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Abstract. Modern data analysis is confronted by increasing dimension-
ality of problems, mainly contributed by higher resolutions available for
data acquisition and by our use of larger models with more degrees
of freedom to investigate complex systems deeper. High dimensionality
constitutes one aspect of “big data”, which brings us not only computa-
tional but also statistical and perceptional challenges. Most data analysis
problems are solved using techniques of optimization, where large-scale
optimization requires faster algorithms and implementations. Computed
solutions must be evaluated for statistical quality, since otherwise false
discoveries can be made. Recent papers suggest to control and modify
algorithms themselves for better statistical properties. Finally, human
perception puts an inherent limit on our understanding to three dimen-
sional spaces, making it almost impossible to grasp complex phenom-
ena. For aid, we use dimensionality reduction or other techniques, but
these usually do not capture relations between interesting objects. Here
graph-based knowledge representation has lots of potential, for instance
to create perceivable and interactive representations and to perform new
types of analysis based on graph theory and network topology. In this
article, we show glimpses of new developments in these aspects.

1 Introduction

Thanks to modern sensing technology, we witness rapid increase in data dimen-
sions in numerous domains, for example high-resolution images, large-scale social
networks, high-throughput genetic profiles, just to name a few. In most cases,
the number of measured entities (features) grows in a much faster rate than
the number of observations: pictures taken with smart phones have few million
pixels, whereas we may have only few hundreds or thousands of photos.

Our main interest is such “high dimensional” data: to be more specific, a
data set is high dimensional when the number of features (p) is larger than
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the number of observations (n) by a few magnitude. A good example is gene
expression study data.

Fig. 1. Gene expression
measurement samples of
100 genes (rows) from
50 breast cancer subjects
(columns). GEO accession
no. GSE11121. (Color
figure online)

Figure 1 shows a part of breast cancer data
from the Gene Expression Omnibus1, which contains
expression values of p = 22k transcripts measured
by the Affymetrix GeneChip Human Genome U133A
microarrays. Typically, the number of observations is
much smaller in this type of data, due to the cost
involved to handle human subjects in a limited time.
In the figure, the color represents high (green/bright)
or low (red/dark) values of expression, and a primary
task using the color intensity values is to identify
genes that have different expression patterns in differ-
ent groups of subjects. Genes with differential expres-
sion are then further investigated by wet experiments
to identify their roles in biochemical pathways, their
relations to other genes, and so forth.

A surprising misconception about high dimen-
sionality is that data analysis would produce better
outcome with higher dimensional data, because of increased amount of available
information. In a way, this makes sense, for instance we can see objects more
clearly in high-resolution digital photographs. In data science, an increased num-
ber of input features may allow for building more accurate predictors. However,
realizing such predictors comes with extra cost in several aspects.

First, high dimensionality brings computational challenges to data analysis.
Obviously, extra memory space will be needed, but also efficient computation
algorithms will be required to obtain the best hypothesis for explaining data.
The task of finding such a hypothesis is typically described as an optimization
problem, where a parametrized function is fitted to data minimizing the mis-
match between predictions and observed responses of interest (e.g., categories of
objects, severity levels of a disease, etc.)

Secondly, an important task of identifying a (possibly small) subset of fea-
tures contributing to prediction becomes statistically more challenging as dimen-
sion grows. Simply speaking, the reason is that performing multiple hypothesis
tests to distinguish important features takes more statistical power, in other
words, requires larger sample sizes. There have been quite a few literature on
the conditions when we can identify relevant features: later we will discuss some
of the recent results on lasso-type regression.

Third, due to limitations in human perception, understanding structures in
high dimensional spaces is inherently difficult for us. In particular for interdis-
ciplinary research, the outcome of data analysis would have to be shaped in a
form easily perceivable by domain experts who may not be computer scientists.
Graph-based representations of data space and analysis outcomes have lots of
potential for this purpose: we will demonstrate some examples in biomedical
data analysis.

1 Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/.

http://www.ncbi.nlm.nih.gov/geo/
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2 Sparse Variable Selection and Estimation

There have been a lot of improvements in convex optimization, in particular for
dealing with composite objective functions which are interesting for extracting
understandable structures from high-dimensional data.

We consider a standard setting for data analysis: a set of m training data
points {(xi, yi)}m

i=1 are given, where xi ∈ X is an input point and yi ∈ Y is
a response of interest. Typically, xi is a vector and yi ∈ {−1,+1} for binary
classification and yi ∈ R for regression tasks, but both xi and yi can be more
structured objects such as strings [51] or trees [38]. A goal of data analysis is to
find a function hw(x) parametrized by a vector w ∈ R

n, which best reflects the
data in terms of a certain error measure between responses and predictions made
by hw(x). Finding the best parameters vector w can be formulated as follows,

w∗ = arg min
w∈Rn

1
m

m∑

i=1

�(yi, hw(xi)) + Ψ(w) = f(w) + Ψ(w). (1)

Here, �(yi, hw(xi)) : Rn → R is a loss function between a prediction hw(xi) and
an observed response yi, which is convex in terms of w. A function f(w) : Rn →
dom f is convex if for all w,v ∈ dom f , the following holds for some α ≥ 0,

f((1 − λ)w + λv) ≤ (1 − λ)f(w) + λf(v) − α

2
λ(1 − λ)‖w − v‖2.

If there exists α > 0, f is called α-strongly convex. The second part Ψ(w) : Rn →
R := R∪{+∞} in the objective is a regularizer, which is a proper (Ψ(w) ≡ +∞
is not true) convex function used to control certain statistical properties of the
estimation process. Ψ also can be the indicator function of a convex set W, i.e.,
Ψ(w) = 0 if w ∈ W and Ψ(w) = +∞ otherwise.

2.1 Sparsity-Inducing Regularization

An intriguing use of the convex minimization in (1) is to extract the most relevant
features in data vectors x that contribute to minimizing the averaged loss. In par-
ticular, when a generalized linear model is considered so that hw(x) = f(〈w,x〉)
for a convex function f , where 〈·, ·〉 is an inner product, we can set unimpor-
tant components of w to zero to turn-off their contribution to prediction. Such
componentwise switching-off can be achieved by minimizing Ψ(w) = λ‖w‖1 at
the same time, where λ > 0 is a tuning parameter. With least squares loss func-
tion, i.e., �(yi, hw(xi)) = (yi − hw(xi))2, the problem (1) is called as the lasso
problem [66].

Variants. The idea can be extended to incorporate a combination of �2 and
�1 regularization, i.e., Ψ(w) = λ{(1 − α)‖w‖22 + α‖w‖1} for some given λ > 0
and α ∈ [0, 1]. This regularization is called the elastic net [80], which tends to
select all correlated features together compared to the selection by lasso where
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some correlated features may not be selected. In addition, for α < 1 the regu-
larizer Ψ(w) makes the objective strongly convex in w, which can lead to better
convergence rate e.g. in gradient descent algorithms.

When certain grouping of features is known a priori, then we can use
Ψ(w) =

∑
g∈G ‖wg‖2 for subvectors wg of w ∈ R

n corresponding to groups
g ⊂ {1, 2, . . . , n}. This particular setting is useful when it is preferable to select
groups rather than individual components. For instance, a group of binary vari-
ables may encode a single multinomial variable of interest. This setting within
(1) is known as group-lasso [74]. When groups may overlap, a modified version in
[36] is recommended to avoid turning-off all groups sharing a demoted variable.
Interested readers can find more details in an introductory article [48].

2.2 Accelerated Proximal Gradient Descent Algorithm

When the convex functions � is smooth (continuously differentiable) and Ψ is
possibly nonsmooth but “simple” (the meaning will be clarified later), one of
the best algorithm for solving the optimization problem (1) is the accelerated
proximal gradient descent algorithm, also known as FISTA [7].

Similarly to the gradient descent, the proximal gradient descent algorithm
considers a simple quadratic approximation of the smooth part � in the objective,
augmented with Ψ , that is,

f(w) + Ψ(w) ≈ f(wk) + 〈∇f(wk),w − wk〉 +
L

2
‖w − wk‖22 + Ψ(w), (2)

where L > 0 is the Lipschitz constant of the gradients ∇f ,

‖∇f(w) − ∇f(v)‖ ≤ L‖w − v‖22, ∀w,v ∈ dom f.

Given these, the proximal gradient method chooses the next iterate as the min-
imizer of the right-hand side expression of (2),

wk+1 = arg min
w

〈∇f(wk),w − wk〉 +
L

2
‖w − wk‖2 + Ψ(w)

= arg min
w

1
2
‖w − (wk − (1/L)∇f(wk))‖2 + (1/L)Ψ(v)

= prox(1/L)Ψ (wk − (1/L)∇f(wk)). (3)

Here, we have defined the proximal operator associated with a function h : Rn →
R of a given point z ∈ R

n as

proxh(z) := arg min
w∈Rn

1
2
‖w − z‖2 + h(w).

From this definition, we can interpret that the update in (3) computes the
next iterate wk+1 as a point which is close to the given gradient descent point
z = wk − (1/L)∇f(wk) and minimizes h = (1/L)Ψ at the same time. We call h
(or Ψ) is “simple” if the proximal operator can be computed efficiently.
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This procedure can be accelerated using an ingenious technique due to Nes-
terov [59]. The modified version uses another sequence of vectors vk composed
as a particular linear combination of the two past iterates,

vk+1 = wk +
(

tk − 1
tk+1

)
(wk − wk−1), tk+1 =

1
2
(1 +

√
1 + 4t2k).

Then, the next iterate wk+1 is computed based on vk, not wk,

wk+1 = prox(1/L)Ψ (vk − (1/L)∇f(vk))

This method generate iterates {wk} converging to an optimal solution w∗ with
the a sublinear rate O(1/k2) [7], that is,

[f(wk) + Ψ(wk)] − [f(w∗) + Ψ(w∗)] ≤ 2L‖w0 − w∗‖22
(k + 1)2

.

This achieves the best convergence rate as a first-order optimization method [59],
and it becomes slower only by a constant factor if line-search is involved.

2.3 Consistency in Variable Selection

One of the important questions regarding the solution w∗ of (1) with �1 reg-
ularization is that if the “true” set of important variables (often called as the
support) will be identified. This type of discussion is based on a data generation
model that an m × n training data matrix X = (xT

1 , . . . ,xT
m) and responses

y ∈ R
m are related by

y = Xw◦ + ε

where ε is a vector of m i.i.d. random variables with mean 0 and variance σ2.
Here, w◦ defining the relation is the true weight vector we try to estimate, by a
solution w∗ of (1) with Ψ(w) = λ‖w‖1.

Consistency results has been established first by Knight and Fu [41], for the
cases where n and w◦ are independent of m and some regularity conditions
hold. In estimation consistency, they showed that w∗ → w◦ in probability as
m → ∞, and w∗ is asymptotically normal when λ = o(m). In variable selection
consistency, they also showed that when λ ∝ √

m, the true set of important
variables are identified in probability, that is,

P({i : w∗
i �= 0} = {i : w◦

i �= 0}) → 1, as m → ∞.

In high dimensions, the growth of dimensions n is restricted in a way that
s log(n) = o(m), where s is the sparsity of the true signal w◦ [56,76]. In addi-
tion, other conditions are required for the design matrix X, namely the neighbor-
hood stability conditions [56] or the equivalent irrepresentable conditions [76,79]
that are almost necessary and sufficient for lasso to identify the true support
for the cases where n is fixed or n grows with m. Roughly speaking, these
conditions state that the irrelevant covariates are orthogonal to relevant ones.
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The conditions however may not be satisfied in practice, and finding weaker con-
ditions is in active research, e.g. [37]. Also, more general notions of variable selec-
tion consistency have been discussed in other context, e.g. in stochastic online
learning [49].

3 Sparse Graph Learning

From a sparse solution w∗ of (1), we can find a set of relevant features, and
also can prioritize them by the magnitude of the coefficient vector w∗ for fur-
ther investigation, e.g. bio-chemical studies of chosen genes to clarify their roles
in a complex system. However, its outcome is essentially a ranked list of fea-
tures which does not tell much about the relations of covariates: the latter type
of information would be more helpful to understand the underlying system. In
this view, we consider another learning model which produces a graph of fea-
tures, where connections between nodes (features) represents a certain statistical
dependency.

3.1 Gaussian Markov Random Field

The Gaussian Markov Random Field (GMRF) is a collection of n jointly
Gaussian random variables represented as nodes in a graph G = (V,E), with a
set of n vertices V and a set of undirected edges E. In this model we consider
random vectors x ∼ N (μ,Σ) with a mean vector μ and a covariance matrix Σ,
whose probability density is given as

p(x) = (2π)−n/2 det(Σ)−1/2 exp
(

−1
2
(x − μ)T Σ−1(x − μ)

)
.

The edges represent conditional dependency structure: in GRMFs, the variables
xi and xj associated with the nodes i and j are conditionally independent given
all the other nodes [45] when there is no edge connecting the two nodes, or
equivalently the corresponding entry in the precision matrix satisfies Σ−1

ij = 0.
That is,

Σ−1
ij = 0 ⇔ P (xi,xj |{xk}k∈{1,2,...,n}\{i,j})

= P (xi|{xk}k∈{1,2,...,n}\{i,j})P (xj |{xk}k∈{1,2,...,n}\{i,j}).

This also implies that we can consider the precision matrix Σ−1 as a weighted
adjacency matrix for an undirected graph representing a GMRF.

3.2 Sparse Precision Matrix Estimation

Assuming that μ = 0 without loss of generality (i.e. subtract the mean from data
points), the likelihood function to describe the chance to observe a collection of
m i.i.d. samples D = {x1,x2, . . . ,xm} from N (0, Σ−1) becomes

L(Σ−1,D) =
m∏

i=1

p(xi) ∼
m∏

i=1

det(Σ)−1/2 exp
(

−1
2
xT

i Σ−1xi

)
.
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Therefore the log likelihood function (omitting constant terms and scaling by
2/m) becomes,

LL(Σ−1,D) = log det(Σ−1) − tr (SΣ−1).

Here we have defined S := 1
m

∑m
i=1 xixT

i as the sample covariance matrix.
Minimizing the negative log likelihood plus a sparsity inducing norm on the

prediction matrix Θ = Σ−1 can be stated as

min
Θ∈Rn×n

−LL(Θ,D) + λ‖Θ‖1, subject to Θ � 0, ΘT = Θ. (4)

The �1 norm of Θ here is defined elementwise, that is, ‖Θ‖1 :=
∑n

i=1

∑n
j=1 |Θij |.

The sparse precision matrix estimation in (4) is a convex optimization prob-
lem proposed by Yuan and Lin [75]. Due to its special structure maximizing the
determinant of a matrix, they applied an interior point algorithm [68], which
may not be suitable for high dimensions n due to the complexity O(n6 log(1/ε))
to obtain an ε-suboptimal solution. A more efficient block coordinate descent
algorithm has been suggested by Banerjee et al. [3], to solve the dual problem of
(4). Each subproblem of this block coordinate descent formulation can be cast
as a lasso problem in forms of (1), and this fact has been used by Friedman,
Hastie, and Tibshirani to build the graphical lasso algorithm [24]. However, each
subproblem of these solvers still involves quite large (n − 1) × (n − 1) matrices,
resulting in O(sn4) complexity for s sweeps of all variables. Many research arti-
cles have contributed more efficient optimization algorithms (for a brief survey,
see [47]).

3.3 Graph Selection Consistency

Regarding the statistical quality of the solution Θ∗ of (4), we can ask similar
questions to those in Sect. 2.3, that if the solution identifies the true graphical
structure, or equivalently the true set of edges or the nonzero patterns in the
true model Θ◦. In other word, we check if following property holds:

P
({

(i, j) : Θ∗
ij �= 0

}
=

{
(i, j) : Θ◦

ij �= 0
}) → 1 as m → ∞.

The sparse graph learning problem (4) has a very similar structure to the sparse
variable selection problem (1), and they share very similar consistency results,
e.g. [75]. Algorithms using random sampling have been recently proposed, such
as bolasso [2] and stability selection [57], which require weaker conditions to
achieve variable selection consistency.

3.4 Breast Cancer Gene Dependency Graphs

To demonstrate graph extraction using the Gaussian MRF, we used a genomic
data set consisting of gene expression profiles of n = 20492 features (genes,
more specifically, transcripts) from m = 362 breast cancer patients. The data
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set was created combining three gene expression data sets available from the
Gene Expression Omnibus, with the accession IDs GSE1456, GSE7390, and
GSE11121.2

Figure 2 shows the graph learned separately on subgroups of patients deter-
mined by their “grade” of cancer progression: 1 (almost normal), 2 (faster
growth) and 3 (much faster growth). The parameter λ = 1.6 was chosen for
all cases which produced small numbers of connected components. Only the
connected components with at least two nodes are shown for compact visualiza-
tion. The color of node represents the p-values of the likelihood ratio test, for
the case of using each node (gene) as an univariate predictor for overall survival
time under the Cox proportional hazard model [16]. Colors are assigned to five
p-value intervals in [10−5, 1), equally sized in logarithmic scale, where darker
colors indicate smaller p-values.

The visualization in Fig. 2 looks quite easy to comprehend even for no biology
expert. For example, genes with many neighbors in the graphs (so called hub
nodes) turned out to have important roles in breast cancer development, includ-
ing ASPN [11], SFRP1 [40], and ADH1B [50], even though some (e.g. ADH1B)
may not be interesting as univariate predictors considering their p-value.

4 Graph-Based Discovery in Medical Research

An ongoing trend in many scientific areas is the application of network analysis
for knowledge discovery. The underlying methodology is the representation of
the data by a graph representing a relational structure. Benefits can be created
in a blend of different approaches and methods and a combination of disciplines
including graph theory, machine learning, and statistical data analysis. This
is particularly applicable in the biomedical domain: large-scale generation of
various data sources (e.g. from genomics, proteomics, metabolomics, lipidomics,
transcriptomics, epigenetics, microbiomics, fluxomics, phenomics, cytomics, con-
nectomics, environomics, exposomics, exonomics, foodomics, toponomics, etc.)
allows us to build networks that provide a new framework for understanding
the molecular basis of physiological and pathological health states. Many wide-
spread diseases, for example diabetes mellitus, [20], involve enormous interac-
tions between thousands of genes. Although, modern high-throughput techniques
allows the identification of such genes amongst the resulting omics data, a func-
tional understanding is still the grand challenge. A major goal is to find diag-
nostic biomarkers or therapeutic candidate genes.

Network-based methods have been used for quite a while in biology to charac-
terize genomic and genetic mechanisms. Diseases can be considered as abnormal

2 The CEL files from the GEO were normalized and summarized for transcripts
using the frozen RMA algorithm [55]. Then only the verified (grade A) genes were
chosen for further analysis according to the NetAffx probeset annotation v33.1 of
Affymetrix (n = 20492 afterwards). Also, microarrays with low quality according to
the GNUSE [54] error scores > 1 were discarded (m = 392 afterwards).
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Fig. 2. Graphical representation of transcript relations corresponding to breast cancer
subgroups. Node color represents the p-value of each node (genes) as univariate pre-
dictor of overall survival times (darker color = smaller p-value). Edge types represent
correlation: solid = positive and dashed = negative. Node labels show the correspond-
ing gene symbols. (Color figure online)

perturbations of critical cellular networks. The progress and intervention in com-
plex diseases can be analyzed today using network theory. Once the system is
represented by a network, methods of network analysis can be applied, not only
to extract useful information regarding important system properties, but also to
investigate its structure and function. Various statistical and machine learning
methods have been developed for this purpose and have already been applied to
networks [19]. The underlying structure of such networks are graphs. Graph the-
ory [25] provides tools to map data structures and to find unknown connections
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between single data objects [21,65]. The inferred graphs can be further analyzed
by using graph-theoretical, statistical and machine learning techniques [18].

A mapping of already existing and in medical practice approved knowledge
spaces as a conceptual graph and the subsequent visual and graph-theoretical
analysis may bring novel insights on hidden patterns in the data, which exactly
is the goal of knowledge discovery [28]. Another benefit of the graph-based data
structure is in the applicability of methods from network topology and net-
work analysis and data mining, e.g. small-world phenomenon [4,39], and cluster
analysis [42,72].

However, the biomedical domain is significantly different from other real
world domains. Mostly, the processes are data-driven trial-and-error processes,
used as help to extract patterns from large data sets by way of predefined models
through an fully automated tool without human involvement [77]. Many machine
learning researchers pay much attention to find algorithms, models and tools to
support such fully automated approaches. The Google car is currently a best
practice example [64], at the same time little attention is paid to include the
human into this loop.

The reason for this huge difference is the high complexity of the biomed-
ical research domain itself [14]. It is inevitable for the future biomedical domain
expert to switch from the classical consumer-like role [44] to an active part in
the knowledge discovery process [27,30]. However, this is not so easy, because it
is well known that many biomedical research projects fail due to the technical
barriers that arise to the domain experts in data integration, data handling, data
processing, data visualization and analysis [1,34,43]. A survey from 2012 among
hospitals from Germany, Switzerland, South Africa, Lithuania, and Albania [60]
showed that only 29 % of the medical professionals were familiar with any prac-
tical application of data mining methods and tools. Although this survey might
not be representative globally, it clearly shows the trend that medical research
is still widely based on standard statistical methods.

To turn the life sciences into data intensive sciences [28], consequently, there
is urgent need for usable and useful data exploration systems - which are in the
direct work flow of the biomedical domain expert [81]. A possible solution to
solve such problems is in a hybrid approach to put the human into the machine
learning loop [22,63].

4.1 Medical Knowledge Space

This example shows the advantage of representing large data sets of medical
information using graph-based data structures. Here, the graph is derived from
a standard quick reference guide for emergency doctors and paramedics in the
German speaking area; tested in the field, and constantly improved for 20 years:
The handbook “Medikamente und Richtwerte in der Notfallmedizin” [58] (Ger-
man for Drugs and Guideline Values in Emergency Medicine, currently avail-
able in the 11th edition accompanies every German-speaking emergency doctor
as well as many paramedics and nurses. It has been sold 58,000 times in the
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German-speaking area. The 92-pages handbook (size: 8× 13 cm) contains a com-
prehensive list of emergency drugs and proper dosage information. Additionally,
important information for many emergency situations is included.

The data includes more than 100 essential drugs for emergency medicine,
together with instructions on application and dosage depending on the patient
condition, complemented by additional guidelines, algorithms, calculations of
medical scores, and unit conversion tables of common values. However, due to
the traditional list-based interaction style, the interaction is limited to a certain
extent. Collecting all relevant information may require multiple switches between
pages and chapters, and knowledge about the entire content of the booklet. In
consequence to the alphabetical listing of drugs by active agents, certain tasks,
like finding all drugs with common indications, proved to be inefficient and time
consuming.

Modeling relationships between drugs, patient conditions, guidelines, scores
and medical algorithms as a graph (cf. Fig. 3) gives valuable insight into the
structure of the data set. Each drug is associated with details about its active
agent and pharmacological group; brand name, strengths, doses and routes of
administration of different products; indications and contraindication, as well
as additional remarks on application. Consequently, a single drug itself can be
represented as connected concepts. Shared concepts create links between multiple
drugs with medical relevance, and provide a basis for content-aware navigation.

The interconnection of two drugs, namely adrenaline and dobutamine, is
shown in Fig. 4. The left-hand side illustrates the main three types of relations
inducing medical relevance; shared indications, shared contra-indications and
shared pharmacological groups. Different node colors are used to distinguish
between types of nodes such as active agents, pharmacological groups, applica-
tions, dosages, indications and contra-indications. The right-hand side highlights
the connection of adrenaline and dobutamine by a shared indication.

Links to and between clinical guidelines, tables and calculations of medical
scores, algorithms and other medical documents, follow the same principle. On
the contrast to a list-based interaction style, these connections can be used for
identification and visualization of relevant medical documents, to reorganize the
presentation of the medical content and to provide a fast and reliable contextual
navigation.

The explosive growth of complexity of networks have overwhelmed conven-
tional visualization methods and future research should focus on developing more
robust and efficient temporally aware clustering algorithms for dynamic graphs,
i.e. good clustering will produce layouts that meet general criteria, such as clus-
ter colocation and short average edge length, as well as minimize node motion
between time steps [52]. The use of multi-touch interfaces for graph visualiza-
tion [32] extends graph manipulation capabilities of users and thereby can be
used to solve some of the visualization challenges.

4.2 DrugBank

DrugBank is an comprehensive, open, online database that combines detailed
drug data with drug target information, first released in 2006 [71]. The current
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Fig. 3. Graph of the medical data set showing the relationship between drugs, guide-
lines, medical scores and algorithms.

Fig. 4. Interconnection between two drugs, “Adrenaline” and “Dobutamine”; connec-
tions to and between clinical guidelines, tables and calculations of medical scores, algo-
rithms and other medical documents, follow the same principle. (Color figure online)
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version (DrugBank 4.2) includes 7759 drug entries, with each entry containing
more than 200 data fields devoted to drug/chemical data, as well as drug target
and protein data.

DrugBank includes drug descriptions, chemical structures and properties,
food and drug interactions, mechanisms of action, patent and pricing data,
nomenclature, synonyms, etc. Previous versions of DrugBank have been widely
used to facilitate drug discovery and constant updates have it expanded to con-
tain data on drug metabolism, absorption, distribution, metabolism, excretion
and toxicity and other kinds of quantitative structure activity relationships infor-
mation [46]. Users may query DrugBank in several different ways via the pro-
vided web interface, including simple text queries, chemical compounds queries
and protein sequence searches. Alternatively the full database can be downloaded
in XML format for further data processing and exploration.

While the DrugBank database is a comprehensive resource for information
on individual drugs, it does not provide an illustration of the overall structure
of the data set. Representation as a graph can quickly and clearly create new
insight into the DrugBank dataset, such as pattern in drug and food interactions,
structures in drug and drug classification relations, or relations between drugs
by common indications.

The DrugBank database contains 1191 distinct drug entries which list at
least a single interaction with another drug. This allows us to define the node
set representing these drugs, and the set as all edges between drugs, when an
interaction between two drugs is listed. This construced graph contains 1213
nodes linked by 12088 edges, which reveals 22 nodes (e.g. “Sipuleucel-T”, “Pizo-
tifen”, “Iodine”, etc.), listed as drug interaction without a corresponding drug
entry in the DrugBank database. Figure 5 shows the visualization of the drug
interaction graph, with the drug node size weighted by degree.

Fig. 5. Graph of drug interactions in the DrugBank database.
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4.3 Biological Networks

Functions of life on a sub-cellular level rely on various complex interactions
between different entities. Proteins, genes and metabolites interact to produce
either healthy or diseased cellular processes. Our understanding of this network
of interactions, and the interacting objects themselves, is continuously changing;
and the graph structure itself is constantly changing and evolving as we age or
as disease progresses.

Our methods for discovering new relationships and pathways change as well.
A tool from Jurisica Group in Toronto may be of help here: NAViGaTOR 3
addresses such realities by having a very basic core rooted in graph theory, with
the flexibility of a modular plugin architecture that provides data input and out-
put, analysis, layout and visualization capabilities. NAViGaTOR 3 implements
this architecture by following the OSGi standard3. Available API enables devel-
opers to expand standard distribution by integrating new features and extending
the functionality of the program to suit their specific needs [61].

NAViGaTOR 3 was designed with the knowledge that a researcher may need
to combine heterogeneous and distributed data sources. The standard distribu-
tion supports the loading, manipulation, and storage of multiple XML formats
and tabular data. XML data is handled using a suite of file loaders, including
XGMML, PSI-MI, SBML, KGML, and BioPAX, which store richly-annotated
data and provide links to corresponding objects in the graph. Tabular data
is stored using DEX (Martinez-Bazan, Gomez-Villamor and Escale-Claveras,
2011), a dedicated graph database from Sparsity Technologies4.

Figure 6 shows an integrated graph by combining metabolic pathways,
protein-protein interactions, and drug-target data. This metabolic data was col-
lected in the Jurisca Lab, combining several steroid hormone metabolism path-
ways: androgen, glutathione, N-nitrosamine and benzo(a)pyrene pathway, the
ornithine-spermine biosynthesis pathway, the retinol metabolism pathway and
the TCA cycle aerobic respiration pathway. The figure highlights different path-
ways with different edge colors. The edge directionality highlights reactions and
flow between the individual pathways. The data set was centred on steroid hor-
mone metabolism and included data from hormone-related cancers [26]. The
list of FDA-approved drugs used for breast, ovarian and prostate cancer was
retrieved from the National Cancer Institute5. Afterwards the DrugBank6 was
searched for targets for each drug and those integrated in the graph structure.

5 Challenges and Future Research

A grand challenge is to discover relevant structural patterns and/or temporal
patterns (“knowledge”) in high dimensional data, which are often hidden and

3 OSGi Standard http://www.osgi.org/Main/HomePage.
4 DEX Graph Database http://www.sparsity-technologies.com/dex.
5 National Cancer Institute, http://www.cancer.gov.
6 DrugBank, http://www.drugbank.ca.

http://www.osgi.org/Main/HomePage
http://www.sparsity-technologies.com/dex
http://www.cancer.gov
http://www.drugbank.ca
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Fig. 6. Partially explored network: connecting drugs and metabolism. A network com-
prising metabolites, enzymes, and drugs of multiple pathways in the early stages of
exploration. (Color figure online)

not accessible to the human expert but would be urgently needed for better
decision support or for deeper investigation. Also, the fact that most data sets
in the biomedical domain are weakly-structured or non-standardized add extra
difficulties [28].

In medical research, these challenges are closely connected to the search
for personalized medicine, which is a trend resulting in an explosion in data
size (especially dimensionality): for instance “-omics” data, including data of
genomics, proteomics, metabolomics, etc [35]. Whilst personalized medicine is
the ultimate goal, stratified medicine has been the current approach, which aims
to select the best therapy for groups of patients who share common biological
characteristics. Here, machine learning approaches and optimization of knowl-
edge discovery tools become imperative [53,61].

Optimization algorithms and techniques are now at the core of many data
analysis problems. In high dimensional settings, statistical understanding of
these algorithms is crucial not only to obtain quality solutions but also to
invent new types of algorithms, as witnessed in recent literature [2,8,49,57]. Effi-
cient and distributed algorithm implementations also become critical due to high
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computational demands. There are lots of active research in this regard based
on optimization algorithms e.g. the ADMM [9] and block-coordinate descent
methods [6,67].

Graph-based approaches introduced above are closely related to the graph-
based data mining and topological data mining, which are amongst the most
challenging topics [31–33,62]. Graph-based data mining was pioneerined about
two decades ago [15,17,73], and based upon active research subjects includ-
ing subgraph categories, isomorphism, invariance, measures, and solution meth-
ods [70]. It also can involve content-rich information, e.g. relationship among
biological concepts, genes, proteins and drugs, such as in [13] or network medi-
cine [5].

A closely related method is topological data mining, which focuses more
on topological spaces (or manifolds) equipped with measures defined for data
elements. The two most popular topological techniques in the study of data are
homology and persistence. The connectivity of a space is determined by its cycles
of different dimensions. These cycles are organized into groups, called homology
groups. Given a reasonably explicit description of a space, the homology groups
can be computed with linear algebra. Homology groups have a relatively strong
discriminative power and a clear meaning, while having low computational cost.
In the study of persistent homology the invariants are in the form of persistence
diagrams or barcodes [23]. For interested readers, we suggest papers about point
cloud from vector space models [69], and persistent homology [10,12,78].

The grand vision for the future is to effectively support human learning with
machine learning. The HCI-KDD network of excellence7 is an initiative proac-
tively supporting this vision, bringing together people with diverse background
but with a shared goal of finding solutions for dealing with big and complex
data sets. We believe such an endeavor is necessary to deal with the complex
and interdisciplinary nature of the problem. A recent outcome of the network
can be found here [29]. This shows that diverse techniques and new ideas need
to be integrated for successful knowledge discovery with big and complex real
data. Still, there are many emergent challenges and open problems, which we
believe deserve further research.
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