1,046 research outputs found

    Machine Learning Techniques for Screening and Diagnosis of Diabetes: a Survey

    Get PDF
    Diabetes has become one of the major causes of national disease and death in most countries. By 2015, diabetes had affected more than 415 million people worldwide. According to the International Diabetes Federation report, this figure is expected to rise to more than 642 million in 2040, so early screening and diagnosis of diabetes patients have great significance in detecting and treating diabetes on time. Diabetes is a multifactorial metabolic disease, its diagnostic criteria is difficult to cover all the ethology, damage degree, pathogenesis and other factors, so there is a situation for uncertainty and imprecision under various aspects of medical diagnosis process. With the development of Data mining, researchers find that machine learning is playing an increasingly important role in diabetes research. Machine learning techniques can find the risky factors of diabetes and reasonable threshold of physiological parameters to unearth hidden knowledge from a huge amount of diabetes-related data, which has a very important significance for diagnosis and treatment of diabetes. So this paper provides a survey of machine learning techniques that has been applied to diabetes data screening and diagnosis of the disease. In this paper, conventional machine learning techniques are described in early screening and diagnosis of diabetes, moreover deep learning techniques which have a significance of biomedical effect are also described

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    A novel gluten knowledge base of potential biomedical and health-related interactions extracted from the literature: using machine learning and graph analysis methodologies to reconstruct the bibliome

    Get PDF
    Background In return for their nutritional properties and broad availability, cereal crops have been associated with different alimentary disorders and symptoms, with the majority of the responsibility being attributed to gluten. Therefore, the research of gluten-related literature data continues to be produced at ever-growing rates, driven in part by the recent exploratory studies that link gluten to non-traditional diseases and the popularity of gluten-free diets, making it increasingly difficult to access and analyse practical and structured information. In this sense, the accelerated discovery of novel advances in diagnosis and treatment, as well as exploratory studies, produce a favourable scenario for disinformation and misinformation. Objectives Aligned with, the European Union strategy “Delivering on EU Food Safety and Nutrition in 2050″ which emphasizes the inextricable links between imbalanced diets, the increased exposure to unreliable sources of information and misleading information, and the increased dependency on reliable sources of information; this paper presents GlutKNOIS, a public and interactive literature-based database that reconstructs and represents the experimental biomedical knowledge extracted from the gluten-related literature. The developed platform includes different external database knowledge, bibliometrics statistics and social media discussion to propose a novel and enhanced way to search, visualise and analyse potential biomedical and health-related interactions in relation to the gluten domain. Methods For this purpose, the presented study applies a semi-supervised curation workflow that combines natural language processing techniques, machine learning algorithms, ontology-based normalization and integration approaches, named entity recognition methods, and graph knowledge reconstruction methodologies to process, classify, represent and analyse the experimental findings contained in the literature, which is also complemented by data from the social discussion. Results and conclusions In this sense, 5814 documents were manually annotated and 7424 were fully automatically processed to reconstruct the first online gluten-related knowledge database of evidenced health-related interactions that produce health or metabolic changes based on the literature. In addition, the automatic processing of the literature combined with the knowledge representation methodologies proposed has the potential to assist in the revision and analysis of years of gluten research. The reconstructed knowledge base is public and accessible at https://sing-group.org/glutknois/Fundação para a Ciência e a Tecnologia | Ref. UIDB/50006/2020Xunta de Galicia | Ref. ED481B-2019-032Xunta de Galicia | Ref. ED431G2019/06Xunta de Galicia | Ref. ED431C 2022/03Universidade de Vigo/CISU

    Disease diagnosis in smart healthcare: Innovation, technologies and applications

    Get PDF
    To promote sustainable development, the smart city implies a global vision that merges artificial intelligence, big data, decision making, information and communication technology (ICT), and the internet-of-things (IoT). The ageing issue is an aspect that researchers, companies and government should devote efforts in developing smart healthcare innovative technology and applications. In this paper, the topic of disease diagnosis in smart healthcare is reviewed. Typical emerging optimization algorithms and machine learning algorithms are summarized. Evolutionary optimization, stochastic optimization and combinatorial optimization are covered. Owning to the fact that there are plenty of applications in healthcare, four applications in the field of diseases diagnosis (which also list in the top 10 causes of global death in 2015), namely cardiovascular diseases, diabetes mellitus, Alzheimer’s disease and other forms of dementia, and tuberculosis, are considered. In addition, challenges in the deployment of disease diagnosis in healthcare have been discussed

    Benchmarking network propagation methods for disease gene identification

    Get PDF
    In-silico identification of potential target genes for disease is an essential aspect of drug target discovery. Recent studies suggest that successful targets can be found through by leveraging genetic, genomic and protein interaction information. Here, we systematically tested the ability of 12 varied algorithms, based on network propagation, to identify genes that have been targeted by any drug, on gene-disease data from 22 common non-cancerous diseases in OpenTargets. We considered two biological networks, six performance metrics and compared two types of input gene-disease association scores. The impact of the design factors in performance was quantified through additive explanatory models. Standard cross-validation led to over-optimistic performance estimates due to the presence of protein complexes. In order to obtain realistic estimates, we introduced two novel protein complex-aware cross-validation schemes. When seeding biological networks with known drug targets, machine learning and diffusion-based methods found around 2-4 true targets within the top 20 suggestions. Seeding the networks with genes associated to disease by genetics decreased performance below 1 true hit on average. The use of a larger network, although noisier, improved overall performance. We conclude that diffusion-based prioritisers and machine learning applied to diffusion-based features are suited for drug discovery in practice and improve over simpler neighbour-voting methods. We also demonstrate the large impact of choosing an adequate validation strategy and the definition of seed disease genesPeer ReviewedPostprint (published version

    Nutritional Systems Biology

    Get PDF

    Applied Computational Techniques on Schizophrenia Using Genetic Mutations

    Get PDF
    [Abstract] Schizophrenia is a complex disease, with both genetic and environmental influence. Machine learning techniques can be used to associate different genetic variations at different genes with a (schizophrenic or non-schizophrenic) phenotype. Several machine learning techniques were applied to schizophrenia data to obtain the results presented in this study. Considering these data, Quantitative Genotype – Disease Relationships (QDGRs) can be used for disease prediction. One of the best machine learning-based models obtained after this exhaustive comparative study was implemented online; this model is an artificial neural network (ANN). Thus, the tool offers the possibility to introduce Single Nucleotide Polymorphism (SNP) sequences in order to classify a patient with schizophrenia. Besides this comparative study, a method for variable selection, based on ANNs and evolutionary computation (EC), is also presented. This method uses half the number of variables as the original ANN and the variables obtained are among those found in other publications. In the future, QDGR models based on nucleic acid information could be expanded to other diseases.Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo; 209RT-0366Xunta de Galicia; 10SIN105004PRInstituto de Salud Carlos III; RD07/0067/0005Xunta de Galicia; Ref. 2009/5

    PGB: A PubMed Graph Benchmark for Heterogeneous Network Representation Learning

    Full text link
    There has been a rapid growth in biomedical literature, yet capturing the heterogeneity of the bibliographic information of these articles remains relatively understudied. Although graph mining research via heterogeneous graph neural networks has taken center stage, it remains unclear whether these approaches capture the heterogeneity of the PubMed database, a vast digital repository containing over 33 million articles. We introduce PubMed Graph Benchmark (PGB), a new benchmark dataset for evaluating heterogeneous graph embeddings for biomedical literature. PGB is one of the largest heterogeneous networks to date and consists of 30 million English articles. The benchmark contains rich metadata including abstract, authors, citations, MeSH terms, MeSH hierarchy, and some other information. The benchmark contains three different evaluation tasks encompassing systematic reviews, node classification, and node clustering. In PGB, we aggregate the metadata associated with the biomedical articles from PubMed into a unified source and make the benchmark publicly available for any future works
    • …
    corecore