

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

BProVe: Tool support for business process verification

Corradini, Flavio; Fornari, Fabrizio; Polini, Andrea; Re, Barbara; Tiezzi, Francesco; Vandin, Andrea

Published in:
Proceedings of the 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)

Link to article, DOI:
10.1109/ASE.2017.8115708

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., & Vandin, A. (2017). BProVe: Tool support for business
process verification. In Proceedings of the 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE) (pp. 937-942). IEEE. DOI: 10.1109/ASE.2017.8115708

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/141514007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ASE.2017.8115708
http://orbit.dtu.dk/en/publications/bprove-tool-support-for-business-process-verification(544224e1-b3a8-4de3-92e8-a43d46a7a56f).html

BProVe:
Tool Support for Business Process Verification

Flavio Corradini, Fabrizio Fornari, Andrea Polini, Barbara Re, Francesco Tiezzi
University of Camerino, Italy

Email: {name.surname}@unicam.it

Andrea Vandin
DTU Compute, Denmark

Email: anvan@dtu.dk

Abstract—This demo introduces BProVe, a tool supporting
automated verification of Business Process models. BProVe anal-
ysis is based on a formal operational semantics defined for
the BPMN 2.0 modelling language, and is provided as a freely
accessible service that uses open standard formats as input
data. Furthermore a plug-in for the Eclipse platform has been
developed making available a tool chain supporting users in
modelling and visualising, in a friendly manner, the results of
the verification. Finally we have conducted a validation through
more than one thousand models, showing the effectiveness of our
verification tool in practice.
(Demo video: https://youtu.be/iF5OM7vKtDA)

Index Terms—Business Processes; BPMN; Structural Opera-
tional Semantics, MAUDE; Software Verification.

I. INTRODUCTION

One of the most important factors impacting on the effec-
tiveness of software engineering processes is a clear communi-
cation among domain and IT experts. Indeed, errors introduced
during the design phase lead to more complex and costly
problems in the subsequent phases of the development.

To improve communication effectiveness the notion of
Business Process, originally introduced in the business man-
agement and organisation field, is gaining an ever-growing
acceptance as modelling tool also in the software engineering
field. A Business Process model generally describes a set
of activities that an organisation should perform to fulfil a
specific business goal [1]. In addition, models of this kind
can be composed to form a so-called Collaboration model,
used to describe the coordination of different organisations
that cooperate to achieve shared goals. Currently, one of
the most accepted notations for defining such models is the
standard Business Process Modeling Notation (BPMN 2.0 –
http://www.bpmn.org) maintained by the Object Management
Group (OMG). Even more interestingly is probably the case
of process-aware information systems [2], where defined BP
models constitute the main input to set the functionality and
behavior of the deployed software system.

Aiming at achieving high quality BPMN models and giving
to domain experts and process designers an easy to use
modelling and analysis environment, we have developed a
novel tool for Business Process Verification (BProVe)1. It

1BProVe is a free software; it can be redistributed and/or modified under
the terms of the GPL2 License. BProVe source code, as well as instructions
and software for installing its tool chain, can be found at
http://pros.unicam.it/tools/bprove

allows to automatically verify relevant properties for Business
Process based software systems, like soundness and safeness.

Differently from similar tools, BProVe is based on a native
BPMN semantics [3] defined according to a Structural Op-
erational Semantics style [4], which makes it suitable for a
MAUDE implementation. This approach has the great benefit
of ensuring the faithfulness of the implemented semantics with
respect to its theoretical definition, as operational rules of [3]
are directly implemented as MAUDE rewriting rules.

A further distinctive characteristic of our tool is that it
does not make any assumption on the structure of analysed
business processes, thus supporting the verification of models
with an arbitrary topology. We are aware that this may be
not in line with recommendations to use structuredness in
modelling [5]. However, in the real-world modelling practice
most process designers do not always follow such a guideline,
as witnessed by a study we carried out on the BPM Academic
Initiative (http://bpmai.org/) repository resulting that more than
25% of models in the repository are not WS. On the other
hand the restrictions imposed by structuredness are some-
time considered too strict, instead by following an arbitrary
topology designers are free to model the process according to
the reality they feel [6]. In this way, the modelling activity
is less complex [7] and more expressive [8]. Therefore we
believe that considering models with an arbitrary topology
is somehow important for a verification tool, and can help
BProVe in having a real impact on the development of complex
information systems. Nevertheless, considering a wider class
of models allows BProVe to verify also structured processes.

BPMN 2.0 is a quite complex modelling notation including
around one hundred graphical elements, even though some
actually used in practice. BProVe permits to easily handle
a wide set of BPMN elements, in particular those that can
have non local effects, which are difficult to handle with tools
transforming BPMN models to Petri Nets. For instance, the
handling of termination end events, that permit to quickly
abort a running process, is usually not supported due to the
inherent complexity of managing non local propagation of
tokens in Petri Nets. Instead this feature is natively supported
by our semantics. Moreover, the main motivation to use Petri
Nets encodings is the availability of already developed tools
supporting verification [9]. However, such tools generally work
well for standard Petri Nets, but they do not support extensions
necessary to encode BPMN-specific features such as the

978-1-5386-2684-9/17/$31.00 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Tool Demonstrations

937

management of task state evolution (e.g., enabling, running
and complete). BProVe instead is based on an extensible
framework that is able to potentially support all the features of
BPMN, as the approach permits to apply language extensions
to cover new features without affecting the verification phase.

A further advantage of BProVe is its support for BPMN Col-
laborations. This enables the analysis of inter-organisational
correctness, which is still not supported by most of the avail-
able tools [10]. Results of checking safeness and soundness
over BPMN collaborations differ from results obtained through
encodings, which usually introduce a mapping at process level
and then compose the processes in a collaboration by means
of an inner transition, often imposing an a priori upper bound
on the number of pending messages [11].

Finally, due to its direct BPMN semantics, BProVe re-
conducts verification results to elements of the original model,
so that diagnostic information can be reported on the diagram
in a way that is understandable by process stakeholders. This is
especially useful when many parties with different background
need to quickly interact on the base of the models.

Overall, the mentioned aspects of BProVe have made possi-
ble the concrete verification of more than one thousand models
coming from a public available repository supported by the
BPM Academic Initiative.

The tool described in this paper relates to a verification
framework extensively described in [12]. In particular with
respect to [12] this paper provides additional details on the
implementation of the tool, as well as on the envisioned users,
and on how the tool could be introduced in a general modelling
methodology.

II. IMPLEMENTATION DETAILS

The architecture of the tool chain that we propose is synthe-
sised in the Component Diagram of Fig. 1 and it represents a
quite standard organisation of components to organise a verifi-
cation as a service framework. From the left side of the figure
to the right, we can see three main components: Modelling
Environment, BProVe WebService, and BProVe Framework.
The Modelling Environment component represents the tool
used to design BPMN models and to specify which properties
of the model the user wants to verify. This component, realised
as an Eclipse plug-in extending the Eclipse BPMN2 Modeler
(https://www.eclipse.org/bpmn2-modeler/), is connected to the
BProVe WebService and interacts with it via HTTP requests.
A BPMN model and a property to verify are automatically
sent to the Web service, which handles the requests by parsing
the BPMN model and the property into the syntax accepted
by the BProVe Framework. In addition it also formats the
verification results in an XML file that can be successively
loaded by the graphical user interface, which visualises the
violations of the properties in the model. Notably the use
of a RESTful interface allows the BProVe framework to be
integrated as a plug-in in different modelling environments. In
particular, the result of parsing the property is an LTL formula.
The BProVe Framework component is based on a running
instance of MAUDE [13] loaded with the MAUDE modules

Fig. 1. Component Diagram of the BProVe Tool Chain.

implementing the BPMN semantics and the LTL MAUDE
model checker [14].

III. WORKING SCENARIOS

In this section we provide an overview of the BProVe
potentialities, discussing its impact on the typical phases of
the lifecycle of a Business Process (BP) (see Fig. 2).

The starting point to exploit the BProVe functionalities is
a BP model resulting from the Design done by means of
a modelling environment. Business Analysts, who are busi-
ness domain experts responsible for defining organisational
BPs, together with Process Designers, who are responsible
for modelling BPs by communicating with business domain
experts and other stakeholders, collect domain requirements
to produce BP models suitable to represent as-is or to-be sce-
narios in organisations. This can be done following different
methodologies and using the Eclipse BPMN2 Modeller in the
case of our tool chain. As soon as each model reaches a stable
version, Analysis can be done to detect syntactic, structural
and behavioral problems. At this level, the BProVe framework
contributes underlining problems and providing feedbacks to
the Process Designer, who iteratively improves the models by
discussing with the Business Analysts.

In particular, the BProVe framework permits to analyse
correctness of models with respect to domain independent
properties such as soundness [15] and safeness [16].
Informally, soundness can be described as the combination
of three basic characteristics concerning the dynamic behavior
of a process model: (i) Option to Complete, requiring
that a process instance should always complete, once started;
(ii) Proper Completion, requiring that there exists no
running or enabled activity for this instance when the process
instance completes; (iii) No Dead Activities, requiring
that a process model does not contain any dead activity, i.e.,
for each activity there exists at least one producible trace
which contains the activity. Instead, safeness refers to the
occurrence of no more than one token at the same time
along the same sequence edge of a BP instance. Besides
these general properties of BP models, BProVe also allows
the analysis of application domain specific properties, defined
by Business Analysts and codified by the Process Designer.

Once the models satisfy all the needed properties, further
development activities, as well as BP Enactment and Execu-
tion, are enabled, and the models can be deployed in the under-
lying IT infrastructure. Successively the running process can

938

Fig. 2. BProVe Impacts on the Business Process Lifecycle.

C
us

to
m

er
Tr

av
el

 A
ge

nc
y

A
irl

in
e

Check Offer

Reject Offer

Book Travel
Is the offer
interesting?

Booking
Confirmed

Offer
Rejected

Pay Travel
Payment

Confirmation
Travel
Paid

Offer
Needed

Make Travel
Offer

Booking
Received

Offer Rejection
Received

Offer
Cancelled

Confirm
Booking

Order
Ticket

Payment
Received

Ticket
Ordered

Ticket
Order

Received

Handle
Payment

Confirm
Payment

 Was Payment
Made?

Payment
Confirmed

Payment
Refused

No

Yes

Yes

Offer Travel Rejection Payment Confirmitation

Order Confirm

No

Offer
Receive

Fig. 3. Airline Collaboration Example (source [17, p. 115]).

be monitored and improved, and further verification activities
can be performed in order to guarantee that modifications do
not affect previously or newly specified properties.

IV. BPROVE AT WORK ON AN AIRLINE SCENARIO

This section shows BProVe at work on a BPMN collab-
oration which combines the activities of a Travel Agency, a
Customer, and an Airline reservation system. The scenario is
borrowed from [17], and it is represented in Fig. 3.

The collaboration allows these participants to interact in
order to complete a commercial transaction related to the
booking of a travel. After the Travel Agency makes a travel
offer, it proposes such offer to the Customer, by sending an
offer message. The Customer evaluates the offer, and takes a
decision (represented in figure by a XOR gateway), according
to which one of the two exclusive paths outgoing the gateway
is activated. The upper path is activated in case of rejection: a
rejection message is sent to the travel agency, and then both
the Customer and the Travel Agency processes terminate. The
lower path instead is activated if the Customer accepts the
offer: the Customer books the travel by sending the travel
message to the Travel Agency, and waits for the confirmation
message. Once the travel is confirmed, the Customer pays the
travel and sends the payment message to the Travel Agency.
Finally, the Customer waits for the payment confirmation mes-
sage before terminating. This message exchange is supported
by the behaviors of the Travel Agency and the Airline. In
particular, the Travel Agency, after the offer is sent, waits for
the decision of the Customer. This is represented by means of
an event-based gateway. If the customer rejects the offer, the
Travel Agency cancels it as soon as the rejection message is

received. On the other hand, if the customer accepts the offer,
the Travel Agency receives the travel message and, hence,
confirms the booking by sending the confirmation message.
Then, as soon as the payment is received, before terminating
the Travel Agency activates the airline to order the flight
tickets, by sending the order message. The Airline handles the
payment and, according to this, activates one of two exclusive
paths by means of a XOR gateway. The upper path is activated
if the payment is confirmed; this leads to the sending of the
payment confirmation message to the Customer and, then,
to the termination of the collaboration. The lower path is
activated if the payment is not properly made; in this case the
airline immediately terminates thus refusing the ticket order.

The user, after having designed the BPMN model with
the Modelling Environment, requests the execution of the
verification step (see Fig. 4, left-hand side). The Modelling
Environment sends a request to the BProVe WebService asking
for a parsing of the BPMN model. The BProVe WebService
evaluates the model, verifying that it does not contain BPMN
elements that cannot be handled by the core framework. In
case of a negative answer, BProVe would inform the Modelling
Environment, and hence the user, on the ineligibility of the
model for parsing. In case of a positive answer, like for
the Airline Scenario, the model is parsed and sent back to
the Modelling Environment. The user is then requested to
specify a property he/she wants to verify over the model, by
just clicking on the button referring to the codified property.
The Modelling Environment sends a verification request to
the BProVe WebService, which transforms the property in
an LTL formula compatible with the MAUDE LTL Model
Checker [14], and it passes the property together with the
model to the BProVe Framework. This latter component starts
an instance of MAUDE loaded with the LTL MAUDE Model
Checker and the MAUDE modules containing the semantic
rules. Then, it verifies the property and sends the result back
to the BProVe WebService, which handles the result, properly
formatting it, and sends it to the Modelling Environment that
will display it to the user. When the property verification
result is negative, it means that the property is not satisfied
by that BPMN model and a counterexample is reported to
the user. This information is visualised directly within the
BPMN model (see the elements colored in magenta in the
screenshot in Fig. 4). This facilitates the interpretation of
the verification result to users, especially for those unfamiliar
with the underlying formal verification technique. Instead, if
the property verification result is positive, it means that the
property is satisfied and a message stating this is displayed.

TABLE I
SOUNDNESS AND SAFENESS CHECKING FOR THE AIRLINE SCENARIO.
Property LTL formula Result
Soundness (i): [](aPoolCanStart(poolName) ⇒ False
Option to Complete <>aPoolEnds(poolName))
Soundness (ii): [](aPoolEnds(poolName) ⇒ True
Proper Completion NoDandlingToken(poolName))
Soundness (iii): <> aTaskRunning(taskName) True
No Dead Activities
Safeness [] safeState(poolName) True

939

Fig. 4. BProVe User Interface - Counter Example Visualisation.

For the Airline scenario, the verification results shown in
Table I report that the collaboration is not sound, but it
is safe. In particular, Option to Complete is violated.
More in detail, considering Option to Complete we may
wonder if the collaboration involves processes that can start
and then also end; if this is not the case, probably there is
something wrong with the model. This property would hold
if we would only focus on the Airline and Travel Agency
processes, but it does not hold when we consider also the
Customer, who can be stack waiting for a message from the
Airline that will never arrive. We may also want to check if
the collaboration has no pending token once the process has
finished. To verify this, we can use Proper Completion.
As it is not difficult to observe this property is satisfied since
there is never the possibility that in a process there is more
than one token. Finally, also the No Dead Activities
property is satisfied, as all tasks are not dead, and for each of
them there exists at least one execution trace that includes it.

Considering application domain properties, it is possibile
to verify whether the completion of a specified task, say
Handle Payment, implies the completion of another task, such
as Confirm Payment. This property does not hold, since the
former task can actually be executed without the implication of
executing the latter task. The issues raised by the verification
activity can be now easily fixed, as shown in the model in
Fig. 5. In particular, in the new model, the Customer, after the
payment, waits for the payment management involving Travel
Agency and Airline. This is represented by means of an event-
based gateway. If the Airline rejects the offer, the Customer
marks the travel as not paid as soon as the reject message is
received. Otherwise the payment is confirmed to the Customer.
This new model successfully passes all verification checks.

V. EXPERIMENTAL EVALUATION

This section focuses on answering to a concrete research
question: Can the proposed tool chain efficiently and effec-
tively be used in practice? Our objective is mainly to assess
the characteristics of the tool with respect to properties related

C
us

to
m

er
Tr

av
el

 A
ge

nc
y

A
irl

in
e

Check Offer

Reject Offer

Book Travel
Is the offer
interesting?

Booking
Confirmed

Offer
Rejected

Pay Travel
Payment

Confirmation
Travel
Paid

Offer
Needed

Make Travel
Offer

Booking
Received

Offer Rejection
Received

Offer
Cancelled

Confirm
Booking

Order
Ticket

Payment
Received

Ticket
Ordered

Ticket
Order

Received

Handle
Payment

Confirm
Payment

 Was Payment
Made?

Payment
Confirmed

Payment
Refused

No

Yes

No

Yes

Offer Travel Rejection Payment Confirmitation

Order Confirm

Reject
PaymentNo

Payment
Rejection

Travel
Not Paid

Reject

Offer
Receive

Fig. 5. Airline Collaboration Example - Issues Resolved.

to performance, while usability characteristics are not targeted
here. More details on the evaluation can be found in [12]. To
carry on the evaluation, we run BProVe using a collection of
real-world BP models provided by the BPM Academic Initia-
tive. The set-up and the results of the performed experiments
are described below. The experiments can be replicated using
a VirtualBox virtual machine containing an installation of our
framework, available at http://pros.unicam.it/tools/bprove.

A. Experiment Set-Up

The BPM Academic Initiative repository consists of 16 032
BPMN models. However, we restricted to the latest revision of
the models with 100% connectedness (this measure refers to
the size of the largest connected sub-graph against the size of
the overall model). A model without this level of connected-
ness includes disconnected fragments, which typically means
that the model has not been finalised. Including such models in
our validation would have resulted in verification data difficult
to interpret. This gave us a dataset of 7 639 models with
reasonable quality assurances. From these models we selected
1 245 models including more than 5 BPMN elements. This
constraint is motivated since our focus is on collaboration,
and 5 is the minimum number to have two pools exchanging

940

a message. Considering our reference dataset, we perform
a preliminary transformation step from .json (the repository
format) to .bpmn (the format we manage), and then we
checked soundness and safeness.

The verification has been performed on the above mentioned
Virtual Machine located into a beta version of the GARR cloud
platform (https://cloud.garr.it/). The machine runs Ubuntu
16.04.2 LTS 64 bits and it has 4 VCPU, and 8 GB of RAM.

B. Experimental Results

Table II provides more insights on the complexity of the
considered models, and on the time necessary to parse them.
In particular, we classified the models in terms of the number
of BPMN elements they contain (column Class). Column AVG
Elements provides the average number of elements of models
in the class, while column Time provides the average time in
milliseconds necessary to parse each model in order to derive
the format needed by MAUDE. As it can be observed, the
parsing time slightly increases with model dimension.

TABLE II
COMPLEXITY OF THE CONSIDERED MODELS, AND PARSING TIME.

Class AVG Elements Models Time (ms)

05–10 7 487 244
11–20 15 366 277
21–30 24 120 326
31–40 34 42 388
41–70 50 11 925

Table III provides more information on the complexity of
the verification in terms of the time needed to check the
considered properties. In particular, for each class of models
the columns of the table report minimum, maximum, average,
and median time as well as standard deviation. Time values
are indicated as milliseconds needed to verify each property.
It is worth mentioning that the values observed for class 41–
70 are not fully significant given the small number of models
belonging to such a class. Overall the observed data shows
that properties can be verified in reasonable time and we were
able to assess the properties in less than 15 minutes.

As it can be expected, verification time increases with the
size of the considered model. There is also a high variability
justified by the rather high values assumed by the standard
deviations. This is mainly due to the fact that verification
activities are particularly affected by the presence of notation
elements leading to the interleaving of activities, such as
parallel or pool statements, that are not always included in
models. Nonetheless, the tool was able to provide an answer
in reasonable time also for the most complex models in the
repository. Finally, considering the median values, we discover
that the used repository includes, for a large fraction, very
simple models. The value of the median is indeed much
smaller (up to 20 times) than the average. This tells us that
most of the considered models are rather simple and that
few models present real issues for checking. Nevertheless
the conducted experiments confirmed the applicability of our
approach.

TABLE III
RUNNING TIMES (IN MS.)

(a) Option to Complete.
Class Min Max Avg Median Std Dev.
05–10 0 21 524 71 3 976
11–20 0 53 878 419 41 3 833
21–30 0 42 721 1 221 124 5 213
31–40 0 54 907 4 817 219 12 319
41–70 0 66 613 6 738 155 18 969

(b) Proper Completion.
Class Min Max Avg Median Std Dev.
05–10 0 25 496 218 19 1 620
11–20 0 63 741 1 666 150 6 083
21–30 0 41 461 3 661 786 7 913
31–40 0 77 605 9 068 742 18 089
41–70 0 240 035 22 578 588 68 775

(c) No Dead Activities.
Class Min Max Avg Median Std Dev.
05–10 0 5 802 61 2 295
11–20 0 523 742 5 473 225 39 921
21–30 0 477 232 13 647 1 554 52 296
31–40 0 877 553 59 765 1 860 159 123
41–70 0 303 632 29 555 606 86 744

(d) Safeness.
Class Min Max Avg Median Std Dev.
05–10 0 25 569 207 5 1 364
11–20 0 587 756 9 913 127 68 316
21–30 0 519 712 25 752 937 103 418
31–40 0 685 198 42 505 1 157 130 045
41–70 0 144 513 15 256 890 40 985

VI. RELATED WORKS

Considering commercial and open source solutions, BPMN
is currently supported by several tools. To get an idea of the
state of the art, we made an analysis considering the modelling
environment listed in the OMG website (www.bpmn.org) in
order to check if they support formal BP verification. We
observed that none of them support formal verification.

Successively we focused on tools mainly related to aca-
demic efforts. In particular: GrGen.NET (is.tm.tue.nl/staff/
rdijkman/bpmn.html), BPMN Transform (is.ieis.tue.nl/staff/
rdijkman/bpmn.html), BPMN to CSP (www.cs.ox.ac.uk/peter.
wong/bpmn/), BPMN Checker (recatnets.cnam.fr), Promi-
CAT (github.com/tobiashoppe/promnicat/), BPMN to YAWL
(is.tm.tue.nl/staff/rdijkman/bpmn.html), and BP4PA (bp4pa.
sourceforge.net). GrGen.NET implements BPMN 2.0 formal-
isation using graph rewriting rules [18]. It focuses on the
capabilities of GROOVE to automate orchestration and chore-
ography engines verification. The benefits of the solution are
illustrated by means of a simple scenario, which showcases
the approach. Dijkman et al. present a transformation from
BPMN 1.2 models to Petri Nets [16]. The Petri Nets resulting
from the mapping serve as input to a generic Petri Net-
based verification tool (e.g., ProM) for static analysis of the
model. The main contribution is the transformation rather than
verification, indeed the validation they ran only focused on
the transformation of 13 models, without providing any detail
on models correctness. Wong and Gibbons discuss a mapping
from BPMN 1.2 to CSP in Haskell and propose a verification
step using FDR [19]. Consistency and compatibility are the
checked properties. Also in this case benefits of the solution

941

are illustrated by means of simple scenarios such as our Airline
Reservation and Travel Agency. Kheldouna et al. implement a
BPMN 2.0 Checker [20]. Starting from BPMN they transform
the model in ECATNets by using ATLAS Transformation
Language and Acceleo transformation tool. The authors illus-
trated the approach through three examples and no extensive
validation is reported. PromniCAT supports analysis based on
a customised transformation from BPMN to Petri Net and
uses LoLA for property checking [21]. However, there is no
evidence of its use on real scenarios, neither in terms of
empirical investigation on the set of models it deals with. Huai
et al. propose a mapping from BPMN 1.2 to Petri Net followed
by an analysis step [22]. The mapping is supported by rules
implemented as XSLT code. The verification takes a PNML
file in input and implements reachability analysis. It has been
applied to a request for day off. Ye and Son implement
an open-source plug-in called BPMN2YAWL. It uses ILog
BPMN Modeller as a graphical editor to create BPMN models
and it implements a mapping to YAWL, in order to check
models via ProM [23]. Decker et al. also consider BPMN as
source language and YAWL as target language [24]. In this
case the tool has been tested to a limited number of models.
Finally, Corradini et al. supported BP verification transforming
BPMN 1.2 into CSP model [25]. The solution presents an
Eclipse based tool chain integrating the modelling environment
with the PAT model checker [26]. The solution has been tested
on simple BPs related to the Public Administration.

Summing up, the literature discusses several approaches for
BP verification, but only some of them introduce a complete
tool chain for BPMN 2.0. Most of them are prototypes coming
from research projects resulting as rudimentary systems used
just for demonstration purpose. Some of them are not main-
tained at all, becoming practically obsolete due to development
of new and incompatible versions of modelling environments
and programming languages. From the validation point of view
all reviewed solutions use just few simple examples. Thus,
none of them introduces an extensive validation.

VII. CONCLUDING REMARKS

In this paper, we have presented an easy-to-use tool chain
for the verification of business processes modelled in BPMN,
which we validated against more than one thousand models
publicly available. The results of the validation are reported
and discussed in detail. Validation proves practical benefits and
effectiveness of the approach. In the future, we plan to extend
our framework to other BPMN relevant characteristics, such
as data management, time constraints and resource allocation,
so to enable also a quantitative analysis for BPMN models.

REFERENCES

[1] A. Lindsay, D. Downs, and K. Lunn, “Business processes attempts to
find a definition,” Information and Software Technology, vol. 45, no. 15,
pp. 1015–1019, 2003.

[2] J. Li, R. Jeffery, K. H. Fung, L. Zhu, Q. Wang, H. Zhang, and X. Xu,
“A Business Process-Driven Approach for Requirements Dependency
Analysis,” in Business Process Management, ser. LNCS. Springer,
2012, vol. 7481, pp. 200–215.

[3] F. Corradini, A. Polini, B. Re, and F. Tiezzi, “An operational semantics
of BPMN collaboration,” in Formal Aspects of Component Software, ser.
LNCS, vol. 9539. Springer, 2015, pp. 161–180.

[4] G. D. Plotkin, “A structural approach to operational semantics,” J. Log.
Algebr. Program., vol. 60, no. 61, pp. 17–139, 2004.

[5] R. Laue and J. Mendling, “The Impact of Structuredness on Error
Probability of Process Models,” in Information Systems and e-Business
Technologies, ser. LNBIP. Springer, 2008, vol. 5, pp. 585–590.

[6] A. Polyvyanyy and C. Bussler, “The structured phase of concurrency,” in
Seminal Contributions to Information Systems Engineering. Springer,
2013, pp. 257–263.

[7] B. Kiepuszewski, A. H. M. ter Hofstede, and C. J. Bussler, “On
structured workflow modelling,” in Advanced Information Systems En-
gineering, ser. LNCS, vol. 1789. Springer, 2000, pp. 431–445.

[8] A. Polyvyanyy, L. Garcia-Banuelos, D. Fahland, and M. Weske, “Max-
imal Structuring of Acyclic Process Models,” The Computer Journal,
vol. 57, no. 1, pp. 12–35, 2014.

[9] S. Morimoto, “A Survey of Formal Verification for Business Process
Modeling,” in Computational Science, ser. LNCS. Springer, 2008, vol.
5102, pp. 514–522.

[10] R. Breu, S. Dustdar, J. Eder, C. Huemer, G. Kappel, J. Kopke, P. Langer,
J. Mangler, J. Mendling, G. Neumann, S. Rinderle-Ma, S. Schulte,
S. Sobernig, and B. Weber, “Towards Living Inter-organizational Pro-
cesses,” in Business Informatics. IEEE, 2013, pp. 363–366.

[11] W. M. van der Aalst, “Structural characterizations of sound workflow
nets,” Computing Science Reports, vol. 96, no. 23, pp. 18–22, 1996.

[12] F. Corradini, F. Fornari, A. Polini, B. Re, F. Tiezzi, and A. Vandin,
“BProVe: a Formal Verification Framework for Business Process Mod-
els,” in 32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2017.

[13] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. Talcott, All about maude-a high-performance logical framework:
how to spec., program and verify syst. in rewriting logic. Springer, 2007.

[14] S. Eker, J. Meseguer, and A. Sridharanarayanan, “The Maude LTL model
checker,” ENTCS, vol. 71, pp. 162–187, 2004.

[15] M. T. Wynn, H. M. W. Verbeek, W. M. van der Aalst, A. H. ter Hofstede,
and D. Edmond, “Business process verification-finally a reality!” BPM
Journal, vol. 15, no. 1, pp. 74–92, 2009.

[16] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis
of business process models in BPMN,” Information and Software
Technology, vol. 50, no. 12, pp. 1281–1294, 2008.

[17] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers, Fundamentals
of business process management. Springer, 2013.

[18] P. M. Kwantes, P. Van Gorp, J. Kleijn, and A. Rensink, “Towards
Compliance Verification Between Global and Local Process Models,”
in Graph Transformation, 2015, vol. LNCS 9151, pp. 221–236.

[19] P. Y. H. Wong and J. Gibbons, “A Process Semantics for BPMN,” in
Formal Methods and Software Engineering, ser. LNCS. Springer, 2008,
vol. 5256, pp. 355–374.

[20] A. Kheldoun, K. Barkaoui, and M. Ioualalen, “Formal verification of
complex business processes based on high-level Petri nets,” Information
Sciences, vol. 385-386, pp. 39–54, 2017.

[21] R.-H. Eid-Sabbagh, M. Hewelt, and M. Weske, “A Tool for Business
Process Architecture Analysis,” in Service-Oriented Computing, ser.
LNCS. Springer, 2013, vol. 8274, pp. 688–691.

[22] W. Huai, X. Liu, and H. Sun, “Towards Trustworthy Composite Service
Through Business Process Model Verification,” in Ubiquitous Intelli-
gence & Computing and Autonomic & Trusted Computing. IEEE,
2010, pp. 422–427.

[23] J. Ye and W. Song, “Transformation of BPMN Diagrams to YAWL
Nets,” Journal of Software, vol. 5, no. 4, 2010.

[24] G. Decker, R. Dijkman, M. Dumas, and L. Garcı́a-Bañuelos, “Trans-
forming BPMN diagrams into YAWL nets,” in Business Process Man-
agement, ser. LNCS. Springer, 2008, vol. 5240, pp. 386–389.

[25] F. Corradini, A. Polini, A. Polzonetti, and B. Re, “Business Processes
Verification for e-Government Service Delivery,” Information Systems
Management, vol. 27, no. 4, pp. 293–308, Oct. 2010.

[26] F. Corradini, A. Polzonetti, B. Re, and D. Falcioni, “An eclipse plug-in
for formal verification of BPMN processes,” in Communication Theory,
Reliability, and Quality of Service. IEEE, 2010, pp. 144–149.

942

