179 research outputs found

    Storage and Search in Dynamic Peer-to-Peer Networks

    Full text link
    We study robust and efficient distributed algorithms for searching, storing, and maintaining data in dynamic Peer-to-Peer (P2P) networks. P2P networks are highly dynamic networks that experience heavy node churn (i.e., nodes join and leave the network continuously over time). Our goal is to guarantee, despite high node churn rate, that a large number of nodes in the network can store, retrieve, and maintain a large number of data items. Our main contributions are fast randomized distributed algorithms that guarantee the above with high probability (whp) even under high adversarial churn: 1. A randomized distributed search algorithm that (whp) guarantees that searches from as many as no(n)n - o(n) nodes (nn is the stable network size) succeed in O(logn){O}(\log n)-rounds despite O(n/log1+δn){O}(n/\log^{1+\delta} n) churn, for any small constant δ>0\delta > 0, per round. We assume that the churn is controlled by an oblivious adversary (that has complete knowledge and control of what nodes join and leave and at what time, but is oblivious to the random choices made by the algorithm). 2. A storage and maintenance algorithm that guarantees (whp) data items can be efficiently stored (with only Θ(logn)\Theta(\log{n}) copies of each data item) and maintained in a dynamic P2P network with churn rate up to O(n/log1+δn){O}(n/\log^{1+\delta} n) per round. Our search algorithm together with our storage and maintenance algorithm guarantees that as many as no(n)n - o(n) nodes can efficiently store, maintain, and search even under O(n/log1+δn){O}(n/\log^{1+\delta} n) churn per round. Our algorithms require only polylogarithmic in nn bits to be processed and sent (per round) by each node. To the best of our knowledge, our algorithms are the first-known, fully-distributed storage and search algorithms that provably work under highly dynamic settings (i.e., high churn rates per step).Comment: to appear at SPAA 201

    Study of the Topology Mismatch Problem in Peer-to-Peer Networks

    Get PDF
    The advantages of peer-to-peer (P2P) technology are innumerable when compared to other systems like Distributed Messaging System, Client-Server model, Cloud based systems. The vital advantages are not limited to high scalability and low cost. On the other hand the p2p system suffers from a bottle-neck problem caused by topology mismatch. Topology mismatch occurs in an unstructured peer-to-peer (P2P) network when the peers participating in the communication choose their neighbors in random fashion, such that the resultant P2P network mismatches its underlying physical network, resulting in a lengthy communication between the peers and redundant network traffics generated in the underlying network[1] However, most P2P system performance suffers from the mismatch between the overlays topology and the underlying physical network topology, causing a large volume of redundant traffic in the Internet slowing the performance. This paper surveys the P2P topology mismatch problems and the solutions adapted for different applications

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Random graphs as models of hierarchical peer-to-peer networks

    Get PDF
    Abstract This paper proposes the development and application of random graphs-based performance evaluation techniques to understand design trade-offs for hierarchical unstructured peer-to-peer networks. In particular, the connections between lower and higher level peers (that are known as leaves and ultra-peers in the Gnutella jargon) are modeled as a bipartite random graph while the overlay network used by ultra-peers to forward queries is modeled as a generalized random graph. Both the random graph models consider peers of either level as partitioned into classes; this feature is included in the model description to consider the mismatch between the logical topology of the application and the physical deployment of peers throughout the Internet. To assign realistic values to the input model parameters and to validate the model predictions we obtained snapshots of the Gnutella application topology at both levels and conducted simulation experiments on these snapshots. The paper highlights a few exploitations of the modeling technique with a particular focus on the evaluation of the impact of locality awareness on user and network performance measures

    Distributed Optimization of P2P Media Delivery Overlays

    Get PDF
    Media streaming over the Internet is becoming increasingly popular. Currently, most media is delivered using global content-delivery networks, providing a scalable and robust client-server model. However, content delivery infrastructures are expensive. One approach to reduce the cost of media delivery is to use peer-to-peer (P2P) overlay networks, where nodes share responsibility for delivering the media to one another. The main challenges in P2P media streaming using overlay networks include: (i) nodes should receive the stream with respect to certain timing constraints, (ii) the overlay should adapt to the changes in the network, e.g., varying bandwidth capacity and join/failure of nodes, (iii) nodes should be intentivized to contribute and share their resources, and (iv) nodes should be able to establish connectivity to the other nodes behind NATs. In this work, we meet these requirements by presenting P2P solutions for live media streaming, as well as proposing a distributed NAT traversal solution. First of all, we introduce a distributed market model to construct an approximately minimal height multiple-tree streaming overlay for content delivery, in gradienTv. In this system, we assume all the nodes are cooperative and execute the protocol. However, in reality, there may exist some opportunistic nodes, free-riders, that take advantage of the system, without contributing to content distribution. To overcome this problem, we extend our market model in Sepidar to be effective in deterring free-riders. However, gradienTv and Sepidar are tree-based solutions, which are fragile in high churn and failure scenarios. We present a solution to this problem in GLive that provides a more robust overlay by replacing the tree structure with a mesh. We show in simulation, that the mesh-based overlay outperforms the multiple-tree overlay. Moreover, we compare the performance of all our systems with the state-of-the-art NewCoolstreaming, and observe that they provide better playback continuity and lower playback latency than that of NewCoolstreaming under a variety of experimental scenarios. Although our distributed market model can be run against a random sample of nodes, we improve its convergence time by executing it against a sample of nodes taken from the Gradient overlay. The Gradient overlay organizes nodes in a topology using a local utility value at each node, such that nodes are ordered in descending utility values away from a core of the highest utility nodes. The evaluations show that the streaming overlays converge faster when our market model works on top of the Gradient overlay. We use a gossip-based peer sampling service in our streaming systems to provide each node with a small list of live nodes. However, in the Internet, where a high percentage of nodes are behind NATs, existing gossiping protocols break down. To solve this problem, we present Gozar, a NAT-friendly gossip-based peer sampling service that: (i) provides uniform random samples in the presence of NATs, and (ii) enables direct connectivity to sampled nodes using a fully distributed NAT traversal service. We compare Gozar with the state-of-the-art NAT-friendly gossip-based peer sampling service, Nylon, and show that only Gozar supports one-hop NAT traversal, and its overhead is roughly half of Nylon’s

    Scalable Peer-to-Peer Indexing with Constant State

    Full text link
    We present a distributed indexing scheme for peer to peer networks. Past work on distributed indexing traded off fast search times with non-constant degree topologies or network-unfriendly behavior such as flooding. In contrast, the scheme we present optimizes all three of these performance measures. That is, we provide logarithmic round searches while maintaining connections to a fixed number of peers and avoiding network flooding. In comparison to the well known scheme Chord, we provide competitive constant factors. Finally, we observe that arbitrary linear speedups are possible and discuss both a general brute force approach and specific economical optimizations

    Quickly routing searches without having to move content

    Get PDF
    Abstract. A great deal of work has been done to improve peer-to-peer routing by strategically moving or replicating content. However, there are many applications for which a peer-to-peer architecture might be appropriate, but in which content movement is not feasible. We argue that even in such applications, progress can be made in developing techniques that ensure efficient searches. We present several such techniques. First, we show that organizing the network into a square-root topology, where peer degrees are proportional to the square root of the popularity of their content, provides much better performance than power-law networks. Second, we present routing optimizations based on the amount of content stored at peers, and tracking the “best ” peers, that can further improve performance. These and other techniques can make searches efficient, even when content movement or replication is not feasible.
    corecore