
Distributed Optimization of P2P Media Delivery

Overlays

AMIR H. PAYBERAH

Licentiate Thesis

Stockholm, Sweden 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11435244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TRITA-ICT/ECS AVH 11:04
ISSN 1653-6363
ISRN KTH/ICT/ECS/AVH-11/04-SE
ISBN 978-91-7415-970-7

KTH School of Information and
Communication Technology

SE-164 40 Kista
SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie licentiatesexamen i datalogi
Fredag den 3 Juni 2011 klockan 10.00 i sal D i Forum IT-Universitetet, Kungl
Tekniskahögskolan, Isajordsgatan 39, Kista.

© Amir H. Payberah, June 2011

Tryck: Universitetsservice US AB

iii

Abstract

Media streaming over the Internet is becoming increasingly popular. Cur-
rently, most media is delivered using global content-delivery networks, pro-
viding a scalable and robust client-server model. However, content delivery
infrastructures are expensive. One approach to reduce the cost of media
delivery is to use peer-to-peer (P2P) overlay networks, where nodes share
responsibility for delivering the media to one another.

The main challenges in P2P media streaming using overlay networks in-
clude: (i) nodes should receive the stream with respect to certain timing
constraints, (ii) the overlay should adapt to the changes in the network, e.g.,
varying bandwidth capacity and join/failure of nodes, (iii) nodes should be
intentivized to contribute and share their resources, and (iv) nodes should
be able to establish connectivity to the other nodes behind NATs. In this
work, we meet these requirements by presenting P2P solutions for live media
streaming, as well as proposing a distributed NAT traversal solution.

First of all, we introduce a distributed market model to construct an ap-
proximately minimal height multiple-tree streaming overlay for content deliv-
ery, in gradienTv. In this system, we assume all the nodes are cooperative and
execute the protocol. However, in reality, there may exist some opportunistic
nodes, free-riders, that take advantage of the system, without contributing to
content distribution. To overcome this problem, we extend our market model
in Sepidar to be effective in deterring free-riders. However, gradienTv and
Sepidar are tree-based solutions, which are fragile in high churn and failure
scenarios. We present a solution to this problem in GLive that provides a more
robust overlay by replacing the tree structure with a mesh. We show in sim-
ulation, that the mesh-based overlay outperforms the multiple-tree overlay.
Moreover, we compare the performance of all our systems with the state-of-
the-art NewCoolstreaming, and observe that they provide better playback
continuity and lower playback latency than that of NewCoolstreaming under
a variety of experimental scenarios.

Although our distributed market model can be run against a random
sample of nodes, we improve its convergence time by executing it against
a sample of nodes taken from the Gradient overlay. The Gradient overlay
organizes nodes in a topology using a local utility value at each node, such that
nodes are ordered in descending utility values away from a core of the highest
utility nodes. The evaluations show that the streaming overlays converge
faster when our market model works on top of the Gradient overlay.

We use a gossip-based peer sampling service in our streaming systems to
provide each node with a small list of live nodes. However, in the Internet,
where a high percentage of nodes are behind NATs, existing gossiping proto-
cols break down. To solve this problem, we present Gozar, a NAT-friendly
gossip-based peer sampling service that: (i) provides uniform random samples
in the presence of NATs, and (ii) enables direct connectivity to sampled nodes
using a fully distributed NAT traversal service. We compare Gozar with the
state-of-the-art NAT-friendly gossip-based peer sampling service, Nylon, and
show that only Gozar supports one-hop NAT traversal, and its overhead is
roughly half of Nylon’s.

To Fatemeh, my beloved wife,
to Farzaneh and Ahmad, my parents, who I always adore,

and to Azadeh and Aram, my lovely sister and brother...

vii

Acknowledgements

I would like to express my deepest gratitude to Dr. Jim Dowling, for his excellent
guidance and caring. I feel privileged to have worked with him and I am grateful
for his support. He worked with me side by side and helped me with every bit of
this research.

I am deeply grateful to Professor Seif Haridi, my advisor, for giving me the
opportunity to work under his supervision. I appreciate his invaluable help and
support during my work. His deep knowledge in various fields of computer science,
fruitful discussions, and enthusiasm have been a tremendous source of inspiration
for me.

I would never have been able to finish my dissertation without the help and
support of Fatemeh Rahimian, who contributed to many of the algorithms and
papers in this project. I would also like to thank Dr. Ali Ghodsi, for acquaining
me with peer-to-peer overlays and guided me in the first year of PhD, as well as
during my Master studies.

I am thankful to Professor Vladimir Vlassov for his valuable feedbacks on this
thesis. I am also grateful to Sverker Janson for giving me the chance to work as a
member of CSL group at SICS. I acknowledge the help and support by Dr. Thomas
Sjöland, the head of software and computer systems unit at KTH.

I would like to thank Cosmin Arad for providing KOMPICS, the simulation
environment that I used in my work. I also thank Tallat Mahmood Shafaat, Ahmad
Al-Shishtawy and Roberto Roverso, for the fruitful discussions and the knowledge
they shared with me. Besides, I am grateful to the people of SICS that provided
me with an excellent atmosphere for doing research.

Finally, I am most grateful to my parents for helping me to be where I am now.

Contents

Contents ix

I Thesis Overview 1

1 Introduction 3
1.1 Contribution . 4
1.2 Assumptions . 5
1.3 Outline . 5

2 Background 7
2.1 P2P media streaming . 7
2.2 Peer sampling service . 10
2.3 The Gradient overlay . 11
2.4 The NAT problem . 11

3 Thesis contribution 17
3.1 List of publications . 17
3.2 Tree-based approach . 18
3.3 Mesh-based approach . 21
3.4 The Gradient overlay as a market-maker 24
3.5 Handling the NAT problem . 24
3.A A DHB tree minimizes the cost function 26

4 Conclusions 29
4.1 Sepidar, gradienTv and GLive . 29
4.2 Gozar . 30
4.3 Future work . 30

II Research Papers 31

5 gradienTv - Multiple-tree overlay for P2P streaming 33

ix

x CONTENTS

5.1 Introduction . 35
5.2 Related work . 37
5.3 Gradient overlay . 37
5.4 GradienTv system . 38
5.5 Experiments and evaluation . 42
5.6 Conclusions . 49

6 Sepidar - Incentivized multiple-tree overlay for P2P streaming 51
6.1 Introduction . 53
6.2 Related work . 55
6.3 Problem description . 56
6.4 Sepidar system . 57
6.5 Experiments and evaluation . 61
6.6 Conclusions . 68

7 GLive - Mesh overlay for P2P streaming 69
7.1 Introduction . 71
7.2 Related work . 73
7.3 Problem description . 74
7.4 GLive system . 76
7.5 Experiments and evaluation . 81
7.6 Conclusions . 86

8 Gozar - NAT supported peer sampling service 89
8.1 Introduction . 91
8.2 Related work . 93
8.3 Background . 94
8.4 Problem description . 95
8.5 The Gozar protocol . 96
8.6 Evaluation . 100
8.7 Conclusion . 104

Bibliography 107

Part I

Thesis Overview

1

Chapter 1

Introduction

Media streaming over the Internet is getting more popular everyday. The con-
ventional solution for such applications is the client-server model, which allocates
servers and network resources to each client request. However, providing a scalable
and robust client-server model, such as Youtube, with more than one billion hits
per day1, is very expensive. There are few companies, who can afford to provide
such an expensive service at large scale. An alternative solution is to use IP mul-
ticast, which is an efficient way to multicast a media stream over a network, but
it is not used in practice due to its limited support by Internet Service Providers.
The approach, used in this thesis, is Application Level Multicast (ALM), which
uses overlay networks to distribute large-scale media streams to a large number of
clients. A peer-to-peer (P2P) overlay is a type of overlay network in which each
node simultaneously functions as both a client and a server to the other nodes in
a network. In this model, nodes who have all or part of the requested media can
forward it to the requesting nodes. Since each node contributes its own resources,
the capacity of the whole system grows when the number of nodes increases.

Media streaming using P2P overlays is a challenging problem. To have a smooth
media playback, data blocks should be received with respect to certain timing
constraints. Otherwise, either the quality of the playback is reduced or its continuity
is disrupted. Moreover, in live streaming, it is expected that at any moment, clients
receive points of the media that are close in time, ideally, to the most recent part of
the media delivered by the provider. For example, in a live football match, people do
not like to hear their neighbours celebrating a goal, several seconds before they can
see the goal happening. Satisfying these timing requirements is more challenging in
a dynamic network, where nodes join/leave/fail continuously and concurrently, and
the network capacity changes over time. Yet another challenge for P2P overlays
in the Internet is the presence of Network Address Translation gateways (NATs).
Nodes that reside behind NATs, private nodes, do not support direct connectivity

1http://www.thetechherald.com/article.php/200942/4604/YouTube-s-daily-hit-rate-more-
than-a-billion

3

4 CHAPTER 1. INTRODUCTION

by default. Furthermore, the nodes should be incentivized to contribute and share
their resources in a P2P overlay. Otherwise, the opportunistic nodes, called free-
riders, can take advantage of a system, without contributing to content distribution.

Many different solutions are already proposed for P2P media streaming, but few
of them are able to satisfy all the above mentioned requirements. We believe this is
partly because some of these requirements are conflicting. For example, in order to
provide a constant high quality stream, users should store the media in their buffer
for a while before they start to play; which will result in a high playback latency
and start up delay.

1.1 Contribution

In this dissertation, we present our P2P live media streaming solution in the form
of three systems: gradienTv [1], Sepidar [2], and GLive [3]. In gradienTv and
Sepidar, we build multiple approximately minimal height overlay trees for content
delivery, whereas, in GLive, we build a mesh overlay, such that the average path
length between nodes and the media source is approximately minimum. In all
these streaming overlays, the nodes with higher available upload bandwidth that
can serve relatively more nodes are positioned closer to the media source. This
structure reduces the average number of hops from nodes to the media source;
reducing both the probability of a streaming disruptions and playback latency at
nodes. Nodes are also incentivized to provide more upload bandwidth, as nodes
that contribute more upload bandwidth have relatively higher playback continuity
and lower latency than the nodes further to the media source.

To construct our streaming overlays, firstly in gradienTv, we present a dis-
tributed market model inspired by the auction algorithm [4]. Our distributed mar-
ket model differs from the centralized implementations of the auction algorithm, in
that we do not rely on a central server with a global knowledge of all participants.
In our model, each node, as an auction participant, has only partial information
about the system. Nodes continuously exchange their information, in order to ac-
quire more knowledge about other participating nodes in the system. There are
different options for how communication between nodes could be implemented. For
example, a naive solution could use flooding, but it is costly in terms of bandwidth
consumption, and therefore is not scalable. On the other hand, the communication
could be based on random walks or sampling from a random overlay, but we show
in the papers [2, 3] that random sampling has slow convergence time. To enable
faster convergence of the streaming overlay, our distributed market model acquires
knowledge of the system by sampling nodes using the gossip-generated Gradient
overlay network [5, 6]. The Gradient overlay facilitates the discovery of neighbours
with similar upload bandwidth.

The Gradient overlay is a class of P2P overlays that arrange nodes using a local
utility function at each node, such that nodes are ordered in descending utility
values away from a core of the highest utility nodes. In our implementation, we use

1.2. ASSUMPTIONS 5

upload bandwidth as the utility value, however, the model can easily be extended
to include other characteristics such as node uptime, load and reputation.

The free-riding problem, as one of the problems in P2P streaming systems, is
not considered in gradienTv. We address this problem in Sepidar through parent
nodes auditing the behaviour of their child nodes in trees. We also address free-
riding in GLive by implementing a scoring mechanism that ranks the nodes. Nodes
who upload more of the stream have relatively higher score. In both solutions,
nodes with higher rank will receive a relatively improved quality.

We use a gossip-based peer sampling service (PSS) as a building block of our
systems. A PSS periodically provides a node with uniform random samples of live
nodes, where the sample size is typically much smaller than the system size. In the
Internet, where a high percentage of nodes are private nodes, traditional gossip-
based PSS breaks down. To overcome this problem, we present Gozar, a NAT-
friendly gossip-based PSS that uses existing public nodes in the system (nodes not
behind NATs) to help in NAT traversal.

Our contributions in this thesis include:

• a distributed market model to construct P2P streaming overlays, firstly as
a tree-based overlay, Sepidar and gradienTv, and secondly as a mesh-based
overlay, GLive. We also show how the Gradient overlay can improve the con-
vergence time of the distributed market model in comparison with a random
network,

• two solutions to overcome the free-riding problem in a tree-based (Sepidar)
and a mesh-based (GLive) overlay,

• Gozar, a gossip-based peer sampling service that provides uniform random
samples in the presence of NATs, and enables direct connectivity to the sam-
pled nodes using a fully distributed NAT traversal service.

1.2 Assumptions

We assume a network of nodes that communicate through message passing. New
nodes may join the network at any time to watch the video. Existing nodes may
leave the system either voluntarily or by crashing.

Nodes are not assumed to be cooperative; nodes may execute protocols that
attempt to download data blocks without forwarding it to other nodes. We do not,
however, address the problem of nodes colluding to receive the video stream.

1.3 Outline

The rest of this document is organized as follows:

• In chapter 2, we present the required background for this thesis project. We
review the main concepts of the P2P media streaming and introduce a frame-

6 CHAPTER 1. INTRODUCTION

work for classifying and comparing different P2P streaming solutions. More-
over, we go through the basic concepts of the peer sampling services and
introduce the Gradient overlay. Furthermore, we show the effects of NATs on
the behaviour of P2P applications, and explore the existing NAT traversal
solutions.

• In chapter 3, we present our distributed market model to construct tree-
based and mesh-based P2P streaming overlays. Moreover, we show how we
use the Gradient overlay to improve the convergence time of our systems.
Additionally, we present our free-rider detector mechanism, and finally explain
our NAT-friendly gossip-based peer sampling service.

• In chapter 4, we show our future research directions, and we conclude the
work in this chapter.

• In chapter 5, 6, 7 and 8, we present our related papers covered in this disser-
tation.

Chapter 2

Background

In this chapter we explore the necessary background for the thesis. First of all, we
review the main concepts of P2P media streaming systems, e.g., how to construct
and maintain streaming overlays. Later, we present the basics of peer sampling
services and the Gradient overlay as the core blocks of our systems. In addition,
we show the connectivity problem among nodes in the Internet and present the
common NAT traversal solutions.

2.1 P2P media streaming

Each P2P media streaming solution should provide answer to the following two
main questions:

1. What overlay topology is built for content distribution?

2. How to construct and maintain the overlay?

Following, we study a number of answers to these questions.

2.1.1 Content distribution overlay topology

The first question a P2P streaming application needs to answer is that what overlay
topology should be constructed for content distribution. In general, three main
topologies are used for this purpose:

• Tree-based topologies

• Mesh-based topologies

• Hybrid topologies

7

8 CHAPTER 2. BACKGROUND

Single tree structure is one of the earliest overlay for this purpose [7]. In this
model, a tree overlay is constructed on top of all the nodes in a system, and each
node pushes data it receives to a number of other nodes. A node that forwards
data is called a parent node, and a node that receives it, is a child node.

Fast data distribution among nodes is the main advantage of this model. How-
ever, this structure is very fragile to node failures. If a node fails, all other nodes
that are located in the subtree rooted at the failed node, do not receive the con-
tent any more, meanwhile they rejoin the overlay. Moreover, the load distribution
among nodes is not fair. The interior nodes carry the contents and the leaf nodes do
not contribute in data dissemination, while the number of leaf nodes increases much
faster than the number of interior nodes. Furthermore, the interior nodes may not
have enough upload bandwidth to transfer contents with the required rate. There-
fore, those nodes become bottleneck, and the nodes in their subtree may not receive
the data on time. Nevertheless, many P2P streaming systems have used the single
tree structure, e.g., Climber [8], ZigZag [9], NICE [10], and [11].

To overcome the single tree overlay problems, SplitStream [12] introduced the
multiple-tree structure. In multiple-tree overlays, the media stream is split into a
number of sub-streams or stripes, and each stripe is delivered to nodes through a
separate tree. Therefore, unlike the single tree structure, a child node may receive
the data from multiple parents that each one forwards the contents of one stripe.
This helps to have a more resilient overlay in the presence of failures, because, if a
child node loses one of its parents, it still can get the other stripes from other par-
ents. In addition, a node can play different roles in different trees, e.g., a leaf node
in one tree can be an interior node in another tree, so the load is distributed more
fairly among the nodes. However, the complexity of the multiple-tree structure
and the time to construct the trees are the problems of this topology. Moreover,
although, a node can receive the blocks of each stripe independently, it loses the
contents of one stripe, if the providing parent of that stripe fails. Therefore, mean-
while the child node, whose father failed, finds an appropriate parent for that stripe,
the node misses the content of that stripe. Sepidar [2], gradienTv [1], Orchard [13],
ChunkySpread [14], and CoopNet [15] are the solutions in this class.

Rajaee et al. show in [16] that mesh overlays possess a higher performance over
the tree-based approaches. In mesh-based overlays, unlike tree-based structures
that data is pushed through trees, nodes pull contents from their neighbours in a
mesh. Each node periodically sends its content availability information or buffer
map to its neighbours. The other nodes, then, use this information to schedule
and request data from their neighbours. Since the neighbours of nodes are updated
periodically, it is highly resilient to nodes failure. However, it is subject to unpre-
dictable latencies due to the frequent exchange of notifications and requests [7].
GLive [3], Gossip++ [17], DONet/Coolstreaming [18], Chainsaw [19], PULSE [20]
and [21] are the systems that use the mesh structure for data dissemination.

An alternative solution for data dissemination is the hybrid overlay that uses the
benefits of tree-based approaches with the advantages of mesh-based approaches.
Example systems include CliqueStream [22], mTreebone [23], NewCoolStreaming

2.1. P2P MEDIA STREAMING 9

[24], Prime [25], and [26].

2.1.2 Constructing/maintaining the overlay

The second fundamental problem is how to construct and maintain the content
distribution overlay, or in other words, how nodes discover the other supplying
nodes. The main solutions in literatures for this question are:

• Centralized method

• Hierarchical method

• Controlled flooding method

• DHT-based method

• Gossip-based method

The centralized method is a solution used mostly in initial P2P streaming sys-
tems. In this method, the information about all nodes, e.g., their address or avail-
able bandwidth, is kept in a centralized directory, and the centralized directory
is responsible to construct and maintain the overall topology. CoopNet [15] and
DirectStream [27] are two sample systems that use the cenrtal method. Since the
central server has a global view to the overlay network, it can handle node joins and
leaves very quickly. One of the arguments against this model is that the server be-
comes a single point of failure, and if it crashes, no other node can join the system.
The scalability of this model, also, is another problem. However, these problems
can be resolved if the central server is replaced by a set of distributed servers.

The next solution for locating supplying nodes is using the hierarchical method.
This approach is used in several systems, such as Nice [10], ZigZag [9], and Bulk
Tree [28]. For example, in Nice and ZigZag, a number of layers are created over
the nodes, such that the lowest layer contains all the nodes. The nodes in this layer
are grouped into some clusters, according to a property defined in the algorithm,
e.g., the latency between nodes. One node in each cluster is selected as a head,
and the selected head for each cluster becomes a member of one higher layer. By
clustering the nodes in this layer and selecting a head in each cluster, they form the
next layer, and so on, until it ends up in a layer consisting of a single node. This
single node, which is a member of all layers is called the rendezvous point.

Whenever a new node comes into the system, it sends its join request to the
rendezvous point. The rendezvous node returns a list of all connected nodes on the
next down layer in the hierarchy. The new node probes the list of nodes, and finds
the most proper one and sends its join request to that node. The process repeats
until the new node finds a position in the structure, where it receives its desired
content. Although this solution solves the scalability and the single point of failure
problems in the central method, it has a slow convergence time.

10 CHAPTER 2. BACKGROUND

The third method to discover nodes is controlled flooding, which is originally
proposed by Gnutella [29]. GnuStream [30] is a system that uses this idea to find
supplying nodes. In this system, each node has a neighbour set, which is a partial
list of nodes in the system. Whenever a node seeks a provider, it sends its query to
its neighbours. Each node forwards the request to all of its own neighbours except
the one who has sent the request. The query has a time-to-live (TTL) value,
which decreases after each rebroadcasting. The broadcasting continues until the
TTL becomes zero. If a node that receives the request satisfies the node selection
constraints, it will reply to the original sender node. This method has two main
drawbacks. First, it generates a significant traffic and second, there is no guarantee
for finding appropriate providers.

An alternative solution for discovering the supplying nodes is to use Distributed
Hash Tables (DHT), e.g., Chord [31] and Pastry [32]. SplitStream [12] and [26] are
two samples that work over a DHT. In these systems, each node keeps a routing
table including the address of some other nodes in the overlay network. The nodes,
then, can use these routing tables to find supplying nodes. This method is scalable
and it finds proper providers rather quickly. It guarantees that if proper providers
are in the system, the algorithm finds them. However, it requires extra effort to
manage and maintain the DHT.

The last approach to find supplying nodes is the gossip-based method. Many al-
gorithms are proposed based on this model, e.g., NewCoolstreaming [24], DONet/-
Coolstreaming [18], PULSE [20] and [21] use a gossip-generated random overlay
network to search for the supplying nodes. We use the gossip-generated Gradient
overlay [5] for node discovery in gradineTv [1], Sepidar [2], and GLive [3]. In the
gossip-based method, each node periodically sends its data availability information
to its neighbours, a partial view of nodes in the system, to enable them find appro-
priate suppliers, who possess data they are looking for. This protocol is scalable and
failure-tolerant, but because of the randomness property of the neighbour selection,
sometimes the appropriate providers are not found in a reasonable time.

2.2 Peer sampling service

Peer sampling services (PSS) have been widely used in large scale distributed appli-
cations, such as information dissemination [33], aggregation [34], and overlay topol-
ogy management [6, 35]. Gossiping algorithms are the most common approach to
implementing a PSS [36–40]. In gossip-based PSS’, protocol execution at each node
is divided into periodic cycles. In each cycle, every node selects a node from its
partial view to exchange a subset of its partial view with the selected node. Both
nodes subsequently update their partial views using the received node descriptors.

Implementations vary based on a number of different policies [41]:

1. Node selection: determines how a node selects another node to exchange
information with. It can be either randomly (rand), or based on the node’s
age (tail).

2.3. THE GRADIENT OVERLAY 11

2. View propagation: determines how to exchange views with the selected node.
A node can send its view with or without expecting a reply, called push-pull
and push, respectively.

3. View selection: determines how a node updates its view after receiving the
nodes’ descriptors from the other node. A node can either update its view
randomly (blind), or keep the youngest nodes (healer), or replace the subset
of nodes sent to the other node with the received descriptors (swapper).

In a PSS, the sampled nodes should follow a uniform random distribution. More-
over, the overlay constructed by a PSS should preserve indegree distribution, average
shortest path and clustering coefficient, close to a random network [40, 41]. The
indegree distribution shows the distribution of the input links to nodes. The path
length for two nodes is measured as the minimum number of hops between two
nodes, and the average path length is the average of all path lengths between all
nodes in the system, and the clustering coefficient of a node is the number of links
between the neighbors of the node divided by all possible links.

2.3 The Gradient overlay

The Gradient overlay is a class of P2P overlays that arrange nodes using a local
utility function at each node, such that nodes are ordered in descending utility
values away from a core of the highest utility nodes [5, 6].

The Gradient maintains two sets of neighbours using gossiping algorithms: a
similar-view and a random-view. The similar-view of a node is a partial view of
the nodes whose utility values are close to, but slightly higher than, the utility
value of this node. Nodes periodically gossip with each other and exchange their
similar-views. Upon receiving a similar-view, a node updates its own similar-view
by replacing its entries with those nodes that have closer (but higher) utility value
to its own utility value. In contrast, the random-view constitutes a random sample
of nodes in the system, and it is used both to discover new nodes for the similar-view
and to prevent partitioning of the overlay.

2.4 The NAT problem

In [42], Kermarrec et al. evaluated the impact of NATs on traditional gossip-based
PSS’. They showed that the network becomes partitioned when the number of
nodes behind NAT, called private nodes, exceeds a certain threshold. In principle,
existing PSS’ could be adapted to work over NATs. This can be done by having all
nodes, run a protocol to identify their NAT type, such as STUN [43]. Then, nodes
identified as private keep open a connection to a third party rendezvous server.
When a node wishes to gossip with a private node, it can request a connection to
the private node via the rendezvous server. The rendezvous server then executes a
NAT traversal protocol to establish a direct connection between the two nodes.

12 CHAPTER 2. BACKGROUND

A model of NAT behaviour is necessary to enable private nodes to identify what
type of NAT they reside behind. When a node attempts to establish a direct con-
nection to a private node, the NAT types of both nodes are then used to determine
what NAT traversal algorithm should be used to traverse any intermediary NATs.

When determining a node’s NAT type, the main observable behaviour of a NAT
is that it maps an IP address/port pair at a private node to a public port on a public
interface of the NAT. IP packets sent from the address/port at the private node
to a destination outside the NAT are translated by the NAT replacing the packet’s
private IP address and port number with the public IP and mapped port on the
NAT. NAT behaviour is classified according to (i) the port mappings created, (ii)
how and when the NAT generates new mapping rules and updates existing rules,
and (iii) the type of filtering the NAT performs on packets sent to a mapped port
on the NAT. Other aspects of NATs that we do not model, but have less impact
on the success of NAT traversal, are multi-level NATs and whether the NAT has
multiple public interfaces.

The earliest model of NAT behaviour was STUN that grouped NATs into four
groups: full cone, restricted cone, partial cone and symmetric [44]. However, this
model is quite crude, and its NAT traversal solutions ignore the fact that when two
nodes both reside behind NATs, it is the combination of NAT types that determines
the NAT traversal algorithm that should be used. In [45], a richer classification
of NAT types is presented, that decomposes a NAT’s behaviour into three main
policies: port mapping, port assignment and port filtering. We adopt this model:

• Port mapping: This policy decides when to create a new mapping (NAT rule)
from a private port to a public port. That is, it decides for each packet from
a private node IP address/port pair whether to allocate a new public port on
the NAT or reuse an existing one. Three different port mapping policies have
been found in existing NATs [46]:

1. Endpoint-Independent (EI): The NAT reuses the same mapping rule for
address/port pairs from the same private node. That is, all source ad-
dresses on packets sent from the private node are mapped to the same
public port on the NAT, regardless of the packet’s destination IP address
and port.

2. Host-Dependent (HD): The NAT will reuse the same mapping rule for
all address/port pairs from the same private node when the packets are
destined for the same IP address. That is, for a given destination IP
address (and regardless of the destination port), all source addresses on
packets sent from the private node are mapped to the same public port
on the NAT.

3. Port-Dependent (PD): The NAT will reuse the same mapping rule for
all address/port pairs from the same private node when the packets are
destined for the same IP address and port number. That is, for a given

2.4. THE NAT PROBLEM 13

destination IP address and port, all source addresses on packets sent
from the private node are mapped to the same public port on the NAT.

The mapping policies can be ordered in terms of increasing level of difficulty
for NAT traversal as EI < HD < P D.

• Port assignment: This policy decides which port should be assigned whenever
a new mapping rule is created, that is a new public port is mapped to a private
address/port. Three different port assignment policies have been found in
existing NATs [46]:

1. Port-Preservation (PP): The NAT maps the port number at the private
node to the same port number on the public interface of the NAT. This
may cause a conflict if two private nodes behind the same NAT request
the same port. In the case of a port mapping conflict, an alternative
port assignment policy is used to assign a new port - typically either
port-contiguity or random.

2. Port-Contiguity (PC): The NAT maintains an internal variable storing
the most recently assigned port number. When a new mapping rule is
created, the new mapping’s port on the NAT is some small constant
number higher than the the most recently assigned port number. In
other words, for two consecutive ports mapped on the NAT, u and v, it
binds u = v + ∆, for some ∆ = 1, 2, · · · .

3. Random (RD): The NAT maps a random public port for each new map-
ping rule created.

The assignment policies can be ordered in terms of increasing level of difficulty
for NAT traversal as P P < P C < RD.

• Port filtering: The port filtering policy decides whether incoming packets to
a public port mapped on the NAT are forwarded to the mapped port on
the private node. Three different port filtering policies have been found in
existing NATs [46]:

1. Endpoint-Independent (EI): The NAT forwards all packets to the private
node, regardless of the external node’s IP address and port.

2. Host-Dependent (HD): The NAT filters all incoming traffic on the public
port, except those packets that come from an external node with an IP
address X that has previously received at least one packet from this
public port.

3. Port-Dependent (PD): The NAT filters all incoming traffic on the public
port, except those packets that come from an external node with IP
address X and port P that has previously received at least one packet
from this public port.

14 CHAPTER 2. BACKGROUND

The filtering policies can be ordered in terms of increasing level of difficulty
for NAT traversal as EI < HD < P D.

In addition to these three policies, it is useful to determine the length of time for
which NAT mappings remain valid without packets being sent over the mapped
port. A protocol for determining all three policies and the NAT mapping timeout
is described in [46].

In this model of NAT behaviour, there are, in total, 27 different possible NAT
types, and there are 27×28

2 = 378 different possible NAT combinations for any two
private nodes [46].

NAT traversal techniques

There are two general techniques that are used to communicate with private nodes:
hole punching and relaying. Hole punching can be used to establish direct con-
nections that traverse the private node’s NAT, and relaying can be used to send
a message to a private node via a third party relay node that already has an es-
tablished connection with the private node. In general, hole punching is preferable
when large amounts of traffic will be sent between the two nodes and when slow
connection setup times are not a problem. Relaying is preferable when the connec-
tion setup time should be short (less than one second) and small amounts of data
will be sent over the connection.

• Hole punching: enables two nodes to establish a direct connection over in-
termediary NATs with the help of a third party rendezvous server [47, 48].
Connection reversal is the simplest form of hole punching, which is when a
public node attempts to connect to a private node, it contacts the rendezvous
server, that, in turn, requests the private node to establish a connection with
the public node. Hole punching, however, more commonly refers to how map-
ping rules are created on NATs for a connection that is not yet established,
but soon will be. Simple hole punching (SHP) [46] is a NAT traversal algo-
rithm, where both nodes reside behind NATs and both nodes attempt to send
packets to mapped ports on their respective NATs with the goal of creating
NAT mappings on both sides to allow traffic to flow directly between the two
nodes. SHP is feasible when (i) the filtering policy is EI or (ii) the mapping
policy is EI or (iii) the mapping policy is stronger than EI and the filtering
policy is weaker than P D [46]. Port prediction using contiguity (PRC) that
uses port scanning is another NAT traversal algorithm that can be used when
the port assignment policy is P C. Similarly, when the port assignment policy
is P P , prediction using port preservation (PRP) can be used [46].

• Relaying: Relaying can be used either where hole punching techniques do
not succeed or where hole punching takes too long to complete. In relaying, a
third party relay server that has a public IP address keeps an open connection
with the private node, and other nodes communicate with the private node

2.4. THE NAT PROBLEM 15

by sending messages to the relay node. The relay node forwards the messages
to the private node and the responses to the source node. TURN [49] is a
protocol for relaying messages.

Chapter 3

Thesis contribution

In this chapter, we present a summary of the thesis contribution. First, we list the
publications that were produced during this work. Then, we explain our solution
to construct a streaming overlay in form of the multiple-tree and the mesh. Later,
we optimize our solution by sampling nodes from the Gradient overlay rather than
a random network. Finally, we present our solution to solve the nodes connectivity
problem in the Internet, where a high percentage of the nodes are behind NATs.

3.1 List of publications

• Amir H. Payberah, Jim Dowling, Seif Haridi, Gozar: NAT-friendly Peer Sam-
pling with One-Hop Distributed NAT Traversal, in the 11th IFIP international
conference on Distributed Applications and Interoperable Systems (DAIS’11),
Reykjavik, Iceland, June 2011.

• Amir H. Payberah, Jim Dowling, and Seif Haridi, GLive: The gradient overlay
as a market maker for mesh-based p2p live streaming, in the 10th IEEE In-
ternational Symposium on Parallel and Distributed Computing (ISPDC’11),
Cluj-Napoca, Romania, July 2011.

• Amir H. Payberah, Jim Dowling, Fatemeh Rahimian, and Seif Haridi, Sep-
idar: Incentivized market-based p2p live-streaming on the gradient overlay
network, in the IEEE International Symposium on Multimedia (ISM’10), vol.
0, pp. 1–8, 2010.

• Amir H. Payberah, Jim Dowling, Fatemeh Rahimian, and Seif Haridi, gradi-
enTv: Market- based P2P Live Media Streaming on the Gradient Overlay, in
Lecture Notes in Computer Science (DAIS’10), pp. 212–225, Springer Berlin,
Heidelberg, Jan 2010.

17

18 CHAPTER 3. THESIS CONTRIBUTION

List of publications of the same author but not related to this work.

• Fatemeh Rahimian, Sarunas Girdzijauskas, Amir H. Payberah, Seif Haridi,
Vitis: A Gossip-based Hybrid Overlay for Internet-scale Publish/Subscribe, in
the 25th IEEE International Parallel & Distributed Processing Symposium
(IPDPS’11), USA, May 2011.

3.2 Tree-based approach

In this section, we explain our tree-based systems: gradienTv [1] and Sepidar [2]. We
show how we can model the overlay construction as an assignment problem [50], and
then we present our distributed market model to solve this problem. The details of
the tree-based solutions, which are published in two papers, are covered in chapters
5 and 6.

3.2.1 Problem description

We assume the media stream is split into a number of sub-streams or stripes, and
each stripe is divided into blocks of equal size without any coding. Sub-streams
allow more nodes to contribute bandwidth and enable more robust systems through
redundancy [12]. Every block has a sequence number to represent its playback
order in the stream. Nodes can retrieve any stripe independently from any other
node that can supply it. The number of stripes that nodes are willing and able to
forward and to download at the same time is defined as its number of upload slots
and download slots, respectively.

The problem we address here is how to deliver a video stream from a source
as multiple stripes over multiple overlay trees that each form the structure of a
Degree-Height-Balanced (DHB) tree. A DHB tree is a height-balanced tree, where
the height of the two child subtrees from any node differ by at most one. A DHB
tree is also a degree-balanced tree, where nodes lower in the tree will have less than
or an equal number of upload slots compared to nodes higher in the tree. That
is, the out-degrees of nodes at depth l are less than or equal to the out-degrees of
nodes at depth l − 1. The root node is at depth zero.

This problem can be represented as the assignment problem [50]. Every node n
contains an equal number of download slots, and a variable number of upload slots.
The set of all download and upload slots are denoted by D and U , respectively. In
order to forward the stream to all nodes, every download slot needs to be assigned
to an upload slot, and download slots at a node must download different stripes.
We define an assignment or a mapping mij , for a stripe S from a parent node i to
a child node j, as a pair containing one upload slot at i and one download slot at
j:

mij = (ui, dj) : u ∈ U, d ∈ D, i, j ∈ N, i 6= j, (3.1)

3.2. TREE-BASED APPROACH 19

where N is the set of all nodes, and with the constraint that the slots are not
located at the same node. A cost function is defined for a mapping mij as the
distance from the parent node to the source for that stripe in terms of the number
of hops, that is,

c(mij) : mij → number of hops from i to root. (3.2)

We define a complete assignment A as a set of mappings, where each download
slot is assigned to a different upload slot, that is, every download slot in D is a
member of a mapping in A. For the system as a whole, we define the Resource
Index (RI) as the ratio of the number of upload slots to the number of download

slots, RI = |U|
|D| . To have a complete assignment, the RI of the system must be

greater than one, that is, there must be at least as many upload slots as download
slots. The total cost of a complete assignment is calculated as follows:

c(A) =
∑

m∈A

c (m) (3.3)

The goal of our system is to minimize the cost function in equation 3.3. Here, we
show that by building the DHB tree, we minimize the total cost function.

Theorem 1. If T is a DHB tree, then the cost function in equation 3.3 is mini-
mized.

Proof. See the appendix 3.A.

For live streaming, we have real-time constraints in solving this assignment prob-
lem. Good solutions should allow child nodes to be assigned a parent as quickly as
possible, to enable quick viewing of the stream. Centralized solutions to this prob-
lem are possible for small system sizes. For example, if all nodes send their number
of upload slots to a central server, the server can use any number of algorithms
that solve linear sum assignments, such as the auction algorithm [4], the Hungarian
method [51], or more recent high-performance parallel algorithms [50]. We briefly
sketch a possible solution with the auction algorithm.

The auction algorithm can be used to solve the assignment problem by n down-
load slots competing for m upload slots through iteratively increasing in their prices
in competitive bidding, where RI = m

n
≥ 1. Each matching between a download

slot i and an upload slot j is associated with a benefit aij , and the goal of the
auction is to assign download to upload slots such that the total benefit for all

matchings is maximized:
n
∑

i=1

aij .

However, download slots have a certain amount of currency with which to find
a matching of maximum benefit to it. Download slots search for upload slots they
can afford that have the highest net value, that is, upload slots whose benefit minus
their current price is highest. The algorithm then consists of two iterative phases:
a bidding phase and an assignment phase. Download slots first bid for upload

20 CHAPTER 3. THESIS CONTRIBUTION

slots of highest net value, and then upload slots assign the download slots with the
highest bids. These two phases iterate, and prices for upload slots increase until all
download slots have been assigned an upload slot.

Since the auction algorithm is centralized, it does not scale to many thousands of
nodes, as both the computational overhead of solving the assignment problem and
communication requirements on the server become excessive [50], breaking our real-
time constraints. In the next subsection, we present a distributed market model,
inspired by the auction algorithm as an approximate solution to this problem.

3.2.2 Constructing the multiple-tree overlay

Our market model is based on minimizing costs (instead of maximizing benefits)
through nodes iteratively bidding for upload slots. We use the following three
properties, calculated at each node, to approximately build the minimum delay
overlay:

1. Money: the total number of upload slots at a node. A node uses its money
to bid for a connection to another node’s upload slot for each stripe.

2. Price: the minimum money that should be bid when establishing a connection
to an upload slot. The price of a node that has an unused upload slot is zero,
otherwise the node’s price equals the lowest money of its already connected
children. For example, if node p has three upload slots and three children
with monies 2, 3 and 4, the price of p is 2. In addition, the price of a node
that has a free-riding child is zero.

3. Cost: the cost of an upload slot at a node for a particular stripe is the
distance from that node to the root (the media server) for that stripe, see
equation 3.2. Since the media stream consists of several stripes, nodes may
have different costs for different stripes. The lower the depth a node has for
a stripe (the lower its cost), the more desirable a parent it is for that stripe.
Nodes constantly try to reduce their costs over all their parent connections
by bidding for connections to lower depth nodes.

Nodes in these system compete to become children of nodes that are closer to the
the media source, and parents prefer children nodes who offer to forward the highest
number of copies of the stripes. A child node explicitly requests and pulls the first
block it requires in a stripe from its parent. The parent then pushes to the child
subsequent blocks in the stripe, as long as it remains the child’s parent. Children
can proactively switch parents when the market-modeled benefit of switching is
greater than the cost of switching.

Our market model could be best described as an approximate auction algorithm,
where there is no reserve price. For each stripe, child nodes place bids of their entire
money for upload slots at the parent nodes with lowest cost (depth). Although the
money is not used up, it can be reused for other bids for other connections. A

3.3. MESH-BASED APPROACH 21

parent node sets a price of zero for an upload slot when at least one of its upload
slots is unassigned. Thus, the first bid for an upload slot will always win (no reserve
price), enabling children to immediately connect to available upload slots. When
all of a parent’s upload slots are assigned, it sets the price for an upload slot to
the money of its child with the lowest number of upload slots. If a child with more
money than the current price for an upload slot bids for an upload slot, it will win
the upload slot and the parent will replace its child with the lowest money with the
new child. A child that has lost an upload slot has to discover new nodes and bid
for their upload slots.

One crucial difference with the auction algorithm is that our market model is
decentralized; nodes have only a partial (changing) view of a small number of nodes
in the system with whom they can bid for upload slots. Moreover, in contrast to
the auction algorithm, the price of upload slots does not always increase - it can be
reset to zero if a child node is detected as a free-rider. A node is free-rider if it is not
correctly forwarding all the stripes it promises to supply. As such, it is a restartable
auction, where the auction is restarted because a bidder did not have sufficient
funds to complete the transaction. The restartable auction is only implemented in
Sepidar, while gradienTv does not resolve the free-rider problem. In the following
subsection we show how a parent node detects its free-rider children in Sepidar.

3.2.3 Handling free-riders

Free-riders are nodes that supply less upload bandwidth than claimed. To detect
free-riders, we introduce the free-rider detector component with strong completeness
property. By strong completeness property, we mean that, if a non-freerider node
does not have free upload slots, it eventually detects all its free-riding children.
Nodes identify free-riders through transitive auditing using their children’s children.
The readers are kindly referred to see chapter 6, for more details of this procedure.

After detecting a node as a free-rider, the parent node p, decreases its own
price (p’s price) to zero and as a punishment considers the free-rider node q as
its child with the lowest money. On the next bid from another node, p replaces
the free-rider node with the new node. Therefore, if a node claims it has more
upload bandwidth than it actually supplies, it will be detected and punished. In
a converged tree, many members of the two bottom levels may have no children,
because they are the leaves of the trees, thus, the nodes in these levels are not
suspected as free-riders.

3.3 Mesh-based approach

In GLive [3], we use our market model to construct a mesh overlay for content
delivery. In the following subsections, we present the problem and explain the
differences between the mesh-based and the tree-based approaches. The results of
this work is published as a paper [3], which is available in chapter 7.

22 CHAPTER 3. THESIS CONTRIBUTION

3.3.1 Problem description

In contrast to the multiple-tree approach, in the mesh-based overlay, we do not
split the stream into stripes. The video is divided into a set of B blocks of equal
size without any coding. Every block bi ∈ B has a sequence number to represent
its playback order in the stream. Nodes can pull any block independently from
any other node that can supply it. Each node has a partner list, which is a small
subset of nodes in the system. A node can create a bounded number of download
connections to partners and accept a bounded number of upload connections from
partners over which blocks are downloaded and uploaded, respectively. We define
a node q as the parent of a child p, if an upload connection of q is bounded to a
download connection of p. Unlike the tree-based approach that assigns upload slots
to download slots of nodes for each stripe, here, we need to find the mapping of
upload connections to download connections to distribute each block among all the
nodes.

Similar to the problem description in subsection 3.2.1, we define the set of all
download and upload connections as D and U , respectively. In order to receive a
block, a node requires one of its download connection to be assigned to an upload
connection over which the block will be copied. We define an assignment or a
mapping mijk, from a node i to a node j for block bk, as a triplet containing one
upload connection at i and one download connection at j for block bk:

mijk = (ui, dj , bk) : u ∈ U, d ∈ D, b ∈ B, i, j ∈ N, i 6= j (3.4)

where N is the set of all nodes, bk is block k from the set of all blocks B, and
the connection from i to j is between two different nodes. We keep the definition
of the cost function of each mapping, the complete assignment and the total cost
of a complete assignment as it is in subsection 3.2.1.

The goal of our system is to minimize the cost function in equation 3.3 for
every block b ∈ B, such that a shortest path tree is constructed over the set of
available connections for every block. If the set of nodes, connections, and the
upload bandwidth of all nodes is static for all blocks B, then we can solve the
same assignment problem | B | times. However, P2P systems, typically have churn
(nodes join and fail) and available bandwidth at nodes changes over time, so we
have to solve a slightly different assignment problem every time a node join, exits
or a node’s bandwidth changes.

In the next subsection, we present a modified version of the distributed auction
algorithm introduced in subsection 3.2.2 to construct a mesh overlay.

3.3.2 Constructing the mesh overlay

To build a mesh overlay, we keep the definition of the price and the cost as it is in
subsection 3.2.2. We redefine the money as the total number of blocks uploaded to
children during the last 10 seconds.

3.3. MESH-BASED APPROACH 23

Each node periodically sends its money, cost and price to all its partners, which
are its neighbours in the mesh. For each of its download connections, a child node
p sends a bid request to nodes that: (i) have lower cost than one of the existing
parents assigned to download connections in p, and (ii) the price of a connection is
less than p’s money.

A parent node who receives a bid request accepts it, if: (i) it has a free upload
connection (its cost is zero), or (ii) it has assigned an upload connection to another
node with a lower amount of money. If the parent re-assigns a connection to a node
with more money, it abandons the old child who must then bid for a new upload
connection. When a child node receives the acceptance message from another node,
it assigns one of its download connections to the upload connection of the parent.
Since a node may send more connection requests than its has download connections,
it might receive more acceptance messages than it needs. In this case, if all its
download connections are already assigned, it checks the cost of all its assigned
parents and finds the one with the highest cost. If the cost of that parent is higher
than the new received acceptance message, it releases the connection to that parent
and accepts the new one, otherwise it ignores the received message.

Although there is no guarantee that the parent will forward all blocks over its
connection to a child, parents who forward a relatively lower number of blocks will
be removed as children of their parents. Nodes that claim that they have forwarded
more blocks than they actually have forwarded are removed as children, and, an
auction is restarted for the removed child’s connection. Nodes are incentivized to
increase the upper bound on the number of their upload connections, as it will help
increase their upload rate and, hence, their attractiveness as children for parents
closer to the root.

3.3.3 Handling free-riders

We implement a scoring mechanism to detect free-riders, and thus motivate nodes
to forward blocks. Each child assigns a score to each of its parents, that shows the
amount of blocks they have received from their parents in the last 10 seconds, and
these scores are periodically sent to the parents of their parents. The details of the
scoring mechanism is covered in chapter 7.

When a node with no free upload connection receives a connection request, it
sorts its children based on their latest scores. If an existing child has a score less
than a threshold s, then the child is identified as a free-rider. The parent node
abandons the free-rider nodes and accepts the new node as its child. If there is
more than one child whose score is less than s, then the lowest score is selected. If
all children have a score higher than s, then the parent accepts the connection if
the connecting node has offers more money than the lowest money of its existing
children. When the parent accepts such a connection, it then abandons (removes
the connection to) the child with the lowest money. The abandoned child then has
to search for and bid for a new connection to a new parent.

24 CHAPTER 3. THESIS CONTRIBUTION

3.4 The Gradient overlay as a market-maker

One difference between our market model with the auction algorithm is that our
market model is decentralized; nodes have only a partial (changing) view of a
small number of nodes in the system with whom they can bid for upload slots.
The problem with a decentralized implementation of the auction algorithm is the
communication overhead in nodes discovering the node with the upload slot of
highest net value. The auction algorithm assumes that the cost of communicating
with all nodes is close to zero. In a decentralized system, however, communicating
with all nodes requires flooding, which is not scalable. An alternative approach
to compute an approximate solution is to find good upload slots based on random
walks or sampling from a random overlay. However, such solutions typically have
slow convergence time, as we show in chapters 6 and 7.

It is important that nodes’ partial views enable them to find good matching
parents quickly. We use the Gradient overlay [5, 6] to provide nodes with a con-
stantly changing partial view of other nodes that have a similar number of upload
slots. Thus, rather than have nodes explore the whole system for better parent
nodes, the Gradient enables nodes to limit exploration to the set of nodes with a
similar number of upload slots. As such, this algorithm gives us an approximate
solution to the assignment problem.

The details of the constructing the Gradient overlay is presented in chapter 5.

3.5 Handling the NAT problem

As mentioned in section 2.4, when a high percentage of nodes are behind NATs, it
is impossible to create direct connection between those nodes, and it breaks down
the existing gossip-based PSS. In Gozar, we address this problem by designing a
gossip-based NAT-friendly PSS that supports distributed NAT traversal using a
system composed of both public and private nodes.

The challenge with gossiping PSS is that it assumes a node can communicate
with any node selected from its partial view. To communicate with a private node,
there are three existing options:

1. Relay communications to the private node using a public relay node,

2. Use a NAT hole punching algorithm to establish a direct connection to the
private node using a public rendezvous node,

3. Route the request to the private node using chains of existing open connec-
tions.

For the first two options, we assume that private nodes are assigned to different
public nodes that act as relay or rendezvous servers. This leads to the problem
of discovering which public nodes act as partners for the private nodes. A similar
problem arises for the third option - if we are to route a request to a private node

3.5. HANDLING THE NAT PROBLEM 25

along a chain of open connections, how do we maintain routing tables with entries
for all reachable private nodes. When designing a gossiping system, we have to
decide on which option(s) to support for communicating with private nodes. There
are several factors to consider. How much data will be sent over the connection?
How long lived will the connection be? How sensitive is the system to high and
variable latencies in establishing connections? How fairly should the gossiping load
be distributed over public versus private nodes?

For large amounts of data traffic, the second option of NAT traversal is the only
really viable option, if one is to preserve fairness. However, if a system is sensitive
to long connection establishment times, then NAT traversal is a problem, which
affects both options 2 and 3. If the amount of data being sent is small, and fast
connection setup times are important, then relaying is considered an acceptable
solution. If it is important to distribute load as fairly as possible between public
and private nodes, then option 3 is attractive. In existing systems, Skype supports
both options 1 and 2, and can considered to have a solution to the fairness problem
that, by virtue of its widespread adoption, can be considered acceptable to their
user community [52].

Gozar is a NAT-friendly gossip-based peer sampling protocol with support for
distributed NAT traversal. Our implementation of Gozar is based on the tail, push-
pull and swapper policies for node selection, view exchange and view selection (see
section 2.2). In Gozar, node descriptors are augmented with the node’s NAT type
(private or public) and the mapping, assignment and filtering policies determined for
the NAT [46]. A STUN-like protocol is run on a bootstrap server when a node joins
the system to determine its NAT type and policies. We consider running STUN
once at bootstrap time acceptable, as, although some corporate NAT devices can
change their NAT policies dynamically, the vast majority of consumer NAT devices
have a fixed NAT type and fixed policies.

In Gozar, each private node connects to one or more public nodes, called part-
ners. Private nodes discover potential partners using the PSS, that is, private
nodes select public nodes from their partial view and send partnering requests
to them. When a private node successfully partners with a public node, it adds
its partner address to its own node descriptor. As node descriptors spread in the
system through gossiping, a node that subsequently selects the private node from
its partial view communicates with the private node using one of its partners as a
relay server. Relaying enables faster connection establishment than hole punching,
allowing for shorter periodic cycles for gossiping. Short gossiping cycles are neces-
sary in dynamic networks, as they improve convergence time, helping keep partial
views updated in a timely manner.

However, for distributed applications that use a PSS, such as online gaming,
video streaming, and P2P file sharing, relaying is not acceptable due to the extra
load on public nodes. To support these applications, the private nodes’ partners
also provide a rendezvous service to enable applications that sample nodes using
the PSS to connect to them using a hole punching algorithm (if hole punching is
possible).

26 CHAPTER 3. THESIS CONTRIBUTION

Table 3.1: Number of nodes of subtree Ta and Tb in different levels

Depth Ta Tb Comments

l + 0 N0 = 1 M0 = 0 m0 = MD(T, l + 0)
l + 1 N1 = k M1 = 1 m1 = MD(T, l + 1)

l + 2 N2 =

N1
∑

i=1

ki M2 = M1 × m0 m2 = MD(T, l + 2)

l + 3 N3 =

N2
∑

i=1

ki M3 = M2 × m1 m3 = MD(T, l + 3)

· · · · · · · · · · · ·

l + h − 1 Nh−1 =

Nh−2
∑

i=1

ki Mh−1 = Mh−2 × mh−3 mh−1 = MD(T, l + h − 1)

l + h Nh = r Mh = Mh−1 × mh−2 r = 0, because we assume
H(Ta) = h

The result of this work is published as a paper [53], which is available in chapter
8.

3.A A DHB tree minimizes the cost function

In this appendix we prove the theorem 1 in subsection 3.2.1.
Firstly, we define the following functions:

• H(T): returns the height of the tree T .

• D(a): returns the depth of the node a in a tree.

• S(T): returns the number of nodes in the tree T .

• MD(T, l): returns the lowest out-degree of the nodes in T at depth l. In table
3.1, we represent MD(T, l + i) as mi.

Lemma 1. In a DHB tree T , if there exist two subtrees Ta and Tb, such that depth
of Ta’s root is less than depth of Tb’s root, then S(Ta) ≥ S(Tb).

Proof. Assume a and b are the roots of subtrees Ta and Tb, such that D(a) < D(b).
First, let us assume a and b are placed at two consecutive depths, e.g., D(a) = l
and D(b) = l + 1. If H(T) = t, then by the height-balanced property of T , the

3.A. A DHB TREE MINIMIZES THE COST FUNCTION 27

depth of its leaves are t and/or t − 1. We can measure the height of Ta and Tb as
follows:

H(Ta) =

{

t − l Ta’s leaves are at depth t in T
(t − 1) − l Ta’s leaves are at depth t-1 in T

H(Tb) =

{

t − (l + 1) Tb’s leaves are at depth t in T
(t − 1) − (l + 1) Tb’s leaves are at depth t-1 in T

The minimum difference between the height of Ta and Tb is when the leaves of
Ta are at depth t − 1 in T , and leaves of Tb are at depth t in T . In this situation
both have the same height h = t − l − 1. In the rest of the proof we assume that
H(Ta) = H(Tb) = h.

Table 3.1 shows the number of nodes in Ta and Tb at different depths. Ni shows
the number of nodes in Ta at depth l + i and Mi shows the maximum number of
nodes in Tb at depth l + i. Using table 3.1, the number of nodes for each subtree is
calculated by summing up the values in its corresponding column:

S(Ta) = N0 + N1 + N2 + · · · + Nh−1 + Nh

S(Tb) = M0 + M1 + M2 + · · · + Mh−1 + Mh

We know that M0 = 0 and Nh = 0. Following the degree-balanced property of T ,
Ta and Tb, we have:

Mi ≤ Ni−1; ∀i ∈ {1, ..., h}

Thus, S(Tb) ≤ S(Ta).
If D(b) − D(a) > 1, then we can find a node c, which is a descendant of node

a at depth D(b) − 1. We already proved that S(Tb) ≤ S(Tc), therefore S(Tb) ≤
S(Ta).

Theorem 1. If T is a DHB tree, then the cost function in equation 3.3 is minimum.

Proof. Assume to the contrary that T is a DHB tree, but the cost function is not
minimized. That is, there exists different assingment (implemented using a tree
rebalancing operation) that can be used to reduce the total cost of T by equation
3.3.

The tree rebalancing operation we consider here involves swapping the position
of two nodes (and their subtrees) in the tree. Assume we select two nodes a and b as
the root of the two subtrees Ta and Tb, such that D(a) < D(b) and D(b)−D(a) = d.
In the light of the lemma 1, we have S(Tb) ≤ S(Ta). Our rebalancing operation
swaps the positions of Ta and Tb. It moves a and its sub-tree nodes lower in the
tree, increasing its depth (and the depth of nodes in its sub-tree) by d. By equation
3.2, we increase the cost of all mappings in Ta by S(Ta)d. The same rebalancing
operation moves b and its sub-tree nodes higher in the tree by the same depth d,
decreasing the mapping costs of the moved nodes by S(Tb)d. As S(Ta)d ≥ S(Tb)d,
and by equation 3.3, after swapping, the cost of all moved mappings is either higher

28 CHAPTER 3. THESIS CONTRIBUTION

or the same, so it does not decrease the total cost for the tree, thus, contradicting
our earlier assumption.

Now, assume D(a) = D(b), so d = D(a) − D(b) = 0. Here, by swapping the
positions of Ta and Tb , we do not move up or down those nodes and their subtrees
(S(Ta)d = S(Tb)d = 0), therefore the total cost for the tree is not decreased. Again,
this contradicts our initial assumption.

The only other operation, besides swapping, for assigning different mappings to
rebuild T is to reposition a node in T . Given the height-balanced property of T ,
the only available positions in T are located at T ’s leaves. Assume if H(T) = t and
b is the root of subtree Tb, such that D(b) = d, then cutting Tb and adding it at
leaves of T increases the mapping costs of b and its descendants by S(Tb)(t − d).
Since t ≥ d, after rebalancing, the cost of all moved mappings is either higher or
the same as before.

Chapter 4

Conclusions

In this project, we focused on two topics: (i) designing and implementing a dis-
tributed market model to construct P2P streaming overlays, in form of three sys-
tems: gradienTv, Sepidar, and GLive, and (ii) presenting a gossip-based NAT-
friendly peer sampling service, called Gozar.

4.1 Sepidar, gradienTv and GLive

Within our streaming systems, we have proposed a distributed market model to
construct a content distribution overlay, such that (i) nodes with increasing upload
bandwidth are located closer to the media source, and (ii) nodes with similar upload
bandwidth become neighbours. We use this model to build a multiple-tree overlay
in gradienTv and Sepidar, as well as a mesh overlay in GLive. In the former
solutions the data blocks are pushed through the trees, while in the latter, nodes
pull data from their neighbours in the mesh. Sepidar differs from gradienTv in that
it handles the free-riding problem.

We assume each node can have a number upload connections and a number of
download connections. To be able to distribute data blocks to all the nodes, the
download connections of nodes should be assigned to other nodes’ upload connec-
tions. We model this problem as an assignment problem. There exist centralized
solutions for this problem, e.g., the auction algorithm, which are not feasible in
large and dynamic networks with real-time constraints. An alternative decentral-
ized implementation of the auction algorithm is based on sampling from a random
overlay, but it has a slow convergence time. Therefore, we address the problem by
using the gossip-generated Gradient overlay to provide nodes with a partial view
of other nodes that have a similar upload bandwidth or slightly higher.

We evaluate gradienTv, Sepidar and GLive in simulation, and compare their
performance with the state-of-the-art NewCoolstreaming. We show that our solu-
tions provide better playback continuity and lower playback latency than that of
NewCoolstreaming in different scenarios. In addition, we compare Sepidar with

29

30 CHAPTER 4. CONCLUSIONS

GLive to highlight the differences of the multiple-tree and the mesh overlays. We
observe that the mesh-based overlay outperforms the multiple-tree overlay in all
the scenarios. Moreover, we compare the convergence time of our systems, Sepidar
and GLive, when the node samples are given by the Gradient overlay rather than
a random network. The experiment results show that the overlays converge faster
when our market model works on top of the Gradient overlay. Finally, we evaluate
GLive and Sepidar performance in different free-rider settings, and examine the
effectiveness of our mechanism for addressing the free-riding problem.

4.2 Gozar

A gossip-based peer sampling service (PSS) provides each node with a small list
of live nodes in a system. In the Internet, however, most of existing gossiping
protocols break down, as nodes cannot establish direct connections to nodes behind
NATs. Moreover, existing NAT traversal algorithms for establishing connectivity to
private nodes rely on third party servers running at well-known, public IP addresses.
In this work, we present Gozar, a gossip-based peer sampling service that: (i)
provides uniform random samples in the presence of NATs, and (ii) enables direct
connectivity to sampled nodes using a fully distributed NAT traversal service, where
connection messages require only a single hop to connect to private nodes.

We show in simulation that Gozar preserves the randomness properties of a
gossip-based peer sampling service. We show the robustness of Gozar when a large
fraction of nodes reside behind NATs and also in catastrophic failure scenarios. For
example, if 80% of nodes are behind NATs, and 80% of the nodes fail, more than
92% of the remaining nodes stay connected. In addition, we compare Gozar with
existing NAT-friendly gossip-based peer sampling services, Nylon and ARRG. We
show that Gozar is the only system that supports one-hop NAT traversal, and its
overhead is roughly half of Nylon’s.

4.3 Future work

In the current implementation of our systems, we consider the upload bandwidth of
the nodes as the only influencing parameter in the overlay construction. We believe
this model can be extended to include other important node characteristics, such as
node uptime, load, reputation, and locality. In addition, in our streaming systems,
we did not address the problem of nodes colluding to receive the video stream. As
future work, it would be interesting to solve the free-rider problem, where a group
of nodes cooperate with each other to cheat and receive data without helping in
distributing it.

As another direction of our future work, we will integrate our existing streaming
applications with Gozar and evaluate their behaviour in the open Internet.

Part II

Research Papers

31

Paper A

Chapter 5

gradienTv: Market-based P2P live

media streaming on the Gradient

overlay

Amir H. Payberah, Jim Dowling, Fatemeh Rahimian, and Seif Haridi

In the 10th IFIP international conference on Distributed Applications and Inter-
operable Systems (DAIS’10), LNCS, pp. 212–225, Springer Berlin, Amsterdam,
Netherlands, Jun 2010.

gradienTv: Market-based P2P live media
streaming on the Gradient overlay

Amir H. Payberah†‡, Jim Dowling†, Fatemeh Rahimian†‡, and Seif Haridi†‡

†Swedish Institute of Computer Science (SICS)
‡KTH - Royal Institute of Technology

{amir, jdowling, fatemeh, seif}@sics.se

Abstract

This paper presents gradienTv, a distributed, market-based approach to
live streaming. In gradienTv, multiple streaming trees are constructed using
a market-based approach, such that nodes with increasing upload bandwidth
are located closer to the media source at the roots of the trees. Market-based
approaches, however, exhibit slow convergence properties on random over-
lay networks, so to facilitate the timely discovery of neighbours with similar
upload bandwidth capacities (thus, enabling faster convergence of streaming
trees), we use the gossip-generated Gradient overlay network. In the Gradient
overlay, nodes are ordered by a gradient of node upload capacities and the
media source is the highest point in the gradient. We compare gradienTv
with state-of-the-art NewCoolstreaming in simulation, and the results show
significantly improved bandwidth utilization, playback latency, playback con-
tinuity, and reduction in the average number of hops from the media source
to nodes.

5.1 Introduction

Live streaming using overlay networks is a challenging problem. It requires dis-
tributed algorithms that, in a heterogeneous network environment, improve system
performance by maximizing the nodes’ upload bandwidth utilization, and improve
user viewing experience by minimizing the playback latency, and maximizing the
playback continuity of the stream at nodes.

In this paper, we improve on the state-of-the-art NewCoolstreaming system [24]
for these requirements by building multiple media streaming overlay trees, where
each tree delivers a part of the stream. The trees are constructed using distributed
algorithms such that a node’s depth in each tree is inversely proportional to its
relative available upload bandwidth. That is, nodes with relatively higher upload
bandwidth end up closer to the media source(s), at the root of each tree. This
reduces load on the source, maximizes the utilization of available upload bandwidth
at nodes, and builds lower height trees (reducing the number of hops from nodes
to the source). Although we only consider upload bandwidth for constructing the
Gradient overlay in this paper, the model can easily be extended to include other
important node characteristics such as node uptime, load and reputation.

35

36 CHAPTER 5. GRADIENTV

Our system, called gradienTv, uses a market-based approach to construct mul-
tiple streaming overlay trees. Firstly, the media source splits the stream into a
set of sub-streams, called stripes, and divides each stripe into a number of blocks.
Sub-streams allow more nodes to contribute bandwidth and enable more robust
systems through redundancy [12]. Nodes in the system compete to become chil-
dren of nodes that are closer to the root (the media source), and parents prefer
children nodes who offer to forward the highest number of copies of the stripes. A
child node explicitly requests and pulls the first block it requires in a stripe from
its parent. The parent then pushes to the child subsequent blocks in the stripe, as
long as it remains the child’s parent. Children can proactively switch parent when
the market-modelled benefit of switching is greater than the cost of switching.

The challenge with implementing this market-based approach is to find the best
possible matching between parents and children in a timely manner, while having
as few parent switches as possible. In general, for a market-based system to work
efficiently, information and prices need to be spread quickly between participants.
Insufficient information at market participants results in inefficient markets. In a
market implemented using an overlay network, where the nodes are market partic-
ipants, the communication of information and prices between nodes is expensive.
For example, finding the optimal parent for each node requires, in principle, flood-
ing to communicate with all other nodes in the system. Flooding, however, is not
scalable. Alternatively, an approach to find parents based on random walks or
sampling from a random overlay produces slow convergence time for the market
and results in excessive parent switching, as information only spreads slowly in
the market. We present a fast, approximate solution to this problem based on the
Gradient overlay [6]. The Gradient is a gossip-generated overlay network, built by
sampling from a random overlay, where nodes organize into a gradient structure
with the media source at the centre of the gradient and nodes with decreasing rel-
ative upload bandwidth found at increasing distance from the centre. A node’s
neighbours in the Gradient have similar, or slightly higher upload bandwidth. The
Gradient, therefore, efficiently acts as a market maker that matches up nodes with
similar upload bandwidths, enabling the market mechanisms to quickly construct
stable streaming overlay trees. As nodes with low relative upload bandwidths are
rarely matched with nodes with high relative upload bandwidths (as can be the case
in a random overlay), there is significantly less parent-switching before streaming
overlay trees converge.

We evaluate gradienTv by comparison with NewCoolstreaming, a successful and
widely used media streaming solution. We show in simulation that our market-
based approach ensures that the system’s upload bandwidth can be near maxi-
mally utilized, the playback continuity at clients is improved compared to New-
Coolstreaming, the height of the media streaming trees constructed is much lower
than in NewCoolstreaming, and, as a consequence, playback latency is less than
NewCoolstreaming.

5.2. RELATED WORK 37

5.2 Related work

There are two fundamental problems in building data delivery (media streaming)
overlay networks: (i) what overlay topology is built for data dissemination, and (ii)
how a node discovers other nodes supplying the stream.

Early data delivery overlays use a tree structure, where the media is pushed
from the root to interior nodes to leave nodes. Examples of such systems include
Climber [8], ZigZag [9] and NICE [10]. The short latency of data delivery is the
main advantage of this approach [7]. Disadvantages, however, include the fragility
of the tree structure upon the failure of nodes close to the root and the fact that all
the traffic is only forwarded by the interior nodes. SplitStream [12] improved this
model by using multiple trees, where the stream is split into sub-streams and each
tree delivers one sub-stream. Orchard [13], ChunkySpread [14] and CoopNet [15]
are some other solutions in this class.

An alternative to tree structured overlays is mesh structure, in which the nodes
are connected in a mesh-network [7], and nodes request missing blocks of data
explicitly. The mesh structure is highly resilient to node failures, but it is sub-
ject to unpredictable latencies due to the frequent exchange of notifications and
requests [7]. SopCast [54], DONet/Coolstreaming [18], Chainsaw [19], BiToS [55]
and PULSE [20] are examples of mesh-based systems.

Another class of systems combine tree and mesh structures to construct a data
delivery overlay. Example systems include CliqueStream [22], mTreebone [23], New-
CoolStreaming [24], Prime [25] and [26]. GradienTv belongs to this class, where
the mesh is the Gradient overlay.

The second fundamental problem is how nodes discover the other nodes that sup-
ply the stream. CoopNet [15] uses a centralized coordinator, GnuStream [30] uses
controlled flooding requests, SplitStream [12] and [26] use DHTs, while NewCool-
streaming [24], DONet/Coolstreaming [18] and PULSE [20] use a gossip-generated
random overlay network to search for the nodes.

NewCoolstreaming [24] has the most similarities with gradienTv. Both systems
have the same data dissemination model where a node subscribes to a sub-stream
at a parent node, and the parent subsequently pushes the stream to the child. How-
ever, gradienTv’s use of the Gradient overlay to discover nodes to supply the stream
contrasts with NewCoolStreaming that samples nodes from a random overlay (re-
ferred to as the partner-list). A second major difference is that NewCoolStreaming
only reactively changes a parent when a sub-stream is identified as being slow,
whereas gradienTv proactively changes parents to improve system performance.

5.3 Gradient overlay

The Gradient overlay is a class of P2P overlays that arrange nodes using a local
utility function at each node, such that nodes are ordered in descending utility
values away from a core of the highest utility nodes [5, 6]. As can be seen in

38 CHAPTER 5. GRADIENTV

Figure 7.4.2, the highest utility nodes (darkest colour) are found at the core of
the Gradient, and nodes with decreasing utility values (lighter grays) are found at
increasing distance from the centre.

Figure 5.1: the Gradient overlay network

The Gradient maintains two sets of neighbours using gossiping algorithms: a
similar-view and a random-view. The similar-view of a node is a partial view of
the nodes whose utility values are close to, but slightly higher than, the utility
value of this node. Nodes periodically gossip with each other and exchange their
similar-views. Upon receiving a similar-view, a node updates its own similar-view
by replacing its entries with those nodes that have closer (but higher) utility value
to its own utility value. In contrast, the random-view constitutes a random sample
of nodes in the system, and it is used both to discover new nodes for the similar-view
and to prevent partitioning of the similar-view.

5.4 GradienTv system

In gradienTv, the media source splits the media into a number of stripes and divides
each stripe into a sequence of blocks. GradienTv constructs a media streaming over-
lay tree for each stripe, where blocks are pushed from parents to children. Newly
joined nodes discover stripe providers using the Gradient overlay and compete with
each other to establish a parent-child relationship with providers. A node proac-
tively changes its parent for a stripe, if it finds a lower depth parent for that stripe
and if that parent either has a free upload slot or prefers this node to one of its
existing children.

We use the term download slot to define a network connection at a node used
to download a stripe. Likewise, an upload slot refers to a network connection at a
node that is used to forward a stripe. If node p assigns its upload slot to node q’s
download slot, we say p is the parent of q and q is the child of p.

Our market model uses the following three properties, calculated at each node,
to match nodes that can forward a stripe with nodes that want to download that
stripe:

1. Currency: the total number of upload slots at a node, that is, the number of
stripes a node is willing and able to forward simultaneously. A node uses its

5.4. GRADIENTV SYSTEM 39

currency when requesting to connect to another node’s upload slot.

2. Connection cost: the minimum currency that should be provided for estab-
lishing a connection to receive a stripe. The connection cost to a node that
has an unused upload slot is zero, otherwise the node’s connection cost equals
the lowest currency of its already connected children. For example, if node
p has three upload slots and three children with currencies 2, 3 and 4, the
connection cost of p is 2.

3. Depth: the shortest path (number of hops) from a node to the root for a
particular stripe. Since the media stream consists of several stripes, nodes
may have different depths in different trees. The lower the depth a node has
for a stripe, the more desirable a parent it is for that stripe. Nodes constantly
try to reduce their depth over all their stripes by competing with other nodes
for connections to lower depth nodes.

5.4.1 Gradient overlay construction

Each node maintains two sets of neighbouring nodes: a random-view and a similar-
view. Cyclon [40] is used to create and update the random-view and a modified
version of the Gradient protocol is used to build and update the similar-view. The
node references stored in each view contain the utility value for the nodes. The
utility value of a node is calculated using two factors: a node’s upload bandwidth
and a disjoint set of discrete utility values that we call market-levels. A market-level
is defined as a range of network upload bandwidths that have the same utility value.
For example, in figure 5.2, we define some example market-levels: mobile broadband
(64-127 Kbps) with utility value 1, slow DSL (128-511 Kbps) with utility value 2,
DSL (512-1023 Kbps) with utility value 3, Fibre (>1024 Kbps) with utility value 4,
and the media source with utility value 5. A node measures its upload bandwidth
(e.g., using a server or trusted neighbour) and calculates its utility value as the
market-level that its upload bandwidth falls into. For instance, a node with 256
Kbps upload bandwidth falls into slow DSL market-level, so its utility value is 2.

A node prefers to fill its similar-view with the nodes from the same market-level
or one level higher. A feature of this preference function is that low-bandwidth
nodes only have connections to one another. However, low bandwidth nodes often
do not have enough upload bandwidth to simultaneously deliver all stripes in a
stream. Therefore, in order to enable low bandwidth nodes to utilize the spare
slots of higher bandwidth nodes, nodes maintain a finger list, where each finger
points to a node in a higher market-level (if one is available). In Figure 5.2, each
ring represents a market-level, the black links show the links within the similar-view
and the gray links are the fingers to nodes in higher market-levels.

Nodes bootstrap their similar-view using a bootstrap server, and, initially, the
similar-view of a node is filled with random nodes that have equal or higher utility
value. Algorithm 1 is executed periodically by the node p to maintain its similar-
view. The algorithm describes how on every round, p increments the age of all the

40 CHAPTER 5. GRADIENTV

Figure 5.2: Different market-levels of a system, the similar-view of node p and its fingers

Algorithm 1 Updating the similar-view

1: procedure UpdateSimilarView 〈this〉
2: this.similarV iew.updateAge()
3: q ← oldest node from this.similarV iew

4: this.similarV iew.remove(q)
5: pV iew ← this.similarV iew.subset() ⊲ a random subset from p’s similarV iew
6: Send pV iew to q

7: Recv qV iew from q ⊲ qV iew is a subset of q’s similarV iew
8: for all nodei in qV iew do

9: if Up(nodei) = U(p) OR Up(nodei) = U(p) + 1 then

10: if this.similarV iew.contains(nodei) then

11: this.similarV iew.updateAge(nodei)
12: else if this.similarV iew has free entries then

13: this.simialrV iew.add(nodei)
14: else

15: nodej ← pV iew.poll() ⊲ get and remove one entry from pV iew

16: this.similarV iew.remove(nodej)
17: this.simialrV iew.add(nodei)
18: end if

19: end if

20: end for

21: for all nodea in this.randomV iew do

22: if Up(nodea) = U(p) OR Up(nodea) = U(p) + 1 then

23: if this.similarV iew has free entries then

24: this.simialrV iew.add(nodea)
25: else

26: nodeb ← (x ∈ this.similarV iew such that Up(x) > U(p) + 1)
27: if (nodeb 6= null) then

28: this.similarV iew.remove(nodeb)
29: this.simialrV iew.add(nodea)
30: end if

31: end if

32: end if

33: end for

34: end procedure

5.4. GRADIENTV SYSTEM 41

Algorithm 2 Parent assignment

1: procedure assignParent 〈〉
2: for all stripei in stripes do

3: candidates← findParent(i)
4: if candidates 6= null then

5: newP arent← a random node from candidates
6: send 〈assignRequest | i〉 to newP arent

7: end if

8: end for

9: end procedure

Algorithm 3 Select candidate parent from the similar-view and the fingers

1: procedure findParent 〈i〉
2: candidates←‰
3: if this.stripei.parnet = null then

4: this.stripei.parnet.depth←∞
5: end if

6: for all nodej in (similarV iew
⋃

fingers) do

7: if nodej .stripei.depth < this.stripei.parent.depth
8: AND nodej .connectionCost < this.currency then

9: candidates.add(nodej)
10: end if

11: end for

12: return candidates

13: end procedure

nodes in its similar-view. It removes the oldest node, q, from its similar-view and
sends a subset of nodes in its similar-view to q (lines 3-6). Node q responds by
sending back a subset of its own similar-view to p. Node p then merges the view
received from q with its existing similar-view by iterating through the received list
of nodes, and preferentially selecting those nodes in the same market-level as p or
at most one level higher. If the similar-view is not full, it adds the node, and if a
reference to the node to be merged already exists in p’s similar-view, p just refreshes
the age of its reference. If the similar-view is full, p replaces one of the nodes it
had sent to q with the selected node (lines 8-20). What is more, p also merges
its similar-view with its own local random-view, in the same way described above.
Upon merging, when the similar-view is full, p replaces a node whose utility value
is more than p’s utility value plus one (lines 21-33).

The fingers to higher market-levels are also updated periodically. Node p goes
through its random-view, and for each higher market-level, picks a node from that
market-level if there exists such a node in the random-view. If there is not, p keeps
the old finger.

5.4.2 Streaming tree overlay construction

Algorithm 2 is called periodically by nodes to build and maintain a streaming
overlay tree for each stripe. For each stripe i, a node p checks if it has a node in

42 CHAPTER 5. GRADIENTV

its similar-view or finger list that has (i) a lower depth than its current parent, and
(ii) a connection cost less than p’s currency. If such a node is found, it is a added
to a list of candidate parents for stripe i (Algorithm 3). Next, we use a random
policy to select a node from the candidate parents, as it fairly balances connection
requests over nodes in the system. In contrast, if we select the candidate parent
with the minimum depth, then for even low variance in currency of nodes, it causes
excessive connection requests to those nodes with high upload bandwidth.

Algorithm 4 Handling the assign request

1: upon event 〈AssignRequest | i〉 from p
2: if has free uploadSlot then

3: assign an uploadSlot to p
4: send 〈assignAccepted | i〉 to p

5: else

6: worstChild← lowest currency child
7: if worstChild.currency ≥ p.currency then

8: send 〈assignNotAccepted | i〉 to p
9: else

10: assign an uploadSlot to p
11: send 〈release | i〉 to worstChild
12: send 〈assignAccepted | i〉 to p

13: end if

14: end if

15: end event

Algorithm 4 is called whenever a receiver node q receives a connection request
from node p. If q has a free upload slot, it accepts the request, otherwise if p’s
currency is greater than the connection cost of q, q abandons one of its children
with the lowest currency and accepts p as a new child. In this case, the abandoned
node has to find a new parent. If q’s connection cost is greater than p’s currency,
q declines the request.

5.5 Experiments and evaluation

In this section, we compare the performance of gradienTv with NewCoolstream-
ing under simulation. In summary, we define three different experiment scenar-
ios: join-only, flash-crowds, and catastrophic failure, and, we show that gradienTv
outperforms NewCoolstreaming in all of these scenarios for the following metrics:
playback continuity, bandwidth utilization, playback latency, and path length. 1

Experiment setup
We have implemented both gradienTV and NewCoolstreaming using the Kom-
pics platform [56]. Kompics provides a framework for building P2P protocols, and
simulation support using a discrete event simulator. Our implementation of New-
Coolstreaming is based on the system description in [24, 57]. We have validated

1The source code and the results are available at: http://www.sics.se/∼amir/gradientv

5.5. EXPERIMENTS AND EVALUATION 43

our implementation of NewCoolstreaming by replicating, in simulation, the results
from [24].

In our experimental setup, we set the streaming rate to 512 Kbps and unless
stated otherwise, experiments involve 1000 nodes. The stream is split into 4 stripes
and each stripe is divided into a sequence of 128 KB blocks. The media source is
a single node with 40 upload slots. Nodes start playing the media after buffering
it for 30 seconds. This is comparable with the most widely deployed P2P live
streaming system, SopCast’s that has average startup time of 30-45 seconds [54].
The size of a node’s partial view (the similar-view in gradienTv, the partner list in
NewCoolstreaming) is 15 nodes.

The number of upload slots for the non-root nodes is picked randomly from 1
to 10, which corresponds to upload bandwidths from 128 Kbps to 1.25 Mbps. As
the average upload bandwidth of 704 Kbps is not much higher than the streaming
rate of 512 Kbps, nodes have to find good matches as parents in order for good
streaming performance. We assume all the nodes have enough download bandwidth
to receive all the stripes simultaneously. In gradienTv, we define 11 market-levels,
such that the nodes with the the same number of upload slots are located at the
same market-level. For example, nodes with one upload slot (128 Kbps) are the
members of the first market-level, nodes with two upload slots (256 Kbps) are
located in the second market-level, and the media source with 40 upload slots (>5
Mbps) is the only member of the 11th market-level.

Latencies between nodes are modelled using a latency map based on the King
data-set [58]. In the experiments, we measure the following metrics:

1. Playback continuity: the percentage of blocks that a node received before their
playback time. In our experiments to measure playback quality, we count the
number of nodes that have a playback continuity of greater than 90%;

2. Bandwidth utilization: the ratio of the total number of utilized upload slots
to the total number of requested download slots;

3. Playback latency: the difference in seconds between the playback point of a
node and the playback point at the media source;

4. Path length: the minimum distance in number of hops between the media
source and a node for a stripe.

We compare our system with NewCoolstreaming using the following scenarios:

1. Join-only: 1000 nodes join the system following a Poisson distribution with
an average inter-arrival time of 100 milliseconds;

2. Flash crowd: first, 100 nodes join the system following a Poisson distribution
with an average inter-arrival time of 100 milliseconds. Then, 1000 nodes join
following the same distribution with a shortened average inter-arrival time of
10 milliseconds;

44 CHAPTER 5. GRADIENTV

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

P
la

yb
ac

k
co

nt
in

ui
ty

gradientv - join only
gradientv - flash crowd

gradientv - failure

(a) gradienTv.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

P
la

yb
ac

k
co

nt
in

ui
ty

newcoolstreaming - join only
newcoolstreaming - flash crowd

newcoolstreaming - failure

(b) NewCoolstreaming.

Figure 5.3: Playback continuity in percent (Y-axis), against time in seconds (X-axis).

3. Catastrophic failure: as in the join-only scenario, 1000 nodes join the system
following a Poisson distribution with an average inter-arrival time of 100 mil-
liseconds. Then, 400 existing nodes fail following a Poisson distribution with
an average inter-arrival time 10 milliseconds. The system then continues its
operation with only 600 nodes.

In addition to these scenarios, we also evaluate the behaviour of gradienTv when
varying two key parameters: (i) the playback buffering time and (ii) the number of
nodes.

Playback Continuity
In this section, we compare the playback continuity of gradienTv and NewCool-
streaming in three different scenarios: join-only, flash crowd and catastrophic fail-
ure. In figures 5.3a and 5.3b, the X-axis shows the time in seconds, while the Y-axis
shows the percentage of the nodes in the overlay that have a playback continuity
more than 90%. We can see that gradienTv significantly outperforms NewCool-
streaming for the whole duration of the experiment in all scenarios. Moreover, af-
ter the system stabilizes, we observe a full playback continuity in gradienTv. This
out-performance is due to the faster convergence of the streaming overlay trees
in gradienTv, where high-capacity nodes can quickly discover and connect to the
source using the similar-view, while in NewCoolstreaming nodes take longer to find
parents as they search by updating their random view through gossiping. Another
reason for out-performance is the difference in policies used by a child to pull the
first block from a new parent. In gradienTv, whenever a node p selects a new parent
q, p informs q of the last block it has in its buffer, and q sends subsequent blocks to
p, while in NewCoolstreaming, the requested block is determined by looking at the
head of the partners. This causes NewCoolstreaming to miss blocks when switching

5.5. EXPERIMENTS AND EVALUATION 45

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

B
an

dw
id

th
 u

til
iz

at
io

n

gradientv - join only
gradientv - flash crowd

gradientv - failure

(a) gradienTv.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

B
an

dw
id

th
 u

til
iz

at
io

n

newcoolstreaming - join only
newcoolstreaming - flash crowd

newcoolstreaming - failure

(b) NewCoolstreaming.

Figure 5.4: Bandwidth utilization in percent (Y-axis), against time in seconds (X-axis).

parent.

Bandwidth Utilization
Our second experiment compares the bandwidth utilization of gradienTv (figure
5.4a) and NewCoolstreaming (figure 5.4b). We observe that when the system has
no churn, as in the join-only scenario, both systems equally utilized the bandwidth.
In the flash crowd and catastrophic failure scenarios, the performance of the both
systems drops significantly. However, gradienTv recovers faster, as nodes are able
to find parents more quickly using the Gradient overlay.

Path Length
In the third experiment, we compare the average path length of both streaming
overlays. Before looking at the experiment results, we calculate the minimum depth
of a k-ary tree with n nodes using logk(n). In our experiments, there are on average
5 upload slots per node (as upload slots are uniformly distributed from 1 to 10),
and the minimum depth of the trees is expected to be log5(1000) ≈ 4.29. Figures
5.5a and 5.5b show tree depth of the system for gradienTv and NewCoolstreaming.
We observe that gradienTv constructs trees with an average height of 4.3, which
is very close to the minimum height. The figures also show that the depth of the
trees in gradienTv are half the depth of the trees in NewCoolstreaming. Shorter
trees enable lower playback latency.

What is more, we observe that the average depth of the trees is independent
of the inter-arrival time of the joining nodes. This can be seen in figures 5.5a and
5.5b, where the depth of the trees, after the system stabilizes, is the same. More
interestingly, in the catastrophic failure scenario, we can see a sharp drop in New-
Coolstreaming tree depth, as a result of the drop in the number of nodes remaining

46 CHAPTER 5. GRADIENTV

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 200 400 600 800 1000

A
vg

 p
at

h
le

ng
th

gradientv - join only
gradientv - flash crowd

gradientv - failure

(a) gradienTv.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 200 400 600 800 1000

A
vg

 p
at

h
le

ng
th

newcoolstreaming - join only
newcoolstreaming - flash crowd

newcoolstreaming - failure

(b) NewCoolstreaming.

Figure 5.5: Average path length in number of hops (Y-axis), against time in seconds (X-axis).

in the system and the fact that many remaining nodes do not have any path to
the media source. The same behaviour is observed in gradienTv, but since the
nodes can find appropriate nodes to connect to more quickly, the fluctuation in the
average depth of trees is less than in NewCoolstreaming.

Playback Latency
This experiment shows how the average playback latency of nodes changes over time
in our three scenarios (figures 5.6a and 5.6b). In the join-only scenario, we can see
that 200 seconds after starting the simulation, the playback latency in gradienTv
converges to just over 30 seconds, close to the initial buffering time, set at 30
seconds. For the join-only scenario, gradienTv exhibits lower average playback
latency than NewCoolstreaming. This is because its streaming trees have lower
depth, and, therefore, nodes receive blocks earlier than in NewCoolstreaming. This
is also the case for the two other experiment scenarios, flash crowd and catastrophic
failure. Here, we can see an increase in the average playback latency for both
systems. This is due to the increased demand for parents by new nodes and nodes
with failed parents. While the nodes are competing for parents, they may fail to
receive the media blocks in time for playback. Therefore, they have to pause until
a parent is found and the streaming is resumed. This results in higher playback
latency. Nevertheless, when both systems stabilize, nodes will ignore the missing
blocks and fast forward to the play from the block where the streaming from the
new parent is resumed. Hence, the playback latency will improve after the system
has settled down.

There is a significant difference between the behaviour of gradienTv and New-
Coolstreaming upon an increase in the playback latency. In gradienTv, if playback
latency exceeds the initial buffering time and enough blocks are available in the

5.5. EXPERIMENTS AND EVALUATION 47

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

P
la

yb
ac

k
La

te
nc

y
(s

ec
on

ds
)

gradientv - join only
gradientv - flash crowd

gradientv - failure

(a) gradienTv.

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

P
la

yb
ac

k
La

te
nc

y
(s

ec
on

ds
)

newcoolstreaming - join only
newcoolstreaming - flash crowd

newcoolstreaming - failure

(b) NewCoolstreaming.

Figure 5.6: Average playback latency in seconds (Y-axis), against time in seconds (X-axis).

buffer, nodes are given a choice to fast forward the stream and decrease the play-
back latency. In contrast, NewCoolstreaming jumps ahead in playback by switching
parent(s) causing it to miss blocks, thus it negatively affects playback continuity.

Buffering Time
We now evaluate the behaviour of gradienTv for different initial playback buffering
times. We compare four different settings: 0, 10, 20 and 30 seconds of initial
buffering time. Two metrics that are affected by changing the initial buffering
time are playback continuity and playback latency. Figure 5.7a shows that when
there is no initial buffering, the playback continuity drops to under 20% after 50
seconds of playback, but as the system stabilizes the playback continuity increases.
Buffering 10 seconds of blocks in advance results in less playback interruptions when
nodes change their parents, but better playback continuity is achieved for 20 and
30 seconds of buffering.

Figure 5.7b shows how playback latency increases when the buffering time is
increased. Thus, the initial buffering time is a parameter that trades off better
playback continuity against worse playback latency.

Number of Nodes
In this experiment, we evaluate the performance of the system for different system
sizes. We simulate systems with 128, 256, 512, 1024, 2048, and 4096 nodes, where
nodes join the system following a Poisson distribution with an average inter-arrival
time of 100 milliseconds. In figure 5.8a, we show the bandwidth utilization after all
the nodes have joined (for the different system sizes). We define d as the time when
all nodes have joined for a particular size. This means that for the system with

48 CHAPTER 5. GRADIENTV

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

P
la

yb
ac

k
co

nt
in

ui
ty

Time (s)

no buffer
10 seconds buffer
20 seconds buffer
30 seconds buffer

(a) Playback continuity against time.

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600

P
la

yb
ac

k
La

te
nc

y
(s

ec
on

ds
)

Time (s)

no buffer
10 seconds buffer
20 seconds buffer
30 seconds buffer

(b) Playback latency against time.

Figure 5.7: The behaviour of gradienTv for different playback buffer lengths (in seconds).

 0

 20

 40

 60

 80

 100

d+20 d+40 d+60 d+80d+100d+120d+140d+160d+180

B
an

dw
id

th
 u

til
iz

at
io

n

Time (s)

128
256
512

1024
2048
4096

(a) Bandwidth utilization against time.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600

A
vg

 p
at

h
le

ng
th

Time (s)

128
256
512

1024
2048
4096

(b) Path length against time.

Figure 5.8: Bandwidth utilization and path length for varying numbers of nodes.

128 nodes, d is 13 seconds, while for the system with 4096 nodes d is 410 seconds.
This experiment shows that, regardless of system size, nodes successfully utilize the
upload slots at other nodes. This implies that convergence in terms of matching
upload slots to download slots, appears to be independent of the number of nodes
in the system. A necessary condition, of course, is that there is enough available
upload and download bandwidth to deliver the stream to all nodes.

In the second experiment, we measure the tree depth while varying system sizes.
We can see in figure 5.8b that the depth of the trees are very close to the theoretical
minimum depth in each scenario. For example, the average depth of the trees with
1024 nodes is 4.34, which is very close to log5(1024) ≈ 4.30.

5.6. CONCLUSIONS 49

5.6 Conclusions

In this paper, we presented gradienTv, a P2P live streaming system that uses both
the Gradient overlay and a market-based approach to build multiple streaming
trees. The constructed streaming trees had the property that the higher a node’s
upload capacity, the closer that node is to the root of the tree. We showed how the
Gradient overlay helped nodes efficiently find good neighbours for building these
streaming trees. Our simulations showed that, compared to NewCoolstreaming,
gradienTv has higher playback continuity, builds lower-depth streaming trees, has
better bandwidth utilization performance, and lower playback latency.

Paper B

Chapter 6

Sepidar: Incentivized

Market-Based P2P Live-Streaming

on the Gradient Overlay Network

Amir H. Payberah, Jim Dowling, Fatemeh Rahimian, and Seif Haridi

In the IEEE International Symposium on Multimedia (ISM’10), vol. 0, (Los Alami-
tos, CA, USA), pp. 1–8, IEEE Computer Society, Taichung, Taiwan, Dec. 2010.

6.1. INTRODUCTION 53

Sepidar: Incentivized Market-Based P2P
Live-Streaming on the Gradient Overlay Network

Amir H. Payberah†‡, Jim Dowling†, Fatemeh Rahimian†‡, and Seif Haridi†‡

†Swedish Institute of Computer Science (SICS)
‡KTH - Royal Institute of Technology

{amir, jdowling, fatemeh, seif}@sics.se

Abstract

Live streaming of video content using overlay networks has gained widespread
adoption on the Internet. This paper presents Sepidar, a distributed market-
based model, that builds and maintains overlay network trees, which are
approximately minimal height, for delivering live media as a number of sub-
streams. A streaming tree is constructed for each substream such that nodes
that contribute higher amounts of upload bandwidth are located increasingly
closer to the media source at the root of the tree. While our distributed
market model can be run against a random sample of nodes, we improve its
convergence time to stabilize a tree by executing against a sample of nodes
that contribute similar amounts of upload bandwidth. We use the Gradient
overlay network to generate samples of such nodes. We address the problem of
free-riding through parent nodes auditing the behaviour of their child nodes.
We evaluate Sepidar by comparing it in simulation with state-of-the-art New-
Coolstreaming. Our results show significantly improved playback latency and
playback continuity under churn, flash-crowd, and catastrophic failure exper-
iment scenarios. We also show that using the Gradient improves convergence
time of our distributed market model compared to a random overlay net-
work. Finally, we show that Sepidar punishes the performance of free-riders,
and that nodes are incentivized to contribute more upload bandwidth by rel-
atively improved performance.

6.1 Introduction

Live streaming using overlay networks on the Internet requires distributed algo-
rithms that strive to use the nodes’ resources efficiently in order to ensure that
the viewer quality is good. To improve user viewing experience, systems need to
maximize the playback continuity of the stream at nodes, and minimize the play-
back latency between nodes and the media source. Nodes should be incentivised
to contribute resources through improved relative performance, and nodes that at-
tempt to freeride, by not contributing resources, should be detected and punished.
In order to improve system performance in the presence of asymmetric bandwidth
at nodes, it is also crucial that nodes can effectively utilize the extra resources
provided by the "better" nodes.

54 CHAPTER 6. SEPIDAR

In this paper, we meet these requirements by building multiple approximately
minimal height streaming overlay trees, where the nodes with higher available up-
load bandwidth are positioned higher in the tree as they can support relatively more
child nodes. Minimal height trees help reduce both the probability of streaming
disruptions and the average playback latency at nodes [59]. The media stream is
split into a set of sub-streams, called stripe, and each tree delivers one sub-stream.
Multiple sub-streams allow more nodes to contribute bandwidth and enable trees
to be more robust [12].

Our system, called Sepidar, models the problem of constructing and maintain-
ing minimal height overlay trees as an assignment problem [60], where the stripes
that can be uploaded by nodes (upload slots) are matched to the stripes that nodes
attempt to download (download slots), such that the height of the tree (the cost
function for all nodes) is minimized. We introduce a new market model, a dis-
tributed algorithm inspired by auction algorithms [4], where, for each stripe, nodes
continuously compete to become children of nodes providing stripes that are closer
to the root (the media source). Parents supplying stripes prefer children nodes who
offer to forward the highest number of copies of the stripes. Children proactively
switch parents, when the market-modelled benefit of switching is greater than the
cost of switching, until the trees stabilize. Our market model works in the pres-
ence of freeriders by parents periodically auditing children. Children are audited
by querying the children’s children (grandchildren) to validate that the child is
forwarding the copies of stripes it claims to forward.

To improve the speed of convergence of the trees, nodes execute the market
model in parallel using samples taken from the Gradient overlay [6]. The Gradient
is a gossip-generated overlay network where nodes organize into a gradient structure
with the media source at the centre of the gradient and nodes with decreasing
relative upload bandwidth found at increasing distance from the centre. When
nodes sample from their neighbours in the Gradient, they receive nodes with similar
upload bandwidths. In a converged minimal height streaming overlay tree, the
sampled nodes will be located at similar depths in the tree. Although we only
consider upload bandwidth for constructing the Gradient and overlay trees in this
paper, the model can easily be extended to include other characteristics such as
node uptime, load and reputation.

We evaluate Sepidar by comparison with NewCoolstreaming, a successful and
widely used media streaming solution [24]. We show in simulation, under churn,
flash-crowd, and massive-failure scenarios, that our market-based approach im-
proves the playback continuity and decreases the average playback latency at clients
compared to NewCoolstreaming. We also evaluate the performance of Sepidar when
varying key system parameters such as block size, number of stripes, playback
buffering time, and freerider detection sensitivity. Finally, we evaluate the perfor-
mance improvement for the market model in sampling from the Gradient overlay
compared to sampling from a random overlay.

We build on our previous work in [1] by providing a distributed market model
that works in the presence of freeriders and dynamic upload bandwidths.

6.2. RELATED WORK 55

6.2 Related work

There are two fundamental problems in building the media streaming overlay net-
works: (i) how to disseminate data, and (ii) how to discover other nodes supplying
the stream.

Early data delivery overlays use a tree structure, where the media is pushed
from the root to interior nodes to leave nodes. Examples of such systems include
Climber [8], ZigZag [9], NICE [10], and [11]. The short latency of data delivery
is the main advantage of this approach [7]. Disadvantages, however, include the
fragility of the tree structure upon the failure of nodes close to the root and the
fact that all the traffic is only forwarded by the interior nodes. SplitStream [12]
improved this model by using multiple trees, where the stream is split into sub-
streams and each tree delivers one sub-stream. Orchard [13], ChunkySpread [14]
and CoopNet [15] are some other solutions in this class.

An alternative to tree structured overlays is the mesh structure, in which the
nodes are connected in a mesh-network, and nodes request missing blocks of data
explicitly. The mesh structure is highly resilient to node failures, but it is sub-
ject to unpredictable latencies due to the frequent exchange of notifications and
requests [7]. SopCast [54], DONet/Coolstreaming [18], Chainsaw [19], and PULSE
[20] are examples of mesh-based systems.

Another class of systems combine tree and mesh structures to construct a data
delivery overlay. Example systems include CliqueStream [22], mTreebone [23], New-
CoolStreaming [24], Prime [25] and [26].

The second fundamental problem is how nodes discover the other nodes that sup-
ply the stream. CoopNet [15] uses a centralized coordinator, GnuStream [30] uses
controlled flooding requests, SplitStream [12] and [26] use DHTs, while NewCool-
streaming [24], DONet/Coolstreaming [18] and PULSE [20] use a gossip-generated
random overlay network to search for the nodes. Sepidar uses the Gradient overlay
for this purpose.

NewCoolstreaming [24] has the most similarities with Sepidar. Both systems
have the same data dissemination model where a node subscribes to a sub-stream
at a parent node, and the parent subsequently pushes the stream to the child. How-
ever, Sepidar’s use of the Gradient overlay to discover nodes to supply the stream
contrasts with NewCoolStreaming that samples nodes from a random overlay. A
second major difference is that NewCoolStreaming only reactively changes a parent
when a sub-stream is identified as being slow, whereas Sepidar proactively changes
parents to improve system performance.

The problem of reducing freeriding in P2P systems has been addressed by many
existing incentive mechanisms and reputation models [13, 59, 61]. Our solution for
freerider identification is influenced by Give-to-Get [62], that first used transitive
dependencies to a child’s children in order to audit children nodes. In contrast to
Sepidar, Give-to-Get is a video-on-demand protocol built on a mesh network, and
based on BitTorrent.

Our market model is inspired by auction algorithms. The first widely-used auc-

56 CHAPTER 6. SEPIDAR

tion algorithm was designed by Bertsekas [4], and has an equivalent representation
as a weighted bipartite matching problem [60]. However, in contrast to auction
algorithms, our market model does not assume that prices always rise - freeriders
cause the price of an upload slot to be reset to zero. Also, our market model as-
sumes local views of the system at nodes and that the discovery of nodes and price
information is expensive.

Tan and Jarvis describe a payment-based approach to solving freeriding for live
streaming [59]. Nodes run periodic auctions for their resources and earn points
that can be used to access resources. Whereas we incentivize nodes to provide
more resources to get better video performance, they incentivise nodes to remain in
the system even when not viewing video to acquire an increased number of points.
Similar to Sepidar, they also support a strategy for preferring the lowest depth
parent resulting in the construction of a height-balanced tree. Another related
approach to matching nodes for live streaming is based on finding maximal bipartite
matchings using a flow algorithm by Li and Mahanti [63]. They transformed the
traditional min-cost media flow dissemination problem into an auction problem.

6.3 Problem description

We assume the video is treated as a constant-rate bitstream that is divided into
blocks of equal size without any coding, where every block has a sequence number
to represent its playback order in the stream. The blocks are delivered to nodes
over multiple sub-streams, called stripes, that each deliver an equal number of
blocks per unit time. Nodes can retrieve any stripe independently from any other
node that can supply the stripe. We define the number of copies of stripes that
nodes are willing and able to forward as its number of upload slots. Nodes do
not upload more stripes than they have upload slots. Each node has a number
of upload slots, that is proportional to the amount of upload bandwidth capacity
it contributes to the system. Every node has the same number of download slots,
equal to the number of stripes. We assume all nodes have sufficient download
bandwidth capacity to receive all stripes. A parent can forward a copy of any stripe
over an upload slot, and a child node, that connects its download slot to an upload
slot, requests a specific stripe for an upload slot. Nodes are not assumed to be
cooperative; nodes may execute protocols that attempt to download the stream
without forwarding it to other nodes. We do not, however, address the problem of
nodes colluding to receive the video stream, although this can be addressed by a
reputation management scheme [64].

The problem we address in this paper is how to deliver a video stream from a
source as multiple stripes over multiple approximately minimal height trees. This
problem can be represented as the assignment problem [50]. Centralized solutions
to this problem are possible for small system sizes. For example, if all nodes send
their number of upload slots to a central server, the server can use any number of
algorithms that solve linear sum assignments, such as the auction algorithm [4], the

6.4. SEPIDAR SYSTEM 57

Hungarian method [51], or more recent high-performance parallel algorithms [50].
The problem with a decentralized implementation of the auction algorithm is

the communication overhead in nodes discovering the node with the upload slot of
highest net value. The auction algorithm assumes that the cost of communicating
with all nodes is close to zero. In a decentralized system, however, communicating
with all nodes requires flooding, which is not scalable. An alternative approach
to compute an approximate solution is to find good upload slots based on random
walks or sampling from a random overlay. However, such solutions typically have
slow convergence time, as we show in section 8.6. In the next section, we introduce
our market model that finds approximate solutions using the partial views sampled
from the Gradient overlay.

6.4 Sepidar system

Our distributed market model uses the following three properties, calculated at
each node, to build trees:

1. Currency: the total number of upload slots at a node. A node uses its currency
to bid for a connection to another node’s upload slot for each stripe.

2. Price: the minimum currency that should be bid when establishing a connec-
tion to an upload slot. The price of a node that has an unused upload slot
is zero, otherwise the node’s price equals the lowest currency of its already
connected children. For example, if node p has three upload slots and three
children with currencies 2, 3 and 4, the price of p is 2.

3. Cost: the cost of an upload slot at a node for a particular stripe is the distance
from that node to the root for that stripe. Since the media stream consists of
several stripes, nodes may have different costs for different stripes. The lower
the depth a node has for a stripe (the lower its cost), the more desirable a
parent it is for that stripe.

Our market model is based on minimizing costs through nodes iteratively bid-
ding for upload slots. This model could be best described as an approximate auction
algorithm, where there is a continuous auction and no reserve price. For each stripe,
child nodes place bids of their entire currency for upload slots at the parent nodes
with lowest cost (depth). Child nodes always bid with their entire currency to avoid
the complexity of price-setting. A parent node sets a price of zero for an upload slot
when at least one of its upload slots is unassigned or when it has a free-riding child.
Thus, the first bid for an upload slot will always win (no reserve price), enabling
children to immediately connect to available upload slots. When all of a parent’s
upload slots are assigned, it sets the price for an upload slot to the currency of its
child with the lowest number of upload slots. If a child with more currency than
the current price for an upload slot bids for an upload slot, it will win the upload
slot and the parent will replace its child with the lowest currency with the new

58 CHAPTER 6. SEPIDAR

child. A child that has lost an upload slot has to discover new nodes and bid for
their upload slots. In contrast to the auction algorithm, there are no bidding and
assignment phases, thus, we call it a continuous auction.

In contrast to the auction algorithm, the price of upload slots does not always
increase - it can be reset to zero if a child node is detected as a freerider, that is, if
the node is not correctly forwarding all the stripes it promises to supply. As such,
it is a restartable auction, where the auction is restarted because a bidder did not
have sufficient funds to complete the transaction. Another crucial difference with
the auction algorithm is that our market model is decentralized; nodes have only
a partial (changing) view of a small number of nodes in the system with whom
they can bid for upload slots. We use the Gradient overlay to provide nodes with
a constantly changing partial view of other nodes that have a similar number of
upload slots. Thus, rather than have nodes explore the whole system for better
parent nodes, the Gradient enables us to limit exploration to the set of nodes with
a similar number of upload slots.

6.4.1 Gradient overlay construction

The Gradient overlay is an overlay network that arranges nodes using a local utility
function at each node, such that nodes are ordered in descending utility values away
from a core of the highest utility nodes [5, 6]. The highest utility nodes are found
at the centre of the Gradient topology, while nodes with decreasing utility values
are found at increasing distance from the centre.

The Gradient is built by both gossiping and sampling from a random overlay
network (we use Cyclon [40]). Each node maintains a set of neighbours called a
similar-view containing a small number of nodes whose utility values are close to,
but slightly higher than, the utility value of the node. Nodes periodically gossip
to exchange and update their similar-views. Node references stored in the similar
view contain the utility value for the neighbours. In Sepidar, the utility value of
a node is calculated using two factors: a node’s upload bandwidth and a disjoint
set of discrete utility values that we call market-levels. A market-level is defined
as a range of network upload bandwidths. For example, in figure 7.2, we define 5
example market-levels: mobile broadband (64-127 Kbps) with utility value 1, slow
DSL (128-511 Kbps) with utility value 2, DSL (512-1023 Kbps) with utility value 3,
fiber (>1024 Kbps) with utility value 4, and the media source with utility value 5.
A node measures its upload bandwidth (e.g., using a server or trusted neighbour)
and calculates its utility value as the market-level that its upload bandwidth falls
into. For instance, a node with 256 Kbps upload bandwidth falls into slow DSL
market-level, so its utility value is 2. Nodes may also choose to contribute less
upload bandwidth than they have available, causing them to join a lower market
level.

A node prefers to fill its similar-view with nodes from the same market-level or
one level higher. A feature of this preference function is that low-bandwidth nodes
only have connections to one another. However, low bandwidth nodes often do not

6.4. SEPIDAR SYSTEM 59

Figure 6.1: Different market-levels of a system, and the similar-view and fingers of p.

have enough upload bandwidth to simultaneously deliver all stripes in a stream.
Therefore, in order to enable low bandwidth nodes to utilize the spare slots of higher
bandwidth nodes, nodes maintain a finger list, where each finger points to a node
in a higher market-level (if one is available). We illustrate the market levels and
fingers in figure 7.2. Each ring represents a market-level, the black links show the
links within the similar-view and the gray links are the fingers to nodes in higher
market-levels.

In order for nodes to be able to explore to find new nodes with which to execute
our market model, a node constantly updates its neighbours within its market level.
Each node p periodically increments the age of all the nodes in its similar-view,
removes the oldest node, q, from its similar-view and sends a subset of nodes in its
similar-view to q. Node q responds by sending back a subset of its own similar-view
to p. Node p then merges the view received from q with its existing similar-view by
iterating through the received list of nodes, and preferentially selecting those nodes
in the same market-level as p or at most one level higher. If the similar-view is not
full, it adds the node, and if a reference to the node to be merged already exists
in p’s similar-view, p just refreshes the age of its reference. If the similar-view is
full, p replaces one of the nodes it had sent to q with the selected node. What is
more, p also merges its similar-view with its own local random-view, in the same
way described above. Upon merging, when the similar-view is full, p replaces a
node whose utility value is higher than p’s utility value plus one.

The fingers to higher market-levels are also updated periodically. Node p goes
through its random-view, and for each higher market-level, picks a node from that
market-level if there exists such a node in the random-view. If there is not, p keeps
the old finger.

60 CHAPTER 6. SEPIDAR

Grandchild0

Grandchildn-1

Parent Child

audit response

audit request

audit request
audit response

Figure 6.2: Transitive auditing by parents querying grandchildren about the performance of children.

6.4.2 Streaming tree overlay construction

Nodes periodically send their currency, cost, price, number of children and buffer
map to their similar-view nodes. The buffer map shows the last blocks that a node
has in its buffer. For each stripe i, a node p periodically checks if it has a node
in its similar-view and finger list that has (i) a lower cost (depth) than its current
parent, (ii) a price less than its currency and (iii) blocks ahead of its block in stripe
i. If such a node is found, it is added to a list of candidate parents for stripe i.
Next, the node sorts the candidates by the term S = numOfChildren

currency
, and selects

the node with smallest S. That is, it biases selection towards nodes with fewer
children and higher currency. If two nodes have the same S, it selects the one with
higher currency.

If a node q receives a connection request from node p for stripe i, has a free
upload slot, it accepts the request, otherwise if p’s currency is greater than the
price of q, q abandons its child that has the lowest currency, and accepts p as a new
child. If q has a freeriding child (see section 6.4.3), it abandons that node as the
child with the lowest currency. The disconnected node has to find a new parent. If
q’s price is greater than or equal to p’s currency, q declines the request.

6.4.3 Freerider detection and punishment

Freeriders are nodes that supply less upload bandwidth than claimed. To detect
freeriders, we introduce the freerider detector component with strong completeness
property. By strong completeness property, we mean that, if a non-freerider node
does not have free upload slots, eventually it detects all its freeriding children.

Nodes identify freeriders through transitive auditing using their children’s chil-
dren (Figure 6.2). To do this, a non-freerider parent p periodically sends an audit
request, about its child q, to q’s claimed children. Whenever a grandchild receives a
message from p, it checks if q is its parent, and has properly forwarded the stripe(s)
it has promised to supply. The grandchild, then, sends back either a positive or
negative audit response to p that shows whether these conditions are satisfied or
not.

We now show how strong completeness property is satisfied for the freerider
detector. Assume a node q claims it has k upload slots, such that m of them

6.5. EXPERIMENTS AND EVALUATION 61

are assigned to other nodes and n of them are free upload slots, k = m + n. Its
parent p periodically sends audit requests to q’s m claimed children. Before the
next iteration of sending audit requests, p calculates F as the sum of (i) the number
of audit responses not received before a timeout, (ii) the number of negative audit
responses, and (iii) the n free upload slots. If F is more than M% of k, q is
suspected as a freerider. If q becomes suspected in N consecutive iterations, it is
detected as a freerider. For example, if N equals 2, a node is detected as a freerider
if it is suspected on two consecutive iterations of the freerider detector. The higher
the value of N , the more accurate but slower the detection is.

In a converged tree, for nodes not in the two bottom levels (market-levels one and
two), we expect that at least M% of their upload slots are meeting their contracted
obligation to correctly supply a substream over that upload slot. M is a threshold
for freerider suspicion. For example, if M is 90%, then node q is suspected as a
freerider, if 10% or more of its upload slots are either not connected to child nodes
or connected to child nodes but do not supply the stream at the requested rate.

After detecting a node as a freerider, the parent node p, decreases its own price
(p’s price) to zero and as a punishment considers the freerider node q as its child with
the lowest currency. On the next bid from another node, p replaces the freerider
node with the new node. So, if a node claims it has more upload bandwidth than
it actually supplies, it will be detected and punished. In a converged tree, many
members of the market-level one and two may have no children, because they are
the leaves of the trees. So, the nodes in these two market-levels are not suspected
as freeriders. Freeriders can use the extra resources in the system without any
punishment if they just join as a member of market-level one or two.

6.5 Experiments and evaluation

In this section, we establish the performance of Sepidar for different system parame-
ter settings, and then compare the performance of Sepidar with NewCoolstreaming
under simulation.

6.5.1 Experiment setup

We have implemented both Sepidar and NewCoolstreaming using the Kompics
platform [56]. Kompics provides a framework for building P2P protocols and a
discrete event simulator for simulating them using different bandwidth, latency and
churn models. Our implementation of NewCoolstreaming is based on the system
description in [24, 57]. We have validated our implementation of NewCoolstreaming
by replicating, in simulation, the results from [24].

In our experimental setup, we set the streaming rate to 512Kbps. The stream
is split into 8 stripes and each stripe is divided into a sequence of 16Kb blocks.
Nodes start playing the media after buffering it for 15 seconds. The size of a node’s
partial view (the similar-view in Sepidar and the partner list in NewCoolstreaming)
is 15 nodes. The number of upload slots for the non-root nodes equals 2i, where i is

62 CHAPTER 6. SEPIDAR

picked randomly from the range 1 to 10. Considering that the size of an upload slot
equals 64Kbps, this number corresponds to an upload bandwidth between 128Kbps
and 1.25Mbps. As the average upload bandwidth of 704Kbps is not much higher
than the streaming rate of 512Kbps, nodes have to find good matches as parents
in order for good streaming performance. The media source is a single node with
80 upload slots. We assume all the nodes have enough download bandwidth to
receive all the stripes simultaneously. Here, we define 11 market-levels, such that
the nodes with the the same number of upload slots are located at the same market-
level. For example, nodes with two upload slot (128Kbps) are the members of the
first market-level, nodes with four upload slots (256Kbps) are located in the second
market-level, and the media source with 80 upload slots (> 5Mbps) is the only
member of the 11th market-level. Latencies between nodes are modelled using a
latency map based on the King data-set [58]. The failure detector settings are
N = 2 and M = 50%.

In the experiments, we measure the following metrics:

1. Playback continuity: the percentage of blocks that a node received before their
playback time. In our experiments to measure playback quality, we count the
number of nodes that have a playback continuity of greater than 90%;

2. Playback latency: the difference in seconds between the playback point of a
node and the playback point at the media source.

We use the following scenarios in the experiments:

1. Join only: 1000 nodes join the system following a Poisson distribution with
an average inter-arrival time of 100 milliseconds;

2. Flash crowd: first, 100 nodes join the system following a Poisson distribution
with an average inter-arrival time of 100 milliseconds. Then, 1000 nodes join
following the same distribution with a shortened average inter-arrival time of
10 milliseconds;

3. Catastrophic failure: 1000 nodes join the system following a Poisson distribu-
tion with an average inter-arrival time of 100 milliseconds. Then, 500 existing
nodes fail following a Poisson distribution with an average inter-arrival time
10 milliseconds. The system then continues its operation with only 500 nodes;

4. Churn: 500 nodes join the system following a Poisson distribution with an
average inter-arrival time of 100 milliseconds, and then till the end of the
simulations nodes join and fail continuously following the same distribution
with an average inter-arrival time of 1000 milliseconds;

5. Freerider: 1000 nodes join the system following a Poisson distribution with
an average inter-arrival time of 100 milliseconds, such that 20% of the nodes
are freeriders.

6.5. EXPERIMENTS AND EVALUATION 63

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600
 0

 10

 20

 30

 40

 50

 60

P
la

yb
ac

k
C

on
tin

ui
ty

 (
P

C
)

P
la

yb
ac

k
La

te
nc

y
(P

L)

Time (s)

PC - 16
PC - 32
PC - 64
PL - 16
PL - 32
PL - 64

(a) Different block sizes.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

yb
ac

k
C

on
tin

ui
ty

 (
P

C
)

P
la

yb
ac

k
La

te
nc

y
(P

L)

Time (s)

PC - 4
PC - 8

PC - 12
PL - 4
PL - 8

PL - 12

(b) Different numbers of stripes.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

yb
ac

k
C

on
tin

ui
ty

 (
P

C
)

P
la

yb
ac

k
La

te
nc

y
(P

L)

Time (s)

PC - 5
PC - 15
PC - 25

PL - 5
PL - 15
PL - 25

(c) Different buffering times.

Figure 6.3: System performance for different system settings.

6.5.2 Establishing parameters for good system performance

Here, we evaluate the performance of the system for different system settings. These
experiments are based on the join only scenario. In the first experiment, we measure
the performance of the system for varying block sizes: 16Kb, 32Kb and 64Kb.
Figure 6.3a shows better playback continuity and less playback latency for smaller
block sizes. The same result is shown in the NewCoolstreaming paper [24], and our
subsequent experiments comparing Sepidar with Newcoolstreaming are based on a
block size of 16Kb.

Another system parameter is the number of stripes. As can be seen in figure
6.3b, as more stripes are used, playback continuity increases and playback latency
reduces. For a media stream split into K stripes, a node that receives the whole
stream should assign its K download slots to K upload slots. If a node misses M
of its parent connections, its misses M

K
of the stream. So, as K increases, nodes

lose less of the stream for a single failed parent connection.
Figure 6.3c shows the behaviour of Sepidar for different initial playback buffering

64 CHAPTER 6. SEPIDAR

times. We compare three different settings: 5, 15 and 25 seconds of initial buffering
time. Buffering 5 seconds of blocks in advance results in playback interruptions
when nodes change their parents, but better playback continuity is achieved for 15
and 25 seconds of buffering. We can also see that playback latency increases when
the buffering time is increased. Thus, the initial buffering time is a parameter that
trades off better playback continuity against worse playback latency.

6.5.3 Freerider detector settings

Here, we measure the playback continuity of nodes for different freerider detector
settings. This experiment is based on the join only scenario. We consider the
case where 30% of all nodes are freeriders and 20% are weak nodes, such that the
ratio of the number of upload slots to download slots is less than one. Weak nodes
are members of the market-level one or two, that is, nodes who only have enough
upload bandwidth to forward at most half of the media stream. Nodes that are
neither weak nor freerider nodes are called non-freeriders. Our experiments vary
the freerider detector parameter N , while we measure the playback continuity of
the different nodes.

Figure 6.4a shows the playback continuity of nodes for three values of N : N = 0,
that is, no freerider detection, N = 2, and N = 4. We set M to 50% in all the
simulations to take into account delayed replies by children and to decrease the false
positive detection threshold for freeriders. We measured the playback continuity
for other values of N , but to aid the readability of the plots we left them out.
Although higher values of N increase the accuracy of the detector, the late detection
of freerider decreases the playback continuity of nodes. Figure 6.4a confirms our
conclusions as we see that the playback continuity of nodes when N = 0 and
N = 4 are almost the same. The figure shows that N = 2 provides better playback
continuity for the all nodes. Another important result here is the lower playback
continuity of freeriders/weak nodes compared to non-freeriders. If a node detects
one of its children as a freerider, it selects the freerider node as its child with the
lowest currency, and replaces it with other nodes as soon as it receives a request.
Losing a parent decreases the playback continuity of freeriders.

In figure 6.4b, we measure the total number of suspected nodes and the nodes
that are correctly detected. As we see here, when N has lower values, the fraction
of nodes that are correctly detected as freeriders decreases.

6.5.4 Sepidar vs. NewCoolstreaming

In this section, we compare the playback continuity and playback latency of Sepidar
and NewCoolstreaming in the churn (figures 6.4c), catastrophic failure (figures
6.4d), flash crowd (figures 6.4e), and freerider (figures 6.4f) scenarios. In these
figures, the Y1-axis (PC) shows the percentage of the nodes in the overlay that have

6.5. EXPERIMENTS AND EVALUATION 65

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

P
la

yb
ac

k
C

on
tin

ui
ty

 (
P

C
)

Time (s)

non-freeriders, No detection
non-freeriders, N=2
non-freeriders, N=4

freeriders/weaks, No detection
freeriders/weaks, N=2
freeriders/weaks, N=4

(a) Playback continuity of (non-)freerider nodes.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500

T
ot

al
 N

um
. o

f S
us

pe
ct

ed
 F

re
er

id
er

s

Time (s)

N=1, suspected
N=1, correct detected

N=2, suspected
N=2, correct detected

N=3, suspected
N=3, correct detected

N=4, suspected
N=4, correct detected

(b) Different freerider detector settings.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

yb
ac

k
C

on
tin

ui
ty

 (
P

C
)

P
la

yb
ac

k
La

te
nc

y
(P

L)

Time (s)

sepidar - PC
newcoolstreaming - PC

sepidar - PL
newcoolstreaming - PL

(c) Churn.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

yb
ac

k
C

on
tin

ui
ty

 (
P

C
)

P
la

yb
ac

k
La

te
nc

y
(P

L)

Time (s)

sepidar - PC
newcoolstreaming - PC

sepidar - PL
newcoolstreaming - PL

(d) Catastrophic failure.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

yb
ac

k
C

on
tin

ui
ty

 (
P

C
)

P
la

yb
ac

k
La

te
nc

y
(P

L)

Time (s)

sepidar - PC
newcoolstreaming - PC

sepidar - PL
newcoolstreaming - PL

(e) Flash crowd.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

yb
ac

k
C

on
tin

ui
ty

 (
P

C
)

P
la

yb
ac

k
La

te
nc

y
(P

L)

Time (s)

sepidar - PC
newcoolstreaming - PC

sepidar - PL
newcoolstreaming - PL

(f) Freeriders present.

Figure 6.4: Figures 6.4a and 6.4b show the behaviour of Sepidar in different settings of the freerider

detector, and the other figures show the performance of Sepidar and Newcoolstreaming in different

scenarios.

66 CHAPTER 6. SEPIDAR

a playback continuity higher than 90%, and the Y2-axis (PL) shows the average
playback latency.

We see that Sepidar significantly outperforms NewCoolstreaming in playback
continuity for the whole duration of the experiment in all scenarios. This outper-
formance is due to quicker discovery of appropriate parents and faster construction
of overlay trees in Sepidar. In Sepidar, high capacity nodes can quickly discover
and connect to the source using the similar-view, while in NewCoolstreaming nodes
take longer to find parents as they search by updating their random view through
gossiping. In addition, nodes in NewCoolstreaming do not consider the available
upload bandwidth at the parent node when selecting a new parent, so nodes change
their parents more often. This is the reason for the slow convergence of playback
continuity in NewCoolstreaming. Another reason for outperformance is the dif-
ference in policies used by a child to pull the first block from a new parent. In
Sepidar, whenever a node p selects a new parent q, p informs q of the last block it
has in its buffer, and q sends subsequent blocks to p, while in NewCoolstreaming,
the requested block is determined by looking at the buffer head of the partners [24].
This causes NewCoolstreaming to miss blocks when switching parent.

As we see in all the scenarios, NewCoolstreaming keeps its playback latency
constant, which is because of reactively changing parents when nodes playback
latency is greater than the predefined threshold. There is a trade-off between
playback continuity and playback latency in NewCoolstreaming, such that lower
playback latency results in lower playback continuity [24]. In Sepidar the nodes
have higher playback latency in the beginning, but they decrease it very soon when
they finds appropriate parents, by ignoring the missed blocks and fast forwarding
the stream to play from the block where streaming from the new parent is resumed.

An important point of difference between the two systems is the behaviour
of Sepidar and NewCoolstreaming upon an increase in the playback latency. In
Sepidar, if playback latency exceeds the initial buffering time and enough blocks
are available in the buffer, nodes are given a choice to fast forward the stream
and decrease the playback latency. In contrast, NewCoolstreaming jumps ahead
in playback by switching parent(s) even it misses several blocks, thus negatively
affecting playback continuity [24].

6.5.5 Incentivizing nodes to contribute upload bandwidth

Here, we investigate the level of incentives for nodes to contribute more upload
bandwidth by measuring the performance of the top 10% of upload bandwidth
nodes (strong nodes) and the bottom 10% of upload bandwidth nodes (weak nodes).
We use the churn scenario explained in section 8.6.1. Since, weak nodes have
lower upload bandwidth (and lower currency) compared to strong nodes, it takes
longer for them to find an appropriate parent, and as a consequence their playback
continuity decreases and their playback latency increases. Figure 6.5 compares the
playback continuity and playback latency of strong nodes and weak nodes. As we
can see, the strong nodes receive the stream with higher playback continuity and

6.5. EXPERIMENTS AND EVALUATION 67

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

P
la

yb
ac

k
C

on
tin

ui
ty

 (
P

C
)

P
la

yb
ac

k
La

te
nc

y
(P

L)

Time (s)

strong nodes - PC
weak nodes - PC

strong nodes - PL
weak nodes - PL

Figure 6.5: Playback continuity and playback latency of strong nodes vs. weak nodes.

lower playback latency compared to weak nodes. Moreover, while there is churn in
the system, we see less fluctuation in the playback continuity of strong nodes. As
such, nodes are strongly incentivized to contribute more upload bandwidth through
receiving improved relative performance.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600

N
um

. o
f P

ar
en

t S
w

itc
hi

ng
s

Time (s)

gradient overlay
random overlay

Figure 6.6: CDF of number of parent switches.

6.5.6 Comparing the Gradient with random neighbor selection

In the last experiment, we measure the convergence speed of our market model, in
terms of number of parent switches in the Gradient overlay and a random network.
Again, we compare them using the churn scenario. Our market model is run using
(i) samples taken from the Gradient overlay, where the sampled nodes have similar

68 CHAPTER 6. SEPIDAR

upload bandwidth or currency, and (ii) samples taken from a random network,
where the sampled nodes have random amounts of currency. Since in the Gradient
overlay, nodes receive bids from a set of nodes with almost the same currency, the
difference between received bids is less than the expected difference for the random
network. Figure 6.6 shows the CDF of number of parent switches for both overlays
against time, and we can see that the Gradient overlay has a substantially lower
number of parent switches.

6.6 Conclusions

In this paper, we presented Sepidar, a P2P live streaming system that uses both
the Gradient overlay and a distributed market-based approach to build multiple
minimal height trees, where nodes with higher available upload bandwidth are po-
sitioned higher in the tree. Sepidar addresses the problem of free-riding through
parent nodes auditing the behaviour of their children nodes by querying their grand-
children. We showed how the Gradient overlay helped nodes efficiently find good
neighbours for building these streaming trees. Our simulations showed that, com-
pared to NewCoolstreaming, Sepidar has higher playback continuity and lower play-
back latency.

Paper C

Chapter 7

GLive: The Gradient overlay as a

market maker for mesh-based P2P

live streaming

Amir H. Payberah, Jim Dowling, and Seif Haridi

In the 10th IEEE International Symposium on Parallel and Distributed Computing
(ISPDC’11), Cluj-Napoca, Romania, July 2011.

7.1. INTRODUCTION 71

GLive: The Gradient overlay as a market maker
for mesh-based P2P live streaming

Amir H. Payberah†‡, Jim Dowling†, and Seif Haridi†‡

†Swedish Institute of Computer Science (SICS)
‡KTH - Royal Institute of Technology

{amir, jdowling, seif}@sics.se

Abstract

Peer-to-Peer (P2P) live video streaming over the Internet is becoming in-
creasingly popular, but it is still plagued by problems of high playback latency
and intermittent playback streams. This paper presents GLive, a distributed
market-based solution that builds a mesh overlay for P2P live streaming. The
mesh overlay is constructed such that (i) nodes with increasing upload band-
width are located closer to the media source, and (ii) nodes with similar up-
load bandwidth become neighbours. We introduce a market-based approach
that matches nodes willing and able to share the stream with one another.
However, market-based approaches converge slowly on random overlay net-
works, and we improve the rate of convergence by adapting our market-based
algorithm to exploit the clustering of nodes with similar upload bandwidths
in our mesh overlay. We address the problem of free-riding through nodes
preferentially uploading more of the stream to the best uploaders. We com-
pare GLive with our previous tree-based streaming protocol, Sepidar, and
NewCoolstreaming in simulation, and our results show significantly improved
playback continuity and playback latency.

7.1 Introduction

Media streaming over Internet is becoming increasingly popular. Currently, most
media is delivered using global content-delivery networks, providing a scalable and
robust client-server model. For example, Youtube handle more than one billion hits
per day1. However, content delivery infrastructures have very high cost, and an
approach to reduce the cost of media delivery is to use peer-to-peer (P2P) overlay
networks, where nodes share responsibility for delivering the media to one another.

Live media streaming using overlay networks is a challenging problem. Nodes
should receive the stream with minimal delay over a best-effort network with varying
bandwidth capacity, while adapting to other nodes joining, leaving and failing.
From a system perspective, the overlay network should continuously optimize its
structure to minimize the playback latency and maximize the timely delivery of the

1http://www.thetechherald.com/article.php/200942/4604/YouTube-s-daily-hit-rate-more-
than-a-billion

72 CHAPTER 7. GLIVE

Figure 7.1: The mesh overlay with different layers of the nodes (for legibility, the links between nodes

are not shown). The nodes in each layer have similar upload bandwidth. The darker the node is, the

higher upload bandwidth it has. The media source is located at the center of the overlay.

stream, by adapting to system and network dynamics. Furthermore, nodes should
be intentivized to contribute and share their resources, through improved relative
performance.

In this paper, we present GLive, a P2P streaming overlay network that uses
both the Gradient overlay network and a distributed market mechanism to adap-
tively optimize its topology to minimize playback latency and maximize the timely
delivery of the stream. The Gradient overlay network constructs a topology where
(i) nodes with higher available upload bandwidth are positioned closer to the media
source, and (ii) nodes with similar upload bandwidth become neighbours, producing
logical layers (see Figure 7.1). As nodes with relatively higher upload bandwidth
can forward more copies of the stream to more nodes, positioning them closer to
the media source will reduce the average number of hops from nodes to the me-
dia source, reducing both the probability of streaming disruptions and playback
latency at nodes. Nodes are also incentivized to provide relatively more upload
bandwidth, as nodes that contribute more upload bandwidth will have relatively
higher playback continuity and lower latency than the nodes in lower layers.

In GLive, we divide the media stream into a sequence of blocks, and each node
pulls the blocks of the stream from a set of nodes called parents. Nodes use a
distributed market model, first introduced in [1], to choose parents from among
the nodes in the system. A major problem with market-based approaches that
select parents from random nodes is that they exhibit slow convergence properties.
We improve the speed of convergence by nodes selecting from a small number of
neighbouring nodes with similar upload bandwidth, i.e., a node either in its layer or
in a layer closer to the media source (see Figure 7.1). The gossip-generated Gradient
overlay network [5, 6] is used to enable nodes to sample neighbours with similar
upload bandwidth, and, thus, it acts as a market-maker for our market model.

We evaluate GLive by comparing its performance with Sepidar [2] and the state-
of-the-art NewCoolstreaming [24]. We show in simulation that GLive provides

7.2. RELATED WORK 73

better playback continuity and lower playback latency than these systems under
churn, flash-crowd, and massive-failure scenarios. We also evaluate the performance
of GLive and Sepidar when a high percentage of nodes are free-riders. Finally, we
evaluate the convergence of our market model when the node samples are taken
from the Gradient overlay compared to a random overlay.

Our work is an extension of our previous work on multiple-tree live streaming
[1, 2], and the contributions of this paper include:

• GLive, a distributed market-based solution to create a mesh overlay for P2P
live media streaming,

• how mesh-based streaming outperforms multiple-tree streaming through com-
paring GLive and Sepidar [2],

• how the Gradient overlay can improve the convergence time of a mesh overlay
in comparison with a random network,

• a scoring model to solve the free-rider problem in mesh overlays.

7.2 Related work

Many different overlay network topologies have been used for data delivery in P2P
media streaming systems, but the two most widely used approaches are multiple-
tree [1, 2, 12, 13] and mesh-based overlays [17, 21, 24]. Multiple-tree overlay net-
works use push-based content delivery over multiple tree-shaped overlays with the
media source as a root of all trees. While multiple-tree overlay networks have the
advantage of low latency data delivery, they are vulnerable to the failure of interior
nodes. Rajaee et al. have shown in [16] that mesh overlays have consistently better
performance than tree-based approaches for scenarios where there is node churn
and packet loss.

Mesh-based approaches use swarming content delivery over a typically random
overlay network. In mesh-based overlays, unlike tree-based structures that data is
pushed through the tree, nodes pull data from their neighbours in the mesh. The
mesh structure is highly resilient to node failures, but it is subject to unpredictable
latencies due to the frequent exchange of notifications and requests [7]. Gossip++
[17], NewCoolStreaming [24], Chainsaw [19], and PULSE [20] are the systems that
use random overlay meshes for data dissemination. Recently, there has been work
on using gossiping to build non-random mesh topologies, where the topology stores
implicit information about node characteristics, such as upload bandwidth. In [21],
Fortuna et al. attempts to organize nodes with decreasing upload bandwidth at
increasing distance from the source. As such, these systems have similarities with
how GLive uses the Gradient overlay to structure nodes. However, GLive also uses
a market model to optimize its partners for media streaming.

The problem of reducing free-riding in P2P systems has been solved by many
existing incentive mechanisms and reputation models [13, 59, 61]. Of particular

74 CHAPTER 7. GLIVE

relevance to GLive are Give-to-Get [62] and Sepidar [2] that use transitive depen-
dencies to a child’s children in order to audit children nodes. In contrast, GLive
uses a scoring mechanism to identify free-riders.

Our market model is an example of a distributed auction algorithm with partial
information. Our model differs from existing work, such as [65] amd [66], in that
all nodes are decision makers, the set of tasks and resources are homogeneous and
auctions are restartable. Finally, our block selection strategy is similar to BiTOS
for video-on-demand [55].

7.3 Problem description

We assume a network of nodes that communicate through message passing. New
nodes may join the network at any time to watch the video. Existing nodes may
leave the system either voluntarily or by crashing. The video is divided into a set
of B blocks of equal size without any coding. Every block bi ∈ B has a sequence
number to represent its playback order in the stream. Nodes can pull any block
independently from any other node that can supply it.

Each node has a partner list, a view of a small subset of nodes in the system.
A node can create a bounded number of download connections to partners and
accept a bounded number of upload connections from partners over which blocks
are downloaded and uploaded, respectively. We define a node q as the parent of
the child node p, if an upload connection of q is bound to a download connection
of p. Children nodes continuously attempt to improve their download connections
by changing to parents that are both closer to the media source and able to deliver
blocks on time. Parents, who can accept or reject connection attempts, prefer
children who have forwarded the most blocks within a recent time window. The
result of these preference functions is that nodes who forward more blocks on time
have shorter paths to the media source.

Nodes store a list of blocks that are available for download in a buffer map.
Nodes periodically send their buffer map to their children (via their upload connec-
tions) to advertise their available blocks. Children can then pull any blocks they
require from the node. As such, advertisements are not random, but rather are
directed away from the source and down the gradient.

For each block, we now represent the problem of finding the best mapping of
upload connections to download connections as an assignment problem [50]. We
define the set of all download and upload connections as D and U , respectively. In
order to receive the block, a node requires one of its download connection needs
to be assigned to an upload connection over which the block will be copied. We
define an assignment or a mapping mijk, from a node i to a node j for block bk, as
a triplet containing one upload connection at i and one download connection at j
for block bk:

mijk = (ui, dj , bk) : u ∈ U, d ∈ D, b ∈ B, i, j ∈ N, i 6= j (7.1)

7.3. PROBLEM DESCRIPTION 75

where N is the set of all nodes, bk is block k from the set of all blocks B, and
the connection from i to j is between two different nodes. A cost function is defined
for a mapping mijk as the minimum distance from node i to the media source in
terms of numbers of hops, that is,

c(mijk) : mijk → number of hops from i to source. (7.2)

We define a complete assignment A for a block b as a set of mappings, where,
there exists at least one download connection at every node that is assigned to an
upload connection over which b is downloaded. That is, for a block b, each node has
a download connection over which it can pull the block before the block expires.
The total cost of a complete assignment is calculated as follows:

c(A) =
∑

m∈A

c (m) (7.3)

The goal of our system is to minimize the cost function in equation 7.3 for every
block b ∈ B, such that a shortest path tree is constructed over the set of available
connections for every block.

If the set of nodes, connections, and the upload bandwidth of all nodes is static
for all blocks B, then we can solve the same assignment problem | B | times.
However, P2P systems, typically have churn (nodes join and fail) and available
bandwidth at nodes changes over time, so we have to solve a slightly different
assignment problem every time a node join, exits or a node’s bandwidth changes.

Centralized solutions, such as the auction algorithm [4], are possible in principle,
where nodes bid to connect their download connections to better upload connections
using the amount of blocks they forward as currency. However, nodes that offer
upload connections may not deliver a block over a connection in time. As such,
the problem can be viewed as a restartable auction, where the auction is restarted
because a bidder did not have sufficient funds to complete the transaction. But, in
general, it is not feasible to use centralized solutions in large and dynamic networks
with real-time constraints. An alternative naive decentralized implementation of
the auction algorithm that communicates will all nodes through flooding would
not scale either. Approximate decentralized solutions, based on random walks or
sampling from a random overlay, have slow convergence time, as we show in our
evaluation.

In the next section, we introduce our market model that finds approximate
solutions to the assignment problem using partial views sampled from the Gradient
overlay (to improve convergence time compared to a random overlay). Nodes are not
assumed to be cooperative; nodes may execute protocols that attempt to download
the stream without forwarding it to other nodes. We do not, however, address the
problem of nodes colluding to receive the video stream.

76 CHAPTER 7. GLIVE

7.4 GLive system

We now present our distributed market-model, a modified version of the distributed
auction algorithm with partial information introduced for tree-based live streaming
in [2]. The following properties are used by the model and calculated locally at
each node:

1. Money: the total number of blocks uploaded to children during the last 10
seconds. A node uses its money to bid for a binding to a partner’s upload
connection.

2. Price: the minimum amount of money that should be bid when binding to
an upload connection. The price of a node that has an unbound upload
connection is zero, otherwise the node’s price equals the lowest amount of
money at its existing children. For example, if node p has three upload
connections and three children with monies 2, 3 and 4, the price of p is 2.

3. Cost: the cost of a node is the distance from that node to the media source
via its shortest path. The shorter the path length (i.e., the lower its cost),
the more desirable a parent it is.

Our market-model is based on minimizing costs (the path length of nodes to
the media source) through nodes iteratively bidding for upload connections. Each
node periodically sends its money, cost and price to all its partners. The partners
of a node include all the nodes in its similar-view and finger-list in the Gradient
overlay, see subsection 7.4.2. For each of its download connections, a child node
p sends a bid request to nodes that: (i) have lower cost than one of the existing
parents assigned to download connections in p, and (ii) the price of a connection
is less than p’s money. Nodes bid with their entire money (although the money is
not used up, it can be reused for other bids for other connections).

A parent node who receives a bid request accepts it, if: (i) it has a free upload
connection (its cost is zero), or (ii) it has assigned an upload connection to another
node with a lower amount of money. If the parent re-assigns a connection to a node
with more money, it abandons the old child who must then bid for a new upload
connection. When a child node receives the acceptance message from another node,
it assigns one of its download connections to the upload connection of the parent.
Since a node may send more connection requests than its has download connections,
it might receive more acceptance messages than it needs. In this case, if all its
download connections are already assigned, it checks the cost of all its assigned
parents and finds the one with the highest cost. If the cost of that parent is higher
than the new received acceptance message, it releases the connection to that parent
and accepts the new one, otherwise it ignores the received message.

Although there is no guarantee that the parent will forward all blocks over its
connection to a child, parents who forward a relatively lower number of blocks will
be removed as children of their parents. Nodes that claim that they have forwarded

7.4. GLIVE SYSTEM 77

more blocks than they actually have forwarded are removed as children, and, an
auction is restarted for the removed child’s connection. Nodes are incentivized to
increase the upper bound on the number of their upload connections, as it will help
increase their upload rate and, hence, their attractiveness as children for parents
closer to the root.

7.4.1 Auction restarting - free-rider detection and punishment

Whenever a node assigns a download connection to the upload connection of another
node, it sends the address of its current children to its parent. It subsequently
informs its parents of any changes in its children. Thus, a parent node knows
about its childrens’ children, or grandchildren for short.

Free-riders are nodes that forward a much lower number of blocks than they
claimed they forward when connecting to a parent. We implment a scoring mech-
anism to detect free-riders, and thus motivate nodes to forward blocks. Each child
assigns a score to each of its parents, which is initially set to zero, for a time window
covering the last 10 seconds. When a child requests and receives a non-duplicate
block from a parent within the last 10 seconds, it increments the score of that par-
ent. Thus, the more blocks a parent node sends to its children, the higher score it
has among its children. We chose 10 seconds as it is the same as the choking period
in BitTorrent [67] and does not unneccessarily punish nodes because of variance in
the rate of block forwarding.

Each node periodically sends a score request to its grandchildren, and the grand-
children nodes send back a score response containing the scores of the original node’s
children. The node sums up the received scores for each child. Free-rider nodes
forward a lower number of blocks, and hence they have lower scores compared to
others.

When a node with no free upload connection receives a connection request, it
sorts its children based on their latest scores. If an existing child has a score less
than a threshold s, then the child is identified as a free-rider. The parent node
abandons the free-rider nodes and accepts the new node as its child. If there is
more than one child whose score is less than s, then the lowest score is selected. If
all children have a score higher than s, then the parent accepts the connection if
the connecting node has offers more money than the lowest money of its existing
children. When the parent accepts such a connection, it then abandons (removes
the connection to) the child with the lowest money. The abandonned child then
has to search for and bid for a new connection to a new parent.

A crucial difference between our market-model and the classical auction algo-
rithm is that our solution is decentralized; nodes have only a partial (changing)
view of a small number of nodes in the system with whom they can bid for upload
connections. We use the Gradient overlay to provide nodes with a constantly chang-
ing partial view of other nodes that have a similar number of upload connections.
Thus, rather than have nodes explore the whole system for better parent nodes, the
Gradient enables us to limit exploration to the set of nodes with a similar number

78 CHAPTER 7. GLIVE

of upload connections.

7.4.2 Gradient overlay construction

Nodes search for parents by sampling partners from the Gradient overlay. The
Gradient overlay is a gossip-generated overlay, where nodes are arranged accord-
ing to their local utility function, such that the highest utility nodes are located
topologically in the centre of the overlay, while lower utility nodes are located at
increasing distance from the centre [5, 6].

Each node in the Gradient overlay maintains two sets of neighbours: similar-
view and random-view. Similar-view is a partial list of the nodes in the system whose
utility values are close to, but slightly higher than the utility value of the node.
However, the nodes in the random-view are sampled from a random overlay network.
We use Cyclon [40] to create and update the random-view. Nodes periodically
gossip with each other and exchange their views. Upon receiving the views from
a neighbour, a node merges it with its own similar-view and retains those entries
that have closer (but higher) utility to its own utility value. The connections to
the random nodes in random-view allow nodes to explore the network in order to
discover other potentially similar neighbours.

In GLive, the utility value of a node is calculated using two factors: (i) a node’s
upload bandwidth, and (ii) a disjoint set of discrete utility values that we call
market-levels. A market-level is defined as a range of network upload bandwidths.
For example, in figure 7.2, we define 5 example market-levels: mobile broadband
(64-127 Kbps) with utility value 1, slow DSL (128-511 Kbps) with utility value 2,
DSL (512-1023 Kbps) with utility value 3, fiber (>1024 Kbps) with utility value
4, and the media source with utility value 5. A node measures its available upload
bandwidth (e.g., using a server or trusted neighbour) and calculates its utility value
as the market-level that its upload bandwidth falls into. For instance, a node with
256 Kbps upload bandwidth falls into slow DSL market-level, so its utility value
is 2. Nodes may also choose to contribute less upload bandwidth than they have
available, causing them to join a lower market level.

A node prefers to fill its similar-view with nodes from the same market-level or
one level higher. As a result, the nodes with similar utility value (almost the same
upload bandwidth) become the neghibours of each other. In addition to similar-
view and random-view, nodes maintain finger-list that contains at most one node
from higher market levels (if one is available). Finger list reduces the probability
of the overlay partitioning due to excessive clustering. Moreover, low bandwidth
nodes often do not have enough upload bandwidth to simultaneously deliver all
the stream. Therefore, in order to enable low bandwidth nodes to utilize the spare
connections of higher bandwidth nodes, nodes can use the connections in finger-list
(figure 7.2).

To update the similar-view, each node p periodically chooses one random node
q from its similar-view, and sends it a random subset of the nodes from its similar-
view. Upon receiving the list of nodes, q sends back a random subset of the nodes

7.4. GLIVE SYSTEM 79

Figure 7.2: Different market-levels of a system, and the similar-view and fingers of p.

from its similar-view. When node p receives the q’s view, first merges the received
view with its existing similar-view by iterating through the received list of nodes,
and preferentially selecting those nodes in the same market-level or at most one
level higher. If its similar-view is not full, it adds the node, otherwise, it replaces
one of the nodes it had sent to q with the selected node. Moreover, to allow nodes to
find other potentially similar neighbours, p repeat the same procedure by merging
its similar-view with its own local random-view.

The fingers to higher market-levels are also updated periodically. Node p goes
through its random-view, and for each higher market-level, picks a node from that
market-level if there exists such a node in the random-view. If there is not, p keeps
the old finger. For more details, you are kindly referred to our work in [1].

7.4.3 Data dissemination

Each parent node periodically sends its buffer map and its load to all its assigned
children. The buffer map shows the blocks that a node has in its buffer, and the
load shows the ratio of the number of blocks that a node has forwarded to the
number of its upload connections.

A child node, uses the information received from its parents to schedule and pull
the required blocks in different iteration. We define a sliding window that shows the
number of blocks that a child node can request in each iteration. If the playback
point of a node is t, and the sliding window size is n, the node can request the
blocks from t to t + n in each iteration.

One important question in pulling blocks is the order of requests. The main
constraint in data dissemination in live media streaming is that the blocks should

80 CHAPTER 7. GLIVE

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

P
er

ce
nt

ag
e

of
 n

od
es

Time (s)

glive 90%
sepidar 90%

newcoolstream 90%
glive 99%

sepidar 99%
newcoolstream 99%

(a) Churn.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

P
er

ce
nt

ag
e

of
 n

od
es

Time (s)

glive 90%
sepidar 90%

newcoolstream 90%
glive 99%

sepidar 99%
newcoolstream 99%

(b) Flash Crowd.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

P
er

ce
nt

ag
e

of
 n

od
es

Time (s)

glive 90%
sepidar 90%

newcoolstream 90%
glive 99%

sepidar 99%
newcoolstream 99%

(c) Catastrophic failure.

Figure 7.3: Playback continuity of the systems in different scenarios.

be received before their playback time. Therefore, a node should pull the missing
block with the closest playback time first, that is, blocks should be pulled in-order.
Another potential strategy, as used by BitTorrent, is to pull the rarest blocks in
the system, as this is known to increase aggregrate network throughput [55].

We have designed a download policy that attempts to marry the benefits for
playback latency of in-order downloading with the improved network throughput of
rarest-block policy. We divide the sliding window into two sets: an in-order set and
a rare set. The first m blocks in the sliding window are the blocks in the in-order
set and the rest of the blocks of the sliding window are the rare set blocks. As the
names of these sets imply, blocks from the in-order set are requested in order and
the least popular block (from among the node’s partners) is chosen from the rare
set. A node selects a block from the in-order set with probability h% and from the
rare set with (100 − h)%, where h is a system parameter. If multiple parents can
provide a block, the child node chooses the parent that has the lowest load.

7.5. EXPERIMENTS AND EVALUATION 81

7.5 Experiments and evaluation

In this section, we compare the performance of GLive with P2P live-streaming
systems Sepidar [2] and NewCoolstreaming [24] under simulation. Sepidar has a
multiple-tree architecture and NewCoolstreaming has a random mesh-based archi-
tecture.

7.5.1 Experiment setup

We have used Kompics [56] to implement GLive, Sepidar and NewCoolstreaming.
Kompics is a framework for building P2P protocols and it provides a discrete event
simulator for simulating them using different bandwidth, latency and churn mod-
els. We have implemented Sepidar and NewCoolstreaming based on the system
descriptions from [2] and [57].

In our experimental setup, we set the streaming rate to 512Kbps, which is
divided into blocks of 16Kb. Nodes start playing the media after buffering it for 15
seconds, which compares favourably to the 60 seconds of buffering used by state-of-
the-art (proprietary) SopCast [54]. The size of similar-view in GLive and Sepidar
and the partner list in NewCoolstreaming is 15 nodes. We assume all the nodes
have the same number of download connections, which is set to 8. To model upload
bandwidth, we assume that each upload connection has available bandwidth of
64Kbps and that the number of upload connections for nodes is set to 2i, where
i is picked randomly from the range 1 to 10. This means that nodes have upload
bandwidth between 128Kbps and 1.25Mbps. As the average upload bandwidth of
704Kbps is not much higher than the streaming rate of 512Kbps, nodes have to
find good matches as parents in order for good streaming performance. The media
source is a single node with 40 upload connections, providing five times the upload
bandwidth of the stream rate. This setting is based on SopCast’s requirement that
the source has at least five times the upload capacity of the stream rate [54]. In
our simulations we assume 11 market-levels, such that the nodes with the the same
number of upload connections are located at the same market-level. For example,
nodes with two upload connection (128Kbps) are the members of the first market-
level, nodes with four upload connections (256Kbps) are located in the second
market-level, and the media source with 40 upload connections (2.5Mbps) is the
only member of the 11th market-level. Latencies between nodes are modeled using
a latency map based on the King data-set [58].

We assume the size of sliding window for downloading is 32 blocks, such that
the first 16 blocks are considered as the in-order set and the next 16 blocks are the
blocks in the rare set. A block is chosen for download from the in-order set with
90% probability, and from the rare set with 10% probability. In the failure detector
settings, we set the threshold of the score, s, to zero. The window used for our
scoring mechanism is set to 10 seconds.

In the experiments, we measure the following metrics:

82 CHAPTER 7. GLIVE

1. Playback continuity: the percentage of blocks that a node received before their
playback time. We consider two metrics related to playback continuity: where
nodes have a playback continuity of (i) greater than 90% and (ii) greater than
99%;

2. Playback latency: the difference in seconds between the playback point of a
node and the playback point at the media source.

7.5.2 GLive vs. Sepidar vs. NewCoolstreaming

In this section, we compare the playback continuity and playback latency of GLive
with Sepidar and NewCoolstreaming in the following scenarios:

1. Flash crowd: first, 100 nodes join the system following a Poisson distribution
with an average inter-arrival time of 100 milliseconds. Then, 1000 nodes join
following the same distribution with a shortened average inter-arrival time of
10 milliseconds;

2. Catastrophic failure: 1000 nodes join the system following a Poisson distribu-
tion with an average inter-arrival time of 100 milliseconds. Then, 500 existing
nodes fail following a Poisson distribution with an average inter-arrival time
10 milliseconds;

3. Churn: 500 nodes join the system following a Poisson distribution with an
average inter-arrival time of 100 milliseconds, and then till the end of the
simulations nodes join and fail continuously following the same distribution
with an average inter-arrival time of 1000 milliseconds;

Figures 7.3 shows the percentage of the nodes that have playback continuity of
at least 90% and 99%. We see that all the nodes in GLive receive at least 90%
of all the blocks very quickly in all scenarios, while it takes more time in Sepidar.
That is because in Sepidar, at the beginning, nodes spend time constructing the
trees, while in GLive the nodes pull blocks quickly as soon as at least one of their
download connections is assigned. As we see in figure 7.3, both GLive and Sepidar
outperform NewCoolstreaming in playback continuity for the whole duration of the
experiment in all scenarios. GLive and Sepidar use the Gradient overlay for node
discovery. The Gradient overlay arranges nodes based on their number upload
bandwidth capacity, and so the neighbours of a node are those with the same
upload bandwidth capacity, or slightly higher. This helps the high capacity nodes
to quickly discover the media source. In contrast, NewCoolstreaming uses a random
overlay, and it takes more time for nodes to find appropriate parents. The result is a
higher number of changes in parent connections, causing lower playback continuity
in NewCoolstreaming compared to GLive and Sepidar.

As we see in figure 7.3, the difference between GLive and Sepidar increases,
when we measured the percentage of the nodes that receive 99% of the blocks in
time. Again, the tree structure used in Sepidar causes this difference. Although,

7.5. EXPERIMENTS AND EVALUATION 83

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500

P
la

yb
ac

k
La

te
nc

y
(S

ec
on

ds
)

Time (s)

glive
sepidar

newcoolstream

(a) Churn.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500

P
la

yb
ac

k
La

te
nc

y
(S

ec
on

ds
)

Time (s)

glive
sepidar

newcoolstream

(b) Flash Crowd.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500

P
la

yb
ac

k
La

te
nc

y
(S

ec
on

ds
)

Time (s)

glive
sepidar

newcoolstream

(c) Catastrophic failure.

Figure 7.4: Playback latency of the systems in different scenarios.

Sepidar has a multiple-tree structure, which is resilient to the failures, it has a lower
playback continuity than GLive when nodes crash. In a multiple-tree structure, a
stream is split into a number of sub-streams, and a node receives each sub-stream
from a parent. Although, a node typically receives the blocks of each sub-stream
independently, if the parent providing a sub-stream fails, then it loses the block
from that sub-stream. While the node is trying to find a new parent for that sub-
stream, it will miss the blocks for that sub-stream. However, this problem does not
apply to the mesh overlay, because the nodes pull the blocks independently of each
other. Therefore, if a node loses one of its parents, it can pull the required blocks
from other parents.

Figure 7.7 shows the playback latency of the systems in different scenarios. As
we can see, GLive keeps its playback latency relatively constant, close to 15 seconds,
which is the initial buffering time. The playback latency of Sepidar also converges
to 15 seconds, but it takes longer to converge than GLive. The reason for this
delay is, again, the time needed to construct the trees. The playback latency of
GLive and Sepidar, are both less than NewCoolstreaming. In NewCoolstreaming,

84 CHAPTER 7. GLIVE

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

P
er

ce
nt

ag
e

of
 n

od
es

Time (s)

glive (all nodes)
glive (strong nodes)

glive (weak nodes & freeriders)
sepidar (all nodes)

sepidar (strong nodes)
sepidar (weak nodes & freeriders)

Figure 7.5: Playback continuity in the free-rider scenario.

the higher playback latency is a result of nodes only reactively changing parents
when their playback latency is greater than a predefined threshold.

Another difference between GLive, Sepidar and NewCoolstreaming is the be-
havior of the systems when playback latency increases. In GLive and Sepidar, if
playback latency exceeds the initial buffering time and enough blocks are available
in the buffer, nodes are given a choice to fast forward the stream and decrease
the playback latency. In contrast, NewCoolstreaming jumps ahead in playback by
switching parent(s) even it misses several blocks, thus negatively affecting playback
continuity [24].

7.5.3 Free-rider detector settings

Here, we compare the playback continuity of GLive and Sepidar in the free-rider
scenario. In this scenario, 1000 nodes join the system following a Poisson distri-
bution with an average inter-arrival time of 100 milliseconds, such that 30% of the
nodes are free-riders, and the total amount of upload bandwidth in the system is
less than total amount of download bandwidth required by nodes. Figure 7.5 shows
the percentage of the nodes that receive 99% of the blocks before their playback
time. It shows this value for all the nodes in the system, including the strong nodes
(top 10% of upload bandwidth nodes), the free-riders, and the weak nodes (the
bottom 10% of upload bandwidth nodes).

Figure 7.5 shows that all the strong nodes in both systems receive all the blocks
in time, however, GLive converges faster than Sepidar. In GLive, we are using
the scoring mechanism to find the nodes who contribute less bandwidth than they
claim when bidding for connections, while Sepidar uses a free-rider detector module
that identifies nodes that do not meet their contractual requirement to forward the
stream to their child nodes [2]. In GLive, at the beginning, a high percentage of
weak nodes and free-riders receive all the blocks in time, which shows that free-riders
have not been detected yet. That is because nodes need time to update and validate

7.5. EXPERIMENTS AND EVALUATION 85

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 100 200 300 400 500

P
er

ce
nt

ag
e

of
 n

od
es

Time (s)

gradient
random

Figure 7.6: 99% of playback continuity of the GLive in the Gradient overlay and the random overlay.

the scores of their parents, and, thus, identify freeriders. Meanwhile, the free-riders
use the resources of the system. However, after enough time has passed and the
nodes’ scores have been updated, the free-riders are detected. Thus, after about
100 seconds the percentage of the free-riders who have a high playback continuity
decreases. As figure 7.5 shows, after about 600 seconds from the beginning of
the experiment, in both GLive and Sepidar the free-riders and weak nodes receive
roughly the same quality of stream, that is, they have the same percentage of
playback continuity. As the playback continuity of the weak nodes and free-riders
keeps decreasing in GLive, we can also see that the playback continuity decreases
for all nodes in GLive. After 500 seconds, playback continuity even decreases below
Sepidar.

Importantly, as we can see in figure 7.5, the existing free-riders in the system
have a very low effect on the playback continuity of the strong nodes in GLive.
Strong nodes have consistently higher playback continuity than weak nodes and
free-riders. This is due to the fact that weak nodes have a lower amount of money
compared to strong nodes, which makes them take longer to find good parents.
Also, the punishment of free-riders negatively affects their playback continuity. As
such, nodes are strongly incentivized to contribute more upload bandwidth through
receiving improved relative performance.

7.5.4 Comparing the Gradient with random neighbour selection

In this experiment, we compare the convergence speed of our market model for
the Gradient overlay and a random overlay. We use the churn scenario in this
experiment, as this is the most typical environment for P2P streaming systems on
the Internet. Our market model is run using (i) samples taken from the Gradient
overlay, where the sampled nodes have similar upload bandwidth or money, and
(ii) samples taken from a random network, where the sampled nodes have random
amounts of money.

As nodes in the Gradient overlay receive bids from a set of nodes with almost

86 CHAPTER 7. GLIVE

the same money, the difference between received bids is less than the expected
difference for the random network. Figure 7.6 shows that in the case of using the
Gradient overlay, more nodes can quickly receive high playback continuity. As
such, the Gradient overlay can be said to be a more efficient market maker for our
distributed market model than a random overlay.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 100 200 300 400 500

P
er

ce
nt

ag
e

of
 n

od
es

Time (s)

0 sec.
3 sec.

15 sec.

(a) 99% of playback continuity.

 0

 5

 10

 15

 20

 0 100 200 300 400 500

P
la

yb
ac

k
La

te
nc

y

Time (s)

0 sec.
3 sec.

15 sec.

(b) Playback latency.

Figure 7.7: The performance of the system in different initial buffering time.

7.5.5 Varying buffering time

Finally, we compare the performance of GLive for different buffering times. We
compare three different settings: 0, 3 and 15 seconds of buffering time in the churn
scenario. Buffering 0 seconds of blocks, means nodes start playing the media as
soon as they receive the first block. As we see in figure 7.7a, the higher the buffering
time, the higher the percentage of the nodes who receive blocks in time. However,
higher initial buffering times increase the playback latency (figure 7.7b). As such,
there is a trade-off between increasing playback continuity and decreasing playback
latency.

7.6 Conclusions

In this paper, we presented GLive, a P2P live streaming system that uses a dis-
tributed market-model to construct a mesh overlay with two properties: (i) nodes
with increasing upload bandwidth are located closer to the media source, and (ii)
nodes with similar upload bandwidth are the neighbours of each other. Our dis-
tributed market-model leverages the structure of the Gradient overlay to efficiently
assign suitable connections to other nodes. We addresse the problem of free-riding
in GLive through parent nodes auditing the behaviour of their children nodes by

7.6. CONCLUSIONS 87

querying their grandchildren. We showed in simulation that the mesh-based im-
plemention of our market-model has better performance in different scenarios com-
pared to both a multiple-tree implementation of the system in Sepidar and New-
Coolstreaming.

Paper D

Chapter 8

Gozar: NAT-friendly Peer

Sampling with One-Hop

Distributed NAT Traversal

Amir H. Payberah, Jim Dowling, and Seif Haridi

In the 11th IFIP international conference on Distributed Applications and Interop-
erable Systems (DAIS’11), Reykjavik, Iceland, June 2011.

8.1. INTRODUCTION 91

Gozar: NAT-friendly Peer Sampling with
One-Hop Distributed NAT Traversal

Amir H. Payberah†‡, Jim Dowling†, and Seif Haridi†‡

†Swedish Institute of Computer Science (SICS)
‡KTH - Royal Institute of Technology

{amir, jdowling, seif}@sics.se

Abstract

Gossip-based peer sampling protocols have been widely used as a building
block for many large-scale distributed applications. However, Network Ad-
dress Translation gateways (NATs) cause most existing gossiping protocols
to break down, as nodes cannot establish direct connections to nodes be-
hind NATs (private nodes). In addition, most of the existing NAT traversal
algorithms for establishing connectivity to private nodes rely on third party
servers running at a well-known, public IP addresses. In this paper, we present
Gozar, a gossip-based peer sampling service that: (i) provides uniform random
samples in the presence of NATs, and (ii) enables direct connectivity to sam-
pled nodes using a fully distributed NAT traversal service, where connection
messages require only a single hop to connect to private nodes. We show in
simulation that Gozar preserves the randomness properties of a gossip-based
peer sampling service. We show the robustness of Gozar when a large fraction
of nodes reside behind NATs and also in catastrophic failure scenarios. For
example, if 80% of nodes are behind NATs, and 80% of the nodes fail, more
than 92% of the remaining nodes stay connected. In addition, we compare
Gozar with existing NAT-friendly gossip-based peer sampling services, Nylon
and ARRG. We show that Gozar is the only system that supports one-hop
NAT traversal, and its overhead is roughly half of Nylon’s.

8.1 Introduction

Peer sampling services have been widely used in large scale distributed applications,
such as information dissemination [33], aggregation [34], and overlay topology man-
agement [5, 35]. A peer sampling service (PSS) periodically provides a node with
a uniform random sample of live nodes from all nodes in the system, where the
sample size is typically much smaller than the system size [68]. The sampled nodes
are stored in a partial view that consists of a set of node descriptors, which are
updated periodically by the PSS.

Gossiping algorithms are the most common approach to implementing a PSS
[38–40]. Gossip-based PSS’ can ensure that node descriptors are distributed uni-
formly at random over all partial views [41]. However, in the Internet, where a high
percentage of nodes are behind NATs, these traditional gossip-based PSS’ become

92 CHAPTER 8. GOZAR

biased. Nodes cannot establish direct connections to nodes behind NATs (private
nodes), and private nodes become under-represented in partial views, while nodes
that do support direct connectivity, public nodes, become over-represented in partial
views [42].

The ability to establish direct connectivity with private nodes, using NAT
traversal algorithms, has traditionally not been considered by gossip-based PSS’.
However, as nodes are typically sampled from a PSS in order to connect to them,
there are natural benefits to including NAT traversal as part of a PSS. Nylon [42]
was the first system to present a distributed solution to NAT traversal that uses
existing nodes in the PSS to help in NAT traversal. Nylon uses nodes that have
successfully established a connection to a private node as partners who will both
route messages to the private node (through its NAT) and coordinate NAT hole
punching algorithms [42, 47]. As node descriptors spread in the system through gos-
siping, this creates routing table entries for paths that forward packets to private
nodes. However, long routing paths increase both network traffic at intermediary
nodes and the routing latency to private nodes. Also, routing paths become fragile
when nodes frequently join and leave the system (churn). Finally, hole punching is
slow and can take up to a few seconds over the Internet [46].

This paper introduces Gozar, a gossip-based peer sampling service that (i) pro-
vides uniform random samples in the presence of NATs, and (ii) enables direct
connectivity to sampled nodes by providing a distributed NAT traversal service
that requires only a single intermediary hop to connect to a private node. Gozar
uses public nodes as both relay servers [49] (to forward messages to private nodes)
and rendezvous servers [47] (to establish direct connections with private nodes using
hole punching algorithms).

Relaying and hole punching is enabled by private nodes finding public nodes
who will act as both relay and rendezvous partners for them. For load balancing
and fairness, public nodes accept only a small bounded number of private nodes
as partners. When references to private nodes are gossiped in the PSS or sampled
using the PSS, they include the addresses of their partner nodes. A node, then,
can use these partners to either (i) gossip with a private node by relaying or (ii)
establish a direct connection with the private node by using the partner for hole
punching. We favour relaying over hole punching when gossiping with private nodes
due to the low connection setup time compared to hole punching and also because
the messages involved are small and introduce negligible overhead to public nodes.
However, the hole punching service can be used by clients of the PSS to establish
a direct connection with a sampled private node. NAT hole punching is typically
required by applications such as video-on-demand [69] and live streaming [1, 2],
where relaying would introduce too much overhead on public nodes.

A private node may have several redundant partners. Although redundancy
introduces some extra overhead on public nodes, it also reduces latency when per-
forming NAT traversal, as parallel connection requests can be sent to several part-
ners, with the end-to-end connection latency being the fastest of the partners to
complete NAT traversal. In this way, a more reliable NAT traversal service can be

8.2. RELATED WORK 93

built over more unreliable connection latencies, such as those widely seen on the
Internet.

We evaluate Gozar in simulation and show how its PSS maintains its randomness
property even in networks containing large fractions of NATs. We validate its
behaviour through comparison with the widely used Cyclon protocol [40] (which
does not support networks containing NATs). We also compare the performance of
Gozar with the only other NAT-friendly PSS’ we found in the literature, Nylon [42]
and ARRG [70], and show how Gozar has less protocol overhead compared to Nylon
and ARRG, and is the only NAT-friendly peer sampling system that supports one
hop NAT traversal.

8.2 Related work

Dan Kegel explored STUN [43] as a UDP hole punching solution for NAT traversal,
and Guha et al. extended it to TCP by introducing STUNT [71]. However, studies
[47, 71] show that NAT hole punching fails 10-15% of the time for UDP and 30-
40% of the time for TCP traffic. TURN [49] was an alternative solution for NAT
traversal using relay nodes that works for all nodes that can establish an outbound
connection. Interactive connectivity establishment (ICE) [72] has been introduced
as a more general technique for NAT traversal for media streams that makes use of
both STUN [43] and TURN [49]. All these techniques rely on third party servers
running at well-known addresses.

Kermarrec et al. introduce in Nylon [42] a distributed NAT traversal tech-
nique that uses all existing nodes in the system (both private and public nodes)
as rendezvous servers (RVPs). In Nylon, two nodes become the RVP of each other
whenever they exchange their views. Later, if a node selects a private node for
gossip exchange, it opens a direct connection to the private node using a chain of
RVPs for hole punching. The chains of RVPs in Nylon are unbounded in length,
making Nylon fragile in dynamic networks, and increasing traffic at intermediary
nodes.

ARRG [70] supports gossip-based peer sampling in the presence of NATs without
an explicit solution for traversing NATs. In ARRG, each node maintains an open
list of nodes with whom it has had a successful gossip exchange in the past. When
a node view exchange fails, it selects a different node from this open list. The open
list, however, biases the PSS, since the nodes in the open list are selected more
frequently for gossiping.

Renesse et. al [73] present an approach to fairly distribute relay traffic over
public nodes in a NAT-friendly gossiping system. In their system, which is not a
PSS, each node accepts exchange requests as much as it initiates view exchanges.
Similar to Nylon, they use chains of nodes as relay servers.

In [74], D’Acunto et. al introduce an analytical model to show the impact of
NATs on P2P swarming systems, and in [75] Liu and Pan analyse the performance
of bittorrent-like systems in private networks. They show how the fraction of pri-

94 CHAPTER 8. GOZAR

vate nodes affects the download speed and download time of a P2P file-sharing
system. Moreover, authors in [76] and [46] study the characteristics of existing
NAT devices on the Internet, and show the success rate, on the Internet, of NAT
traversal algorithms for different NAT types. In addition, the distribution of NAT
rule timeouts for NAT devices on the Internet is described in [76], and in [77] an al-
gorithm is presented, based on binary search, to adapt the time required to refresh
NAT rules to prevent timeouts.

8.3 Background

In gossip-based PSS’, protocol execution at each node is divided into periodic cycles
[41]. In each cycle, every node selects a node from its partial view to exchange a
subset of its partial view with the selected node. Both nodes subsequently update
their partial views using the received node descriptors. Implementations vary based
on a number of different policies in node selection (rand, tail), view exchange (push,
push-pull) and view selection (blind, heale, swapper) [41].

In a PSS, the sampled nodes should follow a uniform random distribution. To
ensure randomness of a partial view in an overlay network, the overlay constructed
by a peer sampling protocol should ensure that indegree distribution, average short-
est path and clustering coefficient, are close to a random network [40, 41]. Kermarrec
et al. evaluated the impact of NATs on traditional gossip-based PSS’ in [42]. They
showed that the network becomes partitioned when the number of private nodes
exceeds a certain threshold. The larger the view size is, the higher the threshold
for partitioning is. However, increasing the nodes’ view size increases the number
of stale node descriptors in views, which, in turn, biases the peer sampling.

There are two general techniques that are used to communicate with private
nodes: (i) hole punching [47, 48] can be used to establish direct connections that
traverse the private node’s NAT, and (ii) relaying [49] can be used to send a message
to a private node via a third party relay node that already has an established
connection with the private node. In general, hole punching is preferable when large
amounts of traffic will be sent between the two nodes and when slow connection
setup times are not a problem. Relaying is preferable when the connection setup
time should be short (typically less than one second) and small amounts of data
will be sent over the connection.

In principle, existing PSS’ could be adapted to work over NATs. This can be
done by having all nodes run a protocol to identify their NAT type, such as STUN
[43]. Then, nodes identified as private keep open a connection to a third party
rendezvous server. When a node wishes to gossip with a private node, it can request
a connection to the private node via the rendezvous server. The rendezvous server
then executes a hole punching technique to establish a direct connection between
the two nodes. Aside from the inherently centralized nature of this approach,
other problems include the success rate of NAT hole punching for UDP is only
85-90% [47, 71], and the time taken to establish a direct connection using hole

8.4. PROBLEM DESCRIPTION 95

punching protocols is high and has high variance (averaging between 700ms and
1100ms on the open Internet for the company Peerialism within Sweden [46]). This
high and unpredictable NAT traversal time of hole punching is the main reason
why Gozar uses relaying when gossiping.

8.4 Problem description

The problem Gozar addresses is how to design a gossip-based NAT-friendly PSS
that also supports distributed NAT traversal using a system composed of both
public and private nodes. The challenge with gossiping is that it assumes a node
can communicate with any node selected from its partial view. To communicate
with a private node, there are three existing options:

1. Relay communications to the private node using a public relay node,

2. Use a NAT hole-punching algorithm to establish a direct connection to the
private node using a public rendezvous node,

3. Route the request to the private node using chains of existing open connec-
tions.

For the first two options, we assume that private nodes are assigned to different
public nodes that act as relay or rendezvous servers. This leads to the problem
of discovering which public nodes act as partners for the private nodes. A similar
problem arises for the third option - if we are to route a request to a private node
along a chain of open connections, how do we maintain routing tables with entries
for all reachable private nodes. When designing a gossiping system, we have to
decide on which option(s) to support for communicating with private nodes. There
are several factors to consider. How much data will be sent over the connection?
How long lived will the connection be? How sensitive is the system to high and
variable latencies in establishing connections? How fairly should the gossiping load
be distributed over public versus private nodes?

For large amounts of data traffic, the second option of hole-punching is the only
really viable option, if one is to preserve fairness. However, if a system is sensitive
to long connection establishment times, then hole-punching may not be suitable.
If the amount of data being sent is small, and fast connection setup times are
important, then relaying is considered an acceptable solution. If it is important to
distribute load as fairly as possible between public and private nodes, then option 3
is attractive. In existing systems, it appears that Skype supports both options 1 and
2, and can considered to have a solution to the fairness problem that, by virtue of
its widespread adoption, can be considered acceptable to their user community [52].

96 CHAPTER 8. GOZAR

8.5 The Gozar protocol

Gozar is a NAT-friendly gossip-based peer sampling protocol with support for dis-
tributed NAT traversal. Our implementation of Gozar is based on the tail, push-pull
and swapper policies for node selection, view exchange and view selection, respec-
tively [41] (although we also run experiments, ommitted here for brevity, showing
that Gozar also works with different policies introduced in [41]).

In Gozar, node descriptors are augmented with the node’s NAT type (private
or public) and the mapping, assignment and filtering policies determined for the
NAT [46]. A STUN-like protocol is run on a bootstrap server when a node joins
the system to determine its NAT type and policies. We consider running STUN
once at bootstrap time acceptable, as, although some corporate NAT devices can
change their NAT policies dynamically, the vast majority of consumer NAT devices
have a fixed NAT type and fixed policies.

In Gozar, each private node connects to one or more public nodes, called part-
ners. Private nodes discover potential partners using the PSS, that is, private
nodes select public nodes from their partial view and send partnering requests
to them. When a private node successfully partners with a public node, it adds
its partner address to its own node descriptor. As node descriptors spread in the
system through gossiping, a node that subsequently selects the private node from
its partial view communicates with the private node using one of its partners as a
relay server. Relaying enables faster connection establishment than hole punching,
allowing for shorter periodic cycles for gossiping. Short gossiping cycles are neces-
sary in dynamic networks, as they improve convergence time, helping keep partial
views updated in a timely manner.

However, for distributed applications that use a PSS, such as online gaming,
video streaming, and P2P file sharing, relaying is not acceptable due to the extra
load on public nodes. To support these applications, the private nodes’ partners
also provide a rendezvous service to enable applications that sample nodes using
the PSS to connect to them using a hole punching algorithm (if hole punching is
possible).

8.5.1 Partnering

Whenever a new node joins the system, it contacts the bootstrap server and asks
for a list of nodes from the system and also runs the modified STUN protocol to
determine its NAT type and policies. If the node is public, it can immediately add
the returned nodes to its partial view and start gossiping with the returned nodes.
If the node is private, it needs to find a partner before it can start gossiping. It
selects m public nodes from the returned nodes and sends each of them a partnering
request. Public nodes only partner a bounded number of private nodes to ensure
the partnering load is balanced over the public nodes. Therefore, if a public node
cannot act as a partner, it returns a NACK. The private node continues sending
partnering requests to public nodes until it finds a partner, upon which the private

8.5. THE GOZAR PROTOCOL 97

node can now start gossiping. Private nodes proactively keep their connections
to their partners open by sending ping messages to them periodically. Authors
in [76] showed that unused NAT mapping rules remain valid for more than 120
seconds for 70% of connections. In our implementation, the private nodes send the
ping messages every 50 seconds to refresh a higher percentage of mapping rules.
Moreover, private nodes use the ping replies to detect the failure of their partners.
If a private node detects a failed partner, it restarts the partner discovery process.

8.5.2 Peer sampling service

Each node in Gozar maintains a partial view of the nodes in the system. A node
descriptor, stored in a partial view, contains the address of the node, NAT type,
and the addresses of the node’s partners, which are initially empty. When a node
descriptor is gossiped or sampled, other nodes learn about the node’s NAT type
and any partners. Later on, a node can gossip with a private node by relaying
messages through the private node’s partners.

Each node p periodically executes algorithm 5 to exchange and update its view.
The algorithm shows that in each iteration, p first updates the age of all nodes in
its view, and then chooses a node to exchange its view with. After selecting a node
q, p removes that node from its view. Node p, then, selects a subset of random
nodes from its view, and appends to the subset its own node descriptor (the node,
its NAT type, and its partners). If the selected node q is a public node, then p
sends the shuffle request message directly to q, otherwise it sends the shuffle request
as a relay message to one of q’s partners, selected uniformly at random.

Algorithm 5 Shuffle view.

1: procedure ShuffleView 〈this〉
2: this.view.updateAge()
3: q ← SelectANodeT oShuffleW ith(this.view) ⊲ See algorithm 6
4: this.view.remove(q)
5: pV iew ← this.view.subset() ⊲ a random subset from p’s view

6: pV iew.add(p, p.natT ype, p.partners)
7: if q.natT ype is public then

8: Send ShuffleRequest(pV iew, p) to q

9: else

10: qP artner ← random partner from q.partners

11: Send Relay(shuffleRequest, pV iew, q) to qP artner
12: end if

13: end procedure

Algorithm 6 shows how a node p selects another node to exchange its view with.
Node p selects the oldest node in its view (the tail policy), which is either a public
node, or a private node that has at least one partner.

Algorithm 7 is triggered whenever a node receives a shuffle request message.
Once node q receives the shuffle request, it selects a random subset of node descrip-
tors from its view and sends the subset back to the requester node p. If p is a public
node, q sends the shuffle response back directly to it, otherwise it uses one of p’s

98 CHAPTER 8. GOZAR

Algorithm 6 Select a node to shuffle with.

1: procedure SelectANodeToShuffleWith 〈this.view〉
2: for all nodei in this.view do

3: if nodei.natT ype = public OR (nodei.natT ype = private AND nodei.partners 6= ‰)
then

4: candidates← nodei

5: end if

6: end for

7: q ← oldest node from candidates
8: Return q

9: end procedure

Algorithm 7 Handling the shuffle request.

1: upon event 〈ShuffleRequest | pV iew, p〉 from m ⊲ m can be p or q.partner

2: qV iew ← this.view.subset() ⊲ a random subset from q’s view
3: if p.natT ype is public then

4: Send ShuffleResponse(qV iew, q) to p
5: else

6: pP artner ← random partner from p.partners
7: Send Relay(shuffleResponse, qV iew, p) to pP artner
8: end if

9: UpdateV iew(qV iew, pV iew)

10: end event

Algorithm 8 Handling the shuffle response.

1: upon event 〈ShuffleResponse | qV iew, q〉 from n ⊲ n can be q or p.partner
2: UpdateV iew(pV iew, qV iew)

3: end event

Algorithm 9 Updating the view.

1: procedure UpdateView 〈sentV iew, receivedV iew〉
2: for all nodei in receivedV iew do

3: if this.view.contains(nodei) then

4: this.view.updateAge(nodei)
5: else if this.view has free entries then

6: this.view.add(nodei)
7: else

8: nodej ← sentV iew.poll()
9: this.view.remove(nodej)

10: this.view.add(nodei)
11: end if

12: end for

13: end procedure

8.5. THE GOZAR PROTOCOL 99

Algorithm 10 Handling the relay message.

1: upon event 〈Relay | natT ype, view, y〉 from x

2: if natT ype is shuffleRequest then

3: Send ShuffleRequest(view, x) to y
4: else

5: Send ShuffleResponse(view, x) to y
6: end if

7: end event

Algorithm 11 NAT Traversal to private nodes.

1: procedure SendData 〈q, data〉
2: if q.natT ype is public then

3: Send data to q
4: else

5: RV P ← random partner from q.partners
6: ⊲ Determine hole punching algorithm for the combination of NAT types
7: hp← hpAlgorithm(p.natT ype, q.natT ype)
8: ⊲ Start hole punching at RV P using the hole punching algorithm hp.
9: holeP unch(hp, p, q, RV P)

10: Send data to q
11: end if

12: end procedure

partners to relay the response. Again, node q selects p’s relaying node uniformly
at random from the list of p’s partners. Finally, node q updates its view. A node
updates its view whenever it receives a shuffle response (algorithm 8).

Algorithm 9 shows how a node updates its view using the received list of node
descriptors. Node p merges the node descriptors received from q with its current
view by iterating through the received list, and adding the descriptors to its own
view. If its view is not full, it adds the node, and if a node descriptor to be merged
already exists in p’s view, p updates its age (if more recent). If the view is full, p
replaces one of the nodes it had sent to q with the node in received list (the swapper
policy).

Algorithm 10 is triggered whenever a partner node receives a relay message
from another node. The node extracts the embedded message that can be a shuffle
request or shuffle response, and forwards it to the destination private node.

If a client of the PSS, node p, wants to establish a direct connection to a node
q, it uses algorithm 11 that implements the hole punching service. Algorithm 11
shows that if q is a public node, then p sends data directly to q. Otherwise, p
selects uniformly at random one of q’s partners as a rendezvous node (RV P), and
determines the hole punching algorithm (hp) using the combination of its own NAT
type and q’s NAT type RV P [46]. Then, p starts the hole punching process through
the RV P [46]. After successfully establishing a direct connection, node p sends data
directly to q.

100 CHAPTER 8. GOZAR

8.6 Evaluation

In this section, we compare in simulation the behavior of Gozar with Nylon [42]
and ARRG [70], the only two other NAT-friendly gossip-based PSS’ we found in
the literature. In our experiments, we use Cyclon as a baseline for comparison,
where Cyclon experiments are executed using only public nodes. Cyclon has shown
in simulation that it passes classical tests for randomness [40].

8.6.1 Experiment setup

We implemented Gozar, Cyclon, Nylon and ARRG on the Kompics platform [56].
Kompics provides a framework for building P2P protocols and a discrete event simu-
lator for simulating them using different bandwidth, latency and churn models. Our
implementations of Cyclon, Nylon and ARRG are based on the system descriptions
in [40], [42] and [70], respectively. Nylon differs from Gozar in its node selection and
view merging policies: Gozar uses tail and swapper policies, while Nylon uses rand
and healer policies [42]. For a cleaner comparison with the NAT-friendly features
of Nylon, we use the tail and swapper policies in our implementation of Nylon.

In our experimental setup, for all four systems, the size of a node’s partial view
is 10, and the size of subset of the partial view sent in each view exchange is 5. The
iteration period for view exchange is set to one second. Latencies between nodes are
modelled on Internet latencies, using a latency map based on the King data-set [58].
In all simulations, 1000 nodes join the system following a Poisson distribution with
an inter-arrival time of 10 milliseconds, and unless stated otherwise, 80% of nodes
are behind NATs. In Gozar, each private node has 3 public nodes as partners, and
they keep a connection to their partners open by sending ping messages every 50
seconds.

The experiment scenarios presented here are a comparison of the randomness
of Gozar with Cyclon, Nylon and ARRG; a comparison of the protocol overhead of
Gozar and Nylon for different percentages of private nodes, and finally, we evaluate
the behaviour of Gozar in dynamic networks.

8.6.2 Randomness

Here, we compare the randomness of the PSS’ of Gozar with Nylon and ARRG.
Cyclon is used as a baseline for true randomness. In the first experiment, we
measure the local randomness property [41] of these systems. Local randomness
shows the number of times that each node in the system is returned by the PSS
for each node in the system. For a truly random PSS, we expect that the returned
nodes follow a uniform random distribution. In figure 8.1a, we measure the local
randomness of all nodes in the system, after 250 cycles. For a uniform random
distribution, the expected number of selections for each node is 25. As we can see,
Cyclon has an almost uniform random distribution, while Nylon’s distribution is
slightly closer to uniform random than Gozar’s distribution. ARRG, on the other

8.6. EVALUATION 101

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

of

 n
od

es

of selection

cyclon
gozar
nylon

arrg

(a) Local randomness.

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60

of

 n
od

es

Indegree

cyclon
gozar
nylon

arrg

(b) Indegree distribution.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

av
g.

 p
at

h
le

ng
th

of cycles

cyclon
gozar
nylon

arrg

(c) Average path length.

 0

 0.05

 0.1

 0.15

 0.2

 0 50 100 150 200 250

cl
us

te
rin

g
co

ef
fic

ei
nt

of cycles

cyclon
gozar
nylon

arrg

(d) Clustering coefficient.

Figure 8.1: Randomness properties.

hand, has a long-tailed distribution, where there are a few nodes that are sampled
many times (the public nodes stored in private nodes’ caches [70]). For Gozar,
we can see two spikes: one representing the private nodes, that is roughly four
times higher than the other consisting of the public nodes. This slight skew in the
distribution results from the fact that public nodes are more likely to be selected
during the first few cycles when private nodes have no partners.

In addition to the local randomness property, we use the global randomness
metrics, defined in [41], to capture important global correlations of the system as a
whole. The global randomness metrics are based on graph theoretical properties of
the system, including the indegree distribution, average path length and clustering
coefficient.

Figure 8.1b shows the indegree distribution of nodes after 250 cycles (the out-
degree of all nodes is 10). In a uniformly random system, we expect that the
indegree is distributed uniformly among all nodes. Cyclon shows this behaviour as

102 CHAPTER 8. GOZAR

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50 100 150 200 250
 0

 50

 100

 150

 200

 250

 300

 350

 400

Y
1

-
P

ro
to

co
l o

ve
rh

ea
d

(K
B

)

Y
2

-
N

od
es

 o
ve

rh
ea

d
(K

B
)

Time

gozar (Y1)
nylon (Y1)

gozar-private (Y2)
nylon-private (Y2)
gozar-public (Y2)
nylon-public (Y2)

(a) Protocol overhead of Gozar vs. Nylon.

 0

 20

 40

 60

 80

 100

 120

 140

 160

40 50 60 70 80

P
ro

to
cl

 o
ve

rh
ea

d
(K

B
/s

)

Percentage of NATs

gozar (1 partner)
gozar (3 partners)

nylon

(b) Overhead traffic of Gozar vs. Nylon for
varying percentages of private nodes.

Figure 8.2: Protocols overhead.

the node indegree is almost distributed uniformly among nodes. We can see the
same distribution in Gozar and Nylon - their indegree distributions are very close
to Cyclon. Again, due to high number of unsuccessful view exchanges in ARRG,
we see that the node indegree is highly skewed.

In figure 8.1c, we compare the average path length of the three systems, with
Cyclon as a baseline. The path length for two nodes is measured as the minimum
number of hops between two nodes, and the average path length is the average of
all path lengths between all nodes in the system. Figure 8.1c also shows the average
path length for the system in different cycles. Here, we can see the average path
length of Gozar and Nylon track Cyclon very closely, but ARRG has higher average
path length. As we can see, in the first few cycles, the path length of Gozar is high
but after passing 50 cycles (50 seconds), the path length decreases. That is because
of the time that private nodes need to find their partners and add them to their
node descriptors.

Finally, we compare the clustering coefficient of the systems. The clustering
coefficient of a node is the number of links between the neighbors of the node
divided by all possible links. Figure 8.1d shows the evolution of the clustering
coefficient of the constructed overlay by each system. We can see that Gozar and
Nylon almost have the same clustering coefficient as Cyclon, while the value for
ARRG is higher.

8.6.3 Protocol overhead

In this section, we compare the protocol overhead of Gozar and Nylon in different
settings, where the protocol overhead traffic is the extra messages required to route
messages through NATs. Protocol overhead traffic in Gozar consists of relay traffic
and partner management, while in Nylon it consists of routing traffic. Figure 8.2a
shows the protocol overhead when 80% of nodes are behind NAT. The Y1-axis

8.6. EVALUATION 103

shows the total overhead, and the Y2-axis shows the average overhead of each
public and private node. In this experiment, each private node in Gozar has three
public nodes as partners, but only one partner is used to relay a message to a private
node. Nylon, however, routes messages through more than two intermediate nodes
on average (see [42] for comparable results). Figure 8.2a shows that after 250 cycles
the relay traffic and partner management overhead in Gozar is 20000KB, while the
routing traffic overhead in Nylon is roughly 37000KB.

Now, we compare the protocol overhead for Gozar and Nylon for different per-
centages of private nodes. To show the overhead in adding more partners, we
consider two settings for Gozar: private nodes have one partner, and private nodes
have three partners. In figure 8.2b, we can see that when 80% of nodes are behind
NAT, the protocol overhead for all nodes in Nylon is around 150KBs after 250 cy-
cles. The corresponding overhead in Gozar, when the private nodes have three and
one partners, are around 70KBs and 40KBs, respectively. The main contributory
difference between the protocol overhead in the two different partner settings is
that shuffle request and shuffle response messages become larger for more partners,
as all partners addresses are included in private nodes’ descriptors. The increase
in traffic is a function of the percentage of private nodes (as only their descriptors
include partner addresses), but is independent of the size of the partial view.

8.6.4 Fairness and connectivity after catastrophic failure

We evaluate the behaviour of Gozar if high numbers of nodes leave the system
or crash. Our experiment models a catastrophic failure scenario: 20 cycles after
1000 nodes have joined, 50% of nodes fail following a Poisson distribution with
inter-arrival time of 10 milliseconds.

Our first failure experiment shows the level of fairness between public and pri-
vate nodes after the catastrophic failure. In figure 8.3a, the Y1-axis shows the
average traffic on each public node and private node for different number of part-
ners, and the Y2-axis shows the average number of unsuccessful view exchanges for
each node. Here, 80% of nodes are private nodes and we capture the results 80 cy-
cles after 50% of the nodes fail. As we can see in figure 8.3a, the higher the number
of partners the private nodes have, the more overhead traffic generated, again, due
to the increasing the size of messages exchanged among nodes. The Y2-axis shows
that when the private nodes have only one partner, the average number of unsuc-
cessful view exchanges is higher than when the private nodes have more than one
partner. If a private node has more than one partner, then in case of failure of any
of them, there are still other partners that can be used to communicate with the
private node. An interesting observation here is that we cannot see a big decrease in
the number of unsuccessful view exchanges when the private nodes has more than
two partners. This observation, however, is dependent on our catastrophic failure
model, and high churn rates might benefit more from more than two partners.

Finally, we measure the size of biggest cluster after a catastrophic failure. Here,
we assume that each private node has three partners. Figure 8.3b shows the size

104 CHAPTER 8. GOZAR

 0

 200

 400

 600

 800

 1000

1 2 3 4 5

 26

 28

 30

 32

 34

Y
1

-
R

el
ay

 tr
af

fic
 (

B
s)

Y
2

-
A

vg
. n

um
. o

f u
ns

uc
ce

ss
fu

l g
os

si
p

Num. of partners

avg. public nodes traffic (Y1)
avg. private nodes traffic (Y1)
avg. unsuccessful gossip (Y2)

(a) Fairness after catastrophic failure: overhead for
public and private nodes for varying numbers of par-
ents.

 90

 92

 94

 96

 98

 100

40 50 60 70 80

bi
gg

es
t c

lu
st

er
 s

iz
e

(%
)

percentage of node departure

50% NATs
60% NATs
70% NATs
80% NATs

(b) Biggest cluster size after catastrophic failures.

Figure 8.3: Behaviour of the system after catastrophic failure.

of biggest cluster for varying percentages of private nodes, when varying numbers
of nodes fail. We can see that Gozar is resilient to node failure. For example, in
the case of 80% private nodes, when 80% of the nodes fail, the biggest cluster still
covers more than 92% of the nodes.

8.7 Conclusion

In this paper, we presented Gozar, a NAT-friendly gossip-based peer sampling
service that also provides a distributed NAT traversal service to clients of the
PSS. Public nodes are leveraged to provide both the relaying and hole punching
services. Relaying is only used for gossiping to private nodes, and is preferred to
hole punching or routing through existing open connections (as done in Nylon),
as relaying has lower connection latency, enabling a faster gossiping cycle, and
the messages relayed are small, thus, adding only low overhead to public nodes.

8.7. CONCLUSION 105

Relaying and hole punching services provided by public nodes are enabled by every
private node partnering with a small number of (redundant) public nodes and
keeping a connection open to them. We extended node descriptors for private
nodes to include the addresses of their partners, so when a node wishes to send a
message to a private node (through relaying) or establish a direct connection with
the private node through hole punching, it sends a relay or connection message to
one (or more) of the private node’s partners.

We showed in simulation that Gozar preserves the randomness properties of a
gossip-based peer sampling service. We also show that the protocol overhead in
our system is less than that of Nylon in different network settings and different
percentages of private nodes. We also showed that the extra overhead incurred by
public nodes is acceptable. Finally, we show that if 80% of the nodes are private,
and when 50% of the nodes suddenly fail, more than 92% of nodes stay connected.

In future work, we will integrate our existing P2P applications with Gozar, such
as our work on video streaming [1, 2], and evaluate their behaviour on the open
Internet.

Bibliography

[1] A. H. Payberah, J. Dowling, F. Rahimian, and S. Haridi, “gradienTv: Market-
based P2P Live Media Streaming on the Gradient Overlay,” in Lecture Notes
in Computer Science (DAIS 2010), pp. 212–225, Springer Berlin / Heidelberg,
Jan 2010.

[2] A. H. Payberah, J. Dowling, F. Rahimian, and S. Haridi, “Sepidar: Incen-
tivized market-based p2p live-streaming on the gradient overlay network,” In-
ternational Symposium on Multimedia, vol. 0, pp. 1–8, 2010.

[3] A. H. Payberah, J. Dowling, and S. Haridi, “Glive: The gradient overlay as
a market maker for mesh-based p2p live streaming,” in the 10th IEEE In-
ternational Symposium on Parallel and Distributed Computing (ISPDC), July
2011.

[4] D. P. Bertsekas, “The auction algorithm: a distributed relaxation method for
the assignment problem,” Ann. Oper. Res., vol. 14, no. 1-4, pp. 105–123, 1988.

[5] J. Sacha, B. Biskupski, D. Dahlem, R. Cunningham, R. Meier, J. Dowling,
and M. Haahr, “Decentralising a service-oriented architecture,” Accepted for
publication in Peer-to-Peer Networking and Applications.

[6] J. Sacha, J. Dowling, R. Cunningham, and R. Meier, “Discovery of stable
peers in a self-organising peer-to-peer gradient topology.,” in 6th IFIP WG 6.1
International Conference Distributed Applications and Interoperable Systems
(DAIS) (F. Eliassen and A. Montresor, eds.), vol. 4025, (Bologna), pp. 70–83,
June 2006.

[7] W. P. K. Yiu, X. Jin, and S. H. G. Chan, “Challenges and approaches in
large-scale p2p media streaming,” IEEE MultiMedia, vol. 14, no. 2, pp. 50–59,
2007.

[8] K. Park, S. Pack, and T. Kwon, “Climber: An incentive-based resilient peer-to-
peer system for live streaming services,” in Workshop on Peer-to-Peer Systems
(IPTPS), 2008.

[9] D. A. Tran, K. A. Hua, and T. T. Do, “Zigzag: An efficient peer-to-peer scheme
for media streaming,” in INFOCOM, 2003.

107

108 BIBLIOGRAPHY

[10] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application
layer multicast,” in SIGCOMM ’02: Proceedings of the 2002 conference on
Applications, technologies, architectures, and protocols for computer commu-
nications, (New York, NY, USA), pp. 205–217, ACM, 2002.

[11] S. Jarvis, G. Tan, D. Spooner, and G. Nudd, “Constructing Reliable and Ef-
ficient Overlays for P2P Live Media Streaming,” in 21 st UK Performance
Engineering Workshop, p. 31, Citeseer, 2005.

[12] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “Splitstream: high-bandwidth multicast in cooperative environ-
ments,” in SOSP ’03: Proceedings of the nineteenth ACM symposium on Op-
erating systems principles, (New York, NY, USA), pp. 298–313, ACM Press,
2003.

[13] J. J. D. Mol, D. H. J. Epema, and H. J. Sips, “The orchard algorithm: P2p mul-
ticasting without free-riding,” in P2P ’06: Proceedings of the Sixth IEEE In-
ternational Conference on Peer-to-Peer Computing, (Washington, DC, USA),
pp. 275–282, IEEE Computer Society, 2006.

[14] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Heterogeneous
unstructured tree-based peer-to-peer multicast,” in ICNP ’06: Proceedings of
the Proceedings of the 2006 IEEE International Conference on Network Pro-
tocols, (Washington, DC, USA), pp. 2–11, IEEE Computer Society, 2006.

[15] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai, “Dis-
tributing streaming media content using cooperative networking,” in NOSS-
DAV ’02: Proceedings of the 12th international workshop on Network and
operating systems support for digital audio and video, (New York, NY, USA),
pp. 177–186, ACM, 2002.

[16] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A comparative
study of live p2p streaming approaches,” in INFOCOM 2007. 26th IEEE In-
ternational Conference on Computer Communications. IEEE, pp. 1424–1432,
Ieee, 2007.

[17] D. Frey, R. Guerraoui, A. Kermarrec, and M. Monod, “Boosting Gossip for
Live Streaming,” in Peer-to-Peer Computing (P2P), 2010 IEEE Tenth Inter-
national Conference on, pp. 1–10, IEEE, 2010.

[18] X. Zhang, J. Liu, B. Li, and T. shing Peter Yum, “Coolstreaming/donet: A
data-driven overlay network for peer-to-peer live media streaming,” in IEEE
Infocom, 2005.

[19] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, A. E. Mohr, and E. E.
Mohr, “Chainsaw: Eliminating trees from overlay multicast,” in Workshop on
Peer-to-Peer Systems (IPTPS), pp. 127–140, 2005.

BIBLIOGRAPHY 109

[20] F. Pianese, J. Keller, and E. W. Biersack, “Pulse, a flexible p2p live streaming
system.,” in INFOCOM, IEEE, 2006.

[21] R. Fortuna, E. Leonardi, M. Mellia, M. Meo, and S. Traverso, “QoE in Pull
Based P2P-TV Systems: Overlay Topology Design Tradeoffs,” in Peer-to-Peer
Computing (P2P), 2010 IEEE Tenth International Conference on, pp. 1–10,
IEEE, 2010.

[22] S. Asaduzzaman, Y. Qiao, and G. Bochmann, “CliqueStream: an efficient
and fault-resilient live streaming network on a clustered peer-to-peer overlay,”
in Proceedings of the 2008 Eighth International Conference on Peer-to-Peer
Computing, pp. 269–278, IEEE Computer Society, 2008.

[23] F. Wang, Y. Xiong, and J. Liu, “mtreebone: A hybrid tree/mesh overlay for
application-layer live video multicast,” in ICDCS ’07: Proceedings of the 27th
International Conference on Distributed Computing Systems, p. 49, 2007.

[24] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang, “Inside the new
coolstreaming: Principles, measurements and performance implications,” in
INFOCOM 2008. The 27th Conference on Computer Communications. IEEE,
pp. 1031–1039, 2008.

[25] N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-driven mesh-based
streaming,” in INFOCOM, 2007.

[26] T. Locher, R. Meier, S. Schmid, and R. Wattenhofer, “Push-to-Pull Peer-to-
Peer Live Streaming,” in 21st International Symposium on Distributed Com-
puting (DISC), Lemesos, Cyprus, Springer LNCS 4731, September 2007.

[27] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “Directstream: A directory-
based peer-to-peer video streaming service,” Comput. Commun., vol. 31, no. 3,
pp. 520–536, 2008.

[28] G. An, D. Gui-guang, D. Qiong-hai, and L. Chuang, “Bulktree: an overlay
network architecture for live media streaming,” 2006.

[29] "The Annotated Gnutella Protocol Specification v0.4".
Accessed Jan-2008, Available: http : //rfc −
gnutella.sourceforge.net/developer/stable/index.html.

[30] X. Jiang, Y. Dong, D. Xu, and B. Bhargava, “Gnustream: a p2p media stream-
ing system prototype,” in ICME ’03: Proceedings of the 2003 International
Conference on Multimedia and Expo, (Washington, DC, USA), pp. 325–328,
IEEE Computer Society, 2003.

[31] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A
scalable Peer-To-Peer lookup service for internet applications,” in Proceedings
of the 2001 ACM SIGCOMM Conference, pp. 149–160, 2001.

110 BIBLIOGRAPHY

[32] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems,” Lecture Notes in Computer
Science, vol. 2218, pp. 329–??, 2001.

[33] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M.
Kermarrec, “Lightweight probabilistic broadcast,” in DSN ’01: Proceedings
of the 2001 International Conference on Dependable Systems and Networks
(formerly: FTCS), (Washington, DC, USA), pp. 443–452, IEEE Computer
Society, 2001.

[34] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation in
large dynamic networks,” ACM Trans. Comput. Syst., vol. 23, no. 3, pp. 219–
252, 2005.

[35] M. Jelasity, A. Montresor, and O. Babaoglu, “T-Man: Gossip-based fast over-
lay topology construction,” Computer Networks, vol. 53, no. 13, pp. 2321–2339,
2009.

[36] R. Baldoni, M. Platania, L. Querzoni, and S. Scipioni, “Practical uniform peer
sampling under churn,” in ISPDC ’10: Proceedings of the 2010 Ninth Interna-
tional Symposium on Parallel and Distributed Computing, (Washington, DC,
USA), pp. 93–100, IEEE Computer Society, 2010.

[37] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer, “Brahms:
Byzantine resilient random membership sampling,” Computer Networks,
vol. 53, pp. 2340–2359, March 2009.

[38] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie, “Peer-to-peer membership
management for gossip-based protocols,” IEEE Transactions on Computers,
vol. 52, p. 2003, 2003.

[39] M. Jelasity and A. Montresor, “Epidemic-style proactive aggregation in large
overlay networks,” in ICDCS ’04: Proceedings of the 24th International Con-
ference on Distributed Computing Systems (ICDCS’04), (Washington, DC,
USA), pp. 102–109, IEEE Computer Society, 2004.

[40] S. Voulgaris, D. Gavidia, and M. van Steen, “CYCLON: Inexpensive Member-
ship Management for Unstructured P2P Overlays,” Journal of Network and
Systems Management, vol. 13, no. 2, pp. 197–217, 2005.

[41] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen,
“Gossip-based peer sampling,” ACM Trans. Comput. Syst., vol. 25, no. 3, p. 8,
2007.

[42] A.-M. Kermarrec, A. Pace, V. Quema, and V. Schiavoni, “Nat-resilient gos-
sip peer sampling,” in ICDCS ’09: Proceedings of the 2009 29th IEEE In-
ternational Conference on Distributed Computing Systems, (Washington, DC,
USA), pp. 360–367, IEEE Computer Society, 2009.

BIBLIOGRAPHY 111

[43] J. Rosenberg, R. Mahy, P. Mathews, and D. Wing, “Rfc 5389: Session traversal
utilities for nat (stun),” 2008.

[44] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “Rfc 3489: Stun
- simple traversal of user datagram protocol (udp) through network address
translators (nats),” 2003.

[45] F. Audet and C. Jennings, “Network address translation (nat) behavioral re-
quirements for unicast udp,” in RFC 4787 (best current practice), Internet
Engineering Task Force, 2007.

[46] R. Roverso, S. El-Ansary, and S. Haridi, “Natcracker: Nat combinations mat-
ter,” in ICCCN ’09: Proceedings of the 2009 Proceedings of 18th International
Conference on Computer Communications and Networks, (Washington, DC,
USA), pp. 1–7, IEEE Computer Society, 2009.

[47] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communication across net-
work address translators,” CoRR, vol. abs/cs/0603074, 2006.

[48] R. H. Huynh Cong Phuoc and A. McKenzie, “Nat traversal techniques in peer-
to-peer networks,” 2008.

[49] C. H. J. Rosenberg, R. Mahy, “Turn - traversal using relay nat,” in [On-
line]. Available: http://tools.ietf.org/id/draft-rosenberg-midcom-turn-08.txt,
Sep. 2005.

[50] C. N. Vasconcelos and B. Rosenhahn, “Bipartite graph matching computation
on gpu,” in 7th International Conference on Energy Minimization Methods in
Computer Vision and Pattern Recognition, (Berlin, Heidelberg), pp. 42–55,
Springer-Verlag, 2009.

[51] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval
Research Logistic Quarterly, vol. 2, pp. 83–97, 1955.

[52] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli, “Revealing skype
traffic: when randomness plays with you,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 4, pp. 37–48, 2007.

[53] A. H. Payberah, J. Dowling, and S. Haridi, “Gozar: Nat-friendly peer sampling
with one-hop distributed nat traversal,” in the 11th IFIP international con-
ference on Distributed Applications and Interoperable Systems (DAIS), June
2011.

[54] Y. Lu, B. Fallica, F. Kuipers, R. Kooij, and P. V. Mieghem, “Assessing the
quality of experience of sopcast,” Journal of Internet Protocol Technology,
vol. 4, no. 1, pp. 11–23, 2009.

112 BIBLIOGRAPHY

[55] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “Bitos: enhancing bittorrent for
supporting streaming applications,” in In IEEE Global Internet, pp. 1–6, 2006.

[56] C. Arad, J. Dowling, and S. Haridi, “Developing, simulating, and deploying
peer-to-peer systems using the kompics component model,” in COMSWARE
’09: Proceedings of the Fourth International ICST Conference on COMmu-
nication System softWAre and middlewaRE, (New York, NY, USA), pp. 1–9,
ACM, 2009.

[57] S. Xie, B. Li, G. Keung, and X. Zhang, “Coolstreaming: Design, Theory and
Practice,” IEEE Transactions on Multimedia, vol. 9, no. 8, p. 1661, 2007.

[58] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency
between arbitrary internet end hosts,” in SIGCOMM Internet Measurement
Workshop, 2002.

[59] G. Tan and S. A. Jarvis, “A payment-based incentive and service differentiation
scheme for peer-to-peer streaming broadcast,” IEEE Trans. Parallel Distrib.
Syst., vol. 19, no. 7, pp. 940–953, 2008.

[60] D. B. West, Introduction to Graph Theory (2nd Edition). Prentice Hall, August
2000.

[61] M. Meulpolder, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips, “Bartercast:
A practical approach to prevent lazy freeriding in p2p networks,” in IEEE In-
ternational Symposium on Parallel&Distributed Processing, (Washington, DC,
USA), pp. 1–8, IEEE Computer Society, 2009.

[62] J. Mol, J. Pouwelse, M. Meulpolder, D. Epema, and H. Sips, “Give-to-get:
Free-riding-resilient video-on-demand in p2p systems,” in Multimedia Com-
puting and Networking 2008, vol. 6818, SPIE Vol. 6818, January 2008.

[63] Z. Li and A. Mahanti, “A progressive flow auction approach for low-cost on-
demand p2p media streaming,” in International conference on Quality of ser-
vice in heterogeneous wired/wireless networks, (New York, NY, USA), p. 42,
ACM, 2006.

[64] R. Zhou, K. Hwang, and M. Cai, “Gossiptrust for fast reputation aggregation
in peer-to-peer networks,” IEEE Trans. on Knowl. and Data Eng., vol. 20,
no. 9, pp. 1282–1295, 2008.

[65] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas, “A distributed auction
algorithm for the assignment problem,” in 2008 47th IEEE Conference on
Decision and Control, pp. 1212–1217, IEEE, December 2008.

[66] C. Park, W. An, K. R. Pattipati, and D. L. Kleinman, “Distributed Auction
Algorithms for the Assignment Problem with Partial Information,” in Inter-
national Command and Control Research and Technology Symposium, June
2010.

BIBLIOGRAPHY 113

[67] B. Cohen, “Incentives build robustness in bittorrent,” in In Proceedings of the
1st Workshop on Economics of Peer-to-Peer Systems, 2003.

[68] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen, “The peer
sampling service: experimental evaluation of unstructured gossip-based imple-
mentations,” in Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware, (New York, NY, USA), pp. 79–98,
Springer-Verlag New York, Inc., 2004.

[69] G. Berthou and J. Dowling, “P2p vod using the self-organizing gradient overlay
network,” in SOAR ’10: Proceeding of the second international workshop on
Self-organizing architectures, (New York, NY, USA), pp. 29–34, ACM, 2010.

[70] N. Drost, E. Ogston, R. V. van Nieuwpoort, and H. E. Bal, “Arrg: real-world
gossiping,” in HPDC ’07: Proceedings of the 16th international symposium on
High performance distributed computing, (New York, NY, USA), pp. 147–158,
ACM, 2007.

[71] S. Guha and P. Francis, “Characterization and measurement of tcp traversal
through nats and firewalls,” in IMC ’05: Proceedings of the 5th ACM SIG-
COMM conference on Internet Measurement, (Berkeley, CA, USA), pp. 18–18,
USENIX Association, 2005.

[72] J. Rosenberg, “Interactive connectivity establishment (ice): A methodology for
network address translator (nat) traversal for offer/answer protocols,” in [On-
line]. Available: http://tools.ietf.org/html/draft-ietf-mmusic-ice-13, Jan. 2007.

[73] J. Leitão, R. van Renesse, and L. Rodrigues, “Balancing gossip exchanges in
networks with firewalls,” in Proceedings of the 9th International Workshop on
Peer-to-Peer Systems (IPTPS ’10), (San Jose, CA, U.S.A.), p. (to appear),
2010.

[74] L. DAcunto, M. Meulpolder, R. Rahman, J. Pouwelse, and H. Sips, “Modeling
and analyzing the effects of firewalls and nats in p2p swarming systems,” in
Proceedings IPDPS 2010 (HotP2P 2010), IEEE, April 2010.

[75] Y. Liu and J. a. Pan, “The impact of NAT on BitTorrent-like P2P systems,”
in IEEE Ninth International Conference on Peer-to-Peer Computing, 2009.
P2P’09, pp. 242–251, 2009.

[76] L. DAcunto, J. Pouwelse, and H. Sips, “A measurement of nat and firewall char-
acteristics in peer-to-peer systems,” in Proc. 15-th ASCI Conference (L. W.
Theo Gevers, Herbert Bos, ed.), (P.O. Box 5031, 2600 GA Delft, The Nether-
lands), pp. 1–5, Advanced School for Computing and Imaging (ASCI), June
2009.

114 BIBLIOGRAPHY

[77] R. Price and P. Tino, “Adapting to NAT timeout values in P2P overlay
networks,” in Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on, pp. 1–6, IEEE, 2010.

	Contents
	Thesis Overview
	Introduction
	Contribution
	Assumptions
	Outline

	Background
	P2P media streaming
	Peer sampling service
	The Gradient overlay
	The NAT problem

	Thesis contribution
	List of publications
	Tree-based approach
	Mesh-based approach
	The Gradient overlay as a market-maker
	Handling the NAT problem
	A DHB tree minimizes the cost function

	Conclusions
	Sepidar, gradienTv and GLive
	Gozar
	Future work

	Research Papers
	gradienTv - Multiple-tree overlay for P2P streaming
	Introduction
	Related work
	Gradient overlay
	GradienTv system
	Experiments and evaluation
	Conclusions

	Sepidar - Incentivized multiple-tree overlay for P2P streaming
	Introduction
	Related work
	Problem description
	Sepidar system
	Experiments and evaluation
	Conclusions

	GLive - Mesh overlay for P2P streaming
	Introduction
	Related work
	Problem description
	GLive system
	Experiments and evaluation
	Conclusions

	Gozar - NAT supported peer sampling service
	Introduction
	Related work
	Background
	Problem description
	The Gozar protocol
	Evaluation
	Conclusion

	Bibliography

