745 research outputs found

    Segmentation Methods for Synthetic Aperture Radar

    Get PDF

    Review on Region-Based Segmentation Using Watershed and Region Growing Techniques and their Applications in Different Fields

    Get PDF
    In digital image processing and computer vision, segmentation operation for an image refers to dividing an image into multiple image segments, and the significant purpose of segmentation operation is to depict an image in a way so that the analysis process of the objects of interest is easier and more accurate. The region-based segmentation scheme act for finding similarities between adjacent pixels to detect each region that constructs the image. Similarity scales have based on different features, in a grayscale image, the scale may be referred to as textures and other spatial appearances, and also the variance in intensity of a region and so on. Significantly, many applications in different fields involved region-based segmentation for instance remote sensing, medical application, and others for recognizing interesting objects in an image. In this paper, two techniques for segmentation operation in region-based which are region growing and watershed are reviewed

    Biomedical Image Segmentation Based on Multiple Image Features

    Get PDF

    Image Segmentation in a Remote Sensing Perspective

    Get PDF
    Image segmentation is generally defined as the process of partitioning an image into suitable groups of pixels such that each region is homogeneous but the union of two adjacent regions is not, according to a homogeneity criterion that is application specific. In most automatic image processing tasks, efficient image segmentation is one of the most critical steps and, in general, no unique solution can be provided for all possible applications. My thesis is mainly focused on Remote Sensing (RS) images, a domain in which a growing attention has been devoted to image segmentation in the last decades, as a fundamental step for various application such as land cover/land use classification and change detection. In particular, several different aspects have been addressed, which span from the design of novel low-level image segmentation techniques to the de?nition of new application scenarios leveraging Object-based Image Analysis (OBIA). More specifically, this summary will cover the three main activities carried out during my PhD: first, the development of two segmentation techniques for object layer extraction from multi/hyper-spectral and multi-resolution images is presented, based on respectively morphological image analysis and graph clustering. Finally, a new paradigm for the interactive segmentation of Synthetic Aperture Radar (SAR) multi-temporal series is introduced

    Single Tree Detection from Airborne Laser Scanning Data: A Stochastic Approach

    Get PDF
    Characterizing and monitoring forests are of great scientific and managerial interests, such as understanding the global carbon circle, biodiversity conservation and management of natural resources. As an alternative or compliment to traditional remote sensing techniques, airborne laser scanning (ALS) has been placed in a very advantageous position in forest studies, for its unique ability to directly measure the distribution of vegetation materials in the vertical direction, as well as the terrain beneath the forest canopy. Serving as basis for tree-wise forest biophysical parameter and species information retrieval, single tree detection is a very motivating research topic in forest inventory. The objective of the study is to develop a method from the perspective of computer vision to detect single trees automatically from ALS data. For this purpose, this study explored different aspects of the problem. It starts from an improved pipeline for canopy height model (CHM) generation, which alleviates the distortion of tree crown shapes presented on CHMs resulted from conventional procedures due to the shadow effects of ALS data and produces pit-free CHM. The single tree detection method consists of a hybrid framework which integrates low-level image processing techniques, i.e. local maxima filtering (LM) and marker-controlled watershed segmentation (MCWS), into a high-level probabilistic model. In the proposed approach, tree crowns in the forest plot are modelled as a configuration of circular objects. The configuration containing the best possible set of detected tree objects is estimated by a global optimization solver in a probabilistic framework. The model features an accelerated optimization process compared with classical stochastic models, e.g. marked point processes. The parameter estimation is another issue: the study investigated both a reference-based supervised and an Expectation-Maximization (EM) based unsupervised method to estimate the parameters in the model. The model was tested in a temperate mature coniferous forest in Ontario, Canada, as well as simulated coniferous forest plots with various degrees of crown overlap. The experimental results showed the effectiveness of our proposed method, which was capable of reducing the commission errors produced by local maxima filtering based methods, thus increasing the overall detection accuracy by approximately 10% on all of the datasets

    Image based real-time ice load prediction tool for ship and offshore platform in managed ice field

    Get PDF
    The increased activities in arctic water warrant modelling of ice properties and ice-structure interaction forces to ensure safe operations of ships and offshore platforms. Several established analytical and numerical ice force estimation models can be found in the literature. Recently, researchers have been working on Machine Learning (ML) based, data-driven force predictors trained on experimental data and field measurement. Application of both traditional and ML-based image processing for extracting information from ice floe images has also been reported in recent literature; because extraction of ice features from real-time videos and images can significantly improve ice force prediction. However, there exists room for improvement in those studies. For example, accurate extraction of ice floe information is still challenging because of their complex and varied shapes, colour similarities and reflection of light on them. Besides, real ice floes are often found in groups with overlapped and/or connected boundaries, making detecting even more challenging due to weaker edges in such situations. The development of an efficient coupled model, which will extract information from the ice floe images and train a force predictor based on the extracted dataset, is still an open problem. This research presents two Hybrid force prediction models. Instead of using analytical or numerical approaches, the Hybrid models directly extract floe characteristics from the images and later train ML-based force predictors using those extracted floe parameters. The first model extracted ice features from images using traditional image processing techniques and then used SVM and FFNN to develop two separate force predictors. The improved ice image processing technique used here can extract useful ice properties from a closely connected, unevenly illuminated floe field with various floe sizes and shapes. The second model extracted ice features from images using RCNN and then trained two separate force predictors using SVM and FFNN, similar to the first model. The dataset for training SVM and FFNN force predictors involved variables extracted from the image (floe number, density, sizes, etc.) and variables taken from the experimental analysis results (ship speed, floe thickness, force etc.). The performance of both Hybrid models in terms of image segmentation and force prediction, are analyzed and compared to establish their validity and applicability. Nevertheless, there exists room for further development of the proposed Hybrid models. For example, extend the current models to include more data and investigate other machine learning and deep learning-based network architectures to predict the ice force directly from the image as an input

    Mapping and Monitoring Forest Cover

    Get PDF
    This book is a compilation of six papers that provide some valuable information about mapping and monitoring forest cover using remotely sensed imagery. Examples include mapping large areas of forest, evaluating forest change over time, combining remotely sensed imagery with ground inventory information, and mapping forest characteristics from very high spatial resolution data. Together, these results demonstrate effective techniques for effectively learning more about our very important forest resources

    Remote Sensing in Mangroves

    Get PDF
    The book highlights recent advancements in the mapping and monitoring of mangrove forests using earth observation satellite data. New and historical satellite data and aerial photographs have been used to map the extent, change and bio-physical parameters, such as phenology and biomass. Research was conducted in different parts of the world. Knowledge and understanding gained from this book can be used for the sustainable management of mangrove forests of the worl
    • …
    corecore