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A B S T R A C T

Background: In return for their nutritional properties and broad availability, cereal crops have been associated 
with different alimentary disorders and symptoms, with the majority of the responsibility being attributed to 
gluten. Therefore, the research of gluten-related literature data continues to be produced at ever-growing rates, 
driven in part by the recent exploratory studies that link gluten to non-traditional diseases and the popularity of 
gluten-free diets, making it increasingly difficult to access and analyse practical and structured information. In 
this sense, the accelerated discovery of novel advances in diagnosis and treatment, as well as exploratory studies, 
produce a favourable scenario for disinformation and misinformation. 
Objectives: Aligned with, the European Union strategy “Delivering on EU Food Safety and Nutrition in 2050′′ which 
emphasizes the inextricable links between imbalanced diets, the increased exposure to unreliable sources of 
information and misleading information, and the increased dependency on reliable sources of information; this 
paper presents GlutKNOIS, a public and interactive literature-based database that reconstructs and represents the 
experimental biomedical knowledge extracted from the gluten-related literature. The developed platform in-
cludes different external database knowledge, bibliometrics statistics and social media discussion to propose a 
novel and enhanced way to search, visualise and analyse potential biomedical and health-related interactions in 
relation to the gluten domain. 
Methods: For this purpose, the presented study applies a semi-supervised curation workflow that combines 
natural language processing techniques, machine learning algorithms, ontology-based normalization and inte-
gration approaches, named entity recognition methods, and graph knowledge reconstruction methodologies to 
process, classify, represent and analyse the experimental findings contained in the literature, which is also 
complemented by data from the social discussion. 
Results and conclusions: In this sense, 5814 documents were manually annotated and 7424 were fully automat-
ically processed to reconstruct the first online gluten-related knowledge database of evidenced health-related 
interactions that produce health or metabolic changes based on the literature. In addition, the automatic pro-
cessing of the literature combined with the knowledge representation methodologies proposed has the potential 
to assist in the revision and analysis of years of gluten research. The reconstructed knowledge base is public and 
accessible at https://sing-group.org/glutknois/   

1. Introduction

Cereal crops are a very important part of the human diet and were

introduced about 10.000 years ago, during the transition from hunting 
to settled farming. Since then, the consumption of cereals has increased, 
and in 1941 the Nutrition Society established as its main objective the 
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improvement of wheat cultivation, to study how its nutrition and ap-
plications could help in health maintenance [1]. Nowadays, wheat 
production reaches 700 million tons per year [2]. 

In return for their nutritional properties and broad availability, 
cereal crops have been associated with different disorders and symp-
toms, with the majority of the responsibility being attributed to gluten, a 
high molecular weight protein found in wheat, barley and rye. Gluten- 
related disorders can be classified into three categories: (i) autoim-
mune, which includes celiac disease (CD), dermatitis herpetiformis (DH) 
and gluten ataxia (GA); (ii) allergic reactions, which includes wheat 
allergy; and (iii) immune-mediated in the form of non-coeliac gluten 
sensitivity (NCGS) [1]. Nevertheless, nowadays there are also an in-
cremental number of exploratory and experimental studies that relate 
gluten involvement to various psychiatric illnesses such as autism [3] 
and schizophrenia [4]; and chronic diseases such as diabetes type 1 [5] 
or irritable bowel syndrome [6]. 

In this sense, gluten-related diseases are one of the most common and 
studied autoimmune disorders due to (i) their reported prevalence of 
0.5–1% of the general population [7], (ii) their fastest-growing as one of 
the most common autoimmune disorders in the last years and, in addi-
tion, (iii) their high prevalence as one of the most common genetic 
diseases in the West [7–9]. To date, the only therapy available for 
gluten-related disorders is a lifelong gluten-free diet (GFD) and its 
adherence leads to the mitigation of the symptoms in most cases. 
However, nowadays, a great number of consumers are following a GFD 
as a self-prescribed lifestyle, although most of them have not been 
previously diagnosed with a related disease; which further increases the 
number of studies related to this protein [10,11]. In the last years, 
gluten-free diets have grown in popularity strongly promoted by: (i) the 
widespread media coverage, (ii) the strong economic interests and (iii) 
the considerable amount of disinformation and misinformation [12,13]. 
For example, nearly 50% of 910 athletes (including world-class and 
Olympic medallists) adhere to GFD because they perceive it as more 
healthy and provides energy benefits [14]. The issue here is that patients 
increasingly seek information from non-traditional and fringe groups, 
suggesting susceptibility to misinformation and disinformation. Besides, 
these unreliable information sources are not distinguishable by most 
patients. 

In terms of health and nutrition, the internet and social media are 
increasingly being used by different interested individuals and patients 
to acquire new information, discover experimental disease treatments, 
and share experiences on personal health symptoms. 

Social media technologies are inexpensive, accessible, and user- 
friendly and can attract a large proportion of health consumers 
becoming an excellent channel to disseminate and support information 
[15]. Nevertheless, several authors have already reported that exists a 
high risk of misinformation in social media, both video and text-based, 
which can mislead patients affecting their health safety [16–19]. 
Research studies could be difficult to retrieve and understand by the 
general population. Besides experimental and exploratory studies can be 
misunderstood and lead to the spread of misinformation. Food faddism, 
or an exaggerated belief in the effects of food or nutrition on health or 
disease fuels nutrition fraud. So, one of the most significant societal 
concerns remains to achieve food security for a healthy population. In 
this regard, the European Union strategy “Delivering on EU Food Safety 
and Nutrition in 2050′′ [20] emphasizes the inextricable links between: 
(i) the imbalanced diets due to over-reliance on (perceived) “healthy 
foods” or specific dietary regimes, (ii) the inadequate food safety and 
nutrition literacy, loss of food traditions and increased exposure to un-
reliable sources of information, (iii) the abundance of voluntary food 
material and increased opportunity for misleading information, and (iv) 
the increased consumer dependency on digital services for dietary 
choices, with healthy societies and the avoidance of future illnesses. 

In terms of online information sources, the quality of the data is often 
unfiltered, becoming inaccurate and can mislead patients and lead to 
unhealthy choices [21,22]. Therefore, in a recent study, some 

researchers exposed how the respondents of their work could only 
identify about 52.4% of the food safety misinformation on average, and 
only 0.5% of the respondents had correctly identified all the misinfor-
mation [23]. In the same line, this other work analysed 98 celiac-related 
websites to evaluate their comprehensiveness, accuracy, transparency, 
and readability [24]. The authors determined that the knowledge pro-
vided by many websites was not sufficiently accurate, comprehensive, 
and transparent, or presented at an appropriate reading grade level, to 
be considered sufficiently trustworthy and reliable for patients, health 
care providers, CD support groups, and the general public. This sus-
ceptible situation leads patients and healthy people to make wrong de-
cisions that can lead to nutritional risk behaviours associated with 
inadequate macronutrient intake and dietary imbalances for the general 
population who is adhered to a GFD without a medical prescription 
[25]. 

To make matters more complex, the information overload in the 
bibliome already exceeds the ability of researchers to digest it. The 
number of scientific articles published in the biomedical domain is 
growing at an unprecedented rate, further complicating access to 
structured knowledge within a particular domain of study [26]. 

So, keeping up to date about the different experimental de-
velopments presents an immense challenge to individuals and scientists, 
due to the tedious and time-consuming manual reading and analysis of a 
large amount of biomedical literature research published every day. 
Although, this triage process is unequivocally required by the general 
public to be informed and by scientists in order to: (i) advance in the 
identification of the most susceptible biomarkers, (ii) improve the effi-
cacy of the current treatments, (iii) keep updated on novel discoveries 
and (iv) contrast and legitimize the novel hypothesis. 

Consequently, manual-curated scientific knowledge or gold stan-
dards becomes undoubtedly a valuable resource. For this reason, there is 
an increased interest and effort to assist researchers in the curation, 
structuring and analysing of a vast amount of literature articles looking 
for relevant health-related semantic knowledge. Discover insights into 
genetic alterations and signalling pathways, disease comorbidities and 
interactions between the metabolism and specific genes or compounds 
are some relevant examples. 

In this situation, literature-based knowledge reconstruction sup-
ported by semi-automated extraction tasks based on computational text- 
mining methodologies and knowledge graph visualisation techniques 
appears to have the potential to enhance human productivity and reduce 
the time-consuming nature of reviewing, curating and structuring the 
literature [27–30]. 

Under this scenario, this work presents a novel semantic knowledge 
base, as well as their reconstruction methodology, to process, structure 
and represent the discussed biomedical and health-related knowledge 
described in the gluten-related literature. In addition, the developed 
platform includes different external information such as (i) references to 
state-of-the-art biomedical databases, (ii) different bibliometric statistics 
and (iii) social media discussion to give a broad-range biomedical 
analysis of the gluten domain. It is expected that this new platform 
enhance the literature review productivity and assist scientists to (i) 
discover and analyse evidenced health-related interactions and patterns 
discussed in the literature, and (ii) identify the research opportunities or 
establish novel hypotheses in the same way that similar existing data-
bases [31–34]. 

2. Background 

In the last years, the synthesis and representation of the literature 
knowledge are showing the potential to systematically curate, organize, 
retrieve and interpret biomedical content in ways that are well-suited to 
human understanding. Besides, it helps to prevent public misinforma-
tion and disinformation and also assists the general public to interpret 
and analyse scientific knowledge. In this area, computed methods such 
as text mining, machine learning and graph-based representation 
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techniques becoming increasingly popular to assist in the processing and 
structuring of the contrasted and refuted evidence exposed in the 
bibliome. 

In this sense, the work of Lamurias et al. [35] carried out a detailed 
review of how the development of different specialised methods and 
tools for the systematic processing and integration of large-scale scien-
tific literature, biological databases and experimental data is a 
contemporary and well-recognised challenge of Bioinformatics. Their 
work highlights how computational methods could assist scientists to 
organise the highly available but deeply unstructured scientific knowl-
edge as well as to carry out new literature-based hypotheses. In other 
work, Ammari et al. [36] also highlighted the relevance of biocurators 
and their syncretization and integration work to structure the available 
biomedical data into knowledge of practical use to save time and money 
in future research studies. 

Consequently, many researchers are turning to the application of 
novel text mining and machine learning algorithms for the generation of 
structured information sources providing pipelines that support the 
automatic identification of relevant documents, biomedical concepts 
and biomedical relation interactions in a specific domain of the litera-
ture. For example, in order to structure the literature knowledge related 
to specific bacteria, Jorge et al. [37] and Pérez-Pérez et al. [38] apply a 
semi-curation pipeline that combines text mining methodologies, 
manual curation and graph analysis methods for the reconstruction of 
antimicrobial peptides-drugs combinations to create a comprehensive 
knowledge map and a novel database of potential anti-quorum sensing 
agents, concerning the bacterium P. aeruginosa. In terms of ontology- 
based text mining methods and knowledge enrichment to process and 
structure the bibliome, Hur et al. [39] proposed the application of 
ontology normalization capabilities and graph analysis methods to 
detect various gene interactions in the PubMed vaccine-related litera-
ture to extract scientific insights on E. coli vaccine research and devel-
opment. In a similar line, Karaa et al. [40] propose the combination of 
natural language processing tools and ontology-based methods for the 
automatic extraction of gene-disease-food relations from MEDLINE with 
effective results. On the other hand, the work of Doğan et al. [41] evi-
denced how the application of a deep-learning-based prediction system 
and their combination with knowledge graph representations method-
ologies was an excellent proposal to infer, analyse, and established a 
novel database of biological pathways concerning genes, proteins and 
diseases using a large-scale biomedical data. In a similar way, Delmas 
et al. [42] proposed a web-based knowledge graph based on literature 
mining, to help to explore new hypotheses related to metabolomics 
pathways. Besides, they demonstrate how the integration of meta-
information as the Medical Subject Headings (MeSH) descriptors asso-
ciated with the articles could help to find relevant bibliometric statistics 
at a higher level. Related to the structuration and analysis of article 
meta-information to extract new knowledge, the works of Donthu et al. 
[43], Yuan et al. [44] and Guo et al. [45] highlight how the bibliometric 
analysis has gained huge popularity in recent years thanks to (i) their 
effectiveness to exploring and analysing large volumes of scientific data, 
(ii) their potential to discover emerging trends, collaboration patterns, 
and research constituents, and (iii) their potential to producing a high 
research impact. In this line, Yang et al. [46] explored the use of on-
tologies, such as Disease Ontology, to annotate and normalize disease 
mentions in the Arizona disease corpus obtaining a valuable perfor-
mance achievement. Complementarily, Dandan Tao et al. [47] provided 
an overview of the data sources, computational methods, and applica-
tions of text data in the analysis of food science and nutrition. Through 
their review of different text mining techniques such as word-level 
analysis (e.g., frequency analysis), word association analysis (e.g., 
network analysis), and advanced techniques (e.g., text classification, 
text clustering, topic modelling, information retrieval or sentiment 
analysis), the authors discussed valuable insights on how different text 
data analysis methods can be used to help address critical issues to 
improve food production, food safety and human nutrition. In a 

complementary way, the work of Bakhtin et al. [48] evidenced the 
challenge posed by the overwhelming amount of available information, 
which surpasses the capacity of manual filtering or expert knowledge. 
To specifically address this issue, Bakhtin et al. proposed a text-mining 
methodology to analyze over 30 million documents related to science 
and technology in food production. Methods such as tokenization, 
lemmatization or term similarity analysis were successfully applied to 
extract and identify core science and technology fields and emerging 
topics in agriculture and food production. 

In terms of combining social mining and literature knowledge to 
perform a biomedical large-scale analysis, the work of Jurca et al. [49] 
explored how the integration of text mining methods and graph analysis 
could generate valuable hypotheses about breast cancer biomarkers. 
Finally, this review by Edo-Osagie et al. [50] discussed how the com-
bination of social media analysis with traditional research methods in a 
health context can present new practical and affordable solutions for 
implementing disease monitoring and surveillance systems in different 
health-related areas. 

In this scenario, the present study presents a novel gluten knowledge 
database of potential biomedical and health-related interactions 
extracted from the literature using a semi-supervised curation workflow 
that combines (i) natural language processing (NLP) techniques, (ii) 
machine learning (ML) algorithms such as deep learning (DL) and 
random forest (RF), (iii) ontology-based normalization and integration 
techniques, (iv) named entity recognition (NER) methods, and (v) graph 
knowledge reconstruction techniques to process, classify, represent and 
analyse the unstructured knowledge contained in the literature. In 
addition, the developed platform includes different external knowledge 
such as links to state-of-the-art biomedical databases, bibliometrics 
statistics, and social media discussion to give a broad-range biomedical 
analysis of the gluten domain. 

3. Materials and methods 

This section resumes the different steps followed to curate, process, 
and structure the online GlutKNOIS (GLUTen KNOwledge InteractionS) 
database, as well as the metadata integration and biomedical concept 
normalisation methodologies applied to standardise and enrich the final 
knowledge base. 

3.1. Knowledge base establishment 

The NCBI (National Center for Biotechnology Information) Entrez 
Utilities Web services were used to access the PubMed library and 
retrieve the up-to-date gluten-related articles as well as their publication 
details, including the titles, abstracts, authors, funding agencies, affili-
ations, keywords and MESH terms; to be further processed [51]. The 
purpose was to establish a semi-automatic annotated corpus to identify 
and analyse the relevant biomedical topics and evidence of health- 
related interactions supported in the literature. Therefore, the final 
objective is the identification of domain mentions or categories such as 
anatomical terms (e.g., Pancreas), cell types (e.g., leukocytes), com-
pounds (e.g., Glycan), variety of diets (e.g., keto), diseases (e.g., autism), 
food or food products (e.g., oats), genes (e.g., HLA-DQ2), organisms- 
viruses (e.g., Lactobacillus or COVID19), proteins (e.g., IgG) and 
symptoms (e.g., rash) for the reconstruction of a knowledge database of 
evidenced health-related interactions related to gluten. In this sense, the 
following relation categories were established: (i) related health issue, 
(ii) improve, (iii) aggravate, (iv) stimulation, (v) inhibition, (vi) activa-
tion, (vii) upregulation, (viii) increase symptoms, (ix) reduce symptoms, 
(x) weak relation, and (xi) no effect. Supplementary material 1 provides 
additional information about each annotated relation category estab-
lished by an expert in the problem domain. 

In addition, the NCBI Entrez Utilities Web services were also used to 
access the PubMed library and download a comprehensive dataset of 
13,238 document abstracts related to the general query “gluten”, 
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including associated publication details. However, it should be noted 
that not all of the 13,238 documents were relevant to the domain of this 
work (i.e., gluten concerning diseases or changes in the human body), 
some of them were related to gluten concerning manufacturing pro-
cesses or other related aspects. Consequently, a total of 5814 documents, 
ranked first by their PubMed relevance, were manually annotated by a 
domain expert with the goal of identifying studies that contain relevant 
health-related knowledge (i.e., articles that support meaningful 
biomedical interactions) and exclude from this sub-sample documents 
that, in basis on the criteria of the domain expert, did not provide 
relevant health-related information. Finally, due to the time-consuming 
nature of the manual reviewing, curating and structuring of the 
remaining dataset, the lasting 7424 “gluten” related articles were 
automatically processed by applying the expert-curated knowledge 
through the use of different machine learning and text mining tech-
niques explained in the following sections. 

3.2. Knowledge retrieval and normalization 

In order to enrich the final knowledge reconstructed database and 
improve the user experience, different external and third-party infor-
mation sources were integrated to present in relation to the obtained 
knowledge. In this way, the vocabulary and the meta-information 
related to the following selected ontologies were integrated to be able to 
link to other state-of-the-art related databases: the protein catalogue of 
Uniprot [52], Chemical Entities of Biological Interest (ChEBI) lexicon 
[53], Disease Ontology [54], FoodOn ontology [55], Symptom (SYMP) 
ontology [56], KEGG [57], PharmGKB [58], Medical Subject Headings 
(MeSH) [59], DrugBank lexicon [60], Foundational Model of Anatomy 
(FMA) ontology [61] and the National Cancer Institute Thesaurus (NCIt) 
[62]. Besides, the integration of these different ontologies and lexicons 
enabled the recognition of relevant domain terms, as well as the 
normalization of concepts with similar meanings. 

In this way, the standardisation of the concepts to (i) enhance the 
named entity recognition steps and (ii) unificate the vocabulary of the 
final knowledge base, was carried out through three main pillars: (i) the 
normalization capabilities of the selected state-of-the-art NER taggers 
(presented in Section 3.3), (ii) the ontology-based normalization and 
reasoning capabilities like inferring related semantical terms using their 
common identifier or the curated synonyms list, and (iii) the application 
of lemmatization techniques to recognise concepts with the same lexical 
root. 

This minimizes the final complexity of the knowledge base recon-
struction (i.e., reduced the nomenclature diversity) maximizing the 
cohesion and standardization of the final vocabulary and establishing a 
lexicon of more than 500,000 term entries to support the entity recog-
nition task. 

As a result, synonyms, lexemes and variances of the same concept 
were identified and normalized reducing the semantic noise (e.g., dia-
betes type one, diabetes type I, type I diabetes, DBT 1, Diabetes type I, 
Diabetes mellitus I or Diabetes mellitus type one; were normalized to 
diabetes type one). 

3.3. Document annotation and literature classification 

To establish the first knowledge database related to gluten it was 
required to process the whole related literature and identify those doc-
uments that were relevant to the problem domain (i.e., focused on the 
study of proteins, compounds, and foods that produces health or meta-
bolic changes) and filter not relevant documents (discussing 
manufacturing processes and the elasticity of gluten in food). However, 
carrying out this annotation and classification process only with manual 
methods can be a very tedious and time-consuming task, even more 
considering that the final objective of the present work was the pro-
cessing and annotation of the up-to-date gluten-related literature pub-
lished in PubMed. 

Consequently, to save manual triage efforts, a semi-automatic 
annotation workflow and a machine learning document classification 
technique were established based on the previous works of the authors 
in the problem domain [63]. Therefore, a semi-automatic document 
curation task supported by different automatic domain recogniser 
methods was established to assist the curator and reduce the annotation 
effort and improve the final annotation quality. For this process, the next 
six state-of-the-art NER taggers were used to assist in the annotation task 
and save efforts in the semi-automatic annotation workflow: TMCHEM 
[64] to identify chemical, drug brand and trade names; LINNAEUS [65] 
to annotate species; DNORM [66] to recognize disease names; ABNER 
[67] to annotate genes and proteins; and OSCAR4 [68] to recognize 
chemical names, reaction names, enzymes, chemical prefixes, and ad-
jectives. Besides, to complement the annotation process and annotate 
the domain categories of diets, foods, cell types, anatomical terms, and 
symptoms an in-house ontology-based NER was established. The 
developed NER entailed a dictionary lookup as well as a pattern and 
rule-based lookup to perform an inverted recognition strategy in which 
sentence words were used as patterns to be matched against the gluten- 
related lexicon established in the previous section. 

In contrast to the previous work established by the authors, the 
present version of the semi-automatic annotation workflow has been 
improved with abbreviation resolution and hypernym normalization for 
enhanced entity recognition. 

On the other hand, in terms of the document classification model and 
document triage assistance, the previous study established by the au-
thors proposed a methodology to create an inferred model based on 
different state-of-the-art NER taggers and boosted by different domain 
ontologies to classify articles in a specific domain [63]. In this regard, 
based on the performance results of the different evaluated models, for 
this work, a random forest (RF) model was trained to filter the relevant 
documents in the problem domain and assist in the manual document 
annotation. 

RF is an “ensemble learning” technique based on the aggregation of 
many decision trees to reduce the variance of applying a single decision 
tree. The idea is to train different trees against different samples to 
perform an average of the predictions of each decision tree. In this sense, 
each tree might have a high variance concerning a particular set of 
training data, but overall, the entire forest will have a lower variance but 
not at the cost of increasing the bias. The most common and relevant 
parameters for RF are the number of trees, the criterion on which fea-
tures will be selected for splitting, the maximal depth of trees, the voting 
strategy and pruning strategies. In this regard, to find the best perfor-
mance a “Hyperparameter Optimization” or “Hyperparameter Tuning” 
strategy was carried out to find the best model performance. 

Therefore, after the application of the trained and optimised model, 
6,684 documents were labelled as irrelevant whilst 6,554 were classified 
as relevant combining the manual dataset with the machine learning 
inference techniques. 

3.4. Document relation extraction 

In order to support the relation extraction of the gluten-related 
literature and identify the relation categories defined by the domain 
experts, different machine learning models were established following 
the previously proposed relation extraction methodology and the se-
mantic vector space presented by the authors [69]. The presented 
approach incorporates a novel vector space that combines (i) high-level 
lexical and syntactic inference features as Wordnets and Health-related 
domain ontologies, (ii) unsupervised semantic resources as word em-
beddings, (iii) semantical and syntactic sentence knowledge, (iv) 
abbreviation resolution support, (v) several state-of-the-art Named-en-
tity recognition methods, and, finally, (vi) different feature construction 
and optimization approaches; to support a relation extraction model be 
able to infer evidenced health-related interactions. 

Therefore, for each established relation category, it was selected the 
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model with the greatest performance be able to provide a confidence 
metric. This decision was driven to provide confidence selection capa-
bilities on the developed database and allow potential users to filter and 
visualise the automatically extracted health-related interactions that 
they feel confident in. In line with the mentioned work, three different 
machine learning algorithms obtained the best performance compared 
to the other alternatives. Gradient boosted trees (GBT), Fast large 
Margin (FLM) and Deep Learning (DNN), being the DNN model the most 
predominant selection for all established relation categories. 

3.5. Knowledge reconstruction and integration 

The reconstruction of knowledge graphs of large volumes of infor-
mation provided by the processing of texts has proven to be a very 
powerful tool to obtain new knowledge and discover non-trivial domain 
patterns. In this regard, a knowledge graph database was reconstructed 
with the biological interactions identified in the literature to visualise 
and analyse all curated evidence. Besides, different layers of knowledge 
as the meta-information of the articles and references to external sources 
of information were integrated to enrich the final experience. 

Therefore, the following equations define formally the rationale 
behind reconstructing the gluten-related literature in a knowledge 
graph. 

A domain, D, is represented by a set of representative articles (Eq. 
(1)): 

D = {A0, Ai, ⋯AN−1} (1)  

where Ai is the i-th article in corpus D and N represents the total number 
of articles in the problem domain D. 

In the same line, an article, A, is represented by a set of meaningful 
concepts (Eq. (2)): 

A = {c0, ci, ⋯cJ−1} (2)  

where ci is the i-th concept associated with document A and J represents 
the total number of identified concepts in the document. 

A concept, c, for the studied domain, is represented by a set of terms 
(n-grams) of similar meaning (Eq. (3)): 

c = {t0, tj, ⋯tJ’−1} (3)  

where ti is the i-th term associated with concept c, and J’ is the total 
number of terms associated with concept c ∈ D. 

In terms of the knowledge graph, a vertex vi is described by the set of 
the articles A that mentioned the concept c, and can be represented as a 
vector (Eq. (4)): 

vi =< A0ci , Aici ⋯AN−1ci > (4) 

Ai−thci is 1 if the concept ci is mentioned in the article Ai and 
0 otherwise and N represents the total number of articles in the problem 
domain D. Therefore, the ontology-based inference approaches applied 
enabled the simplification and normalisation of the final graph enclosing 
in the same vertex different terms with the same meaning (e.g., Syno-
nyms or acronyms such as IBD, inflammatory bowel disease or disease of 
bowel inflamed are identified as a unique vertex). 

Finally, an edge or a relation eci ,cj between two concepts, ci and cj, 
exist only if there is a semantic biomedical association or a meaningful 
relationship between them in the evaluated literature. 

Therefore, in terms of knowledge representation: (i) a graph vertex 
denotes a unique normalised concept identified (i.e., unique annotated 
terms normalised using the different ontologies) whereas a graph edge 
denotes the existence of at least one experimental evidence identified in 
the literature; (ii) the vertex category is dependent on the biomedical 
annotated category (i.e., disease) whereas the vertex size is dependent 
on its degree (i.e., the number of interactions found in the literature 
concerning it); and (iii) the edge width indicates the number of 

documents that support the interaction, whereas edge category repre-
sents the category of identified evidence (e.g., aggravate). 

Another valuable part of the reconstructed knowledge base was the 
bibliometric meta-information related to the processed articles. Knowl-
edge such as the related funding agencies, funding countries, authors, 
author affiliations, MeSH terms, article keywords, and related references 
were also integrated to evaluate their relevance in connection with a 
specific vertex, annotated category or relation category. 

In this sense, an article A could be represented from another point of 
view by the related metadata associated with the record (Eq (5)): 

A = {M0, Mi, ⋯MK−1} (5)  

where Mi is the i-th related metadata of a specific nature (e.g., an author 
or funding agencies) and K represents the total number of metadata 
registers of a specific type. Accordingly, the knowledge graph could be 
reformulated to show evidence about any kind of related metadata, so vi 
could be redefined to (Eq (6)): 

vi = ≪M0ci’
Mici’

⋯MT−1ci’
> ⋯ < M0ci’

Mici’
⋯MT−1ci’

≫ (6)  

where Mi−thci’ 
is 1 if exist a concept ci’ related to the metadata (i.e., is 

mentioned in the article A and Mi ∈ A) and 0 otherwise; and T represents 
the total number of the metadata in the problem domain D. 

In this way, the developed knowledge database integrates this met-
ainformation, as well as the yet-mentioned third-party databases to 
enrich the user experience and provide practical statistics such as, for 
example, the most cited author in relation to a specific disease, the most 
related funding agency to a domain category as diets or genes, or the 
different articles concerning identified evidence in the literature. In 
summary, Fig. 1 represents the knowledge graph reconstruction and the 
concept normalization methodology. 

The proposed reconstruction methodology enabled a holistic, multi- 
layered, and statistical analysis to acquire new knowledge, look into 
different levels of detail, and extract different knowledge subgraphs and 
perspective views. In this regard, different graph knowledge and sta-
tistical metrics were calculated on-demand and presented in the devel-
oped platform to assist to analyse the reconstructed knowledge. State-of- 
the-art graph metrics such as degree distribution, cluster coefficient, and 
betweenness centrality or closeness centrality were some of the standard 
graph metrics implemented to evaluate the queried sub-graphs in real- 
time [70]. 

On the other hand, the relation of how the different annotated cat-
egories were mentioned, without an implicit biomedical relation, can 
also provide a valuable information layer on how the knowledge was 
discussed in the literature. For example, recognising if diets were more 
associated with symptoms or diseases, or if genes were more related to 
compounds than proteins could provide domain lexical details. In 
consequence, a coefficient of association [71] between the identified 
annotations was implemented to be displayed in the platform, and is 
defined as (Eq (7)): 

ϕcicj
=

Dci∩cj Dci’ ∩cj’
− Dci’ ∩cj Dci∩cj’

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Dci Dci’

Dcj Dcj’

√ (7)  

where Dci represents the number of documents containing the annotated 
category ci, Dcj represents the number of documents containing the an-
notated category cj,Dci′

stands for the number of documents not con-
taining the category ci, Dci∩cj indicates the number of documents 
containing both categories ci and cj, Dci′ ∩cj′

indicates the number of 
documents not containing both categories ci and cj, and Dci∩cj′

represents 
the number of documents containing the category ci but not category cj. 
In this context, the ϕ coefficient ranges between −1 to +1 representing 
the extent to which articles tend to discuss one category but not the 
other, none of the categories or both semantic categories together. 

M. Pérez-Pérez et al.                                                                                                                                                                                                                           



Journal of Biomedical Informatics 143 (2023) 104398

6

3.6. Knowledge visualisation 

To make it easier for anyone to browse, visualise and analyse the 
reconstructed semantic knowledge, this work presents an online public 
database that represents the curated and integrated information in an 
interactive way (https://sing-group.org/glutknois/). 

The proposed website was developed in the backend using the Spring 
boot MVC framework [72], the MySQL database [73] and the Jgraph 
library to allow Dijkstra searches and discover interesting paths between 
different biomedical annotated entities [74,75]. On the other hand, the 
most important web-based visualization technologies used were Jquery 
[76], Bootstrap [77], Angular.js [78], Amcharts [79], Brat document 
representation library [80] and the Cytoscape Web plugin [81]to make 
the website interactive. 

In this sense, the developed platform presents (i) an interactive ho-
listic, multi-layered graph representation and knowledge browsing 
perspective, (ii) on-demand state-of-the-art graph statistical analysis, (ii) 
an association coefficient of the annotated terms, (iii) the most refer-
enced articles of the presented graph, (iv) the interactive visualisation of 
the annotated documents, and (v) different on-demand bibliometrics 
statistics concerning to the visualised reconstructed knowledge (e.g., 
most common fundings or affiliations). Fig. 2 depicts the main visual-
isation possibilities of the platform to represent the processed 
knowledge. 

3.7. Social discussion enrichment 

Although GlutKNOIS is primarily designed for researchers seeking a 
simple and visual way to look up possible evidence of associations be-
tween the different biomedical entities mentioned in gluten literature, 

the platform also includes a social media discussion related to the topic 
to obtain a more comprehensive comparison of both domains. 

In this way, it is possible to revise at the same time how society 
behaves around the searched topics in the problem domain. This allows 
potential users to gain an overall perception and be informed about how 
people in general is dealing with specific biomedical topics related to 
gluten and how the general public perceives the latest experimental 
studies. Therefore, social networks have become an important health 
information resource for scientists and individuals to stay up and discuss 
research and scientific trends [82–84], as well as to discover different 
disinformation or misinformation areas [85]. 

In this sense, the presented platform tries to work as a knowledge 
hub, assisting as a starting point for reviewing both literary and social 
data and serving as a bridge between the two domains in order to assist 
potential users to connect and synthesize information from both sources. 
Consequently, the developed knowledge base can be a valuable refer-
ence tool for detecting discrepancies, misinformation and gaps between 
the literary and social domains and, in this way, aid in the development 
of more effective social media awareness-raising campaigns and, ulti-
mately contribute to the promotion of healthier lifestyles. 

In this sense, Fig. 3 shows some of the different social media statistics 
and retrieved methods implemented in the developed platform. Valu-
able information such as (i) the related tweets with the queried topic, (ii) 
the most shared hyperlinks (iii) the most relevant hashtags and (iv) the 
most relevant users in the community were included to be analysed in 
connection with the literature search and evaluate the social and bib-
liome information as a whole. For example, if the term “autism” were 
requested, a set of tweets and social statistics related to autism in the 
gluten-free community could be recovered in association with the arti-
cles that also contain this term. 

Fig. 1. Knowledge graph reconstruction methodology. Extracted literature knowledge enabled a holistic, multi-layered information level. Besides graph 
reconstruction and ontology-based methods allows the mathematical description of the graph at different levels and the normalization of the domain concepts 
reducing the final graph complexity and in consequence the final database complexity. 
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4. Results and discussion 

4.1. Database & performance statistics 

As a result of applying the manual curation and the automatic text 
mining algorithms to the gluten literature, a semantic knowledge data-
base of different; (i) classified documents, (ii) annotated terms and (iii) 
extracted relevant biomedical interactions; was generated. Accordingly, 
Table 1 resumes the statistics of the final database to clarify the amount 
of knowledge extracted by manual revision and automatically inferred. 

In this way, the reconstructed knowledge database is the product of 
the processing of 5814 manually annotated documents and 7424 fully 
processed documents. Nevertheless, only the relevant labelled articles in 
the problem domain (i.e., health-related documents) were taken into 
account for the database reconstruction. Therefore, 6684 documents 
were labelled as irrelevant whilst 6 554 were classified as relevant using 
manual and machine learning inference techniques. 

In terms of automatic literature processing, Table 2 introduces 
several state-of-the-art metrics showing the performance achieved after 
the application of the processing techniques comprising the proposed 

methodology. 
It is important to emphasize that the accuracy of the entity recog-

nition process is directly related to the most recent annotation round (i. 
e., 500 random documents used in the last step of the semi-automatic 
annotation) [63]. At this point, domain experts have already refined 
the annotation process, resulting in a more precise and targeted 
approach to entity recognition. Furthermore, the presented performance 
is highly dependent on the state-of-the-art NER taggers applied in Sec-
tion 3.3. 

4.2. Reconstructed biomedical knowledge graph analysis 

This section evaluates the potential of the developed platform by 
analysing the final reconstructed graph and performing different ana-
lyses of the inferred knowledge. 

To gain an in-depth understanding of the identified interactions (i.e., 
manual and inferred) in the gluten-related literature, Fig. 4 represents 
the final reconstructed graph and Fig. 5 depicts the most identified 
health-related interactions between each domain annotated category 
and the meaning of each graph colour present in the figures. The 

Fig. 2. (A) Knowledge graph visualization. (B) Visualization of the graph statistics. (C) Detailed information about the category correlation obtained in the analysed 
articles. (D) Bibliometric information about the most referenced articles in relation to the query. (E) example of annotated one document visualization. (F) Bib-
liometric analysis of the most related funding ids, agencies authors and MeSH terms in relation to the query. 
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complete knowledge graph (Fig. 4) contains 10,000 vertexes (i.e., 
unique annotated concepts) and 51,000 edges (i.e., health interactions 
identified). Edges were weighted based on the number of documents in 
the literature that support the experimental interaction, whereas the 
vertex size is based on their degree (i.e., the number of interactions 
related to the concept). The colour of the vertexes represents the an-
notated category whereas the edge colour represents the relation 
category. 

In terms of graph description, the obtained knowledge graph (Fig. 4) 
had a diameter of 10, a radius of 5 and an average number of neighbours 

of 6. That means that each identified concept has a minimum path to 
almost 5 other concepts (i.e., if you peak a pair of vertexes that were 
spatially furthest from each other, it would take usually 5 hops or doc-
uments to reach the other) and a maximum of 10, and each concept 
usually has 6 directly connected concepts or existent interactions. 

An important measure for the characterization of any complex graph 
is the heterogeneity, measured in terms of the diversity of connection 
reflected through its node degree. Heterogeneity reflects the tendency of 
a graph to contain hub nodes. In general, a hub is a vertex highly con-
nected with many other nodes. Usually, biological graphs as the current 
graph tend to be very heterogeneous. While some “hub” nodes are 
highly connected, the majority of nodes tend to have very few connec-
tions. In light of this, the heterogeneity of the graph was 8.2 which 
means that there were a significant number of hubs [86]. 

In terms of graph cohesiveness and organization, the clustering co-
efficient is a density measure of local connections, or “cliquishness”. 
Generally, highly organized graphs manifest higher clustering coeffi-
cient values (0 ≤ clustering coefficient ≤ 1), whereas random graphs 
manifest values near zero. In this regard, the clustering coefficient of the 
present graph was 0.4, which is a reasonably good value. 

Regarding, the frequency of the identified mentions presented in 
Fig. 4 and Fig. 5, diseases (41%) and disorders (6%), proteins (18%) and 
symptoms (18%) were the categories with the biggest occurrence. On 
the other hand, regarding the frequency of the identified relation, 
related health issue (70%), stimulation (14%), aggravate (6%) and in-
hibition (2.7%) were the categories with the biggest occurrence in the 
literature. These results were consistent with the final research object of 
this paper (i.e., discover papers that discuss proteins, compounds, and 
foods that produce body changes in terms of disease, disorders, symp-
toms or specific organism reactions) and validate the satisfactory work 
of the document classifier semi-supervised workflow used. In conclu-
sion, taking into account the volume and the diameter of the 

Fig. 3. Snapshot of the social media web analysis interface available in GlutKNOIS showing social-related information.  

Table 1 
Manual revision and automatically inferred knowledge processed.  

Resource #Manually revision #Automatic inferred 

Classified documents 5814 7424 
Annotations 121,000 263,000 
Interactions 9000 42,000*  

* It includes interactions with a wide range of confidence values (≥0.3), to 
allow potential users to choose biomedical interactions with which confidence 
they feel most comfortable. 

Table 2 
F.score, precision and recall belonging to the different stages executed for the 
reconstruction of the GlutKNOIS database.  

Processing stage F.score Precision Recall 

Named entity recognition  0.932  0.933  0.931 
Document classification  0.846  0.798  0.901 
Relation extraction  0.739*  0.757*  0.728*  

* Mean (x) obtained evaluating all models trained for each relation category.  
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reconstructed knowledge graph, it is evidenced the suitability of the 
developed database to assist in the browsing and analysis of the iden-
tified health-related interactions. 

4.2.1. Gluten health-issues experimental analysis 
In order to examine the most often mentioned health-related in-

teractions (i.e., disease, symptoms and disorders) concerning gluten 
protein and the GFD, Fig. 6 summarized the most identified patterns 
found in the literature. Ignoring the inherent interactions with bowel- 
related conditions, some different mental health-related conditions 
and symptoms were discussed concerning the gluten protein (e.g., 
Autism, Depression, Schizophrenia, Anxiety), different chronic condi-
tions (e.g., Epilepsy, Diabetes, Autoimmune Thyroid) and other relevant 
health issues affecting to the human health (e.g., short stature, 

Osteoporosis, Vitiligo or Alopecia). Therefore, taking into account the 
large number of medical-related terms mentioned in the present sub- 
graph, it is highlighted the relevance of the developed platform. The 
GlutKNOIS platform makes it easier to determine which health-related 
conditions are being discussed more and read the participant litera-
ture articles. Assisting in this way in the possible identification of 
misinformation or disinformation by the representation of well- 
researched associations between different health issues. 

For example, by revising the reconstructed knowledge graph (Fig. 6), 
it is possible to see that there is an established debate in the literature on 
the association between gluten, diabetes and thyroid conditions. In this 
line and in a similar way to other work, the reconstructed knowledge 
base could assist in the revision of the literature to prevent and early 
diagnose comorbidities in the base of the scientific literature [87–91]. 

Fig. 4. Interaction graph reconstruction of the extracted interactions found in the gluten-related literature. The vertex colour denotes the biomedical domain 
category annotated (e.g., disease) whereas the vertex size is dependent on its degree (i.e., the number of annotated interactions). The edge colour represents the 
relation category annotated (e.g., downregulation) whereas the width of the edge indicates the number of documents that evidenced the interaction. 
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4.2.2. Nutritional facts evidenced in the literature 
To illustrate how the reconstructed knowledge graph can simplify 

the review and analysis of the literature, Fig. 7 represents the main in-
teractions between the most frequently mentioned diets, foods, com-
pounds, cell types organisms, and viruses in the gluten literature. 

In this sense, examining the present graph it is possible to easily 
visualise an extended literature discussion between a gluten-free diet 
with calcium and Vitamin D. This is logically associated with some of the 
health conditions mentioned in the previous section such as short stature 
and osteoporosis. On the other hand, in a similar way that other liter-
ature reviews expose, the reconstructed knowledge graph enables the 
opportunity to easily determine which micronutrient deficiencies or 
imbalances need to be taken into account in the patient’s clinical and 
biomedical proves to prevent disease complications and risk factors 
based on the literature [92]. 

4.3. Annotated biomedical concept analysis 

To gain an in-depth understanding of the scientific background and 
the database annotated knowledge, Fig. 8 represents the most relevant 
annotated concepts comparing the last 20 years of scientific advances to 
the previous years (i.e., before the 2000 s and after). Domain stop-words 
such as gluten, celiac disease or GFD were removed to help to discover 
more significant differences. 

Concerning the different annotated categories (Fig. 8A), anatomical 
concepts and food-related concepts were the identified categories with 
the biggest differences in the different time windows analysed (i.e., 
taking into account the total number of documents published in each 
time window and the number of mentions). By comparing the differ-
ences between the two-time windows (Fig. 8B and C), it was possible to 
detect which research concepts were having a higher level of attention 
in the last years and which ones are being put on the back burner. 

In this regard, Wheat, Flour and Starch were the discussed concepts 
with the biggest significant growth from the beginning of the millen-
nium. Therefore, by examining their related interactions, disease, 
symptoms and anatomical parts were the annotated categories with the 
biggest association with them. This reveals an increased literature as-
sociation of gluten-containing foods with various medical conditions. 
On the other hand, other concepts such as Gene, Genome or Immuno-
globulins also had a significant association increment from the publi-
cation of the first draft of the human genome sequence in 2001 [93]. 
Considering the annotation differences in other specific concepts, Food, 

Ingredient, Weight loss, Supplements and different nutritional compo-
nents (e.g., Fibre, Fat, Mineral, Antioxidant, Or Sugar) also had a rapidly 
alimentary adoption in the last years, and much more so with the 
widespread adoption of social networks from 2008 to 2010 [94]. These 
data reflect the importance and impact that social media networks have 
had in gluten research in recent years. 

To conclude, the increasing mention of specific concepts such as 
Diabetes, Irritable bowel syndrome or Autoimmune disorder, as well as 
others not depicted such as Autism or Depression, and the increased 
mention of the general categories such as symptoms, disorders and 
diseases (Fig. 8A) reflect the growing number of articles associating and 
evaluating the effect of gluten or gluten-free diets and foods with 
different health conditions. Along the same line, the increased number 
of articles mentioning organisms (e.g., Lactobacillus, Escherichia coli and 
general microbes or bacteria) reflects the community research interest to 
find possible novel treatments taking into account the gut microflora. 

4.4. Analysis of social media discussion 

To illustrate the potential of the platform to contrast the social dis-
cussion against the literature, this section exemplifies how the combi-
nation of the bibliome with Twitter discussions could be a valuable tool 
for scientists and individuals to complement their knowledge. By 
leveraging the strengths of both sources, including the comprehensive 
and in-depth knowledge available in the literature, as well as the diverse 
and socially-near nature of Twitter, the present knowledge base could be 
a valuable starting point for gaining a more complete understanding of 
topics being discussed and thereby contributing to reveal discrepancies, 
gaps and/or misinformation around health-related topics and gluten. 

For example, one of the most controversial topics related to gluten is 
the claim made by some individuals on social media that gluten is the 
primary cause of some neural-related disorders such as Alzheimer’s 
disease and autism. They also suggest that the rising prevalence of these 
disorders in humans is directly connected with gluten. Some even claim 
that a gluten-free diet can cure autism (Fig. 9A). To provide a more 
comprehensive understanding of these facts, Fig. 9B presents a screen-
shot of the developed platform displaying tweet messages (if exist) 
related to the search query, along with the literature knowledge related 
to autism and Alzheimer diseases (Fig. 9C). In this way, the comple-
mentation of the knowledge from the literature with the social discus-
sion offers a powerful perspective for evaluating gaps between the 
different health-related topics in discussion as well as, if the user 

Fig. 5. Relation graph showing the top relation categories between each annotated category. The vertex colour denotes the biomedical domain category 
annotated (e.g., disease) whereas the vertex size is dependent on its degree (i.e., the number of annotated interactions), the edge colour represents the relation 
category annotated (e.g., aggravate) whereas the width of the edge indicates the number of documents that describe the interaction. 
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considers it appropriate, rapidly debunk misinformation, carry out 
awareness decisions referencing available literature and, in the last 
instance, promote the experimental information. 

5. Discussion 

5.1. Limitations 

Due to the use of the proposed semi-automatic curation workflow, 
not all experimental interactions exposed in the literature were recov-
ered and reconstructed, in consequence, the lack of interactions between 
two different concepts does not imply that no exists proven evidence 
between them. The developed platform contains knowledge inferred 
through different manual and computational approaches, so it should be 
used as a supporting platform to be consulted and not as conclusive 
proof. On the other hand, due to the difficult integration of the different 
semantical sources (i.e., ontologies, lexicons and state-of-the-art NER 

taggers), it has not been possible to achieve a perfect standardisation of 
all concepts. In this way, there might be terms that belong to the same 
concept (e.g., anaemia and anaemia) or incorrect classified concepts that 
have not been manually revised because they did not appear in the 
manual document curation task. 

In this line, the development of better and more robust domain on-
tologies by human experts enables better concept normalization and 
improved text mining methods and databases as present in this work. 
Therefore, the concept normalization was one of the most difficult 
challenges in this project due to the intrinsic difficulty of integrating all 
semantical resources. Taking into account the 500,000 term entries in 
the final lexicon, it is challenging to check all entries manually and 
identify possible errors and defects. 

5.2. Conclusions 

Understanding and structuring the empirically proven effects of 

Fig. 6. Gluten-related health conditions associated with gluten and gluten-free diet. The vertex colour denotes the biomedical domain category annotated (e. 
g., disease) whereas the vertex size is dependent on its degree (i.e., the number of annotated interactions), the edge colour represents the relation category annotated 
(e.g., improve) whereas the width of the edge indicates the number of documents that describe the interaction. 
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gluten and their intrinsic interactions with other autoimmune and 
chronic diseases is of utmost importance for researchers that intend to 
discover novel gluten-related therapies or prevent nutritional compli-
cations. Besides, in terms of alimentary disease and diets, gluten-related 
information is one of the dietary topics with the most volume of scien-
tific publications, and with the most volume of misinformation and 
disinformation, producing a high economic and human cost. 

In this line, this work presented a knowledge base reconstruction 
with a graph representation and integration methodology to visualise 
and analyse the up-to-date literature related to gluten protein and 
evaluate the evidenced experimental health interactions discussed in the 
literature. The practical relevance of the presented platform lies in the 
processing of 13,238 PubMed articles, using manual curation as well as 
fully text-mining workflows, for the reconstruction of the first gluten 
knowledge database based on the literature. For this purpose, a broad 
range of domain ontologies and state-of-the-art NER taggers were 
employed to identify and normalise domain concepts and semantical 
relations. Consequently, 9000 manual interactions were annotated and a 
total of 42,000 potential gluten-related interaction categories were 
automatically inferred using diverse machine-learning models. 

In this way, this literature-based database structures and includes a 

broad range of practical knowledge related to gluten protein. The pro-
posed graph representation technique, combined with the bibliometrics 
and social media integration, provides a novel enhanced way to search, 
visualise and analyse information on this topic. It is expected that the 
developed platform assists scientists to explore gluten-related evidence, 
discover patterns, explore the less researched scientific pathways or 
establish novel hypotheses in the same way that similar existing 
evidence-based databases in other domains allow. In addition, the pro-
cessed knowledge database and the visualisation platform could help 
individuals and patients to easily and quickly access evidence-based 
knowledge and assist them to contrast and evaluate the disinformation 
and misinformation existing on social media. 

Regarding the provided results, the reconstructed knowledge base 
has the potential to assist in the revision and analysis of years of gluten 
research, discovering relevant works and evidenced research in-
teractions to support future studies and new therapeutic and preventive 
strategies. Finally, although automated document processing cannot 
completely replace human judgement, it can save substantial processing 
time and effort and enables the curation of a large number of articles on 
a specific topic in time. Besides the automatic processing of the literature 
combined with knowledge representation methodologies proposed 

Fig. 7. Relation graph showing the most discovered interactions concerning diets, foods, compounds, cell types and organisms and viruses. The vertex 
colour denotes the biomedical domain category annotated (e.g., disease) whereas the vertex size is dependent on its degree (i.e., the number of annotated in-
teractions), the edge colour represents the relation category annotated (e.g., inhibition) whereas the width of the edge indicates the number of documents that 
describe the interaction. 
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Fig. 8. Annotated biomedical concept comparison. Depicts the top annotated concepts by category comparing the years before 2000 and later. It was obtained 
from the reconstruction of the identified concepts found in the gluten-related literature. Rendering is based on the Circle Pack layout. The vertex colour denotes the 
semantic category whereas the vertex size represents the number of documents that contain the identified concept. (A) Top annotated concepts comparison per 
category. (B) Top annotated concepts before 2000. (C) Top annotated concepts after 2000. 

Fig. 9. Literature knowledge and social media discussion related to autism and Alzheimer diseases processed by GlutKNOIS. (A) Examples of messages that 
could include misinformation. (B) Knowledge network of biomedical relations found in the gluten literature related to autism and Alzheimer diseases. (C) Social 
media information related to the search query. 
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condensing the information, making it more manageable and visual-
isable to easily understand and infer new hypotheses. 

To conclude, it is valuable to highlight that the literature-based 
knowledge of GlutKNOIS may extend beyond researchers to include 
the wider society. With its efficient visual data representation capabil-
ities and user-friendly interface, the knowledge base enables agile 
exploration of extensive scientific research, empowering individuals 
with varying levels of scientific expertise to use it as a valuable reference 
point to discover experimental advancements related to their gluten- 
related field of interest. Therefore, the platform has the potential to 
facilitate greater engagement and participation in scientific advance-
ments and promote a more informed society. 

5.3. Future work 

Future work will be centred on the integration of new metadata 
knowledge such as demographic information about the authors (e.g., 
infer their gender or their country), the improvement of the ontology 
normalisation, and the integration of journal metadata such as the 
impact factor or their quartile. In terms of knowledge representation, 
upcoming developments will be focused on representing the collabora-
tion of the different agencies, authors or countries using also knowledge 
graphs. Taking into account the literature processed this database could 
be expanded with the integration of new literature knowledge related to 
other alimentary allergies or autoimmune affections that have been 
associated with gluten. 
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[80] P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou, J. Tsujii, BRAT: a web- 

based tool for NLP-assisted text annotation, in: Proc. Demonstr. 13th Conf. Eur. 
Chapter Assoc. Comput. Linguist. (2012) 102–107. https://dl.acm.org/citation. 
cfm?id=2380942 (accessed November 2, 2017). 

[81] C.T. Lopes, M. Franz, F. Kazi, S.L. Donaldson, Q. Morris, G.D. Bader, Cytoscape 
Web: an interactive web-based network browser., Bioinformatics. 26 (2010) 
2347–2348. https://doi.org/10.1093/bioinformatics/btq430. 

[82] K. Collins, D. Shiffman, J. Rock, S. Goffredo, How are scientists using social media 
in the workplace? PLoS One 11 (10) (2016), e0162680. https://doi.org/10.1371/J 
OURNAL.PONE.0162680. 

[83] Social media for scientists, Nat. Cell Biol. 2018 2012. 20 (2018) 1329–1329. 
https://doi.org/10.1038/s41556-018-0253-6. 

[84] H.M. Bik, M.C. Goldstein, An introduction to social media for scientists, PLOS Biol 
11 (2013), e1001535. https://doi.org/10.1371/JOURNAL.PBIO.1001535. 

[85] V. Suarez-Lledo, J. Alvarez-Galvez, Prevalence of health misinformation on social 
media: systematic review, J. Med. Internet Res. 23(1) (2021) e17187. <https:// 
doi.org/10.2196/17187>. 

[86] J. Dong, S. Horvath, Understanding network concepts in modules, BMC Syst. Biol. 
1 (2007), https://doi.org/10.1186/1752-0509-1-24. 

[87] G. Serena, S. Camhi, C. Sturgeon, S. Yan, A. Fasano, The role of gluten in celiac 
disease and type 1 diabetes, Nutrients. 7 (2015) 7143–7162, https://doi.org/ 
10.3390/NU7095329. 

[88] O.N. Nadhem, G. Azeez, R.D. Smalligan, S. Urban, Review and practice guidelines 
for celiac disease in 2014, Postgrad. Med. 127 (2015) 259–265. <https://doi.org/ 
10.1080/00325481.2015.1015926>. 

[89] R. Minelli, F. Gaiani, S. Kayali, F. Di Mario, F. Fornaroli, G. Leandro, A. Nouvenne, 
F. Vincenzi, G.L. De’angelis, Thyroid and celiac disease in pediatric age: a literature 
review, Acta Biomed. 89 (2018) 11–16. <https://doi.org/10.23750/abm.v89i9- 
S.7872>. 

[90] H.J. Freeman, Endocrine manifestations in celiac disease, World J. Gastroenterol. 
22 (2016) 8472–8479, https://doi.org/10.3748/wjg.v22.i38.8472. 

[91] J.Z. Zhang, D. Abudoureyimu, M. Wang, S.R. Yu, X.J. Kang, Association between 
celiac disease and vitiligo: a review of the literature, World J. Clin. Cases. 9 (2021) 
10430–10437. https://doi.org/10.12998/wjcc.v9.i34.10430. 

[92] F. Valitutti, C.M. Trovato, M. Montuori, S. Cucchiara, Pediatric celiac disease: 
follow-up in the spotlight, Adv. Nutr. 8 (2017) 356–361, https://doi.org/10.3945/ 
an.116.013292. 

[93] E.S. Lander, L.M. Linton, B. Birren, C. Nusbaum, M.C. Zody, J. Baldwin, K. Devon, 
K. Dewar, M. Doyle, W. FitzHugh, R. Funke, D. Gage, K. Harris, A. Heaford, 
J. Howland, L. Kann, J. Lehoczky, R. LeVine, P. McEwan, K. McKernan, J. Meldrim, 
J.P. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos, 
A. Sheridan, C. Sougnez, N. Stange-Thomann, N. Stojanovic, A. Subramanian, 
D. Wyman, J. Rogers, J. Sulston, R. Ainscough, S. Beck, D. Bentley, J. Burton, 
C. Clee, N. Carter, A. Coulson, R. Deadman, P. Deloukas, A. Dunham, I. Dunham, 
R. Durbin, L. French, D. Grafham, S. Gregory, T. Hubbard, S. Humphray, A. Hunt, 
M. Jones, C. Lloyd, A. McMurray, L. Matthews, S. Mercer, S. Milne, J.C. Mullikin, 
A. Mungall, R. Plumb, M. Ross, R. Shownkeen, S. Sims, R.H. Waterston, R. 
K. Wilson, L.W. Hillier, J.D. McPherson, M.A. Marra, E.R. Mardis, L.A. Fulton, A. 
T. Chinwalla, K.H. Pepin, W.R. Gish, S.L. Chissoe, M.C. Wendl, K.D. Delehaunty, T. 
L. Miner, A. Delehaunty, J.B. Kramer, L.L. Cook, R.S. Fulton, D.L. Johnson, P. 
J. Minx, S.W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. Richardson, 
S. Wenning, T. Slezak, N. Doggett, J.-F. Cheng, A. Olsen, S. Lucas, C. Elkin, 
E. Uberbacher, M. Frazier, R.A. Gibbs, D.M. Muzny, S.E. Scherer, J.B. Bouck, E. 
J. Sodergren, K.C. Worley, C.M. Rives, J.H. Gorrell, M.L. Metzker, S.L. Naylor, R. 
S. Kucherlapati, D.L. Nelson, G.M. Weinstock, Y. Sakaki, A. Fujiyama, M. Hattori, 
T. Yada, A. Toyoda, T. Itoh, C. Kawagoe, H. Watanabe, Y. Totoki, T. Taylor, 
J. Weissenbach, R. Heilig, W. Saurin, F. Artiguenave, P. Brottier, T. Bruls, 
E. Pelletier, C. Robert, P. Wincker, A. Rosenthal, M. Platzer, G. Nyakatura, 
S. Taudien, A. Rump, D.R. Smith, L. Doucette-Stamm, M. Rubenfield, K. Weinstock, 
H.M. Lee, JoAnn Dubois, H. Yang, J. Yu, J. Wang, G. Huang, J. Gu, L. Hood, 
L. Rowen, A. Madan, S. Qin, R.W. Davis, N.A. Federspiel, A.P. Abola, M.J. Proctor, 
B.A. Roe, F. Chen, H. Pan, J. Ramser, H. Lehrach, R. Reinhardt, W.R. McCombie, 
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