
Business process verification: a Petri Net approach
i

Manu De Backer and Monique Snoeck

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Economics and Applied Economics

KBI 0705

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6338942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Business Process Verification: a Petri Net Approach

Manu De Backer, Monique Snoeck

K.U.Leuven, Dept. of Applied Economic Sciences,

Naamsestraat 69, B-3000 Leuven, Belgium

{Manu.Debacker; Monique.Snoeck}@econ.kuleuven.be

Abstract

In this report, we discuss the use of Petri Net language theory for business

process modeling. Essentially, the focus is on the opportunities of the modeling

technique for analysis and verification. Semantic compatibility, as opposed to

syntactic compatibility, is concerned with the meaningfulness of the distributed

business process. We start with a description and motivation of different notions

of semantically compatible business processes. Further, these different types of

compatibility are formalized by means of Petri Net language theory. Finally, we

describe the foundations of an algorithm that enables us to verify the semantic

compatibility in an automated way.

Keywords: Petri Net theory; Business Process Modeling; Verification; Semantic Com-

patibility

1



1 Introduction

Offering value-added functionality to customers through the use of distributed business

processes is one thing, efficiency and correctness of such a business process is another.

When multiple business processes are grouped to create a distributed business process

and each of the constituting process in itself cooperates or interacts with other processes

this system becomes not only quickly unmanageable but also difficult to analyze and to

check its correctness. Therefore, this paper deals with some specific problems that can

occur when business processes are interconnected and the ways these problems can be

identified and solved.

Semantic compatibility, as opposed to syntactic compatibility, is concerned with the

meaningfulness of the distributed business process. Semantic compatibility is concerned

with compatibility issues other than implementation details. More specifically, we will

assess the potential for creating a successful interaction between two business processes.

Later, these results will be shown to be applicable in a broader distributed business pro-

cess view, i.e. where more than two business processes are integrated. More specifically,

we will focus on the following questions:

• Are two business processes semantically compatible?

• When are two business processes semantically compatible?

• If two business processes are semantically incompatible, is it possible to identify

the problem area?

• Is it possible to generate a list of the unsupported scenarios?

• How can we automatically verify semantic compatibility?

2 Petri Net Theory

In [1], we have illustrated, by means of a set of business process patterns, how Petri Net

language theory can be used for business process modeling. This section repeats the basic

definitions of Petri Net theory and introduces the concept of Petri Net language theory.

These definitions are used to define the different notions of semantic compatibility.

2



Definition 1 (Petri Net)

A Petri Net is a triple N = (P, T,A):

• P = {p1, p2, ..., pn} is a finite set of places, n ≥ 0,

• T = {t1, t2, ..., tm} is a finite set of transitions, m ≥ 0,

• A ⊆ (P × T ) ∪ (T × P ) is the flow relation,

• (P ∩ T = ∅): P and T are disjoint sets.

Definition 2 (Labeled Petri Net)

A labeled Petri Net PN = (N,τ ,µ0,F) where N = (P,T,A) is a Petri Net, τ :T → Σ a

labeling of T in the alphabet Σ. µ0 is the initial marking and F is a set of final markings.

Definition 3 (L-type)

A language L is a L-type Petri Net language iff there exists a labeled Petri Net PN =

(N,τ ,µ0,F) such that L(PN) = {τ(β) ∈ Σ∗|β ∈ T ∗ and µβ = δ(µ0, β) and µβ ∈ F}. µβ

is the marking reached after firing the sequence β starting from µ0.

3 Semantic Compatibility

Answering the previously introduced questions on semantic compatibility requires rea-

soning about the behavioral aspects of the business processes. We have shown (in [1])

that each business process generates a language (L) on the set of business events (the

alphabet Σ) in which it participates. More specifically, a language L defines a set of

acceptable scenarios of business events over the alphabet. Reasoning about the compat-

ibility of the business processes can then be seen as reasoning about the compatibility

of the Petri Net languages. Thus, the Petri Net language generated by the business

process can be used to discuss semantic compatibility. In our attempt to find a defini-

tion of the semantic compatibility of business processes, it is therefore tempting to say

that two business processes are semantically compatible if their Petri Net languages are

equivalent. Therefore, the first definition of semantic compatibility requires language

equivalence and can be formalized as follows:

3



Definition 4 (Complete Semantic Compatibility ∼=)

Let the behavior of two business processes, BP1 and BP2, be modeled by two labeled Petri

Nets PN1 and PN2 respectively. The business processes BP1 and BP2 are called complete

semantically compatible BP1
∼= BP2 iff: L(PN1)=L(PN2).

Basically, this definition of complete semantic compatibility is correct. Language equiv-

alence implies that the two Petri Nets (business processes) define the same sequence

constraints on a set of business events. In this case, the business processes support the

same scenarios, and they are therefore able to cooperate in a meaningful way. Clearly,

this definition suggests that language equivalence is a sufficient but not a required con-

dition for semantic compatibility. In order to verify complete semantic compatibility we

need to discuss the notion of language equivalence. It is interesting to note and clearly

illustrated in the next example that morphologic equivalence is not a necessary condi-

tion for language equivalence, i.e. two Petri Nets which are not morphologic equivalent

can still generate the same language.

Example:

create_O

ship

bill

...

create_O

ship

bill

BP2

BP1

...

...

...

(a) Morphologic and language equiva-
lence.

create_O

ship

bill

create_O

ship bill

BP1

bill ship

...

...

...

...

BP2

(b) Not morphologic equivalent but language equiva-
lent.

Figure 1: Difference between language and morphologic equivalence.

Although this definition is definitely usable in this context, we will show that there

are in fact two problems that require a weakening of the definition:

• Different alphabets immediately imply semantic incompatibility;

4



• Specific characteristics of the interaction require different notions of semantic com-

patibility.

In the next sections, we will introduce other notions of semantic compatibility to solve

these problems.

3.1 Strong Semantic Compatibility

The first identified problem deals with differences in the alphabet. The above defini-

tion of semantic compatibility (Definition 4) states that two Petri Nets can never be

semantically compatible if their alphabets (Σ) differ. Indeed, if two Petri Nets define

a language over a different alphabet, their languages can never be equivalent, thus not

compatible. We will show, however, that different alphabets do not automatically imply

semantic incompatibility. At least two scenarios can be discussed where Definition 4 is

too strict, see Figure 2.

...

...

create−create−

create−
create− order

order

order−A order−B

notify

notify

ship

ship

Customer Producer

(a) Internal Business Events

... ...

...create− create−create−
book−orderbook−order CD−order

notifynotify

shipship

Customer Producer

(b) Redundant Business Events

Figure 2: Reasons for strong semantic compatibility.

First of all, Figure 2(a), shows the existence of internal business events. These busi-

ness events are irrelevant for the cooperation of the two business processes and thus

5



redundant for the verification. In this case, if we use Definition 4, we conclude that

the two business processes are semantically incompatible. Secondly, Figure 2(b) shows

a situation where the Producer’s business process offers additional functionality which

is not necessary for the Customer’s business process. The Customer is only interested

in ordering books, but the Producer also offers the possibility to order CDs, DVDs,

etc. This does however not imply that the business processes are incompatible. Conse-

quently, this problem requires a weaker notion of semantic compatibility that takes into

account the differences of the alphabets.

Therefore, we define Strong Semantic Compatibility (SSC) as follows:

Definition 5 (Strong Semantic Compatibility ⊳⊲)

Let the behavior of two business processes, BP1 and BP2, be modeled by PN1 and PN2

respectively. The business processes BP1 and BP2 are called strong semantically com-

patible BP1 ⊳⊲ BP2 iff: L(PN1|Σc)=L(PN2|Σc). With Σc being the common alphabet of

the two processes: Σc = Σ1 ∩Σ2. L(PNα|Σc) is the language that the business process α

generates over the common alphabet Σc.

Example: If we consider the business processes, BPCus and BPPro as modeled in

Figure 2(a), we know that:

ΣCus = {create−order, notify, ship};

ΣPro = {create−order, create−order−A, create−order−B, notify, ship}.

Then, the common alphabet Σc = ΣCus ∩ ΣPro is :

Σc = {create−order, notify, ship}.

Consequently,

L(Cus|Σc) = {create−order.notify.ship};

L(Pro|Σc) = {create−order.notify.ship};

and,

L(Cus|Σc) = L(Pro|Σc).

Thus,

BPCus ⊳⊲BPPro.

6



3.2 one-way Strong Semantic Compatibility

The second problem we are addressing here stems from the fact that equality of lan-

guages is not absolutely required for a meaningful collaboration between partners. More

specifically, sometimes, it is sufficient to have one or a few scenarios supported to allow

collaboration.

Before we elaborate on this problems we would like to introduce the initiator-cooperator

relation (IC-relation). The idea behind this relationship, stems from the fact that dur-

ing the cooperation of two business processes each process fulfills a specific role in the

cooperation. A similar relation, but with other semantics, was used in the Business

Transaction Protocol [2], e.g. the Superior-Inferior relationship. The IC-relation as-

cribes to one of the partners the initiator role and to the other the cooperator role. The

initiator who starts the interaction of the processes and the cooperator who cooperates

in the process. More specifically, we could say that the initiator uses functionality of

another process which is called the cooperator. It is important to see that a single (local)

business process can play multiple roles in a distributed business process.

Definition 6 (initiator-cooperator relationship 99K)

(BP1,BP2) ∈99K⇒ BP1 is the initiator of the cooperation and BP2 is the cooperator in

the interaction.

(BP1,BP2) ∈99K and (BP2,BP1) ∈99K⇒ BP1 and BP2 are called peer processes.

A graphical representation of the initiator-cooperator relationship could be defined in

the following way: the initiator is placed above the cooperator and the two are con-

nected by a (dashed) arrow. Peer processes are placed next to each other and are

connected by a double sided (dashed) arrow. All the initiator-cooperator relations of a

distributed business process can be modeled in an initiator-cooperator graph, see Fig-

ure 3. The initiator-cooperator graph should be interpreted in the following way: in the

Customer-Producer cooperation, the Customer acts as initiator while the Producer is

the cooperator. A more business related interpretation is that the Producer process aids

the Customer process in reaching a specific goal. However, in the Producer-Supplier−A

relation, the Producer plays the role of initiator and the Supplier−A is the dependent.

7



Customer

Producer

Supplier_A Supplier_B

Figure 3: The initiator-cooperator graph of the Customer-Producer Example.

The consequences of this initiator-cooperator relationship on the definition of seman-

tic compatibility are fundamental. Another notion of semantic compatibility should be

introduced and defined. We will call two business processes one-way strong semanti-

cally compatible if the scenarios of the initiator process are entirely supported by the

process of the cooperator. If all scenarios of the initiator are supported then a meaning-

ful interaction between the two partners is possible. An example can demonstrate the

fundamental character of one-way strong semantic compatibility more efficiently.

Example: This example demonstrates the notion of one-way strong semantic compati-

bility by means the business process modeled in Figure 5. From the initiator-cooperator

graph, cf. Figure 3, we can conclude that the Producer acts as the initiator of the coop-

eration while Supplier−A is the cooperator of the process. In this example it is clear that

all scenarios of the Producer process are supported by Supplier−A’s process. Supplier−A

however, does support some additional scenarios. We will call two processes one-way

strong semantic compatible, if all the scenarios of the initiator process are supported by

the cooperator process but the cooperator process supports additional scenarios. Con-

sidering this problem we can define another notion of semantic compatibility as follows:

Definition 7 (one-way Strong Semantic Compatibility ⊲)

Let the behavior of two business processes, BP1 and BP2, be modeled by PN1 and PN2

respectively. Given that (BP1,BP2) ∈99K then the business processes BP1 and BP2 are

called one-way strong semantically compatible BP1 ⊲ BP2 iff: ∀α ∈ L(PN1) : α|Σc ∈

L(PN2|Σc). In Petri Net language theory one-way strong semantic compatibility can be

verified through: L(PN1|Σc) ⊂ L(PN2|Σc).

8



3.3 Weak Semantic Compatibility

Additionally, we would like to introduce the weakest notion of semantic compatibility,

e.g. weak semantic compatibility. Two business processes are weak semantically com-

patible if there is at least one common scenario. Weak semantic compatibility can be

defined as follows:

Definition 8 (Weak Semantic Compatibility ⊲⊳)

Let the behavior of two business processes, BP1 and BP2, be modeled by PN1 and PN2 re-

spectively. The business processes BP1 and BP2 are called weak semantically compatible

BP1 ⊲⊳ BP2 iff: ∃α ∈ L(PN1|Σc) : α ∈ L(PN2|Σc).

3.4 Summary of Semantic Compatibility

Name Symbol PN-language

Complete Semantic Compatibility (CSC) ∼= L(PN
1
) = L(PN

2
)

Strong Semantic Compatibility (SSC) ⊳⊲ L(PN
1
|Σc) = L(PN

2
|Σc)

one-way SSC (owSSC) ⊲ L(PN1|Σc) ⊂ L(PN2|Σc)

Weak Semantic Compatibility (WSC) ⊲⊳ L(PN1|Σc) ∩ L(PN
2
|Σc) 6= ∅

Table 1: Overview of the different semantic compatibility definitions.

Table 1 gives an overview of the different definitions of semantic compatibility that

are used in this dissertation. The third column shows how we can verify these semantic

compatibilities by means of Petri Net languages, which we will discuss in the following

sections. The definitions of semantic compatibility are logically related, i.e. complete

semantic compatibility automatically implies strong semantic compatibility etc. We can

identify the following relationships:

CSC =⇒ SSC =⇒ owSSC =⇒ WSC (1)

4 Semantic Compatibility in an Algorithm

In this section, we will show that semantic compatibility between two business processes

can be verified by means of Petri Net language theory. Checking semantic compatibility

9



is a complex process consisting of different important steps. In this section we try to

summarize on the results that have been presented in previous sections by discussing it

from a different angle.

The complete analysis process is depicted in Figure 4. The analysis process starts

with modeling the business processes as deterministic Petri Net languages. Next, the

processes are checked for alphabet differences. If the alphabets are equivalent the pro-

cesses are checked for complete semantic compatibility, otherwise language projection

is performed and the analysis continues by checking strong semantic compatibility. Ei-

ther way if the result is false for the complete or strong semantic compatibility the

complement of the process with the least complexity is computed and the IC-graph is

used to compute the one-way strong semantic compatibility. Finally, weak semantic

compatibility is checked. In some cases bisimilarity based reduction (BBR) can be an

interesting strategy to lower the complexity of the compared Petri Net languages. BBR

is a straightforward technique of reducing the complexity by comparing two Petri Net

languages and based on this comparison it is sometimes interesting (in case they are

equivalent) to remove some ending parts of the languages. Essentially, this means that

we remove equivalent parts of the Petri Nets (if there are any) to lower the future com-

putation times of the algorithms. For each of the steps, i.e. compatibility checks, an

analysis report is generated with a summary of the detected problems. Some of the

issues added in the report are the difference in the alphabet, the set of unsupported

scenarios, and the computation times of the algorithms.

The analysis technique is implemented in a prototype environment called the Business

Process Analyzer. In future work we will assess the techniques and the implementation

on realistically sized problems. Additionally, some optimizations, such as BBR, should

be implemented to further improve the performance of the tool.

In the next section we show how these different types of semantic compatibility can

be applied to a realistic example.

10



WSC
Check

Check

Check

Check
CSC

SSC

owSSC

Complement

Language
Projection

Petri Net

Business Process

Analysis

Analysis

Analysis

Analysis

Report

Report

Report

Report

(PNML)

Final
Markings

IC-graph

Compare
Alphabet

ok

ok

ok

ok

nok

nok

nok

nok

nok

nok/ok

Bisimilarity
Based

Reduction

Figure 4: The analysis process.

11



5 Case-Study

In this section, we use a realistic business process model to show the concept of semantic

compatibility. The proposed technique can be applied in one of the following cases: the

business process is initially modeled using the business events and Petri Net or the busi-

ness process is modeled using a business process modeling language (BPMN, BPEL).

Ideally, business process modeling starts with an abstract representation of the business

process and in the following phases details are added and finally, an implementation

ready version is achieved.

In this example we assume that the initial process was modeled by means of BPMN

(see Figure 5). This model cannot be used immediately for verification. Therefore, we

need to translate the model to the proposed technique by identifying the business events

and by transforming the control flow to Petri Net semantics. The approach to achieve

this is not discussed in detail, but the basic idea is that whenever communication be-

tween two process is modeled, the business event represents the communication without

explicitly modeling the message exchanges. Figure 6 shows the business event and Petri

Net based representation of the business process. Next, the initiator-cooperator graph

of this distributed business process is given in Figure 7.

12



Product

Invoice Invoice

ReceiveReceive

ReceiveReceive

Receive

Receive

Receive

Receive

Order

OrderOrder

Order A

Order A

Order A

Order A

Order A

Order A

Order A

Order A

Order B

Order B

Order B

Order B

Order B

Order B

NotificationNotification

Ship

Pay

Pay

Pay

PayPay

PayPay

Send

Send

Send

Send

Send

SendSend

Send

ProduceProduce
A B

Customer Producer Supplier−A Supplier−B

Figure 5: The Business Process Diagram.

13



create−create−

create−create−

create−
create− order

order order−A

order−A

order−B

order−B

notify

notify

ship

ship

ship−A

ship−A

ship−A

ship−B

ship−B

invoice

invoice

pay

pay pay−A

pay−A

pay−A pay−Bpay−B

produce−A produce−B

check−A check−B

NOK−A NOK−B

OK−A OK−B

Customer Producer Supplier−A Supplier−B

Figure 6: Business Event based business process modeling.

Customer

Producer

Supplier_A Supplier_B

Figure 7: The initiator-cooperator graph of the Customer-Producer Example.

14



In order to complete this business process specification we need to define each of the

Petri Net languages as follows:

• L(Customer) with µ0 = (1, 0, 0, 0, 0) and F=(0, 0, 0, 0, 0);

• L(Producer) with µ0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and

F=(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);

• L(Supplier−A) with µ0 = (1, 0, 0, 0, 0, 0, 0) and F=(0, 0, 0, 0, 0, 0, 0);

• L(Supplier−B) with µ0 = (1, 0, 0, 0, 0, 0) and F=(0, 0, 0, 0, 0, 0);

For each of the relations defined in the initiator-cooperator graph we need to verify

semantic compatibility. The verification process was discussed in Figure 4 (see pg. 11).

The process starts by checking the alphabets, in case of differences complete seman-

tic compatibility is not applicable. Next, language projection is performed to check

strong semantic compatibility. If the processes are not strong semantically compatible

the complement of the cooperator process is computed and one-way strong semantic

compatibility is checked. Finally, the processes can be weak semantically compatible. If

none of the previous types of semantic compatibility is correct, the processes are com-

pletely incompatible, i.e. there is not one scenario that is supported by the two business

processes.

Customer-Producer Clearly, the Customer and Producer business processes are by

no means complete semantically compatible (see Definition 4). From the analysis

process (discussed in Figure 4) we know that the next phase is language projection

in order to eliminate irrelevant activities.

ΣCus = {cr−order, notify, ship, invoice, pay};

ΣPro = {cr−order, cr−order−A, cr−order−B, notify, ship−A,

ship−B, pay−A, pay−B, ship, invoice, pay}.

Then, the common alphabet Σc = ΣCus ∩ ΣPro is :

Σc = {create−order, notify, ship, invoice, pay}.

Consequently,

L(Cus|Σc) = {cr−order.notify.ship.invoice.pay};

15



L(Pro|Σc) = {cr−order.notify.ship.invoice.pay};

and,

L(Cus|Σc) = L(Pro|Σc).

Thus,

BPCus ⊳⊲BPPro.

The customer and producer business process are strong semantically compatible,

and every scenario is supported by the two process.

Producer-Supplier−A For the Producer-Supplier−A we need to apply the same pro-

cedure. Of course, they are not complete semantically compatible. Next, language

projection is performed.

ΣPro = {cr−order, cr−order−A, cr−order−B, notify, ship−A,

ship−B, pay−A, pay−B, ship, invoice, pay}.

ΣSupA = {cr−order−A, produce−A, check−A,OK−A,NOK−A,

ship−A, pay−A}.

Then, the common alphabet Σc = ΣPro ∩ ΣSupA is :

Σc = {cr−order−A, ship−A, pay−A}.

Consequently,

L(Pro|Σc) = {cr−order−A.ship−A.pay−A};

L(SupA|Σc) = {cr−order−A.(ship−A.pay−A + pay−A.ship−A)};

and,

L(Pro|Σc) 6= L(SupA|Σc) but L(Pro|Σc) ⊂ L(SupA|Σc)

Thus,

BPPro ⊲ BPSupA.

The producer and the supplier−A process are one-way semantically compatible,

i.e. all the scenarios of the initiator process (Producer) are supported by the

16



cooperator (Supplier−A) process.

Producer-Supplier−B

ΣPro = {cr−order, cr−order−A, cr−order−B, notify, ship−A,

ship−B, pay−A, pay−B, ship, invoice, pay}.

ΣSupB = {cr−order−B, produce−B, check−B,OK−B,NOK−B,

ship−B, pay−B}.

Then, the common alphabet Σc = ΣPro ∩ ΣSupB is :

Σc = {cr−order−B, ship−B, pay−B}.

Consequently,

L(Pro|Σc) = {cr−order−B.ship−B.pay−B};

L(SupB|Σc) = {cr−order−B.pay−B.ship−B};

and,

L(Pro|Σc) 6= L(SupB|Σc) and L(Pro|Σc) ∩ L(SupB|Σc) = ∅

Thus,

BPPro is by no means compatible with BPSupB.

The producer business process is not compatible with the process of supplier−B,

i.e. this inconsistency needs to be solved before the implementation of the business

process.

17



6 Conclusion

In this report, the focus was on the compatibility of business processes, more specifi-

cally, we introduced the notion of semantically compatible business processes. Semantic

compatibility was described as a criterion to assess the meaningfulness of the interaction

of distributed business processes. Next, we have motivated that a single definition of

semantic compatibility is out of the question, and that there are multiple problems that

require other notions of semantic compatibility. Therefore, we defined, in this report,

four different notions of semantic compatible business processes, e.g. complete semantic

compatibility, strong semantic compatibility, one-way strong semantic compatibility and

weak semantic compatibility. Additionally, we have defined these notions by means of

Petri Net language theory. Further, we discussed the basis of a verification technique

which enables us to check semantic compatibility in an automated way.

References

[1] M. De Backer and M. Snoeck. Deterministic petri net languages as business process

specification language. Dtew research report 0577, K.U.Leuven, 2005.

[2] A. Ceponkus, S. Dalal, T. Fletcher, P. Furniss, A. Green, and B. Pope. Business

transaction protocol, v1.0. Technical report, OASIS, June 2002.

[3] P. Jančar. Undecidability of bisimilarity for petri nets and some related problems.

Theoretical Computer Science, 148(2):281–301, 1995.

18




