
Deterministic Petri Net languages as Business

Process Specification Language

Manu De Backer, Monique Snoeck

K.U.Leuven, Dept. of Applied Economic Sciences,

Naamsestraat 69, B-3000 Leuven, Belgium

{Manu.Debacker; Monique.Snoeck}@econ.kuleuven.be

Abstract

Today, a wide variety of techniques have been proposed to model the process

aspects of business processes. The problem, however, is that many of these are

focused on providing a clear graphical representation of the models and give almost

no support for complex verification procedures. Alternatively, the use of Petri Nets

as a business process modeling language has been repeatedly proposed. In complex

business processes the use of Petri Nets has been criticized and the technique is

believed to be unable to capture such processes in all aspects. Therefore, in

this paper, we introduce the application of Petri Net language theory for business

process specification. Petri Net languages are an extension to the Petri Net theory,

and they provide a set of techniques to describe complex business processes more

efficiently. More specifically, we advocate the application of deterministic Petri Net

languages to model the control flow aspects of business processes. The balance

between modeling power and analysis possibilities makes deterministic Petri Nets

a highly efficient technique, used in a wide range of domains. The proof of their

usability, as business process specification language, is given by providing suitable

solutions to model the basic and more complex business process patterns [4].

Additionally, some points of particular interest are concisely discussed.

Keywords: Petri Net theory; Business Process Modeling; Verification

1

1 Introduction

Business Process Management does not only refer to the myriad of tasks and tools that

are necessary to model, design, analyse and maintain business processes, but also to

the tools that are indispensable to implement business processes in such way that they

can be managed from a business perspective. Modeling business processes, essentially,

comprises the creation of multiple models to capture all the aspects of business processes

entirely. Most frequently described aspects are amongst others the control flow perspec-

tive, the data aspects and resource allocation. Traditionally, the focus of researchers

and industry is mainly on the control flow aspects of business processes. For this, many

different techniques and standards have been proposed, ranging from more formal tech-

niques such as finite state machines and Petri Nets, to less formal ones such as BPMN

and BPEL. However, many of these less formal techniques suffer from severe problems if

they are evaluated on topics concerning verification. The formal techniques provide bet-

ter verification methods, but often, these models are too complex to be comprehensible

by the human experts that have to validate them.

Deterministic Petri Net languages could offer a technique with perfect verification

capabilities and comprehensible models. Therefore, the purpose of this report is to

examine how deterministic Petri Net languages can graphically and formally represent

the main process patterns. For this we use the process patterns defined in [4]. For each

pattern, we will show how deterministic Petri Net languages can implement the pattern

at hand. Additionally, we will discuss for each pattern the limitations of our approach

and give directions to implement the pattern properly.

The rest of the paper is structured as follows. First, we discuss some basic Petri

Net theory. In the next section, we use this basic Petri Net theory to discuss the Petri

Net language theory. In section 4, we respectively discuss the basic patterns, advanced

branching constructs, structural patterns, and patterns involving multiple instances.

Finally, in section 5 we conclude this paper and present some topics for further research.

2

2 Petri Net Theory

An ordinary Petri Net structure is a triple, N = {P, T,A}, where:

P = {p1, p2, ..., pn} a finite set of places,

T = {t1, t2, ..., tm} a finite set of transitions, (1)

A ⊆ (P × T) ∪ (T × P) is the flow relation,

(P ∩ T = ∅) : P and T are disjoint sets.

Graphically, places are represented by circles and transitions are represented by boxes.

The flow relation (A) is shown by the directed arcs between places and transitions, as

illustrated in Figure 1.

a b

c

p1 p2t1 t2

t3 p3

Figure 1: Example of a Petri Net

The preset and postset of a transition t ∈ T , called respectively input places and

output places, are defined as •t = {p|(p, t) ∈ A} and t• = {p|(t, p) ∈ A}. A marking of a

Petri Net N = (P, T,A) is a function from the set of places to the nonnegative integers

N, µ : P → N. A partial marking is a function from the set of places to N
+ = N ∪ ω

thus µ : P → N
+ with ω + c = ω − c, c ≤ ω and ω ≤ ω. A transition t ∈ T is enabled

in a marking µ if

∀pi ∈
•t : µ(pi) ≥ |(pi, t)|, i = 1...n. (2)

where |(pi, t)| denotes the number of occurrences of (pi, t) in A.

The firing of a transition tj in a marking µ leads to a marking µ′;

µ′(pi) = µ(pi) − |(pi, tj)| + |(tj, pi)|, i = 1...n. (3)

3

This rule (3) is generally known as the firing rule. We write µ[tj〉 to denote that tj may

fire in µ, and µ[tj〉µ
′ to indicate that the firing of tj in µ leads to µ′. In the same way,

we write µ[tj〉 to denote that tj cannot fire in µ. Furthermore, the firing of a sequence

of transitions (ρ) is defined as ρ = t1, t2, ..., tk such that µ0[t1〉µ1[t2〉µ2 · · · [tk〉µk which

is abbreviated as µ0[ρ〉µk. A marking µ is reachable if there exists a firing sequence ρ

such that µ0[ρ〉µ. The reachability set R(N,µ) of a Petri Net N with marking µ is the

set of reachable markings from µ.

3 Petri Net Languages

In 1976, Hack [1] published a report on Petri Net languages where he stated that in

many applications of Petri Nets it is the set of firing sequences generated by the net

that is of prime importance. At this time it was proposed to treat Petri Nets like an

automaton whose states are the markings of the Petri Net, and whose state-transition

function expresses how and when transitions of the Petri Net can fire. This report was

the start of an extensive research effort in Petri Net languages, which resulted in the

definition of a wide range of Petri Net language families each having their own properties.

This section introduces the basic concepts of Petri Net languages, for a more elaborate

discussion the reader is referred to [3, 1, 2].

Basically, a Petri Net language is generated by a labeled Petri Net PN = (N, τ, µ0, F)

with [3, 1, 2]:

N = (P, T,A) is a Petri Net,

τ : T → Σ a labeling of T in the alphabet Σ, (4)

µ0 is the initial marking,

F is a set of final markings.

The labeling function τ assigns to each transition a label from the alphabet Σ. A finite

set of symbols is called a word or a string (w). A language (L) is a set of strings from Σ.

Σ∗ is the Kleene star operation on the alphabet Σ, which is the concatenation of none,

one, two or any countable number of symbols of the alphabet Σ.

4

The initial marking (µ0), the labeling function (τ) and the definition of the set of

final markings (F) play a crucial role in the generation of Petri Net languages. When

any of these are changed the generated language will change accordingly. Consequently,

a single ordinary Petri Net can generate a whole range of languages just by changing

the begin marking, labeling function or the final marking set.

The definition of the initial marking can take different forms: a single marking, a

single marking with only one token in a start place, a set of initial markings, etc. Note

that these three definitions are in fact equivalent.

Generally, four alternative labeling functions are considered in the literature [1, 3, 5].

First of all, a free-labeled Petri Net is a Petri Net where all transitions are labeled

distinctly, i.e if τ(ti) = τ(tj), then ti = tj. Secondly, the class of λ-free Petri Net

languages allow a non-distinct labeling of the transitions but no empty transitions are

allowed, i.e. ∀ti ∈ T : τ(ti) 6= λ. Furthermore, an even more relaxed constraint on

the labeling function allows empty (λ) labeled transitions, meaning that the labeling

function τ is partial (∃ti ∈ T : τ(ti) = λ). In [5], Vidal-Naquet showed that there is a

fourth labeling function which was overseen by Hack and Peterson. The deterministic

labeling function has the additional property that at each marking and for each label,

at most one transition with this label is firable, i.e. ∀µi ∈ R(N,µ0) and ∀t, t′ ∈ T :

(τ(t) = τ(t′) and µi[t〉 and µi[t
′〉) ⇒ t = t′. According to these different definitions

of the labeling function four different types of languages can be defined, respectively

referred to as Lf , L, Lλ and Ldet.

A third manner to alter the generation of a Petri Net language is by changing the

definition of the set of final markings (F). Generally, four variations of the set of final

markings are considered.

Given a labeled Petri Net PN = (N, τ, µ0, F), the L-type Petri Net language is:

L(PN) = {τ(ρ) ∈ Σ∗|ρ ∈ T ∗, µ0[ρ〉µ, µ ∈ F} (5)

the T-type Petri Net language is:

T (PN) = {τ(ρ) ∈ Σ∗|ρ ∈ T ∗, µ0[ρ〉µ,∀ti ∈ T : µ[ti〉} (6)

5

the P-type Petri Net language is:

P (PN) = {τ(ρ) ∈ Σ∗|ρ ∈ T ∗, µ0[ρ〉} (7)

the G-type Petri Net language which is also referred to as the weak language is:

G(PN) = {τ(ρ) ∈ Σ∗|ρ ∈ T ∗, µ0[ρ〉µ, µ ≥ µ′ for some µ′ ∈ F} (8)

If we consider the Petri Net of Figure 1 and a final marking set F = {(0, 1, 0)} we

can summarize the different generated languages as in Table 1.

Language Type Language

L-type L(PN) = {a}

T-type T (PN) = {cnab|n ≥ 0}

P-type P (PN) = {cn, cna, cnab|n ≥ 0}

G-type G(PN) = {cna|n ≥ 0}

Table 1: Different languages generated by the Petri Net in Figure 1

4 Petri Net Languages as Business Process Specifi-

cation Language

In the previous sections, we have discussed Petri Net and Petri Net language theory.

In this section, the use of Petri Net languages for business process modeling is further

considered. Essentially, the control flow aspects of a business process define a set of

sequence constraints on a set of tasks that need to be executed in the process. Therefore,

we will define the alphabet of a labeled Petri Net as the set of activities of the process.

Next, the labeling function defines how the symbols in the alphabet are projected on

the transitions. In this way, the Petri Net structure defines a set of sequence constraints

on the tasks of the business process, i.e. the Petri Net generates a language over the

tasks of the process. Additionally, we require the labeling function to be deterministic.

6

Further, a Petri Net language requires the specification of a set of final markings and

a indication of how these final marking set is used e.g. L-type, G-type, T -type or P -

type. In our case, a business process is described as an L-type deterministic Petri Net

language.

4.1 Basic Control Patterns

4.1.1 Pattern 1: Sequence

A sequence pattern contains two or more ordered activities that are performed sequen-

tially, i.e. an activity starts after a previous activity has completed. This pattern is

easily implemented by means of the basic Petri Net constructs: for each activity a tran-

sition is created and the transitions are connected with each other by means of arrows

and places. The sequence flow direction is determined by the flow relation, e.g. the

arrows in Figure 2.

Additionally, to define a Petri Net language, we need to specify the labeling function,

the begin and the final marking. Obviously, the labeling function shall rename the

transitions with the names of the activities they represent. We define the begin and the

set of final markings for this Petri Net as follows: µ0 = (1, 0, 0) and F={(0,0,1)}. The

labeled Petri Net PN=(N,τ ,µ0,F) defines the language L(PN)={AB}, i.e. activity B is

only executed after the completion of activity A.

A B

Figure 2: The sequence pattern

Example: An order process, for example, usually contains the following behavior or

some variant thereof: first an order is created (create−order), then the order is processed

(process−order), fabricated (fabricate−order) and shipped (ship−order).

7

4.1.2 Pattern 2: Parallel Split

The parallel split pattern is defined as being a mechanism that allows activities to be

executed concurrently. The single thread of control is split into two or more threads,

which means that the activities can be executed at the same time or in any order. In

fact, the parallel split is used when there is no sequence constraint defines on a set

of activities. This pattern is also easily implemented by means of the basic Petri Net

constructs: a transition is connected to multiple (output)places, i.e. the firing of this

transition will enable multiple transitions at the same time, e.g. the firing of transition

C enables transitions A and B, see Figure 3.

Again, a Petri Net language is defined by specifying the labeling function and the

begin and final marking. There are no special requirements in the definition of the begin

marking µ0=(1,0,0,. . . ,0) and the set of final markings F={(0,0,0,. . . ,1)}. For the label-

ing function, however, we have to be careful and ensure that there are no duplicate labels

in each thread of control, as this would break the determinism requirement (cf. supra).

At first sight, this additional requirement seems very stringent, but in fact in business

process terms it is a plausible restriction. The possible simultaneous execution of the

same activity has no meaning. Moreover, whenever such a construction seems conve-

nient, it in fact turns out that, in business terms, the activities have a different connota-

tion. The language defined by the Petri Net in Figure 3 is L(PN)={CAB. . . ,CBA. . . }.

A

B

C

. . .

. . .

Figure 3: The parallel split pattern

Example: The alarm procedure in a highly toxic plant can be described as fol-

lows: if a problem occurs then activate the alarm (activate−alarm). Next, the police

(notify−police) as well as the fire-department (notify−fire) should be notified.

8

4.1.3 Pattern 3: Synchronization

The synchronization pattern is used to merge the different threads that are started by

a parallel split. This means that all the threads of the parallel split must be completed

before the process can continue. In Petri Net terminology the synchronization pattern is

implemented by connecting the places of each concurrent thread with one new transition.

This means that each parallel thread needs to finish (add a token in the place) before

the process can continue with the next activity, e.g. transitions A and B need to fire to

enable transition C, see Figure 4.

The Petri Net language that we need to define for this pattern has no special fea-

tures, and can be specified as follows: µ0=(1,. . . ,0,0,0) and the set of final markings

F={(0,. . . ,0,0,1)}. Thus, L(PN)={. . . ABC,. . . BAC}

A

B

C
. . .

. . .

Figure 4: The synchronization pattern

Example: The alarm procedure could continue as follows: after the notification

of police (notify−police) and fire department (notify−fire) shut down the electricity

(shutdown−electricity) and leave the building (leave−building).

4.1.4 Pattern 4: Exclusive Choice

This pattern defines a place in the process where exactly one of multiple exclusive

threads is executed. The exclusive choice pattern supports conditional behavior and is

also directly supported by basic Petri Net constructs. Connecting several transitions

with one place results in a situation where multiple transitions are enabled but the

firing of one will disable the others, e.g. if transition A is fired, transitions B and C are

disabled, see Figure 5.

The begin marking and set of final markings are defined as follows: µ0=(1,0,0,0,. . . ,0)

9

and F={(0,0,0,0,. . . ,1)}. Some special attention is needed for the labeling function as

the exclusive choice pattern defines a set of transitions that are enabled at the same time.

An additional restriction is specified: each activity in the exclusive choice pattern should

be unique, i.e. the labeling of each transition in the pattern should be unique. The case

where transitions with the same label are allowed breaks the determinism constraint.

This, again, is a plausible constraint in business process terms. The language defined

by the Petri Net is L(PN)={A. . . ,B. . . ,C. . . }.

A

B

C

. . .

. . .

. . .

Figure 5: The exclusive choice pattern

Example: If there is a fire then activate the fire-extinguishers (activate−fireExt).

If there is a leak in a highly toxic tank, then close the windows (close−windows).

4.1.5 Pattern 5: Simple Merge

The simple merge pattern is used to bring together the paths of an exclusive choice

pattern. This means that after the execution of one of the paths of the exclusive choice

exactly one and the same activity needs to execute. This pattern is accomplished by

connecting the last transitions of the different paths with the same place, the execution

of the A, B or C branch will always enable transition D, see Figure 6.

No additional constraints are required to define this pattern as a deterministic Petri

Net language, we just have to define the begin marking and the set of final markings as

follows: µ0=(1,. . . ,0,0,0,0,0) and F={(0,. . . ,0,0,0,0,1)}. There is no restriction on the

labeling function. L(PN)={. . . AD,. . . BD, . . . CD}.

Example: After the activation of the fire-extinguishers (activate−fireExt) or the

closing of the windows (close−windows) we notify the fire department (notify−fire).

10

A

B

C

D

. . .

. . .

. . .

Figure 6: The simple merge pattern

4.2 Advanced Branching and Synchronization Patterns

4.2.1 Pattern 6: Multiple Choice

Compared with the exclusive choice pattern, the multiple choice pattern allows multiple

paths to be executed. The complex nature of this pattern makes it impossible to define

it by means of a simple Petri Net construct. The most obvious way to implement

this pattern is by combining a parallel split pattern and the synchronization pattern.

However, the problem with this solution is that the synchronization pattern requires all

concurrent threads to finish before the process can continue. Therefore, we propose a

solution based on the notion of toggle transitions. A toggle transition is represented

by means of two transitions with the following labels and meaning. A first transition

represents the execution of the activity (e.g. A), while the other represents the non-

execution of the same activity (e.g. NOT A). These toggle transitions are implemented

through an exclusive choice pattern in combination with the simple merge pattern. To

complete the construction of the multiple choice pattern, the set of toggle transitions

are then combined by means of the parallel split pattern en synchronized through the

synchronization pattern.

Except for the additional requirement that is needed to implement the parallel split

pattern (cf. supra), there are no special requirements needed. We define the begin and

final marking as follows: µ0=(1,0,0,0,0,0) and F={(0,0,0,0,0,1)}. The generated lan-

guage is L(PN)={ABCD,ACBD,ABD,ACD,AD}.

11

A

B

NOT B

C

NOT C

D

Figure 7: The multiple choice pattern

Example: The alarm procedure in a highly toxic plant can be described as follows: if a

problem occurs then activate the alarm (activate−alarm). Next, depending on the sever-

ity of the problem the police (notify−police) and/or the fire-department (notify−fire)

should be notified.

4.2.2 Pattern 7: Synchronizing Merge

The synchronizing merge pattern takes care of the synchronization after the execution

of a multiple choice pattern. If more than one thread from the multiple choice pattern is

executed then this pattern will take care of the synchronization. If only one path of the

multiple choice pattern is executed then the alternative branches will converge without

synchronization. This pattern states that independent from the number of threads that

are executed from a multiple choice pattern the following activity is executed just once.

This pattern is easily implemented because of the way we have implemented the multiple

choice pattern, see Figure 8.

There are no additional requirements for implementing the pattern as a deterministic

Petri Net language. The begin marking and the set of final markings are specified as

follows: µ0=(1,0,0,0,0,0) and F={(0,0,0,0,0,1)}. This Petri Net will generate the lan-

guage L(PN)={ABCD,ACBD,ABD,ACD,AD}.

12

A

B

NOT B

C

NOT C

D

Figure 8: The synchronizing merge pattern

Example: The alarm procedure could continue as follows: after the notification of

police (notify−police) and/or fire department (notify−fire) shut down the electricity

(shutdown−electricity) and leave the building (leave−building).

4.2.3 Pattern 8: Multiple Merge

The multiple merge pattern, can also be used in combination with the multiple choice

pattern, but this pattern does not provide synchronization of the executed threads i.e.

if n threads are executed, possibly concurrently, the activity following the merge is

executed n times. Figure 9 depicts a possible implementation of the multiple merge

pattern, if activity B and C are executed then activity D will be executed twice.

No additional requirements are needed to implement this pattern as a deterministic

Petri Net language. We define the begin marking and the set of final markings as

follows: µ0=(1,0,0,0,0) and F={(0,0,0,0,1)}. The language generated by this Petri Net

is L(PN)={ABCDD,ABDCD,ACDBD,ACBDD,ABD,ACD}.

Example: A paper reviewing system sends the papers to three reviewers. De-

pending on the number of reactions the activity request−review is executed once or

multiple times. For instance, if two reviewers react then the system invokes the activity

request−review two times.

13

A

B

NOT B

C

NOT C

D

Figure 9: The multiple merge pattern

4.2.4 Pattern 9: Discriminator

The discriminator pattern is used to merge a set of concurrent threads, instead of waiting

for all activities to finish, the discriminator pattern allows the process to continue when

the first thread has finished. The finishing of the other threads is ignored. Such a

complex pattern is not easily implemented using Petri Nets. The pattern is used in

combination with the parallel split pattern which enables a set of concurrent execution

threads.

Petri Net languages offer an efficient solution for implementing the discriminator

pattern. The difficult part of the implementation is about preventing the subsequent

activity from firing multiple times. This kind of restriction can be imposed by defining

a proper set of final markings. More specifically, we explicitly specify that the final

marking must have two tokens in the place following the parallel split. This will re-

strain the Petri Net from firing the activity multiple times. The begin marking remains

the same, i.e. µ0=(1,0,0,0,0,0). The final marking however will be specified as follows:

F={(0,0,0,0,2,1)}. This means that the Petri Net language defined by this Petri Net is:

L(PN)={ABCDE,ABDCE,ABECD,ABCED,ABDEC,ABEDC,ACBDE,ACDBE,ACEBD,

ACBED,ACDEB,ACEDB,ADCBE,ADBCE,ADECB,ADCEB,ADBEC,ADEBC}

Example: If an order arrives at an online shop, the system will check the stock to

see if the order can be delivered. If the stock is insufficient, it will automatically contact

multiple wholesalers to replenish the stock. The wholesaler that responds first with an

14

A

B

C

D

E

Figure 10: The Discriminator pattern

acceptable price offer will get the deal. The answers of the others are ignored.

4.2.5 Pattern 9a: N-out-of-M-join

The N-out-of-M-join pattern describes a situation where the subsequent activity of a

parallel split pattern is executed once when n activities have finished. The execution of

the rest of the threads (m−n) is ignored. This pattern is implemented in the same way

as the discriminator pattern. By varying the set of final markings of a given Petri Net

the N-out-of-M-join pattern is easily implemented. The use of this technique enables us

to easily implement different variations of the pattern, e.g. the next activity is executed

once if 3-out-of-5 or 2-out-of-5 activities are executed. The following example shows a

situation where two of the three activities should be executed before the next activity

is enabled, see Figure 11.

The begin marking is specified as before: µ0=(1,0,0,0,0,0). The set of final markings

is altered as follows: F={(0,0,0,0,1,1)}. The Petri Net language defined by this labeled

Petri Net is: L(PN)={ABCDE,ABCED,ABDCE,ABDEC,ACBDE,ACBED,ACDBE,

ACDEB,ADBCE,ADCBE,ADBEC,ADCEB}.

Example: To replenish the stock, a company contacts three wholesalers. On receiving

two offers the company can compare the offers and take a decision. The third offer is

then ignored.

15

A

B

C

D

E

Figure 11: The N-out-of-M-join pattern

4.3 Structural Patterns

4.3.1 Pattern 10: Arbitrary Cycles

The arbitrary cycles pattern supports the structure where a set of activities can be

executed repeatedly. This pattern is easily implemented by means of the basic Petri

Net constructs. The pattern can be implemented with the exclusive choice pattern

where one or more of the branches loops back to re-execute a set of activities.

No special additions are required to define the pattern by means of a Petri Net

language. The begin marking is defined as µ0=(1,0,0,0) and the set of final mark-

ings can be specified as F={(0,0,0,1)}. The language generated by this Petri Net is

L(PN)=(ABC,ABDBC,ABDBDBC,ABDBDBDBC,. . .).

A B C

D

Figure 12: Arbitrary cycles

Example: Imagine a situation where an evaluation activity triggers one of the fol-

lowing activities: eval−failed and eval−passed. The failed activity will reactivate the

task produce−order.

16

4.3.2 Pattern 11: Implicit Termination

The implicit termination pattern means that a given process should be terminated if

at a given state in the process, no activity is enabled and no activity can get enabled

and at the same the process is not in deadlock. We believe that this pattern is not

so important as the other patterns as it does not describe a sequence constraint on a

set of activities. Therefore, we will not discuss this pattern in the paper. Note that

the absence of tokens in the Petri Net, i.e. no transitions are enabled, is the Petri Net

counterpart of the implicit termination pattern.

4.4 Patterns Involving Multiple Instances

The advantages of the Petri Net language approach will become clear in more complex

scenarios that we will discuss here. One of the disadvantages of using pure Petri Net

constructs for business process modeling, is their inability to model control flows where

multiple case instances are involved.

4.4.1 Pattern 12: Multiple Instances Without Synchronization

This pattern is best explained by means of an example:

Example: The process control flow describes the following behavior: for each cus-

tomer the ordering process is started by creating an order (cr−order) then for each

product the customer orders, an orderline (cr−orderline) is added to the order. These

orderlines can be changed (ch−orderline) during the process and other orderlines can

be added to the order. Once all the orderlines (end−orderline) are added to the order,

the system will be able to close the order and calculate the total amount of the order.

This process behavior is also called interleaving and is considered to be a very difficult

to model construction.

This process behavior is impossible to model by means of the basic Petri Net con-

structs. However, the use of Petri Net languages can yield important opportunities.

The following Petri Net describes a particular implementation of the interleaving con-

struct, see Figure 13. The definition of the begin and final marking of the Petri

Net is as follows: µ0=(1,0,0,0,0,0) and F={(0,0,0,ω,0,1)}. This final marking adds

17

supplementary sequence constraints on the activities, for instance the firing sequence

cr−order.cr−orderLine.cancel−order.archive is supported by the Petri Net but it is not

a word of the Petri Net language as the marking reached after this firing sequence is

(0,0,1,0,01) which is not an element of F.

cr−order cr−orderline

ch−orderline

end−orderline
end−order

cancel−order

archive

Figure 13: A process flow with multiple instances

4.4.2 Pattern 13: Multiple Instances With a Priori Design Time Knowledge

This pattern describes the behavior where for each process instance an activity is exe-

cuted multiple times. The number of executions is determined in advance. This pattern

can be implemented in two ways. The first option is to implement this pattern by means

of a parallel split pattern. Once all activities are completed they can be synchronized

using the standard synchronizing construct, see Figure 14. In this case, we have to re-

mind the additional constraint of applying the parallel split pattern, i.e. the concurrent

threads should define unique activities.

Example: The shipping of hazardous material requires three different authorizations.

These authorizations should be provided by several different instances: the government,

the environmental council and the transportation firm. Therefore, we can rename these

activities as: gov−auth, env−auth and trans−auth, which can be implemented efficiently

by means of the parallel split.

18

A

B

C

D

E

Figure 14: A process flow with multiple instances, version 1

In the case that a specific activity needs to be executed multiple times we can also

implement this pattern in the following way, see Figure 15.

Example: An insurance claim handling system will demand three experts to formu-

late a conclusion about the fraud rate of a certain claim. Since it is impossible to select

the three experts in advance, it is of no point to split up the activity.

A
B

C

Figure 15: A process flow with multiple instances, version 2

4.4.3 Pattern 14: Multiple Instances With a Priori Runtime Knowledge

This pattern is used when depending on certain case attributes an activity is executed

multiple times. Once all the instances of the activity are finished the following activity

is executed. The specification of this pattern requires the definition of a set of final

markings. F should be defined as follows: F={(0,0,ω,1)}. Moreover, the set of final

markings can be altered dynamically, i.e. if the number of times an activity needs to be

executed is known, we can redefine the final markings based on this new information.

The Petri Net language of Figure 16 defines a process where activity A can be executed

multiple times, but activity C is only allowed to execute if activity B is executed for

every instance of A. Finally, the execution of C disables activity A.

19

A B
C

Figure 16: A process flow with multiple instances

Example: A flight booking system executes the activity book−flight multiple times

if the trip involves multiple flights.

4.4.4 Pattern 15: Multiple Instances Without a Priori Runtime Knowledge

An example describes this pattern more precisely.

Example: A batch order requires multiple deliveries. At no time in the process it

is, however, clear how many deliveries are necessary. Therefore, the activity deliver is

executed multiple times, until all products are delivered. For example, an order of 200

cars, can only be executed in multiple deliveries.

A
OK

NOK

Figure 17: A process flow with multiple instances

5 Conclusions

In this paper, we have demonstrated that deterministic Petri Net languages are an ef-

ficient alternative for most business process specification languages. By means of a set

of generally approved patterns we showed that, in all cases, the approach generated the

patterns in a straightforward manner and, in most cases, Petri Net languages yielded

20

highly comprehensible models. However, sometimes, the approach required the specifi-

cation of an additional constraint on the labeling function, this, by no means influenced

the modeling power of the approach. In contrary, the Petri Net languages approach

allows to construct very complex behavior in a very efficient way.

Additionally, we believe that Petri Net language theory, compared to many other

business process modeling approaches, supports a myriad of efficient verification tech-

niques. Clearly, our approach benefits substantially from the many research efforts in

Petri Net theory. Of course, this approach also requires some new specific analysis tech-

niques but the development of new techniques is highly supported by the formal basis

of Petri Net theory. Therefore, an interesting topic for further research would be to

conceptualize and implement, on the one hand, a set of analysis techniques and, on the

other hand, investigate the use of these techniques on real-life business process models.

References

[1] M. Hack. Petri net languages. Technical report, Massachusetts Institute of Technol-

ogy, 1976.

[2] M. Jantzen. Language theory of petri nets. In Brauer, W., Reisig, W., and Rozen-

berg, G., editors, LNCS: Petri Nets: Central Models and Their Properties, Advances

in Petri Nets 1986, Part I, Proceedings of an Advanced Course, Bad Honnef, Sep-

tember 1986, volume 254, pages 397–412. Springer-Verlag, 1987.

[3] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.

[4] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.

Workflow patterns. QUT Technical report, FIT-TR-2002-02, 2002.

[5] G. Vidal-Naquet. Deterministic languages of petri nets. In Girault, C. and

Reisig, W., editors, Informatik-Fachberichte 52: Application and Theory of Petri

Nets. Strasbourg, Sep. 23-26, 1980, Bad Honnef, Sep. 28-30, 1981, pages 198–202.

Springer-Verlag, 1982.

21

