3,009 research outputs found

    High-Integrity Performance Monitoring Units in Automotive Chips for Reliable Timing V&V

    Get PDF
    As software continues to control more system-critical functions in cars, its timing is becoming an integral element in functional safety. Timing validation and verification (V&V) assesses softwares end-to-end timing measurements against given budgets. The advent of multicore processors with massive resource sharing reduces the significance of end-to-end execution times for timing V&V and requires reasoning on (worst-case) access delays on contention-prone hardware resources. While Performance Monitoring Units (PMU) support this finer-grained reasoning, their design has never been a prime consideration in high-performance processors - where automotive-chips PMU implementations descend from - since PMU does not directly affect performance or reliability. To meet PMUs instrumental importance for timing V&V, we advocate for PMUs in automotive chips that explicitly track activities related to worst-case (rather than average) softwares behavior, are recognized as an ISO-26262 mandatory high-integrity hardware service, and are accompanied with detailed documentation that enables their effective use to derive reliable timing estimatesThis work has also been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Enrico Mezzet has been partially supported by the Spanish Ministry of Economy and Competitiveness under Juan de la Cierva-Incorporación postdoctoral fellowship number IJCI-2016- 27396.Peer ReviewedPostprint (author's final draft

    Contention-aware performance monitoring counter support for real-time MPSoCs

    Get PDF
    Tasks running in MPSoCs experience contention delays when accessing MPSoC’s shared resources, complicating task timing analysis and deriving execution time bounds. Understanding the Actual Contention Delay (ACD) each task suffers due to other corunning tasks, and the particular hardware shared resources in which contention occurs, is of prominent importance to increase confidence on derived execution time bounds of tasks. And, whenever those bounds are violated, ACD provides information on the reasons for overruns. Unfortunately, existing MPSoC designs considered in real-time domains offer limited hardware support to measure tasks’ ACD losing all these potential benefits. In this paper we propose the Contention Cycle Stack (CCS), a mechanism that extends performance monitoring counters to track specific events that allow estimating the ACD that each task suffers from every contending task on every hardware shared resource. We build the CCS using a set of specialized low-overhead Performance Monitoring Counters for the Cobham Gaisler GR740 (NGMP) MPSoC – used in the space domain – for which we show CCS’s benefits.The research leading to these results has received funding from the European Space Agency under contracts 4000109680, 4000110157 and NPI 4000102880, and the Ministry of Science and Technology of Spain under contract TIN-2015-65316-P. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Computing Safe Contention Bounds for Multicore Resources with Round-Robin and FIFO Arbitration

    Get PDF
    Numerous researchers have studied the contention that arises among tasks running in parallel on a multicore processor. Most of those studies seek to derive a tight and sound upper-bound for the worst-case delay with which a processor resource may serve an incoming request, when its access is arbitrated using time-predictable policies such as round-robin or FIFO. We call this value upper-bound delay ( ubd ). Deriving trustworthy ubd statically is possible when sufficient public information exists on the timing latency incurred on access to the resource of interest. Unfortunately however, that is rarely granted for commercial-of-the-shelf (COTS) processors. Therefore, the users resort to measurement observations on the target processor and thus compute a “measured” ubdm . However, using ubdm to compute worst-case execution time values for programs running on COTS multicore processors requires qualification on the soundness of the result. In this paper, we present a measurement-based methodology to derive a ubdm under round-robin (RoRo) and first-in-first-out (FIFO) arbitration, which accurately approximates ubd from above, without needing latency information from the hardware provider. Experimental results, obtained on multiple processor configurations, demonstrate the robustness of the proposed methodology.The research leading to this work has received funding from: the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644080(SAFURE); the European Space Agency under Contract 789.2013 and NPI Contract 40001102880; and COST Action IC1202, Timing Analysis On Code-Level (TACLe). This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. The authors would like to thanks Paul Caheny for his help with the proofreading of this document.Peer ReviewedPostprint (author's final draft

    On Designing Multicore-aware Simulators for Biological Systems

    Full text link
    The stochastic simulation of biological systems is an increasingly popular technique in bioinformatics. It often is an enlightening technique, which may however result in being computational expensive. We discuss the main opportunities to speed it up on multi-core platforms, which pose new challenges for parallelisation techniques. These opportunities are developed in two general families of solutions involving both the single simulation and a bulk of independent simulations (either replicas of derived from parameter sweep). Proposed solutions are tested on the parallelisation of the CWC simulator (Calculus of Wrapped Compartments) that is carried out according to proposed solutions by way of the FastFlow programming framework making possible fast development and efficient execution on multi-cores.Comment: 19 pages + cover pag

    Futility Analysis in the Cross-Validation of Machine Learning Models

    Full text link
    Many machine learning models have important structural tuning parameters that cannot be directly estimated from the data. The common tactic for setting these parameters is to use resampling methods, such as cross--validation or the bootstrap, to evaluate a candidate set of values and choose the best based on some pre--defined criterion. Unfortunately, this process can be time consuming. However, the model tuning process can be streamlined by adaptively resampling candidate values so that settings that are clearly sub-optimal can be discarded. The notion of futility analysis is introduced in this context. An example is shown that illustrates how adaptive resampling can be used to reduce training time. Simulation studies are used to understand how the potential speed--up is affected by parallel processing techniques.Comment: 22 pages, 5 figure

    Second-generation PLINK: rising to the challenge of larger and richer datasets

    Get PDF
    PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need for even faster and more scalable implementations of key functions. In addition, GWAS and population-genetic data now frequently contain probabilistic calls, phase information, and/or multiallelic variants, none of which can be represented by PLINK 1's primary data format. To address these issues, we are developing a second-generation codebase for PLINK. The first major release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O(sqrt(n))-time/constant-space Hardy-Weinberg equilibrium and Fisher's exact tests, and many other algorithmic improvements. In combination, these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too large to fit in RAM. This will be followed by PLINK 2.0, which will introduce (a) a new data format capable of efficiently representing probabilities, phase, and multiallelic variants, and (b) extensions of many functions to account for the new types of information. The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility. For the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.Comment: 2 figures, 1 additional fil

    To boldly go:an occam-π mission to engineer emergence

    Get PDF
    Future systems will be too complex to design and implement explicitly. Instead, we will have to learn to engineer complex behaviours indirectly: through the discovery and application of local rules of behaviour, applied to simple process components, from which desired behaviours predictably emerge through dynamic interactions between massive numbers of instances. This paper describes a process-oriented architecture for fine-grained concurrent systems that enables experiments with such indirect engineering. Examples are presented showing the differing complex behaviours that can arise from minor (non-linear) adjustments to low-level parameters, the difficulties in suppressing the emergence of unwanted (bad) behaviour, the unexpected relationships between apparently unrelated physical phenomena (shown up by their separate emergence from the same primordial process swamp) and the ability to explore and engineer completely new physics (such as force fields) by their emergence from low-level process interactions whose mechanisms can only be imagined, but not built, at the current time

    zfit: scalable pythonic fitting

    Full text link
    Statistical modeling is a key element in many scientific fields and especially in High-Energy Physics (HEP) analysis. The standard framework to perform this task in HEP is the C++ ROOT/RooFit toolkit; with Python bindings that are only loosely integrated into the scientific Python ecosystem. In this paper, zfit, a new alternative to RooFit written in pure Python, is presented. Most of all, zfit provides a well defined high-level API and workflow for advanced model building and fitting, together with an implementation on top of TensorFlow, allowing a transparent usage of CPUs and GPUs. It is designed to be extendable in a very simple fashion, allowing the usage of cutting-edge developments from the scientific Python ecosystem in a transparent way. The main features of zfit are introduced, and its extension to data analysis, especially in the context of HEP experiments, is discussed.Comment: 12 pages, 2 figure
    corecore