2,1 [950]- 3T

5,0 9sTd 2,1 [950] 4T

5,0 9sTd 3,1 [3Tnes yo93] B8 [Jurerdwod utwpe]- 4T :u
5,0 9sTd 5,7 [jurerdwod utwpe] 33 [3Tnes ysaa]- 41 :w
5,0 9sTd 2,1 [3Tnesy ysa3] 41 1

3,0 9sT® 2,1 [juTerdwod utwpe] 4T)

3,0 9ST® 2,1 [panTosad ATtsea]- 31 :[
3,0 9ST® 2,1 [panTosad ATtses] 4T :

5,0 9sTd 3,T [SuTTTTq uT @ndsTp]- 4T :
l 5,0 9sT@ 2,T [SuTT1Tq uT @3ndstp] 41 :
5,0 9sTd >,T [juTerdwod OIL]- 4T
5,0 9sTd o, T [jurerdwod OIL] 4T
3,0 9sT® 2,T [3de3uU0D] 4T
2,0 3sT@ 2,1 [3oe3U0D]- 4T
3,0 osT® 2,T [3ue8un]- 41
2,0 9sT® 2,T [3ue8un] 4T

TO UDT VY oA

[a]
Lo b Crfmb @

Ajarelpawiwy 14 urureidwoo 2T

11ea Annbua
ENE

i
Lo

Chapter 4. Case Study Description and Formalization

*NdD se ssaoo1d jurejdwod ay, gy 23]

anss|

1)
X1} pue uonnjosal oreBusonul

ajejnuuo

T2

uonebnsaul uonnjos
yoa1 Joj uoddns w1l
27 01 premioS I340

walIs

[u]

[w]

Kejap a|qissod
2} | Inoge uonewioul
pi0vay

» c1d < on

s|iejap piodas
pue Jayo Jo
19WOISND ULoju|

[ACE

s|ielap 19Iu0d
auibua apinoid

saw a|qejrene
pue s|e19p 10BIU0d
13Wo0IsSNd Wiuod

sawelawin
T pue ssad01d Jo
1aWO0ISNI ASIAPY

sawelawn pue

ssaooud prepuels
aulwILIBp pue
anssl Ajisse|n

panjosal Ajisea
J1 dUILIRIEP

0} Appoinb
anss| ayebnsanu|

4.1. Case 1: Telecommunications Customer Support

To ensure good service and fair outcomes for all consumers of telecommunica-
tions products in Australia, all service providers whom supply telecommunications
products to customers in Australia are required to comply to the Telecommunica-
tions Consumer Protections (TCP) code of conduct. The code is registered by the
Australian Communications and Media Authority (ACMA), which has appropri-
ate powers of enforcement. As a result, the customer support process as described
above has to comply with a number of rules in order to meet the code of conduct.
A number of those rules are enumerated below and used later to evaluate our me-
thodology. Rules eight and nine are not part of the TCP code, but can be inferred to

verify a number of control-flow requirements.

Table 4.1: TCP Compliance Rules.

Compliance Rule

—_

SNBSS

N o

Resolutions to complaints should always be checked for acceptance
with the customer, unless there is no contact with the customer.

Offers are either accepted or the customer is advised to escalate.

A complaint that is confirmed is recorded immediately.

Once a complaint has been confirmed, its outcome is always recorded.
Once a complaint has been confirmed, possible delays are recorded and
communicated to the customer.

All issues are covered prior to formulating a resolution.

Escalated complaint are immediately recorded.

When both technical and non-technical issues are involved in a com-
plaint, they must be solved in parallel.

After the complaint category is determined, a resolution must always
be provided to the customer.

Chapter 4. Case Study Description and Formalization

4.2 Case 2: Local Dutch e-Government

The Netherlands consists of 418 municipalities which all differ greatly. Because of
this, each municipality is allowed to operate independently according to their local
requirements. However, all the municipalities have to provide the same services
and execute the same laws. An example of such a law which is heavily subjected to
local needs is the WMO (Wet maatschappelijke ondersteuning, Social Support Act,
2006), a law providing needing citizens with support ranging from wheelchairs,
help at home to home accessibility improvement.

Figures 4.3 through 4.8 illustrate the main process flows of the WMO process ob-
served at three distinct municipalities, and their CPN versions obtained by apply-
ing the conversion process provided in Appendix B. The illustrated processes were
obtained through interviews with different municipalities located in the Northern
area of the Netherlands (van Beest et al., 2010, 2012). Municipalities interviewed
ranged in size, population, income, and differed in being urban or rural.

Figure 4.3 depicts the simplest variant of the three WMO processes. The process
starts with an application procedure which determines if the request made by the
citizen falls under the WMO law. If this is not the case, the citizen is advised by
the municipality employee towards his next steps. When the request made by the
citizen does fall under the WMO law, the application is accepted, and a decision
whether to approve the requested provision is made based upon the intake, pos-
sible requests of medical advice, and a possible home visit. The request is then
either approved or rejected. In case of a positive decision, the requested provision
is either arranged directly for the citizen, or a personal budget is assigned in case
of personal care. In case of a negative decision, the citizen can appeal the deci-
sion. If the appeal is found to have merit, the decision is revised and the process is
renewed. Figure 4.4 illustrates the same process as a CPN.

Figure 4.5 depicts a second variant of the WMO process. The main difference of this
variant, with respect to the variant illustrated in Figure 4.3, is the option to approve
the requested provision in part. When this option is taken, further medical advice
may be acquired. When the medical advice declares that the citizen qualifies for
the requested provision in full, the decision to approve in part is revised. Another
difference is included after the reverse decision option in case of an appeal. Instead
of renewing the process, this variant only revisits the approve or reject options.
Finally, an activity is included to provide the citizen with information in case a per-
sonal budget is assigned. The CPN version of this variant is depicted in Figure 4.6.

4.2. Case 2: Local Dutch e-Government

Provide

and advice

X

More medical
advice

Decision

Revise
decision

Appeal Check citizen
K> “lesponse Refen X

Affirm decision Approve

p/:vsss::%nal
provision budaet

Acquire
requirements
Forward to
supplier

Receive

delivery
confirmation

Check on correct
use of personal
budget

Handle invoice:

Figure 4.3: WMO Provision Request Process of Municipality A.

Chapter 4. Case Study Description and Formalization

Intake and
1c application

Provide
information
and advice

Medical
advice

Home visit

More medical

advice
Decision
Revise
decision
Appeal Check citizen Reject
response

Affirm

decision Approve

Assign
Assign

personal
provision budget
Acquire

requirements

Check on correct
use of personal
budget

Forward to
supplier

Receive
delivery
confirmation

invoice

O

Figure 4.4: WMO Provision Request CPN of Municipality A.

4.2. Case 2: Local Dutch e-Government

Intake and
application

and advice

Revise
decision

Qualifes for
provision

X

i e e

Affirm decision

Assign
personal
budget

Provide
information

Check on correct
use of personal
budget

Acquire
requirements
Forward to
supplier

Receive

delivery
confimmation

Figure 4.5: WMO Provision Request Process of Municipality B.

Chapter 4. Case Study Description and Formalization _

Intake and
1c application

Provide
information
and advice

Medical
advice

Home visit

Decision
Approve
in part

More
medical
advice

Revise
decision

Check citizen

Appeal response Reject Qualifies
for
provision
Affirm Approve
decision PP
Assign
hseon personal
P budget
Acquire Provide
requirements information

Check on correct
use of personal
budget

Forward to

supplier Receive
delivery
confirmation

invoice

O

Figure 4.6: WMO Provision Request CPN of Municipality B.

4.2. Case 2: Local Dutch e-Government

Intake and
application

Provide DEP
provision

Check DEP
information

N Medical
() (o) (2

Revise
decision

Revise
decision

Appeal Check citizen
K “response Relect

Affirm decision

Approve in
part

Inform about
rejection

Assign
personal
budget

Provide
information
Check correct use
of personal budget|

Assign
provision

Forward to
supplier

Receive
delivery
confimation

Figure 4.7: WMO Provision Request Process of Municipality C.

Chapter 4. Case Study Description and Formalization

Intake and
1c application

Provide
information
and advice

Check DEP
information

Provide DEP
provision

File Home visit Medical
research advice

Decision
Revise
decision
Verify
decision
Revise
decision
Appeal Check citizen Reject
response
Approve

decision

Approve
in part

Inform about Assign Assign
rejection provision personal
budget
Acquire DEP provided Provide

requirements provision information

Check on correct
use of personal
budget

Forward to

supplier Receive
delivery
confirmation

invoice

O

Figure 4.8: WMO Provision Request CPN of Municipality C.

m 4.2. Case 2: Local Dutch e-Government

A third variant of the WMO process is illustrated in Figure 4.7 and demonstrates
a large amount of diversity. The CPN version of this variant is depicted in Fig-
ure 4.8. In this variant, a new branch is introduced for Directly Executable Provi-
sions (DEP). In case of DEP, the requested provision is directly provided without
taking the long decision making procedure. The information gathering process be-
fore making a decision also includes an option to do file research. In addition, each
activity during this process can be performed an arbitrary number of times and
in any order. All decisions in this variant are verified as well, and can be revised
before the official approval or rejection. Similar to the second variant, an option
to approve in part is included. In this case, however, the option is included af-
ter the rejection of the initially requested provision. Similar to the second variant,
the citizen is also provided with information in case a personal budget is assigned.
In addition, a rejection is explained after a failed appeal by a citizen. And finally,
the activity of acquiring requirements of any assigned provision is handled by the
supplier without involvement of the municipality.

When analyzing the three respective BP illustrated in Figures 4.3 through 4.8, we
can clearly see the same generic process flow in all three versions of the WMO pro-
cess. Beginning at the intake and application, the generic process flow continues
through decision, approval, and finally the assignment of either the requested pro-
vision or a personal budget. Similar generic process flows can be seen at the alter-
nate information and advice path and the reject/appeal path. Variations appear at
the information gathering stage of the process, where the file research, home visit,
and medical advice activities contribute to understanding the background of the
citizens making the WMO provision request. Other variations appear through ad-
ditional paths for approval in part, simple provision requests (i.e., DEP requests),
and decision verification. And, finally, the simplest variations appear through the
inclusion of additional informative activities in existing paths.

Chapter 4. Case Study Description and Formalization

4.3 Case 3: Bouncer Registration

Collaborative BP (CBP) are BP where actors and roles are spread over multiple
entities. For example, Figure 4.9 depicts a BPMN CBP featuring the national reg-
istration of bouncers originally published by Corradini et al. (2015). Bouncers are
employed by nightclubs and other venues to control crowds.

The registration process features three roles: (A) the requester that applies for regis-
tration, (B) the prefecture handling the request, and (C) the police which perform a
background check of the requester. Each role performs its assigned activities in
order to arrive at the decision to authorize or inhibit the registration of the re-
quester as a bouncer. They collaborate by each performing activities in separate
BP, while communicating through messages depicted as message flows in the CBP
of Figure 4.9. First, the requester makes a registration request. The prefecture re-
ceives the request, initiates the procedure, and proceeds to request a profile check
from the police. The prefecture communicates the relevant laws with the requester,
before proceeding to check the documents. If needed, the prefecture will request
further documentation from the requester, before analyzing the documents. Mean-
while, the police will check for any impediment and report them to the prefecture.
The prefecture then takes a decision based on the documents and police report,
and either provides authorization or inhibition of registration of the requester as a
bouncer. (Corradini et al., 2015)

Note that the original process published by Corradini et al. (2015) contained a cycle
where the prefecture could repeatedly request further documentation from the re-
quester. However, since the approach presented by Corradini et al. (2015) removes
cycles by decoupling any backward looping flow during the Petri net conversion,
we remove the loop in order to arrive at a fair comparison of the approaches. Us-
ing the conversion provided in Appendix B, the CBP of the bouncer registration is
translated to a CPN. Figure 4.10 depicts the resulting CPN graphically.

(10T “Te 19 TuIpe110D) [PPOIN NIN] UOHRSIZay 190unog 6 oISty

Y

A v awipaduw S
e 8jyoud oai =

PeElile} 140.d >08yD 3

@

v)

: 3

::%__H_nw_%&%m uoisap Sjuawnaop uoneJfayu uoneJfayu sjuawnaop uo uonenue)sul nloy
apinoid el azhjeuy 8Yd 104 sy 8D neoIUNWoD 1s9nbay q

B - =~ m

Pyl

uomqiyut 10 m
:o__.m.m.h_o&:m x Sjuswinoop Sjuawndop 1senbai =
an309Y apinoid ajpdwod uonensiboy %
-

@

=

4.3. Case 3: Bouncer Registration

S
S
=

<
N
S

£

-

o
=
T

=

5]

=
2
B
&

~

Q

n

9]
A

>
T

=]
=t
wn

)

n

S
o
<

-

9]

L

Qy

]
<
o

‘NdD uonensi3ay 1aounog 01§ 23y

Juawipaduwi
auD apyoud xayd

‘A‘E‘l@‘ i
i .\
uonezuoyine uonesBayul uonelibaju

apinoid e} 10} v

uo
nesIunuWod

uonenuelsul
1s9nbay

SUETT]
34D

uoisap
aeL

sluawnoop
azAjeuy

uoniqyur lo
siuawnoop siuawnoop 1sanba
uonezuouine uonesnsibay
ang0ay i

apnoid - @19dwod

4.4. Discussion

4.4 Discussion

The presented case studies illustrate several scenarios found in real life. Although
simplified for illustrative purposes, they each represent the general process flow
found at business or government. We select these three cases because they each
illustrate different sets of complications concerning design-time BP verification.

The first case, telecommunications customer support, represents a compliance case
where a large amount of conditional paths motivate different outcomes. The sec-
ond case, local Dutch e-government, represents a variability case where local needs
drive very similar, yet individually tailored, decision making. Finally, the last case,
bouncer registration, represents a highly concurrent case where multiple entities
work in parallel to complete a single task.

Even though the cases illustrate different issues, they also demonstrate certain sim-
ilarities. For example, each case describes BP with many different complex path-
ways, and consist mainly of the simplest constructs. Most complexity, therefore,
can be traced to the many exclusive conditions contained within each BP. The many
conditions, however, often prompt unstructured BP design (i.e., the use of multiple
end events, incorrect forking and merging, etc).

Little concurrency is included when considering the individual business processes
described by each case. Even when concurrency could be easily included by in-
clusive branching, the paths are described through intricate paths with exclusive
choices within loops instead (e.g. the file research, home visit, and medical advice
activities of Figure 4.7). Whether this is the result of inexperienced design or delib-
erate choice is unknown, but the fact remains that the process flow would have had
increased efficiency when concurrency had been introduced.

Due to the simple constructs used to describe each BP, the formalization of the BP
using CPN is straightforward. Even though several BP required a number of addi-
tional (silent) transitions to describe the control flow, their complexity is maintained
at a minimum. More complex constructs can be described, but at the cost of increas-
ing the complexity of the resulting CPN. And, in turn, increase the complexity of
any subsequent verification.

CHAPTER 5

Verification Requirements

Premature optimization is the root of all evil in programming.

— Donald Knuth

As formal verification of BP at design-time includes several different goals, require-
ments vary greatly. For example, where some soundness verification frameworks
focus solely on reachability of structured activities and process termination, other
frameworks aim to verify the correctness of a specification. At the same time, some
compliance verification frameworks aim to verify compliance conditions over the
events of BP, whie others aim to verify conditions over the state of the BP. Addi-
tionally, with the convergence of BPM and service-orientation of recent years, re-
quirements related to service-orientation have made their way into BP verification.
With each of these aims, a different set of requirements is applicable on both the
model and specifications used for verification. We describe the requirements based
upon the verification of the process described by the BP itself and not an individual
specification or implementation.

5.1 Model Requirements

Requirements on the model describe the various features which the verifiable mo-
del must be able to describe. Without support, BP which include these features can
not be verified, or only be verified in part. BP offer a very powerful range of ex-

“ 5.1. Model Requirements

pressive features such as structured and unstructured cycles, exclusive, inclusive,

and parallel branching, and different event handling mechanisms. Existing frame-
works, however, often neglect to fully support many of the more powerful features
possible within a model in order to simplify the task of verification. We assume
support for the basic features and iterate through the problematic requirements.

Requirement 5.1.1 (Unsound Processes). Verification frameworks must be able to
verify business processes that are not sound.

Existing verification frameworks often limit support to structured processes only.
Structured processes are processes which, for example, only include matching gates
with matching number of forking and joining branches. Although structured pro-
cesses allow for easier verification and should always be used when possible, many
in use processes are described in an unstructured manner. Verification frameworks
must be able to support both structured and unstructured models.

Requirement 5.1.2 (Parallel Branching). Verification frameworks must be able to verify
parallel behavior within business processes, including inclusive branching.

Verification frameworks must be able to express different branching constructs within
its model in such a way that parallel behavior remains visible during verification.
Although some frameworks do claim to support parallel behavior (Foster et al.,
2003; Liu et al., 2007), the behavior is often described in such a way that it is not
visible to the verification process.

Requirement 5.1.3 (Arbitrary Cycles). Verification frameworks must be able to verify
business processes that include arbitrary cycles.

Verification frameworks must be able to express its specifications in the presence of
arbitrary cycles without them severely affecting the outcome of those specifications
due to the possibility of infinitely looping. For example, a scheduling specification
stating a response from a structured activity may return true after evaluation of
a path without an arbitrary cycle. However, after an arbitrary cycle is included
within the same path between the effect and response structured activities, the
same specification will always be evaluated as being false. This behavior is caused
by the possibility of infinite looping within the arbitrary cycle. Indeed, when the
arbitrary cycle is executed an infinite many times after the effect structured activ-
ity, the further ahead responding structured activity is never actually reached. A
natural and correct conclusion when verifying software programs or electronic cir-
cuits — but, in the case of the verification of BP, this is highly unwanted behavior.

Chapter 5. Verification Requirements “

Unlike certain software processes or electronic circuits, BP are, at most, long living
and will always terminate. Arbitrary cycles, therefore, will never execute infinitely
many times. BP will either terminate correctly, or terminate with an error causing a
possible rollback.

Requirement 5.1.4 (Intermediary Events). Verification frameworks must be able to
verify business processes that include intermediary events.

Verification frameworks must be able to express inline events within its model.
Events include simple message flows to error catching events with complex com-
pensation handlers attached.

5.2 Specification Requirements

Formal verification of business process models is of interest to a number of differ-
ent applications, including checking for basic process correctness, business com-
pliance, and process variability. Basic process correctness, or soundness as it is
sometimes called, aims at verifying the basic properties of BP, including reacha-
bility and absence of deadlocks. Compliance verification aims to prove whether a
process complies with a set of business rules, laws, or regulations. Variability ex-
tends this notion by allowing parts of a BP to remain variable, or not fully defined,
in order to support different versions. Different versions are then verified against
its specification in order to verify whether the changed version remains within the
context of its specification and business rules.

5.2.1 Soundness

The first goal of BP verification consists of verifying basic properties such as reach-
ability and termination. Reachability of a business activity requires an execution
path to exist leading to that activity starting from the initial activities. A termina-
tion property requires that all possible execution traces terminate. Business process
soundness, a property originally proposed in the area of Petri Net verification, is
known as the combination of these two properties plus a third: the absence of re-
lated running activities at process termination (i.e., proper completion) (van der
Aalst, 1997). Avoiding the deployment of erroneous processes that do not conform
with these properties is obviously advantageous: “[erroneously] designed workflow
models can result in failed workflow processes, execution errors, and disgruntled customers
and employees” (Bi and Zhao, 2004).

5.2. Specification Requirements

Requirement 5.2.1 (Reachability). Every structured activity included within a BP must
be reachable trough the execution of a sequence of structured activities.

Requirement 5.2.2 (Termination). All possible fair execution traces within a BP always
eventually terminate (i.e., no deadlocks).

Requirement 5.2.3 (Proper Completion). Upon BP termination no structured activities
within a BP remain in an executing state.

5.2.2 Compliance

The second goal of BP verification consists of verifying the compliance of a BP
against a set of norms, laws, and/or regulations. BP compliance entails the veri-
fication of (A) the occurrence of structured activities and their effects, (B) the order
of execution of structured activities and their effects, (C) resource allocation (e.g.
which roles and users perform which structured activities), and (D) time related
constraints, while (E) under condition of possible data values. Design-time com-
pliance verification aims at preemptive verification of BP, and therefore is limited
to the verification of structured activity occurrence, order, and role allocation. Al-
though time related conditions could be verified based upon estimations of time,
true verification of compliance towards time related constraints can, naturally, only
be accomplished by after the fact process mining or runtime monitoring techniques.
Similarly, user information towards resource allocation verification is only available
during or after BP enactment. At design-time, user information can be extracted
from the different assigned roles at most.

Requirement 5.2.4 (Occurrence). Occurrence specifications force the execution of
structured activities within the BP. Compliance frameworks must be able to express the
following occurrence specifications over elements of the BP:

(i) Absence: The structured activity, or its effect, does not occur.
(ii) Universality: The structured activity, or its effect, holds.
(iii) Existence: The structured activity occurs, or its effect holds, in the future.

(iv) Bounded Existence: The structured activity occurs, or its effect holds, a limited
number of times.

Requirement 5.2.5 (Ordering). Ordering specifications force the order of execution
of structured activities within the BP. Compliance frameworks must be able to express the
following ordering specifications over elements of the BP:

Chapter 5. Verification Requirements

(i) Precedence: The structured activity occurs, or its effect holds, before (the effect of)
another structured activity.

(ii) Response: The structured activity occurs, or its effect holds, after (the effect of)
another structured activity.

The compliance requirements towards the occurrence and ordering of structured
activities are adapted from the property specification patterns of finite state verifi-
cation (Dwyer et al., 1999) and (Elgammal et al., 2010a, 2014). The patterns towards
occurrence include absence, universality, existence, and bounded existence. These
patterns describe that some state or event does not hold, holds throughout, hold
eventually, or holds a specific number of times, respectively. The ordering speci-
fications include precedence and response patterns. These patterns describe that
some state or event occurs before or after another state or event. In the case of BP
compliance verification, the evaluated state or event is represented by the struc-
tured activities of the BP (event) or their effects (state).

Occurrence and ordering specifications are applied using scopes. Scopes define re-
gions of the system where a specification must hold, and include either globally,
before (the effect of) another structured activity, after (the effect of) another struc-
tured activity, between (the effect of) two structured activities, or after and until
(the effect of) two structured activities. In addition, the ordering specifications can
be extended to support precedence and response chains. In this case, a number of
ordered (effects of) structured activities is preceded by, or responding to, the trig-
gering event or state.

Requirement 5.2.6 (Resource Specifications). Resource specifications force the execu-
tion of structured activities within the process to be linked to a certain resource. Compliance
frameworks must be able to express the following resource specifications over elements of the
BP:

(i) Always performed by role: The structured activity is always performed by the
given role.

(i) Performed by role: The structured activity is (sometimes) performed by the given
role.

(iii) Never performed by role: The structured activity is never performed by the given
role.

Resource specifications require structured activities to be performed by certain roles
during enactment. In this way, structured activities can be required to be performed

5.2. Specification Requirements

by users with different tasks assigned to them. For example, an employee processes
an order, while a manger performs a last check.

Requirement 5.2.7 (Data Conditions). All specifications must be verifiable under data
conditions. Compliance frameworks must be able to express the following data conditions
over specifications:

(i) Holds always: The specification holds under all data values.

(ii) Holds when: The specification holds under a given set of data values (e.g. = > 10).

Data Conditions allow specifications to be applied to only those execution paths
under which these data conditions hold. Take, for example, a specification stating
that if an order over a certain sum is placed, a downpayment is required. This
specification can only be supported when data conditions are supported.

5.2.3 Variability

The third goal of BP verification, variability, builds upon compliance. In the con-
text of BPM, variability indicates that parts of a business process remain variable,
or not fully defined, in order to support different versions of the same process de-
pending on the intended use or execution context (Aiello et al., 2010). Variability
aims to support different versions of the same process. This includes support of
process families at design-time, when a new process variant can be derived from a
generic process, and process flexibility or adaptability at runtime, where a generic
process can be adapted. BP variability can be specified in two different ways. The
first, imperative variability, employs the use of variation points to provide differ-
ent options at specific points in a process. The second, declarative variability, uses
specifications like those of compliance to specify how each version of a process
should behave. Explicit variability management consists in the ability to enumer-
ate the possible variations. The expressive power requirements provide an indication
of what must be possible to express for a variation in a process.

Imperative Variability

Imperative structural adaptation consists of atomic operations which, when executed
in a specific predefined sequence, rearrange a BP to form a specific variant. Multiple
predefined sequences of atomic operations may exist, which may or may not be
compatible with each other, to form different variants. Imperative variability must
support the following requirements to enable the full set of BP changes:

Chapter 5. Verification Requirements

Requirement 5.2.8 (Atomic Structural Adaptation). Imperative variability frame-
works must be able to express the following self-explanatory atomic structural adaptions to
the BP:

(i) Insert process fragment.
(ii) Delete process fragment.
(iii) Move process fragment.
(iv) Replace process fragment.
(v) Swap process fragments.
(vi) Copy process fragment.
(vii) Extract sub-process.
(viii) Inline sub-process.
(ix) Embed process fragment in loop.
(x) Parallelize process fragments.
(xi) Embed process fragment in conditional branch.
(xii) Add control dependency.
(xiii) Remove control dependency.

(xiv) Update condition.

Extended from (Weber et al., 2008), atomic structural adaptions form the basis of
any imperative variability framework. Each atomic structural adaptation enables
essential operations which together can completely rearrange a BP into one of its
variants. An imperative variability framework should be able to group sets of
atomic structural adaptions on specific process fragments which, when executed
in a specific order, allow a variation at a specific point within the BP. A number of
selected variations then form a specific variant.

Requirement 5.2.9 (Atomic Resource Adaptation). Imperative variability frameworks
must be able to express the following self-explanatory atomic resource adaptions to the BP:

(i) Assign process fragment to role.

(ii) Retract process fragment from role.

Where atomic structural adaptation allows modification of the execution paths of
the BP, atomic resource adaptation allows an imperative variability framework to

5.2. Specification Requirements

change the role assigned to process fragments. Instead of allowing change to how
things are done, atomic resource adaptation allows change to who executes the BP.

Requirement 5.2.10 (Variation Relation). Variability frameworks must be able to ex-
press the dependencies between different imperative structural and/or resource changes.

Multiple predefined sequences of atomic operations may exist to form different
variations at specific points within the BP. Different variations, however, may or
may not be compatible with each other, or require a specific order in which they
must be applied. Dependencies such as these are called variation relations (Sinnema
et al., 2006). Imperative variability frameworks must be able to specify variation
relations in order to be able to support the full range of possible variants.

A variability management framework should allow the process designer to express
the above imperative structural adaptation requirements.

Declarative Variability

Declarative specifications consists of rules expressing variations by declaring the bor-
ders which limit the possible process modifications. Unlike atomic structural chan-
ges which indicate imperatively what can vary, a declarative specification limits the
borders of changes explicitly. Initially, all possible modifications are allowed within
the BP. As specifications are included, modification is being limited. The more spec-
ifications are included, the more the BP is being defined, and the less modification
is allowed. Declarative variability frameworks must support the following require-
ments:

Requirement 5.2.11 (Inclusion Specifications). = Declarative variability frameworks
must be able to express the following declarative inclusion specifications over elements of
the BP:

(i) Include: The structured activity must be included in the variant.

(ii) Prerequisite: The structured activity must be included in the variant if some other
structured activity is included.

(iii) Substitution: The structured activity must be included in the variant if some other
structured activity is not included.

(iv) Corequisite: The structured activity must be included in the variant if an other
structured activity is included as well, and vice versa.

(v) Causal selection: The structured activity may only be included in the variant if
some other structured activity is included.

Chapter 5. Verification Requirements

Extended from (Sadiq et al., 2005) and (Lu et al., 2009), inclusion specifications force
the inclusion of structured activities within the variant. That is, under a certain con-
dition, they require a structured activity to be present in some execution path of the
process. Inclusion specifications are of particular importance to variability. Instead
of enforcing the execution of a structured activity, as is often the case with compli-
ance verification, inclusion specifications only enforce the inclusion of structured
activities without requiring their execution. For example, the substitution specifi-
cation (Requirement 5.2.11.iii) forces the inclusion of a structured activity within
the variant if some other structured activity is not included. In this way, at least
one of the structured activities is included.

Requirement 5.2.12 (Exclusion Specifications). Declarative variability frameworks
must be able to express the following declarative exclusion specifications over elements of
the BP:

(i) Exclude: The structured activity may not be included within the variant.

(ii) Exclusion: The structured activity may not be included in the variant if some other
structured activity is included.

(iii) Admittance: The structured activity may not be included in the variant if some other
structured activity is not included.

(iv) Exclusive choice: The structured activity may be included in the variant if some
other structured activity is not included, and vice versa.

Extended from (Dwyer et al., 1999; Sadiq et al., 2005; Lu et al., 2009) and (Elgam-
mal et al., 2010a, 2014), exclusion specifications force the exclusion of structured
activities within the variant. That is, under a certain condition, they require a struc-
tured activity to be absent from all paths of the process. For example, Require-
ment 5.2.12.ii species that a structured activity may not be included in the variant if
another is included. In other words, the one structured activity excludes the other.

Requirement 5.2.13 (Execution Specifications). Execution specifications force the
execution of structured activities within the variant. Declarative variability frameworks
must be able to express the following declarative execution specifications over elements of
the BP:

(i) Execute: The structured activity must be included in all execution paths of the vari-
ant.

(ii) Requirement: The structured activity must be included in all execution paths of the
variant when an other structured activity is included.

5.2. Specification Requirements

(iii) Replacement: The structured activity must be included in all execution paths of the
variant if some other structured activity is not included.

(iv) Backup: The structured activity must be included in all execution paths of the vari-
ant if some other structured activity is not included in all execution paths.

(v) Causal execution: The structured activity must be included in all execution paths
of the variant when an other structured activity is included, or not included at all.

Extended from (Dwyer et al., 1999) and (Elgammal et al., 2010a, 2014), Execution
specifications pose conditions on the presence of structured activities in all execu-
tion paths of the variant. That is, they force the execution of the structured ac-
tivity during process enactment. For example, the backup specification (Require-
ment 5.2.13.iv) requires a structured activity to be always executed if an other struc-
tured activity is not always executed. In this way, the specification enforces some
form of safety as one of the structured activities is guaranteed to be performed.

Requirement 5.2.14 (Option Specifications). Option specifications force alternate
paths around structured activities within the variant. Declarative variability frameworks
must be able to express the following declarative specifications over options in the BP:

(i) Option: The structured activity may not be included in all execution paths of the
variant.

(i) Avoidance: The structured activity may not be included in all execution paths of the
variant when an other structured activity is included.

Option specifications force alternate execution paths around structured activities.
For example, Requirement 5.2.14.i forces that a structured activity is not always
executed. That is, the execution of the structured activity is optional.

Requirement 5.2.15 (Scheduling Specifications). Scheduling specifications force a
temporal relation among the execution of structured activities within the process. Declar-
ative variability frameworks must be able to express the following declarative scheduling
specifications over elements of the BP:

(i) Response: The structured activity is eventually followed by an other structured
activity in every execution path.

(ii) Exists response: The structured activity is eventually followed by an other struc-
tured activity in some execution path.

(iii) Immediate response: The structured activity is immediately followed by an other
structured activity in every execution path.

Chapter 5. Verification Requirements

(iv) Exists immediate response: The structured activity is immediately followed by an
other structured activity in some execution path.

(v) No response: The structured activity is not followed by an other structured activity
in every execution path.

(vi) Exists no response: The structured activity is not followed by an other structured
activity in some execution path.

(vii) No immediate response: The structured activity is not immediately followed by an
other structured activity in every execution path.

(viii) Exists no immediate response: The structured activity is not immediately followed
by an other structured activity in some execution path.

(ix) Coexecution: The structured activity is eventually followed by an other structured
activity in every execution path, or vise versa.

(x) Cooccurrence: The structured activity is eventually followed by an other structured
activity in some execution path, or vise versa.

(xi) Parallel execution: The structured activities are executed in parallel.

(xii) Exclusive execution: The structured activities are never executed both in every
execution path.

Extended from (Dwyer et al., 1999; Pesic and van der Aalst, 2006) and (Elgammal
et al., 2010a, 2014), scheduling specifications enforce a specific orderi