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Abstract

Background: In-silico identification of potential disease genes has become an essential aspect of drug target

discovery. Recent studies suggest that one powerful way to identify successful targets is through the use of

genetic and genomic information. Given a known disease gene, leveraging intermolecular connections via

networks and pathways seems a natural way to identify other genes and proteins that are involved in similar

biological processes, and that can therefore be analysed as additional targets.

Results: Here, we systematically tested the ability of 12 varied network-based algorithms to identify target

genes and cross-validated these using gene-disease data from Open Targets on 22 common diseases. We

considered two biological networks, six performance metrics and compared two types of input gene-disease

association scores. We also compared several cross-validation schemes and showed that different choices had a

remarkable impact on the performance estimates. When seeding biological networks with known drug targets,

we found that machine learning and diffusion-based methods are able to find novel targets, showing around 2-4

true hits in the top 20 suggestions. Seeding the networks with genes associated to disease by genetics resulted

in poorer performance, below 1 true hit on average. We also observed that the use of a larger network,

although noisier, improved overall performance.

Conclusions: We conclude that machine learning and diffusion-based prioritisers are suited for drug discovery

in practice and improve over simpler neighbour-voting methods. We also demonstrate the large effect of several

factors on prediction performance, especially the validation strategy, input biological network, and definition of

seed disease genes.
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Background

The pharmaceutical industry faces considerable challenges in the efficiency of com-

mercial drug research and development [1] and in particular in improving its ability

to identify future successful drug targets.

It has been suggested that using genetic association information is one of the best

ways to identify such drug targets [2]. In recent years, a large number of highly

powered GWAS studies have been published for numerous common traits (see for

example [3] or [4]) and have yielded many candidate genes. Further potential targets

can be identified by adding contextual data to the genetic associations, such as genes

involved in similar biological processes [5, 6]. Biological networks and biological

pathways can be used as a source of contextual data.

Biological networks are widely used in bioinformatics and can be constructed from

multiple data sources, ranging from macromolecular interaction data collected from

the literature [7] to correlation of expression in transcriptomics or proteomics sam-

ples of interest [8]. A large number of interaction network resources have been made

available over the years, many of which are now in the public domain, combining

thousands of interactions in a single location [9, 10]. They are based on three dif-

ferent fundamental types of data: (1) data-driven networks such as those built by

WGCNA [8] for co-expression; (2) interactions extracted from the literature using

a human curation process as exemplified by IntAct [11] or BioGRID [12]; and (3)

interactions extracted from the literature using text mining approaches [13].

On the other hand, a plethora of network analysis algorithms are available for

extracting useful information from such large biological networks in a variety of

contexts. Algorithms range in complexity from simple first-neighbour approaches,

where the direct neighbours of a gene of interest are assumed to be implicated in

similar processes [14], to machine learning (ML) algorithms designed to learn from

the features of the network to make more useful biological predictions (e.g. [15]).

One broad family of network analysis algorithms are the so-called Network Prop-

agation approaches [16], used in contexts such as protein function prediction [17],

disease gene identification [16] and cancer gene mutation identification [18]. In this

paper, we perform a systematic review of the usefulness of network analysis methods

for the purpose of identification of disease genes susceptible of being drug targets.

Claims that such methods are helpful in that context have been made on numerous

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/439620doi: bioRxiv preprint first posted online Oct. 11, 2018; 

http://dx.doi.org/10.1101/439620
http://creativecommons.org/licenses/by/4.0/


Picart-Armada et al. Page 3 of 28

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

occasions but a comprehensive validation study is lacking. One major challenge in

doing such a study is that it is not straightforward to define a list of known disease

genes to be used for this purpose.

To address this, the Open Targets collaboration has been setup between phar-

maceutical companies and public institutions to collect information on known drug

targets and to help identify new ones [19]. A dedicated internet platform provides

a free-to-use accessible resource summarising known data on gene-disease relation-

ships from a number of data sources (e.g. known released drugs, genetic associations

from GWAS, etc) [19].

The purpose of this work is to quantify the performance of network-based meth-

ods to prioritise novel targets, using various networks and validation schemes, and

aiming at a faithful reflection of a realistic drug development scenario. We select

a number of network approaches that are representative of several classes of algo-

rithms, and test their ability to recover known disease genes by cross-validation.

We benchmark multiple definitions of disease genes, computational methods, bi-

ological networks, validation schemes and performance metrics. We account for all

possible combinations of such factors and derive guidelines for future disease gene

identification studies.

Results

Benchmark framework

Our general approach, summarised in figure 1, consisted in using a biological net-

work and a list of genes with prior disease-association scores as input to a network

propagation approach. We used three cross-validation schemes -two take into ac-

count protein complexes- in which some of the prior disease-association scores are

hidden. The desired output was a new ranking of genes in terms of their association

scores to the disease. Such ranking was compared to the known disease genes in

the validation fold using several performance metrics. Given the amount of design

factors and comparisons, the metrics were analysed through explorative additive

models (see Methods). Alternatively, we provide plots on the raw metrics in the

supplement, stratified by method in figures S10 and S11 or by disease in figures S12

and S13.
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We considered 2 metrics (AUROC and top 20 hits) and 2 input types (known drug

target genes and genetically associated genes), resulting in a total of 4 combinations,

each described through an additive main effect model. Another 4 metrics were

explored and can be found in the supplement (figure S17 and tables S6, S7).

Interactions were explored, but they did not provide any added value for the

extra complexity (see figure S18 from the supplement). The metrics used were the

dependent variables, while the regressors included the prediction method, the CV

scheme, the network and the disease.

Performance using known drug targets as input

Figure 2 describes the additive models for AUROC and top 20 hits, and using known

drug targets as input. Figure 3 contains their predictions for each method, network

and cross validation scheme with 95% confidence intervals, averaged over diseases.

The models are complex and we therefore review each main effect separately.

AUPRC (quasi-binomial model) and top 20 hits (quasi-poisson) behave alike, as

can be observed by their similar ranking of model estimates in Figure 2. For inter-

pretability within real scenarios, only top 20 hits is shown in the main body. The

standard AUROC (quasi-binomial) clearly led to different conclusions and is kept

throughout the results section for comparison. The remaining metrics (AUPRC,

pAUROC 5%, pAUROC 10% and top 100 hits) result in similar method prioritisa-

tions as top 20 hits, see figure S17. Detailed models can be found in the supplement,

indexed by tables S6 and S7.

Comparing cross-validation schemes

Whether protein complexes were properly taken into account when performing the

cross-validation (see Methods) stood out as a key influence on the quality of predic-

tions: there was a dramatic reduction in performance for most methods when using

a complex-aware cross-validation strategy. For instance, method rf applied on the

STRING network dropped from almost 12 correct hits in the top 20 predicted dis-

ease genes when using our classic cross-validation scheme down to fewer than 4.5

when using either of our complex-aware cross-validation schemes. Likewise, table S5

from the supplement ratifies that only the classic cross validation splits complexes.

Our data suggests that the performance drop when choosing the appropriate

validation strategy is comparable to the performance gap of competitive methods
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versus a simple neighbour-voting baseline (see figure 2). This highlights the im-

portance of carefully controlling for this bias when estimating the performance of

network-based disease gene prediction methods. Overall, the classic cross-validation

scheme gave biased estimates in our dataset, whereas our block and representative

cross-validation schemes had similar effects on the prediction performance. Method

ranking was independent of the cross validation choice thanks to the use of an addi-

tive model. And since both the block and representative schemes make theoretical

sense, we chose to focus on results from the block scheme in the rest of this study.

Comparing networks

We found that using STRING as opposite to OmniPath improved overall perfor-

mance of network-based disease gene prediction methods. Our models for top 20

hits quantified this effect as noticeable although less important than that of the

cross validation strategy. For reference, method rf obtains about 3 true hits under

both complex-aware strategies in OmniPath. It has been previously shown that the

positive effect on predictive power of having more interactions and coverage in a

network can outweigh the negative effect of increased number of false positive in-

teractions [20], which is in line with our findings. The authors also report STRING

among the best resources to discover disease genes, which is a finding we reproduce

here.

We focus on the STRING results in the rest of the text.

Comparing methods

Having identified the optimal cross-validation scheme and network for our bench-

mark in the previous sections, we quantitatively compared the performance of the

different methods.

First, network topology alone had a slight predictive power, as method pr (PageR-

ank approach that ignores the input gene scores) showed better performance than

the random baseline under all the metrics. The randomised diffusion randomraw

lied between random and pr in performance. Both facts support the existence of an

inherent network topology-related bias among the positives that benefits diffusion-

based methods.

Second, the basic GBA approach from EGAD had an advantage over the input-

näıve baselines pr, randomraw and random. It also outperformed prioritizing genes
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using other Open Targets data stream scores such as genes associated to disease

from pathways or from the literature (see supplement, table S19).

Most diffusion-based and ML-based methods outperformed EGAD. Results from

top 20 hits suggest using rf for the best performance followed by, in order: raw and

bagsvm, z and svm (main models panel in Figure 6).

To formally test the differences between methods, we carried a Tukey’s multi-

ple comparison test on the model coefficients (Figure 5) as implemented in the R

package multcomp [21]. Although such differences were in most cases statistically

significant, even with such a strong multiplicity adjustment, their actual effect size

or magnitude can be modest in practice, see Figures 3 and 6.

The ranking of methods was similar when using the metrics AUPRC, pAUROC

and top k hits (see supplement, figure S17) and is only intended to be a general

reference, given the impact of the problem definition, cross validation scheme and

the network choice.

With AUROC on the other hand, rf lost its edge whilst most diffusion-based

and ML-based methods appeared technically tied. Despite its theoretical basis, in-

terpretability and widespread use in similar benchmarks, these results support the

assertion that AUROC is a sub-optimal choice in drug discovery practical scenarios.

Figure 4 further shows how the different methods compare with one another. Dis-

tances between each pair of method in terms of their top 100 novel predictions were

represented graphically. From this we observe that the supervised bagged SVM ap-

proach (bagsvm) behaves similarly to the simple diffusion approach (raw), reflecting

the fact that they use the same kernel. We also observe that diffusion approaches do

not necessarily produce similar results (compare for example raw and z). And that

interestingly, methods EGAD (arguably one of the simplest) and COSNet (arguably

one of the most complex) seemed to result in similar predictions. Fully supervised

and semi-supervised approaches largely group in the top right hand quadrant of the

STRING plot away from diffusion methods, possibly showing some shared greater

potential for “learning effect” with the larger network.

Interestingly, when comparing overall performances shown in figure 6 with the

prediction differences from the MDS plot (figure 4), it appears that the better

performing methods may be doing well for different reasons as they do not occur

within the same region of the plot (e.g. rf and raw). MDS plots on the eight possible
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combinations of network, input type and inclusion of seed genes are displayed in

the supplementary figures S15 and S16.

Regarding the STRING network and the block validation scheme, we fitted six

additive models (one per metric) to the known drug target data (see supplement,

table S7) and prioritised the methods (reduced models in figure 6). These reduced

models better described this particular scenario, as they were not forced to fit the

trends in all networks and validation schemes in an additive way. Considering the

top 20 hits, rf and svm were the optimal choices, followed by wsld and knn.

Comparing diseases

We next examine performance by disease. The top 20 hits model in figure 2 shows

that allergy (the figure’s baseline reference), ulcerative colitis and rheumatoid arthri-

tis (group I) are the diseases for which prediction of disease genes was worst, whereas

cardiac arrhythmia, Parkinson’s disease, stroke and multiple sclerosis (group II) are

those for which it was best. As shown in figure 7, group I diseases had fewer known

disease genes and lower modularity compared to group II diseases.

Prediction methods worked better when more known disease genes were available

as input in the network, with two possible underlying reasons being the greater

data availability to train the methods, and the natural bias of top 20 hits towards

datasets with more positives. Likewise, a stronger modularity within disease genes

justifies the guilt-by-association principle and led to better performances. In turn,

the number of genes and the modularity were positively correlated, see supplement,

figure S14.

Performance using genetic associations as input

Using genetically associated genes as input to a prediction approach to find known

drug targets mimicked a realistic scenario where novel genetic associations are

screened as potential targets. However, inferring known drug targets through the

indirect genetic evidence posed problems to prediction strategies, especially those

based on machine learning. Learning is done using one class of genes in order to pre-

dict genes that belong to another class, and the learning space suffers from intrinsic

uncertainties in the genetic associations to disease.

Consequently, we observed a major performance drop on all the prioritisation

methods: using any network and cross-validation scheme, the predicted top 20 hits
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were practically bounded by 1. This was more pronounced on supervised machine

learning-focused strategies, as rf and svm lost their edge on diffusion-based strate-

gies. The fact that the genetic associations of the validation fold were hidden further

hindered the predictions and can be a cause of our pessimistic performance esti-

mates.

Comparing cross-validation schemes

For reference, we also ran all three cross validation schemes on the genetic data to

quantify and account for complex-related bias. The models confirm that, contrary

to the drugs-related input, the differences between the results for the different cross-

validation schemes were rather modest. For example, method raw with the STRING

network attains 0.59-0.64, 0.50-0.54 and 0.37-0.40 hits in the top 20 under the

classical, block and representative cross-validation strategies. The slightly larger

negative effect on top 20 hits observed with the representative scheme is expected

because the number of positives that act as validation decreased and this metric

is biased by the class imbalance. The agreement between method ranking using

AUPRC and top 20 hits was less consistent, possibly due to the performance drop,

whilst AUROC again yielded quite a different ranking. Further data can be found

in the supplement, tables S15 and S16.

Comparing networks

The change in performance for using the OmniPath network instead of the filtered

STRING network was also limited. For AUROC the effect was negative, whereas for

the top 20 hits metric the performance improved. Method raw changed from 0.50-

0.54 top 20 hits in STRING to 0.61-0.66 in OmniPath under the block validation

strategy.

Comparing methods

To be consistent with the drugs section, we take as reference the block cross-

validation strategy and the STRING network.

The baseline approach pr that effectively makes use of the network topology alone

proved difficult to improve upon, with 0.43-0.47 expected true hits in the top 20.

Methods raw and rf respectively achieved 0.50-0.54 and 0.23-0.26 – although sig-

nificant, the difference in practice would be minimal. The best performing method
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was mc with 0.65-0.7 hits. All the performance estimates can be found in the sup-

plement, table S16. To give an idea of the effort that would be required in a realistic

setting to find novel disease genes, the number of correct hits in the top 100 hits

was 3.29-3.45 with the best performing method (in this case, ppr), against 2.25-2.38

of pr.

Two main conclusions can be drawn from these results. First, the network topology

baseline retained some predictive power upon which most diffusion-based methods,

as well as machine-learning approaches COSNet and bagsvm, only managed to add

minor improvements, if any. Second, drug targets could still be found by combining

network analysis and genes with genetic associations to disease, but with a substan-

tially lower performance and with a marginal gain compared to a baseline approach

that would only use the network topology to find targets (e.g. by screening the most

connected genes in the network).

It is worth noting that gene-disease genetic association scores themselves have

drawbacks and that better prediction accuracy could result as genetic association

data improves.

Conclusions

We performed an extensive analysis of the ability of network-based approaches to

identify novel disease genes. We exhaustively explored the effect of different factors

including the biological network, the definition of disease genes, and the statistical

framework being used to evaluate methods performance. We show that carefully

choosing an appropriate cross-validation framework and suitable performance met-

ric have an important effect in evaluating the utility of these methods.

Our main conclusion is that network-based drug target discovery seems effective,

reflecting the fact that drug targets tend to cluster within the network. This in

turn may of course be due to the fact that the scientific community has so far

been focusing on testing the same proven mechanisms. In a strict cross-validation

setting, we found that even the most basic guilt-by-association method was useful,

with ∼2 correct hits in its top 20 predictions, compared to ∼0.1 when using a

random ranking. The best diffusion based algorithm improved that figure to ∼3.75,

and the best overall performing method was a random forest classifier on network-

based features (∼4.4 hits). Leading approaches can be notably different in terms
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of their top predictions, suggesting potential complementarity. We found a better

performance when using a network with more coverage at the expense of more false

positive interactions. In a more conservative network, random forest performance

dropped to ∼3.1 hits. Comparing performance on different diseases shows that the

more known target genes, and the more clustered these are in the network, the

better the performance of network-based approaches for finding novel targets for it.

We also explored the prediction of known drug target genes by seeding the network

with an indirect data stream, in particular, genetic association data. Here, the best

performing methods were diffusion-based and presented a statistically significant,

but marginal, improvement over approaches that only look at network connectivity.

We conclude that network propagation methods can help identify novel disease

genes, but that the choice of the input network and the seed scores on the genes

needs careful consideration. Based on our approach and endorsed benchmarks, we

recommend the use of methods employing representations of diffusion-based in-

formation (the MashUp network-based features and the diffusion kernels), namely

random forest, the support vector machine variants, and raw diffusion algorithms

for optimal results.

Methods

Selection of methods for investigation

Algorithms were selected for validation based on the following criteria:

1 published in a peer-reviewed journal, with evidence of improved performance

in gene disease prediction relative to contenders,

2 implemented as a well documented open source package, that is efficient, ro-

bust and usable within a batch testing framework,

3 directly applicable for gene disease identification from a single gene/protein

interaction network, without requiring fundamental changes to the approach

or additional annotation information and

4 capable of outputting a ranked list of individual genes (as opposed to gene

modules for example).

In addition, we selected methods that were representative of a diverse panel of

algorithms, including diffusion-based approaches, supervised learning approaches,

and a number of baseline approaches (see table 1).
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Testing framework, algorithms and parameterisation

All tests and batch runs were set-up and conducted using the R statistical pro-

gramming language [22]. When no R package was available, the methodology was

re-implemented, building upon existing R packages whenever possible. Standard

R machine learning libraries were used to train the support vector machine and

random forest classifiers. Only the MashUp algorithm [23] required feature gener-

ation outside of the R environment, using the Matlab code from their publication.

Further details on the methods implementation can be found in the supplement,

section “Method details”.

EGAD [24], a pure neighbour-voting approach, was used here as a baseline com-

parator.

Diffusion (propagation) methods are central in this study. We used the random

walk-based personalised PageRank [25], previously used in similar tasks [26], as

implemented in igraph [27]. The remaining diffusion-based methods were run on

top of the regularised Laplacian kernel [28], computed through diffuStats [29]. We

included the classical diffusion raw, a weighted approach version gm and two statis-

tically normalised scores (mc and z), as implemented in diffuStats. In the scope of

positive-unlabelled learning [30, 31], we included the kernelised scores knn and the

linear decayed wsld from RANKS [32]. Closing this category, we implemented the

bagging Support Vector Machine approach from ProDiGe1 [33], here bagsvm.

Purer ML-based methods were also included. On one hand, network-based features

were generated using MashUp [23] and two classical classifiers were fitted to them,

based on caret [34] and mlr [35]. These are svm, the Support Vector Machine as

implemented in kernlab [36], and rf, the Random Forest found in the randomForest

package [37]. On the other hand, we tried the parametric Hopfield recurrent neural

network classifier in the COSNet R package [38, 39].

Finally, we defined three naive baseline methods: (1) pr, a classic problem-näıve

‘non-personalised’ PageRank implementation where input scores on the genes are

ignored; (2) randomraw, which applies the raw diffusion approach to randomly per-

muted input scores on the genes; and (3) random, a uniform re-ranking of input

genes without any network propagation. The inclusion of pr and randomraw al-

lowed us to quantify the predictive power of the network topology alone, without

any consideration for the input scores on the genes.
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Biological networks

The biological network used in the validation is of critical importance as current

network resources contain both false positive and false negative interactions, and

these will affect any subsequent predictions [20].

Here, we used two human networks with different general properties, one more

likely to contain false positive interactions (STRING [40]), and another more con-

servative (OmniPath [41]), to test the effect of the network itself on network prop-

agation performance. We further filtered STRING [40] to retain only a subset of

interactions. Having tested several filters, we settled upon high-confidence inter-

actions (combined score > 700) with some evidence from the “Experiments” or

“Databases” data sources (see supplement, table S2). Applying these filters and

taking the largest connected component resulted in a connected network of 11,748

nodes and 236,963 edges. Edges were assigned weights between 0 and 1 by rescaling

the STRING combined score.

We did not filter the OmniPath network [41]. After removing duplicated edges

and taking the largest connected component, the OmniPath network contained

8,580 nodes and 42,145 unweighted edges.

Disease gene data

We used the Open Targets platform [19] to select known disease-related genes. In

this analysis we define disease-related genes are those reported in Open Targets as

being the target of a known drug against the disease of interest, or as those with

a genetic association of sufficient confidence with the disease. Associations were bi-

narised: any non-zero drugs-related association was considered positive, implying

that the methods would predict genes on which a drug has been essayed, regardless

of whether the drug was eventually approved. Likewise, only genetic associations

with an Open Targets score above 0.16 (see supplement, figure S1) were consid-

ered positive. We considered exclusively common diseases with at least 1,000 Open

Targets associations, of which a minimum of 50 could be based on known released

drugs and 50 on genetic associations, in order to avoid empty folds in the nested

cross-validations. By applying these filters, we generated a list of phenotypes and

diseases which we then manually curated to remove cancers (where causal genetic

mechanisms can differ from those of other common diseases), non-disease pheno-
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type terms (e.g. “body weight and measures”) as well as vague or broad terms

(e.g.“cerebrovascular disorder” or “head disease”) and infectious diseases. This left

22 diseases considered in this study (table 2). Further descriptive material on the

role of disease genes within the STRING network can be found in the section “De-

scriptive disease statistics in the STRING network” from the supplement.

Validation strategies

Input Gene Scores

We used the binarised drug association scores and genetic association scores from

Open Targets as input gene-level scores to seed the network propagation analyses

(figure 8) and test their ability to recover known drug targets. With the first ap-

proach (subfigure (1) in figure 8), we tested the predictive power of current network

propagation methods for drug target identification using a direct source of evidence

(known drug targets). In the second approach (subfigure (2) in figure 8), we assessed

the ability of a reasonable but indirect source of evidence – genetic associations to

disease – in combination with network propagation to recover known drug targets.

Metrics

Methods were systematically compared using standard performance metrics. The

Area under the Receiver Operating Characteristic curve (AUROC) is extensively

used in the literature for binary classification of disease genes [42], but can be

misleading in this context given the extent of the class imbalance between target and

non-target genes [43]. We however included it in our benchmark for comparison with

previous literature. More suitable measures of success in this case are Area under

the Precision-Recall curve (AUPRC) [43] and partial AUROC (pAUROC) [44].

AUROC, AUPRC and pAUROC were computed with the precrec R package [45].

We also included top 20 hits, defined as the number of true positives in the top

20 predicted genes (proportional to precision at 20). It is straightforward, intuitive

and most likely to be useful in practice, such as a screening experiment where only

a small number of predicted hits can be assayed.

We considered another 3 metrics, reported only in Supplement, i.e. partial AU-

ROC up to 5% FPR, partial AUROC up to 10% FPR, and number of hits within

the top 100 genes.
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Cross validation schemes and protein complexes

Standard (stratified) and modified k-fold cross-validation were used to estimate

the performance of network-based methods. Folds were based upon known drugs-

related genes, regardless of which type of input was used (see figure 8). Genes in

the training fold were negatively or positively labelled according to the input type,

whereas genes in the validation fold were left unlabelled.

A fundamental challenge we faced when applying cross-validation to this prob-

lem was that known drug targets often consist in protein complexes, e.g. multi-

protein receptors. Drug-target associations typically have complex-level resolution.

The drug target data from Open Targets comes from ChEmbl [46], in which all the

proteins in the targeted complex are labelled as targets.

If left uncorrected, this could bias our cross-validation results: networks densely

connect proteins within a complex, random folds would frequently split positively

labelled complexes between train and validation, and therefore network-based meth-

ods would have an unfair advantage at spotting positive hits in the training folds.

In view of this, we benchmarked the methods under three cross validation strate-

gies: a standard cross validation (A) in line with usual practice and two (B, C)

complex-aware schemes (figure 9) addressing non-independence between folds when

the known drug targets act as input.

Strategy (A), called classic, was a regular stratified k-fold repeated cross-

validation. We used k = 3 folds, averaging metrics over each set of folds, repeated

25 times (see also figure 1).

Strategy (B), named block, performed a repeated cross validation while explicitly

preventing any complexes that contain disease genes to be split across folds. The key

point is that, where involved, shuffling was performed at the complex level instead

of the gene level – overlapping complexes that shared at least one known drug target

were merged into a larger pseudo-complex before shuffling. Fold boundaries were

chosen so that no complex was divided into two folds, while keeping them as close

as possible to those that would give a balanced partition, see figure 9. Nevertheless,

a limitation of this scheme is that it can fail to balance fold sizes in the presence

of large complexes (see supplement, figure S9). For example, chronic obstructive

pulmonary disease exhibited imbalanced folds, as 50 of the proteins involved belong

to the Mitochondrial Complex I
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Strategy (C), referred to as representative, selected only a single representative

or prototype gene for each complex to ensure that gene information in a complex

was not mixed between training and validation folds. In each repetition of cross val-

idation, after merging the overlapping complexes, a single gene from each complex

was chosen uniformly at random and kept as positive. The remaining genes from the

complexes involved in the disease were set aside from the training and validation

sets, in order (1) not to mislead methods into assuming their labels were negative

in the training phase, and (2) not to overestimate (if set as positives) or penalise

(if set as negatives) methods that ranked them highly, as they were expected to do

so. This strategy kept the folds balanced, but at the expense of a possible loss of

information by summarising each complex by a single gene at a time, reducing the

number of positives for training and validation.

Additive performance models

For a systematic comparison between diseases, methods, cross-validation schemes

and input types, we fitted an additive regression model to the performance metrics of

each (averaged) fold from the cross-validation. The use of main effect models eased

the evaluation of each individual factor while correcting for the other covariates.

We modelled each metric f separately for each input type, not to mix problems of

different nature:

f ∼ cv scheme + network + method + disease

We fitted dispersion-adjusted logistic-like quasibinomial distributions for the met-

rics AUROC, pAUROC and AUPRC and quasipoisson for top k hits. The effect of

changing any of the four main effects is discussed in separate sub-sections in Re-

sults, following the order from the formula above. After a data driven choice of

cross-validation scheme and network we fitted reduced models within them for a

more accurate description:

f ∼ method + disease
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Qualitative methods comparison

The rankings produced by the different algorithms were qualitatively compared us-

ing Spearman’s footrule [47]. Distances were computed between all method ranking

pairs for each individual combination of disease, input type, network and for the

top N predicted genes, excluding the original seed genes. This part does not involve

cross validation – all known disease-associated genes were used for gene prioriti-

sations. Pairs of rankings could include genes uniquely ranked highly by a single

algorithm from the comparison, so mismatch counts (i.e. percentage mismatches)

between these rankings were also taken into account. Mismatches occur when a

gene features in the top N predictions of one algorithm and is missing from the

corresponding ranking by another algorithm. A compact visualisation of distance

matrices was obtained using a multi-view extension of MDS [48, 49, 50]. For this

we used the R package multiview [51] that generates a single, low-dimensional pro-

jection of combined inputs (disease, input and network).
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Figures

Tables

Table 1 List of methods included in this benchmark. Method identifiers are shortened method

names used throughout the text. Other columns are self-explanatory.

Method Identifier Method Name Method Class Implementation Reference

pr PageRank with a uniform prior Baseline igraph (Bioconductor [52, 53] package) [25]

random Random Baseline R (see text)

randomraw Random Raw Baseline R (see text)

EGAD Extending Guilt by Association’ by Degree Baseline EGAD (Bioconductor package) [24]

ppr Personalized PageRank Diffusion igraph (R package) [26]

raw Raw Diffusion Diffusion diffuStats (Bioconductor package) [54]

gm GeneMania-based weights Diffusion diffuStats (Bioconductor package) [55]

mc Monte Carlo normalised scores Diffusion diffuStats (Bioconductor package) [56]

z Z-scores Diffusion diffuStats (Bioconductor package) [57]

knn K nearest neighbours Semi-supervised learning RANKS (R package) [58]

wsld Weighted Sum with Linear Decay Semi-supervised learning RANKS (R package) [58]

COSNet COst Sensitive neural Network Supervised learning COSNet (R package) [38]

bagsvm Bagging SVM (based on ProDiGe1) Supervised learning kernlab (R package) [33]

rf Random Forest Supervised learning randomForest (R package) + Matlab (features) [23]

svm Support Vector Machine Supervised learning kernlab (R package) + Matlab (features) [23]
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Table 2 List of diseases included in this study. Diseases included in this study, with a minimum of

50 associated genes both in the known drug targets and the genetic categories (see text). The overlap

between these two lists of genes showed a degree of dependence between these two Open Targets

data streams for some of the diseases. P-values were calculated using Fisher’s exact test and are

reported without and with correction for false discovery rate (Benjamini and Hochberg [59]).

Disease N(genetic) N(drugs) Overlap P-value FDR

allergy 112 57 1 4.22e-01 4.42e-01

Alzheimers disease 208 103 4 1.10e-01 1.42e-01

arthritis 174 188 6 6.08e-02 1.03e-01

asthma 105 80 6 7.77e-05 5.70e-04

bipolar disorder 117 148 3 1.83e-01 2.12e-01

cardiac arrhythmia 75 177 6 9.15e-04 3.36e-03

chronic obstructive pulmonary disease (COPD) 154 116 6 4.18e-03 1.31e-02

coronary heart disease 111 171 4 7.86e-02 1.24e-01

drug dependence 75 143 6 2.96e-04 1.30e-03

hypertension 66 188 2 2.85e-01 3.14e-01

multiple sclerosis 71 167 4 1.83e-02 4.03e-02

obesity 69 194 3 1.06e-01 1.42e-01

Parkinson’s disease 55 145 0 1 1

psoriasis 131 105 7 1.68e-04 9.23e-04

rheumatoid arthritis 138 95 5 5.18e-03 1.42e-02

schizophrenia 410 163 17 5.44e-05 5.70e-04

stroke 90 156 3 1.18e-01 1.44e-01

systemic lupus erythematosus (lupus) 126 109 5 6.30e-03 1.54e-02

type I diabetes mellitus 87 106 3 4.39e-02 8.04e-02

type II diabetes mellitus 130 154 4 9.14e-02 1.34e-01

ulcerative colitis 136 51 7 1.81e-06 3.98e-05

unipolar depression 123 121 4 3.81e-02 7.63e-02

Additional Files

Additional file 1 — Supplement

This document contains complementary material that supports our claims in the main body. It includes topics such

as descriptive statistics, topological properties of disease genes, raw metrics plots, method details, MDS plots,

alternative performance metrics and further explicative models.

Additional file 2 — MDS plots

Complementary single-disease MDS plots and distance matrices.

Additional file 3 — Interactions html viewer

Stand-alone viewer to explore models with interaction terms.
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Figure 1 Benchmark overview. This work describes six performance metrics using two input

streams (genetic association and drug-based genes) to predict drug-based genes for 22 common

diseases. 3-fold cross validation (CV), repeated 25 times, was run under three CV strategies. The

gene identifiers in each fold are determined using only the drugs data, regardless of the input.

Two validation strategies are complex-aware and therefore needed this data to define the splits. 15

network-based methods (including 4 baselines) were evaluated, using two networks with different

properties, by modelling their performance, averaged on every CV round. The explanatory models

allowed hypothesis testing and a direct comparison between diseases, CV strategies, networks and

methods.
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Figure 2 Additive models for AUROC and top 20 hits. Each column corresponds to a different

model, whereas each row depicts the 95% confidence interval for each model coefficient. Rows are

grouped by the categorical variable they belong to: method, cv scheme, network and disease. Each

variable has a reference level, implicit in the intercept and specified in brackets: pr method,

classic validation scheme, STRING network and allergy. Positive estimates improve performance

over the reference levels, whereas negative ones reduce it. For example, the data suggest that

method rf performs better than the baseline using both metrics, and is the preferred method

using the top 20 hits. Switching from STRING to the OmniPath network, or from classic to block

or representative cross-validation, has a negative effect on both performance metrics. Specific

model estimates and confidence intervals can be found in the supplement, see tables S8 and S9.
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Figure 3 Performance predicted for AUROC and top 20 hits through the additive models. Each

row corresponds to a different model and error bars depicts the 95% confidence interval of the

additive model prediction, averaging over diseases. In bold, the main network (STRING) and

metrics (AUPRC, top 20 hits). A table with the exact values can be found in the supplement,

table S9.
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Figure 4 Multi-view MDS plot displaying the preserved Spearman’s footrule distances between

methods. The differential ranking of their top 100 novel predictions using known drug target

inputs are taken into account across all 22 diseases. Results are shown separately for the 2

networks considered in this study. Seed genes are excluded from the distance calculations.
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Figure 5 Pairwise contrasts on top 20 hits predicted by the quasipoisson model. Differences are

expressed in the model space. Most of the pairwise differences are significant (Tukey’s test, p

<0.05) – non-significant differences have been crossed out.
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Figure 6 Ranking of all the methods, using the predictions of the main and the reduced models

on the drugs input, STRING network, block cross validation and averaging over diseases. A

column-wise z-score on the predicted mean is depicted, in order to illustrate the magnitude of the

difference.
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Figure 7 Disease performance ranked by the number of known disease genes from known drug

data and modularity of known disease genes (obtained using the igraph package, see supplement,

figure S6). Modularity is a measure of the tendency of known disease genes to form modules or

clusters in the network. Diseases have been ranked using their coefficient from the top 20 hits

metric with known drug targets as input (x axis) and their modularity (y axis). As discussed in the

text, best predicted diseases tend to have longer gene lists and be highly modular.
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Figure 8 Input Gene Scores. Two input types were used to feed the prioritisation algorithms:

the binary drug scores and the binary genetic scores. CV folds were always calculated taking into

account the drugs input and reused on the genetic input.

Figure 9 Cross-validation schemes. Three cross-validation schemes were tested. (A):

standard k-fold stratified cross-validation that ignored the complex structure. (B): block k-fold

cross-validation. Overlapping complexes were merged and the resulting complexes were shuffled.

The folds were computed as evenly as possible without breaking any complex. (C): representative

k-fold cross validation. Overlapping complexes were merged and the resulting complexes from

which unique representatives were chosen uniformly at random. Then a standard k-fold

cross-validation was run on the representatives, but excluding the non-representatives from train

and validation.
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