
This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

R. Gaeta; M. Grangetto; L. Bovio. DIP: Distributed Identification of Polluters
in P2P live streaming. ACM TRANSACTIONS ON MULTIMEDIA
COMPUTING, COMMUNICATIONS AND APPLICATIONS. 10 (3) pp:
1-20.
DOI: 10.1145/2568223

The publisher's version is available at:
http://dl.acm.org/citation.cfm?doid=2602979.2568223

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/143873

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301908473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DIP: Distributed Identification of Polluters in P2P live
streaming

ROSSANO GAETA, MARCO GRANGETTO and LORENZO BOVIO, Università di Torino

Peer to peer live streaming applications are vulnerable to malicious actions of peers that deliberately modify data to decrease
or prevent the fruition of the media (pollution attack). In this paper we propose DIP, a fully distributed, accurate and robust
algorithm for the identification of polluters. DIP relies on checks that are computed by peers upon completing reception of
all blocks composing a data chunk. A check is a special message that contains the set of peer identifiers that provided blocks
of the chunk as well as a bit to signal if the chunk has been corrupted. Checks are periodically transmitted by peers to their
neighbors in the overlay network; peers receiving checks use them to maintain a factor graph. This graph is bipartite and an
incremental belief propagation algorithm is run on it to compute the probability of a peer being a polluter. Using a prototype
deployed over PlanetLab we show by extensive experimentation that DIP allows honest peers to identify polluters with very high
accuracy and completeness even when polluters collude to deceive them. Furthermore, we show that DIP is efficient requiring
low computational, communication, and storage overhead at each peer.

Categories and Subject Descriptors: C.2.4 [COMPUTER-COMMUNICATION NETWORKS]: Distributed Systems—Distributed/

applications

General Terms: Security, Design, Experimentation

Additional Key Words and Phrases: peer-to-peer, pollution attack, malicious node identification, P2P streaming, belief propa-
gation, statistical inference, PlanetLab

ACM Reference Format:

Rossano Gaeta, Marco Grangetto, and Lorenzo Bovio. 2013. DIP: Distributed Identification of Polluters in P2P live streaming.
ACM Trans. Multimedia Comput. Commun. Appl. 00, 00, Article 00 (2014), 20 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Pollution attacks [Dhungel et al. 2007; Liang et al. 2005] represent a powerful threat for peer-to-
peer live streaming architectures [Zhang et al. 2005; Huang 2007]: malicious peers (the polluters)
can modify data on purpose with the aim of decreasing or preventing the fruition of the media. To
protect these systems from pollution attacks identification of polluters is the key issue: it relies on the
capability of detecting polluted content and it enables attackers isolation/removal.
In peer-to-peer live streaming architectures the media to be streamed is organized in independently

playable data units called chunks; each chunk is divided in small transmittable data units called

Author’s address: Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149, Torino, Italy email:
first.last@di.unito.it;
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2014 ACM 1551-6857/2014/-ART00 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 00, No. 00, Article 00, Publication date: 2014.

2 R. Gaeta, M. Grangetto and L. Bovio

blocks. If a chunk is obtained from only one uploader then identification of polluters is greatly simpli-
fied by assuming a chunk integrity check is available, e.g., a verifiable hash associated to each chunk.
Nevertheless, frequent trusted publication of hash-based identifiers for each chunk incurs a notable
overhead for peer-to-peer live streaming.
Identification of polluters becomes quite complex when chunks are obtained by collecting blocks from

more than one neighbor peer (multi-part download) because an honest node can only suspect multiple
uploaders when a chunk is detected as corrupted. Effective solutions in this scenario must be:

—scalable since P2P live streaming systems can comprise millions of participants,

—accurate to allow for correct identification of misbehaving peers and to minimize damage to honest
ones,

—robust to guarantee high performance against several types of attacks even in highly dynamic peer
settings,

—and efficient requiring low computational, communication, and memory costs for implementation.

In this paper we propose DIP, a fully distributed, accurate, robust, and efficient algorithm for the
identification of polluters that is based on peer monitoring. In DIP peers are required to collect in-
formation on the state of the chunks they obtain from their neighbors. Information is summarized in
checks that are computed by peers upon completing reception of a chunk. A check is a special message
that contains the set of peer identifiers that provided blocks of the chunk as well as a bit to signal if
the chunk has been corrupted. The main contributions of this paper are:

—identification of polluters has been recast as an inference problem [MacKay 2003] from a given num-
ber of checks. The goal of the inference is the estimation of the hidden state of the peers, i.e. being
polluters or honest, given a set of observations corresponding to the checks. Each check can be in-
terpreted as an accusation raised against a set of peers providing blocks by a witness. In DIP each
node periodically transmits/receives checks to/from peer neighbors in the overlay network; peers re-
ceiving checks use them to maintain a bipartite graph (called factor graph) on which an incremental
belief propagation algorithm [Yedidia et al. 2005] is run to compute the probability of a peer being a
polluter;

—definition of a fully distributed algorithm to allow each honest peer to infer polluters identity by
exploiting both own checks and those shared by their neighbors;

—thorough evaluation of the performance of DIP carried out by conducting experiments on our rate-
less codes based P2P live streaming architecture called ToroVerde Streaming (TVS) [Magnetto et al.
2010]. The usage of rateless codes allowed us to detect chunk corruption by exploiting the rateless
decoding algorithm thus avoiding the overhead represented by hashes. Using a prototype deployed
over PlanetLab we show by extensive experimentation that DIP allows honest peers to identify pol-
luters with very high accuracy and completeness even when polluters collude to deceive them. Fur-
thermore, we show that DIP is efficient requiring low computational, communication, and storage
overhead at each peer.

As a final remark, please note that the DIP inference core can be customized for any system where
multi-part download and a mechanism for detecting corruption of data units is available.
The paper is organized as follows: Section 2 describes the P2P live streaming architecture we con-

sider, an overview of DIP protocol, and the attack model; Section 3 describes the formalization of DIP

and presents the detailed solution; Section 4 discusses the performance results; Section 5 discusses
previous work that is related to ours, and finally Section 6 discusses the key finding of this paper
and outlines directions for future research. To ease the task of the reader, Table I summarizes all the
notation introduced in the following sections.

DIP: Distributed Identification of Polluters in P2P live streaming 3

Table I. : Paper notation.

Parameter Description

Th Time between transmission of most recent checks
TBP Time between runs of the incremental BP
w Size of the time sliding window
TS Threshold to classify peers
Si,h,t Suspect counter of peer i for peer h at time t
zU Average number of peers per check
zC Average number of checks per peer
N Overlay size
NP Number of polluters
ppoll Pollution intensity
plie Lie intensity
vbr Video bitrate
k Number of blocks composing a chunk
Bb Block size
Nneigh Average number of neighbors

2. SYSTEM DESCRIPTION

In this section we define the peer-to-peer live streaming architecture we consider, the DIP protocol
we designed, and the attack model describing polluters actions. Presentation is general and rather
abstract; Section 3 will describe all details related to the statistical inference method we devised while
a practical P2P application, based on rateless codes [Magnetto et al. 2010], including the corruption
detection feature will be used as a testbed in Section 4.

2.1 The peer-to-peer architecture

In this paper we consider a peer-to-peer streaming system composed of N peers. The content is a video
whose bitrate is vbr that is originated from a streaming server. The content is organized in chunks

carrying independently reproducible audio/video units. Chunks are further partitioned in k blocks

whose size is Bb bytes that represent the smallest data unit that can be transferred between two
peers. Peers organize in a random mesh overlay network and blocks are exchanged among neighbor
peers; the average size of one peer’s neighborhood is Nneigh. As soon as a peer has collected all blocks of
a chunk, it is able to feed its local player with the obtained data. Every peer shares with the neighbors
only blocks of its completed chunks. The architecture we consider is completed by a rendez-vous point,
i.e., a tracker. The task of the tracker is to provide joining peers with the address of a random subset
of participants in order to start following the protocol to obtain the streamed content. The tracker also
assigns peers an overlay-wide unique identifier. We assume this identifier is unforgeable therefore
although peers are allowed to alternate between connection and disconnection periods they retain
their unique identifier over successive connections to the overlay. It follows that we do not consider
the case of a sybil attack where polluters exploit several identities to pursue their goals: this is an
assumption made in all related works on this topic (see Section 5). Furthermore, countermeasures to
sybil attack and whitewashing that can be used to improve the security of DIP have been proposed in
the literature [Levine et al. 2006; Dinger and Hartenstein 2006; Gupta and Singh 2013].

2.2 The DIP protocol

DIP has been designed to counteract a polluting attack in a completely distributed fashion. As for the
attack model we assume that NP polluters join the overlay network. Polluters are malicious peers that
follow the streaming protocol for overlay organization and data exchange but deliberately modify the

4 R. Gaeta, M. Grangetto and L. Bovio

payload of blocks that are uploaded to the neighbors. The effect of this nasty action is to invalidate
chunk reconstruction thus preventing the fruition of the original content.
The DIP identification mechanism is based on the concept of check, that is a report created by every

peer when a chunk has been completed. Every check contains a variable length list of peer identifiers
that provided blocks of a chunk and a binary flag declaring the chunk as polluted or not. To this end, we
assume that peers are able to detect if the chunk is polluted and the check flag is set to true in this case
(in Section 4 we describe a practical detection technique that we used in our experiments). Chunks that
are detected as polluted are not shared with the other peers to avoid a potentially quick propagation
of bogus data. DIP goal is to discover which chunk contributors are misbehaving by exploiting the
information carried by checks. In order to build a completely distributed system each peer, besides
accumulating the checks from its local downloading operations, gossips in the neighborhood its most
recent checks. In particular, the DIP protocol is run independently by each peer of the overlay and it is
characterized by the following operations:

—parallel downloading of multiple blocks from the overlay, pollution detection for a completed chunk,
and check creation on every chunk completion;

—checks storage in a local buffer;

—periodic checks sharing in the neighborhood: once every Th seconds a peer sends its most recent
checks stored in its local buffer to all its neighbors. The local buffer is then emptied to ensure that
innovative checks are sent each time;

—statistical inference on stored checks (a peer exploits both checks it creates and checks received from
its neighbors) for polluter identification.

The last item represents the main computational core ofDIPwhere a list of suspected peer is computed
as presented in details in Section 3. Such a list could be used to implement reactive actions by honest
peers, e.g., honest peers can exploit the results of identification to ban polluter from their neighborhood
(local blacklisting), to discard ongoing downloads from them, and to prune future positive checks by
removing other honest peers to shrink the set of suspected peers. Global blacklisting could also be
considered although we believe it would require special solutions to counteract malicious behavior of
polluters with respect to a central authority. In this paper we only focused on the performance of DIP

in identifying polluters and we leave the evaluation of countermeasures as future works.

2.3 The attack model

Polluters may try to escape identification by misbehaving in several ways. In this paper we considered
the following attacks scenarios.

—Polluters modify the payload of a block non deterministically: on each block transmission opportu-
nity, a coin is flipped and with probability ppoll (that we denote as the pollution intensity) the content
of the block is randomly modified.

—Polluters churn by alternating between connection and disconnection periods. Since we assume the
identifier is unforgeable churning polluters retain their unique identifier over successive connections
to the overlay.

—Polluters lie on the checks they send to their neighbors: since the goal of the inference is the identi-
fication of polluters given a set of observations (corresponding to the checks) an effective misleading
action for polluters is to let them introduce noise in checks. Indeed, it is well known that the accuracy
of the belief propagation algorithm (the inference tool we use) is affected by noisy (erroneous) checks.
In our context, noisy checks are obtained by modifying the check flag, an action that we termed as

DIP: Distributed Identification of Polluters in P2P live streaming 5

��
��
��
��

���
���
���

���
���
���

C i

IUChecks

Peers

i=0 i=3i=1 i=2

I=0 I=1

Fig. 1: Example of factor graph.

lying. We considered both random lying and intelligent lying by collusion. In the first case, each pol-
luter flips a coin and with probability plie the check flag is inverted. Clearly, when plie = 1 lying is not
random anymore. In the second case, we assume that polluters collude by setting to true the check
flag if the set of peers providing blocks of a chunk does not contain any other polluter (a disparage
action towards honest peers). Analogously, they set the check flag to false if at least another polluters
has provided blocks for the chunk (a protective action for other polluters).

Of course, there could be other intelligent strategies for lying. Nevertheless, by using random lying
with plie = 1 every single check sent out by polluters is a fake thus maximizing the amount of noisy
data for the belief propagation inference tool. It turns out that this scenario represents an upper bound
for any other lying strategy.

3. DIP STATISTICAL INFERENCE

The core of the identification mechanism used in DIP exploits statistical inference to estimate the
probability of a peer being a polluter. Every peer is able to set up a statistical inference problem, whose
inputs are both the checks available from the chunks it completes and those sent by its neighbors, and
whose outputs are probabilities (of being a polluter) associated to every known peer. The goal is the
estimation of the hidden state xi of the i-th pees, i.e. being a polluter (xi = 1) or not (xi = 0), given the
set of collected checks. The I-th check reports a list of peer identifiers UI that have jointly uploaded
blocks of a given chunk and the corresponding pollution detection flag cI , with cI = 1 (positive check)
in case of pollution detection and cI = 0 (negative check) in case of successful decoding.
Such problem can be graphically represented as a bipartite graph (U , C, E) called factor graph, con-

sisting of peers i ∈ U , checks I ∈ C and undirected edges {i, I} ∈ E between i and I. An edge inter-
connects peer i and check I if and only if the list UI contains the i-th peer. An example of factor graph
(constructed by an arbitrary peer) connecting four peers (circles) and two checks (square) is shown in
Figure 1. The circle filled with a pattern (the rightmost peer in Figure 1) represents a polluter that,
in turn, determines a positive check (filled square) involving the true polluter and two innocent peers
that were used in parallel to download a given chunk. Clearly, every peer can be included in a variable
number of checks, depending on the overlay structure and protocol behavior; in the following the set of
checks that peer i is involved in will be referred to as Ci.
In DIP we are interested in detecting polluters based on the collected checks; given the previous

factor graph interpretation, this amounts to the estimation of the hidden state of the nodes, i.e. xi = 1
for polluters and xi = 0 for honest nodes, from the observable variables, i.e. the checks. Clearly, a

6 R. Gaeta, M. Grangetto and L. Bovio

negative check (cI = 0) makes it likely that all the corresponding uploaders are honest and, on the
contrary, a positive check (cI = 1) states that at least one of the involved uploaders is a polluter. This
inference problem can be recast as the estimation of the marginal probability P (xi), defined as the
probability of peer i being a polluter, from all the available checks C. This goal can be achieved with the
well-known Belief Propagation (BP) algorithm [MacKay 2003; Yedidia et al. 2005], that is a practical
solution to compute marginal probabilities defined on a factor graph. It is worth noting that computing
marginal probability is in general very hard since it requires summing an exponentially large number
of terms of the corresponding joint probability. BP is an iterative algorithm based on the exchange
of conditional probability updates, called the beliefs or messages, along the edges of the factor graph.
The message from the peer i to the check I can be considered as a statement about the probability
of the check being positive or negative. In turn, the message from the check I to the peer i can be
interpreted as a statement about the probability of the peer being a polluter. The BP algorithm defines
the rules allowing to iteratively refine such messages so as to converge to the exact evaluation of the
useful marginal probability in the case of direct acyclic graphs, e.g. Bayesian networks. Nonetheless,
BP provides robust and accurate estimates also in the case of arbitrary graphs [Yedidia et al. 2005;
Weiss and Freeman 2001] as in our scenario. BP has been already proposed in [Gaeta and Grangetto
2013] for P2P polluters identification by a centralized monitor. On the contrary, in DIP , a completely
distributed approach is followed, where each peer keeps modifying dynamically its own factor graph
using both self-generated and collected checks.
In DIP every peer constructs is own factor graph as follows. Each peer keeps receiving checks and

discovering the peer identifiers carried by the checks. BP inference is run every TBP seconds, consid-
ering only the checks received in a time window of the past w seconds. The purpose of this windowed
approach is twofold. First of all, it allows one to keep the factor graph updated when the P2P overlay
network changes dynamically, e.g., in presence of peer churn. Second, the memory required for the
storage of the factor graph remains limited during the peer lifetime. In the following, we will use nota-
tion (U , C, E)t,w to identify the factor graph updated at time t and constructed using the checks stored
during a time window w by a given peer. The BP iterative algorithm is run on (U , C, E)t,w to estimate
Pt,w(xi = x), i.e. the probability of peer i being in state x = 0, 1 at time t and window w.
The BP algorithm is defined as follows. The message pair mx

iI , x = 0, 1 is associated to each directed
edge from peer i to check I. The message mx

iI represents the probability that peer i is in state x, given
the information collected via checks other than check I, i.e. checks I ′ ∈ Ci \ I. In turn, the message pair
mx

Ii, x = 0, 1 is associated to each directed edge from check I to peer i. The message mx
Ii represents

the probability of check I reporting pollution detection cI , if peer i is considered in state x and all the
other uploaders states, i.e. xi′ : i

′ ∈ UI \ i, have a separable distribution given by the probabilities mx
i′I .

BP algorithm is based on iterative application of the so called check and node passes. In check pass all
messages directed from checks to the peers are refined according to the following equation:

mx
Ii =

∑

{xi′ :i
′∈UI\i}

P (cI |xi = x, {xi′ : i
′ ∈ UI \ i})

∏

i′∈UI\i

m
xi′

i′I (1)

where {xi′ : i
′ ∈ UI \ i} is used to denote the set of states of the uploaders of check I other than i. This

message depends on the probability of observing check flag cI , given the states of all the uploaders
and their pollution intensities. Since the pollution intensity of an attacker is in general unknown, we
assume ppoll = 1 in all the following derivations. This simplifies the combinatorial nature of Equation 1
allowing for an efficient implementation and relieving honest nodes from knowing actual values of ppoll
used by polluters. Clearly, this assumption yields an approximation whenever polluters use ppoll 6= 1
as will be the case in some our experiments in Section 4.

DIP: Distributed Identification of Polluters in P2P live streaming 7

Under the above assumption, a check is negative if all its uploaders are not malicious and a check is
positive if at least one of the uploaders is malicious and we obtain:

mx
Ii =

∏

i′∈UI\i
m0

i′I if cI = 0, x = 0

0 if cI = 0, x = 1
1−

∏

i′∈UI\i
m0

i′I if cI = 1, x = 0

1 otherwise

. (2)

that can be used to update mx
Ii (message from check to peer) as a function of mx

iI (message from peer
to check). Messages mx

iI are whether computed from previous iterations, as detailed in the following,
or initialized setting m0

iI = m1
iI = 0.5 before the BP computation over a factor graph that involves peer

i for the first time. This event will happen when peer i is discovered for the first time as an uploader
in a certain check and it amounts to initially consider all peers as equally likely to be polluters.
In turn, the updated values of mx

Ii are used to refresh the messages mx
iI (node pass) by using equa-

tion:

mx
iI =

∏

I′∈Ci\I

mx
I′i. (3)

In the DIP implementation previous check and node passes are iterated 3 times on every factor
graph before getting marginal probabilities that are computed from messages mx

Ii as follows:

P (xi = x)t,w =
∏

I′∈Ci

mx
I′i. (4)

Due to the adopted approximations previous BP equations are not guaranteed to yields normalized
probabilities, e.g. P (xi = 0) + P (xi = 1) = 1; therefore, in practical implementations they are usually
scaled to easy the interpretation of the results and to avoid numerical issues. In Table II some sig-
nificant numerical results, obtained running the proposed BP estimation algorithm on the toy factor
graph shown in Figure 1, are reported. In particular, the table shows the values of the messages from
the (positive) check I = 0 to the i-th node computed by Equation 2, the messages from the node i = 0
to the I-th check computed by Equation 3 and the partial estimates of the probability of being a pol-
luter P (xi = 1) computed by Equation 4. The values of such terms are reported for 3 iterations of the
algorithm, where iteration 0 represents the initialization phase. It can be observed that in the case of
the simple factor graph in Figure 1 the BP algorithms converges to the exact solution, i.e. node i = 3 is
correctly recognized as a polluter with probability 1, in just 2 iterations.
Every TBP s every peer h infers thorough BP a set of suspect peers Lh,t that is obtained by setting

a threshold on the estimated probability of being a polluter Pt,w(xi = 1) ≥ η. Moreover, every peer
i known by h is associated with a suspect counter Si,h,t, and the peers that belong to Lh,t have their
counter increased by 1 at time t. Finally, the i-th peer is considered a polluter by h as soon as Si,h,t ≥ TS ,
where TS is a proper threshold. To summarize, each peer in the overlay network keeps monitoring all
the other peers that it has downloaded from or it has somehow known indirectly though other checks
and is able to perform polluter identification in a completely distributed fashion.
The computational complexity of the BP inference phase depends on the evaluation of Equations 2,

3, and 4. Given a certain check state cI , Equation 2 permits to compute two messages m0
Ii and m1

Ii at
the cost of |UI | − 1 multiplications. Since messages are associated to each edge of the factor graph we
can conclude that the overall check pass takes on average |E|(zU − 1), zU being the average number
of peers involved in a check. The node pass (Equation 3) is performed on every edge from any peer to
its checks with a computational cost of |E|(zC − 1) multiplications, where zC is the average number of
checks per peer. Analogously, the final estimate (Equation 4) takes |E|zC multiplications.

8 R. Gaeta, M. Grangetto and L. Bovio

Table II. : BP computation example on factor graph in Figure 1.

BP iteration BP message
i/I

0 1 2 3

0
m0

I=0,i - - - -

m0

i=0,I
0.5 0.5 - -

P (xi = 1) - - - -

1
m0

I=0,i 0.43 - 0.43 0.43

m0

i=0,I
1.0 0.0 - -

P (xi = 1) 0.0 0.0 0.0 0.57

2
m0

I=0,i
0.33 - 0.33 0.0

m0

i=0,I
1.0 0.0 - -

P (xi = 1) 0.0 0.0 0.0 1.0

3
m0

I=0,i
0.01 - 0.01 0.0

m0

i=0,I
1.0 0.0 - -

P (xi = 1) 0.0 0.0 0.0 1.0

Recalling that in DIP we use 3 check/node passes, the overall cost of each computation of the
marginal turns out to be:

3 [|E|(zU − 1) + |E|(zC − 1)] + |E|zC . (5)

4. EXPERIMENTAL RESULTS

In this section we describe the experimental testbed we used for our experimentation, the reference
scenario we considered, the metrics we defined to assess the performance of DIP, and results showing
its accuracy, completeness, robustness, and efficiency.

4.1 The experimental testbed

We evaluated the performance of our detection technique by conducting experiments on our rateless
codes based peer-to-peer live streaming architecture called ToroVerde Streaming (TVS) [Magnetto
et al. 2010]. As already mentioned in Section 1, the proposed identification mechanism is quite general
and it is not constraint to a particular P2P application; nevertheless we believe that providing exper-
imental evidence of its effectiveness within a real prototype represents an added value. TVS is mesh
based architecture and exploits the following main idea: the content is organized in chunks composed
by k blocks and instead of transmitting the original data block, LT [Luby 2002] coded blocks are cre-
ated and forwarded by the peers. Coding has the property that the original chunk can be obtained by
any set of k · (1 + ǫ) coded blocks (ǫ is known as the code overhead). LT blocks are encode only by peers
that have already received the original chunk and consists in simple binary XOR operations among
a random set of blocks. Decoding is carried out by solving a system of linear equations by a special
purpose on the fly algorithm proposed in [Bioglio et al. 2009]. This decoder exhibits a very limited
overhead of about 3% in our settings.
LT coding of chunks, besides simplifying the content delivery mechanism, can be exploited to detect

polluted data without an external verification tool. Indeed, given a chunk, all the received coded blocks
are required to belong to the same vector subspace defined by all the possible linear combinations of the
original k data packets. A polluter that wants to prevent the LT decoding of the chunk will modify the
coded packet. We exploit the property that a polluted packet does not represent a valid combination of
the original data to perform detection. A receiver is able to detect pollution as soon as an inconsistency
is found in the solution of the underlying system of linear equations. Given the sub-optimality of the
random coding approach (overhead ǫ > 0), some redundant coded blocks are always received. Every

DIP: Distributed Identification of Polluters in P2P live streaming 9

Table III. : Parameters setting in the reference scenario.

Parameter Value

η 0.99
N 2000
NP 100
ppoll 0.5
plie 1

vbr 600 kbps
k 80
Bb 1330 bytes

Nneigh 50 ([40− 60])

Upload bandwidth 42% 256 kbps, 40% 768 kbps, 18% 2 Mbps

redundant block is recognized as linearly dependent on the previously received ones. A redundant
coded block must be re-obtained by XORing a subset of the already received blocks. If this constraint
does not apply the whole chunk is recognized as polluted. Unfortunately, the receiver is not able to
identify the corrupted blocks but only that at least one of them as been maliciously manipulated.
When a peer detects a polluted chunk, besides creating a positive check, it does not use it to produce
novel coded blocks for the neighbors so as to limit the propagation of corrupted information.
A complete prototype implementing DIP has been developed in C++ and deployed over PlanetLab

for experimentation. Among all the host available on PlanetLab only about 450 can be reliably used
for experimenting since they are free of all the following problems: frequently unreachable due to
downtimes and other issues, unable to reach (or be reached) by other Planetlab nodes, experienced a
very bad connection quality, suffering fromDNS problems, under very high load, varying SSH-keys, not
enough disk space to write log files. It follows that the maximum size of the overlay in our experiment
could not scale to our will: allocation of several peers processes on the same host allowed us to evaluate
systems composed only of a few thousands of peers.
Although the number of reliable PlanetLab host limits the size of the system we can analyze, we

preferred not to resort to simulation. This choice is based on the observation that DIP requires the
knowledge of peer identities and the amount of coded blocks exchanged among them to decode a chunk
at a given time. This implies that the actual interactions and the exact timing among peers in both
the overlay management and data exchange have to be taken into account in a simulation. We believe
that simulations would inevitably be very detailed (and complex) and therefore very close to a real
implementation.

4.2 The reference scenario

The parameters characterizing our reference scenario are summarized in Table III. We conducted
NEXP = 30 independent trials for each scenario we considered and computed for all performance
indexes the 95% confidence intervals (CI); each trial lasts for 1800s.
A realistic churn model should assume that a fraction of the users join the application and remain

until the end, others permanently depart, new peers continuously join the network, and sessions dura-
tions are of at least a few minutes and drawn from an heavy-tailed distribution [Silverston et al. 2009].
Of course, there are plenty of ways to implement these criteria: to ease deployment on PlanetLab, we
partition the N peers in two subsets: 20% are stable, i.e., they join the overlay network and stay con-
nected until the end of the experiment, while the remaining 80% join the swarm, stay connected for an
average active period equal to 90s (a uniform random variable in the range [60, 120]s) and permanently
depart. Arrival of a new peer (a peer with a new identifier) is triggered by a permanent departure after

10 R. Gaeta, M. Grangetto and L. Bovio

an average delay equal to 20s. The 20 − 80 partition is intended to represent session duration whose
distribution exhibits a heavy tail. Polluters churn by alternating between active and idle periods with
the same average lengths of non stable peers.
The TVS application has been run to stream a 600 kbps bitrate video using a 4.2 Mbps server with

upload bandwidth distribution summarized in Table I and adapted from [Zhang et al. 2007] that yields
a resource index equal to 1.3, i.e., there is 30% average extra bandwidth with respect to the video bi-
trate. Polluters upload bandwidth is equal to 768 kbps. All key parameters for the TVS application
(video bitrate, block size and number of blocks per chunk, neighborhood size, upload bandwidth distri-
bution) are included in Table III. We refer the reader to [Magnetto et al. 2010] for a detailed description
of TVS and for the complete list of its parameters that have minor relevance in the context of this pa-
per. Please note that DIP results would not be greatly affected (improved or worsened) by choosing
other values for these parameters. Indeed, DIP relies on the most recently decoded chunks to create
and send checks to neighbors; in other words, it relies on system throughput that is in turn dependent
on the resource index. Therefore, scaling up both peers upload bandwidths and video bitrate while
maintaining the same resource index would yield comparable system throughput hence comparable
DIP performance.

4.3 The performance metrics

Let us consider the i-th trial and define I
(i)
poll(p) as the indicator function that is equal to 1 if peer p is

a polluter and 0 otherwise and let w(i)(p) denote the fraction of polluted chunks where polluter p was
among the block providers; clearly, the larger w(i)(p) the higher the polluting activity of polluter p in
trial i. If w(i)(p) = 1 polluter p contributed to the corruption of all polluted chunks in trial i. On the
opposite extreme, w(i)(p) = 0 suggests that polluter p has been inactive during the experiment, e.g.,
because it never decoded a chunk. By definition, w(i)(p) = 0 if p is an honest peer. We also define the

indicator function I
(i)
TS

(p, h, t) that is equal to 1 if S
(i)
p,h,t ≥ TS , i.e., if the suspect counter of peer p for

honest peer h at time t has reached or exceeded the accuracy threshold TS in trial i, and 0 otherwise.
The performance of DIP have been evaluated on the basis of several indexes. For each honest peer h

we compute (sums are defined over all peers p such that S
(i)
p,h,t > 0):

—the completeness at time t defined as c(i)(h, t) =
∑

w(i)(p)I
(i)
poll

(p)I
(i)
TS

(p,h,t)
∑

w(i)(p)I
(i)
poll

(p)
. We have that ∀h, t : 0 ≤

c(i)(h, t) ≤ 1; this index represents the overall activity of polluters that have been identified by
honest peer h at time t. For instance, c(i)(h, t) = 0.9means that the polluters identified at time t have
been collectively involved in corrupting 90% of all polluted chunks corrupted by all polluters that
honest peer h knows during the i-th trial1.

—the accuracy at time t defined as a(i)(h, t) =
∑

I
(i)
poll

(p)I
(i)
TS

(p,h,t)
∑

I
(i)
TS

(p,h,t)
. We have that ∀h, t : 0 ≤ a(i)(h, t) ≤ 1;

this index can be interpreted as the probability that honest peer h correctly classifies a peer whose
suspect counter reaches or exceeds the accuracy threshold TS as a true polluter.

We compute DIP completeness at time t (c(i)(t)) by averaging c(i)(h, t) over all honest peers. Similarly,
we compute DIP accuracy at time t (a(i)(t)) by averaging a(i)(h, t) the same way. Finally, the values of
c(t) and a(t) are obtained by averaging all values of c(i)(t) and a(i)(t) over the NEXP trials. All graphs
we present show a(t) and c(t) as a function of the peer lifetime, i.e., the time elapsed since their joining

1In general, the number of polluter that an honest peer knows about during a trial is less than or equal to NP because polluters
churn.

DIP: Distributed Identification of Polluters in P2P live streaming 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

C
om

pl
et

en
es

s

Peer lifetime (in sec.)

TS=8
TS=10
TS=12

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600

A
cc

ur
ac

y

Peer lifetime (in sec.)

TS=8
TS=10
TS=12

Fig. 2: c(t) (left) and a(t) (right) as a function of peer lifetime for different values of TS .

the overlay network. In other words the performance indexes are always presented as a function of the
local clock of every peer.
We also estimate the average and compute 95% confidence intervals for the CPU time required for

every BP run, communication overhead, number of checks, peers, and edges of the factor graph in the
reference scenario over all the NEXP experiments. For the size of the factor graph we also report the
maximum values

4.4 DIP parameters selection

In all the following experiments DIP employs the BP algorithm with 3 iterations; after every BP it-
eration the set of suspect peers Lh,t is obtained by setting the threshold on the pollution probability
η = 0.99. Indeed, a low threshold probability η would yield too many false positives, i.e., honest nodes
erroneously identified as malicious. On the other hand, a high threshold probability would increase
the number of false negatives. Since DIP periodically runs the BP estimation and update a suspect
ranking we observed that setting η = 0.99 represents a good compromise to balance the two issues
mentioned above.
DIP is characterized by four additional parameters: the analysis window size (w in the range [30, 90]s),

the analysis time interval (TBP in the range [5, 15]s), the time between successive transmissions of the
latest reconstructed chunks (Th in the range [5, 20]s), and the threshold TS to classify peers in the set
of suspects Lh,t as a true polluter. The first step has been to explore the performance of DIP for all
combinations of these parameters. We observed that too small or too large values for w yield the worst
performance: indeed, small window sizes do not allow the factor graph to include enough checks to
accurately infer the peer status. On the other hand, large values of w increase the number of loops in
the factor graph which, in turn, impact on the accuracy of the probability estimates yielded by the BP
algorithm [Weiss and Freeman 2001]. The value that yielded the best performance is w = 60s. Perfor-
mance were slightly affected by TBP and Th therefore we selected the values TBP = 10s and Th = 15s to
strike a balance between computational and communication overhead and reactivity. The selection of
TS has been found to have a significant impact on the performance and therefore it will be analyzed in
details in the following. A low value allows for high reactivity (each peer can start classifying peers in
Lh after TBP · TS s) but accuracy can be low since many misclassified honest peers can be erroneously

12 R. Gaeta, M. Grangetto and L. Bovio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

C
om

pl
et

en
es

s

Peer lifetime (in sec.)

ppoll=1
ppoll=0.75

ppoll=0.5
 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600

A
cc

ur
ac

y

Peer lifetime (in sec.)

ppoll=1
ppoll=0.75

ppoll=0.5

Fig. 3: c(t) (left) and a(t) (right) as a function of peer lifetime for different polluting intensities.

inferred as polluters. To show the trade-off Figure 2 depicts a(t) (left) and c(t) (right) for several values
of TS. We selected TS = 10 as a balance between accuracy, completeness, and reactivity.
It can be noted that throughout all the experiments presented in the paper c(t) curves rise and after

a short plateau they rise again. Similarly, a(t) curves rise and after a small dip they rise again. The
particular shape of c(t) and a(t) curves is due to the churn model we adopted. Indeed, both are com-
posed of a first part from time 0 to the maximum lifetime for short connections and a remaining part
for longer peer lifetimes (stable connections). The resulting curves are then a weighted average of two
different peer classes. The weigh of short connections is much greater than the weigh of long (stable)
connections. Indeed, the average number of short connections in our experiments can be computed
as 0.8 · N · 1800

90+90 where the fraction represents the average number of times a peer joins the overlay
network during the experiment. On the other hand, the number of long (stable) connections is only
0.2 ·N .

4.5 Experimental evaluation of DIP accuracy and robustness

In this section we present results from a set of experiments to show that DIP is accurate and robust
with respect to pollution intensity, misleading actions performed by polluters, and colluding attacks.
Moreover, we show how DIP performance scale for larger system sizes and overall number of polluters.
To this end all the following results are worked out by using the parameters values selected in Section
4.4.

4.5.1 Polluting intensity. First of all we analyze the effect of the pollution intensity ppoll as defined
in Section 2.3 on the performance of DIP . Figure 3 shows that both DIP accuracy and completeness
are very high and increase as the pollution intensity gets close to 1. Lowering ppoll has virtually no
impact on a(t) (it reaches 1 a few minutes after an honest peer joins the overlay network) while it
slightly reduces c(t); on the other hand, a lower pollution intensity translates into lower damage for
the honest peers. It can be noted that the pollution intensity yields a natural trade-off between speed
of identification and average damage caused to honest nodes, i.e., the lower ppoll the lower the number
of polluted chunks and consequently the number of positive checks. Since positive checks represent
accusations against polluters it also follows that the polluters identification mechanism depends on
the number and the rate of positive checks produced in the system; clearly, time to identification gets

DIP: Distributed Identification of Polluters in P2P live streaming 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

C
om

pl
et

en
es

s

Peer lifetime (in sec.)

plie=0
plie=0.5

plie=1
 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600

A
cc

ur
ac

y

Peer lifetime (in sec.)

plie=0
plie=0.5

plie=1

Fig. 4: c(t) (left) and a(t) (right) as a function of peer lifetime for different lying intensities.

longer for lower pollution intensity. From the reported results, we can conclude that polluters may slow
down (but not avoid) identification only by using a very low pollution intensity at the price of imposing
a smaller damage to the system.

4.5.2 Lying intensity. As described in Section 2.3, it is well-known that the accuracy of the BP
algorithm is affected by noisy (erroneous) checks that in our attack model polluters create by lying,
i.e., by modifying the check flag with probability plie. Figure 4 shows that polluters cannot shield from
being identified by lying. For all the possible range of plie DIP accuracy reaches 1 and completeness
exceeds 0.9. Indeed, by setting plie = 1 the amount of noise polluters can add is maximized; it follows
that lying on every check (plie = 1) is the best (but not enough) polluters can do to hide from honest
peers.

4.5.3 Increasing the number of polluters. All previous results have been obtained in the reference
scenario comprising NP = 100 polluters. An interesting and important step to assess the accuracy
and completeness of DIP is to evaluate its performance as the number of polluters increases. To this
end, Figure 5 shows DIP performance for NP ranging from 50 to 300, i.e., 15% of honest peers. It
can be noted that accuracy still reaches 1 in all cases with completeness exceeding 0.8 (it gets close
to 1 for longer experiments). When NP increases the damage to the system shows up as a reduced
throughput, i.e., number of chunks completed in the time unit. It follows that less checks are available
to peers that run the DIP protocol on factor graphs whose average number of checks is lowered, thus
slightly slowing down its performance. Nevertheless, we conclude that DIP can satisfactorily handle
configurations with a large number of polluters.

4.5.4 Increasing the system size. We conducted experiments for larger systems to evaluate how
DIP performance scale as the system size increases. To overcome the lack of a large number of reliable
PlanetLab nodes we ran several peer processes on the same PlanetLab host to increase the overall
system size.
Figure 6 shows DIP performance for the reference scenario and for N = 3000 and NP = 150, i.e. we

increased the size of the system while keeping the polluter density fixed to the 5% as in the reference
scenario. It is worth noticing that the larger system turns out to be more complex from the point of
view of polluter identification task since, locally, every honest peer is affected by a larger number of

14 R. Gaeta, M. Grangetto and L. Bovio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

C
om

pl
et

en
es

s

Peer lifetime (in sec.)

NP=50
NP=100
NP=300

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600

A
cc

ur
ac

y

Peer lifetime (in sec.)

NP=50
NP=100
NP=300

Fig. 5: c(t) (left) and a(t) (right) as a function of peer lifetime for increasing NP .

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

C
om

pl
et

en
es

s

Peer lifetime (in sec.)

N=2000
N=3000

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600

A
cc

ur
ac

y

Peer lifetime (in sec.)

N=2000
N=3000

Fig. 6: c(t) (left) and a(t) (right) as a function of peer lifetime for increasing N .

polluters. This phenomenon is due to the fact that the network size is finite and relatively small. In
our settings each peer has an average neighborhood size of 50; therefore, the average number of second
neighbors is equal to 50 · 49 = 2450. This number is comparable to the system sizes N we considered
and it follows that any peer knows almost all participants (including polluters) within two hops. It
turns out that the number of polluters to be identified by every honest peer is larger in the case
N = 3000 with respect to the reference scenario with N = 2000. On the other hand, the computational
and communication efforts employed by every honest peer is kept constant in the two experiments,
thus making the case N = 3000 a more difficult task. The set of malicious peers identified by honest
peer h can be partitioned in two disjoint subsets: those that were neighbors of h in the overlay at least
once during the experiment and those that h never knew of. The former set represents malicious peers
that h can spot because they might have provided polluted blocks (direct polluters) while the latter
set represents malicious peers h can identify only thanks to checks sent by its neighbors according

DIP: Distributed Identification of Polluters in P2P live streaming 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

C
om

pl
et

en
es

s

Peer lifetime (in sec.)

NP=100, colluding attack
NP=100, plie=1

NP=300, colluding attack
NP=300, plie=1

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600

A
cc

ur
ac

y

Peer lifetime (in sec.)

NP=100, colluding attack
NP=100, plie=1

NP=300, colluding attack
NP=300, plie=1

Fig. 7: c(t) (left) and a(t) (right) as a function of peer lifetime for colluding attack and increasing NP .

to the DIP protocol (indirect polluters). Indeed, indirect polluters of h are the direct polluters of h’s
neighbors (the ”two hops away” polluters of h). In particular, we have noted that the number of direct
polluters we obtained in our experiments are almost the same for N = 2000 and N = 3000: 19.9 and
20.5, respectively. Nevertheless, the number of indirect polluters we obtained in our experiments are
63.3 and 98.9 for N = 2000 and N = 3000, respectively. This experimental data clearly point out that
the case N = 3000 represents a tougher scenario where more polluters must be identified.
Despite the larger number of polluters to be identified, the results in Figure 6 show that DIP accu-

racy remains high (it is equal to 1 also in the case N = 3000) whereas completeness reaches 0.84 (the
completeness for N = 2000 reaches 0.89 therefore the relative difference is only 5.6%).
Indeed, theN = 3000 scenario we present in Figure 6 is qualitatively similar to that we considered in

Figure 5, where we analyzed the reference scenario for several values ofNP , i.e. increasing the number
of polluters for the same system size. In that case, we observed that DIP obtains good performance for
all values of NP we considered although for NP = 300 more time is necessary to achieve completeness
values similar to those of the reference scenario (NP = 100). In light of this analysis we conclude
that DIP can scale to larger system sizes allowing honest peer to identify polluters by both direct
and indirect means. Furthermore, it is important to note that by using the same average amount of
information (the number of checks sent by a peer according to DIP depends on the number of decoded
chunks per time unit and on the number of neighbors in the overlay: they both remained the same
for the values of N we considered) honest peers are able to identify more polluters in the same time
window (the length of our PlanetLab experiments) for N = 3000.

4.5.5 Colluding attacks. In all previous analysis polluters tried to escape identification by intro-
ducing noise in the shape of fake checks, i.e., a check whose value is inverted with probability plie. As
discussed in Section 2.3, we also considered a more sophisticated strategy; in particular, we devise a
two-pronged attack where polluters upon sending checks to their neighbors send a positive check if the
set of block providers does not contain any other polluter (a disparage action towards honest peers),
and send a negative check if at least one of the block providers is another polluter (a protection for
other polluters). Figure 7 compares the accuracy and completeness achieved in this case against that
of the reference scenario for increasing NP . It can be noted that accuracy is even slightly better in
presence of two-pronged attack (it reaches 1 in all cases) while completeness slightly slows down for

16 R. Gaeta, M. Grangetto and L. Bovio

NP = 300 (it gets close to 1 for longer experiments, anyway). As discussed in the comment to results in
Figure 4, setting plie = 1 maximizes the amount of noise polluters can add to mislead honest peers. On
the other hand, the colluding attack does not maximize noise. Indeed, when a polluter sends a nega-
tive check if at least one of the block providers is another polluter (the protection for other polluters) it
could send out an unmodified check if the decoded chunk is clean (this is the case when the polluters
involved in the checks provided clean blocks due to ppoll 6= 1). It follows that the colluding attack does
not maximize the amount of noisy data and yields (slightly) better performance. Nonetheless, perfor-
mance improvements observed in Figure 7 are very small: for NP = 100 the final rounded c(t) values
are 0.92 and 0.90 for the colluding attack and the plie = 1 case, respectively. For NP = 300 the final
rounded c(t) values are 0.84 and 0.82 for the colluding attack and the plie = 1 case, respectively. We
can therefore conclude that DIP turns out to be robust to collusion strategies.

4.6 Computational, communication, and memory costs

Here we analyze the communication, computational, and memory costs of implementing DIP.

—communication cost: the communication overhead ofDIP can be upper bounded by the following rea-
soning. A check I contains an integer number representing the identifier of the sender, and integer
number representing the number of peers providing blocks of the chunk, an indicator of the chunk
status (polluted or clean), and as many integers as the number of peers representing the provider
identifiers. It follows that a check is represented in our prototype as a message whose payload size
in bytes is equal to Bc = 9 + 4|UI | where UI is the set of peers that provided blocks for the chunk
(integers and peer identifiers require 4 bytes while the chunk corruption flag is represented using
one extra byte). The average size of a check is then equal to Bc = 9 + 4zU .

The time duration of a chunk is given by Tchunk = (8·Bb·k)
1000vbr s. In an ideal, stable, system at steady-state

(a system where peers do not leave and the throughput of each peer is equal to the throughput of

the video server) the number of bytes sent by each peer to its neighborhood is given by
ThNneighBc

Tchunk

yielding an overhead throughput equal to
8NneighBc

1000Tchunk
kbps.

From the system parameters characterizing our reference scenario we obtain 6.98 kbps by assuming
that Bc is computed with zU obtained from Table IV. Please note that this is a loose upper bound
since only 20% of the honest peers stays connected for the whole video duration while the remaining
80% disconnects (and reconnects as a new peer) after an average connection time equal to 90s. This
also implies that not all peers succeeds to create a fully populated neighborhood and startup delays
may reduce throughput. Furthermore, when polluters corrupt data the system throughput reduces,
i.e., the number of decoded chunks decreases, hence the generation rate of new checks decreases
accordingly.

This results is in accordance with the average measured effective bandwidth in our experiment that
is equal to 1.174 kbps with 95% confidence interval [0.457, 1.892] that represents only 0.19% of the
video bitrate. We conclude that the communication cost of DIP is very low and does not represent a
limiting factor.

—storage cost: the size of the factor graph is a key element to evaluate the complexity and memory
requirements of our technique. We measured the average number of checks, peers, and edges of the
factor graph (U , C, E) in the reference scenario in all NEXP experiments. We obtained the results
summarized in Table IV; it can be noted that the memory requirements of our technique are low for
both average and maximum number of components of the factor graph.

—computational cost: Equation 5 in Section 3 evaluates the computational cost of BP as function of
the average number of arcs (|E|), peers per check (zU) and checks per peer (zC). The measurements

DIP: Distributed Identification of Polluters in P2P live streaming 17

Table IV. : Average and maximum sizes for checks, peers, and edges.

Average Maximum

peers 535.535 CI [208.3,862.7] 1629.1 CI [633.6,2624.3]
checks 355.2, CI [138.1,572.3] 1841.3 CI [716.2,2966.3]
edges 1398.5, CI [543.9,2253.1] 6922.9 CI [2692.7,11153.1]

reported in Table IV show that zU , zC ≪ |E| and allow us to conclude that the BP complexity is of the
order O(|E|). For completeness we also measured the average CPU time required for every BP run
in the reference scenario for all the NEXP experiments: our C++ implementation takes on average
229.4 ms with 95% confidence intervals [89.2, 369.6] on usually overloaded PlanetLab hosts running
several instances of our prototype. Please note that such values are orders of magnitude smaller
than the time between any two BP runs, i.e., TBP .

5. RELATED WORK

Pollution attack to P2P streaming applications, where malicious peers inject bogus data in the network
to deteriorate the streaming performance of all honest peers is a well-known issue. In [Lin et al. 2010]
it is shown that a limited number of polluters can easily deteriorate the quality of a streaming applica-
tion; a preliminary analysis of the possible defense mechanisms, whether based on cryptographic tools
or reputation based approaches, is presented in [Lin et al. 2010], as well. As opposed to our work in
[Lin et al. 2010] a pull-based P2P streaming system without coding is used and the focus is more on
the analysis of the effects of pollution in P2P streaming, whereas known techniques are evaluated as
possible defenses.
A reputation system is exploited in [Borges et al. 2008] to fight pollution attack in a standard P2P

streaming application, where it is assumed that every peer can detect the malicious behavior of its
neighbors; to this end it is assumed that a whole chunk is downloaded by a single peer and therefore
a direct experience of a malicious behavior can be reported building up the reputation system. On
the contrary, in this paper we face the more complex problem of polluter identification in presence
of parallel downloading of the chunk from multiple peers. SymplyRep [Vieira et al. 2012] is another
recent example of a design of a reputation system to counteract pollution in P2P streaming. Also in
this case a chunk pull-based P2P approach is assumed and the proposed solution is evaluated using
simulation and PlanetLab experiments.
Identification of polluters in non coded peer-to-peer systems has been dealt with in [Wang et al.

2010]. Alerts are sent to the video server and to the tracker upon detecting a corrupted chunk. The
server computes and broadcasts a checksum of this chunk that peers use to identify the polluter. Peers
notify the server about their suspects and true polluters cannot lie to it thanks to a non repudiation
protocol. The scheme is quick in identifying the polluters. The drawbacks are many: the technique
might not scale due to the centralization of the key operations in the server and the tracker, it is
complex and relies on the existence of effective and efficient solutions to the broadcast authentication
problem, and it is vulnerable to the corruption of the checksum originated by the server and/or the
results of the detection. Furthermore, its performance have been addressed only by simulation of over-
lays with stable peers (churn is not considered), and the maximum number of polluters (50) represent
only about 3% of the smallest overlay considered in the paper (1600 peers).
In [Jin and Chan 2010] a monitoring architecture for a reputation system that peers use to select

neighbors is proposed. The focus of the paper is on reputation computation, storage and load balancing
among monitoring nodes. The results show that the system is able to detect polluters up to a certain
degree of lies. Nevertheless, the technique relies on the assumption that each peer is able to compute

18 R. Gaeta, M. Grangetto and L. Bovio

the amount of corrupted blocks received by each neighbor during a monitoring period. This capability
is not available in the system we consider and it is the main motivation for building our technique.
Furthermore, the monitoring architecture is assumed to be composed of trustworthy nodes and it is
not clear how the performance of the technique would be if this assumption is relaxed.
In the area of push based P2P streaming systems, that generally rely on channel coding and paral-

lel chunk downloading for faster information spreading, cryptographic or algebraic approaches have
been proposed. On-the-fly verification and/or correction of blocks [Krohn et al. 2004; Gkantsidis and
Rodriguez 2006; Yu et al. 2008; Kehdi and Li 2009; Yu et al. 2009; Ho et al. 2008; Jaggi et al. 2008;
Koetter and Kschischang 2008] have been proposed in network coding based systems to identify pol-
luters; their drawback are the computational cost, communication overhead due to pre-distribution of
verification information, and the limit on the maximum amount of corrupted information.
The work in [Li and Lui 2010] presents a fully distributed detection algorithm and analyzes its

performance. The technique is based on simple intersection operations performed by peers on the set
of neighbors providing chunks: each peer starts with a set of suspects that is equal to its neighborhood
that is shrunk as long as chunks are downloaded from a random subset of neighbors independently
chosen from the whole neighborhood. The technique is analyzed when the number of polluters in the
neighborhood is known in advance and an approximation is proposed when this quantity is unknown.
The technique is applicable only under the (unrealistic) assumptions that the neighborhood of peers
does not change over time and that each chunk is obtained by a randomly chosen subset of neighbors
(neighbors to retrieve blocks from are usually selected with some non random criteria).
DIP follows the approach presented in [Gaeta and Grangetto 2013] although there are numerous

and significant differences between them. In particular:

—DIP is fully distributed hence each peer autonomously infers identity of polluters. Instead, in [Gaeta
and Grangetto 2013] inference is carried out by a set of special, globally known nodes (the monitor
nodes) that add to the streaming infrastructure, i.e., the tracker node and the video server;

—monitor nodes in [Gaeta and Grangetto 2013] are assumed to be trusted and secure while no security
assumptions are necessary in DIP. Indeed, the assumption that monitor nodes are trustworthy can
be strong and can invalidate the accuracy and robustness characteristics of [Gaeta and Grangetto
2013] when one or more monitoring nodes behave maliciously or inconsistently;

—the number of monitor nodes in [Gaeta and Grangetto 2013] must be fixed a priori. A fixed number
of monitoring nodes and a mapping between peer identifiers and reference monitor node avoids the
conflicting behavior attack, i.e., the attack where a coalition of malicious peers might act differently
depending on the monitoring node. On the other hand, scalability problems may arise during sud-
den rises in the number of participant peers since monitor nodes cannot be dynamically added or
removed;

—in DIP each peer uses a threshold based criterion to spot malicious nodes while monitor nodes
in [Gaeta and Grangetto 2013] relay on minimum amount of time before correct identification is
guaranteed to occur with high probability;

—counter reaction in [Gaeta and Grangetto 2013] would probably be global blacklisting; this means
that false positiveness could be an issue since an honest peer erroneously classified as malicious
would be banned by all participant peers while in DIP such a peer would only be locally blacklisted
by the honest peer that failed correct identification.

6. CONCLUSIONS AND FUTURE WORK

In this paper we proposed DIP, a fully distributed technique to allow honest peers to identify polluters
launching a pollution attack in peer-to-peer live streaming. We recast this problem as a problem of

DIP: Distributed Identification of Polluters in P2P live streaming 19

statistical inference to estimate the probability of a peer being a polluter. At the heart of DIP lies
the concept of check, i.e., a summary containing the set of peer identifiers that provided blocks of the
chunk as well as a bit to signal if the chunk has been corrupted. Checks are computed by peers upon
completing reception of a chunk and are exchanged among neighboring peers to maintain the factor
graph (a bipartite graph) on which an incremental belief propagation algorithm is run to compute the
probability of a peer being a polluter.
The technique has been evaluated using our rateless codes based peer-to-peer live streaming archi-

tecture; we extensively experimented with a prototype deployed over PlanetLab and we showed that
DIP allows honest peers to identify polluters with very high accuracy and completeness even when
polluters collude to deceive them. Furthermore, we show that DIP is efficient requiring low computa-
tional, communication, and storage overhead at each peer.
In this paper we only focused on the performance of DIP in identifying polluters. Future works

will evaluate the effectiveness of reactive actions by honest peers, e.g., honest peers can exploit the
results of identification to ban polluter from their neighborhood (local blacklisting), to discard ongoing
downloads from them, and to prune future positive checks by removing other honest peers to shrink the
set of suspected peers. Global blacklisting could also be considered although we believe it would require
special solutions to counteract malicious behavior of polluters with respect to a central authority and to
cope with the effects of false positives (false positiveness could be an issue to deal with since an honest
peer erroneously classified as polluter would be banned by all participant peers in global blacklisting).
Furthermore, the current version of DIP performs only one hop gossiping although extension to a

multi-hop gossiping scenario is possible by also devising solutions to cope with checkmodificationmade
by polluters. Also, it would be interesting to blend DIP with trust management mechanisms in P2P
networks to obtain more efficient and effective solutions to the pollution attack.

REFERENCES

V. Bioglio, R. Gaeta, M. Grangetto, and M. Sereno. 2009. On the Fly Gaussian Elimination for LT Codes. IEEE Communication

Letters 13, 2 (Dec. 2009), 953–955.

Alex Borges, Jussara Almeida, and Sergio Campos. 2008. Fighting pollution in p2p live streaming systems. In Multimedia and

Expo, 2008 IEEE International Conference on. IEEE, 481–484.

P. Dhungel, X. Hei, K.W. Ross, and N. Saxena. 2007. The pollution attack in P2P live video streaming: measurement results and
defenses. In Workshop on Peer-to-peer streaming and IP-TV, P2P-TV ’07. 323–328.

Jochen Dinger andHannes Hartenstein. 2006. Defending the sybil attack in p2p networks: Taxonomy, challenges, and a proposal
for self-registration. In Availability, Reliability and Security, 2006. ARES 2006. The First International Conference on. IEEE,
8–pp.

Rossano Gaeta and Marco Grangetto. 2013. Identification of Malicious Nodes in Peer-to-Peer streaming: A Belief Propagation
Based Technique. IEEE Transactions on Parallel and Distributed Systems 24, 10 (2013), 1994–2003.

C. Gkantsidis and P. Rodriguez. 2006. Cooperative security for network coding file distribution. In IEEE INFOCOM 2006.

Ruchir Gupta and Yatindra Nath Singh. 2013. AvoidingWhitewashing in Unstructured Peer-to-Peer Resource Sharing Network.
arXiv preprint (2013).

Tracey Ho, Ben Leong, R. Koetter, M. Medard, M. Effros, and D.R. Karger. 2008. Byzantine Modification Detection in Multicast
Networks With Random Network Coding. Information Theory, IEEE Transactions on 54, 6 (june 2008), 2798 –2803.

G. Huang. 2007. PPLive: A practical P2P live system with huge amount of users. In Proceedings of the ACM SIGCOMM

Workshop on Peer-to-Peer Streaming and IPTV Workshop.

S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Medard, and M. Effros. 2008. Resilient Network Coding in the Presence of
Byzantine Adversaries. Information Theory, IEEE Transactions on 54, 6 (june 2008), 2596 –2603.

Xing Jin and S.-H. Gary Chan. 2010. Detecting malicious nodes in peer-to-peer streaming by peer-based monitoring. ACM

Trans. Multimedia Comput. Commun. Appl. 6 (March 2010), 9:1–9:18. Issue 2.

E. Kehdi and Baochun Li. 2009. Null Keys: Limiting Malicious Attacks Via Null Space Properties of Network Coding. In IEEE

INFOCOM 2009.

20 R. Gaeta, M. Grangetto and L. Bovio

R. Koetter and F.R. Kschischang. 2008. Coding for Errors and Erasures in Random Network Coding. Information Theory, IEEE

Transactions on 54, 8 (august 2008), 3579 –3591.

Maxwell N. Krohn, Michael J. Freedman, and David Mazieres. 2004. On-the-Fly Verification of Rateless Erasure Codes for
Efficient Content Distribution. Security and Privacy, IEEE Symposium on (2004).

Brian Neil Levine, Clay Shields, and N Boris Margolin. 2006. A survey of solutions to the sybil attack. University of Mas-

sachusetts Amherst, Amherst, MA (2006).

Yongkun Li and John C.S. Lui. 2010. Stochastic analysis of a randomized detection algorithm for pollution attack in P2P live
streaming systems. Performance Evaluation 67, 11 (2010), 1273 – 1288.

J. Liang, R. Kumar, Y. Xi, and K.W. Ross. 2005. Pollution in P2P file sharing systems. In IEEE INFOCOM 2005. 1174 – 1185.

E. Lin, D.M.N. de Castro, Mea Wang, and J. Aycock. 2010. SPoIM: A close look at pollution attacks in P2P live streaming. In
Quality of Service (IWQoS), 2010 18th International Workshop on. 1–9.

M. Luby. 2002. LT codes. In IEEE FOCS 2002. 271–280.

D.J.C. MacKay. 2003. Information Theory, Inference and Learning Algorithms. Cambridge University Press.

Andrea Magnetto, Rossano Gaeta, Marco Grangetto, and Matteo Sereno. 2010. P2P streaming with LT codes: a prototype
experimentation. In ACM workshop on Advanced video streaming techniques for peer-to-peer networks and social networking,

AVSTP2P ’10. 7–12.

Thomas Silverston, Olivier Fourmaux, Alessio Botta, Alberto Dainotti, Antonio Pescapé, Giorgio Ventre, and Kavé Salamatian.
2009. Traffic analysis of peer-to-peer IPTV communities. Computer Networks 53, 4 (2009), 470–484.

Alex Borges Vieira, Jussara Marques de Almeida, and Sérgio Vale Aguiar Campos. 2012. SimplyRep: A simple and effective
reputation system to fight pollution in P2P live streaming. Computer Networks (2012).

Qiyan Wang, Long Vu, K. Nahrstedt, and H. Khurana. 2010. MIS: Malicious Nodes Identification Scheme in Network-Coding-
Based Peer-to-Peer Streaming. In IEEE INFOCOM 2010. 1 –5.

Y. Weiss and W.T. Freeman. 2001. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary
graphs. IEEE Trans. on Information Theory 47, 2 (feb 2001), 736 –744.

J.S. Yedidia, W.T. Freeman, and Y. Weiss. 2005. Constructing free-energy approximations and generalized belief propagation
algorithms. IEEE Trans. on Information Theory 51, 7 (2005), 2282 – 2312.

Zhen Yu, Yawen Wei, B. Ramkumar, and Yong Guan. 2008. An Efficient Signature-Based Scheme for Securing Network Coding
Against Pollution Attacks. In IEEE INFOCOM 2008. 1409 –1417.

Zhen Yu, Yawen Wei, B. Ramkumar, and Yong Guan. 2009. An Efficient Scheme for Securing XOR Network Coding against
Pollution Attacks. In IEEE INFOCOM 2009.

Meng Zhang, Qian Zhang, Lifeng Sun, and Shiqiang Yang. 2007. Understanding the Power of Pull-Based Streaming Protocol:
Can We Do Better? Selected Areas in Communications, IEEE Journal on 25, 9 (december 2007), 1678 –1694.

X. Zhang, J. Liu, B. Li, and T.S.P. Yum. 2005. CoolStreaming/DONet: A data-driven overlay network for efficient live media
streaming. In IEEE INFOCOM 2005. 13–17.

